|
a |
|
b/model.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.nn.functional as F |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
class ConvUnit(nn.Module): |
|
|
8 |
""" |
|
|
9 |
Convolution Unit - |
|
|
10 |
for now : (Conv3D -> BatchNorm -> ReLu) * 2 |
|
|
11 |
Try modifying to Residual convolutions |
|
|
12 |
""" |
|
|
13 |
|
|
|
14 |
def __init__(self, in_channels, out_channels): |
|
|
15 |
super(ConvUnit, self).__init__() |
|
|
16 |
self.double_conv = nn.Sequential( |
|
|
17 |
|
|
|
18 |
nn.Conv3d(in_channels, out_channels, kernel_size = 3, padding = 1), |
|
|
19 |
nn.BatchNorm3d(out_channels), |
|
|
20 |
nn.ReLU(inplace=True), # inplace=True means it changes the input directly, input is lost |
|
|
21 |
|
|
|
22 |
nn.Conv3d(out_channels, out_channels, kernel_size = 3, padding = 1), |
|
|
23 |
nn.BatchNorm3d(out_channels), |
|
|
24 |
nn.ReLU(inplace=True) |
|
|
25 |
) |
|
|
26 |
|
|
|
27 |
def forward(self,x): |
|
|
28 |
return self.double_conv(x) |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
|
|
|
32 |
class EncoderUnit(nn.Module): |
|
|
33 |
""" |
|
|
34 |
An Encoder Unit with the ConvUnit and MaxPool |
|
|
35 |
""" |
|
|
36 |
def __init__(self, in_channels, out_channels): |
|
|
37 |
super(EncoderUnit, self).__init__() |
|
|
38 |
self.encoder = nn.Sequential( |
|
|
39 |
nn.MaxPool3d(2), |
|
|
40 |
ConvUnit(in_channels, out_channels) |
|
|
41 |
) |
|
|
42 |
def forward(self, x): |
|
|
43 |
return self.encoder(x) |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
class DecoderUnit(nn.Module): |
|
|
47 |
""" |
|
|
48 |
ConvUnit and upsample with Upsample or convTranspose |
|
|
49 |
|
|
|
50 |
""" |
|
|
51 |
def __init__(self, in_channels, out_channels, bilinear=False): |
|
|
52 |
super().__init__() |
|
|
53 |
|
|
|
54 |
if bilinear: |
|
|
55 |
# Only for 2D model |
|
|
56 |
self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) |
|
|
57 |
else: |
|
|
58 |
self.up = nn.ConvTranspose3d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) |
|
|
59 |
|
|
|
60 |
self.conv = ConvUnit(in_channels, out_channels) |
|
|
61 |
|
|
|
62 |
def forward(self, x1, x2): |
|
|
63 |
|
|
|
64 |
x1 = self.up(x1) |
|
|
65 |
|
|
|
66 |
diffZ = x2.size()[2] - x1.size()[2] |
|
|
67 |
diffY = x2.size()[3] - x1.size()[3] |
|
|
68 |
diffX = x2.size()[4] - x1.size()[4] |
|
|
69 |
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2, diffZ // 2, diffZ - diffZ // 2]) |
|
|
70 |
|
|
|
71 |
x = torch.cat([x2, x1], dim=1) |
|
|
72 |
return self.conv(x) |
|
|
73 |
|
|
|
74 |
class OutConv(nn.Module): |
|
|
75 |
def __init__(self, in_channels, out_channels): |
|
|
76 |
super(OutConv, self).__init__() |
|
|
77 |
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size = 1) |
|
|
78 |
|
|
|
79 |
def forward(self, x): |
|
|
80 |
return self.conv(x) |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
|
85 |
########### Model : |
|
|
86 |
|
|
|
87 |
class UNet(nn.Module): |
|
|
88 |
|
|
|
89 |
def __init__(self, in_channels, n_classes, s_channels, bilinear = False): |
|
|
90 |
super(UNet, self).__init__() |
|
|
91 |
self.in_channels = in_channels |
|
|
92 |
self.n_classes = n_classes |
|
|
93 |
self.s_channels = s_channels |
|
|
94 |
self.bilinear = bilinear |
|
|
95 |
|
|
|
96 |
self.conv = ConvUnit(in_channels, s_channels) |
|
|
97 |
self.enc1 = EncoderUnit(s_channels, 2 * s_channels) |
|
|
98 |
self.enc2 = EncoderUnit(2 * s_channels, 4 * s_channels) |
|
|
99 |
self.enc3 = EncoderUnit(4 * s_channels, 8 * s_channels) |
|
|
100 |
self.enc4 = EncoderUnit(8 * s_channels, 8 * s_channels) |
|
|
101 |
|
|
|
102 |
self.dec1 = DecoderUnit(16 * s_channels, 4 * s_channels, self.bilinear) |
|
|
103 |
self.dec2 = DecoderUnit(8 * s_channels, 2 * s_channels, self.bilinear) |
|
|
104 |
self.dec3 = DecoderUnit(4 * s_channels, s_channels, self.bilinear) |
|
|
105 |
self.dec4 = DecoderUnit(2 * s_channels, s_channels, self.bilinear) |
|
|
106 |
self.out = OutConv(s_channels, n_classes) |
|
|
107 |
|
|
|
108 |
def forward(self, x): |
|
|
109 |
x1 = self.conv(x) |
|
|
110 |
x2 = self.enc1(x1) |
|
|
111 |
x3 = self.enc2(x2) |
|
|
112 |
x4 = self.enc3(x3) |
|
|
113 |
x5 = self.enc4(x4) |
|
|
114 |
|
|
|
115 |
mask = self.dec1(x5, x4) |
|
|
116 |
mask = self.dec2(mask, x3) |
|
|
117 |
mask = self.dec3(mask, x2) |
|
|
118 |
mask = self.dec4(mask, x1) |
|
|
119 |
mask = self.out(mask) |
|
|
120 |
|
|
|
121 |
return mask |