1811 lines (1810 with data), 656.7 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5. Classification of Cancer or Non-Cancer with Classifiers\n",
"\n",
"## Summary\n",
"\n",
"* Load and process dataset by subsetting the largest nodule for each sample\n",
"* Label as cancer or non-cancer. Alternatively, create random labels with same ratio of classes\n",
"* For multinomial naive bayes classification, transform numerical data into categorical data by discretizing the features by rounding or transforming to percentiles\n",
"* Set up stratified K-fold and perform cross validation with GaussianNB, MultinomialNB, Logisitic Regression, Random Forest, Gradient Boosting, SVM w/rbf kernel, SVM w/linear kernel\n",
"* Create ensemble of classifiers\n",
"* Compare performance with classifiers trained with random labels\n",
"* Optimize model parameters with grid search"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n",
"c:\\programdata\\anaconda3\\envs\\tensorflow\\lib\\site-packages\\sklearn\\cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n",
" \"This module will be removed in 0.20.\", DeprecationWarning)\n",
"c:\\programdata\\anaconda3\\envs\\tensorflow\\lib\\site-packages\\sklearn\\grid_search.py:42: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.\n",
" DeprecationWarning)\n"
]
}
],
"source": [
"#EDIT HERE##############################\n",
"\n",
"#input list of tables generated from TrainUnet.ipynb\n",
"tablelist=['DSBPatientNoduleIndex.csv','DSBPatientNoduleIndex369-629.csv','DSBPatientNoduleIndex630-1199.csv','DSBPatientNoduleIndex1200-1594.csv', 'DSBPatientNoduleIndexTest.csv']\n",
"\n",
"########################################\n",
"\n",
"import numpy as np # linear algebra\n",
"import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
"import matplotlib.pyplot as plt\n",
"import dicom\n",
"import os\n",
"import scipy.ndimage\n",
"import time\n",
"from keras.callbacks import ModelCheckpoint\n",
"import h5py\n",
"from sklearn.cluster import KMeans\n",
"from skimage import measure, morphology\n",
"from mpl_toolkits.mplot3d.art3d import Poly3DCollection\n",
"\n",
"\n",
"import random\n",
"from sklearn.model_selection import train_test_split, StratifiedKFold\n",
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier, ExtraTreesClassifier\n",
"from sklearn.svm import SVC\n",
"from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import confusion_matrix, classification_report,log_loss\n",
"from sklearn.model_selection import cross_val_score\n",
"from scipy.ndimage.measurements import center_of_mass, label\n",
"from skimage.measure import regionprops\n",
"from sklearn.cross_validation import ShuffleSplit\n",
"from sklearn.grid_search import GridSearchCV\n",
"from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n",
"from scipy.stats import percentileofscore\n",
"\n",
"import keras\n",
"from keras.utils import to_categorical\n",
"from keras.datasets import mnist\n",
"from keras.models import Sequential\n",
"from keras.layers import Dense, Dropout, Flatten\n",
"from keras.layers import Conv2D, MaxPooling2D, BatchNormalization\n",
"from keras import backend as K\n",
"from keras.optimizers import Adam\n",
"from keras.utils import plot_model\n",
"#import unet_model\n",
"import scipy as sp\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load and process dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style>\n",
" .dataframe thead tr:only-child th {\n",
" text-align: right;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>index</th>\n",
" <th>Area</th>\n",
" <th>Diameter</th>\n",
" <th>DiameterMajor</th>\n",
" <th>Eccentricity</th>\n",
" <th>LargestNoduleArea</th>\n",
" <th>MeanHU</th>\n",
" <th>NoduleIndex</th>\n",
" <th>Patient</th>\n",
" <th>Spiculation</th>\n",
" <th>Unnamed: 0</th>\n",
" <th>Unnamed: 0.1</th>\n",
" <th>Unnamed: 0.1.1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>89.359329</td>\n",
" <td>10.645108</td>\n",
" <td>13.594830</td>\n",
" <td>0.713720</td>\n",
" <td>89</td>\n",
" <td>-272.820221</td>\n",
" <td>55</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.864078</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>71.400085</td>\n",
" <td>9.507892</td>\n",
" <td>12.956937</td>\n",
" <td>0.801334</td>\n",
" <td>71</td>\n",
" <td>-236.535217</td>\n",
" <td>56</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.910256</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>39.051132</td>\n",
" <td>6.863663</td>\n",
" <td>8.486004</td>\n",
" <td>0.708520</td>\n",
" <td>37</td>\n",
" <td>-173.769226</td>\n",
" <td>57</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.948718</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>63.034634</td>\n",
" <td>8.956232</td>\n",
" <td>12.397636</td>\n",
" <td>0.784063</td>\n",
" <td>63</td>\n",
" <td>-307.714294</td>\n",
" <td>58</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.797468</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>25.141571</td>\n",
" <td>5.753627</td>\n",
" <td>7.122801</td>\n",
" <td>0.662585</td>\n",
" <td>26</td>\n",
" <td>-366.500000</td>\n",
" <td>59</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.866667</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>5</td>\n",
" <td>42.820370</td>\n",
" <td>7.312733</td>\n",
" <td>9.713572</td>\n",
" <td>0.820839</td>\n",
" <td>42</td>\n",
" <td>-319.666656</td>\n",
" <td>66</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.954545</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>6</td>\n",
" <td>55.689487</td>\n",
" <td>8.519076</td>\n",
" <td>9.886418</td>\n",
" <td>0.610325</td>\n",
" <td>57</td>\n",
" <td>-367.298248</td>\n",
" <td>67</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.863636</td>\n",
" <td>6</td>\n",
" <td>6</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>7</td>\n",
" <td>5.780643</td>\n",
" <td>2.763953</td>\n",
" <td>3.265986</td>\n",
" <td>0.790569</td>\n",
" <td>6</td>\n",
" <td>-446.000000</td>\n",
" <td>110</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>1.000000</td>\n",
" <td>7</td>\n",
" <td>7</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>8</td>\n",
" <td>16.465515</td>\n",
" <td>4.513517</td>\n",
" <td>6.571094</td>\n",
" <td>0.845376</td>\n",
" <td>16</td>\n",
" <td>-468.562500</td>\n",
" <td>116</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.800000</td>\n",
" <td>8</td>\n",
" <td>8</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>9</td>\n",
" <td>37.294971</td>\n",
" <td>6.955796</td>\n",
" <td>8.292937</td>\n",
" <td>0.707234</td>\n",
" <td>38</td>\n",
" <td>-382.947357</td>\n",
" <td>119</td>\n",
" <td>0015ceb851d7251b8f399e39779d1e7d</td>\n",
" <td>0.974359</td>\n",
" <td>9</td>\n",
" <td>9</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" index Area Diameter DiameterMajor Eccentricity \\\n",
"0 0 89.359329 10.645108 13.594830 0.713720 \n",
"1 1 71.400085 9.507892 12.956937 0.801334 \n",
"2 2 39.051132 6.863663 8.486004 0.708520 \n",
"3 3 63.034634 8.956232 12.397636 0.784063 \n",
"4 4 25.141571 5.753627 7.122801 0.662585 \n",
"5 5 42.820370 7.312733 9.713572 0.820839 \n",
"6 6 55.689487 8.519076 9.886418 0.610325 \n",
"7 7 5.780643 2.763953 3.265986 0.790569 \n",
"8 8 16.465515 4.513517 6.571094 0.845376 \n",
"9 9 37.294971 6.955796 8.292937 0.707234 \n",
"\n",
" LargestNoduleArea MeanHU NoduleIndex \\\n",
"0 89 -272.820221 55 \n",
"1 71 -236.535217 56 \n",
"2 37 -173.769226 57 \n",
"3 63 -307.714294 58 \n",
"4 26 -366.500000 59 \n",
"5 42 -319.666656 66 \n",
"6 57 -367.298248 67 \n",
"7 6 -446.000000 110 \n",
"8 16 -468.562500 116 \n",
"9 38 -382.947357 119 \n",
"\n",
" Patient Spiculation Unnamed: 0 Unnamed: 0.1 \\\n",
"0 0015ceb851d7251b8f399e39779d1e7d 0.864078 0 0 \n",
"1 0015ceb851d7251b8f399e39779d1e7d 0.910256 1 1 \n",
"2 0015ceb851d7251b8f399e39779d1e7d 0.948718 2 2 \n",
"3 0015ceb851d7251b8f399e39779d1e7d 0.797468 3 3 \n",
"4 0015ceb851d7251b8f399e39779d1e7d 0.866667 4 4 \n",
"5 0015ceb851d7251b8f399e39779d1e7d 0.954545 5 5 \n",
"6 0015ceb851d7251b8f399e39779d1e7d 0.863636 6 6 \n",
"7 0015ceb851d7251b8f399e39779d1e7d 1.000000 7 7 \n",
"8 0015ceb851d7251b8f399e39779d1e7d 0.800000 8 8 \n",
"9 0015ceb851d7251b8f399e39779d1e7d 0.974359 9 9 \n",
"\n",
" Unnamed: 0.1.1 \n",
"0 NaN \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 NaN \n",
"5 NaN \n",
"6 NaN \n",
"7 NaN \n",
"8 NaN \n",
"9 NaN "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#load tables and concatenate\n",
"table=pd.read_csv(tablelist[0])\n",
"if len(tablelist)>1:\n",
" for file in tablelist[1:]:\n",
" temptable=pd.read_csv(file)\n",
" table=pd.concat([table,temptable])\n",
"table=table.reset_index()\n",
"\n",
"table[:10]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\programdata\\anaconda3\\envs\\tensorflow\\lib\\site-packages\\ipykernel_launcher.py:13: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
" del sys.path[0]\n"
]
}
],
"source": [
"#Subset largest nodule for each sample and label as cancer or non-cancer\n",
"malignantlabel=[]\n",
"malignancytable=pd.concat([pd.read_csv(\"stage1_labels.csv\"),pd.read_csv(\"stage1_solution.csv\")])\n",
"patients=malignancytable[\"id\"].values\n",
"index=0\n",
"indx=[]\n",
"for patient in patients:\n",
" nodulearea=table[[\"LargestNoduleArea\",\"NoduleIndex\",\"MeanHU\"]].loc[table[\"Patient\"]==patient]\n",
" if len(nodulearea)>0:\n",
" malignantlabel.append(malignancytable[\"cancer\"].loc[malignancytable[\"id\"]==patient].values[0].astype(np.bool))\n",
" indx.append(nodulearea[\"NoduleIndex\"].loc[nodulearea[\"LargestNoduleArea\"]==max(nodulearea[\"LargestNoduleArea\"])].index[0])\n",
"inputfeatures=table.iloc[indx]\n",
"inputfeatures[\"label\"]=malignantlabel\n",
"TFratio=len([a for a in malignantlabel if a==True])/len(malignantlabel)\n",
"TFratio\n",
"randomlabel=np.random.choice([0, 1], size=(len(malignantlabel),), p=[(1-TFratio), TFratio])\n",
"Xtrain, Xtest, Ytrain, Ytest = train_test_split(inputfeatures,malignantlabel,test_size=.30, random_state=42)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exploratory Analysis"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEKCAYAAADenhiQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+cXHV97/HXJ7sbZAOomSAikA2t2NtI1ZLVBxZtKbEV\nKQptrcUuEH7UlI21sfX2PqDp7W37aO4t9VaL2gRTAQO7ilZt4aEoKII/2gdgoPymaCgEgygmKgHi\nJST53D++57BnZ885c2bmzMyZnffz8fg+ZubMnDOfXcj57Dnf7/fzNXdHRESkTAt6HYCIiMw/Si4i\nIlI6JRcRESmdkouIiJROyUVEREqn5CIiIqVTchERkdIpuYiISOmUXEREpHTDvQ6gV5YsWeLLli3r\ndRgiIn3l9ttv3+Huhzb63MAml2XLlrFly5ZehyEi0lfMbFuRz+m2mIiIlE7JRURESqfkIiIipVNy\nERGR0im5iIhI6ZRcyjA9DcuWwYIF4XF6utcRiYj01MAORS7N9DSsXg27d4fX27aF1wATE72LS0Sk\nh3Tl0q5162YSS2z37rBdRGRAKbm069FHm9suIjIAlFyaVd+/snhx+ueWLu1mVCIilaI+l2ak9a+M\njMDChbBnz8znRkdh/frexCgiUgG6cmlGWv/Kc8+FBDM2BmbhcdMmdeaLyEDTlUszsvpRnnkGPvpR\nJRQRkYiuXJqR14+i0WEiIs9TcmlGXj+KRoeJiDxPyaUZExNQq6W/p9FhIiLPU3Jp1iWXhNFgSRod\nJiIyi5JLsyYmwmgwjQ4TEcmk0WKtmJhQMhERyaErFxERKZ2SS1lUdl9E5Hm6LVYGld0XEZlFVy5l\nUNl9EZFZlFzKoLL7IiKz9Cy5mNlRZnaTmd1vZveZ2dpo+2Iz+7KZfSd6fHFin4vMbKuZPWhmb05s\nX2Fm90TvfcjMrKs/TNYESk2sFJEB1csrl73A+9x9OXA88G4zWw5cCNzo7scAN0avid47A3glcDKw\nwcyGomNtBN4FHBO1k7v5g7B+vSZWiogk9Cy5uPvj7n5H9Pwp4AHgCOA0YHP0sc3A6dHz04Cr3f1Z\nd38Y2Aq8zswOBw5x91vc3YErE/t0hyZWiojMUonRYma2DPhF4FbgMHd/PHrr+8Bh0fMjgFsSu22P\ntj0XPa/f3l2aWCki8ryed+ib2UHAZ4H3uvuu5HvRlYiX+F2rzWyLmW354Q9/WNZhRUSkTk+Ti5mN\nEBLLtLt/Ltr8g+hWF9HjE9H2x4CjErsfGW17LHpev30Od9/k7uPuPn7ooYeW94OIiMgsvRwtZsBl\nwAPu/oHEW9cCq6Lnq4BrEtvPMLMDzOxoQsf9bdEttF1mdnx0zLMT+4iISA/08srlBOAs4CQzuzNq\npwB/C/yamX0HeFP0Gne/D/g0cD/wJeDd7r4vOtYa4GOETv6HgC929SfJo7IwIjKALHRrDJ7x8XHf\nsmVLZ7+kviwMhNFkF1wAGzZ09rtFRDrAzG539/FGn+t5h/68llYWxh0uvVRXMCIyrym5dFJW+Rd3\n1R0TkXlNyaWT8sq/qO6YiMxjSi6dtH596GNJo7pjIjKPKbl00sRE6LyvTzCqOyYi85ySS6dt2ABX\nXaW6YyIyUCpRW2zeU90xERkwunIREZHSKbl0imbmi8gA022xTqifmb9tW3gNuj0mIgNBVy6dkDYz\nf/duTZwUkYGh5NIJWRMkNXFSRAaEkksnZE2Q1MRJERkQSi6dsH59mCiZpImTIjJAlFw6YWIiTJQc\nGwuvh4Zm+lw0akxEBoBGi3VKPCpMo8ZEZADpyqVM9XNb1q7VqDERGUgNr1zMbBx4I/Ay4KfAvcCX\n3f3HHY6tf0xPh0Syc+fMtm3bsj+vUWMiMs9lXrmY2blmdgdwEXAg8CDwBPAG4CtmttnMNPwpnjCZ\nTCyNaNSYiMxzeVcuo8AJ7v7TtDfN7DXAMcBg/xmeNmEyz8gIPP10uHW2dGkYQab+FxGZZzKvXNz9\nH7MSS/T+ne5+Y2fC6iNFbnHVaqHcfvy4c2dY6jju4G80gkx1ykSkz2ReuZjZh+o2ObADuMndv9nR\nqPrB9HS4anFv/NmDDoIdO0JiqL99FnfwZ129qE6ZiPQh84yTo5mtStm8GHgH8Cl3/4dOBtZp4+Pj\nvmXLltZ2rj/hN2IG+/eHK4+033f8fpply9IHB4yNwSOPFI1YRKQUZna7u483+lzmlYu7b8448KXA\nvwN9nVza0mw/S9yBv3RpeqLI6+BXnTIR6UNNz3PJ64cZGHkn9ryyL62UhVGdMhHpQ00lFzMbNrNz\nge0diqc/LF6cvr1Wmyn7YhYeN22a6RtJloVJez+N6pSJSB/Km+fylJntSjbgMeAtwB90LcL5ZmIi\n9JXs3z/TZ9JoJNiBB848jxNYXkJaswaGh0MCGx4Or9NoFJqIdIq7D2RbsWKFt8zMPXTNz22jo3Nf\nT02lH2dqKv/zjd5PMzmZHtfkZHPfLSKSAtjiBc6xeaPFjmuQlO7oRLLrlrZGi2WN4Boagn375m7P\nGtnVaCRYKyPFhofTYxgagr17i3+3iEiKoqPF8pLLTYmXK4DbE6/d3U9qL8TeKn0o8uho9giyrKHG\njYYmtzJ02Sw77uSxWjm2iAy8osklb4b+r8YNeCj5ut8TS9vqO+Zrtdn9IvWaHfGVHLqcxj29jySv\nz2RoqL2YRESaUHS0WIFp6APo6afDiX7nzuzClVkju6anw/55n08bKRZLKx2TV8r/xBNnv9YoNBHp\npCIdM8AdRT7XT62tDv2pKfeRkexO/fq2aFEYBDA2FvZN60wH91ptbof61FTYL+vYY2Mzn2000KD+\n2JOT7kND4f2hobmd/o3eF5GBQwkd+h9m5orlDODquqT0Rx3MeR3XkQ79IkZHwy20tCudWi3UIXv0\n0dkVk6en4cwzs48Z/zdsFFeysz6r3yge5rxmDWzcOPcYk5OwYUOjn1JE5qkyOvTTaos9zzPKw/SL\ntpJLVmd42UZG4Iorwu2uvKQRx9Ko5lmys77RaLGsUWfxcbRcgMhAaju5dIOZXQ6cCjzh7sdG2xYD\nnwKWAY8A7/Bo1Uszuwg4H9gH/JG7Xx9tXwF8nLCo2XXAWm/wg/XsyqUTkj/q9DSsWtV4SHSj0WJ5\no86Sn73gAl3JiAyQtkeLmdk/mdmxGe8tMrPzzKzdP1s/Dpxct+1C4EZ3Pwa4MXqNmS0n3J57ZbTP\nBjOLh0BtBN5FWLzsmJRjlqtKnd71o8AmJmDz5sad9XmjxYrO1HeHSy/VzH4RmSNvtNg/An9hZg+Y\n2T+b2QYzu9zMvkGoinww8Jl2vtzdvw78qG7zaUB8y20zcHpi+9Xu/qy7PwxsBV5nZocDh7j7LdHV\nypWJfTqj7FtBRa4SssRruyQVqWGWN1osb9RZPffmPi8iAyGv5P6dwDvM7CBgHDgc+CnwgLs/2MGY\nDnP3x6Pn3wcOi54fAdyS+Nz2aNtzzC6kGW/vnOnp7Nn4sfj9BQtCB/4zz6R/bsGC1ictHnRQ9i2p\niYn8JBi/t27d3AEEZ53VXBwq/y8idTKTS8zdnwZu7nwoqd/tZlZap5CZrQZWAyxtdbJg3Gmel1hq\ntbDyZNp+yc72hQthz57W4hgdDbek2pGVgLLWncmiiZciUqfp9Vy64AfRrS6ixyei7Y8BRyU+d2S0\n7bHoef32Odx9k7uPu/v4oYce2lp0zS4UFku7VXXwwcX3HxkJSatoqf52rF9f/FZdJyZeqlqzSN+r\nYnK5FoiHQa8CrklsP8PMDjCzowkd97dFt9B2mdnxZmbA2Yl9ylfkFtCP6ruRIsly++vXZ8/qrzc2\nFoYk79gxU6q/k0OAJybCKLD6BDM6Gua5NLMeTbPiK7xt20J/TlolAhGpvkazLIFfKDIbs5UGfBJ4\nnJl+k/OBGmGU2HeArwCLE59fBzwEPAi8JbF9HLg3eu8jREOs81rLM/TzZsunzZpPkzVDP63VarNn\n9+cdc2ys2GcbxRYfp1Yr/v1lyfr9NvqdikhXUHCGfpEE8A3gNmAN8MIiB+2H1nJymZrKTwZm2WVS\nkuVUWmlZ662kJau8OPJ+tl6v8ZJVwsasnOOXlYRFBlRpySUci2OA/0MY/vsJ4NeK7Ffl1rHkknVC\nXrmy9aSS9xf81FR2wjJr7uRZhauGTsZQheQp0ueKJpfCM/SjCYunAx8CdgEG/Jm7f66V23G91vIM\n/WZn55uVXyomPl6jci/Q3OJfVVjjpVHNs3ZogTSRtrU9Qz9xoFeZ2QeBB4CTgLe6+89Hzz/YdqT9\nptmyL60kloULs99LzsgvMnKtyACEeHRWVqzdHGpcZAJoq7J+F5qnI1K6IqPFPgzcAbza3d/t0fLG\n7v494M87GVzldGvEUt7cl337ZobnFjkpNkoMydFZaczglFPm7rNsWXhveDg8ljlkODmqrsyRcVog\nTaR7Gt03A96bsm1tkXtuVW4t9bksXFhOv0kZLW/tliL9CY3Wick6Tt5It6r3X6jPRaRtFOxzKXLl\ncnbKtnPKS299pNXZ9J3gGbew4rkp9beTkhMTlyyBc88tfotv9+6Z+mF5t+KSn6uiTt5yE5FZ8tZz\neSfwe8AbCMORYwcD+919ZefD65yWOvTbKTDZDWNj6WusFOn4byTu1G+0lk03O/9FpOuKdujn1Rb7\nd8IExyXA3ye2PwXc3V54Ujqz2SOepqdnilIuWJBfC62IuF+iUd0x9V+ICPlVkbcB24DXdy+cimun\n0GSnJU/q9VcqzSSWWg2eemruz/n00+G469dnXwV1os6YiPSlvMXCvhk9PmVmuxLtKTPb1b0QK6Sq\niWV4ePZJfe3a5m+BjY7C1FSoX3b55SHJJO3cObN2TNxvATNDo+P+C2iv6GSRopUqbClSfUV6/edj\na2m0WDulWzrd4hpgtVqxzy9cmF83LGskWa2W/ftpdzRW2v4jI7PjnJzUiC+RHqKsGfpm9rPAdnd/\n1sxOBF4FXOnuP+l86uucedmhX9TQUFgKOW+UVF7H/dRU+r7tzoAvUv0gq+KBZtmLdEVpM/SBzwL7\nzOzlwCbCmiqfaDO+/lR/q6hf7d/fePhtXsd81nDjdmfAF/lcVsLTLHuRSimSXPa7+17gN4EPu/uf\nEpY8ln6Vljjq+zHqZ+UnZZ3IsxLSggVz+0XS+k3aGWmmUWoilVIkuTwXzXlZBXw+2jbSuZAqLGsR\nsH4yOhoSR/LEvmbN3AW6Nm7MPkbWiXz9+nD8evv2wVlnzS4Xc9ZZcxcEO+WU9P3rpS1iplFqIpVS\nJLmcSxiOvN7dH45Wgbyqs2FV1OLFvY6gPbUarFoV+luSJ/ZLLy0+uizvRB7PgE8W14zFt7PiYdH1\nt7d274brrps9g37RovTvOekkzbIXqbjCJffnm5Y69IeH25+M2Cu1Whhm3OySATGzcMWSVgGgXqNZ\n/HnfkZzd3+0S+cmJp0V/VpEBU8YM/fhAJwB/CYxFnzfA3f1n2g2y7/RrYoEwT6XVxALNlXRpNIs/\nb7+kbpbIr594Gt+qAyUYkRYUuS12GfABQo2x1xLWq39tJ4OSDtm2rbXh1Gm3ubImMk5Ph9n8zUq7\n3ZY3QKDsCZRpBTmrXohTpMKKJJcn3f2L7v6Eu++MW8cjk85Iu121cCEcdFD2PvFf8LE1a+Z2yJ97\nLhx8MJx5ZrhKKiJOdENDMyfyZLI45ZT0ZLhv3+yBAM0kmKykqIXERMrVaJYl8LfA+wmd+sfFrcgM\nzSq3lmbo93oWfq9a0tRUsbVk6ltc3SB+zJptbxa2560bU9/Gxor998urIJBVkaDosTspji+rmoJI\nF1Fwhn7jD8BNKe2rRQ5e5dZ0cpma6v5JvQqt/uRadIGxtBafyBstVNZMGZv480XkJZAyFhLrRBLQ\nAmdSMaUll/namk4u7ZxU+7WlncRauWpJtlqt+BVJ0Vb06iIr9jg5tZMcOpUEqnxFJQOpaHIpUlvs\nMOB/Ay9z97eY2XLg9e5+WQfu0nVN00ORWx1e26+GhkJ/xoYNs7e3M+KsE0ZHi89z6eTQ5k4dO+v/\nOy3KJj1SZm2xjwPXAy+LXn8beG/rofWpQSsvsm9fmGxZ31meNQt/QZH/lZpQqxWbrd/MBMq02M1C\nUmh35FlWx/+2be2NbMv6/27Q/n+UvlPkjLDE3T8N7AfwUGesjyd8tGgQy4ukDcVNW4d+agpe/OLG\nxxsdLVb8c2Rk5vvThkHHxsbSl3TOWuslGTvMrrDcysizpLyTvXv28RutTZOWEFXuRvpBo/tmwM1A\nDbgjen088LUi99yq3DRarGAr2lneqC+mVpvpzK/vm0iuLVOrhdfJ90dG5m5L689opt+j7L6Mycli\nv8/k8YvGq9FiUiGUOFrsOODfgCejx28Drypy8Co3JZeCLetkmzzhLVrU3HHyTpZ5i5Q1OsE2kzAa\nde43q+iAj+Tx1VkvfahocilUW8zMhoGfI5R+edDdnyv5AqrrBnqxsGbUavCa18DNN88uf5O1aFee\nsbH8el1r1uRXY25U36yZzu+yO+CLDvhIHl+d9dKH2u7QN7PfihvwNkJyeQXw1mibDIKdO+HGG+fW\nVWs2sUA4mZ91Vkgi09OwZEk4kZrBC16Qn1ji78zru8gaVJDWH5LVuZ+3jk2eIh3s9X0lrXTWN+qj\nEamKrEsa4IqofQH4MWFFys8CPwI+X+SyqMpNt8V63BYsaG//Rn0Xccuba5LWTzIy0lqfxtTU3H6h\n+njb6SNq5fMiHUCJfS43AIcnXh8OXF/k4FVuSi593or0XQwN5Z94s6oA1GrN/7+Rd7y8PpRmOuvV\nRyMVUDS5FBmKfJS7P554/QNAg+ylt5K3jrLmmOzfnz8HJqvAZry92VtQWSuV5hW/nJgIfTD794fH\nvHhVXFP6SJHkcqOZXW9m55jZOYTbZF/pbFgiOcrou2gkbSnm884L/URZyabTEx41oVL6SMPk4u5/\nCFwKvDpqm9z9PZ0OTGSWvGWNW5lomDcAIOY++/WePeGqJk42Z50VYooTzfr1MxNAYyMj5U14nE8T\nKjUwYf4rcu8MOAx4K3Aq8JIi+3S7AScDDwJbgQsbfV59Ln3WhofTO8ST/Rzx3JVabWZSZtGO9Hbb\nyIj7ypXZ78exxUsN1PezFO17aaaPppXJl93YRwMT+holdui/A9gGbAauBB4G3l7k4N1qwBDwEPAz\nwELgLmB53j5KLn3eikzcTDu591sbGppZ3yY+gTdKnu7ZJ/CVK2evrTM5mb9PvL5OlsnJub/b+qUV\n6uPUwIS+VmZyuSt5tQIcCtxV5ODdaoSFzK5PvL4IuChvHyUXtXnT0v7qb2aJiEWLQgKIk05aS0sw\nRUveJFujJF9U3tVSN8vlDGBpnjKTyz11rxfUb+t1A94OfCzx+izgI3n7KLmozauWlxjKanF9OPfW\nEksr31Ov/lZo3JJXS63ccqsvZxTPw6q/ukt+FrKv2qqqhGRYZnJ5P6Hk/jlR+yJwcZGDd6sVTS7A\namALsGXp0qVN/1J7fgJRU6tCa/aWZKst7XbgyEj+PnlJdvny9BNrkT64OMEU+WzROnrdVlJfV2nJ\nJRyL3wY+ELXfLLJPN5tui6mpzdOWV/Wg3RafWIvcQhwaCueAorcb3ds/mddfpeVd0RVRUl9Xqcml\n6g0YBv4LODrRof/KvH2aTi6dvA2gpqbWmxZfVRT5rHuxz5rlJ634ZN6o3ygtsbZanigv9iYrgbed\nXIBvRo9PAbsS7SlgV5GDd7MBpxCWA3gIWNfo800nl27c01ZTU+t+yyrbU9/Gxpr7bN7JvNHIvLwr\npFZH1XX5yqVQyf35qOmS+4NYbl9kEIyMhH/fe/aU99l4eYisZR0g/T0zuOqqMEE369zc6pIM09Oh\novju3TPbRkebWyqcckruL85rhSMRESlbXK1hcnJu1YJmPfccHHxwsSW4i342Xncoq6JCVj0497C0\neF5Jn1bL/aQtUd5kYmlK1iUNYbLkf0WP+4AdwM7o+cNFLouq3Jq+LdbrS3c1tX5qzUxaPeCAmdFg\nRT5f32cB5dy2Llq1Ie6jaDQsOhlj0Ymk8fFbWcKhSyhxKPI/AackXr8F+GiRg1e5KbmoqTVow8Ot\n7dfMBE6YfTJuNHAmPvFm9Vk0+p6sBNZMcqrvo2i1ZE5WvMnkmZdwezSnpszkMmfCZNq2fmtKLmpq\nDVqjk1vWPu7NJ5jkCTutpAwU6/Cu3y9Z0y1vkmXROMs8oeeVzqlXoZI5ZSaX64E/B5ZFbR2DuFhY\nr/+hq6l1syX/ei46aXLlypl/L80WB00bDpt3RZB3ldLoKiLtuFkn71qts5Mgi171lDSMuAxlJpfF\nwCXAf0TtEmBxkYNXuSm5qKnltPiv/EYz4pMt63YRzC6WWWTfRsr+S77qlZrn45XLfG1KLmrzsqX9\nhbtoUXoHc9aJPl7mudlbW0X+ii7rJN6JZFClUi31KpT8yrxyOZRQX+w64KtxK3LwKjclF7V51czC\nqKu09+JkUa/RCavZZQqK/hVd1km8ysmgEyry85aZXG4AzgceAH4FuJyKFa5spSm5qJXSyhgC22yn\nea2WvuBY3j5Z8k5YjYbLJl9X6RaSdFSZyeX26PHuxLZvFTl4lZuSi1pbLTlyqZ3jxAUR8zrNh4aK\n/bWa9z2tyOpzWbgwPbnJQCiaXIYLzLN8Lnp83Mx+A/he1MkvUh1xuY3vfre10hjNGBsLs6zjmc1j\nY+mlPIo48cTw+NGPwtlnz4194UK4/PLOzaLOE3/n2rWwc2d4XqvBJZf0Jh7pL42yD3Aq8ELgWOAm\n4HbgbUUyV5WbrlzmUUve6y/rmAsXzp4hvWBB9nK/rUzoS4u93RLred8jUhIKXrlk1hYDMLMh4Bh3\nf9Ld73X3X3X3Fe5+bYdznswnQ0Phsb7458hI+Mu8GVm1mmJxUcBWJGsunX8+DCcu7Pfvh82bQ/G/\nemk1m9yLfWeyxtTEBOzYMZMSduxo7goh/j0X3S7SQbnJxd33Ae/sUiwyH42MhEqs8Qk3PtGNjcEV\nV4RbPvFJuVbLLwgYF9rLK7yXViywiKEheOSRkEQeeQSuu2529VgIr9etS99/YmL2/kWTXKtFCNOs\nXt3cdpFOanRpA3wQ+AjwRuC4uBW5LKpy022xktvKlXNHPcWjmpodn1/GCn7xGuj1LWu4bv0tr3Zn\nRBeZod6JEVaTk7MnLGbdyhNpESWOFrsppWmei9rsVnZNpHbH9KdVlV24MGwvcgIuY0Z0/c+gEVYy\nDxRNLlosrKh+XCxsZCSsPxEzC6fIsbEw+ufpp8v9vrGxcEsoacGC8J31Wl3wqBnT0+E21qOPzqyv\nUbQPo6SFlUTmm7YXC5M67XQUd5tZWETpiitm909cdVU40T/yCFx6aXrn+OTkzD4LmvzfI20BpKw+\nhTL7GrLU94M0kxS6vbCSyHxT5PJmPramb4s1mgHd6xbf5mnmdkujW0/NVrZNu2VUoZpIItI+yhiK\nLAmd/ot1dDR7pFStNvfKaWgoXGXEp+y9e2euSorG2ugv+/q/3hctyr6aqR8SnHUMXQGIDIRCfS5m\n9kuEtVyeH/jv7ld2LqzOa7rPBcrpd5mcDMNct20LCWLfvpkZ39A/9/nb6c8Qkb5VtM+lYfkXM7sK\n+FngTmBftNmBvk4uPTE5CRs2NP5cP5y0JyaqGZeIVEKR2mLjwHIvcokz3zWqIZWsObVmTbji2Lcv\nXKGsXl0sseikLSLzQJE+l3uBl3Y6kL6QNvt7dBSmpub2d2zYMNMPsndvscQiIjJPFLlyWQLcb2a3\nAc/GG939bR2LqqrixNEPt61ERHqoSHL5y04H0Vd020pEpKGGycXdv9aNQEREZP5o2OdiZseb2bfM\n7Gkz22Nm+8xsVzeCq6TpaVi2LMz3WLYsvQS7iMiAK3Jb7CPAGcA/E0aOnQ28opNBVdaaNaFsSjxw\nbtu2mXLmulUmIvK8QjP03X0rMOTu+9z9CuDkzoZVQdPTsxNLLG+NDxGRAVXkymW3mS0E7jSzvwMe\nZxALXq5bl17dF9ILNoqIDLAiSeKs6HN/CDwDHAX8dieDqqS8BNKNCr8iIn2kyGixbWZ2IHC4u/9V\nF2KqpqVL02fnm6UXbBQRGWBFRou9lVBX7EvR69eY2bWdDqxy0mbnm8EFF8zuzNdoMhGRQrfF/hJ4\nHfATAHe/Ezi6gzFVU1w6PlkWf/FiOOGEmdfx6oXbtoX+mXg0mRKMiAyYIsnlOXd/sm5bW0Uszex3\nzOw+M9tvZuN1711kZlvN7EEze3Ni+wozuyd670Nmof69mR1gZp+Ktt9qZsvaia2hp56aeb5zJ5x3\n3kzyWLdudrl8CK/Xru1oSCIiVVMkudxnZr8HDJnZMWb2YeDf2/zee4HfAr6e3Ghmywlzal5JGO68\nwcyGorc3Au8CjolaPBz6fODH7v5y4IPAxW3Glm3tWtizZ/a2PXtmkkdWp//OnbBkSfYVjG6licg8\nUyS5vIdwsn8W+CSwC3hvO1/q7g+4+4Mpb50GXO3uz7r7w8BW4HVmdjhwiLvfEpX+vxI4PbHP5uj5\nZ4CV8VVN6XbuzN5ulj1UOf7MOeeEBGIGw8NhUmbarbQzz0xPRkpCItIniowW2w2si1qnHQHckni9\nPdr2XPS8fnu8z3cB3H2vmT0J1IAdHY+2WXv3zjzftw82boQrr5x7Kw1CMkrO/o+TUPxZVQcQkQrL\nTC6NRoQ1KrlvZl8hfR2Yde5+TbHwymVmq4HVAEurMjflmWey34tn/09MZPfnxO+LiFRI3pXL6wlX\nBJ8EbgWautXk7m9qIZ7HCJM0Y0dG2x6LntdvT+6z3cyGgRcCqfev3H0TsAlgfHy8P1bWjPtxsvpz\nVB1ARCoor8/lpcCfAccClwC/Buxw9691sAz/tcAZ0Qiwowkd97e5++PArqhCsxGKZ16T2GdV9Pzt\nwFf7aknmBQvmzp9Jiq+wsq60qnIFJiKSkJlcoiKVX3L3VcDxhM71m83sD9v9UjP7TTPbTrg6+oKZ\nXR99533Ap4H7CZM23+3u+6Ld1gAfi+J4CPhitP0yoGZmW4E/AS5sN75MK1e2vu9BB6Vv/4M/mDt/\nJjY6OjOmBf+yAAAL1UlEQVT7P2uJZVUHEJEqcvfMBhxAGDL8z8C3gP8JHJG3T7+0FStWeEtWrnQP\n47rSm9nM81rNfWpqZt/JSfehofDe0FB4nTQ15T42Fo4xNjZ73yLvi4h0GLDFC5xjzTPuIJnZlYRb\nYtcRhgff241k1y3j4+O+ZcuWXochItJXzOx2dx9v9Lm8Dv0zCVWQ1wJ/lJg6YoC7+yFtRykiIvNS\nZnJx98Fbs0VEREqhBCIiIqVTchERkdIpuYiISOmUXEREpHRKLiIiUjolFxERKZ2Si4iIlE7JRURE\nSqfkIiIipVNyERGR0im5iIhI6ZRcRESkdEouIiJSOiUXEREpnZKLiIiUTslFRERKp+QiIiKlU3IR\nEZHSKbmIiEjplFxERKR0Si4iIlI6JRcRESmdkouIiJROyUVEREqn5CIiIqVTchERkdIpuYiISOmU\nXEREpHRKLiIiUjolFxERKZ2Si4iIlE7JRURESteT5GJm7zez/zSzu83sX8zsRYn3LjKzrWb2oJm9\nObF9hZndE733ITOzaPsBZvapaPutZras+z+RiIgk9erK5cvAse7+KuDbwEUAZrYcOAN4JXAysMHM\nhqJ9NgLvAo6J2snR9vOBH7v7y4EPAhd364cQEZF0PUku7n6Du++NXt4CHBk9Pw242t2fdfeHga3A\n68zscOAQd7/F3R24Ejg9sc/m6PlngJXxVY2IiPRGFfpczgO+GD0/Avhu4r3t0bYjouf122ftEyWs\nJ4FaB+PNNz0Ny5bBggXhcXq6Z6GIiPTKcKcObGZfAV6a8tY6d78m+sw6YC/QlTOwma0GVgMsXbq0\n/C+YnobVq2H37vB627bwGmBiovzvExGpqI4lF3d/U977ZnYOcCqwMrrVBfAYcFTiY0dG2x5j5tZZ\ncntyn+1mNgy8ENiZEdMmYBPA+Pi4p32mLevWzSSW2O7dYbuSi4gMkF6NFjsZ+B/A29w9eTa+Fjgj\nGgF2NKHj/jZ3fxzYZWbHR/0pZwPXJPZZFT1/O/DVRLLqrkcfbW67iMg81bErlwY+AhwAfDnqe7/F\n3S9w9/vM7NPA/YTbZe92933RPmuAjwMHEvpo4n6ay4CrzGwr8CPCaLPeWLo03ApL2y4iMkB6klyi\nYcNZ760H1qds3wIcm7L9/wG/U2qArVq/fnafC8DoaNguIjJAqjBabP6YmIBNm2BsDMzC46ZN6m8R\nkYHTq9ti89fEhJKJiAw8XbmIiEjplFxERKR0Si4iIlI6JRcRESmdkouIiJTOejWZvdfM7IdAyozH\nQpYAO0oMpyxVjQuqG1tV44LqxlbVuKC6sVU1Lmg+tjF3P7TRhwY2ubTDzLa4+3iv46hX1bigurFV\nNS6obmxVjQuqG1tV44LOxabbYiIiUjolFxERKZ2SS2s29TqADFWNC6obW1XjgurGVtW4oLqxVTUu\n6FBs6nMREZHS6cpFRERKp+TSBDM72cweNLOtZnZhD77/KDO7yczuN7P7zGxttH2xmX3ZzL4TPb44\nsc9FUbwPmtmbOxzfkJn9h5l9vmJxvcjMPmNm/2lmD5jZ66sQm5n9cfTf8V4z+6SZvaBXcZnZ5Wb2\nhJndm9jWdCxmtsLM7one+1C0uF/Zcb0/+m95t5n9i5m9qNtxZcWWeO99ZuZmtqTbsWXFZWbviX5v\n95nZ33U8LndXK9CAIeAh4GeAhcBdwPIux3A4cFz0/GDg28By4O+AC6PtFwIXR8+XR3EeABwdxT/U\nwfj+BPgE8PnodVXi2gz8fvR8IfCiXscGHAE8DBwYvf40cE6v4gJ+GTgOuDexrelYgNuA4wEjLOj3\nlg7E9evAcPT84l7ElRVbtP0o4HrCPLolFfmd/SrwFeCA6PVLOh2XrlyKex2w1d3/y933AFcDp3Uz\nAHd/3N3viJ4/BTxAOEmdRjiBEj2eHj0/Dbja3Z9194eBrYSfo3RmdiTwG8DHEpurENcLCf/YLgNw\n9z3u/pMqxEZY8uJAMxsGRoHv9Soud/86YSXXpKZiMbPDgUPc/RYPZ6crE/uUFpe73+Due6OXtwBH\ndjuurNgiHyQs457s0O7p7wyYBP7W3Z+NPvNEp+NScinuCOC7idfbo209YWbLgF8EbgUOc/fHo7e+\nDxwWPe9mzP9A+Ae1P7GtCnEdDfwQuCK6ZfcxM1vU69jc/THg/wKPAo8DT7r7Db2Oq06zsRwRPe9m\njOcxs+R5z+Mys9OAx9z9rrq3eh3bK4A3mtmtZvY1M3ttp+NSculDZnYQ8Fngve6+K/le9FdGV4cA\nmtmpwBPufnvWZ3oRV2SYcItgo7v/IvAM4RZPT2OL+i9OIyS/lwGLzOzMXseVpUqxxMxsHbAXmO51\nLABmNgr8GfAXvY4lxTCwmHCb60+BT5fR75RHyaW4xwj3UmNHRtu6ysxGCIll2t0/F23+QXQZS/QY\nX/J2K+YTgLeZ2SOE24UnmdlUBeKC8BfXdne/NXr9GUKy6XVsbwIedvcfuvtzwOeAX6pAXEnNxvIY\nM7eoOhqjmZ0DnApMRImvCnH9LOGPhbuifwtHAneY2UsrENt24HMe3Ea4w7Ckk3EpuRT3LeAYMzva\nzBYCZwDXdjOA6C+Ny4AH3P0DibeuBVZFz1cB1yS2n2FmB5jZ0cAxhE66Urn7Re5+pLsvI/xevuru\nZ/Y6rii27wPfNbOfizatBO6vQGyPAseb2Wj033UloQ+t13ElNRVLdAttl5kdH/1MZyf2KY2ZnUy4\nBfs2d99dF2/P4nL3e9z9Je6+LPq3sJ0wAOf7vY4N+FdCpz5m9grCwJYdHY2rnVEJg9aAUwgjtB4C\n1vXg+99AuDVxN3Bn1E4BasCNwHcII0IWJ/ZZF8X7ICWMkCkQ44nMjBarRFzAa4At0e/tX4EXVyE2\n4K+A/wTuBa4ijNjpSVzAJwl9P88RTorntxILMB79PA8BHyGaqF1yXFsJ/QTxv4FLux1XVmx17z9C\nNFqsAr+zhcBU9D13ACd1Oi7N0BcRkdLptpiIiJROyUVEREqn5CIiIqVTchERkdIpuYiISOmUXERE\npHRKLiI5zOz0qHT6f+vw9/yDmf1y9PzmqPz5XWb2b/EE0Kgu2vIWj/9Isvx7yvtXm9kxrUUvMpeS\ni0i+dwLfjB7niCoat8XMasDxHqrZxibc/dWEasTvB3D333f3+9v9vgwbCbPeRUqh5CKSISoQ+gbC\nDOczEttPNLNvmNm1hFIymNmZZnabmd1pZh81s6Fo+0Yz2xIt0PRXGV/128CXMt77OvDy6Fg3m9m4\nmY1ZWMBriZktiGL59bw4ErEvMrMvRFdF95rZ70ZvfQN4UxnJUgSUXETynAZ8yd2/Dew0sxWJ944D\n1rr7K8zs54HfBU5w99cA+4CJ6HPr3H0ceBXwK2b2qpTvOQHIqij9VuCe5AZ330ZYJGsj8D7gfne/\noUEcsZOB77n7q939WKKk5u77CWVVXp3/KxEpRn+liGR7J3BJ9Pzq6HWcBG7zsLgShKKTK4BvRVXM\nD2SmgvA7zGw14d/a4YSV/+6u+57DCWvOJE2b2U8J9aneUx+Yu3/MzH4HuIBQO61RHLF7gL83s4sJ\nNeC+kXjvCUL5/8ylE0SKUnIRSWFmi4GTgF8wMycsc+1m9qfRR55JfhzY7O4X1R3jaOC/A6919x+b\n2ceBF6R83U9Ttk+4+5ac+EaZKYl+EPBUVhxJ7v5tMzuOUPD0b8zsRnf/6+jtF0SxiLRNt8VE0r0d\nuMrdxzyUUD+KsOb9G1M+eyPwdjN7CYTEZGZjwCGEJPSkmR0GvCXjux4g6ldpwsWERbL+AvinBnE8\nz8xeBux29ynCQIHjEm+/glAFV6RtSi4i6d4J/Evdts+SMmosGsH158ANZnY38GXgcA9L3f4Hoaz+\nJ4B/y/iuLxCWKijEzH4FeC1wsbtPA3vM7NysOOp2/wXgNjO7E/hfwN9ExzwM+KmHtUdE2qaS+yIV\nYGbfBE5195/06Pv/GNjl7pf14vtl/tGVi0g1vA9Y2sPv/wlhTo1IKXTlIiIipdOVi4iIlE7JRURE\nSqfkIiIipVNyERGR0im5iIhI6f4/Ao0MzISU7SsAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x100f4ef0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG/JJREFUeJzt3X+UX3V95/Hny4AhqAg0MY1JMLEbbQNKhDHNLloRqqRq\nDe5aGo5K6iKxBa22bi1Rj8aeZg+2WpTdJWsESlA0TRUli2ANqb/oWYiDBkICkbiBkjGQ+KtR6wkm\nvPaP+xlzHWYm35vMd77fybwe53zP93Pf99d7Jid55977uZ+PbBMREdHEUzqdQEREjD0pHhER0ViK\nR0RENJbiERERjaV4REREYykeERHRWIpHREQ0luIRERGNpXhERERjx3Q6gXaZPHmyZ82a1ek0IiLG\nlLvvvvv7tqccarujtnjMmjWL3t7eTqcRETGmSHq4le1y2yoiIhpL8YiIiMZSPCIiorEUj4iIaCzF\nIyIiGkvxiIiIxlI8IiKisRSPiIhoLMUjIiIaO2rfMB8xy5cP3o6IGMdy5REREY2leERERGMpHhER\n0ViKR0RENJbiERERjaV4REREY20vHpImSPq2pFvK8smS1kt6sHyfVNt2maTtkrZJOq8WP1PS5rLu\nKklqd94RETG00bjyeAdwf235cmCD7TnAhrKMpLnAYuBUYCFwtaQJZZ+VwCXAnPJZOAp5R0TEENpa\nPCTNAF4NXFMLLwJWl/Zq4PxafI3tfbZ3ANuB+ZKmASfYvtO2gRtq+0RERAe0+8rjo8C7gSdqsam2\nd5X2o8DU0p4OPFLbbmeJTS/tgfGIiOiQthUPSa8Bdtu+e6htypWER/CcSyX1Surds2fPSB02IiIG\naOeVx1nAayU9BKwBzpH0KeCxciuK8r27bN8HzKztP6PE+kp7YPxJbK+y3WO7Z8qUKSP5s0RERE3b\nioftZbZn2J5F9SD8n22/EVgHLCmbLQFuLu11wGJJEyXNpnowvrHc4toraUHpZXVRbZ+IiOiAToyq\newWwVtLFwMPABQC2t0haC2wF9gOX2T5Q9rkUuB6YBNxWPhER0SGjUjxsfxX4amn/ADh3iO1WACsG\nifcCp7Uvw4iIaCJvmEdERGMpHhER0ViKR0RENJbiERERjaV4REREYykeERHRWIpHREQ0luIRERGN\npXhERERjKR4REdFYikdERDSW4hEREY2leERERGMpHhER0ViKR0RENNbOOcyPk7RR0j2Stkj6YIkv\nl9QnaVP5vKq2zzJJ2yVtk3ReLX6mpM1l3VVlRsGIiOiQdk4GtQ84x/ZPJR0L3CGpfwbAK21/uL6x\npLlU09WeCjwbuF3S88psgiuBS4C7gFuBhWQ2wYiIjmnnHOa2/dOyeGz5eJhdFgFrbO+zvQPYDsyX\nNA04wfadtg3cAJzfrrwjIuLQ2vrMQ9IESZuA3cB623eVVW+XdK+k6ySdVGLTgUdqu+8ssemlPTAe\nEREd0tbiYfuA7XnADKqriNOobkE9F5gH7AI+MlLnk7RUUq+k3j179ozUYSMiYoBR6W1l+8fAV4CF\nth8rReUJ4BPA/LJZHzCzttuMEusr7YHxwc6zynaP7Z4pU6aM9I8RERFFO3tbTZF0YmlPAl4BPFCe\nYfR7HXBfaa8DFkuaKGk2MAfYaHsXsFfSgtLL6iLg5nblHRERh9bO3lbTgNWSJlAVqbW2b5H0SUnz\nqB6ePwS8FcD2Fklrga3AfuCy0tMK4FLgemASVS+r9LSKiOigthUP2/cCLxok/qZh9lkBrBgk3guc\nNqIJRkTEYcsb5hER0ViKR0RENJbiERERjaV4REREYykeERHRWIpHREQ0luIRERGNpXhERERjKR4R\nEdFYO4cnOfosXz54OyJinMmVR0RENJYrj8HkqiIiYli58oiIiMZSPCIiorEUj4iIaCzFIyIiGmvn\nNLTHSdoo6R5JWyR9sMRPlrRe0oPl+6TaPsskbZe0TdJ5tfiZkjaXdVeV6WgjIqJD2nnlsQ84x/bp\nwDxgoaQFwOXABttzgA1lGUlzgcXAqcBC4OoyhS3ASuASqnnN55T1ERHRIW0rHq78tCweWz4GFgGr\nS3w1cH5pLwLW2N5newewHZgvaRpwgu07bRu4obZPRER0QFufeUiaIGkTsBtYb/suYKrtXWWTR4Gp\npT0deKS2+84Sm17aA+MREdEhbS0etg/YngfMoLqKOG3AelNdjYwISUsl9Urq3bNnz0gdNiIiBhiV\n3la2fwx8hepZxWPlVhTle3fZrA+YWdttRon1lfbA+GDnWWW7x3bPlClTRvaHiIiIX2pnb6spkk4s\n7UnAK4AHgHXAkrLZEuDm0l4HLJY0UdJsqgfjG8strr2SFpReVhfV9omIiA5o59hW04DVpcfUU4C1\ntm+R9H+BtZIuBh4GLgCwvUXSWmArsB+4zPaBcqxLgeuBScBt5RMRER3StuJh+17gRYPEfwCcO8Q+\nK4AVg8R7gdOevEdERHRC3jCPiIjGUjwiIqKxFI+IiGgsxSMiIhpL8YiIiMZSPCIiorEUj4iIaCzF\nIyIiGkvxiIiIxloqHpJe0O5EIiJi7Gj1yuPqMqXspZKe2daMIiKi67VUPGy/FHgD1ZDpd0v6tKRX\ntDWziIjoWi0/87D9IPA+4C+BlwFXSXpA0n9uV3IREdGdWn3m8UJJVwL3A+cAv2/7t0r7yjbmFxER\nXajVIdn/B3AN8B7bP+8P2v6epPe1JbOIiOhard62ejXw6f7CIekpko4HsP3JwXaQNFPSVyRtlbRF\n0jtKfLmkPkmbyudVtX2WSdouaZuk82rxMyVtLuuuKjMKRkREh7RaPG6nmsWv3/ElNpz9wLtszwUW\nAJdJmlvWXWl7XvncClDWLQZOpZrr/OoyCyHASuASqqlp55T1ERHRIa0Wj+Ns/7R/obSPH24H27ts\nf6u0f0L1vGT6MLssAtbY3md7B7AdmC9pGnCC7TttG7gBOL/FvCMiog1aLR4/k3RG/4KkM4GfD7P9\nr5A0i2pK2rtK6O2S7pV0naSTSmw68Ehtt50lNr20B8YjIqJDWi0e7wT+UdI3JN0B/APwtlZ2lPR0\n4HPAO23vpboF9VxgHrAL+EjjrIc+11JJvZJ69+zZM1KHjYiIAVrqbWX7m5J+E3h+CW2z/YtD7Sfp\nWKrCcaPtm8qxHqut/wRwS1nso3oJsd+MEusr7YHxwfJcBawC6Onp8aF/soiIOBxNBkZ8MfBC4Azg\nQkkXDbdx6RF1LXC/7b+rxafVNnsdcF9prwMWS5ooaTbVg/GNtncBeyUtKMe8CLi5Qd4RETHCWrry\nkPRJ4DeATcCBEu5/eD2Us4A3AZslbSqx91AVnnll/4eAtwLY3iJpLbCVqqfWZbb7z3UpcD1Vj6/b\nyiciIjqk1ZcEe4C5pbdTS2zfAQz2Psatw+yzAlgxSLwXOK3Vc0dERHu1etvqPuDX25lIRESMHa1e\neUwGtkraCOzrD9p+bVuyioiIrtZq8VjeziQiImJsabWr7tckPQeYY/v2Mq7VhEPtFxERR6dWh2S/\nBPgs8PESmg58oV1JRUREd2v1gfllVF1v98IvJ4Z6VruSioiI7tZq8dhn+/H+BUnHUL2nERER41Cr\nxeNrkt4DTCpzl/8j8H/al1ZERHSzVovH5cAeYDPVG+G3Us1nHhER41Crva2eAD5RPhERMc61OrbV\nDgZ5xmH7uSOeUUREdL0mY1v1Ow74A+DkkU8nIiLGgpaeedj+Qe3TZ/ujwKvbnFtERHSpVm9bnVFb\nfArVlUirVy0REXGUabUA1KeK3U81D8cFI55NRESMCa32tnp5uxMZc5YvH7wdETEOtHrb6s+HW1+f\nZra2z0yqmQanUvXUWmX7Y5JOBv4BmEW5grH9o7LPMuBiqtkK/9T2P5X4mRycSfBW4B1NJqaKiIiR\n1epLgj3An1ANiDgd+GOqucyfUT6D2Q+8y/ZcYAFwmaS5VC8cbrA9B9hQlinrFgOnAguBqyX1j9y7\nEriEal7zOWV9RER0SKvPPGYAZ9j+CYCk5cAXbb9xqB1s7wJ2lfZPJN1PVXgWAWeXzVYDXwX+ssTX\n2N4H7JC0HZgv6SHgBNt3lnPfAJxP5jGPiOiYVq88pgKP15YfL7GWSJoFvAi4C5haCgvAo7XjTAce\nqe22k4NXOjsHiUdERIe0euVxA7BR0ufL8vlUVw2HJOnpwOeAd9reK+mX62xb0og9u5C0FFgKcMop\np4zUYSMiYoBWXxJcAbwZ+FH5vNn2fz/UfpKOpSocN9q+qYQfkzStrJ8G7C7xPmBmbfcZJdZX2gPj\ng+W5ynaP7Z4pU6a08qNFRMRhaPW2FcDxwF7bHwN2Spo93MaqLjGuBe4f0BtrHbCktJcAN9fiiyVN\nLMeeA2wst7j2SlpQjnlRbZ+IiOiAVrvqfoCqx9Xzgb8HjgU+RTW74FDOAt4EbJa0qcTeA1wBrJV0\nMfAw5WVD21skrQW2UvXUusz2gbLfpRzsqnsbeVgeEdFRrT7zeB3VA+9vAdj+nqShuuhStrkD0BCr\nzx1inxXAikHivcBpLeYaERFt1uptq8fLS3kGkPS09qUUERHdrtXisVbSx4ETJV0C3E4mhoqIGLda\nHdvqw2Xu8r1Uzz3eb3t9WzOLiIiudcjiUYYIub0MjpiCERERh75tVXo8PSHpmaOQT0REjAGt9rb6\nKVWX2/XAz/qDtv+0LVlFRERXa7V43FQ+ERERwxcPSafY/lfbLY1jFRER48Ohnnl8ob8h6XNtziUi\nIsaIQxWP+hviz21nIhERMXYcqnh4iHZERIxjh3pgfrqkvVRXIJNKm7Js2ye0NbuIiOhKwxYP2xOG\nWx8REeNTk/k8IiIigBSPiIg4DCkeERHRWNuKh6TrJO2WdF8ttlxSn6RN5fOq2rplkrZL2ibpvFr8\nTEmby7qrylS0ERHRQe288rgeWDhI/Erb88rnVgBJc4HFwKlln6vLaL4AK4FLqOY0nzPEMSMiYhS1\nrXjY/jrwwxY3XwSssb3P9g5gOzBf0jTgBNt3lpkMbwDOb0/GERHRqk4883i7pHvLba2TSmw68Eht\nm50lNr20B8YHJWmppF5JvXv27BnpvCMiohjt4rGSapiTecAu4CMjeXDbq2z32O6ZMmXKSB46IiJq\nRrV42H7M9gHbT1DNgT6/rOoDZtY2nVFifaU9MB4RER00qsWjPMPo9zqgvyfWOmCxpImSZlM9GN9o\nexewV9KC0svqIuDm0cw5IiKerNXJoBqT9BngbGCypJ3AB4CzJc2jGmTxIeCtALa3SFoLbAX2A5eV\n6W8BLqXquTUJuK18IiKig9pWPGxfOEj42mG2XwGsGCTeC5w2gqlFRMQRalvxGFeWLx+8HRFxlMrw\nJBER0ViKR0RENJbiERERjaV4REREYykeERHRWIpHREQ0luIRERGNpXhERERjKR4REdFYikdERDSW\n4hEREY2leERERGMpHhER0ViKR0RENNa24iHpOkm7Jd1Xi50sab2kB8v3SbV1yyRtl7RN0nm1+JmS\nNpd1V5UZBSMiooPaeeVxPbBwQOxyYIPtOcCGsoykucBi4NSyz9WSJpR9VgKXUE1NO2eQY0ZExChr\nW/Gw/XXghwPCi4DVpb0aOL8WX2N7n+0dwHZgfpnz/ATbd9o2cENtn4iI6JDRfuYx1fau0n4UmFra\n04FHatvtLLHppT0wHhERHdSxB+blSsIjeUxJSyX1Surds2fPSB46IiJqRrt4PFZuRVG+d5d4HzCz\ntt2MEusr7YHxQdleZbvHds+UKVNGNPGIiDhotIvHOmBJaS8Bbq7FF0uaKGk21YPxjeUW115JC0ov\nq4tq+3Sn5csPfiIijlLHtOvAkj4DnA1MlrQT+ABwBbBW0sXAw8AFALa3SFoLbAX2A5fZPlAOdSlV\nz61JwG3lExERHdS24mH7wiFWnTvE9iuAFYPEe4HTRjC1iIg4QnnDPCIiGkvxiIiIxlI8IiKisRSP\niIhorG0PzINf7a6brrsRcRTJlUdERDSW4hEREY2leERERGMpHhER0ViKR0RENJbiERERjaV4RERE\nY3nPY7TknY+IOIrkyiMiIhpL8YiIiMZSPCIiorGOFA9JD0naLGmTpN4SO1nSekkPlu+Tatsvk7Rd\n0jZJ53Ui54iIOKiTVx4vtz3Pdk9ZvhzYYHsOsKEsI2kusBg4FVgIXC1pQicSjoiISjfdtloErC7t\n1cD5tfga2/ts7wC2A/M7kF9ERBSd6qpr4HZJB4CP214FTLW9q6x/FJha2tOBO2v77iyxJ5G0FFgK\ncMopp7Qj75GRbrsRMcZ1qni8xHafpGcB6yU9UF9p25Lc9KClCK0C6Onpabx/RES0piO3rWz3le/d\nwOepbkM9JmkaQPneXTbvA2bWdp9RYhER0SGjXjwkPU3SM/rbwCuB+4B1wJKy2RLg5tJeByyWNFHS\nbGAOsHF0s46IiLpO3LaaCnxeUv/5P237S5K+CayVdDHwMHABgO0tktYCW4H9wGW2D3Qg74iIKEa9\neNj+f8Dpg8R/AJw7xD4rgBVtTq0z8vA8IsagbuqqGxERY0RG1e0muQqJiDEiVx4REdFYikdERDSW\n21bdKrewIqKLpXiMBSkkEdFlctsqIiIaS/GIiIjGcttqrBl42yq3sSKiA1I8xrqhikeKSkS0UW5b\nRUREY7nyOFoN1UMrPbciYgSkeIwHKRIRMcJSPMazPC+JiMOU4hFP1rR4pNhEjDtjpnhIWgh8DJgA\nXGP7ig6nFP1auYLJs5aIo8qYKB6SJgD/C3gFsBP4pqR1trd2NrMY1kjdFmul8Az3/kuKVcSIGxPF\nA5gPbC+zECJpDbCIamraONq18o//cNu0o3jkqirGubFSPKYDj9SWdwK/3aFcIsZuZ4ORep51OFeD\ncVSR7U7ncEiSXg8stP2Wsvwm4Ldtv23AdkuBpWXx+cC2wzzlZOD7h7lvOyWv5ro1t27NC7o3t27N\nC7o3t8PJ6zm2pxxqo7Fy5dEHzKwtzyixX2F7FbDqSE8mqdd2z5EeZ6Qlr+a6NbduzQu6N7duzQu6\nN7d25jVWhif5JjBH0mxJTwUWA+s6nFNExLg1Jq48bO+X9Dbgn6i66l5ne0uH04qIGLfGRPEAsH0r\ncOsone6Ib321SfJqrltz69a8oHtz69a8oHtza1teY+KBeUREdJex8swjIiK6SIpHjaSFkrZJ2i7p\n8lE+90xJX5G0VdIWSe8o8ZMlrZf0YPk+qbbPspLrNknntTm/CZK+LemWLsvrREmflfSApPsl/ccu\nyu3Pyp/lfZI+I+m4TuQm6TpJuyXdV4s1zkPSmZI2l3VXSVKbcvvb8ud5r6TPSzpxtHMbLK/aundJ\nsqTJo53XcLlJenv5vW2R9Ddtz812PtWtuwnAd4HnAk8F7gHmjuL5pwFnlPYzgO8Ac4G/AS4v8cuB\nD5X23JLjRGB2yX1CG/P7c+DTwC1luVvyWg28pbSfCpzYDblRvdi6A5hUltcCf9SJ3IDfAc4A7qvF\nGucBbAQWAAJuA36vTbm9EjimtD/UidwGy6vEZ1J13HkYmNxFv7OXA7cDE8vys9qdW648DvrlECi2\nHwf6h0AZFbZ32f5Waf8EuJ/qH6BFVP9AUr7PL+1FwBrb+2zvALaXn2HESZoBvBq4phbuhryeSfUX\n6VoA24/b/nE35FYcA0ySdAxwPPC9TuRm++vADweEG+UhaRpwgu07Xf3Lc0NtnxHNzfaXbe8vi3dS\nvdc1qrkN8TsDuBJ4N1B/WNzx3xnwJ8AVtveVbXa3O7cUj4MGGwJleicSkTQLeBFwFzDV9q6y6lFg\nammPZr4fpfoL80Qt1g15zQb2AH9fbqldI+lp3ZCb7T7gw8C/AruAf7P95W7IrWiax/TSHq38+v1X\nqv8Vdzw3SYuAPtv3DFjVDb+z5wEvlXSXpK9JenG7c0vx6DKSng58Dnin7b31deV/CKPaPU7Sa4Dd\ntu8eaptO5FUcQ3X5vtL2i4CfUd2C6Xhu5RnCIqoC92zgaZLe2A25DdQteQwk6b3AfuDGLsjleOA9\nwPs7ncsQjgFOproN9RfA2pF4vjKcFI+DWhoCpZ0kHUtVOG60fVMJP1YuMSnf/Zejo5XvWcBrJT1E\ndSvvHEmf6oK8oPrf0k7bd5Xlz1IVk27I7XeBHbb32P4FcBPwn7okNw4jjz4O3j5qe36S/gh4DfCG\nUtw6ndtvUP1H4J7yd2EG8C1Jv97hvPrtBG5yZSPVXYLJ7cwtxeOgjg6BUv6XcC1wv+2/q61aBywp\n7SXAzbX4YkkTJc0G5lA9ABtRtpfZnmF7FtXv5J9tv7HTeZXcHgUekfT8EjqXapj+judGdbtqgaTj\ny5/tuVTPsboht/7ztZxHucW1V9KC8vNcVNtnRKma+O3dwGtt//uAnDuSm+3Ntp9le1b5u7CTqoPL\no53Mq+YLVA/NkfQ8qs4j329rbkf65P9o+gCvourl9F3gvaN87pdQ3Tq4F9hUPq8Cfg3YADxI1Zvi\n5No+7y25bmMEenG0kOPZHOxt1RV5AfOA3vJ7+wJwUhfl9kHgAeA+4JNUPV5GPTfgM1TPXX5B9Y/e\nxYeTB9BTfpbvAv+T8pJxG3LbTnWfvv/vwf8e7dwGy2vA+ocova265Hf2VOBT5VzfAs5pd255wzwi\nIhrLbauIiGgsxSMiIhpL8YiIiMZSPCIiorEUj4iIaCzFIyIiGkvxiHFN0vlleO3fbPN5Pirpd0r7\nq2V47Hsk/Uv/S45lbK65h3n8h+pDhA+yfo2kOYeXfcSTpXjEeHchcEf5fpIyIu4RkfRrwAJXo6H2\ne4Pt06lGtP1bANtvsb31SM83hJVUb21HjIgUjxi3yiCUL6F6Q3dxLX62pG9IWkc13AmS3ihpo6RN\nkj4uaUKJr5TUWybg+eAQp/ovwJeGWPd14D+UY31VUo+k56iapGmypKeUXF45XB613J8m6YvlquY+\nSX9YVn0D+N2RKIYRkOIR49si4Eu2vwP8QNKZtXVnAO+w/TxJvwX8IXCW7XnAAeANZbv32u4BXgi8\nTNILBznPWcBQoxL/PrC5HrD9MNUkSCuBdwFbbX/5EHn0Wwh8z/bptk+jFC3bT1AN+3H68L+SiNbk\nfyExnl0IfKy015Tl/n/kN7qaPAeqQQ3PBL5ZRrmexMFRaC+QtJTq79I0qpnb7h1wnmlU847U3Sjp\n51RjJL19YGK2r5H0B8AfU43fdag8+m0GPiLpQ1TjkH2jtm431fDwQw6vH9GqFI8YlySdDJwDvECS\nqaYhtqS/KJv8rL45sNr2sgHHmA38N+DFtn8k6XrguEFO9/NB4m+w3TtMfsdzcMjspwM/GSqPOtvf\nkXQG1aCafy1pg+2/KquPK7lEHLHctorx6vXAJ20/x9Uw2zOp5hx/6SDbbgBeL+lZUBUeSc8BTqAq\nMv8maSrwe0Oc637Kc40GPkQ1CdL7gU8cIo9fkvRs4N9tf4rqQfwZtdXPoxpFNeKIpXjEeHUh8PkB\nsc8xSK+r0gPqfcCXJd0LrAemuZqO9NtUw65/GviXIc71Rarh7Fsi6WXAi4EP2b4ReFzSm4fKY8Du\nLwA2StoEfAD463LMqcDPXc0/EXHEMiR7xCiQdAfwGts/7tD5/wzYa/vaTpw/jj658ogYHe8CTung\n+X9M9U5JxIjIlUdERDSWK4+IiGgsxSMiIhpL8YiIiMZSPCIiorEUj4iIaOz/A9MIC/BVMh4CAAAA\nAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1119b7f0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGXZJREFUeJzt3Xu0XnV95/H3pwEBLyiUNI0BG5iJtsAol0hpvSxaL1A7\nFexYjTMVOnXALtBR60wHdDrG1ZW1tLVaqSMtVUZorYhVS6aF2oC3ulqIQREISEkLlsQI0XYmah0s\n+J0/9u/IzuEk59nhPHnOyXm/1trr+e3fvv2enZPzOfv226kqJEka4gcm3QBJ0sJjeEiSBjM8JEmD\nGR6SpMEMD0nSYIaHJGkww0OSNJjhIUkazPCQJA12wKQbMC5HHHFErVy5ctLNkKQF5aabbvp6VS2d\nbb79NjxWrlzJpk2bJt0MSVpQknxllPk8bSVJGszwkCQNZnhIkgYzPCRJgxkekqTBDA9J0mCGhyRp\nMMNDkjSY4SFJGmy/fcJcmtXatTOXJc3KIw9J0mBjC48kByfZmORLSTYneWurPzzJhiR3tc/Destc\nlGRLkjuTnN6rPznJrW3axUkyrnZLkmY3ziOPB4CfrqpnACcAZyQ5FbgQuL6qVgHXt3GSHAusAY4D\nzgDem2RJW9clwLnAqjacMcZ2S5JmMbbwqM632uiBbSjgTODyVn85cFYrnwlcWVUPVNXdwBbglCTL\ngUOr6oaqKuCK3jKSpAkY6zWPJEuS3AzcD2yoqhuBZVW1vc3yNWBZK68A7u0tvrXVrWjl6fUzbe+8\nJJuSbNqxY8ccfhNJUt9Yw6OqHqqqE4Aj6Y4ijp82veiORuZqe5dW1eqqWr106azvMpEk7aV9crdV\nVf0f4FN01yrua6eiaJ/3t9m2AUf1Fjuy1W1r5en1kqQJGefdVkuTPKmVDwFeAHwZWA+c02Y7B7i6\nldcDa5IclORougvjG9sprp1JTm13WZ3dW0aSNAHjfEhwOXB5u2PqB4CrqurPkvwNcFWSVwFfAV4G\nUFWbk1wF3A48CFxQVQ+1dZ0PfAA4BLi2DZKkCRlbeFTVLcCJM9R/A3jebpZZB6yboX4TcPwjl5Ak\nTYLdk0hgVyXSQHZPIkkazPCQJA3maSstLp6SkuaERx6SpMEMD0nSYIaHJGkww0OSNJjhIUkazPCQ\nJA1meEiSBjM8JEmDGR6SpMEMD0nSYIaHJGkww0OSNJjhIUkazPCQJA1meEiSBjM8JEmDGR6SpMEM\nD0nSYIaHJGkww0OSNNjYwiPJUUk+leT2JJuTvK7Vr02yLcnNbXhRb5mLkmxJcmeS03v1Jye5tU27\nOEnG1W5J0uwOGOO6HwTeWFVfSPIE4KYkG9q0d1XVO/ozJzkWWAMcBzwZuC7JU6vqIeAS4FzgRuAa\n4Azg2jG2XZK0B2M78qiq7VX1hVb+JnAHsGIPi5wJXFlVD1TV3cAW4JQky4FDq+qGqirgCuCscbVb\nkjS7fXLNI8lK4ES6IweA1ya5JcllSQ5rdSuAe3uLbW11K1p5er0kaULGHh5JHg98FHh9Ve2kOwV1\nDHACsB347Tnc1nlJNiXZtGPHjrlarSRpmrGGR5ID6YLjg1X1MYCquq+qHqqq7wF/AJzSZt8GHNVb\n/MhWt62Vp9c/QlVdWlWrq2r10qVL5/bLSJK+b5x3WwV4P3BHVb2zV7+8N9tLgNtaeT2wJslBSY4G\nVgEbq2o7sDPJqW2dZwNXj6vdkqTZjfNuq2cBrwRuTXJzq3sT8IokJwAF3AO8GqCqNie5Crid7k6t\nC9qdVgDnAx8ADqG7y8o7rSRpgsYWHlX1OWCm5zGu2cMy64B1M9RvAo6fu9ZJkh4NnzCXJA1meEiS\nBjM8JEmDGR6SpMHGebeVtDCtXTtzWdL3eeQhSRrM8JAkDWZ4SJIG85qH9n9et5DmnEcekqTBDA9J\n0mCGhyRpMMNDkjSY4SFJGszwkCQNZnhIkgYzPCRJgxkekqTBDA9J0mCGhyRpMMNDkjSY4SFJGszw\nkCQNZnhIkgYzPCRJg40tPJIcleRTSW5PsjnJ61r94Uk2JLmrfR7WW+aiJFuS3Jnk9F79yUlubdMu\nTpJxtVuSNLtxHnk8CLyxqo4FTgUuSHIscCFwfVWtAq5v47Rpa4DjgDOA9yZZ0tZ1CXAusKoNZ4yx\n3ZKkWYwtPKpqe1V9oZW/CdwBrADOBC5vs10OnNXKZwJXVtUDVXU3sAU4Jcly4NCquqGqCriit4wk\naQL2yTWPJCuBE4EbgWVVtb1N+hqwrJVXAPf2Ftva6la08vR6SdKEjD08kjwe+Cjw+qra2Z/WjiRq\nDrd1XpJNSTbt2LFjrlYrSZpmpPBI8m/2ZuVJDqQLjg9W1cda9X3tVBTt8/5Wvw04qrf4ka1uWytP\nr3+Eqrq0qlZX1eqlS5fuTZMlSSMY9cjjvUk2Jjk/yRNHWaDdEfV+4I6qemdv0nrgnFY+B7i6V78m\nyUFJjqa7ML6xneLameTUts6ze8tIkiZgpPCoqucA/4HuyOCmJH+c5AWzLPYs4JXATye5uQ0vAt4G\nvCDJXcDz2zhVtRm4Crgd+Avggqp6qK3rfOB9dBfR/w64dsB3lCTNsQNGnbGq7kry34FNwMXAie1I\n4E29U1L9+T8H7O55jOftZhvrgHUz1G8Cjh+1rZKk8Rr1msfTk7yL7nbbnwZ+rqp+rJXfNcb2SZLm\noVGPPH6X7rTRm6rqO1OVVfXVdjQiSVpERg2PnwW+M3UNIskPAAdX1T9X1R+OrXWSpHlp1LutrgMO\n6Y0/ttVJkhahUcPj4Kr61tRIKz92PE2SJM13o4bHt5OcNDWS5GTgO3uYX5K0Hxv1msfrgY8k+Srd\n7bc/DLx8bK2S5ou1a2cuS4vcSOFRVZ9P8qPA01rVnVX1L+NrliRpPhv5IUHgmcDKtsxJSaiqK8bS\nKknSvDZSeCT5Q+BfATcDU12GTL1bQ5K0yIx65LEaOLZ1oS5JWuRGvdvqNrqL5JIkjXzkcQRwe5KN\nwANTlVX14rG0SpI0r40aHmvH2QhJ0sIy6q26n0nyI8CqqrouyWOBJeNtmiRpvhq1S/ZzgT8Bfr9V\nrQD+dFyNkiTNb6NeML+A7s2AO6F7MRTwQ+NqlCRpfhs1PB6oqu9OjSQ5gO45D0nSIjRqeHwmyZuA\nQ9q7yz8C/O/xNUuSNJ+NGh4XAjuAW4FXA9cAvkFQkhapUe+2+h7wB22QJC1yo/ZtdTczXOOoqmPm\nvEWSpHlvSN9WUw4GfgE4fO6bI0laCEa65lFV3+gN26rqd4CfHXPbJEnz1KgPCZ7UG1Yn+RVmOWpJ\nclmS+5Pc1qtbm2Rbkpvb8KLetIuSbElyZ5LTe/UnJ7m1Tbs4Sfbie0qS5tCop61+u1d+ELgHeNks\ny3wAeA+PfOfHu6rqHf2KJMcCa4DjgCcD1yV5alU9BFwCnAvcSHeX1xnAtSO2W5I0BqPebfVTQ1dc\nVZ9NsnLE2c8ErqyqB4C7k2wBTklyD3BoVd0AkOQK4CwMD0maqFHvtvrVPU2vqncO2OZrk5wNbALe\nWFX/RNdX1g29eba2un9p5en1kqQJGnK31TOB9W3854CNwF0Dt3cJ8Bt0t/3+Bt3psF8euI7dSnIe\ncB7AU57ylLlarRaitWsn3QJpvzZqeBwJnFRV34Tuwjfw51X1i0M2VlX3TZWT/AHwZ210G3DUtO1t\na8ORM9Tvbv2XApcCrF692r63JGlMRu2eZBnw3d74d1vdIEmW90ZfQvd6W+iOaNYkOSjJ0cAqYGNV\nbQd2Jjm13WV1NnD10O1KkubWqEceVwAbk3y8jZ8FXL6nBZJ8CDgNOCLJVuAtwGlJTqA7bXUPXT9Z\nVNXmJFcBt9PdzXVBu9MK4Hy6O7cOobtQ7sVySZqwUe+2WpfkWuA5reo/VtUXZ1nmFTNUv39P2wDW\nzVC/CTh+lHZKkvaNUU9bATwW2FlV7wa2ttNLkqRFaNQnzN8C/DfgolZ1IPBH42qUJGl+G/XI4yXA\ni4FvA1TVV4EnjKtRkqT5bdTw+G5VFa1b9iSPG1+TJEnz3ajhcVWS3weelORc4Dp8MZQkLVqj3m31\njvbu8p3A04D/UVUbxtoySdK8NWt4JFkCXNc6RzQwJEmzn7ZqD+t9L8kT90F7JEkLwKhPmH8LuDXJ\nBtodVwBV9Z/H0ipJ0rw2anh8rA2SJM36KtmnVNU/VNUe+7GSJC0us13z+NOpQpKPjrktkqQFYrbw\nSK98zDgbIklaOGa75lG7KUuLT//thL6pUIvcbOHxjCQ76Y5ADmll2nhV1aFjbZ0kaV7aY3hU1ZJ9\n1RBJ0sIx5H0ekiQBhockaS8YHpKkwQwPSdJghockaTDDQ5I0mOEhSRrM8JAkDWZ4SJIGG1t4JLks\nyf1JbuvVHZ5kQ5K72udhvWkXJdmS5M4kp/fqT05ya5t2cZJM35Ykad8a55HHB4AzptVdCFxfVauA\n69s4SY4F1gDHtWXe296dDnAJcC6wqg3T1ylJ2sfGFh5V9VngH6dVnwlMvVjqcuCsXv2VVfVAVd0N\nbAFOSbIcOLSqbqiqAq7oLSNJmpB9fc1jWVVtb+WvActaeQVwb2++ra1uRStPr5ckTdDELpi3I4k5\nfUdIkvOSbEqyaceOHXO5aklSz74Oj/vaqSja5/2tfhtwVG++I1vdtlaeXj+jqrq0qlZX1eqlS5fO\nacMlSQ/b1+GxHjinlc8Bru7Vr0lyUJKj6S6Mb2ynuHYmObXdZXV2bxlJ0oTM9ibBvZbkQ8BpwBFJ\ntgJvAd4GXJXkVcBXgJcBVNXmJFcBtwMPAhdU1UNtVefT3bl1CHBtGyRJEzS28KiqV+xm0vN2M/86\nYN0M9ZuA4+ewaZKkR8knzCVJgxkekqTBDA9J0mCGhyRpMMNDkjSY4SFJGszwkCQNZnhIkgYzPCRJ\ngxkekqTBxtY9ibRPrV076RZIi4pHHpKkwQwPSdJghockaTDDQ5I0mOEhSRrM8JAkDWZ4SJIGMzwk\nSYP5kKC0N/oPJfqAohYhjzwkSYMZHpKkwQwPSdJghockaTDDQ5I02ETCI8k9SW5NcnOSTa3u8CQb\nktzVPg/rzX9Rki1J7kxy+iTaLEl62CSPPH6qqk6oqtVt/ELg+qpaBVzfxklyLLAGOA44A3hvkiWT\naLAkqTOfTludCVzeypcDZ/Xqr6yqB6rqbmALcMoE2idJaiYVHgVcl+SmJOe1umVVtb2VvwYsa+UV\nwL29Zbe2ukdIcl6STUk27dixYxztliQxuSfMn11V25L8ELAhyZf7E6uqktTQlVbVpcClAKtXrx68\nvCRpNBM58qiqbe3zfuDjdKeh7kuyHKB93t9m3wYc1Vv8yFYnSZqQfR4eSR6X5AlTZeCFwG3AeuCc\nNts5wNWtvB5Yk+SgJEcDq4CN+7bVkqS+SZy2WgZ8PMnU9v+4qv4iyeeBq5K8CvgK8DKAqtqc5Crg\nduBB4IKqemgC7ZYkNfs8PKrq74FnzFD/DeB5u1lmHbBuzE2TJI1oPt2qK0laIAwPSdJghockaTDD\nQ5I0mK+h1cLl61+lifHIQ5I0mOEhSRrM8JAkDWZ4SJIGMzwkSYMZHpKkwbxVV3q0+rcMe/uwFgmP\nPCRJgxkekqTBDA9J0mCGhyRpMMNDkjSY4SFJGszwkCQN5nMe0lzymQ8tEoaHtC8YKtrPGB5aWBbS\nL96F1FZpIMND2td2FyqGjRYQw0OaL0YJDwNG88SCCY8kZwDvBpYA76uqt024SdK+57UTzRMLIjyS\nLAH+J/ACYCvw+STrq+r2ybZMmqC9CQ8DR3NkQYQHcAqwpar+HiDJlcCZgOEhDeGpMc2RhRIeK4B7\ne+NbgR+fUFsWl/lwcddfZvvWowmYoct6Gm7BSlVNug2zSvJS4Iyq+k9t/JXAj1fVa6bNdx5wXht9\nGnDnHGz+CODrc7Ce/YX7Y1fuj4e5L3a1UPfHj1TV0tlmWihHHtuAo3rjR7a6XVTVpcClc7nhJJuq\navVcrnMhc3/syv3xMPfFrvb3/bFQ+rb6PLAqydFJHgOsAdZPuE2StGgtiCOPqnowyWuAT9DdqntZ\nVW2ecLMkadFaEOEBUFXXANdMYNNzehpsP+D+2JX742Hui13t1/tjQVwwlyTNLwvlmockaR5Z1OGR\n5LeSfDnJLUk+nuRJvWkXJdmS5M4kp/fqT05ya5t2cZK0+oOSfLjV35hk5b7/Ro9Okl9IsjnJ95Ks\nnjZt0e2PPUlyRtsXW5JcOOn2jEuSy5Lcn+S2Xt3hSTYkuat9HtabNujnZCFJclSSTyW5vf0/eV2r\nX5T7g6patAPwQuCAVn478PZWPhb4EnAQcDTwd8CSNm0jcCoQ4FrgZ1r9+cDvtfIa4MOT/n57sT9+\njO75mE8Dq3v1i3J/7GE/LWn74BjgMW3fHDvpdo3puz4XOAm4rVf3m8CFrXzho/l/s5AGYDlwUis/\nAfjb9p0X5f5Y1EceVfWXVfVgG72B7vkR6Lo+ubKqHqiqu4EtwClJlgOHVtUN1f0EXAGc1Vvm8lb+\nE+B5C+2viaq6o6pmerByUe6PPfh+dzlV9V1gqruc/U5VfRb4x2nV/X/by9n133zoz8mCUVXbq+oL\nrfxN4A663i8W5f5Y1OExzS/T/QUAM3eHsqINW2eo32WZFkj/F/jBMbZ3X3J/7Gp3+2OxWFZV21v5\na8CyVt6bn5MFqZ2GPRG4kUW6PxbMrbp7K8l1wA/PMOnNVXV1m+fNwIPAB/dl2yZhlP0hjaqqKsmi\numUzyeOBjwKvr6qd/QPqxbQ/9vvwqKrn72l6kl8C/i3wvHYICbvvDmUbD5/a6tf3l9ma5ADgicA3\nHm3759ps+2M39tv9sZdG6i5nP3ZfkuVVtb2dgrm/1e/Nz8mCkuRAuuD4YFV9rFUvyv2xqE9btRdM\n/Rrw4qr6596k9cCadsfQ0cAqYGM7NN2Z5NR2/v5s4OreMue08kuBT/bCaKFzf+xqsXeX0/+3PYdd\n/82H/pwsGK3t7wfuqKp39iYtyv0x8Sv2kxzoLmDdC9zcht/rTXsz3d0Rd9K7EwJYDdzWpr2Hhx+0\nPBj4SFvnRuCYSX+/vdgfL6E7//oAcB/wicW8P2bZVy+iu9vm7+hO+U28TWP6nh8CtgP/0n42XkV3\n7ep64C7gOuDwvf05WUgD8GyggFt6vzNetFj3h0+YS5IGW9SnrSRJe8fwkCQNZnhIkgYzPCRJgxke\nkqTBDA/NG0kqyR/1xg9IsiPJn02yXbuT5J4kR7TyXw9c9gNJXjrH7fnr9rkyyb/fi+VPTPL+Vv6l\nJO+ZNv3TU70tJ/nWtGnfnz/Ja5L88t5+Dy0Mhofmk28Dxyc5pI2/gH385G17Gn6wqvrJuW7Lo2jD\nSmBweABvAi6eg6ZcBrx2Dtajeczw0HxzDfCzrfwKuofUAEjyuPZ+iY1JvpjkzFa/MslfJflCG36y\n1Z/W/lr+k3TvbfngTD37tnl+J8km4HVJfi7dO0i+mOS6JMvafD+Y5C/buxzeR9ed9tQ6vtU+k+49\nMbe19zW8vFf/nvZeh+uAH+ote3KSzyS5KcknWhcXU+16e/u+f5vkOa3+uFZ3c7p30azqtwF4G/Cc\nNv0NST6b5ITe9j6X5BnT9sETgKdX1ZcG/4tNU11vDfckOeXRrkvzl+Gh+eZKui4dDgaeTtdr6ZQ3\n03VzcgrwU8BvJXkcXV9CL6iqk4CXs+tfzycCr6d7t8IxwLN2s93HVNXqqvpt4HPAqVV1YmvPr7V5\n3gJ8rqqOAz4OPGWG9fw8cALwDOD5rY3L6Z7ef1prx9nAVMAdCPwu8NKqOpnur/Z1vfUd0L7v69v2\nAX4FeHdVnUD3pHK/h1bo3inxV1V1QlW9i65LjV9q23sqcPAMITH1xHPfy1sA3Zzk5jbPqDYBzxkw\nvxaY/b5jRC0sVXVLuu6uX0F3FNL3QuDFSf5LGz+Y7hf4V4H3tL+uHwKe2ltmY1VtBWi/AFfShcN0\nH+6VjwQ+3H7pPwa4u9U/ly4cqKo/T/JPM6zn2cCHquohug7zPgM8sy07Vf/VJJ9s8z8NOB7Y0A6K\nltB1BzJlqvO9m1rbAf4GeHOSI4GPVdVdM7Sj7yPAryf5r3SvHvjADPMsB3ZMq/twVb1maiTJp2fZ\nTr+7ivuBH51lfi1ghofmo/XAO4DT2PUdIAH+XU17YVWStXR9cT2D7mj6//UmP9ArP8Tuf+a/3Sv/\nLvDOqlqf5DRg7dAvMECAzVX1E7uZPtX+77e9qv44yY10p/euSfLqqvrkbpanqv45yQa6lxO9DDh5\nhtm+QxfGo/pOksdU9zIsgMOBr/emH9zWqf2Up600H10GvLWqbp1W/wngtVPXLZKc2OqfCGyvqu8B\nr6T76/3ReCIPX6g/p1f/WdqF6CQ/AxzGI/0V3emeJUmW0h1xbGzLTtUvpzvtBl2HeUuT/ERb74FJ\njttT45IcA/x9VV1M1xvr06fN8k2616T2vY/udN7nq2qmI6Y7gH+9p+1O8xngF1t7DqELpU/1pj+V\nR54G037E8NC8U1Vb2y/G6X4DOBC4JcnmNg7wXuCcJF+iO1Xy7RmWHWIt8JEkN7HrX9NvBZ7btv3z\nwD/MsOzH6Xpd/RLwSeDXquprrf4u4Ha6147+DUD7y/2lwNtb+2+mXQ/Zg5cBt7XTcMe39fXdAjyU\n5EtJ3tC2cxOwE/hfM62wqr4MPLFdOB/F64Cfb224AfhIda+snfIsYMOI69ICZK+60iKQ5MnAp4Ef\nbUdoM83zBuCbVfW+R7mtE4FfrapXPpr1aH7zyEPazyU5m+6utTfvLjiaS9j1GtHeOgL49TlYj+Yx\njzwkSYN55CFJGszwkCQNZnhIkgYzPCRJgxkekqTBDA9J0mD/H3WzTrYh4KbeAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x111a5278>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEKCAYAAADenhiQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl4XFd98P85c2fVMqPRYkm2LK/xEjtjO3HADiQxzgKB\nNgEBAcoTaO0WCElT2qi0JF3UHw2l4PctBBoovyaFsBaSyQLFJDiJ4kLsJLYjT+xIXuRlLFm7ZpM0\n+z3vH3c0HlmLJWux5JwPzzx35sy993xHDud7v+sRUkoUCoVCoZhKTJdaAIVCoVBcfijlolAoFIop\nRykXhUKhUEw5SrkoFAqFYspRykWhUCgUU45SLgqFQqGYcpRyUSgUCsWUo5SLQqFQKKYcpVwUCoVC\nMeWYL7UAl4rS0lK5ePHiSy2GQqFQzCn279/fLaUsu9B5b1vlsnjxYvbt23epxVAoFIo5hRDi9HjO\nU24xhUKhUEw5SrkoFAqFYspRykWhUCgUU87bNuaiUCjmPslkkpaWFmKx2KUW5bLDbrdTVVWFxWK5\nqOuVclEoFHOWlpYWCgsLWbx4MUKISy3OZYOUkp6eHlpaWliyZMlF3UO5xRQKxZwlFotRUlKiFMsU\nI4SgpKRkUhahUi4KhWJOoxTL9DDZv6tyi13G+Np9eJu8+EN+ql3V1KyqwVPhudRiKRSKtwHKcpkl\n+Np91NXXse2ZbdTV1+Fr9036fjv27CAQDVDlrCIQDbBjz45J31ehUAynvb2dj3/84yxbtoxrrrmG\n97///Rw9evRSi3VJUcplFjAdisDb5MVtd+N2uDEJE26HG7fdjbfJO4WSKxQKKSUf+tCH2LJlC83N\nzezfv59/+Zd/oaOjY0Zl0HV9xuYbD0q5zAKmQxH4Q35cdteQMZfdhT/kn6y4CsXcxeeDujrYts04\n+iZvyb/00ktYLBY+97nPZcfWrVvHhg0buOmmm7j66qu56qqreOaZZwA4deoUq1ev5s/+7M9Ys2YN\nt956K9FoFIDjx49z8803s27dOq6++mqam5sB+PrXv861116Lx+PhH//xH7P3WblyJZ/61KdYu3Yt\nZ86cmfRvmUqUcpkFTIciqHZVE4qFhoyFYiGqXdUXfU+FYk7j88GOHRAIQFWVcdyxY9IK5tChQ1xz\nzTXDxu12O0899RQHDhzgpZde4v7770dKCcCxY8e45557OHz4MEVFRTz55JMAfPKTn+See+7h4MGD\nvPLKK1RWVvL8889z7NgxXnvtNRoaGti/fz+7d+/O3ufzn/88hw8fZtGiRZP6HVONUi6zgOlQBDWr\nagjEAgSiAXSpE4gGCMQC1Kyqmay4CsXcxOsFt9t4mUzn3nunx1UspeSBBx7A4/Fw880309ramnWV\nLVmyhPXr1wNwzTXXcOrUKSKRCK2trXzoQx8CDOWUl5fH888/z/PPP8+GDRu4+uqraWpq4tixYwAs\nWrSITZs2TYv8k0Upl1nAdCgCT4WH2s21uB1uWsItuB1uajfXqmwxxdsXvx9cQz0EuFzG+CRYs2YN\n+/fvHzb+4x//mK6uLvbv309DQwPl5eXZuhGbzZY9T9M0UqnUqPeXUvKlL32JhoYGGhoaOH78ONu3\nbwcgPz9/UrJPJ0q5zAKmQxGoNGSF4jyqqyE01ENAKGSMT4KtW7cSj8f53ve+lx3z+XycPn2aefPm\nYbFYeOmllzh9euxO9YWFhVRVVfH0008DEI/HGRgY4L3vfS+PPfYYfX19ALS2ttLZ2TkpmWcCVecy\nS/BUeCa0+I+lPAazz9x295DsM2W5KN7W1NQYMRYwLJZQyIi7ZKyAi0UIwVNPPcUXvvAF/vVf/xW7\n3c7ixYupq6vjvvvu46qrrmLjxo2sWrXqgvf64Q9/yGc/+1n+4R/+AYvFwi9+8QtuvfVWGhsb2bx5\nMwAFBQX86Ec/QtO0Sck93YjBANPbjY0bN8q5ullYrvJw2V2EYiECsUBWedTV1xGIBnA73NlrBj/X\nbam7dIIrFFNMY2Mjq1evHv8FPp8RY/H7DYulpgY86oFrNEb6+woh9kspN17oWmW5zEFyU5eB7NHb\n5MVT4cEf8lPlrBpyjUpDVigwFIlSJjOCirnMQS6UuqzSkBUKxaVGKZc5yIWUh0pDVigUlxqlXOYg\nNaa1BF6tJ/DLn6PXv0TgzLEhykOlISsUikuNirnMNXw+PP/5LLWla/AWtuKPd1G9L8j2D//9EOUx\n0ewzhUKhmEqUcplrZKqMPU43HlaADRgIwIuH4IaPXGrpFAqFAlBusbnHNFUZKxSKi0MIwf3335/9\nvGPHDurq6iZ0j507d7Jx40auvPJKNmzYMOR+cxWlXOYa01RlrFAoLg6bzYbX66W7u/uirj906BD3\n3nsvP/rRj3jrrbfYt28fy5cvn2IpL8xYLWguBqVc5ho1NUZVcSAAun7ufY3KBFMoLsRUb8oHYDab\n+cxnPsO//du/Dfvu1KlTbN26FY/Hw0033YR/BA/D1772NR588MFsBb+madx9990A/PKXv+Sd73wn\nGzZs4Oabb842vqyrq2Pbtm1s2bKFpUuX8vDDD2fv9/jjj+PxeFi3bh133XUXAF1dXXz4wx/m2muv\n5dprr+X3v/999j533XUX73rXu7LnThWXVLkIIR4TQnQKIQ7ljBULIX4rhDiWObpzvvuSEOK4EOKI\nEOK9OePXCCHezHz3sLicN9X2eKC21ujm2tJiHGtrVWGYQnEBpnN31nvuuYcf//jHhM7zKvz5n/85\nn/70p/H5fHzyk5/kvvvuG3btaC37Ad797nezd+9e3njjDT7+8Y/zta99LftdU1MTzz33HK+99hr/\n9E//RDKZ5PDhw/zzP/8zL774IgcPHuSb3/wmAH/xF3/BX/7lX/L666/z5JNP8qd/+qfZ+7z11lvs\n2rWLn/70p5P+O+RyqQP63we+DTyeM/a3wAtSyq8KIf428/lvhBBXAh8H1gDzgV1CiBVSyjTwHeDP\ngFeBXwPvA3bO2K+YaVSVsUIxYS7U2WIyOJ1OPvWpT/Hwww/jcDiy43v27MGbael/11138cUvfnFC\n921paeFjH/sYbW1tJBIJlixZkv3uAx/4ADabDZvNxrx58+jo6ODFF1/kox/9KKWlpQAUFxcDsGvX\nLt56663steFwONsI8/bbbx8i81RxSS0XKeVuoPe84TuAH2Te/wD4YM74z6SUcSnlSeA48A4hRCXg\nlFLulUajtMdzrlEoFApg+ndn/cIXvsCjjz5Kf3//hK4brWU/GJbPvffey5tvvsl//Md/ZFv2w8Ta\n9uu6zt69e7Nt+1tbWykoKACmr23/bIy5lEsp2zLv24HyzPsFQO4+ni2ZsQWZ9+ePKxQKRZbpbotU\nXFzMnXfeyaOPPpodu+666/jZz34GGPu7XH/99cOu++u//mu+8pWvcPToUcBQBN/97ncN+UIhFiww\nlrMf/OAHw649n61bt/KLX/yCnp4eAHp7jWf3W2+9lW9961vZ8xoaGi7mJ06I2ahcsmQskSlr2yyE\n+IwQYp8QYl9XV9dU3VahUMwBZqIt0v333z8ka+xb3/oW//Vf/4XH4+GHP/xhNgaSi8fj4Rvf+Aaf\n+MQnWL16NWvXruXEiROAEXD/6Ec/yjXXXJN1dY3FmjVrePDBB7nxxhtZt24df/VXfwXAww8/zL59\n+/B4PFx55ZVZ5TWdXPKW+0KIxcCvpJRrM5+PAFuklG0Zl1e9lHKlEOJLAFLKf8mc9xxQB5wCXpJS\nrsqMfyJz/WfHmncut9xXKBQGE225rzbRmxiXW8v9Z4FPA1/NHJ/JGf+JEOL/YgT0rwBek1KmhRBh\nIcQmjID+p4BvDb+tQqF4u6PaIs0cl1S5CCF+CmwBSoUQLcA/YiiVnwshtgOngTsBpJSHhRA/B94C\nUsA9mUwxgM9jZJ45MLLELt9MMYVCoZgDXFLlIqX8xChf3TTK+Q8BD40wvg9YO4WiKRSKOYKUksu5\ntO1SMdmQyawO6CsUCsVY2O12enp6Jr0QKoYipaSnpwe73X7R95iNMReFQqEYF1VVVbS0tKCyP6ce\nu91OVVXVhU8cBaVcFArFnMVisQypWlfMHpRbTKFQKBRTjrJc5gAqN1+hUMw1lOUyy5nOTq4KhUIx\nXSjLZZZzMZ1claWjUCguNcpymeVMtJOrsnQUCsVsQCmXWc5EO7nmWjomYcLtcOO2u/E2eWdCXIVC\noQCUcpn1TLST63TvWaFQKBTjQSmXWY6nwkPt5lrcDjct4RbcDje1m2tHjaFM954VCoVCMR5UQH8O\nMJFOrjWratixZwdgWCyhWIhALMD2DdunU0SFQqEYglIul4DpzOYatHRy7799w3aVLaZQKGaUS75Z\n2KXiUmwW5mv38ci+R9h1YhcljhLWV6zHbrYTiAXGdHXNdlTqs0Lx9mG8m4WpmMsMMZgi/EbbGxQ7\nigHY27KXRDoxsWwunw/q6mDbNuPou7Qpxir1WaFQjMQF3WJCiI3A9Ri7P0aBQ8BvpZSBaZbtsmIw\nRTiRTuC0ObP7TzR2N3LDohvGl83l88GOHeB2Q1UVBALG59pa8FycpTBZq+NiijwVCsXlz6iWixDi\nT4QQB4AvYezweAToBN4N7BJC/EAIoVKQxslgirDL7iKWigFgN9sJxUI09zZzInCCbc9so66+bvSn\nfq/XUCxuN5hM5957L66GZSqsDpX6rFAoRmIsyyUPeJeUMjrSl0KI9Rj72KtVhAtbANWuagLRAKtK\nV7GnZQ9gbMiT0lPsadnDpgWbhizwI8Zg/H7DYsnF5TLGL4KpsDoGf9fgtaBSnxUKxRiWi5Ty30dT\nLJnvG6SUL0yPWHOLJw4/wV1P38XPD/+c5t5mjvUcG2YBDBZD2jQbmxZsAqA31ovNbHxeUbriwhX1\n1dUQGlrDQihkjF8EU2F1TLTIU6FQvD0Yyy328Hmvbwoh/l4I8e6ZFHC242v38eXdX0ZIQVleGbFU\njEOdh0jr6ayCGLRqwrEwBzsO0tHXwW1X3Ib3Ti+ecg/LS5YD0N7XTv2pel4+/TJPNz093D1VU2PE\nWQIB0PVz72subiGfioLLiRZ5KhSKtwdjucX2jzBWDHxdCPHfUspvTJNMcwpvk5eknqQsrwwhBA6L\ng4HkAL/z/47Xzr5Ge187reFWlrqX4qnwZIsaB91mg26leDrOnpY92DU7VpMVIcRw95jHYwTvvV7D\nFVZdDdu3X3Qwf6oKLidS5KlQKN4eTLjORQjhAF6RUm6YHpFmhqmqc9n2zDaaA83EkjEcFgd9iT7O\nhM6QTCe5quIqYskY4XiYLYu3UF5QDpCNUdRtqcsG1Y90H0EiEQhiqRjXLbwOq2bNnjddqBoVhUIx\nEcZb5zLhCn0pZXQwjVZhuJZiyRiHuw8D0NXfha7rWM1WVpeu5tWWVym0FtLY3ZhVLrlxjUG30qef\n/jRSSoocRVxdeTXlBeXoUh85/uHzDbVeampGtV4upDyU1aFQKKaDCRVRCiHMQog/AVqmSZ45R82q\nGsyamTWla7Bb7ITiIUzCxPXV11NRUIFm0mjta8XX4aP+VD0dfR3D4hqeTrij3cWNxxNsOQXl/cb4\niPGPTK2LL3yUuoXNbIv/nLpH78K3+4lhsqkCR4VCcakYK6AfEUKEc19AK3Ab8NkZk3CWM2h5rChd\nwTL3MtZXrOfmZTezZt4a2vvaCcfDDCQGcJgdDCQGqD9Vz4nAiXPZVBllUROeT6DATCAeRH/l9wTO\nHBs568rrxVeaYofzMAERo8pWRiBPsOPFLw9TGmpvF4VCcakY1S0mpSycSUHmMrmupVxrobG7kTxz\nHmV5ZTjtTpJ6EqfNyQLngnOuqExhpMfpphYnXlsTfjqpbm5l++ceHrHW5ZGFRzhCNwnSuLCzylqC\nOxIdVp/iD/mpchp1Me197TR1NxGMBQFUbEWhUEwroyoXIcTVY10opTww9eLMfXK7Ep+NnGV+wXw2\nL9ycjbfoUqclnONVzCmM9FCBhwqw6OBvgREWf1+1lV3p4xRrBTixESXJHv00mwoXDYvPTCgTTaFQ\nKKaQsQL6/yfn/TUMTU2WwNZpkegyINeSuWD1enW1UaviPnfOWIWR3tWCkgYLkEZoZhwpIA0NpQlu\nOy8+M5hqfKT7CDbNBkA8Hc9mok2o/9cEkggUCoVirAr99wy+gObcz1JKpVjGwbiq1ydYGOm3x1m/\n8j3ENEk0MYA0m5HlFfSI6LD4zKAVlUgnSKQSOCwOrlt4HeUF5ROrxB9smBkIDG2YOYMdmX3tPurq\n6y7cf02hUMwKxpuK/Pbc9GUKyLPksfP4TsLxMEX2It6z+D1w9Ch8N8cKuP122LULnn0WhIBNm0a9\nX7WrmoA1wHWlNTR2NxKKhbBqVm6pvH5EK8RT4eGOVXdMrv9XbsNMOHf0emfEehmMY7nt7gv3X1Mo\nFLMCtZ/LNDG4IIZjYexmOxX5FVhNVsLtfnY880V84aPnrIDvfx9aW+HGG+EP/xCs1lEtg5pVNTQH\nmjnQdoBgLIhVs1KWX8bdzptG3edl0v2//H6jQWYuk2iYOVFU1ptCMfcYKxX5W4N9xYCq83uNzaCM\nc5LBBfFs31kcZgdFjiIcFgetLYdxW514nWfPtc3v6oLOznG30hdkilgz9qQIR+Dx74/qtpp0/68p\nbpg5UVRbf4Vi7jGWWyy3N8pIfcYUGUaqgh9MAw7FQjhtTvrifXQPdBNJtyGtEjc5Dafj8eE3HcUy\n8DZ5WepeyjXzr8mOBep34i2J4XFkOjKM4LaaVCV+TY2hrAblCoUMBbZ9Yj3ILhbV1l+hmHuMVefy\ng5kUZK7ia/fxwIsP0NXfRTwd53DnYfad3ZdVLC67i+7+brqj3UgpKdDshNIDBLU4PtqN1GObbfiN\nR7EMcmtXBnGF4vid5504lW6rKW6YOVGmqsGmQqGYOcaqc/n/gW9KKQ+N8F0+8DEgLqX88XQIJoQ4\nBUSANJCSUm4UQhQD/w0sBk4Bdw5utyyE+BKwPXP+fVLK56ZDrvN5ZN8jNPc247Q5cdmMXSabe5tx\nmB04LA7mF8ynsasRXdcxmUw4nfMY6OnAJi18SnuaD8YWUVNtxRMrMqyBC1gGIz7Fu2xURzH2C80O\nTrHbyuO5KGUyFY0xc2uHBu+zfcN2FcxXKGYxo3ZFzuw0+QBwFXAI6ALsGLtPOoHHgO9KKUfw6UyB\nYIZy2Sil7M4Z+xrQK6X8qhDibwG3lPJvhBBXAj8F3gHMB3YBK6SU6dHuP1Vdkdd/dz1WzUqeJS87\nNpAcIJFO8PgHH8fb5OWxNx5DIHCYHRTYCgiHuyjqS5JIxLjRegWB6nnULv80nhcPjVlH4mv38ci+\nR9h1YhcljhLWV6zHbrYTaDtB7SsST/6yIcrJ96e349UPXbKOx7lZXrkWh8ryUijmLpPuiiylbADu\nFEIUABuBSiAKNEopj0yZpBPjDmBL5v0PgHrgbzLjP8soupNCiOMYimbPdAskEMMTtaUxPlIxZf2p\nejSXBi4osjhwL94C0QBe/RCeurpR58ldqG9achMN7Q28cPIFbll6C7XvfwjPRoa4rXwfvp4dPc+O\nmb473e32R91G+eXv4GksVwWZCsVlzAXrXKSUfRiL+EwjgV1CiDTwH1LK7wHlUsq2zPftQHnm/QJg\nb861LZmxaWdT1SbqT9UjhMButhNLxYgkImxZvCV7Tm7MIBgNYjVbiafjbKg0tsRx2V00tDVQV183\n6kJ//kJdWViZVVieCg9UMGSB9tbXjbywZ6ryZ6J2ZOT4UAz/6y9A6gNDM9tqa5WCUSguI2Zzncu7\npZTrMbow3yOEuCH3S2n48yZU3CmE+IwQYp8QYl9XV9eUCHn3xrtZXmxsUzy4ZfDy4uXcvfHu7Dm5\nqcDRdJTWcCuxZIym7iYOdx7G+5aX3ad3s/PYTiwmy4it8Seajnuh82eidmTEbZSbGqg2l4w77Vqh\nUMxNZq1ykVK2Zo6dwFMYbq4OIUQlQObYmTm9FViYc3lVZuz8e35PSrlRSrmxrKxsSuT0VHh4aOtD\n3HbFbVw9/2puu+I2Htr60LCnf0+Fh5pVNawoXpEN/nf3d/N88/OcCZ9hfuF8APa27CWRTgxb6Cey\n372v3ceJwAmeeOuJ7B4y558/E7UjIxZv9vdQY1s/9MQZLMhUKBQzwwXdYkKIq6SUb86EMDlz5gMm\nKWUk8/5W4P8DngU+DXw1c3wmc8mzwE+EEP8XI6B/BfDaTMk73hqS7+z7Dp39nUgp6RzoJBKPYDfb\nScs0JXklDO7w2djdyA2Lbhiy0I83HXfQ3TW/YD690V6C0SC/9/+eq8qvQjNp2fNnonZkxCyv/Jvx\nBGyQ06dzJgsyx4Pa+lmhmDzj6S32iBDCBnwf+LGUMnSB86eCcuCpzGJrBn4ipfyNEOJ14OdCiO3A\naeBOACnlYSHEz4G3gBRwz1iZYpcCX7uPXx37Fel0Gl3qaCaNpJ5kkWsRZ/vOEkvFcFgc2M12QrHQ\nkIV+cLELx8L4Q36KbEWsr1w/YjpurrvLaXfS1N1EZ38nrZFWHn7fuf1hZqp2ZJjiLfZd0oLMC6H6\nmCkUU8OoqchDThLiCmAb8FEMi+C/pJS/nWbZppWpSkUei9wnYF+Hj2M9x7Cb7djNdlJ6ikA0gMPi\nYIl7CUk9iV2zI6VECMHK0pXUbq4FmFA677ZntlHlrMIkznk8B/eQeeyOx0aVb0af0Gdx+/66+rph\nFt3g57otdZdOMIViljDpVORcpJTHhBB/h9ES5mFggzDMigeklCoSOwLnPwH/8sgvEQhSeoqUTGE2\nmTFrZoKxID0DPRQ7ihlIDhBNRbll6S3cvfFuPBUe6i6Q9XU+E3F3TaolzGS4yILMmWDEDDfVx0yh\nmDDjibl4gD8BPgD8FvhDKeUBIcR8jDoSpVxG4PzUYc2kYRImNKFhMVnoS/SR0lPkmfOodlXTNdCF\nRbPw1Zu+ykfWfCR7n9EWu4YjL1NXvwV/XyvVBQuo2Xovnhs+cslbpcyFeMVYMqo+ZgrF1DCebLFv\nAQeAdVLKewa3N5ZSngX+bjqFm8vkZmN19HVgEiaCsSDBeJASewk2zYZNs7GybCXvWfIe7lxzJ1sW\nbeFQ19BuOyNliTU37+fkqQYC8SBV+ZUE4kGjjf/uJybfAXkSDFprgWhgSLxiNm3sdSEZJ709gUKh\nAMbnFntKSvnD3AEhxF9IKb95/rjiHINPwIl0gleOvUBJJEW/rpMy6ZzoPYYUJsryy7h2/rXZa0Zy\nv4xkiRxq2c8aUYbbWgSA22YcvS9+G88NH7lk7q7RKvIf2fcIFQUVs8KaGbVrQMbNqPqYKRRTw3iU\ny6eAb5w39sfAN6dcmsuI7P71/jewdfYgNDPlmhNnysRAIsFAUR7vWPAOygvKs9cc7znO2b6zbHtm\n25BF+PzFbsmAheWOiiHzuaxO/H3DSntmlJFceLFUjBdOvsAHrvjArMi+Gk9M5ZLFohSKy4ixuiJ/\nAvgjYIkQ4tmcrwqB3ukWbK4zqBQ+dfBWMJso0hxsoJQKcwF6bADfQAjNpBGIBnDZXRzvOc7e1r1s\nrto84iKcu9jV1dcTiAezFgtAKBGmumBGOt6Mykjxiob2BkocJSNaCoPHiVg0k43pqJiKQjEzjBVz\neQX4P0BT5jj4uh947/SLNvfxVHj4YKiCG01L2MJiKigAIGSD9SHHkNjI2b6zbK7azBUlV4zYjsXX\n7qOuvo5tz2yjY8k8mlNdBOJBIy4QDxJIhKnZeu+l/Lkjxit6oj2srxhakT/YS22i8ZmpiOmomIpC\nMTOM1RX5NEah4uaZE+fyo8a1iR2Jl8EqcGEnRIxAMsJ2141DLJLB+pRcBt0156c1h6whxLLlxNv7\naelro7pgAdtv+ztYsWLM5pfTzUguvFuW3oJVsw45LxQLEYwHWVS0aNwp1oPfTSQte7wyqpiKQjH1\njOUW+52U8t1CiAhDG0QKjL6R5+99qBgBT83nqX24BW9JF357iOqYje09y/Dc9/kh543lrhlpUV26\naD3uVecK+8ZbWT7dqcLnu/AG5YKhqdFFtqIJ9zabqhoUFVNRKKafsSyXd2eOhTMnzuXDkEX8loXU\nNFbh8SeMivT7hlekj1Wf8o1Xv3HBRdXb5CWVTnGw42B2e+X5BfOHPNVfCgU0mqXgbfJOOPah4iUK\nxdxhPEWUy4AWKWVcCLEF8ACPSymD0y3cXMXX7uOBFx/gdPA0XQNdpPU0Pyl285WPfoWPrPmIsXjX\n19HQ1kAwHsz2Crt9xe0c6jo0zF0znkW1oa2BE8ETOMwOnDYn0WSUQ12HGEgOZM8Zj1tpOnprjWYp\nTLTY81IXiCoUivEznlTkJ4GNQojlwPcwOhH/BHj/dAo2l3lk3yMc7jxMJBHBarKiaRpdA1088OID\nADx79FlS6RQngicwYaJ3oJd8az4nAidGXMTHWlQHrYy9rXtBQpWzCiEEDouDeCpOMH7uGWA8bqWp\niGuMh4uJfczVeMlc6FqgUEw141EuupQyJYT4EPAtKeW3hBBvTLdgcxVfu4+nm54mHA+jCQ2r1YpF\ns5BHHoFogG+//m3Wla/jYMdBHGYHaT1NW18bL5x8gUWuRTyy7xG++wffHXLP0RZVyGlqaXXRE+3h\nVOgUi5yLMGtmdKlTlJOuPB4LaCZ7a11M7GOuxUtUl2XF25XxKJdkpubl08AfZsYs0yfS3GVwIUnr\naaQuQYNwIowTI/dBM2m0Rlq5YdENhGIhTJho7WtFExpSSiSSXSd24Wv3jbjZ2PljuU0tK52VWM1W\nemO9tPa1UlVYhURyOnSauvo6albVDLGAYqkYDe0N9ER7uHnpzdk5VVxjapkpS1ChmG2Mp7fYn2Ck\nIz8kpTwphFgCqLYvIzC4kCwqWgQCo30+gkgiQn+iH13XicQjPHf8OTSh0d7fjmbSAHBYHAgEJY6S\ncW81nNu/bHXpakzCxIKCBbhsLvqT/aT0FO9Y8I7s0zJA7eZaEukEvz7+a1rCLZiEiTfa3uCBFx/A\n1+6bVXUgubU9dfV1s6pH2XiZiR0/FYrZyAWVi5TyLSnlfVLKn2Y+n5RS/uv0izbH8Pnw1z+D6/mX\n2XgWyq3EDn+VAAAgAElEQVRFpEmTSqdIpBOkSZNvzef6hdcTjodp62ujq7+LnkgXwUgnlu4eYq2n\nWG+pHvfCk9vUsrygnOsWXocQglA8hNPmZMviLVQWVg4pyPRUeJBICiwFVDmrqCyoBKC5t5kv7/5y\ndlOygx0H8bX7ZrTxZS5zoQnmeJjI9tQKxeXEBZWLEOJdQojfCiGOCiFOCCFOCiFOzIRwcwafsbui\nLZ7iOVcXr6ZPUxqIs9Reid1iRyIxCzMleSWU5pey0LmQ3mgvaZlC6kk0CWGzzspEIfaDh6iO2cY1\n7flWhlWzsrJ0JZsWbOK9y987pG9Z7tPy3pa9FNoKDWspE/zXhMauk7sIRAN4KjysK1+H0+68ZMHn\nXHfSSB0L5gqzyRJUKGaS8cRcHgX+EtgPzKqtg2cNXi++0hRnbHHCxCnUbECKgUgP+c5Cih3FLChc\nQDwd54WTL9Az0IPT6iQ1EEZICSYTZeRx2hrFjoXtjcN3Bx0t4+hiakgEYmhZLMa2APFUnN2nd+Oy\nu1hVumqItTPTXC6bds3VDDeFYrKMR7mEpJQ7p12SuYzfj3dhK8twU4WTJroJmdIkUkmK7W5K8kqI\nJqM4LA5awi1EU1HcdjeOlEae2cYZ+mgmiAsbd5pX4w3t5RuZzsiFlkJ+euinHO09SqGtkOsWXEfA\nOnpTy0HGqgfZVLWJ+lP1CCGwm+30RnsJxoO47YaVcKz3GL52H0vcS1joXDijf8pBLqfEgrmW4aZQ\nTAXjCei/JIT4uhBisxDi6sHXtEs2l6iuxp/owoWdCgrYwmLuiC+izOxEExqrSlcRS8eIJqOk0ikA\n4uk4eWY7PTJKIRYKsFBGHv/O6xx1pahyVvHqmVf5x5f/kZPBkxRaC0mn0+w6uYu2SNuYLqILbRh2\n98a7WV68HIBQoJ3eztPkpwTOgSQtvadAGgkGreFWToZOZuMcMxlgP9+ddLT7KPWn6mloa5izwX2F\n4u3EeCyXd2aOG3PGJLB16sWZo9TUUP3oUwQIEbdqNKXbCYkoXXYzxTJNRUEFm6s209TdhI5OgaWA\nInsRIT2IuR9SJh2TENjSoKVNnJ1vZ4Uw0djTiENzEE1HKbAWYNGMDPD/9f8vK0pXcDZy1ph+hLjI\nWE/LngoPD219CO/L38Hf9FsOOGxs1ubzv9KPGNAxa1aSJkFCT7C2bG1Wic1UvcagCzAcC+MP+RFS\n0BvvZe28tSwrXqZqRRSKOcAFlYuU8j0zIcicxuOh5sN/zwMvPkBzsoNCSwGW0vlYZT+BWIBjPcdY\nVrwMm2aj0FqIROKyudh1Yhe6w4qWSHH9QCnH82KYistpirUQanqGjr4OXFYjjTUlU1iEoVx6o72E\noiHmF8y/6IXWU+HB01gOqQ9QZz5IgChuHERFgvhABM3pYqlzKcuKl+EP+WesXiO36NBT4SEUC1F/\nup41pWu4ouSKC8590dXwPh94veD3G/3faob3f5stqIp/xVxgPNli5UKIR4UQOzOfrxRCqGZO5+G5\n4SMs3HgTzsWrSFbMI6+olPdd8T5uqL6B1khr1j310NaH+ON1f0xrpJWknsRqy+f6K29jzfv/GK2y\nipPxDjSThtPmxKJZCMaD2DQbaT1NUk8SSUQwa2YkkivLrpxcFpXfDy4XNawiQAwXdspNhSxKOCjN\nK2Xj/I3ZOMd01mvkutvu+819pPX0kCyxZDpJ63m7bI4090WnL2ey/QgEoKrKOO7YYYzPMi6XFG3F\n5c943GLfB/4LeDDz+Sjw3xhZZIoc4uk4713+XkzinM4uyy/DbrHz2B2PAcbi8OzRZ1lXvo5SRyn1\np+v57YnfciJwgnAsTFqmKbYXAzAvbx6nQ6cBmF8wn7ORsyTSca7Qi1h5MkRjx072uuw4i8px293D\nBboQ1dUQCOBxV1DLZr7DPn6bPk6JNZ9NCzZh02zZRICL6WI8Hs5vj7K3ZS+9A704bc5sKnVZXhld\n/V1Drhtp7ou2rrxecLuNF5w7er2zznpRFf+KucJ4lEuplPLnQogvAWT6jKmU5BGodlVztPsoZ/vO\nDml7v6J0RfacwcUhno5zLHCMyoJKegZ68If8pGWad85/J0mZJBQLUeWqYknREt7sepNIMsIqRxXz\nOqxYrA4O5QWxpwXOjighKQk6giO2jRmTmhrjCR3wuObxndC78PVX4L1lIX49TqWjckja7HR0JD5/\nsZyXP4+2SBs7j+80eqbZXRRYCgiagtktoUeb+6LTl/1+w2IZcqHLGJ9lXC4p2orLn/Eol34hRAmZ\nygghxCYgNPYlb0/Wlq3l8YOP47Q6cdqcBKNB/CE/NavPFcwNLg67T+/Grtlx2B0UO4oJx8NYNSvh\nRJirK6+msbuRUCyEVbPyoVUf4jt/8B2oq8OnH+Uu64sIwK7ZiMkYMhxiTfU1Q/alP7+d/4h+eY8H\namuHxBo827+CZ4Sn9QnVa0wgfnH+YlmWsHCw5zQirVOt6QSdA/i1JPdsvIdIMjLm3Bedvpyx4LIW\nC0AoZIzPMi6nFG3F5c14lMtfAc8Cy4QQvwfKgI9Mq1RzlENdh9hctZnWSCuhWIgiRxELChfw7de/\nza+P/5pqVzVWzUooFiIUM1q0gNFE0mV3sbJkJb8+9mvC8TCF1kIsmoVwPMyZ8BnDKvH78VQtZwn7\nCRAnTAyX5mBDxMa8kuXGni6BEyO28x816O/xjNv1M656jcH4hds9NH5RWzviPEMWy44Oupp9lFnt\nJDRJJB2lqCPOlVdcQyQZye66ORoXvd9LjgWHy2UolkAAts++0KLa00YxVxhPb7EDwI3AdcBngTVS\nShU9HAF/yM+y4mVsWbyFO1bdwerS1ZwJn6GzvzMbfG0Nt9IcaMaqWYmmokSTUWKpGKtLV2M32ynP\nL8dpc5LUk+RZ8rhx8Y0scy8zrJLqagiFWE8l6ynnDlaxJV5ORWFldl96t93N2b6zOMwOihxFRr1K\npHXmWqfkxi9MpnPvvSPPPaSepfEtOq1J7JqV27iCO7Q1bBGLWd7SPy63z4Xqe0a/MGPBud3Q0mIc\nR1GGl5qL/o0KxQwzquUihBit+dEKIQRSyrnV5GkGON9l0djdiEmYmJc3L5v5tJSltEXaSOvpIVX3\nVs1KIGZkAHkqPEOSAnSpG4trzRdgxw5qtPnsKDwEiTiuqE5ozfIh+9LnWkV2sz0b/xltgT4/tXVt\n2dohO2JOKNV1gvGLIe62vrPMy3eygELKKTBOsNkJRbqodo0vI/6iq+HHsOBmW+qvqvhXzAXGslz+\nMPPajpEZ9snM6z+BbdMv2tzj/Kryzv5OdHRWla7KnhNLxTjQfoB3Vb+LT6z9BFWFVbzR8QaJdILa\nzbWsr1w/ehfdzBO2x7mC2valuG1FtCwtwd3cSu1vwqw/EiTU0ozL7iKWimXnG1Q4uX75wfTfD/70\ng9z19F0c6zlGlbOKo91H+eKuL2Y/TzjVNWNdDf0BY8cvPBUe6rbU8VjBJ3k4ch1h4uzkGE/TyM50\nEycKU5es0aNK/VUoLo5RLRcp5Z8ACCGeB66UUrZlPldipCcrziP3KbyhrYGB5AACQVN3EwJBeUE5\nDe0NlDhKstZNZWFl1toZV1ZW5gnbA3hy4xvlLggfZ0fDHuavXsXr0VYiwQiJdIIFzgU0B5r5yoav\nAEPTfwPxAEIKDnUewmlzcrT3KP2Jfl44+QKtkVZWl66eWAPLkeIXJ07AggWwbdvYAf6aGnj4AaQj\nafyXqeuQksiqisn8s0wKlfqrUFwc4wnoLxxULBk6AJWawtjukhOBE1xXdR2Hug4RjAb5vf/3XFV+\nFT3RHm5actOQ++S6rM7PyrJqVvIt+Xzj1W9g02xIJIl0wpivvh1PTn2Gx7mC2jA80nKUmDOGpmmU\n2cqQUnK05yj/8NI/sL5yPe197dkFMxwLZy2d18++zrGeY6T1NGmZ5ljPMc5GzvKexe8Zt0utZlUN\nntpafN5H8IaexW+PUV2pU5NXiGfe8rED/B4P3lsWsqyxi42hhKGc1q4m4LRO22J+IZeXSv1VKC6O\n8SiXF4QQzwE/zXz+GLBr+kSaG4y1N3ru067T7qSpu4nO/k5aI63cvPRmbJqNjr4OXm99nZZIC2k9\nzaKiRUZGWCd4vF48fj++ais7qltxVy5Flzr1p+oBWFO2hp2nnuRH/Ue5OVjA548vwVN9LZSX4ylY\nTkXoLWreWUM8HWdf6z5OBE5g0SycCZ9hUdEidp3YlVVwrpRGtP049niaQ7YQSU0ihcCqWQGj1cwr\nZ17hw1d+eNx/g9tX3M6z6wZw22+k6tUGAqYQO2yHqcWJx21YIT7vI3h7K4Yt6n57nKob3ws5MSfX\nYMxpBv8NBxWMSv1VKC4OIeXwvUOGnSTEh4AbMh93SymfmlapZoCNGzfKffv2XfT1dfV1wxadQDSA\nO5zA37iXqpDE5CqifUkZTbKLYCwIwN9d/3f84OAPONRxiEgygiY0UnoKp83JWns1D+0rxJO/DGIx\n6vp+RSDdh7vqCn5VNUBbOsRALEIiMcCSoCAvIRFSsjJoofZgHmzciHd+iB87juOsXJzdXnmQaCrK\nx9Z8jANtBwC4zXk17a++wJ78XoSmcUz2YNMFAxYTTocLh9lBLBUjlorxias+cc5iyiiCz/3qc7zR\nZsSLBveAsWk2DnYcZF35OuNv88wz4HQSEDHcOKhjCz69jR3RF3Bv/QAuu4vjPcc53HWYJUVLCMaD\nQwpPO/o6ONB2gHg6zgdXfXBKg+mj/hs63Nm051wFlOumVBlaQ5ltSQ+K6UMIsV9KufFC543HcgF4\nBUhhFFK+NhnBpgshxPuAbwIa8J9Syq9O53wjuktCMfyvv4DVYuc5Z4COdDPtzX3omgkpJZoOD/zi\nsxS75tMd7SapJ7Gb7cwvmE+hrZDO1uN4S6rwhBfC3r34r01g0S38Kv0WBwNRMJlI6zoAzYWwOAT2\nFLjj8MiaAVpML9Gl5xOxabR0vYUudRBgx4IplSKlp3lq3w9ZUFRNpx4h0ArzrEWs0awcpguzMGMS\nUKibGEgOMJAcwCIsSCmxaTbm5c8bYp38z9H/QUcnlU7RGWzl7Kk3eU+khNbCHm6wrwQHhmsrFsVl\nt+PP1N564w2480tIdLbxxMkfcUIGQQg6g61cvfCd7G3dC0ChrZDdp3cDcMOiG4ZZFpNd0Mbj8pqq\nzb7GI+tcXaDHYwEq3n5c0HIRQtwJfB2oBwRwPfDXUsonpl26cSKE0DB6nt0CtACvA5+QUr412jVT\nabl09HXQ2N1I56nD5KUg35yHnxCthElJiRTGNRYEUkpSgNVkxmy2IpGYhImFhQuxtbVztWURj71c\nBNEot77jCC+7QyQExl8+B5MOZh2WhaFswMQbZTpWHYq0PDqsCfpIZf44oOkgBbiwYZGCyqSdgWIX\nW9usJArysAozAtjJMdroo0A3k19UTjwdJxgLMi9vHstKlg1paXO09yingqcwCzMilaIvGiRhkrik\njep0Pu/qL8W9aYshwyuvEMgTuK0u6oLr2Wb+HywLl/BS115azAPoQqDLNGmgSLdwpVaOVlpOyJzG\nqlnZULkBIOtenJc/j3uvvZdnjz47KYtiPJbLaExEEYzH+pmwhTSLujhP5u+omHtMpeXyIHCtlLIz\nc+MyjJjLrFEuwDuA41LKEwBCiJ8BdwCjKpfJMlgp3T3QzZsdb2ISJsyJFHGLmX76ycOCxFjUkSAE\nJJFZJZGQKdLJNHZpQgrBiUAzLqsZkWqlrqKdQs3B71whkiMoFgBdQEKDZhf02HXiZkgAvaaBoTsY\nS0gLMCNIomMWFtoscfL7gjQVFnFvaxnPas2kUjHiZQPoVp2gKUFfv9GdOakn6RzoJJKIZBVho9ZI\nX6KPJUVLOBM+w0A8AiaQSIIizmpzGQfyQyQanyVeUYZtqU5ZIM5X2hZDpZvq1bews/FZ+jVJWkCC\nNIM/c0AkOSw7mHc2TLrYxXx7GT37dnM00U7aqtHv0GiInOWenfdwdfnVLHUvBS6cxTWSMrjYaveJ\nPqmPJ+NsQllpE+yCMPwHjEMxTaKFDwy3AOeqVaa4eMajXEyDiiVDD+PbwXImWQCcyfncwrlNzqaF\nQXfJfb+5j75kH7rUsVlNhPR+SkU+3USxYSYtk4aSGeEeEklc6KSRyDR0mZIkRJIn55s5a+8kObjV\nvWS4gskoraQJem2QMuWMD50EgJSQREmRkmlsabDF4xy3xPlM8WlSZkEyoxxsSei3QUJPYJZGa/+E\nnkDGk+hI0jlznAicIKkb44O/UaKTRqdTi+NOmIzBvDwizmIe2VhBoquBvsajvJU4S0yD1OBvE2CS\nkBCQFEkcZgvLe5OEOEGTOU6h1UqfHkP26bhsBURiIQ6EXmJRcxcVq68FwNX4Fv6+s4aNnbMY+tp9\n7Pj1g7j9nVS1BwmknmNH3qPUFn+A2q23853wC/zyyC+RSDZVbRrx39u3+wm8L34bf18rvoJ+YoV5\nJK0a8XQcm9lGka2IR/Y9wnf/4LvDrvWH/FhMFupP1Wetv5WU4j+1Gx43Fm//ogaqFhvytve1s+/s\nPlrCLSTSCdr72vn8xs+fs3K8j+CtPILfkaAaFzXuVXhwj9jFediiblqL5z+fHVsxTaaFT4bcpIch\nyjhqIfDGTnb8z4+ozb8ZT83np8XimjFlNossyNnGeNxiXwc8DM0W80kp/2aaZRs3QoiPAO+TUv5p\n5vNdwDullPeed95ngM8AVFdXX3P69OlJz/3Bn36QE8ETOMwO7LEUjZ2HiJjS6EKiSUGU9IiWx6i/\nBbBIQUpK9MGBsa4fSfGMca5dB01CUhgvE8aiLqRhCWXvJYZeN6KgOd9rgMzRos4kfLy9lPL3fYSO\nfKg/VY8zbWb96Ri787tp08P0a7qhFKUhkwBSAjQhWIabrSfhlWrBGa2fNDp2zJBOszAi6HKaiZiS\neFIlbOnKBwmBkrys641AILsY3v2DOznQ9CIJ0rgiCVZH7IS1FK2lNoqkjZPzHaxZuJHlJcuHuqM6\nAa+XJ07+igdKDxLIM6FrJiIyjkUX2B0FmC12JJJ5efOIpWN47xxuaXzuV5/j5VMv40ybsQfCxPrD\nhPUBbkwv5LvOP4Ljx6lLv0CgNJ94WTEvFnTRq/ejoWFO6zjjkmVRB19xfAC23syOX/4t7rxiXMJB\niBgBYtTqm/C0JOGxx7Lzjuhqe7We2vAaPM5znbqzTTvr6ozPdXXDG3mef04Ow+ZpaSbQfIjatiV4\nKtdTt7qDgNOKO5yAV14Bh52ATeKOCeraVp5TWlO0UM9YEkauEs7tSTdLWwdNFVPmFpNS/rUQ4sPA\nuzJD35uF2WKtwMKcz1WZsSFIKb8HfA+MmMtkJ/W1+3jt7GsEogE0k4ZNs5GymZGplLFYDiqGCc6U\nQqJnFt0LKo4JKC6AWM5ijoS0yXCbidHuNZrses78AtI5sgoJSeAVRzfX/eYJGq9ZRKG1kMRZP0fy\nNJxaHmYpOCoDmHTDxTcogwAcukalbqc8keY60wJ2cpyz9FGEnbIBQUE8RTyqEzUn6UwF0IMJQg4T\nAZuD7awesh+Lbx789uQuis0WnJEkUTO8UD6AlDqWdByZNCP8XRwOhXEuSVKxaI1x6cvfwfM//fhK\nUzxQfogus445mSZiMqzApEmSSvRRmWdsZjbYumckN5ZAQDwG3RHQbJBOgQDRG4DWRjh6lBqXix3u\nEEdSA/QHQ5jz85CkqAyDppnpsut4e34P//4UblMCtxaFykrc+UabHG+8AU/1becm9fnweu/DHenE\nXTgPVq8mni85Ej/Lpws7uIOz1LAKDxXD2/NMpoXPyQaqG06yXVuDp9yoa/K/9luqrr0J9u2Hnm5I\np3HZbPjL7dm+c77gUbxPfhl/XpLqhWXUhGN4RrKWxqGAJl34eoE5slZR/TNUV1qpcWzAg2lW7wN0\nKRhXtpiU8kngyWmWZTK8DlwhhFiCoVQ+DvzRdE7oa/fx4IsPEo6HjSB9OsVAcgAAi2bBZLKgo0Mq\nOiEFk43TwMUpltGsjPMUVXpQ+WW+vyhNO3i9HDomgX4LnHDBaWc3qc4AZkcBRakUA2YbBVgJm9NI\n/dylAnCkIK7BACn2aG28tsJEvgxiFWasaNgxk98XpcWWpM1qXJuwxPjfgjgrYwXkY+EbvGq4ilwr\n8fiN7ZlL4hrYzIhEAoeu02JJkhKS1SETIacJLQ3teoSnj/2KVZGTrFx0Df7G18B9A17nQQLxJGYE\nUYs04k6QiRXpxFNxTMJENBVlfcX6Eetx4uk4N0SKOaIlaDPHiJvj2KTGntIovudfwhOw4elIU9ud\n4tMfEgyYdZzxFGXkU6AJpNlMKNmHv68V8qAqboN4HE6dgkWLcJk1/KleYxGE7BO1f0EnVQWlEIsa\nKecLwWazItNxAlqUHeyhls14Qrah7XnO34KgowMOHDDmrKs7t9jmLMKe6mo8NTWGS5JF4Dy38Vp1\ntITA/ldwn2gFsxkScUKxINXdZrC34oudZseLT+HOE1TZyggQY4fzMLWswZO7UI/TXTcYA2rva6ep\nu8notWd34raNY0O9C8wxxMUXkgSc8tzfcSRFPduYQTfeqLETIcTvMseIECKc84oIIcLTIs1FIqVM\nAfcCzwGNwM+llIenc05vk5fO/k5cNhdWzUpSTyIH/yclKZnCarKioU2nGEMZy30lzhszgTQxsoIa\njzU0DsUX1yBkhwGRJpKI0GOOc0L20kA7bfSRzJwnJNgy7rq0MIwiYdKImXR6THGCMsZ8mccpPcDv\n5iVpdhuxJnsK5vVJjrp0GvOjWNGowkmAKDtSu/FVW2loayBl0ziW7uJYXoyISJAQkoSAVe06WiLJ\n6YIUSIlMJ4kee4vd+5/E2h0Alws/ITShETaliZqMTL/cnfKCMWMTs1gqhrfRi6/DN6zvWLWrmkh/\nL32aThf9JDWBRZfY0rBjZS8+dxw0DU/Izh3HNVYknVQkrBTEddB1YuEAtt4w1d1JqmM2QuY0LFpM\ne6GgPnaEJ+wnObGkCN+8zIReL6TTVJ8OEnpzHxw6TFO8BXt3EOEupiip4e4dwN3Sjffwk1BfD2vX\nnhO4psZYVAMBaGszvg+HYfly2LnT+P6jH4UHHxy+NXRDg7HA5lBjW0+gt4VAnkDvixAwpwjka9Q0\nW6G+Hq92FHfzWdwn2zGdOo27L40bO97CVuN+dXVG66D77oNU6oIdt6td1RzvOc6elj1EQz0423sJ\nHX2Tk0f24tt9gTykC3T1zrWKTK4iEokoR+jmUzxNHfX4+o7Pyn2AgBnfznus3mLvzhwLp2XmKUZK\n+Wvg1zM1nz/kJ56KAxBJRoZ8l5RJTGkT8XT84icYj0ss95zRTI/Bc87/foLutAmRuXdSM+YdDPT3\niXOmio4+RC5dCFIamDKxpqSewiQEQphIIelOD6BJacSFMJRLwAFhG2hpSGpJ3nO8BVJpEnk6R4oT\n3Fn8GwItUVx5dpa0mmi3CE46JeY0LOiHin4gkQKpkU4lsOuZZ610GhGOQO9xqle4sJjMJLSk8dNy\nrDxNmEilU5hMJgrMBehSp2eghz/f+eesLludLTottBSyNz/IgB5HEyaC1gRdljTLg4K02YR3URRP\nlwYLF1LTE2N/SQvHXToyNMAAadoLjZKhDkeam5rDPOux01UQ41C+CVPSinleJQvKV57LWGtogAMH\nqKGHHe9IgclEUKaxBpPES4u4unId7DmIKzqA3xqH4wNw771w+jTcf7/x4/LzYfduQ7mUlsLq1XD0\nKNjtUFxsxE6cTmORMuW4hPx+I/aQE6/xhOzUHp+Hd36YhtIIQXuaoqSGd1kSoin8fa1UyXzQBKSS\n0HIGV1UV/vQZOBmERYuMefbuhd5eY96KTL+5ESyFmlU13PXUXYhoDHtnkJhFIK0W1iZceH/0AJ6f\n7IJEYuQn9wu4BHMz4zqWzOOVIwexpa1gEgQSQXYIP7Vba5iVTrEZ3s57LMuleKzXlEsyx6iO2ejr\n8NMeOTviwq5ngxJMzOeU6yeaKi42ujTpqFSG3N+S+S8uNyZlykwWF8aE5szUOhJ0naSQRMyS+GDC\nQU6SQ1pAwgw9DuiI9dChRXnF3YcUkmAsSFF/iq6+doJaEkvauH9ag+KooZxSJqgIppHpNCKZpMOW\nQtdM7Fmg4zv+O9buaaZbRof9SYSANDrCJMiz5FFoL2SJewkF1gIOdx3mjbY3smnKj7/5OKvmrSUl\n00Qw3GhF0krIKnmzHBpKUzBvHkiJpzHAQ7/sZ0tjlJBZ57TTqGnKS8ABd5zvr05we7uTs/SR0pMU\nWZ28q/pdXFFyxbk9e1paoLMTT6+F2jfsuKOALhHJFNc19lHeYizQIZGgOmo1lEc6Df/8z/i+dj91\nj97FtqKXqbvdiW+Jw1AeJ08aisXhMF6xGBQWQmPjuX9blwuKis5ZPbqefe+5cis1p+w4rYWsC9rx\ndJkI2HV2XAc2XRCaX2LEogA0M6HuFqrP9hsW1aAVMW+ecWxqOjfnCB23PRUelhQtwRWOEbboODQ7\n17GQZckC/PFOeOON0Z/cL9DVu9pVne1a3ig7sZdXITQzRXFw24pwr9+MVz801v8bLh1+/zCrcjrd\neGPFXPZz7rm3Gghk3hcBfmDJtEg0F/h/7b15eFx3fe//+pxzZtVoRqNdtixv8ZLYmSiJA3YAx2Fp\nAgUCahqgtNCSll9TKG0vvvcppbnXLS3PhZt7y015CG2BW7bCBSoS3xLWUBNIs2ASR7FjO7FjZyzH\nsmR5NFpmP+f7++McSSNZsiRrtDj5vp5nnpk5y5yPRtL3fb7fz9bVRcePT/F3K4YZvdmddqYx1wF6\nIWcUc6GSwjJFGHUQiyylsV0OrmO//BSFGz2GUpSkNO13I8o9//uri+R8RRwRUDmGcoqAChPx+TlT\nVQTbFQWfA5kAPLISjsXdGZahXD9Ry0iRWHaYrE+4fUeatH98tjR6/aAjRIwAA0aRtTVraY40I54D\nq83p1K4AACAASURBVC/TBwoKdmGsh0/RLjJSZRCprsPMpAnZgjJN8kHBcISBMNDfT1coTee1QjII\nbRkfibMljCaDaB6CRYec5XC8zuInDLIu38SmvI+jLX4e2/9dYnnYFFhJcvUqGBpyQ/dESJyFxIuK\njmfgnhvBnz+L80IP6aCQiljcebSartoCne0FDkQznOj+e7ZE1nCFv8X1fVyTZfezPhLP9cKmTe4X\nMCosMHEgTqehvd2dDZSv63sdPTv/tpN43iAejoO/RLxUAjtLPhwiFTagrZFY7yBpO0PKtLlTroH1\n68c//8or4ZFHoLfXFa6LdAxtb2kntf854pE1Y7+4VOp52opV7qylfLZVfuc+Q1fS8tyogewA/nCI\nfKCea1t3QKS58nXwKukjWeR23tPOXJRSa5VS63ATJt+mlKpXStUBbwV+tCDWXC50dkI0StFQE8c7\nVfaAyg3Qs2EuojSTXbOxezbHTLdkp2CEkisouLOPUnmwARO/xlmZItATcjjvc+j32Qz4FOEi5J08\n51SGkuGWyanJgd+G52qht8oVJsFdZisKJKuhO1Qi7xToDyiGgl64Nq6Px3TcCxqO0FDwUeP4OZ89\nz8mBkxw5d4S+kT4c5ZDKpXjgyAPsO7mPkBUiOZBkSOUZtBz6w8KITzAdheM41BCgq7bAPduKpCIW\nrcNCqsrkJ2vBdBxC4kMsH6GSUJ0t8VgkTcCGhxsyZM+fJVoyyQZMHrZfIPDMs66CRqN01dv84c0j\ntP++zfvfAVkDCj6hO2YQH3bY/YgDxSL3bBki5SuRqhKkVOKQL00vI8QJEY820NmSdmc22az7yOXg\nhhtcEfP7J8xQxga/PXvcsOg9e8baRCRvvIpYUWAk4zr2GxqJSZBCNMxudhAP19G9ppZ4TTO7e9aR\nOJKCH/7QDSgAaGqCq692ZzAzdAzt2NxBqtrHc8Uz/Dsn+RaH2Fd9nq1DgYl375Pv3GfoSlreCVRE\nEIQdrTtojrjLdBUtalppH0m5L23y72wBmE202Hal1B+MvlFKfV9EPr0g1lwuJJN0rjpNBB95NwXy\nwpnLYglL+TLaxaLSJh8332tOihCb1Tmj9pV9V6pMgCwbSmbZjzGdv2gSpgOOAT4b8pYnGAoMETei\nTDkocZfBRLlLTKEi9FRDPAtGCc6F3JlTwIFB02HVCJwOAw7EMEmZNiUDgjaUDEWVEeBDfW08MHSS\nI7EsQcOHGQhjOzaD9iC1oVqigSj9mX5OpE6Qt/P4TT8BI0DRKTJUzNBoRNkaqGPjQInOVWeJ2z7i\n/jAEIZ4tYinhfEBRX7ChNDrt8iPhIGpwGOx+tyyDWYSACSqP6u2FdIiuJviL64scj0J13v0ODzbD\nFSMmf/tEhMSz58Fw2HPVEPERIT7iMNhkE8sLuXyJI8FzNBMhFq4luTJD19YAnfHnSUahLR+k4+Qg\nVNt0bjNIZr5BW3wlHb/xYRIXuatuu+YmUrUriB8/7d4xx2KkN7bRdqzbjZiL7YRjx1zfyo4EtEbg\nRz+Cb38b6urcJbeGBrj33hnv3hPNCd5+w/v4xCN/Q9EWGswIrSMOe+v62bj6+nGfyFR37hfpSjr6\n2YnmxNgsJmAGcJQz6woPs6bSPpJR4Zw8q1ygaLHZiMtLIvKXwNe89+8FXloQay4X2to4UPh3gn4f\nkEVU2SC5VMwkZuWziPnY6l1n1F8yaw31fCxquuuLJxCOKxYFwx3sLcfNxVHl4lj2mZbt+lCqirBp\nwHXY5zynTcZS1GVsHLd7ALbhHjccgEjOnTEFbDAEwkV3eawuAz0RV+RGl8NKtkMk7y6l5bxt12dr\neNMzGZ5fI5yPVHGuOIyTzRMNmOR8frJ2luHCMGeGz1BySkR8EXwIA/k0NbaPxhGLqqAPK1RFx5od\nfCZwP63DhntHuXIFvPACbUPCsRpFdtim5FP01BgMB202lCx6Cil29jocXRnijJEjXyygTIv7V5U4\n+vYsJ6pKpAOKcAGqChApglgmvWHoXFcg0R2F4WGS4SI+JexrE86EHXqjPpqHB0mLA35FupDGj8k9\nv7Oe+MhaWh/5JSkjz8evLzAQFgpGhnxTHYciWfZ3/zOf7Nk4bS5Jx+YO7kndA6++ZmK5nWt+D356\n0B3wXnoJduyADRugpwd8PjBNGBhwxUVm/8d7sGqIXVe+pUzMGkkN99MpR0j8ey/09bmff/fds/7M\ncipV1HRa5phvNCtmEM5KMhtxeQ/w34DRxMmHvW2vXDo6GPj6fdTafkpmmB4yS23R7Jn8vzk54mwO\nwjOjsHgzCDUqRM749gts8ZanYnk4FxzfX/JmLmNRWmriOeAKkGlYnAs7CG6h0IInMH0hN5oMA6yS\nJw4KBkOuo7wv7M5WxHH9LhmfK1gvxL0Zkbg14Yp+NzfIB9TmBd/5Ae7ZBIM+RcdxP4bVCAoeaEoh\ngQAv+fKcdk67Dd78boTalYMW/b4ahkwbizyFkUF2D95Eor6ZtupWUkPHiZthqG+AQpFNAy8yFBAy\nfkV3jYnf9NNEkI3n4VDUpiojbB7yk4pk8SuDl/wlEIMD9YJtCAUUlunjlFVi1ZBQZRukLZtkVQna\nroBslgBJ9q0qEXUsVprVvBjI84JVYt1IkVShj1S1j6rN7cQbW4g//jSsWUs8GOIEh+hhhPWlamLp\nHLkIHD9/fNoSODDDYLzzdvegD3xgfEA9csS9W29pcUOh3/xmdxlnlnfuyXSS1tb1sGrD2LbYoUMk\n9z8EfbY7C2pthb17YePG6T/zIn6P0VnMgrDIPpJKM5sM/fPAnyyCLZcPiQQ1j17F+TOHKNk2Psbv\ncpclF1tampz/cjGBKROFiwqLcgduU7l/YDlzfOYxmssCTJjxCa4vZHUazgc9537ZvkAJctb4cfGi\n8NpzYfbXFei1imTMEvkqoSTeuV6kc8H0fCU2KEOwlVsHrSjQnId+v1e1wISaDOT9UFM0yJuK1mHF\n+SBkLdcnYyh3hlNv+zkUHGRLJsKAzyEdFOL4AEWsYDBQZbE5V0W6OU40EOXY+WOQHQIrSK0ZxCLP\nTmsV8eQZEqeScMuVdDgbuaeuB0JxYoNp0itrsdo288lXv5/Pfu0j2NkUjTlhc95Pc6oINUEONucI\nlkYIFG1OV7vfp98W7ICPvOFgOZAPB6m2Lc45g5hDNoGSQZtT7eaLrFiBCveBPw/KT8QM0oKPM+Yw\nQ0GD+K/dwZ2bO/jM45+hIeg5t6NRAM6RcRNfrSDk84R8IRSKx7ofm/CnMFWNr4tWSi4fUEevl8uN\n+0nmcOc+Zc2zviRtjRvgjrJqBhcTrPkWCZ0PMwQXLHdmFBevCvJ/AbYAo/eUKKVev4B2LXvaN91E\nv1Xime5fuBsW03m/EIyKyiyEZdp9ZTiG66wvevsFV0jssug6LxAMxBWdcAGO14xHjZm2e45juAmZ\nluMu8awegh2nFPtXjDBkgM9bHhv2jZfNsfACAwSyPlcULEeNzU5CNmS8KDEl7nNQwWcfNHhws4XP\ntDhab2DlRuipUpRECCiT9YUAkaxNtuRwNDDICNAdz1Ln+GkfCrPSDpM0irRkCxwd7uHwucM4jkPY\ngX4rQAiFH5NU2ODOpl1w/Dh0d5No28ju13fQ6Rwcv6vf3EGiFx4cMtl5NkxvxOBIZJjHm7JEbZPa\nQJyBUAk1VMSmxOoRi9O1PgKGhe0UMAyLTKkA4WqGxSEUgCvOOWwdCrLnZiFpnOApf5EtwwHOBRzS\nIwPUhePcqNZSDPjHRGBskPZ68xAMYaPwYbgiFQiW/U7H/0AuqWBl+YAajboDqlJw3XXutjncuU9Z\n9XqknztDE9uMX1SwFjk3ZAKL7COpNLNZFvs68H9xo8T+EHg/0LeQRl0ObG3Yyqd/XhbXMAvH85Ix\nG8d4hbLypxMh5c0myisGOJ7ANKgQkstREsVAcPwcx3AFBa8fTVXe9ZnsOAXNw9Bd7S5d+RHypisc\nynErD9ijtdm8a+csiOQh65WNCdhuAEAAaBgBw/Kxjhi3n8xzsM0h1RRjV58N6SLfTJicpohtKM6F\nBQo2SsGxGtjcD+1JmwPNeR6Kl3ijeQUf6vPzD5GjDA4WMQyo8lVRcrKcUoNUS5C3soG72EbCCsBt\nW8eKQSaABLdP/OI+v4e2qhU8t66fQ3YPwaJDVPlJ+20yVo6oESITCREsZChEqwgakHXyRBwTX3Ud\nhcJ5zmXO4TN9XJ14C3dsucPtg/P0UVpzEQ4ZeX5lpqgr+d21x+Ehhn0BNrTvHDNhbJBev5LY/mdI\nS564P0RRFcnaeYLNzeSKWYYKQ+xas2vsvLFs9sECPPoY8VAQwrV0Zp+aum4YTBxQ43HX17J1q7uE\nNRrdNMs79ymX4areSCIVgPJKMBcTrIXwe8yFRfSRVJrZiEudUuqLIvInSqmfAT8TkV8utGHLnYN9\nBy89UXIpmGXk1bRcTFjKo8Ausl9G/S6Gu4RjKrimVMu2fB2n1RBOfx8PrhkvrqJwnezifXZ10a0/\nNlgTonE4S970lsoMt8tn0JuNKNzseUc5E/w0IwFvqU6BX0yCtk1RYDgo1GAyEK2CW3bRcein3FM3\nBJFqclvbOZd/ClEQFJNcKcupkE3JNPAJXDfgp2mkSMsLkIpaxJ0zDGWzxLcGiBu12KUC50oZRoJB\n/LkSv15axX3+t8x+iSOZpKO1nd8x7keoIkiQHCUy+TRFE3KFLJY/RCAS4VShn5qSRcFSBKui9JUG\nWRldScAKsLVhK5Zp8dCJh9wBP12AaJQ2qeeINUCmVGTToMWAr0iyucg7t47f3U8YpEsjtL04wCf7\n4ny54TS9zQHSpk0Aiytqr+CubXeNmz6azf74wxAKQjBEDEUyNEhXfYnOzo+QPLHuwpL45QPqZH/H\nHO/cL/CJ1HbNbalpOfk9LrPy/rMRl6L3fEZEfh03UuwVn6GfTCcRQyjXl8uC+c6wpgm5Nr1obCXj\nu8u/GlFurogjrvO8oWCwveE67v/oL9mzbw9D+/6VH1T1I9gTwpNHqyaHSvCW48JwxMfBuhJnjPHE\ny5KA4YnQ6JKa4TjYnl2j17cUXHleeC6uGLIcBi3BUmAqg2hWUUMAVqwgseWP2f2HHdy3/z4eOPJd\nbAlgFYtUlYRBwyFngSMOuwaiNIXjoIYhNUBOFXmgtcSwH4asYVZmoTovRIoK5RPSTQ0U8j5Ids9+\noGxrI5FKsTZeQ4ocg+QxSzbDAaEY9pGNmLyu7XX0ZfooppM4yqE9tpYT6RPUSoiW6hY212+mOdJM\nKpvi4Rcf5m2b3jbWfrovmKHViNHvzzIUD1FjVnHV2hs52HeQ28tmUWOD9K5x0zbO0DNlbDmtzFeT\nJudGn1UfJD5UojV6YfvqCVzszv1SBtu5LjUtF7/HUvp+LpHZiMvfiEgM+Cjw90AU+LMFteoyoC3W\nRgg/OZVbalMWnqlyaSbNZGzxHPRlp0xYJfNExQA2DPuQYJD2J5LwjneQbH+RI5kkw2EHHwaFUVny\ntNsEfv04tBQC9NgGwVKBZ5rcz7dKoHyuqDieDYYSSrgJrj4vCsxnQ00eRkzXoR+0hZK4JWdMcVhV\nCNGerZkwcIwUR6gN1VJfu5GXhl6ie6ibYMlHU9ZhyHLoDhQ56y/QdD7P2biPh9cI0QKssH0c8Q3z\nIkOskSARn4+cXSAwOEJb+1tgz32z/+69wa09WEMqqMgXMjwqpyn6LXw2SCbDcwceYod/HTs3v4nu\nUJEv3fYlPvDAB2iNtmLIeJ50LBhDoUjn0sSvvBL+4z9I+0bAVAQdcXNpmuqpDlTPKst8pkipseW0\nmJ9YLutWBSBHFT7iBcNtBeBVMYA5lMSH+Q22c1lqWi5+j6X0/VwiF+0o6fWm36CUSiulDiqlblZK\nXa+U2rtI9i1bto5UY2azMx+43Jhp1qKmeHa8QdvLTh9TDWdcbyzvdXkk2VgkmLcE5lfQkDcI2IJv\ncISOriKcOkVb1k/SHMbvgB+TECZjBZsFNvhXsGU4RI+V49F4BuU4DAdcv0lQQajgXQcwTIP6kg+f\nA1VFwXDAV3IjzK4662bl1+cMTCUEHYNYyWBl1qS7yqEjdO3Y4DTqL2isaiRv58kUM5hiUrJMbNOk\nJePmpDwZSuMU8jzZ5EDAz7WZGFcNBggUFcM+xcGqLL8KDXIomiNFnq2Hz83t9+UNbh2ha0llzvNU\nIEWgaSV+w0chM0iLHSToD3GkdIb04w/TlgsAE2tgjZLOpdneup1ULkUq6sfZsZ2iCd3OINVGiOiK\ntW6m/4sP4zf9c7NzKtNHs9mvvI7u4nniWdjtbCefzxDLOG45F4/JbZFnZIbqxRVlqooDi80i1wWr\nBBcVF6WUzSs9p2UaDv7y/7FNNS+1GXNjOmFRUzy87eE8bBhwHel1OSFUGt8veDMSPD+GYWIiE3ww\nhnJ9IaGSK0NiO6hSkbt/bpA4VYBjx+jItGFbJv6SQ5ESRRxEiStYAoXzZ9m3WrG/1SBogzgOlgLL\n58MIBLADJrVGmKAVxBCTvCVs6/dzba/QOOKK0JZeeNUZaO8V6q0ojojbCVOgetUG1rbfTGLP58cG\njmQ6SSwY48r6K0llU5zPnUcQHCAfCVKKhNmS9pM3HLrWhHmxRrAtkyMNwjkjR7DoVgEomK7fKKCE\nK8477D3/2AUl+WckkSCx5/Ps/mgnheZGCn6LlpxFrYQwTR8BTHqtAqkQdBx2fzkdmztcEcmm3HI0\n2RSpXIo/2vZHY+VLukNFgitWU1u7kvDKtRCJjF1SLupkm4PpzQn2vOs+vvT+TvaE3kyiu0hboJH0\ntqvdci4ecy6bchkOtvNihoKay5HZLIs9IiKfxY0YGxndqJR6csGsugw4kDnO6VCBACb5CR0+FpHp\nclLmkgw5KSmxvKQ84malm4Nw60mhL+bjmZoigqLgZdNbYpFTJQomNOUNYnnhZJVNqOQKSzHgwzYd\nwiWHUF6ozivu/oXBxmE/e3bkSUYVbf2PsK12JU+oUzgoRLnZlyXDFTNDhIGQQTIgrBgxMW1F27DQ\n2xgmj42jDHzBGoJ2ns01a9hkNHH67E9Zdx5uftGi45jPbQEswl21Bvvq8qy34gQHs+TEpnfgNILw\ngQc+QFusja0NW3kh9QKPdT9GY1UjlmHhM30U7SJBK8ia2iswxeRUG+xouY6R3m4ajv2c/tIIhxgk\n21SieQjCJQhnDTZkw/QHbJ6NFgnTz0d+8BHuvfXeC5aAZur7nmhOcNvm21w/xnMPczZqcJh+ehmh\nkSp2WztJJAtjx14se3z0+QMPfACf4eNo/1HSuTSxYIz25vb5tYuYirKlqA4vRJlsamKm/lzKpiwn\nR/tisFx8P3NgNuLS7j3/ddk2Bbyi81y6wyWSToqCLLKwTA71ner9qKNipmNHX5fluIwJixr3ofRV\nQ12PyZZu98/lmdoiSilMBCWCqQxsHEo4DAYMYnloygg+K4AZdP/5Q6rIrqfPk4r6eWhdib1WnnhO\naM35SKkB/KUmanxVBAIWks8x4hQwDZNV6RK232LAZ5MxHZLVwq39cepSBR5a38ip9CkMbwJeG6rl\nhhU30FDVQODpZ/jSz0bc7onglg6xbRQjbm5GbhAcYaQmwHmVIdJ7mtZmH8+XnucrT3+FzXWbscRi\nIDvAmeEzxHwxztnnECX0jfRR7a8mZ+dQKOxYlHwkTGF4iIAtDPnhdNQV3w0jPobNEmfNHAqozSoO\nvfQ0Hd/q4E3r3sRd2+4i0Typw6FXqn8qJ3e5H6Mhp/AHm0iRK+so2TJ27Gyyx0ed7uUhxKlsipZQ\ny/QnzZOKlE25DAfbebFcfD9zYDYZ+jcvhiGXE109XZwNKYazxcWPQL6YqIwyqVqAeMtThnIzzVFl\n66GK8bYBk66jFPgdKPktnmoxuOWEw4qcj18ZJVaUAgxHwwzYIxjKoW3EcKOkDJsNA3BDr8XjbVDl\n/YmlQ24Rr9hIif+3rsTOJMTtAPgs4nmb9ZkgzzdGWJ0uMugLc8YUVtohKPVzIpJnQy5CbcHgeDjP\nM+EhdtqukKTzaaqsKtpq2riy/kqaIk2ksina6tbBFZ5PLBRyn/v7KfiPs7Pb4WiLj3RNgGFfiVXE\nsEwwjhzl9BqI+qNkShle0/YaDp87zIsDL3I+d57W6lZKTomR4ggjxRFuXnMzBbtA92A38YIQNes4\n5y9gMoJj20RswSranA3art9JDJIRRSCTozYc5MkzT44JyGz7vo8NzIX7SD7xY9pUHXcGtrvCcgmD\n65SJhpUsvjgN8y6bchkOtvPmMst5mc3MRTOJziOdrKhdzdmX+nFUaelSXMojtMpERhwmFNK0vOAr\nS4HYboOs0bbCIxf5CzCAmG2xSkUp1AjdV9ezsRDkVqtAssGkOmDRKiacPEEm4LB6RLE5ZRLIFomb\nQWLFDFncBlCxrAOWRdrvoEyLGJbbHMqxob6B2Kt3EjryAO2ygrhZwz5OkjWLdMd8hPIFQgUH/CYb\nhvyYJYcn1gW5rW4D79z8TjcpMBgnFoyN+RbufP2H4VdfhmPH6IoM09k0QHL1CC/UhVhZCrIrfgWI\n8ABH8GEQNn3Q00OaAaJ5RTrQQ1PoSprW7GIoP8Tx1HHqwnUErSC5Uo7B/CB14TqaI8081v0YDXkb\nCYSIEKYaP70MEbRtsobNYFDwKQMbBZZJi6omNDDEYNA31uCrvMPhKNM5uRPNCRLvug+uLA/FbRkb\nXGdaXpv8WbOaRSzHHIvLbLB9paHF5RJIppO0N7dzqO8QxWJpaRIoPfG44NKT6355xzlewV28sNy8\nOR6NdcEHjZZfAWpqV7BpzWvYWL+RPbv2uLO2/ffx1As/ps6so725naEzOQ7ZPdTU1CE11RzP9bI+\nOcSmTJCHVR4cm/YeIbW6iVTmPNt7S6QDEBe/WzrktttIR/1sH4qSijhAlk3U8TAvMuIX1hXCZP1C\nzilwY7aOhmteQ1etm3714LEHCfvCYzOICYNjzUa6/ukT3JN5iHjBpLVhPWfWhXiwdz+19jCtZpwS\nDjlKXD8QhoEUsXqLgUCJmpLptvK98UaypSzr4+sJ+UIT/BIFu0DH5g6+e+S7pAOKWKlIzhIMDK4z\nV5A1hqgZSjMYUoghZP0mqwzXCX3M7sMeznOg5wDxYNxtbjVaB+vsWTh8mPRQL23VjbC2a+pBdIrB\ndbbLaxM+ZqZZxGWYY6FZei4aLaaZmrZYG0EryNWNV7sbKhNYc2lMde3yfBRv2UtEqFZ+IrbgM0yq\nHMGY5Lz3IVTZ7vKZiVAXqmPbmtdgmRYdmzvGBi6/6ecNa90M7geff5D9VYNszVSTyMXwKwMxTfI1\n1RQb6rhpuJZd5nqK0QjxxtXsjt7CH41cRSoeJNVcg9NQTyrqdyOZql/P7qGtxAlRxGEXa7jCjpKr\nDhNKXM+Nb/wATb/1QY43+zkxcIJUNkVrtJWAGWCkOMKfvvpP2bNrz4RM787X1hNftYF4fSu9EeGl\nfC+NkWZKqkifPUhelWgsBvD3D+A0NrDSqmWQAiusOE4oQOrwk/hMH5vqNrFrzS5u23wbu9bsImgF\naYu1kWhOcPfr7kbFYnSrIc46gwyS4yU7zYeHNnF/6PfYa9/O60KbWW3GyVPipEqRN2Fl9UrSuTQn\nBk6wtWGrG9116nmc/3iEVH6AVMSiY3DFnBpElS+vjXbCHGt/fKksZtiv5mXDrGYuInIjsKb8eKXU\nVxbIpmXP6Dq1oxx84qOoijOftBBMlS1f9l7ESx4kQFwFiPki2HUxmhrWsv/UY5AdxJbSWCa9AEW/\nj3gwSm2olqvqr2Jj/caxZZU9+/ZM8Au0VLfw/ee/D8CGtuvg8GHi6TTrYo3Eb7qOPe8qSxbcs8e9\n462LQ90WdtNDZ/YpkqECbaG4O9tYD9xzDwn7mjEnbddIM/fcKMSb1o0tex3sO8iWhi0z+ifo6iL5\nxI9p9dVCNMqR0jGCvXlqVq5msC7IbelmUkO95KvDxKuGScYtNlDDO9nMQfpIBgZoS8Pdv3k3e5/b\nS2qa6Kbbt7iZ7J/40V9QTKdoyJmsDNaz94YaNl7xRvjKPxP226QCOZIMUOVYrKldjWVYlFSJLfVb\nONh30F2e+vxHSIZLtAUauZPNJKLNYM+xzPwsl9dmzVLX19JclsymKvJXgfXAARiLuVXAK1ZcRtep\n7/j2HZRUcWJBxsViqmTH0RpeuD4XJRC2hXf0xwm+8w5SuRSDuUESzQnaatr4xtNfwypmcJSDI6AM\nExHBb/r5zm9+54KlkqkGroHsAOlCmgfsArE1MTbXv5rGqkaSg90T7Z0U3ZNIB0ikNk1cWmnmAidt\n4s5PsruRCT6BtbG1VAeq2Xdy39gy1aa6TRcOoJ2dtFl1pIIQR0hbNlH85M71EFuzAa7dRUw5dA92\ns+epiaGttwMMeO+33M7Guo0X9Usc7DvIrs1vnlDePZVN8bnBn5C5UYgnq3h3ehVfjdlkwibDPocW\nX4hrW651v6900l2eSq6D1p1MWFSYb5n5+bbefaWF/WoqwmxmLtuAq5RSS+a3Xq4EfIG55ZRUEPEi\nuYpeEcjRUimjxYcNB4KOEFQmP42cY+XZp/nwDR/mYN9BUtkUTZEmlGFg+dwyxJZhEfFHKNpFLMOa\ncg1+8sD1bO+zJIeSoCBoBinaRR7NPcqW+i1srN848eTZRvdM9iN0dZH4fCeJMkfyHw738LOTPyMa\niBINRMkWszz84sPctOamiZ/lFX28B7fHSJQgaSuLKha5rt7NDh8beGcIbZ3JLzHdjGHv0b3ctPom\n4uuuB2D1yX0MZAeoCdWMhf+msqnxwX+eA/mCRH+90sJ+NRVhNj6Xg7j3lJoyOo90srVhqzuwV5rR\nLHnPAe/2InEzvo2yQpE+ZzxSTHmRY6ZXv8tUbk5FPC+854Uw1zzTy95vf4KtI9VjmdsAtmMjIoR9\nYXymD6XUhHpU5ZRnfZ8ZOsNPT/4UQVBKcXbkrOsHyaQ41HeIjs0dF37AXMtojDqSU6kJjmTp/eq0\nfQAAF4ZJREFUPz/l4Rdklbe1kUgH2c0O4oSIE0DZNlt9K2moahiLLOvY3DEufvE4dHe7z3NwWE9X\nbkUQYsHxTPIr66/EUQ69I70TMufHvq+OjvHS8o4z/rpjiu9zChLNCXbXvZ3440/T/b1vEH/8aXbX\nvb0yYb+X+N1oXpnMZuZSDzwrIk8AY2m7Sqm3L5hVlwEHzhzg1NmjF2+idSmUVfE1lFsQsmSADwMD\nB9MBMXAbvyshbDsEbBgMuDb4bbdki4VQl4OanI3R0Eg80gD5NAd/9BV2/8bd3Df4ELayKTquv0gp\nRbaYpaRKrI2tndK08rDVB448QMkuETJDmH6TfClP3s5zPnee9fH1JHqBz++ZX+jqNMX68iceZuf1\nO2fOKvfuuBPEScR2ej6c43S+aRXJyZFlMK/Q1ulmDNtbt7uFIr3ZXlOkiaubrub00OkLo9tGbZhP\n/kZXF4kv7CURvwZiOyGVhi/shZqLtPGdDTrsVzNHZiMuexbaiMuNrp4unux5krPp02P94edN+fKa\nJyyOuN0YLYQa5acoNoYpWG5henyWSQMh+pwBAggtTpiq4TxOsciQT+EgbPavgKaVAMQCMZL0wU9/\nwsg1GbY0bOHcyDl6M72k8inqQnXsaNnBq1pfNa2Zo8tDyXSSVDZFtpQl5AsR9oVRSjGUH0KNDFUm\ndHUaR3JbWpGygjNnlU8xUCfu/CSJ8l4hn++E5GfmnbsxXb4IMEF0jvUf41DfIdbWrJ0+B2U+A/ll\nWD1X8/JkNhn6P1sMQy4nPrf/cwzmB7FxMHE7KjrzEBjL61nieLMWAzfSK+BA6zAEqmLUt6yn5twQ\nB+yXENOkjjCgsO0SzUaUYMahNeUwEPJTo0IMFAusGFQ0NzeOXSdNjjZ/A53px4gHb+Lalmt5tPtR\n6qvqUUohItRX1U+9pDWJtlgbpmGilBrz0+RLeSzDoubcUGUGuGn8Dx3x7dyTc5f1ZvQrTDdQL0Du\nxnR+mVHROXDmACfSJ9jauJX1tetnlYMyZ3Rkl2aZMKPPRUS2i8gvRWRYRAoiYovI4GIYt1x5rPsx\nfOLDh+n6QGbqxDgV3vHi+VTefdRHU8mPzytNH7aFattgsD5KsamRdasS3N/xbfaeuYnXFVp4jWrl\nLblV7Byu57r1r+VL2V/j/meuYt8vruD+w+3ca/w6VqiK1LluHBQpsqTI0TG0kmTM9QM0R5rZ0bqD\nkC9EwSmQt/OzHug6NncQ8UeIh+JYhkWmmEGJ4oYVN9CeDlWmYu00/odER1ll38Fu4qH43AfoRczd\nSDQn2LNrD+0t7exavYsNdRsql4Mymcuweq7m5clslsU+C7wb+DZu5Nj7gI0XPeNljiD4TB+WFYBC\nHuXYbpdFcJMWZ1oqc9xIL0fG+7tHJUCrCoCRxbQVPp8fwmFy4jBcGnajiRIJEh/5JLs7P0dn+jGS\nMaHt2l3cedNdJH7xGbjlFnegxO3HvrtP0dn/EMl8H23+Bu4cWk/inEXbq7eT8vwAzZHmsS6F8VB8\n1gN0ojnB3Tvv5hM//wSmYbKmZg2t0VZMw6Qjtspd659v6OpF/A8JmN/d/hLc4S9IDspkdGSXZpkw\nqyRKpdQxETG9/i7/R0SeAj62sKYtX7a3bucHx35AxvKRd0oox8FRCsur11UyoDhDz3nbcBMcDaCm\nZDISCyPKJh/0ky1m8Zk2QYooR+EzfeNLVYkEicTnuWBYnWIJKWGtJNH4Lgg0jw/Ov9tBRyMVCVe9\nfYr8j47NHWPJkO4F5jnALZQjeQlyNxYkB2Uyr8SCjpplyWzEJSMifuCAiHwaOMMrvGzMXdvuonuw\nm5MDJ3lp6CWGi8PYdpFwKEbOziGOA07hgl4pwNiMxlKgTMFwFK/pr+Jc3ODZwHksFcYyLQp2gZJT\norW6lTesf8PMd+nT3bFO4UNIwJxKnl+sEOKUfoYpkiGX3QC3BHf4i1aBWEd2aZYBMlNupIisBs4C\nfuDPgBjwOaXUsYU3b+HYtm2b2r9//yWfXz7g+geGOHziCXKFDEf8g2TEpqQm9XnxWv2OZs9bDsQL\nBq8bilMbqOG7kW6yAYtgIDyWrxELxAj5Q3z1HV+d3RLQAlSuLS+EWD4gVtQJvVQsQaXfuVQs1miW\nIyLyK6XUthmPm03ivYiEgDal1NFKGLccmK+4jNHVxZ4v/g6psBD3x/g3+zDPmOcoTM6uVBCyoS5v\n8tatHfgNH/HjpyGdZl8sRZfvPNVVcRrCDZzLnGOkMEKVv4r2pnbuf8/987fzEtmzb88FSzmj7/fs\n2jPrz9GDqkbz8mC24jKbaLG34dYV+4H3vl1E9s7fxJcJnZ0kw0ViRRNefBGGhhCl8DluyfqwMjGV\nG1Zc5Zi8VTZy1y1/SSpiknr1NThvfxu9DWEsf5CoP0rEH2FNzRquariKsC9Me0v7jCYsJKO95HuG\ne9h3ch8PHHmAA2cPcODMgVl/xujsZ7SK8WgI7px7yWs0msuG2fhO9gCvAgYAlFIHgKlTuCuAiOwR\nkdMicsB7vKVs38dE5JiIHBWRW8q2Xy8iz3j77hWRxav2lUzSVghxPHWcfdF+XogUsRyv3pcDBkK9\nhAkbflaoau5661+PJdyNhtI2VjVyQ8sNGGKQLWZRSpHOpfEZvlnlnCwkbbE2jvUf49HuR8kWs0QD\nUdLZNCfSJ2YtDgtSBl6j0SxrZiMuRaXUpMD5BW+P9XdKqXbv8SCAiFyFGxK9BbgV+JyIjDb0vQ/4\nA2CD97h1ge0bp62Nrc8P8GhdlgGfQ8Q2sBxBCbQ4IWolTMEp4Rcfd7/2L0nsdMuzj+Y+fOm2L3Hv\nrfdSV1XH1satBK0gfZk+lCju3nn3ki8ddWzu4FDfIUTJWBdGhWJrw9ZZi8Po7KeciofgajSaZcVs\nosUOichvAaaIbAA+AvzHwpo1JbcB31RK5YETInIMeJWInASiSqnHAETkK8A7gO8vilUdHRzs+t9s\nP1/FSxGbrNjkLSHqhDCAcMNKagwfd++8e6zvx2TKS4cErAA3r7152fgkEs0J1tasdcv15weJBWNc\n13IdDVUNsxaHRQnB1Wg0y4rZiMsfAx/HLVr5DeCHwCcW0ijgj0XkfcB+4KNKqRSwErza6S7d3rai\n93ry9sUhkSC5oYkrTg+yccSBQJyepjCHSfOSleOOLXfMSihmbDW7hExowesxoUz8DCxaCK5Go1k2\nzLgsppTKKKU+rpS6QSm1zXudm89FReQnInJwisdtuEtc64B23Jya/zmfa0267gdFZL+I7O/r65v3\n53X1dLFn3x6eaoEfthboWVMPq1fTLNW0j0R575V3TGy7e5lSXmp/yjLxMzDZx3RJ5Vo0Gs1lxbQz\nl5kiwuZTcl8p9cbZHCci/wT8m/f2NLCqbHert+2093ry9qmu+4/AP4Ibijw3qydSnv/xqvU38bD9\nI3421MPOoQLB6jipjVdw5013zecSy4bpKv7ORRyW88xMo9FUnosti+0ATuEuhT3OIvVbFJEWpdQZ\n7+07cZuVAewF/kVE/hewAtdx/4RSyhaRQRHZ7tn5PuDvF9rO8ggogF2bbuXJM0/yuJ3nHZvfzJ3L\nxGdSKbQ4aDSauXAxcWkG3gS8B/gt4HvAN5RShxbYpk+LSDtuRNpJ4P8DUEodEpFvAc8CJeBDXq0z\ngD8C/hkI4TryF9yZP7kIYVOkiVuuuMXtxz6H5EKNRqN5OTKtuHgD9w+AH4hIAFdk9onIXymlPrtQ\nBimlfuci+/4W+Nsptu8Hti6UTVOhI6A0Go1mei7q0BeRgIh0AF8DPgTcC3x3MQxb7szXya3RaDQv\nZ6YVFy9f5FHgOuCvvGixTyilpnSWv9LQEVAajUYzPdMWrhQRBxjx3pYfJIBSSkUX2LYFpWKFKzUa\njeYVxGwLV17M5/KK7tmi0Wg0mktHC4hGo9FoKo4WF41Go9FUHC0uGo1Go6k4Wlw0Go1GU3G0uGg0\nGo2m4mhx0Wg0Gk3F0eKi0Wg0moqjxUWj0Wg0FUeLi0aj0WgqjhYXjUaj0VQcLS4ajUajqThaXDQa\njUZTcbS4aDQajabiaHHRaDQaTcXR4qLRaDSaiqPFRaPRaDQVR4uLRqPRaCqOFheNRqPRVBwtLhqN\nRqOpOFpcNBqNRlNxtLhoNBqNpuJocdFoNBpNxdHiotFoNJqKo8VFo9FoNBVHi4tGo9FoKo4WF41G\no9FUHC0uGo1Go6k4Wlw0Go1GU3G0uGg0Go2m4mhx0Wg0Gk3FWRJxEZHfFJFDIuKIyLZJ+z4mIsdE\n5KiI3FK2/XoRecbbd6+IiLc9ICL/19v+uIisWdyfRqPRaDSTsZbougeBDuAfyjeKyFXAu4EtwArg\nJyKyUSllA/cBfwA8DjwI3Ap8H7gTSCmlrhCRdwOfAt61WD9Ipenq6aLzSCfJdJK2WBsdmztINCeW\n2iyNRqOZE0syc1FKHVZKHZ1i123AN5VSeaXUCeAY8CoRaQGiSqnHlFIK+ArwjrJzvuy9/g7whtFZ\nzeVGV08X9zx6D6lsitZoK6lsinsevYeunq6lNk2j0WjmxFLNXKZjJfBY2ftub1vRez15++g5pwCU\nUiURSQN1wLkFt3YeTDVD6TzSSTwYJx6KA4w9dx7p1LMXjUZzWbFg4iIiPwGap9j1caXUAwt13Ysh\nIh8EPgjQ1ta2FCYA4zOUeDA+YYYymBu8QERiwRjJdHKJLNVoNJpLY8HERSn1xks47TSwqux9q7ft\ntPd68vbyc7pFxAJiQP80Nv0j8I8A27ZtU5dgX0WYboaSTCdJ59Jj7wHSuTRtsaUTQo1Go7kUllso\n8l7g3V4E2FpgA/CEUuoMMCgi2z1/yvuAB8rOeb/3+nbgp55fZtmSTCeJBWMTtsWCMWoCNaRyKVLZ\nFI5ySGVTpHIpOjZ3LJGlGo1Gc2ksVSjyO0WkG9gBfE9EfgiglDoEfAt4FvgB8CEvUgzgj4Av4Dr5\nj+NGigF8EagTkWPAfwL+fNF+kEukLdZGOpeesC2dS9Pe0s7uHbuJh+J0D3YTD8XZvWO39rdoNJrL\nDlnmN/kLxrZt29T+/fuX5NrlPpdYMEY6lyaVS2kh0Wg0yx4R+ZVSattMxy23ZbFXBInmhJ6haDSa\nlzXLLRT5FUOiOaHFRKPRvGzRMxeNRqPRVBwtLhqNRqOpOFpcNBqNRlNxtLhoNBqNpuJocdFoNBpN\nxdHiotFoNJqKo8VFo9FoNBXnFZuhLyJ9wIvz/Jh6lmdp/+VqFyxf27Rdc0PbNXeWq21ztWu1Uqph\npoNeseJSCURk/2zKICw2y9UuWL62abvmhrZr7ixX2xbKLr0sptFoNJqKo8VFo9FoNBVHi8v8+Mel\nNmAalqtdsHxt03bNDW3X3Fmuti2IXdrnotFoNJqKo2cuGo1Go6k4WlwuERG5VUSOisgxEVnU7pci\nskpE/l1EnhWRQyLyJ972WhH5sYg87z3Hy875mGfrURG5ZYHtM0XkKRH5t+Vil4jUiMh3ROSIiBwW\nkR3LxK4/836HB0XkGyISXCq7RORLItIrIgfLts3ZFhG5XkSe8fbd67Umr7Rd/8P7XXaJyHdFpGY5\n2FW276MiokSkfrnYJSJ/7H1nh0Tk0wtul1JKP+b4AEzcVsvrAD/wNHDVIl6/BbjOe10NPAdcBXwa\n+HNv+58Dn/JeX+XZGADWerabC2jffwL+Bfg37/2S2wV8Gfh977UfqFlqu4CVwAkg5L3/FvC7S2UX\nsBO4DjhYtm3OtgBPANsBwW1H/uYFsOvXAMt7/anlYpe3fRXwQ9w8uvrlYBdwM/ATIOC9b1xou/TM\n5dJ4FXBMKfWCUqoAfBO4bbEurpQ6o5R60ns9BBzGHahuwx1E8Z7f4b2+DfimUiqvlDoBHPN+hooj\nIq3ArwNfKNu8pHaJSAz3H+6LAEqpglJqYKnt8rCAkIhYQBh4aansUko9DJyftHlOtohICxBVSj2m\n3BHqK2XnVMwupdSPlFIl7+1jQOtysMvj74D/ApQ7tJfarruA/66UynvH9C60XVpcLo2VwKmy993e\ntkVHRNYA1wKPA01KqTPerh6gyXu9mPZ+BvcfyynbttR2rQX6gP/jLdd9QUSqltoupdRp4B4gCZwB\n0kqpHy21XZOYqy0rvdeLaeMHcO+sl9wuEbkNOK2UenrSrqX+vjYCrxORx0XkZyJyw0LbpcXlMkZE\nIsC/An+qlBos3+fdbSxqKKCIvBXoVUr9arpjlsIu3NnBdcB9SqlrgRHcJZ4ltcvzX9yGK34rgCoR\n+e2ltms6lpMto4jIx4ES8PVlYEsY+Avgvy61LVNgAbW4y1z/GfjWfH07M6HF5dI4jbuuOkqrt23R\nEBEfrrB8XSnV6W0+601n8Z5Hp76LZe9rgLeLyEncpcLXi8jXloFd3UC3Uupx7/13cMVmqe16I3BC\nKdWnlCoCncCNy8CucuZqy2nGl6gW1EYR+V3grcB7PeFbarvW494oPO39D7QCT4pI8xLbBe7/QKdy\neQJ3ZaF+Ie3S4nJp/BLYICJrRcQPvBvYu1gX9+44vggcVkr9r7Jde4H3e6/fDzxQtv3dIhIQkbXA\nBlxnXUVRSn1MKdWqlFqD+538VCn128vArh7glIhs8ja9AXh2qe3CXQ7bLiJh73f6Blz/2VLbVc6c\nbPGW0AZFZLv3M72v7JyKISK34i6/vl0plZlk75LYpZR6RinVqJRa4/0PdOMG3vQspV0e9+M69RGR\njbhBLecW1K75RCW8kh/AW3CjtI4DH1/ka78Wd3miCzjgPd4C1AEPAc/jRobUlp3zcc/Wo8wzGmWW\nNu5iPFpsye0C2oH93nd2PxBfJnb9FXAEOAh8FTdqZ0nsAr6B6/sp4g6Md16KLcA27+c5DnwWL1m7\nwnYdw/UVjP79f3452DVp/0m8aLGltgtXTL7mXedJ4PULbZfO0NdoNBpNxdHLYhqNRqOpOFpcNBqN\nRlNxtLhoNBqNpuJocdFoNBpNxdHiotFoNJqKo8VFo9FoNBVHi4tGcxFE5B1e6fTNC3ydz4jITu/1\nPq/8+dMi8sho8qdXE+2qS/z8k+Xl36fY/00R2XBp1ms0F6LFRaO5OO8BfuE9X4BXzXheiEgdsF25\n1WxHea9S6hrcSsT/A0Ap9ftKqWfne71puA83412jqQhaXDSaafAKg74WN8P53WXbd4nIz0VkL24Z\nGUTkt0XkCRE5ICL/ICKmt/0+EdnvNWj6q2ku9RvAD6bZ9zBwhfdZ+0Rkm4isFrd5V72IGJ4tv3Yx\nO8psrxKR73mzooMi8i5v18+BN1ZCLDUa0OKi0VyM24AfKKWeA/pF5PqyfdcBf6KU2igiVwLvAl6j\nlGoHbOC93nEfV0ptAxLATSKSmOI6rwGmqyT9NuCZ8g1KqRdxG2TdB3wUeFYp9aMZ7BjlVuAlpdQ1\nSqmteKKmlHJwS6pcc/GvRKOZHfouRaOZnvcA/9t7/U3v/agIPKHc5krgFpy8HvilV8U8xHj14DtE\n5IO4/2stuJ3/uiZdpwW330w5XxeRLG59qj+ebJhS6gsi8pvAH+LWTZvJjlGeAf6niHwKt/bbz8v2\n9eKW/p+2ZYJGM1u0uGg0UyAitcDrgatFROG2tlYi8p+9Q0bKDwe+rJT62KTPWAvsBm5QSqVE5J+B\n4BSXy06x/b1Kqf0XsS/MeEn0CDA0nR3lKKWeE5HrcAud/o2IPKSU+mtvd9CzRaOZN3pZTKOZmtuB\nryqlViu3hPoq3H73r5vi2IeA20WkEVxhEpHVQBRXhNIi0gS8eZprHcbzq8yBT+E2yPqvwD/NYMcY\nIrICyCilvoYbKHBd2e6NuFVwNZp5o8VFo5ma9wDfnbTtX5kiasyL4PpL4Eci0gX8GGhRbqvbp3BL\n6v8L8Mg01/oebouCWSEiNwE3AJ9SSn0dKIjI701nx6TTrwaeEJEDwH8D/sb7zCYgq9zeIxrNvNEl\n9zWaZYCI/AJ4q1JqYImu/2fAoFLqi0txfc3LDz1z0WiWBx8F2pbw+gO4OTUaTUXQMxeNRqPRVBw9\nc9FoNBpNxdHiotFoNJqKo8VFo9FoNBVHi4tGo9FoKo4WF41Go9FUnP8fJ2Xqfu4dwYYAAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x119a07b8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHu1JREFUeJzt3XucVXW9//HXWxwZb4XIyOGIOnjyFgmCQ1neCIzqZKKn\nRH2YkmlY4YXyVKil0+/Rr4eXylu/X8nxEipp3lC7owjZTbkoKBcVTcghblKJiDf0c/5Ya8bNMJc9\nzKy998x6Px+Peey1v+vy/eytzGe+3/X9fpciAjMzy6/tyh2AmZmVlxOBmVnOORGYmeWcE4GZWc45\nEZiZ5ZwTgZlZzjkRmJnlnBOBmVnOORGYmeXc9uUOoBj9+vWL2tracodhZtatzJ8//6WIqGnvuG6R\nCGpra5k3b165wzAz61YkrSjmOHcNmZnlnBOBmVnOORGYmeVct7hHYGbd31tvvUVDQwOvv/56uUPp\ncaqrqxk4cCBVVVXbdL4TgZmVRENDA7vuuiu1tbVIKnc4PUZEsH79ehoaGhg0aNA2XcNdQ2ZWEq+/\n/jq77767k0AXk8Tuu+/eqZaWE4GZlYyTQDY6+706EZiZ5ZzvEZhZedTXl+V6q1evZtKkScydO5c+\nffrQv39/rr76avbff/+ujacbyX0iqJ9d/+72yPpWjzOz7i8iOOGEExg/fjx33HEHAAsXLmTNmjUl\nSwQRQUSw3XaV0yFTOZGYmWVs1qxZVFVV8aUvfampbOjQoQwbNozRo0czfPhwDj74YO6//34Ali9f\nzkEHHcQXv/hFBg8ezJgxY3jttdcAeO655zjmmGMYOnQow4cP5/nnnwfgyiuvZMSIEQwZMoRLL720\n6ToHHHAAp59+Oh/4wAd48cUXS/zJ2+ZEYGa5sWjRIg499NCtyqurq5k+fTqPP/44s2bN4oILLiAi\nAFi2bBkTJ05k8eLF9OnTh3vuuQeAU089lYkTJ7Jw4UL+/Oc/M2DAAGbMmMGyZcuYM2cOCxYsYP78\n+TzyyCNN1/nKV77C4sWL2WeffUr3oYuQ+64hM7OI4KKLLuKRRx5hu+22Y+XKlaxZswaAQYMGccgh\nhwBw6KGHsnz5cl555RVWrlzJCSecACSJBGDGjBnMmDGDYcOGAbBx40aWLVvG3nvvzT777MNhhx1W\nhk/XPicCM8uNwYMHc/fdd29VPm3aNNatW8f8+fOpqqqitra2aVx+7969m47r1atXU9dQSyKCCy+8\nkLPPPnuL8uXLl7Pzzjt30afoeu4aMrPcGDVqFG+88QZTpkxpKnvyySdZsWIFe+yxB1VVVcyaNYsV\nK9pevXnXXXdl4MCB3HfffQC88cYbbNq0iY9//OPcdNNNbNy4EYCVK1eydu3a7D5QF3GLwMzKo6uH\njxZBEtOnT2fSpElcfvnlVFdXU1tbS319Peeddx4HH3wwdXV1HHjgge1e69Zbb+Xss8/mkksuoaqq\nirvuuosxY8awdOlSPvzhDwOwyy67cNttt9GrV6+sP1qnqPGGSJdfWDoA+HlB0b7AJcAtaXktsBwY\nFxH/bOtadXV1kdWDaTx81Kw0li5dykEHHVTuMHqslr5fSfMjoq69czPrGoqIZyLikIg4BDgU2ARM\nByYDMyNiP2Bm+r4i1M+u3yIxmJnlQanuEYwGno+IFcBYYGpaPhU4vkQxmJlZC0qVCE4Gbk+3+0fE\nqnR7NdC/RDGYmVkLMk8EknYAjgPuar4vkhsULd6kkDRB0jxJ89atW5dxlGZm+VWKFsEngccjYk36\nfo2kAQDpa4tjqyJiSkTURURdTU1NCcI0M8unUiSCU3i3WwjgAWB8uj0euL8EMZiZWSsynUcgaWfg\nY0DhNLvLgDslnQmsAMZlGYOZVaauHqFXzPBvSXzta1/jBz/4AQDf//732bhxI/UdmNPwm9/8hm9/\n+9ts2rSJ3r17M2rUqKbrdVeZtggi4tWI2D0iXi4oWx8RoyNiv4g4JiL+kWUMZmaNevfuzb333stL\nL720TecvWrSIc845h9tuu40lS5Ywb9483ve+93VxlO3bvHlzl17PS0yYWW5sv/32TJgwgauuumqr\nfcuXL2fUqFEMGTKE0aNH87e//W2rY6644gouvvjippnHvXr14stf/jIAv/jFL/jQhz7EsGHDOOaY\nY5oWrauvr+cLX/gCI0eOZN999+Xaa69tut4tt9zCkCFDGDp0KKeddhoA69at4zOf+QwjRoxgxIgR\n/OlPf2q6zmmnncbhhx/edGxXcSIws1yZOHEi06ZN4+WXX96i/Nxzz2X8+PE8+eSTnHrqqZx33nlb\nndvaMtYARxxxBI8++ihPPPEEJ598MldccUXTvqeffprf/e53zJkzh+985zu89dZbLF68mO9+97s8\n/PDDLFy4kGuuuQaA888/n69+9avMnTuXe+65h7POOqvpOkuWLOGhhx7i9ttv36r+zvBaQ2aWK+95\nz3s4/fTTufbaa9lxxx2byv/yl79w7733AnDaaafxjW98o0PXbWho4KSTTmLVqlW8+eabDBo0qGnf\npz71KXr37k3v3r3ZY489WLNmDQ8//DAnnngi/fr1A6Bv374APPTQQyxZsqTp3A0bNjQtYnfcccdt\nEXNXcYvAzHJn0qRJ3Hjjjbz66qsdOm/w4MHMnz+/xX3nnnsu55xzDk899RTXX3990zLWsPVS1m31\n8b/zzjs8+uijLFiwgAULFrBy5Up22WUXgMyWsnYiMLPc6du3L+PGjePGG29sKvvIRz7S9BzjadOm\nceSRR2513te//nW+973v8eyzzwLJL+2f/OQnALz88svsueeeAEydOnWrc5sbNWoUd911F+vXrwfg\nH/9Ixs2MGTOG6667rum4BQsWbMtH7BB3DZlZWZR7td8LLriAH/3oR03vr7vuOs444wyuvPJKampq\nuPnmm7c6Z8iQIVx99dWccsopbNq0CUkce+yxQHIz98QTT2S33XZj1KhRvPDCC23WP3jwYC6++GKO\nPvpoevXqxbBhw/jpT3/Ktddey8SJExkyZAibN2/mqKOOako2WclsGequVKplqJvKvBy1WZfzMtTZ\nqshlqM3MrHtwIjAzyzknAjMrme7QFd0ddfZ7dSIws5Korq5m/fr1TgZdLCJYv3491dXV23wNjxoy\ns5IYOHAgDQ0N+PkiXa+6upqBAwdu8/lOBGZWElVVVVvMtrXK4a4hM7OccyIwM8s5JwIzs5xzIjAz\nyzknAjOznHMiMDPLuUwTgaQ+ku6W9LSkpZI+LKmvpAclLUtfd8syBjMza1vWLYJrgN9GxIHAUGAp\nMBmYGRH7ATPT92ZmViaZJQJJ7wWOAm4EiIg3I+JfwFig8akNU4Hjs4rBzMzal2WLYBCwDrhZ0hOS\nbpC0M9A/Ilalx6wG+mcYg5mZtSPLRLA9MBz4cUQMA16lWTdQJKtPtbgClaQJkuZJmue1SczMspNl\nImgAGiLisfT93SSJYY2kAQDp69qWTo6IKRFRFxF1NTU1GYZpZpZvmSWCiFgNvCjpgLRoNLAEeAAY\nn5aNB+7PKgYzM2tf1quPngtMk7QD8FfgDJLkc6ekM4EVwLiMYzAzszZkmggiYgHQ0oOTR2dZr5mZ\nFc8zi83Mcs6JwMws55wIzMxyzonAzCznnAjMzHLOicDMLOecCMzMcs6JwMws55wIzMxyzonAzCzn\nnAjMzHLOicDMLOecCMzMcs6JwMws55wIzMxyzonAzCznnAjMzHLOicDMLOecCMzMci7TZxZLWg68\nArwNbI6IOkl9gZ8DtcByYFxE/DPLOMzMrHWlaBF8NCIOiYjGh9hPBmZGxH7AzPS9mZmVSTm6hsYC\nU9PtqcDxZYjBzMxSWSeCAB6SNF/ShLSsf0SsSrdXA/0zjsHMzNqQ6T0C4IiIWClpD+BBSU8X7oyI\nkBQtnZgmjgkAe++9d5cHVj+7vqh99SNbP87MrCfItEUQESvT17XAdOCDwBpJAwDS17WtnDslIuoi\noq6mpibLMM3Mci2zRCBpZ0m7Nm4DY4BFwAPA+PSw8cD9WcVgZmbty7JrqD8wXVJjPT+LiN9Kmgvc\nKelMYAUwLsMYOs3dRGbW02WWCCLir8DQFsrXA6OzqtfMzDrGM4vNzHLOicDMLOeKSgSSDs46EDMz\nK49iWwT/X9IcSV+R9N5MIzIzs5IqKhFExJHAqcBewHxJP5P0sUwjMzOzkij6HkFELAO+BXwTOBq4\nVtLTkv4rq+DMzCx7xd4jGCLpKmApMAr4dEQclG5flWF8ZmaWsWLnEVwH3ABcFBGvNRZGxN8lfSuT\nyMzMrCSKTQSfAl6LiLcBJG0HVEfEpoi4NbPozMwsc8UmgoeAY4CN6fudgBnAR7IIqtJ52Qkz60mK\nvVlcHRGNSYB0e6dsQjIzs1IqNhG8Kml44xtJhwKvtXG8mZl1E8V2DU0C7pL0d0DAvwEnZRaVmZmV\nTFGJICLmSjoQOCAteiYi3souLDMzK5WOLEM9AqhNzxkuiYi4JZOozMysZIpKBJJuBf4DWAC8nRYH\n4ERgZtbNFdsiqAPeHxEtPmjezMy6r2ITwSKSG8SrMoyl4hXOHzAz6ymKTQT9gCWS5gBvNBZGxHGZ\nRGVmZiVTbCKo39YKJPUC5gErI+JYSX2Bn5PceF4OjIuIf27r9c3MrHOKfR7B70l+aVel23OBx4us\n43ySVUsbTQZmRsR+wMz0vZmZlUmxy1B/EbgbuD4t2hO4r4jzBpIsWHdDQfFYYGq6PRU4vthgzcys\n6xW7xMRE4HBgAzQ9pGaPIs67GvgG8E5BWf+IaLzpvBroX2QMZmaWgWITwRsR8WbjG0nbk8wjaJWk\nY4G1ETG/tWPS4agtXkfSBEnzJM1bt25dkWGamVlHFZsIfi/pImDH9FnFdwG/aOecw4HjJC0H7gBG\nSboNWCNpAED6uralkyNiSkTURURdTU1NkWGamVlHFZsIJgPrgKeAs4Ffkzy/uFURcWFEDIyIWuBk\n4OGI+BzwADA+PWw8cP82xG1mZl2k2EXn3gH+J/3prMuAOyWdCawAxnXBNYviCWFmZlsrdq2hF2ih\nLz8i9i3m/IiYDcxOt9cDo4uO0MzMMtWRtYYaVQMnAn27Ppzup7GV0dojK9vbb2ZWbsVOKFtf8LMy\nIq4mmR9gZmbdXLFdQ8ML3m5H0kLoyLMMzMysQhX7y/wHBdubSdcI6vJozMys5IodNfTRrAMxM7Py\nKLZr6Gtt7Y+IH3ZNOGZmVmodGTU0gmQyGMCngTnAsiyCMjOz0ik2EQwEhkfEKwCS6oFfpTOFzcys\nGyt2iYn+wJsF79/Eq4aamfUIxbYIbgHmSJqevj+ed58pYGZm3Vixo4b+r6TfAEemRWdExBPZhWVm\nZqVSbNcQwE7Ahoi4BmiQNCijmMzMrISKHT56KcnIoQOAm4Eq4DaSZw4YW65s2t66Ql5/yMwqSbEt\nghOA44BXASLi78CuWQVlZmalU+zN4jcjIiQFgKSdM4wpNzrSijAzy0qxLYI7JV0P9JH0ReAhuuYh\nNWZmVmbFjhr6fvqs4g0k9wkuiYgHM43MzMxKot1EIKkX8FC68Jx/+ZuZ9TDtdg1FxNvAO5LeW4J4\nzMysxIq9WbwReErSg6QjhwAi4rzWTpBUDTwC9E7ruTsiLpXUF/g5UEv6XIOI+Oc2RW9mZp1WbCK4\nN/3piDeAURGxUVIV8Md0dvJ/ATMj4jJJk4HJwDc7eO2iFY7MMTOzrbWZCCTtHRF/i4gOrysUEUHS\nkoBkAloVEMBYYGRaPhWYTYaJwMzM2tbePYL7Gjck3dPRi0vqJWkBsBZ4MCIeA/pHxKr0kNV4FVMz\ns7JqLxGoYHvfjl48It6OiENInmfwQUkfaLY/SFoJW1csTZA0T9K8devWdbRqMzMrUnuJIFrZ7pCI\n+BcwC/gEsEbSAID0dW0r50yJiLqIqKupqdnWqs3MrB3tJYKhkjZIegUYkm5vkPSKpA1tnSipRlKf\ndHtH4GPA0ySPuxyfHjYeuL9zH8HMzDqjzZvFEdGrE9ceAExNJ6RtB9wZEb+U9BeSJSvOBFYA4zpR\nh5mZdVKxw0c7LCKeBIa1UL4eGJ1VvWZm1jEdeTCNmZn1QE4EZmY550RgZpZzmd0jyDMva2Fm3Ylb\nBGZmOedEYGaWc04EZmY550RgZpZzTgRmZjnnUUPdTOGIpPqR9a0eZ2ZWLLcIzMxyzonAzCzn3DXU\nTXiSmpllxS0CM7OccyIwM8s5JwIzs5xzIjAzyznfLK4Qnh9gZuXiFoGZWc5llggk7SVplqQlkhZL\nOj8t7yvpQUnL0tfdsorBzMzal2XX0Gbggoh4XNKuwHxJDwKfB2ZGxGWSJgOTgW9mGEe309VzBtzt\nZGZtyaxFEBGrIuLxdPsVYCmwJzAWmJoeNhU4PqsYzMysfSW5RyCpFhgGPAb0j4hV6a7VQP9SxGBm\nZi3LPBFI2gW4B5gUERsK90VEANHKeRMkzZM0b926dVmH2S3Vz6730hNm1mmZJgJJVSRJYFpE3JsW\nr5E0IN0/AFjb0rkRMSUi6iKirqamJsswzcxyLctRQwJuBJZGxA8Ldj0AjE+3xwP3ZxWDmZm1L8tR\nQ4cDpwFPSVqQll0EXAbcKelMYAUwLsMYus7s2e9ujxxZrijMzLpcZokgIv4IqJXdo7Oq18zMOsYz\ni83Mcs6JwMws55wIzMxyzquPlojH+5tZpXKLwMws55wIzMxyzl1DzRUzX6DwmLaOMzPrBtwiMDPL\nOScCM7Occ9dQlrwshZl1A24RmJnlnBOBmVnOuWuoVErUTVSqiWt+DrJZz+EWgZlZzuWrRVCKv8qb\nzzEoAS9fYWad4RaBmVnOORGYmeVcvrqGChXThVOGbp4W686gG8s3e82skVsEZmY5l1kikHSTpLWS\nFhWU9ZX0oKRl6etuWdVvZmbFybJr6KfAj4BbCsomAzMj4jJJk9P338wwhsrU0W6fruommj0bGruE\nCi7jbiKzfMusRRARjwD/aFY8Fpiabk8Fjs+qfjMzK06p7xH0j4hV6fZqoH+J6zczs2bKNmooIkJS\ntLZf0gRgAsDee+9dsri2STlHF3VQPbPTrZHFn5N2HXWk22hbzjGz8ih1i2CNpAEA6eva1g6MiCkR\nURcRdTU1NSUL0Mwsb0qdCB4Axqfb44H7S1y/mZk1k1nXkKTbSfof+klqAC4FLgPulHQmsAIYl1X9\nVnqdXfOoq7qTPArKrGMySwQRcUoru0ZnVaeZmXVcfpeY6GlKsLJq01/aHajLf52bVT4vMWFmlnNO\nBGZmOeeuoUpSyvkI7XTvdOTGb4tdRq1ct/iLtlJ/a+VdyHMgLG/cIjAzyzknAjOznHPXUHeWQVdS\nff3Id990dvRRF4xkendJjMZr1rfYZdNeV5ZHL5m1zi0CM7OccyIwM8s5dw2VWyWvXNqVk9Rmz6Z+\n9sitrlU/e4uD0pf6ztXVnRSOgipmpFQJRk1Z/rhFYGaWc04EZmY51/O7hiq56yUrHf3M3ek7Knzu\ncn39Nq1/1KhLRhqVuNvGk90sC24RmJnlXM9vEfQ05frrvbV6s5jL0HzuQKcuVp9uzG5qKbTZEujA\n0htb/VXerHXQUmulnpFNxyX7C+prZY5Eh7XSSvFcCmuNWwRmZjnnRGBmlnPuGrLS26KrpOOauo4K\nl8Mo5vqduYne1K0yu1kXUyvXbC22djTdDG7lslseXN/ydmc0dluln6uekW3XVcx2MdVm2G3lLrH2\nuUVgZpZzZUkEkj4h6RlJz0maXI4YzMwsUfKuIUm9gP8HfAxoAOZKeiAilpQ6FrNt0omRUvXM7nCX\nVlP3TMExTct1NO6vr99itNUW57Rw/S2W8WhtFBPvdhEVjmjaop6OPkColVFMW8TX1qiuTtTXfA5K\nl+uqhyk1P74E81PK0SL4IPBcRPw1It4E7gDGliEOMzOjPIlgT+DFgvcNaZmZmZWBIqK0FUqfBT4R\nEWel708DPhQR5zQ7bgIwIX17APDMNlTXD3ipE+FmqVJjq9S4wLFti0qNCyo3tkqNCzoe2z4RUdPe\nQeUYProS2Kvg/cC0bAsRMQWY0pmKJM2LiLrOXCMrlRpbpcYFjm1bVGpcULmxVWpckF1s5egamgvs\nJ2mQpB2Ak4EHyhCHmZlRhhZBRGyWdA7wO6AXcFNELC51HGZmlijLzOKI+DXw6xJU1amupYxVamyV\nGhc4tm1RqXFB5cZWqXFBRrGV/GaxmZlVFi8xYWaWcz02EZRzGQtJe0maJWmJpMWSzk/L+0p6UNKy\n9HW3gnMuTGN9RtLHM46vl6QnJP2ywuLqI+luSU9LWirpwxUU21fT/5aLJN0uqbocsUm6SdJaSYsK\nyjoch6RDJT2V7rtWkjKK7cr0v+eTkqZL6lPq2FqKq2DfBZJCUr9Sx9VWbJLOTb+3xZKuyDy2iOhx\nPyQ3oZ8H9gV2ABYC7y9h/QOA4en2rsCzwPuBK4DJaflk4PJ0+/1pjL2BQWnsvTKM72vAz4Bfpu8r\nJa6pwFnp9g5An0qIjWTC4wvAjun7O4HPlyM24ChgOLCooKzDcQBzgMMAAb8BPplRbGOA7dPty8sR\nW0txpeV7kQxaWQH0q6Dv7KPAQ0Dv9P0eWcfWU1sEZV3GIiJWRcTj6fYrwFKSXyZjSX7Zkb4en26P\nBe6IiDci4gXgufQzdDlJA4FPATcUFFdCXO8l+UdxI0BEvBkR/6qE2FLbAztK2h7YCfh7OWKLiEeA\nfzQr7lAckgYA74mIRyP5LXJLwTldGltEzIiIzenbR0nmDZU0tla+M4CrgG8AhTdKy/6dAV8GLouI\nN9Jj1mYdW09NBBWzjIWkWmAY8BjQPyJWpbtWA/3T7VLGezXJ//zvFJRVQlyDgHXAzWm31Q2Sdq6E\n2CJiJfB94G/AKuDliJhRCbGlOhrHnul2qeJr9AWSv1bLHpukscDKiFjYbFclfGf7A0dKekzS7yWN\nyDq2npoIKoKkXYB7gEkRsaFwX5q5SzpkS9KxwNqImN/aMeWIK7U9SRP5xxExDHiVpJuj7LGlfe5j\nSZLVvwM7S/pcJcTWXKXE0Zyki4HNwLQKiGUn4CLgknLH0ortgb4kXT1fB+7sivsRbempiaCoZSyy\nJKmKJAlMi4h70+I1aTOO9LWxyVeqeA8HjpO0nKS7bJSk2yogLkj+immIiMfS93eTJIZKiO0Y4IWI\nWBcRbwH3Ah+pkNjYhjhW8m4XTebxSfo8cCxwapqoyh3bf5Ak9YXpv4WBwOOS/q3McTVqAO6NxByS\n1nu/LGPrqYmgrMtYpNn7RmBpRPywYNcDwPh0ezxwf0H5yZJ6SxoE7Edy86dLRcSFETEwImpJvpOH\nI+Jz5Y4rjW018KKkA9Ki0cCSSoiNpEvoMEk7pf9tR5Pc96mE2BrrKzqOtBtpg6TD0s9zesE5XUrS\nJ0i6Io+LiE3NYi5LbBHxVETsERG16b+FBpLBHavLGVeB+0huGCNpf5KBEy9lGltn73pX6g/wnySj\ndZ4HLi5x3UeQNM+fBBakP/8J7A7MBJaRjAroW3DOxWmsz9AFoxGKiHEk744aqoi4gEOAeen3dh+w\nWwXF9h3gaWARcCvJyI2SxwbcTnKf4i2SX2BnbkscQF36WZ4HfkQ6uTSD2J4j6ddu/Hfwk1LH1lJc\nzfYvJx01VCHf2Q7AbWldjwOjso7NM4vNzHKup3YNmZlZkZwIzMxyzonAzCznnAjMzHLOicDMLOec\nCMzMcs6JwHoMScenSwofmHE9V0s6Kt2enS4JvFDSnxonxKVrJb1/G6+/vHBZ5Bb23yFpv22L3mxr\nTgTWk5wC/DF93Uq6cminSNodOCySVSMbnRoRQ0lW/rwSICLOioglna2vFT8mma1r1iWcCKxHSBf4\nO4JkZubJBeUjJf1B0gMkS1Yg6XOS5khaIOl6Sb3S8h9Lmpc+DOQ7rVT1GeC3rex7BHhfeq3Zkuok\n7aPkgTH9JG2XxjKmrTgKYt9Z0q/S1sYiSSelu/4AHNMVic0MnAis5xgL/DYingXWSzq0YN9w4PyI\n2F/SQcBJwOERcQjwNnBqetzFEVEHDAGOljSkhXoOB1pbvfXTwFOFBRGxguSBLD8GLgCWRMSMduJo\n9Ang7xExNCI+QJqAIuIdkqUbhrb9lZgVx39RWE9xCnBNun1H+r7xF/acSB7kAcmCcYcCc9OVfXfk\n3dU6x0maQPLvYgDJE6GebFbPAJLnJhSaJuk1kjVrzm0eWETcIOlE4Esk6ym1F0ejp4AfSLqcZF2o\nPxTsW0uyJHarS4qbFcuJwLo9SX2BUcDBkoLkUaUh6evpIa8WHg5MjYgLm11jEPDfwIiI+KeknwLV\nLVT3Wgvlp0bEvDbi24l3lwneBXiltTgKRcSzkoaTLFj4XUkzI+L/pLur01jMOs1dQ9YTfBa4NSL2\niWRp4b1InjF8ZAvHzgQ+K2kPaHrw+z7Ae0gSxsuS+gOfbKWupaT3ATrgcpIHslwC/E87cTSR9O/A\npoi4jeQm9PCC3fuTrDZp1mlOBNYTnAJMb1Z2Dy2MHkpH8nwLmCHpSeBBYEAkjyx8gmSp6Z8Bf2ql\nrl+RLOFdFElHAyNIHto+DXhT0hmtxdHs9IOBOZIWAJcC302v2R94LZL18806zctQm3WQpD8Cx0bE\nv8pU/1eBDRFxYznqt57HLQKzjrsA2LuM9f+LZM6CWZdwi8DMLOfcIjAzyzknAjOznHMiMDPLOScC\nM7OccyIwM8u5/wVSSgoN//ExLQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1199b550>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFBJREFUeJzt3XucVXW9//HXWxgZ74oghyQc/OUVBYGhvKRxgOiUpVle\njyHHLljhBbNM5ZTjo8sjb6Xo71SctFA5aShe6tQRUdDKC4ICcrHQRBtEQDo/FVEU/fz+2GuGPcNc\n9gyz9p691/v5eMxjr/Vdt89as/f+7O93rfVdigjMzCy7dih1AGZmVlpOBGZmGedEYGaWcU4EZmYZ\n50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcT1LHUAh+vTpEzU1NaUOw8ysrCxcuPDViOjb3nxl\nkQhqampYsGBBqcMwMysrkl4sZD43DZmZZZwTgZlZxjkRmJllXFmcIzCz8vfuu+9SX1/P22+/XepQ\nKk51dTUDBgygqqqqU8s7EZhZUdTX17PbbrtRU1ODpFKHUzEigg0bNlBfX8+gQYM6tQ43DZlZUbz9\n9tvsvffeTgJdTBJ77733dtW0nAjMrGicBNKxvcfVicDMLON8jsDMSqOuriTre+WVV5g8eTJPPvkk\ne+65J/369eO6667jwAMP7Np4yogTgXV7dfPqtg6Pqmt1PrP2RAQnnXQSEyZM4Pbbbwdg8eLFrF27\ntmiJICKICHbYofs0yHSfSMzMUjZ37lyqqqr46le/2lg2dOhQhg0bxpgxYxg+fDiHH3449957LwCr\nVq3ikEMO4Stf+QqDBw9m3LhxvPXWWwA899xzjB07lqFDhzJ8+HCef/55AK6++mpGjhzJkCFDuPzy\nyxvXc9BBB3HWWWdx2GGH8fe//73Ie942JwIzy4ylS5cyYsSIbcqrq6u5++67eeqpp5g7dy4XXXQR\nEQHAypUrmTRpEsuWLWPPPffkrrvuAuDMM89k0qRJLF68mEcffZT+/fsze/ZsVq5cyfz581m0aBEL\nFy7kkUceaVzP17/+dZYtW8Z+++1XvJ0ugJuGzCzzIoLLLruMRx55hB122IHVq1ezdu1aAAYNGsQR\nRxwBwIgRI1i1ahVvvPEGq1ev5qSTTgJyiQRg9uzZzJ49m2HDhgGwceNGVq5cycCBA9lvv/048sgj\nS7B37XMiMLPMGDx4MHfeeec25TNmzGD9+vUsXLiQqqoqampqGq/L79WrV+N8PXr0aGwaaklEcOml\nl3LOOec0KV+1ahW77LJLF+1F13PTkJllxujRo9m8eTPTpk1rLFuyZAkvvvgi++yzD1VVVcydO5cX\nX2y79+bddtuNAQMGcM899wCwefNmNm3axCc+8QluvvlmNm7cCMDq1atZt25dejvURVwjMLPS6OrL\nRwsgibvvvpvJkydz5ZVXUl1dTU1NDXV1dZx//vkcfvjh1NbWcvDBB7e7rltvvZVzzjmH7373u1RV\nVTFz5kzGjRvHihUrOOqoowDYddddue222+jRo0fau7Zd1HBCpDurra0NP5gmu3z5aGVYsWIFhxxy\nSKnDqFgtHV9JCyOitr1l3TRkZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ5/sIzKwk8i8L\n7pL1FXBpsSS+8Y1vcO211wJwzTXXsHHjRuo6cE/DH/7wB77zne+wadMmevXqxejRoxvXV65cIzCz\nzOjVqxezZs3i1Vdf7dTyS5cu5dxzz+W2225j+fLlLFiwgA996ENdHGX7tmzZ0qXrcyIws8zo2bMn\nEydO5Cc/+ck201atWsXo0aMZMmQIY8aM4aWXXtpmnquuuoopU6Y03nnco0cPvva1rwHw29/+lo98\n5CMMGzaMsWPHNnZaV1dXxxe/+EVGjRrF/vvvz9SpUxvXd8sttzBkyBCGDh3K+PHjAVi/fj2f//zn\nGTlyJCNHjuTPf/5z43rGjx/PMccc0zhvV3EiMLNMmTRpEjNmzOC1115rUn7eeecxYcIElixZwpln\nnsn555+/zbKtdWMN8NGPfpTHH3+cp59+mtNPP52rrrqqcdqzzz7L/fffz/z587niiit49913WbZs\nGd///vd56KGHWLx4Mddffz0AF1xwARdeeCFPPvkkd911F1/+8pcb17N8+XLmzJnDr3/96644FI18\njsDMMmX33XfnrLPOYurUqey0006N5Y899hizZs0CYPz48Vx88cUdWm99fT2nnXYaa9as4Z133mHQ\noEGN044//nh69epFr1692GeffVi7di0PPfQQp5xyCn369AGgd+/eAMyZM4fly5c3Lvv66683dmJ3\nwgknNIm5q7hGYGaZM3nyZG666SbefPPNDi03ePBgFi5c2OK08847j3PPPZdnnnmGn//8543dWMO2\nXVm31cb//vvv8/jjj7No0SIWLVrE6tWr2XXXXQFS68raicDMMqd3796ceuqp3HTTTY1lRx99dONz\njGfMmMGxxx67zXLf+ta3+OEPf8hf//pXIPel/bOf/QyA1157jX333ReA6dOntxvD6NGjmTlzJhs2\nbADgH//4BwDjxo3jhhtuaJxv0aJFndnFDnHTkJmVRKl7kr3ooou48cYbG8dvuOEGzj77bK6++mr6\n9u3LL3/5y22WGTJkCNdddx1nnHEGmzZtQhKf/vSngdzJ3FNOOYW99tqL0aNH88ILL7S5/cGDBzNl\nyhQ+9rGP0aNHD4YNG8avfvUrpk6dyqRJkxgyZAhbtmzhuOOOa0w2aXE31NbttXa9eam/SKxj3A11\nutwNtZmZdZoTgZlZxjkRmFnRlENTdDna3uPqRGBmRVFdXc2GDRucDLpYRLBhwwaqq6s7vY5UrxqS\ndCHwZSCAZ4CzgZ2BO4AaYBVwakT8b5pxmFnpDRgwgPr6etavX1/qUCpOdXU1AwYM6PTyqSUCSfsC\n5wOHRsRbkn4DnA4cCjwYET+SdAlwCfDttOIws+6hqqqqyd221n2k3TTUE9hJUk9yNYGXgROBhrst\npgOfTTkGMzNrQ2qJICJWA9cALwFrgNciYjbQLyLWJLO9AvRLKwYzM2tfaolA0l7kfv0PAj4A7CLp\nC/nzRO6sUYtnjiRNlLRA0gK3KZqZpSfNpqGxwAsRsT4i3gVmAUcDayX1B0he17W0cERMi4jaiKjt\n27dvimGamWVbmongJeBISTtLEjAGWAHcB0xI5pkA3JtiDGZm1o7UrhqKiCck3Qk8BWwBngamAbsC\nv5H0JeBF4NS0YjAzs/aleh9BRFwOXN6seDO52oGZmXUDvrPYzCzjnAjMzDLOicDMLOOcCMzMMs6J\nwMws45wIzMwyzonAzCzjnAjMzDIu1RvKzNJUN69u6/CoulbnM7O2uUZgZpZxrhFYt5T/a7+j8+fX\nDlxrMGufawRmZhnnGoFVnI7WJsyyzjUCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcC\nM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOz\njHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzy7hUE4GkPSXdKelZSSskHSWpt6QHJK1MXvdKMwYz\nM2tb2jWC64H/iYiDgaHACuAS4MGIOAB4MBk3M7MSSS0RSNoDOA64CSAi3omI/wecCExPZpsOfDat\nGMzMrH0FJQJJh3di3YOA9cAvJT0t6ReSdgH6RcSaZJ5XgH6dWLeZmXWRQmsE/yFpvqSvJ7/0C9ET\nGA78NCKGAW/SrBkoIgKIlhaWNFHSAkkL1q9fX+AmzcysowpKBBFxLHAm8EFgoaT/kvTxdharB+oj\n4olk/E5yiWGtpP4Ayeu6VrY5LSJqI6K2b9++hYRpZmadUPA5gohYCfw78G3gY8DU5Gqgz7Uy/yvA\n3yUdlBSNAZYD9wETkrIJwL2djN3MzLpAz0JmkjQEOBs4HngA+ExEPCXpA8BjwKxWFj0PmCFpR+Bv\nyTp2AH4j6UvAi8Cp27cLZma2PQpKBMANwC+AyyLirYbCiHhZ0r+3tlBELAJqW5g0pkNRmplZagpN\nBMcDb0XEewCSdgCqI2JTRNyaWnRmZpa6QhPBHGAssDEZ3xmYDRydRlCWHXXz6rYOj6prdT4zS0+h\nJ4urI6IhCZAM75xOSGZmVkyFJoI3JQ1vGJE0AnirjfnNzKxMFNo0NBmYKellQMA/AaelFpWZmRVN\nQYkgIp6UdDDQcE/AXyLi3fTCMjOzYim0RgAwEqhJlhkuiYi4JZWozMysaAq9oexW4P8Ai4D3kuIA\nnAjMzMpcoTWCWuDQpJM4MzOrIIVeNbSU3AliMzOrMIXWCPoAyyXNBzY3FEbECalEZZYy38hmtlWh\niaAuzSDMzKx0Cr189GFJ+wEHRMQcSTsDPdINzczMiqHQR1V+hdyDZX6eFO0L3JNWUGZmVjyFNg1N\nAj4MPAG5h9RI2ie1qKyi5bfPm1npFXrV0OaIeKdhRFJPWnnWsJmZlZdCE8HDki4DdkqeVTwT+G16\nYZmZWbEUmgguAdYDzwDnAL8n9/xiMzMrc4VeNfQ+8J/Jn5mZVZBC+xp6gRbOCUTE/l0ekVlKfJLa\nrGUd6WuoQTVwCtC768MxM7NiK+gcQURsyPtbHRHXkXugvZmZlblCm4aG543uQK6G0JFnGZiZWTdV\n6Jf5tXnDW4BVwKldHo2ZmRVdoVcN/XPagZiZWWkU2jT0jbamR8SPuyYcMzMrto5cNTQSuC8Z/www\nH1iZRlBmZlY8hSaCAcDwiHgDQFId8N8R8YW0AjMzs+IotIuJfsA7eePvJGVmZlbmCq0R3ALMl3R3\nMv5ZYHo6IZmZWTEVetXQDyT9ATg2KTo7Ip5OLywzMyuWQpuGAHYGXo+I64F6SYNSisnMzIqo0EdV\nXg58G7g0KaoCbksrKDMzK55CawQnAScAbwJExMvAbmkFZWZmxVPoyeJ3IiIkBYCkXVKMyTLK3USb\nlUahNYLfSPo5sKekrwBzKPAhNZJ6SHpa0u+S8d6SHpC0Mnndq3Ohm5lZVyi0G+prgDuBu4CDgO9G\nxA0FbuMCYEXe+CXAgxFxAPBgMm5mZiXSbtOQpB7AnKTjuQc6snJJA8g9t+AHQEN/RScCo5Lh6cA8\ncieizcysBNqtEUTEe8D7kvboxPqvAy4G3s8r6xcRa5LhV/AdymZmJVXoyeKNwDOSHiC5cgggIs5v\nbQFJnwbWRcRCSaNamif/BHQLy08EJgIMHDiwwDDNzKyjCk0Es5K/jjgGOEHSp8g953h3SbcBayX1\nj4g1kvoD61paOCKmAdMAamtrW0wWZma2/dpMBJIGRsRLEdHhfoUi4lKSG9CSGsE3I+ILkq4GJgA/\nSl7v7XDUZmbWZdo7R3BPw4Cku7pomz8CPi5pJTA2GTczsxJpr2lIecP7d3YjETGP3NVBRMQGYExn\n12VmZl2rvRpBtDJsZmYVor0awVBJr5OrGeyUDJOMR0Tsnmp0ZmaWujYTQUT0KFYgZmZWGoVePmq2\nXdyhnFn31ZEH05iZWQVyIjAzyzg3DVnm5Tdb1Y2qa3U+s0rlGoGZWcY5EZiZZZwTgZlZxjkRmJll\nnBOBmVnG+aoh6zLNbxrzFThm5cE1AjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzhfPmqp\n8TMIzMqDawRmZhnnRGCVb9683J+ZtciJwMws45wIzMwyzonAzCzjnAjMzDLOicAqj08Om3WIE4GZ\nWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGudM5Kw8NVwGNGtV0PL/MzDrFNQIzs4xzIjAzy7jUEoGk\nD0qaK2m5pGWSLkjKe0t6QNLK5HWvtGIwM7P2pVkj2AJcFBGHAkcCkyQdClwCPBgRBwAPJuNmZlYi\nqSWCiFgTEU8lw28AK4B9gROB6cls04HPphWDZYS7lDDbLkU5RyCpBhgGPAH0i4g1yaRXgH7FiMHM\nzFqW+uWjknYF7gImR8TrkhqnRURIilaWmwhMBBg4cGDaYVolcK3ArFNSrRFIqiKXBGZExKykeK2k\n/sn0/sC6lpaNiGkRURsRtX379k0zTDOzTEutRqDcT/+bgBUR8eO8SfcBE4AfJa/3phWDlaHmN451\nxbrSWLdZBUmzaegYYDzwjKRFSdll5BLAbyR9CXgRODXFGMzMrB2pJYKI+BOgViaPSWu7Vmb8K92s\n5HxnsZlZxjkRmJllnBOBmVnGORGYmWWcn0dg3ZtvEjNLnWsEZmYZ5xqBdVjdvLqtw6PqWp2vQwr9\n5d8VNYQ2LllNZd/MujnXCMzMMs41AuuefG7ArGhcIzAzyzjXCGy75Lepm1l5co3AzCzjXCOw0iiD\ncwC+gsiywjUCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAtt+8+aVxclfM2uZE4GZWcb58lHreq116tbd\nag1+XrIZ4BqBmVnmORFYenzuwKwsOBGYmWWczxGY5ddainC+wF1XWHfjGoGZWcY5EZiZZZybhsxa\n0uzS0taaczpa3hluSrK0uUZgZpZxrhFYE4X8wu0wX0LaqtaOa9q//F3LsHyuEZiZZZxrBNaqDtcC\n/Mu/RZ2pTXWHZ0G71pAdrhGYmWWcawTWeZVYA+jm+1TIOYXtOe9QSE2krm5U3vC8dudvbf1txePa\nSHG5RmBmlnGuEZjPBRQi776CJsertfJOrruzCvoln/J5h47WRJrPn4Vf/oXUdEpxXEpSI5D0L5L+\nIuk5SZeUIgYzM8speiKQ1AP4v8AngUOBMyQdWuw4zMwspxRNQx8GnouIvwFIuh04EViexsZKdcNO\nd1HwDWLNm3samimy2Ay0PVo6Xs2PZRo9nDZfdwe21fheaGOZVj9H7S07bx518/LK2ointXV1pjml\nvflTUVfX9LWMlKJpaF/g73nj9UmZmZmVgCKiuBuUTgb+JSK+nIyPBz4SEec2m28iMDEZPQj4Sxds\nvg/wahesp1L4eDTl47GVj0VT5Xo89ouIvu3NVIqmodXAB/PGByRlTUTENGBaV25Y0oKIqO3KdZYz\nH4+mfDy28rFoqtKPRymahp4EDpA0SNKOwOnAfSWIw8zMKEGNICK2SDoXuB/oAdwcEcuKHYeZmeWU\n5IayiPg98PsSbLpLm5oqgI9HUz4eW/lYNFXRx6PoJ4vNzKx7cV9DZmYZV1GJQNIpkpZJel9SbbNp\nlyZdWvxF0ifyykdIeiaZNlWSkvJeku5Iyp+QVFPcvek6kuokrZa0KPn7VN60Dh2XSpTFLk8krUr+\nv4skLUjKekt6QNLK5HWvvPlbfJ+UK0k3S1onaWleWYf3v2I+JxFRMX/AIeTuOZgH1OaVHwosBnoB\ng4DngR7JtPnAkYCAPwCfTMq/DvwsGT4duKPU+7cdx6UO+GYL5R0+LpX2R+6CheeB/YEdk+NxaKnj\nKsJ+rwL6NCu7CrgkGb4EuLK990m5/gHHAcOBpduz/5XyOamoGkFErIiIlm48OxG4PSI2R8QLwHPA\nhyX1B3aPiMcj91+9Bfhs3jLTk+E7gTFlm+1b15njUmkauzyJiHeAhi5Psij/PT+dpp+Fbd4nJYiv\ny0TEI8A/mhV3aP8r6XNSUYmgDa11a7FvMty8vMkyEbEFeA3YO/VI03OepCVJlbihytuZ41Jpstrl\nSQBzJC1M7uIH6BcRa5LhV4B+yXBWjlFH979iPidl9zwCSXOAf2ph0pSIuLfY8XQXbR0X4KfA98h9\n+L8HXAt8sXjRWTf00YhYLWkf4AFJz+ZPjIiQlNlLCrO2/2WXCCJibCcWa61bi9XJcPPy/GXqJfUE\n9gA2dGLbRVHocZH0n8DvktHOHJdKU1CXJ5UmIlYnr+sk3U2uqWetpP4RsSZp9liXzJ6VY9TR/a+Y\nz0lWmobuA05PrgQaBBwAzE+qga9LOjJp/z8LuDdvmQnJ8MnAQ0k7YNlJ3tQNTgIarpTozHGpNJnr\n8kTSLpJ2axgGxpF7T+S/5yfQ9LOwzfukuFEXRYf2v6I+J6U+W92Vf+S+5OqBzcBa4P68aVPIne3/\nC3ln9oFach+C54Eb2XqTXTUwk9yJofnA/qXev+04LrcCzwBLyL2p+3f2uFTiH/Ap4K/Jvk4pdTxF\n2N/9yV0FsxhY1rDP5M6BPQisBOYAvdt7n5TrH/BrYA3wbvKd8aXO7H+lfE58Z7GZWcZlpWnIzMxa\n4URgZpZxTgRmZhnnRGBmlnFOBGZmGedEYKmQFJJuyxvvKWm9pN+1tVypJL1x9kmGH+3gsr+SdHIX\nx/No8loj6V87sfwwSTclw/8m6cZm0+cp6aFX0sZm0xrnl3SuJN+FXuGcCCwtbwKHSdopGf84Rb7r\nMrkjvMMi4uiujmU7YqgBOpwIgMuAqV0Qys3AeV2wHuvGnAgsTb8Hjk+GzyB3Ew/QeHfrzZLmS3pa\n0olJeY2kP0p6Kvk7OikflfyKvVPSs5JmtNQbbDLPdUkf+xdI+oxyz5N4WtIcSf2S+faWNFu551f8\nglw3wg3r2Ji8StLVkpYmfc6flld+Y9I3/Rxgn7xlR0h6OOnM7f6Gu7qTuK5M9vevko5NygcnZYuS\nTgEPyI8B+BFwbDL9QkmPSDoib3t/kjS02THYDRgSEYs7/B9rJiI2AasklXVvo9Y2JwJL0+3kbs2v\nBoYAT+RNm0Ku244PA/8MXJ10d7AO+HhEDAdOo+mv2mHAZHL9w+8PHNPKdneMiNqIuBb4E3BkRAxL\n4rk4medy4E8RMRi4GxjYwno+BxwBDAXGJjH2J3cH+0FJHGcBDcmqCrgBODkiRpD7Nf2DvPX1TPZ3\ncrJ9gK8C10fEEeTuUs3vzRJy/eL/MSKOiIifADcB/5Zs70CguoUv/Ia7XfOdpq0PJlqUzFOoBcCx\nHZjfykzZdTpn5SMilij3ZLczyNUO8o0DTpD0zWS8mtyX8cvAjcmv3veAA/OWmR8R9QDJl1kNuS/6\n5u7IGx4A3JF8ge8IvJCUH0fui56I+G9J/9vCej4K/Doi3iPXIdnDwMhk2YbylyU9lMx/EHAYud48\nIffQmzV565uVvC5MYgd4DJgiaQAwKyJWthBHvpnAdyR9i1wPsr9qYZ7+wPpmZXdExLkNI5LmtbOd\n/C4H1gEHtzO/lTEnAkvbfcA1wCiaPs9BwOej2YOEJNWR6ydqKLka69t5kzfnDb9H6+/fN/OGbwB+\nHBH3SRpF7mltaRGwLCKOamV6Q/yNsUfEf0l6glwT2u8lnRMRD7WyPBGxSdID5B6WciowooXZ3iKX\nWAv1lqQdI/dgHoDewKt506uTdVqFctOQpe1m4IqIeKZZ+f3kHpbT8IzoYUn5HsCaiHgfGE/uV/X2\n2IOtJ6kn5JU/QnISVtIngb3Y1h/JNan0kNSXXE1gfrJsQ3l/ck1bkOuQrK+ko5L1Vkka3FZwkvYH\n/hYRU8n1XDmk2SxvALs1K/sFuSazJyOipZrMCuBDbW23mYeBLyTx7EQuwczNm34g2zY1WQVxIrBU\nRUR98iXX3PeAKmCJpGXJOMB/ABMkLSbXHPFmC8t2RB0wU9JCmv7KvQI4Ltn254CXWlj2bnI9ti4G\nHgIujohXkvKVwHJyjyd8DCD5RX0ycGUS/yKS8wdtOBVYmjR1HZasL98S4D1JiyVdmGxnIfA68MuW\nVhgRzwJ7JCeNC3EB8LkkhseBmZF7lGODY4AHClyXlSH3PmpWZiR9AJgHHJzUnFqa50LgjYj4xXZu\naxjwjYgYvz3rse7NNQKzMiLpLHJXX01pLQkkfkrTcyqd1Qf4Thesx7ox1wjMzDLONQIzs4xzIjAz\nyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8u4/w+Vbyli0j4MbQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x119cd978>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGhVJREFUeJzt3Xt0VeWZx/HvQ8wQKziIRIYaMTilFtFwMVRbL6UBqa2O\nl+lodVlMWxXbgkq1OihTe1yr7fLSjoidWZWpVhSqlSJiO+3Ivay2WiAakIsaraEN5e6MiCiCPvPH\n2cQTSHJ2krPPSfL+PmuddfZ+9+0975I8vu+z97vN3RERkXD1KHQFRESksBQIREQCp0AgIhI4BQIR\nkcApEIiIBE6BQEQkcAoEIiKBUyAQEQmcAoGISOAOK3QF4ujXr5+Xl5cXuhoiIl1KTU3NDncvzbZf\nlwgE5eXlrFq1qtDVEBHpUsxsY5z9NDQkIhI4BQIRkcApEIiIBK5L5AhEpOvbt28fDQ0NvPvuu4Wu\nSrdTUlJCWVkZxcXF7TpegUBE8qKhoYHevXtTXl6OmRW6Ot2Gu7Nz504aGhoYNGhQu86R6NCQmdWb\n2YtmVmtmq6Kyvma20Mzqou+jkqyDiHQO7777LkcffbSCQI6ZGUcffXSHelr5yBF81t2Hu3tltD4F\nWOzug4HF0bqIBEBBIBkdbddCJIsvBGZGyzOBiwpQBxERiSSdI3BgkZm9Dzzg7jOA/u6+Odq+Beif\ncB1EpDNKpQpyvi1btjB58mRWrlxJnz596N+/P9OmTePjH/94buvThSQdCM50901mdgyw0Mxeytzo\n7m5m3tyBZjYBmAAwcODAhKvZdaWWpT5cHp1q83aRkLg7F198MdXV1Tz++OMArF69mq1bt+YtELg7\n7k6PHp3n7v1Ea+Lum6LvbcA84JPAVjMbABB9b2vh2BnuXunulaWlWafKEBHJaunSpRQXF/P1r3+9\nsWzYsGGMGDGCMWPGMHLkSE455RTmz58PQH19PUOGDOGaa65h6NChjBs3jnfeeQeAV199lbFjxzJs\n2DBGjhzJa6+9BsA999zDqFGjqKio4Lvf/W7jeU488USuvPJKTj75ZP7617/m+Ze3LrFAYGZHmFnv\nA8vAOGAt8DRQHe1WDcxPqg4iIpnWrl3Lqaeeekh5SUkJ8+bN4/nnn2fp0qXcdNNNuKcHK+rq6pg4\ncSLr1q2jT58+zJ07F4ArrriCiRMnsnr1av74xz8yYMAAFixYQF1dHStWrKC2tpaamhqWL1/eeJ5v\nfvObrFu3juOPPz5/PzqGJIeG+gPzomz2YcDP3f1/zGwl8ISZXQVsBC5NsA4iIlm5O7fddhvLly+n\nR48ebNq0ia1btwIwaNAghg8fDsCpp55KfX09b731Fps2beLiiy8G0oEEYMGCBSxYsIARI0YAsHv3\nburq6hg4cCDHH388p59+egF+XXaJBQJ3/zMwrJnyncCYpK4rItKSoUOH8stf/vKQ8tmzZ7N9+3Zq\namooLi6mvLy88b78nj17Nu5XVFTUODTUHHfn1ltv5dprr21SXl9fzxFHHJGjX5F7nSdbISKSsKqq\nKvbu3cuMGTMay9asWcPGjRs55phjKC4uZunSpWzc2Prszb1796asrIynnnoKgL1797Jnzx4+97nP\n8dBDD7F7924ANm3axLZtzaZBOxVNMSEihZHr20djMDPmzZvH5MmTueuuuygpKaG8vJxUKsX111/P\nKaecQmVlJZ/4xCeynuvRRx/l2muv5fbbb6e4uJg5c+Ywbtw4NmzYwKc+9SkAevXqxaxZsygqKkr6\np3WIAoGIBOWjH/0oTzzxxCHlzz77bLP7r127tnH529/+duPy4MGDWbJkySH733DDDdxwww2tnqez\n0dCQiEjgFAhERAKnQCAiEjgFAhGRwCkQiIgEToFARCRwun1URAoic2bcnJwvxuy6ZsaNN97Ij370\nIwB++MMfsnv3blJteKbht7/9Ld/5znfYs2cPPXv2pKqqqvF8XZV6BCISjJ49e/Lkk0+yY8eOdh2/\ndu1aJk2axKxZs1i/fj2rVq3iYx/7WI5rmd3+/ftzej4FAhEJxmGHHcaECRO49957D9lWX19PVVUV\nFRUVjBkzhr/85S+H7HP33XczderUxiePi4qK+MY3vgHAr371K0477TRGjBjB2LFjGyetS6VSfO1r\nX2P06NGccMIJTJ8+vfF8jzzyCBUVFQwbNozx48cDsH37dr74xS8yatQoRo0axR/+8IfG84wfP54z\nzjijcd9cUSAQkaBMnDiR2bNn8+abbzYpv+6666iurmbNmjVcccUVXH/99Ycc29I01gBnnnkmzz33\nHC+88AKXXXYZd999d+O2l156iWeeeYYVK1Zwxx13sG/fPtatW8f3vvc9lixZwurVq7nvvvuA9JPJ\n3/rWt1i5ciVz587l6quvbjzP+vXrWbRoEY899lgumqKRcgQiEpQjjzySK6+8kunTp3P44Yc3lj/7\n7LM8+eSTAIwfP55bbrmlTedtaGjgS1/6Eps3b+a9995j0KBBjdvOO+88evbsSc+ePTnmmGPYunUr\nS5Ys4ZJLLqFfv34A9O3bF4BFixaxfv36xmN37drVOIndBRdc0KTOuaIegYgEZ/LkyTz44IO8/fbb\nbTpu6NCh1NTUNLvtuuuuY9KkSbz44os88MADjdNYw6FTWbc2xv/BBx/w3HPPUVtbS21tLZs2baJX\nr14AiU1lrUAgIsHp27cvl156KQ8++GBj2ac//enG9xjPnj2bs84665Djbr75Zn7wgx/wyiuvAOk/\n2j/5yU8AePPNNzn22GMBmDlzZtY6VFVVMWfOHHbu3AnAG2+8AcC4ceO4//77G/erra1tz09sEw0N\niUhBxLndM0k33XQTP/7xjxvX77//fr761a9yzz33UFpays9+9rNDjqmoqGDatGlcfvnl7NmzBzPj\n/PPPB9LJ3EsuuYSjjjqKqqoqXn/99VavP3ToUKZOncpnPvMZioqKGDFiBA8//DDTp09n4sSJVFRU\nsH//fs4+++zGYJMUO/Bezs6ssrLSV61aVehqdEqZ92I39w8r23aRfNmwYQNDhgwpdDW6reba18xq\n3L0y27EaGhIRCZwCgYhI4BQIRCRvusJQdFfU0XZVIBCRvCgpKWHnzp0KBjnm7uzcuZOSkpJ2n0N3\nDYlIXpSVldHQ0MD27dsLXZVup6SkhLKysnYfr0AgInlRXFzc5Glb6Tw0NCQiEjgFAhGRwCkQiIgE\nToFARCRwCgQiIoFTIBARCZwCgYhI4BQIREQCl3ggMLMiM3vBzH4drfc1s4VmVhd9H5V0HUREpGX5\n6BHcAGzIWJ8CLHb3wcDiaF1ERAok0UBgZmXAecBPM4ovBA68x20mcFGSdRARkdYl3SOYBtwCfJBR\n1t/dN0fLW4D+CddBRERakVggMLPzgW3uXtPSPp6ej7bZOWnNbIKZrTKzVZqtMC21LNXk1ZMiIrmQ\nZI/gDOACM6sHHgeqzGwWsNXMBgBE39uaO9jdZ7h7pbtXlpaWJlhNEZGwJRYI3P1Wdy9z93LgMmCJ\nu38ZeBqojnarBuYnVQcREcmuEM8R3AmcY2Z1wNhoXURECiQvL6Zx92XAsmh5JzAmH9cVEZHs9GSx\niEjgFAhERAKnQCAiEjgFgk5EzwmISCEoEIiIBE6BQEQkcAoEIiKBUyAQEQmcAoGISOAUCEREAqdA\nICISOAUCEZHA5WXSOWkq86Gx1OhUi/u197y5PKeIdH/qEYiIBE6BQEQkcAoEIiKBU44gi6TG8wup\nO/4mEWk/9QhERAKnQCAiEjgFAhGRwClHkKGr3Ievl9eISC6pRyAiEjgFAhGRwCkQiIgETjmCPNLY\nvoh0RuoRiIgEToFARCRwCgQiIoGLFQjM7JSkKyIiIoURt0fwn2a2wsy+aWZ/n2iNREQkr2IFAnc/\nC7gCOA6oMbOfm9k5idZMRETyInaOwN3rgH8D/hX4DDDdzF4ys39OqnIiIpK8uDmCCjO7F9gAVAH/\n5O5DouV7E6yfiIgkLG6P4H7geWCYu0909+cB3P1vpHsJhzCzkiivsNrM1pnZHVF5XzNbaGZ10fdR\nufghIiLSPnEDwXnAz939HQAz62FmHwFw90dbOGYvUOXuw4DhwLlmdjowBVjs7oOBxdG6iIgUSNxA\nsAg4PGP9I1FZizxtd7RaHH0cuBCYGZXPBC6KXVsREcm5uIGgJOOPOtHyR7IdZGZFZlYLbAMWuvuf\ngP7uvjnaZQvQv411FhGRHIo76dzbZjbyQG7AzE4F3sl2kLu/Dww3sz7APDM7+aDtbmbe3LFmNgGY\nADBw4MCY1ex+cjlRnSa9E5HmxA0Ek4E5ZvY3wIB/AL4U9yLu/n9mthQ4F9hqZgPcfbOZDSDdW2ju\nmBnADIDKyspmg4WIiHRcrEDg7ivN7BPAiVHRy+6+r7VjzKwU2BcFgcOBc4C7gKeBauDO6Ht+eysv\nIiId15b3EYwCyqNjRpoZ7v5IK/sPAGaaWRHpXMQT7v5rM3sWeMLMrgI2Ape2r+oiIpILsQKBmT0K\n/CNQC7wfFTvQYiBw9zXAiGbKdwJj2lzTPOroWHrm8anRbT9XocfyO1p/Eela4vYIKoGT3F1j9SIi\n3Uzc20fXkk4Qi4hINxO3R9APWG9mK0g/MQyAu1+QSK1ERCRv4gaCVJKV6GpyOYZe6HyAiEjc20d/\nZ2bHA4PdfVE0z1BRslUTEZF8iDsN9TXAL4EHoqJjgaeSqpSIiORP3GTxROAMYBc0vqTmmKQqJSIi\n+RM3R7DX3d8zMwDM7DDSzxFIFsoBiEhnF7dH8Dszuw04PHpX8RzgV8lVS0RE8iVuIJgCbAdeBK4F\nfkMLbyYTEZGuJe5dQx8A/xV9RESkG4k719DrNJMTcPcTcl6jPOuOY/ht+U0H9tWcQiLhastcQweU\nAJcAfXNfHRERybdYOQJ335nx2eTu00i/0F5ERLq4uENDIzNWe5DuIbTlXQYiItJJxf1j/qOM5f1A\nPXqhjIhItxD3rqHPJl0REREpjLhDQze2tt3d/z031RERkXxry11Do0i/eB7gn4AVQF0SlRIRkfyJ\nGwjKgJHu/haAmaWA/3b3LydVMelc9B5jke4r7hQT/YH3Mtbfi8pERKSLi9sjeARYYWbzovWLgJnJ\nVElERPIp7l1D3zez3wJnRUVfdfcXkquWiIjkS9yhIYCPALvc/T6gwcwGJVQnERHJo7i3j36X9J1D\nJwI/A4qBWaTfWiaR7jiBnYh0f3F7BBcDFwBvA7j734DeSVVKRETyJ24geM/dnWgqajM7IrkqiYhI\nPsUNBE+Y2QNAHzO7BliEXlIjItItxL1r6IfRu4p3kc4T3O7uCxOtWRehvICIdHVZA4GZFQGLoonn\n9MdfRKSbyTo05O7vAx+Y2d/noT4iIpJncZ8s3g28aGYLie4cAnD36xOplYiI5E3cQPBk9InNzI4j\nPTVFf9J3G81w9/vMrC/wC6Cc6AU37v6/bTm3iIjkTquBwMwGuvtf3L098wrtB25y9+fNrDdQE/Uo\nvgIsdvc7zWwKMAX413acX0REciBbjuCpAwtmNrctJ3b3ze7+fLT8FrABOBa4kA8nrJtJegI7EREp\nkGyBwDKWT2jvRcysHBgB/Ano7+6bo01b0HTWIiIFlS0QeAvLsZlZL2AuMNnddzU5ecbTys0cN8HM\nVpnZqu3bt7fn0iIiEkO2QDDMzHaZ2VtARbS8y8zeMrNdWY7FzIpJB4HZ7n4g2bzVzAZE2wcA25o7\n1t1nuHulu1eWlpbG/0UiItImrQYCdy9y9yPdvbe7HxYtH1g/srVjzcyAB4ENB73c/mmgOlquBuZ3\n5AeIiEjHxL19tD3OAMaTfv6gNiq7DbiT9NxFVwEbgUsTrIOIiGSRWCBw99/TNNmcaUxS182JZcs+\nXB49uvtfV0SC1pY3lImISDekQCAiEjgFAhGRwCWZLO52cvbugTi5AOULRCRP1CMQEQmcAoGISOAU\nCEREAqccQVeXo1yC3r0sEi71CEREAqdAICISOAUCEZHAKRCIiAROyeL2ykzSZorzgFg+tLV+IhIs\n9QhERAKnQCAiEjgFAhGRwAWZI+hyD08dPN7fCcf5W2rT1Ojmyw8+Ltt+IpIc9QhERAKnQCAiEjgF\nAhGRwAWZI8ibfD87UADZ8i3KAYh0fuoRiIgEToFARCRwCgQiIoFTjuCAAMbzgZy8yCa1LJWzF+KI\nSOGpRyAiEjgFAhGRwCkQiIgETjmCXOtKuYYCjfN3ubmeRLo59QhERAKnQCAiEjgFAhGRwClHUGhd\nKacgIt1SYj0CM3vIzLaZ2dqMsr5mttDM6qLvo5K6voiIxJPk0NDDwLkHlU0BFrv7YGBxtC4iIgWU\nWCBw9+XAGwcVXwjMjJZnAhcldX0REYkn3zmC/u6+OVreAvRvaUczmwBMABg4cGBOLq7719suX22W\neR29u0Akvwp215C7O+CtbJ/h7pXuXllaWprHmomIhCXfgWCrmQ0AiL635fn6IiJykHwHgqeB6mi5\nGpif5+uLiMhBkrx99DHgWeBEM2sws6uAO4FzzKwOGButi4hIASWWLHb3y1vYNCapayZOD3/l3YEk\nshLIIsnRFBMiIoFTIBARCZwCgYhI4DTpXDbKC+SEHuYT6bzUIxARCZwCgYhI4BQIREQCpxyBpBXo\nRfbNyZZP0AR1IrmlHoGISOAUCEREAqdAICISOOUIuqKWnm3ois88JJCbUA5BpG3UIxARCZwCgYhI\n4BQIREQCF3aOoCuOqedDR9qlQM8j5HIuI70DQUKjHoGISOAUCEREAqdAICISuLBzBJIbucq1tJJf\naDYHsGwZNJa3fOzBknjOoC3nVA5COhv1CEREAqdAICISOAUCEZHAhZEjSKWihWUFn2tf2qGtOYgm\nuYaM8k7230FLzz60J3eg+ZWkI9QjEBEJnAKBiEjgFAhERAKnQCAiErgwksVSGB2ZgC5HD6k1Tcge\nes7WHu7KloBt3N7JJtpLpdJ1SDG6MUHe3L75TCoX7CG6xhsEDlqWJtQjEBEJnAKBiEjgFAhERAJX\nkByBmZ0L3AcUAT919zuTulZ6bHLZhwV6GU1hJNTuqWbG/dtz3SZj6C2N+cccb24cD884TWp0c3u2\nVqEY18qSm0ixrOmFW8lfNJfvSGX8gCZj/K2NtWdsS8W5dku/s6VrZJ6/LRP9RW2ROvCEYSpV+Ifw\n4v72POQ28t4jMLMi4D+AzwMnAZeb2Un5roeIiKQVYmjok8Cr7v5nd38PeBy4sAD1EBERChMIjgX+\nmrHeEJWJiEgBmLvn94Jm/wKc6+5XR+vjgdPcfdJB+00AJkSrJwIvt+Ny/YAdHahuCNRG8aidslMb\nxZPPdjre3Uuz7VSIZPEm4LiM9bKorAl3nwHM6MiFzGyVu1d25BzdndooHrVTdmqjeDpjOxViaGgl\nMNjMBpnZ3wGXAU8XoB4iIkIBegTuvt/MJgHPkL599CF3X5fveoiISFpBniNw998Av8nDpTo0tBQI\ntVE8aqfs1EbxdLp2ynuyWEREOhdNMSEiErhuGQjM7Fwze9nMXjWzKYWuTyGZ2UNmts3M1maU9TWz\nhWZWF30flbHt1qjdXjazzxWm1vllZseZ2VIzW29m68zshqhc7RQxsxIzW2Fmq6M2uiMqVxs1w8yK\nzOwFM/t1tN6528ndu9WHdAL6NeAE4O+A1cBJha5XAdvjbGAksDaj7G5gSrQ8BbgrWj4paq+ewKCo\nHYsK/Rvy0EYDgJHRcm/glagt1E4ftpEBvaLlYuBPwOlqoxbb60bg58Cvo/VO3U7dsUegKSwyuPty\n4I2Dii8EZkbLM4GLMsofd/e97v468Crp9uzW3H2zuz8fLb8FbCD9tLvaKeJpu6PV4ujjqI0OYWZl\nwHnATzOKO3U7dcdAoCkssuvv7puj5S1A/2g5+LYzs3JgBOn/41U7ZYiGO2qBbcBCd1cbNW8acAvw\nQUZZp26n7hgIpA083T/VrWOAmfUC5gKT3X1X5ja1E7j7++4+nPRsAJ80s5MP2h58G5nZ+cA2d69p\naZ/O2E7dMRDEmsIicFvNbABA9L0tKg+27cysmHQQmO3uT0bFaqdmuPv/AUuBc1EbHewM4AIzqyc9\nLF1lZrPo5O3UHQOBprDI7mmgOlquBuZnlF9mZj3NbBAwGFhRgPrllZkZ8CCwwd3/PWOT2iliZqVm\n1idaPhw4B3gJtVET7n6ru5e5eznpvz1L3P3LdPZ2KnR2PaGM/RdI3/nxGjC10PUpcFs8BmwG9pEe\nf7wKOBpYDNQBi4C+GftPjdrtZeDzha5/ntroTNJd9TVAbfT5gtqpSRtVAC9EbbQWuD0qVxu13Gaj\n+fCuoU7dTnqyWEQkcN1xaEhERNpAgUBEJHAKBCIigVMgEBEJnAKBiEjgFAgkaGY2NZpNc42Z1ZrZ\naVH5MjOrjJZ/c+Ae+hxdc2k0m+c0M/tUrs4r0l4FeUOZSGcQ/RE+n/TMo3vNrB/pGWubcPcv5PCa\nhwMfuPu7ZjYKuDlX5xZpL/UIJGQDgB3uvhfA3Xe4+98O3snM6qMggZldGfUeVpvZo1FZqZnNNbOV\n0eeM5i5mZkuBF4GTzexF4BRgpZnlLNCItId6BBKyBcDtZvYK6ac9f+Huv2tpZzMbCvwb8Gl332Fm\nfaNN9wH3uvvvzWwg8Aww5ODj3f2zZnYz8GdgB3C+u6tHIAWnHoEEy9Pz658KTAC2A78ws6+0ckgV\nMMfdd0THH3jPw1jgx9EUzU8DR0YzmTZnJOkXkVRE3yIFpx6BBM3d3weWAcui4Zpq4OE2nqYHcLq7\nv9vSDmZ2NTAJ+Bjp3sJA0jNSft7dr2hH1UVyRj0CCZaZnWhmgzOKhgMbWzlkCXCJmR0dHX9gaGgB\ncF3GeYcffKC7/xQYR3o2yuGk36I3REFAOgP1CCRkvYD7o1tD95N+TeCElnZ293Vm9n3gd2b2PunZ\nOL8CXA/8h5mtIf1vajnw9WZOcTbwezM7jtYDjkheafZREZHAaWhIRCRwCgQiIoFTIBARCZwCgYhI\n4BQIREQCp0AgIhI4BQIRkcApEIiIBO7/ASn79D9MOKH9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x117545c0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGw9JREFUeJzt3XuUVeWZ5/Hvj7KaMkKCSMkwIhZmGVSUixZqvCR0qei0\ntspkNOOykTYZIQYvRCZpL51Y6c5kOl6iQbsTiRDxkmRExVt0BjTQjHfFgIIQMRENBIHgREAUAzzz\nx9mUB6jLOcXZ59Rh/z5r1ap93895l9Tj3u97nlcRgZmZZVe3SgdgZmaV5URgZpZxTgRmZhnnRGBm\nlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhm3V6UDKESfPn2ioaGh0mGYmVWV+fPn/yki6js6\nrioSQUNDAy+//HKlwzAzqyqS3i7kOL8aMjPLOCcCM7OMcyIwM8u4qugjMLPq95e//IUVK1bw0Ucf\nVTqUPU5dXR39+/entra2U+c7EZhZWaxYsYKePXvS0NCApEqHs8eICNatW8eKFSsYOHBgp67hV0Nm\nVhYfffQR++23n5NAiUliv/32260nLScCMysbJ4F07G67OhGYmWWc+wjMrDKamytyvXfffZeJEyfy\n0ksv0atXL/r27cstt9zC5z73udLGU0WcCKpA89zmT5ZHNrd5nJm1LyIYPXo0Y8eO5Ze//CUACxcu\nZPXq1WVLBBFBRNCtW9d5IdN1IjEzS9mcOXOora3la1/7Wsu2oUOHMnz4cE4++WSOOuoojjzySB5+\n+GEAli9fzmGHHcbFF1/M4MGDGTVqFB9++CEAb775JqeccgpDhw7lqKOO4ne/+x0AN9xwAyNGjGDI\nkCFcd911LdcZNGgQF154IUcccQR/+MMfyvzJ2+dEYGaZsWjRIo4++uhdttfV1TFz5kxeeeUV5syZ\nw6RJk4gIAJYtW8aECRNYvHgxvXr14oEHHgDgggsuYMKECSxcuJBnn32Wfv36MWvWLJYtW8aLL77I\nggULmD9/PvPmzWu5zte//nUWL17MQQcdVL4PXQC/GjKzzIsIrrnmGubNm0e3bt1YuXIlq1evBmDg\nwIEMGzYMgKOPPprly5ezYcMGVq5cyejRo4FcIgGYNWsWs2bNYvjw4QBs3LiRZcuWMWDAAA466CCO\nO+64Cny6jjkRmFlmDB48mPvvv3+X7ffeey9r165l/vz51NbW0tDQ0DIuv3v37i3H1dTUtLwaak1E\ncPXVVzN+/Pgdti9fvpx99tmnRJ+i9PxqyMwyo6mpic2bNzNlypSWba+++ipvv/02+++/P7W1tcyZ\nM4e3326/enPPnj3p378/Dz30EACbN29m06ZNnHbaaUybNo2NGzcCsHLlStasWZPeByoRPxGYWWWU\nevhoASQxc+ZMJk6cyA9+8APq6upoaGigubmZyy+/nCOPPJLGxkYOPfTQDq919913M378eL7zne9Q\nW1vLjBkzGDVqFEuWLOHzn/88AD169OCee+6hpqYm7Y+2W7S9Q6TkF5bqgHlAd3IJ5/6IuE5SM3Ax\nsDY59JqIeLy9azU2NkaWJ6bx8FHbEyxZsoTDDjus0mHssVprX0nzI6Kxo3PTfCLYDDRFxEZJtcDT\nkp5I9t0cETemeG8zMytQaokgco8aG5PV2uQnnccPMzPrtFQ7iyXVSFoArAFmR8QLya7LJL0qaZqk\nfdOMwczM2pdqIoiIrRExDOgPHCPpCODHwMHAMGAVcFNr50oaJ+llSS+vXbu2tUPMzKwEyjJ8NCL+\nDMwBTo+I1UmC2Ab8FDimjXOmRERjRDTW19eXI0wzs0xKLRFIqpfUK1neGzgVWCqpX95ho4FFacVg\nZmYdS3PUUD9guqQacgnnvoh4TNLdkoaR6zheDoxv5xpmtofKHxZdkusVMLRaEldeeSU33ZR7I33j\njTeyceNGmov4TsMTTzzBt7/9bTZt2kT37t1pampquV61SnPU0KvA8Fa2j0nrnmZm7enevTsPPvgg\nV199NX369Cn6/EWLFnHppZfyq1/9ikMPPZStW7fu8C3lctmyZQt77VW6P98uMWFmmbHXXnsxbtw4\nbr755l32LV++nKamJoYMGcLJJ5/MO++8s8sx119/Pddee23LN49ramq45JJLAHj00Uc59thjGT58\nOKecckpL0brm5ma+8pWvMHLkSA4++GAmT57ccr277rqLIUOGMHToUMaMyf0/8tq1a/nSl77EiBEj\nGDFiBM8880zLdcaMGcMJJ5zQcmzJ2qWkV7Oq4G8qW5ZNmDCBIUOG8K1vfWuH7Zdddhljx45l7Nix\nTJs2jcsvv7ylltB2ixYtYtKkSa1e98QTT+T5559HEnfccQfXX399yyujpUuXMmfOHDZs2MCgQYO4\n5JJLeOONN/je977Hs88+S58+fXjvvfcAuOKKK/jGN77BiSeeyDvvvMNpp53GkiVLAHj99dd5+umn\n2XvvvUvaJk4EZpYpn/70p7nwwguZPHnyDn9Qn3vuOR588EEAxowZs0ui6MiKFSv48pe/zKpVq/j4\n448ZOHBgy74zzjiD7t270717d/bff39Wr17Nr3/9a84999yWV1S9e/cG4Mknn+T1119vOXf9+vUt\nRezOOuuskicB8KshM8ugiRMnMnXqVD744IOizhs8eDDz589vdd9ll13GpZdeymuvvcbtt9/eUsYa\ndi1lvWXLljbvsW3bNp5//nkWLFjAggULWLlyJT169ABIrZS1E4GZZU7v3r0577zzmDp1asu2448/\nvmUe43vvvZeTTjppl/O++c1v8v3vf5833ngDyP3R/slPfgLA+++/zwEHHADA9OnTO4yhqamJGTNm\nsG7dOoCWV0OjRo3i1ltvbTluwYIFnfmIRfGrITOriEr3T02aNInbbrutZf3WW2/loosu4oYbbqC+\nvp6f/exnu5wzZMgQbrnlFs4//3w2bdqEJM4880wg15l77rnnsu+++9LU1MRbb73V7v0HDx7Mtdde\nyxe/+EVqamoYPnw4d955J5MnT27px9iyZQtf+MIXWpJNWlIrQ11KLkPd/MlyCf7xuLPYKsFlqNO1\nO2Wo/WrIzCzjnAjMzDLOicDMyqYaXkVXo91tVycCMyuLuro61q1b52RQYhHBunXrqKur6/Q1PGrI\nzMqif//+rFixAs8vUnp1dXX079+/0+c7EZhZWdTW1u7wbVvrOvxqyMws45wIzMwyzonAzCzjnAjM\nzDLOicDMLOOcCMzMMi61RCCpTtKLkhZKWizpu8n23pJmS1qW/N43rRjMzKxjaT4RbAaaImIoMAw4\nXdJxwFXAUxFxCPBUsm5mZhWSWiKInI3Jam3yE8DZwPZZG6YD56QVg5mZdSzVPgJJNZIWAGuA2RHx\nAtA3IlYlh7wL9E0zBjMza1+qJSYiYiswTFIvYKakI3baH5JarUAlaRwwDmDAgAFphlkR+ZPD7LDd\nE8WYWZmVZdRQRPwZmAOcDqyW1A8g+b2mjXOmRERjRDTW19eXI0wzs0xKc9RQffIkgKS9gVOBpcAj\nwNjksLHAw2nFYGZmHUvz1VA/YLqkGnIJ576IeEzSc8B9kr4KvA2cl2IMZmbWgdQSQUS8CgxvZfs6\n4OS07mtmZsXxN4vNzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjUi0xYZYvv6yGS2mYdR1+\nIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMc4kJ\nS11+aQkz63r8RGBmlnGpJQJJB0qaI+l1SYslXZFsb5a0UtKC5Odv0orBzMw6luaroS3ApIh4RVJP\nYL6k2cm+myPixhTvbWZmBUotEUTEKmBVsrxB0hLggLTuZ2ZmnVOWPgJJDcBw4IVk02WSXpU0TdK+\n5YjBzMxal/qoIUk9gAeAiRGxXtKPgX8GIvl9E/CVVs4bB4wDGDBgQNphdknFjLbZfmy5J3zxZDNm\n1S/VJwJJteSSwL0R8SBARKyOiK0RsQ34KXBMa+dGxJSIaIyIxvr6+jTDNDPLtDRHDQmYCiyJiB/m\nbe+Xd9hoYFFaMZiZWcfSfDV0AjAGeE3SgmTbNcD5koaRezW0HBifYgxmZtaBNEcNPQ2olV2Pp3VP\nMzMrnktM2C7cAWyWLS4xYWaWcQUlAklHph2ImZlVRqFPBP8m6UVJX5f0mVQjMjOzsiooEUTEScAF\nwIHkagb9XNKpqUZmZmZlUXAfQUQsA/4R+Afgi8BkSUsl/ee0gjMzs/QVNGpI0hDgIuAMYDbwt0lV\n0f8IPAc8mF6Ilq+zk7yU4rz8EUSebMZsz1Ho8NFbgTuAayLiw+0bI+KPkv4xlcjMzKwsCk0EZwAf\nRsRWAEndgLqI2BQRd6cWnZmZpa7QPoIngb3z1j+VbDMzsypXaCKoi4iN21eS5U+lE5KZmZVToYng\nA0lHbV+RdDTwYTvHm5lZlSi0j2AiMEPSH8kVkvsPwJdTi8pKYk8f2eOaSGalUVAiiIiXJB0KDEo2\n/TYi/pJeWGZmVi7FVB8dATQk5xwliYi4K5WozMysbAr9QtndwGeBBcDWZHMATgRmZlWu0CeCRuDw\niIg0gzEzs/IrNBEsItdBvCrFWKyCqqVjuVriNKsmhSaCPsDrkl4ENm/fGBFnpRKVmZmVTaGJoLnY\nC0s6kFwfQl9y/QlTIuJHknoD/4tcx/Ny4LyI+H/FXt/MzEqj0PkI/p3cH+3aZPkl4JUOTtsCTIqI\nw4HjgAmSDgeuAp6KiEOAp5J1MzOrkEKnqrwYuB+4Pdl0APBQe+dExKqIeCVZ3gAsSc47G5ieHDYd\nOKf4sM3MrFQKLTExATgBWA8tk9TsX+hNJDUAw4EXgL4Rsb3T+V1yr47MzKxCCu0j2BwRH0sCQNJe\n5N77d0hSD+ABYGJErN9+DYCICEmtXkfSOGAcwIABAwoMs/p5VIyZlVuhTwT/LukaYO9kruIZwKMd\nnSSpllwSuDcits9itlpSv2R/P2BNa+dGxJSIaIyIxvr6+gLDNDOzYhWaCK4C1gKvAeOBx8nNX9wm\n5f7XfyqwJCJ+mLfrEWBssjwWeLiYgM3MrLQKLTq3Dfhp8lOoE4AxwGuSFiTbrgH+BbhP0leBt4Hz\nirimmZmVWKG1ht6ilT6BiDi4rXMi4mlyJatbc3JB0ZmZWeqKqTW0XR1wLtC79OFUt65QH7/YzuZK\ndU4X01buQDdLV6FfKFuX97MyIm4hN6G9mZlVuUJfDR2Vt9qN3BNCMXMZmJlZF1XoH/Ob8pa3kNQI\nKnk0ZmZWdoWOGvrrtAMxM7PKKPTV0JXt7d/pewJmZlZFihk1NILcl8EA/hZ4EViWRlBWnbrCqCkz\nK16hiaA/cFRSRRRJzcCvIuLv0grMzMzKo9ASE32Bj/PWP8ZVQ83M9giFPhHcBbwoaWayfg6fzClg\nZmZVrNBRQ/9D0hPAScmmiyLiN+mFZWZm5VLoqyGATwHrI+JHwApJA1OKyczMyqjQ4aPXkRs5NAj4\nGVAL3EOuwqh1YPtoGo+kaV1bo41cY8isPAp9IhgNnAV8ABARfwR6phWUmZmVT6GJ4OOICJJS1JL2\nSS8kMzMrp0ITwX2Sbgd6SboYeJLiJqkxM7MuqtBRQzcmcxWvJ9dP8J2ImJ1qZGZmVhYdJgJJNcCT\nSeE5//G3VJWjg9ilMMx21OGroYjYCmyT9JkyxGNmZmVW6DeLN5KbhH42ycghgIi4vK0TJE0DzgTW\nRMQRybZm4GJgbXLYNRHxeCfiNjOzEik0ETyY/BTjTuA2cuUp8t0cETcWeS0zM0tJu4lA0oCIeCci\niq4rFBHzJDV0NjAzMyuPjvoIHtq+IOmBEt3zMkmvSpomad8SXdPMzDqpo0SgvOWDS3C/HyfXGQas\nYse5kHe8sTRO0suSXl67dm1bh5mZ2W7qKBFEG8udEhGrI2JrRGwj94W0Y9o5dkpENEZEY319/e7e\n2szM2tBRZ/FQSevJPRnsnSyTrEdEfLqYm0nqFxGrktXRwKKiojUzs5JrNxFERE1nLyzpF8BIoI+k\nFcB1wEhJw8g9XSwHxnf2+mZmVhqFDh8tWkSc38rmqWndz8zMOie1RGC7cn399HQ050NHbV+KshNd\noXRFV4jBqk8xM5SZmdkeyInAzCzjnAjMzDLOicDMLOOcCMzMMs6jhnZTlkYCVdtnLSTeavtMZmnw\nE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGedRQEaqyjsvcuZ8sjxxZqSjKxqOAzIrnJwIzs4xz\nIjAzyzgnAjOzjHMiMDPLOHcWp2SP67QsstN5j/v8u6GjSXPMKs1PBGZmGZdaIpA0TdIaSYvytvWW\nNFvSsuT3vmnd38zMCpPmE8GdwOk7bbsKeCoiDgGeStbNzKyCUksEETEPeG+nzWcD05Pl6cA5ad3f\nzMwKU+4+gr4RsSpZfhfoW+b7m5nZTio2aigiQlK0tV/SOGAcwIABA8oW184yMfqlVGUo8q+zu9eq\noEJKiexpI4GqsnyKlUy5nwhWS+oHkPxe09aBETElIhojorG+vr5sAZqZZU25E8EjwNhkeSzwcJnv\nb2ZmO0lz+OgvgOeAQZJWSPoq8C/AqZKWAack62ZmVkGp9RFExPlt7Do5rXuamVnxXGKiGpRzToG0\n7lXIdds6Jo2YSnTNYgYTtHWsO2et0lxiwsws45wIzMwyzonAzCzjnAjMzDLOicDMLOM8aqialXM0\nUVv37Yoq1S552h1NVGB8LdfIO765eW5rh5rtFj8RmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZxH\nDe0pdqeWj7WptZE7ZWm75mZgbiubR+Yt77rfrDP8RGBmlnFOBGZmGedEYGaWcU4EZmYZ587iRH5J\ngExMFFKOMhG7c49ylrFIe+KbDpTjv7227lHMxDrFXLftE5pbX7aK8hOBmVnGVeSJQNJyYAOwFdgS\nEY2ViMPMzCr7auivI+JPFby/mZnhV0NmZplXqUQQwJOS5ksaV6EYzMyMyr0aOjEiVkraH5gtaWlE\nzMs/IEkQ4wAGDBhQ0pt3NNJhd0dSdMilHkoj7dE+hVyzkpP05I26yas80fFpaf/3DR2ODmpmLiRx\nZGKUXhdXkSeCiFiZ/F4DzASOaeWYKRHRGBGN9fX15Q7RzCwzyp4IJO0jqef2ZWAUsKjccZiZWU4l\nXg31BWZK2n7/n0fE/65AHGZmRgUSQUT8Hhha7vuamVnrXGKiFNrqYCx2joBi77U7x3QVpfr8abTL\n7tyrM+bObelA7XLyO6ZbmScBgJG0ekzzzseVistVlIy/R2BmlnFOBGZmGedEYGaWcU4EZmYZ50Rg\nZpZxmRk1VOqv1bd5vWoasVMplZp0pgq0OSKnI618zua5I4u/Tv7otubmnUb/dOJ6QHNS/6Kz56ep\n2WUuAD8RmJllnhOBmVnGORGYmWWcE4GZWcY5EZiZZVxmRg21peDRRFU2+qQksviZy2032rjTI4za\n0069o47uV/TIvO2fvYP7NTe3ft826xkVUneorWPaql/UxiRARY826qL1kfxEYGaWcU4EZmYZ50Rg\nZpZxTgRmZhm353cWt3TIzC1s0pg0Jx0x25N18N94IZ3brR3TnN8729Z5rRxTcEmL3ZkQKI3O352v\nU4ZOZT8RmJllXEUSgaTTJf1W0puSrqpEDGZmllP2RCCpBvhX4D8BhwPnSzq83HGYmVlOJZ4IjgHe\njIjfR8THwC+BsysQh5mZUZlEcADwh7z1Fck2MzOrAEVEeW8o/Rfg9Ij4b8n6GODYiLh0p+PGAeOS\n1UHAb8saaHXoA/yp0kF0YW6ftrlt2rentM9BEVHf0UGVGD66Ejgwb71/sm0HETEFmFKuoKqRpJcj\norHScXRVbp+2uW3al7X2qcSroZeAQyQNlPRXwH8FHqlAHGZmRgWeCCJii6RLgf8D1ADTImJxueMw\nM7OcinyzOCIeBx6vxL33MH511j63T9vcNu3LVPuUvbPYzMy6FpeYMDPLOCeCKiFpmqQ1khblbest\nabakZcnvfSsZY6VIOlDSHEmvS1os6Ypku9sHkFQn6UVJC5P2+W6y3e2TkFQj6TeSHkvWM9U2TgTV\n407g9J22XQU8FRGHAE8l61m0BZgUEYcDxwETkrIlbp+czUBTRAwFhgGnSzoOt0++K4AleeuZahsn\ngioREfOA93bafDYwPVmeDpxT1qC6iIhYFRGvJMsbyP2DPgC3DwCRszFZrU1+ArcPAJL6A2cAd+Rt\nzlTbOBFUt74RsSpZfhfoW8lgugJJDcBw4AXcPi2SVx8LgDXA7Ihw+3ziFuBbwLa8bZlqGyeCPUTk\nhn9legiYpB7AA8DEiFifvy/r7RMRWyNiGLlv8h8j6Yid9meyfSSdCayJiPltHZOFtnEiqG6rJfUD\nSH6vqXA8FSOpllwSuDciHkw2u312EhF/BuaQ629y+8AJwFmSlpOrhNwk6R4y1jZOBNXtEWBssjwW\neLiCsVSMJAFTgSUR8cO8XW4fQFK9pF7J8t7AqcBS3D5ExNUR0T8iGsiVu/l1RPwdGWsbf6GsSkj6\nBTCSXFXE1cB1wEPAfcAA4G3gvIjYuUN5jyfpROD/Aq/xyXvea8j1E7h9pCHkOjxryP3P330R8U+S\n9sPt00LSSOC/R8SZWWsbJwIzs4zzqyEzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyKwTJC0VdKC\npPrmQkmTJHVL9jVKmpzy/c9JCuGZdTkePmqZIGljRPRIlvcHfg48ExHXlen+dwKPRcT9RZyzV0Rs\nSS8qsxwnAsuE/ESQrB8MvETuC3pf5JMvEh0D/AioAz4ELoqI30r6e3IVKPcBDgFuBP4KGEOuzPPf\nRMR7kj4L/CtQD2wCLgZ6A48B7yc/X0rC2OG4iFiaJIyPyBXOeyYirkynRcw+UZE5i80qLSJ+L6kG\n2H+nXUuBkyJii6RTgO/zyR/uI8j9ga4D3gT+ISKGS7oZuJBcFcspwNciYpmkY4F/i4gmSY+Q90Qg\n6amdjwOakvv0B46PiK0pfXyzHTgRmO3oM8B0SYeQqzhZm7dvTjLfwQZJ7wOPJttfA4Yk1U+PB2bk\nyh8B0H3nGxRw3AwnASsnJwLLpOTV0FZyVSUPy9v1z+T+4I9O5jaYm7dvc97ytrz1beT+LXUD/pyU\ne25PR8d9UMBHMCsZjxqyzJFUD/wEuC127ST7DLAyWf77Yq6bzIHwlqRzk/tI0tBk9wagZwHHmZWd\nE4Flxd7bh48CTwKzgO+2ctz1wP+U9Bs698R8AfBVSQuBxeSmPIRcrftvJhOkf7ad48zKzqOGzMwy\nzk8EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZx/x+fZ8JTneQpcAAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11931080>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHTRJREFUeJzt3XucVnW59/HPV5zNeEARRR62hINlaignQc1DERjZ1jzs\ntqYvQyoTK1BJd6X5pGO7x8e0g2LPfpTygElaqKj5VAoI+WQaAgJysLDEghCIdiIeQa/9x1qzuBlm\nYN3D3KeZ7/v1mtes9Vun675FLn7rWr/fUkRgZmYGsEulAzAzs+rhpGBmZhknBTMzyzgpmJlZxknB\nzMwyTgpmZpZxUjAzs4yTgpmZZZwUzMwss2ulA8hjv/32i4aGhkqHYWZWU+bNm/e3iOhZzDE1kRQa\nGhqYO3dupcMwM6spkl4q9hjfPjIzs4yTgpmZZZwUzMwsUxM1BTOrfZs2bWLlypW8+eablQ6lw6mv\nr6dPnz7U1dXt9LmcFMysLFauXEm3bt1oaGhAUqXD6TAigvXr17Ny5Ur69eu30+cr6e0jSSskPSdp\ngaS5aVsPSdMlLU9/71PKGMysOrz55pvsu+++TgjtTBL77rtvu/XAylFT+EhEDIqIoen65cDMiDgY\nmJmum1kn4IRQGu35vVai0HwaMDldngycXoEYzMysBaWuKQQwQ9I7wK0RMQnoFRGr0+0vA71KHIOZ\nVaPGxoqc7+WXX2bChAk888wzdO/enV69enHjjTfy/ve/v33jqVGlTgrHR8QqSfsD0yU9X7gxIkJS\ntHSgpLHAWIC+ffuWOMzKaZzduGV5eGOr+5nZzosIzjjjDMaMGcO9994LwMKFC1mzZk3ZkkJEEBHs\nskt1jggoaVQRsSr9vRaYBhwFrJHUGyD9vbaVYydFxNCIGNqzZ1FTd5iZtWjWrFnU1dXxhS98IWsb\nOHAggwcPZuTIkQwZMoQjjjiChx56CIAVK1Zw2GGHccEFF9C/f39GjRrFG2+8AcALL7zAiSeeyMCB\nAxkyZAh//OMfAbjhhhsYNmwYAwYM4Oqrr87Oc8ghh3Deeedx+OGH85e//KXMnzy/kiUFSXtI6ta0\nDIwCFgMPA2PS3cYAD5UqBjOzQosXL+bII4/cpr2+vp5p06Yxf/58Zs2axWWXXUZEchNj+fLljBs3\njiVLltC9e3fuv/9+AM4991zGjRvHwoUL+e1vf0vv3r157LHHWL58OXPmzGHBggXMmzePJ554IjvP\nl770JZYsWcKBBx5Yvg9dpFLePuoFTEur4rsCP4mIX0l6BviZpPOBl4CzShiDmdkORQRf//rXeeKJ\nJ9hll11YtWoVa9asAaBfv34MGjQIgCOPPJIVK1bw6quvsmrVKs444wwgSSoAjz32GI899hiDBw8G\nYOPGjSxfvpy+ffty4IEHcswxx1Tg0xWnZEkhIv4EDGyhfT0wslTXNTNrTf/+/bnvvvu2aZ8yZQrr\n1q1j3rx51NXV0dDQkD3337Vr12y/Ll26ZLePWhIRXHHFFVx44YVbta9YsYI99tijnT5FaVVnpcPM\nrARGjBjBW2+9xaRJk7K2RYsW8dJLL7H//vtTV1fHrFmzeOml7c843a1bN/r06cODDz4IwFtvvcXr\nr7/Oxz72MW6//XY2btwIwKpVq1i7tsWyadXyNBdmVhnt/UhqDpKYNm0aEyZM4Nvf/jb19fU0NDTQ\n2NjIxRdfzBFHHMHQoUM59NBDd3iuH//4x1x44YVcddVV1NXVMXXqVEaNGsWyZcv44Ac/CMCee+7J\n3XffTZcuXUr90dqNmoop1Wzo0KHRUV+y40dSrbNYtmwZhx12WKXD6LBa+n4lzSuYTSIX3z4yM7OM\nk4KZmWWcFMzMLOOkYGZmGScFMzPLOCmYmVnG4xTMrCIKH8dul/PleKRbEpdeeinf/e53AfjOd77D\nxo0baSxizMQvf/lLvvGNb/D666/TtWtXRowYkZ2vI3BPwcw6ja5du/LAAw/wt7/9rU3HL168mPHj\nx3P33XezdOlS5s6dy/ve9752jnLHNm/eXLJzOymYWaex6667MnbsWL7//e9vs23FihWMGDGCAQMG\nMHLkSP785z9vs8/111/PlVdemY147tKlC1/84hcB+PnPf87RRx/N4MGDOfHEE7MJ9RobG/nc5z7H\n8OHDOeigg5g4cWJ2vrvuuosBAwYwcOBARo8eDcC6dev45Cc/ybBhwxg2bBhPPvlkdp7Ro0dz3HHH\nZfuWgpOCmXUq48aNY8qUKbzyyitbtV900UWMGTOGRYsWce6553LxxRdvc2xrU28DHH/88Tz99NM8\n++yznH322Vx//fXZtueff55HH32UOXPmcM0117Bp0yaWLFnCt771LR5//HEWLlzITTfdBMAll1zC\nl7/8ZZ555hnuv/9+Pv/5z2fnWbp0KTNmzOCee+5pj6+iRa4pmFmnstdee3HeeecxceJEdtttt6z9\nqaee4oEHHgBg9OjRfPWrXy3qvCtXruRTn/oUq1ev5u2336Zfv37ZtpNPPpmuXbvStWtX9t9/f9as\nWcPjjz/OmWeeyX777QdAjx49AJgxYwZLly7Njt2wYUM2wd6pp566Vcyl4J6CmXU6EyZM4LbbbuO1\n114r6rj+/fszb968FrdddNFFjB8/nueee45bb701m3obtp1+e3s1gXfffZenn36aBQsWsGDBAlat\nWsWee+4JUJbpt50UzKzT6dGjB2eddRa33XZb1nbsscdm722eMmUKJ5xwwjbHfeUrX+Haa6/lD3/4\nA5D8BX7LLbcA8Morr3DAAQcAMHny5B3GMGLECKZOncr69esB+Pvf/w7AqFGjuPnmm7P9FixY0JaP\n2Ga+fWRmFVHpWYEvu+wyfvCDH2TrN998M5/97Ge54YYb6NmzJ3fcccc2xwwYMIAbb7yRc845h9df\nfx1JnHLKKUBSCD7zzDPZZ599GDFiBC+++OJ2r9+/f3+uvPJKPvzhD9OlSxcGDx7MnXfeycSJExk3\nbhwDBgxg8+bNfOhDH8oSTzl46uwK89TZ1ll46uzS8tTZZmbW7pwUzMws46RgZmVTC7era1F7fq9O\nCmZWFvX19axfv96JoZ1FBOvXr6e+vr5dzuenj8ysLPr06cPKlStZt25dpUPpcOrr6+nTp0+7nMtJ\nwczKoq6ubqtRvladfPvIzMwyTgpmZpZxUjAzs4yTgpmZZZwUzMws46RgZmYZJwUzM8s4KZiZWabk\nSUFSF0nPSnokXe8habqk5envfUodg5mZ5VOOnsIlwLKC9cuBmRFxMDAzXTczsypQ0qQgqQ9wMvCj\ngubTgKZ31U0GTi9lDGZmll+pewo3Al8F3i1o6xURq9Pll4FeJY7BzMxyKllSkHQKsDYi5rW2TyRz\n6LY4j66ksZLmSprrWRXNzMqjlD2F44BTJa0A7gVGSLobWCOpN0D6e21LB0fEpIgYGhFDe/bsWcIw\nzcysScmSQkRcERF9IqIBOBt4PCI+DTwMjEl3GwM8VKoYzMysOJUYp3Ad8FFJy4ET03UzM6sCZXnJ\nTkTMBmany+uBkeW4rpmZFccjms3MLOOkYGZmGScFMzPLlKWmYDuncXbjluXhja3uZ2a2s9xTMDOz\njJOCmZllnBTMzCzjpGBmZhknBTMzyzgpmJlZxknBzMwyTgpmZpbx4LUqVThgrZzX8uA4s87NPQUz\nM8s4KZiZWcZJwczMMk4KZmaWcVIwM7OMk4KZmWWcFMzMLONxCiVUiuf/PabAzErJPQUzM8s4KZiZ\nWcZJwczMMq4pdBCuNZhZe3BPwczMMk4KZmaWcVIwM7NMrqQg6YhSB2JmZpWXt6fwn5LmSPqSpL1L\nGpGZmVVMrqQQEScA5wLvAeZJ+omkj5Y0MjMzK7vcNYWIWA78T+BrwIeBiZKel/SvpQrOzMzKK9c4\nBUkDgM8CJwPTgU9ExHxJ/ww8BTxQuhCtNeV8j7OZdQ55ewo3A/OBgRExLiLmA0TEX0l6D9uQVJ/W\nIRZKWiLpmrS9h6Tpkpanv/dpjw9iZmY7L29SOBn4SUS8ASBpF0m7A0TEj1s55i1gREQMBAYBJ0k6\nBrgcmBkRBwMz03UzM6sCeZPCDGC3gvXd07ZWRWJjulqX/gRwGjA5bZ8MnJ47WjMzK6m8SaG+4C94\n0uXdd3SQpC6SFgBrgekR8TugV0SsTnd5GehVZMxmZlYieSfEe03SkKZagqQjgTd2dFBEvAMMktQd\nmCbp8GbbQ1K0dKykscBYgL59++YMszZ0pAKxJ+Iz61jyJoUJwFRJfwUE/A/gU3kvEhH/kDQLOAlY\nI6l3RKyW1JukF9HSMZOASQBDhw5tMXGYmVn7ypUUIuIZSYcCh6RNv4+ITds7RlJPYFOaEHYDPgp8\nG3gYGANcl/5+qK3Bm5lZ+yrmfQrDgIb0mCGSiIi7trN/b2CypC4ktYufRcQjkp4CfibpfOAl4Ky2\nhW5mZu0t7+C1HwPvBRYA76TNAbSaFCJiETC4hfb1wMiiI7Wd5vv/ZrYjeXsKQ4EPRITv7ZuZdWB5\nH0ldTFJcNjOzDixvT2E/YKmkOSQjlQGIiFNLEpWZmVVE3qTQWMogOoM8YxM60vgFM6tNeR9J/bWk\nA4GDI2JGOu9Rl9KGZmZm5Zb3dZwXAPcBt6ZNBwAPliooMzOrjLyF5nHAccAGyF64s3+pgjIzs8rI\nW1N4KyLelgSApF1JxilYjXL9wsxakren8GtJXwd2S9/NPBX4eenCMjOzSsibFC4H1gHPARcCv6CV\nN66ZmVntyvv00bvAD9MfMzProPLOffQiLdQQIuKgdo/IalbzOkVr8yt5Diaz6lXM3EdN6oEzgR7t\nH46ZmVVSrppCRKwv+FkVETcCJ5c4NjMzK7O8t4+GFKzuQtJzKOZdDGZmVgPy/sX+3YLlzcAK/HIc\nK4LHRZjVhrxPH32k1IGYmVnl5b19dOn2tkfE99onHDMzq6Rinj4aBjycrn8CmAMsL0VQZmZWGXmT\nQh9gSES8CiCpEfh/EfHpUgVmleExBGadW95pLnoBbxesv522mZlZB5K3p3AXMEfStHT9dGByaUIy\nM7NKyfv00f+S9EvghLTpsxHxbOnCMjOzSsh7+whgd2BDRNwErJTUr0QxmZlZheR9JPVqkieQDgHu\nAOqAu0nexmadjAeimXVceXsKZwCnAq8BRMRfgW6lCsrMzCojb1J4OyKCdPpsSXuULiQzM6uUvEnh\nZ5JuBbpLugCYgV+4Y2bW4eR9+ug76buZN5DUFa6KiOkljaxG+X67mdWyHSYFSV2AGemkeE4EZmYd\n2A5vH0XEO8C7kvYuQzxmZlZBeUc0bwSekzSd9AkkgIi4uCRRmZlZReRNCg+kP7lJeg/J9Bi9SJ5a\nmhQRN0nqAfwUaCB9WU9E/Fcx57b8XOMws2JsNylI6hsRf46ItsxztBm4LCLmS+oGzEt7Gp8BZkbE\ndZIuBy4HvtaG85uZWTvbUU3hwaYFSfcXc+KIWB0R89PlV4FlwAHAaWyZTG8yyeR6ZmZWBXaUFFSw\nfFBbLyKpARgM/A7oFRGr000v4ym4zcyqxo5qCtHKcm6S9gTuByZExAZpS56JiJDU4nkljQXGAvTt\n27ctl7Z2VKrahF/qY1ZddtRTGChpg6RXgQHp8gZJr0rasKOTS6ojSQhTIqKpUL1GUu90e29gbUvH\nRsSkiBgaEUN79uyZ/xOZmVmbbTcpRESXiNgrIrpFxK7pctP6Xts7VkmX4DZgWUR8r2DTw8CYdHkM\n8NDOfAAzM2s/eR9JbYvjgNEk4xsWpG1fB64jmUvpfOAl4KwSxmBmZkUoWVKIiN+wdaG60MhSXdc6\nHtcdzMqnmDevmZlZB+ekYGZmGScFMzPLlLLQ3GF5PqGOy/UL6+zcUzAzs4yTgpmZZZwUzMws45pC\nTp2xjlDJz9wZv2+zauCegpmZZZwUzMws46RgZmYZJwUzM8u40NwBdcYirQedmbUP9xTMzCzjpGBm\nZhknBTMzy7imYCVTbG0jz/6uHZiVlnsKZmaWcVIwM7OMk4KZmWVcU7AOp9i6Q2cc12HWGvcUzMws\n46RgZmYZJwUzM8u4plANZs/esjx8eKWiMDNzT8HMzLZwUjAzs4yTgpmZZVxTaMbPrNuOeP4l68jc\nUzAzs4yTgpmZZZwUzMws45pCR1TMuIdix0i0dUxFCcZitGv9p4X4XDuwzqhkPQVJt0taK2lxQVsP\nSdMlLU9/71Oq65uZWfFKefvoTuCkZm2XAzMj4mBgZrpuZmZVomRJISKeAP7erPk0YHK6PBk4vVTX\nNzOz4pW7ptArIlanyy8DvVrbUdJYYCxA3759yxBalfA8SO1n9mwaZw9v8XtsU42gMT1m29OZdRgV\ne/ooIgKI7WyfFBFDI2Joz549yxiZmVnnVe6ksEZSb4D099oyX9/MzLaj3EnhYWBMujwGeKjM1zcz\ns+0o5SOp9wBPAYdIWinpfOA64KOSlgMnputmZlYlSlZojohzWtk0slTXbKtOMwleUxG7vQrY7X2+\nGtTYOHzLSsH34MFuVqs8zYWZmWWcFMzMLOOkYGZmGU+IV2taG9xW2F4tWoupkgP00mu3NqitNUnd\naXa6lv+4LccWrLveYFXMPQUzM8s4KZiZWcZJwczMMq4plFNbX2jT2r7tXUdoa72iVifxa+v3l+O4\n7Y198ct7rJq5p2BmZhknBTMzyzgpmJlZpsPXFMp6/7ZUcwFVYgxCJa+Zp4ZSjbWLttSMZjdueXlP\ngdZqEq5BWKm5p2BmZhknBTMzyzgpmJlZpsPXFAqVpL5QjXMOFWopvlLGXK7vo5gxFTsTU3t8nnb8\nTlr7M+yxD9Ze3FMwM7OMk4KZmWWcFMzMLNOpagqFin4vczHPoOe5h1zttYhKqvR3U6HrN85uzFcr\n2dE4jlY2V43CcRktjNGwynJPwczMMk4KZmaWcVIwM7NMp60p5JLnHcNWeTX836OR2cn8R8Vo+ryt\nzJvU+sUaW14u3KU9xkG4ZlDT3FMwM7OMk4KZmWWcFMzMLOOkYGZmGRearbJquEi8XcV8rjZ+B60V\nqbcamFlw7sZWRrU1Nha0Fw6M26pIPHvb7ZXgInbJuadgZmYZJwUzM8s4KZiZWaYiNQVJJwE3AV2A\nH0XEdSW94I4mE6v2F8Jb59TOEys2NtUFAArrCK2er+V9sppFs/9vthrs1nStxuGt1zKa1UTyvByo\n8DMU7l0YU3a9StQc2qHm0XyyznK/NKnsPQVJXYD/A3wc+ABwjqQPlDsOMzPbViVuHx0FvBARf4qI\nt4F7gdMqEIeZmTVTiaRwAPCXgvWVaZuZmVWYIqK8F5T+DTgpIj6fro8Gjo6I8c32GwuMTVcPBxaX\nNdD2tR/wt0oHsRMcf+XUcuzg+CvtkIjoVswBlSg0rwLeU7DeJ23bSkRMAiYBSJobEUPLE177c/yV\nVcvx13Ls4PgrTdLcYo+pxO2jZ4CDJfWT9E/A2cDDFYjDzMyaKXtPISI2SxoPPErySOrtEbGk3HGY\nmdm2KjJOISJ+AfyiiEMmlSqWMnH8lVXL8ddy7OD4K63o+MteaDYzs+rlaS7MzCxT9UlB0kmSfi/p\nBUmXVzqeHZF0u6S1khYXtPWQNF3S8vT3PpWMsTWS3iNplqSlkpZIuiRtr5X46yXNkbQwjf+atL0m\n4m8iqYukZyU9kq7XTPySVkh6TtKCpidfaiV+Sd0l3SfpeUnLJH2whmI/JP3Om342SJrQlvirOinU\n6JQYdwInNWu7HJgZEQcDM9P1arQZuCwiPgAcA4xLv+9aif8tYEREDAQGASdJOobaib/JJcCygvVa\ni/8jETGo4FHOWon/JuBXEXEoMJDkv0FNxB4Rv0+/80HAkcDrwDTaEn9EVO0P8EHg0YL1K4ArKh1X\njrgbgMUF678HeqfLvYHfVzrGnJ/jIeCjtRg/sDswHzi6luInGbczExgBPFJrf36AFcB+zdqqPn5g\nb+BF0jprLcXewmcZBTzZ1viruqdAx5kSo1dErE6XXwZ6VTKYPCQ1AIOB31FD8ae3XhYAa4HpEVFT\n8QM3Al8F3i1oq6X4A5ghaV46KwHURvz9gHXAHemtux9J2oPaiL25s4F70uWi46/2pNDhRJKyq/qR\nL0l7AvcDEyJiQ+G2ao8/It6JpAvdBzhK0uHNtldt/JJOAdZGxLzW9qnm+FPHp9//x0luP36ocGMV\nx78rMAT4vxExGHiNZrdaqjj2TDog+FRgavNteeOv9qSQa0qMGrBGUm+A9PfaCsfTKkl1JAlhSkQ8\nkDbXTPxNIuIfwCyS+k6txH8ccKqkFSSzB4+QdDe1Ez8RsSr9vZbknvZR1Eb8K4GVac8S4D6SJFEL\nsRf6ODA/Itak60XHX+1JoaNMifEwMCZdHkNyr77qSBJwG7AsIr5XsKlW4u8pqXu6vBtJPeR5aiT+\niLgiIvpERAPJn/XHI+LT1Ej8kvaQ1K1pmeTe9mJqIP6IeBn4i6RD0qaRwFJqIPZmzmHLrSNoS/yV\nLorkKJr8C/AH4I/AlZWOJ0e89wCrgU0k//o4H9iXpHi4HJgB9Kh0nK3EfjxJ93IRsCD9+Zcain8A\n8Gwa/2LgqrS9JuJv9lmGs6XQXBPxAwcBC9OfJU3/v9ZQ/IOAuemfnweBfWol9jT+PYD1wN4FbUXH\n7xHNZmaWqfbbR2ZmVkZOCmZmlnFSMDOzjJOCmZllnBTMzCzjpGAVI+mddEbHJenMppdJ2iXdNlTS\nxBJf//SdnWBR0nBJIenzBW2D0rZ/38GxX5B03s5cPz3Pg5KezrnvNyWduLPXtI6rIm9eM0u9EcmU\nCEjaH/gJsBdwdUTMJXlmvJROBx4hGaSUi6RdI2Jzs+bFwFnAj9L1c0ie1d+uiLgl73Vbu3Y6WO9I\nYKOkgyLiTzu45lXFXNM6H/cUrCpEMi3CWGC8EsML3idwlKSn0onKfts06lTSZ9J/JU9P5/EfL+nS\ndL+nJfVI93uvpF+lk7T9f0mHSjqWZI6YG9Leyntb2i89/k5Jt0j6HXB9C+G/BNRL6pWOCj8J+GXT\nRkkXSHom7Q3dL2n3tL2xqTeR9i6elrRI0rSmee8lzZZ0o5J3E1zSwrX/Ffg5ybQYZxdc86GmXoik\nCyVNKfgs/5YuX6fk3RmLJH2nLf/drONxT8GqRkT8Sck7NPZvtul54ISI2Jze+rgW+GS67XCS2Vzr\ngReAr0XEYEnfB84jmXV0EvCFiFgu6WjgPyNihKSHSUYN3wcgaWbz/UimsIZk3q1jI+KdVsK/DziT\nZET1fJJ3OzR5ICJ+mF7jWySj3G9udvxdwEUR8WtJ3wSuBiak2/4ptryboLlzgG8Ca0jmrLo2bR8L\nPCnpReAykvdjZCTtC5wBHBoR0TQ9iJmTgtWCvYHJkg4mmYajrmDbrIh4FXhV0isk/2oGeA4YoGTG\n12OBqck/4gHo2vwCOfabup2EAPAz4KfAoSRTnRxbsO3wNBl0B/YEHm127b2B7hHx67RpMlvPcvnT\nli4oqRdwMPCb9C/2TZIOj4jFEbFG0lUkkwKeERF/b3b4K8CbwG1pj+yR7Xw260R8+8iqhqSDgHfY\ndibH/yD5y/9w4BMkvYImhf8if7dg/V2Sf/TsAvwj0rdSpT+HtXD5He332vZij2RCtU0kk/DNbLb5\nTmB8RBwBXNMs/jxau/ZZJPPzvKhkZtUGkp5DkyNI5sL55xbi3Uwyg+l9wCnAr4qMyTooJwWrCpJ6\nArcAP4htJ+Tamy1Tpn+mmPNG8j6IFyWdmV5Hkgamm18FuuXYL6+rSG5fNe9RdANWK5mW/NwWYnwF\n+C9JJ6RNo4FfN9+vBecAJ0VEQyQzqx5JWleQdBTJNMqDgX+X1K/wwLRntHdE/AL4MsnrJ82cFKyi\ndkuLvEtIZnB8jORf0s1dD/xvSc/Stlue5wLnS2qavfO0tP1e4CtpYfq929kvl4j4bUQ82MKmb5C8\nwe5JkvrIVoelv8eQFL0XkczW+c3tXUvJm/EOBLJHUSPiReCVtB7yQ+BzEfFXkprC7Sq4L0aSqB5J\nr/cb4NI8n9E6Ps+SalYhkm4meSHKHZWOxayJewpmFSDpP4Cjqc2XRlkH5p6CmZll3FMwM7OMk4KZ\nmWWcFMzMLOOkYGZmGScFMzPLOCmYmVnmvwHTck1F9OPJYQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11c97be0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4XWWZ9/Hvj5BpwAKlNPSt1JLiATn1RMATaG0BERRk\nHEBeplRUilpAFA8IDsZXxwupjFjwVAakQAcH5OyA0EIro4KFQs+gRSnYWlooM0CpHErv94/1JOyk\nSbPTZO2dZP0+15Uraz17He79NN33XutZ616KCMzMrLi2q3YAZmZWXU4EZmYF50RgZlZwTgRmZgXn\nRGBmVnBOBGZmBedEYGZWcE4EZmYF50RgZlZw21c7gHIMGTIkGhoaqh2GmVmfsmDBgmcjor6z5fpE\nImhoaOChhx6qdhhmZn2KpCfLWc6nhszMCs6JwMys4JwIzMwKrk+MEbTntddeY9WqVbz88svVDqXf\nqaurY/jw4dTW1lY7FDOrgD6bCFatWsVOO+1EQ0MDkqodTr8REaxfv55Vq1YxcuTIaodjZhXQZ08N\nvfzyy+y2225OAj1MErvttpuPtMwKpM8mAsBJICfuV7Ni6dOJwMzMuq/PjhFsoamp4tt7+umnOfvs\ns3nwwQcZNGgQQ4cO5ZJLLuEd73hHz8ZiZpaj/pMIKiwiOO6445g8eTK/+MUvAFi0aBFr166tWCKI\nCCKC7bbzgZ31LU3zmt6YHt/U4XJWGbl/gkiqkfSIpF+l+cGSZktakX7vmncMeZg7dy61tbV89rOf\nbWkbPXo0Y8eOZeLEiYwbN44DDjiAW2+9FYCVK1eyzz77cNppp7HffvtxxBFH8Pe//x2Axx9/nMMO\nO4zRo0czbtw4/vznPwMwbdo0DjroIEaNGsU3v/nNlu3svffenHLKKey///789a9/rfA7N7P+phJf\nJb8APFoyfy5wT0S8Hbgnzfc5S5cu5cADD9yiva6ujptvvpmHH36YuXPncs455xARAKxYsYKpU6ey\nbNkyBg0axI033gjAySefzNSpU1m0aBG///3vGTZsGHfffTcrVqxg/vz5LFy4kAULFnDfffe1bOfz\nn/88y5YtY88996zcmzazfinXU0OShgNHA/8KfCk1HwuMT9MzgXnA1/KMo5IigvPOO4/77ruP7bbb\njtWrV7N27VoARo4cyZgxYwA48MADWblyJS+++CKrV6/muOOOA7JEAnD33Xdz9913M3bsWAA2bNjA\nihUrGDFiBHvuuSfvfve7q/DuzKw/ynuM4BLgq8BOJW1DI2JNmn4aGJpzDLnYb7/9+OUvf7lF+6xZ\ns3jmmWdYsGABtbW1NDQ0tFyTP2DAgJblampqWk4NtSci+PrXv87pp5/eqn3lypW86U1v6qF3YWaW\n46khSR8B1kXEgo6WieycSXSw/hRJD0l66JlnnskrzG02YcIEXnnlFWbMmNHStnjxYp588kl23313\namtrmTt3Lk8+ufUqsDvttBPDhw/nlltuAeCVV15h48aNfOhDH+LKK69kw4YNAKxevZp169bl94bM\nrLDyPCJ4H3CMpKOAOmBnSdcCayUNi4g1koYB7X66RcQMYAZAY2Nju8milZ6+fLQTkrj55ps5++yz\n+d73vkddXR0NDQ00NTVx1llnccABB9DY2Mg73/nOTrd1zTXXcPrpp3PBBRdQW1vLDTfcwBFHHMGj\njz7Ke97zHgAGDhzItddeS01NTd5vzcwKRs0DmbnuRBoPfDkiPiJpGrA+Ii6UdC4wOCK+urX1Gxsb\no+2DaR599FH22Wef3GIuOvev5cmXj1aGpAUR0djZctW4AP1C4HBJK4DD0ryZmVVJRW4oi4h5ZFcH\nERHrgYmV2K+ZmXXOt6SamRWcE4GZWcE5EZiZFZwTgZlZwfWb6qOll6P1yPbKuKRNEl/60pe4+OKL\nAfj+97/Phg0baOrCPQ133nkn//Iv/8LGjRsZMGAAEyZMaNmemVkl+IigGwYMGMBNN93Es88+u03r\nL126lDPOOINrr72W5cuX89BDD/G2t72th6Ps3KZNmyq+TzPrPZwIumH77bdnypQp/OAHP9jitZUr\nVzJhwgRGjRrFxIkTeeqpp7ZY5qKLLuL8889vufu4pqaGz33ucwDcfvvtvOtd72Ls2LEcdthhLYXr\nmpqa+NSnPsX48ePZa6+9mD59esv2rr76akaNGsXo0aOZNGkSAM888wwf//jHOeiggzjooIP43e9+\n17KdSZMm8b73va9lWTMrJieCbpo6dSqzZs3i+eefb9V+5plnMnnyZBYvXszJJ5/MWWedtcW6HZWy\nBjjkkEN44IEHeOSRR/jEJz7BRRdd1PLaY489xl133cX8+fP51re+xWuvvcayZcv4zne+w7333sui\nRYv44Q9/CMAXvvAFvvjFL/Lggw9y44038pnPfKZlO8uXL2fOnDlcd911PdEVZtZH9ZsxgmrZeeed\nOeWUU5g+fTo77LBDS/v999/PTTfdBMCkSZP46le3WkVjC6tWreLEE09kzZo1vPrqq4wcObLltaOP\nPpoBAwYwYMAAdt99d9auXcu9997L8ccfz5AhQwAYPHgwAHPmzGH58uUt677wwgstheyOOeaYVjGb\nWTH5iKAHnH322VxxxRW89NJLXVpvv/32Y8GC9ouznnnmmZxxxhksWbKEn/3sZy2lrGHLctZbO8e/\nefNmHnjgARYuXMjChQtZvXo1AwcOBHA5azMDnAh6xODBgznhhBO44oorWtre+973tjzLeNasWRx6\n6KFbrPeVr3yF7373u/zpT38Csg/tn/70pwA8//zz7LHHHgDMnDmz0xgmTJjADTfcwPr16wF47rnn\nADjiiCO49NJLW5ZbuHDhtrxFM+vH+s2poWpXMDznnHO47LLLWuYvvfRSTj31VKZNm0Z9fT0///nP\nt1hn1KhRXHLJJZx00kls3LgRSXzkIx8BssHc448/nl133ZUJEybwxBNPbHX/++23H+effz4f+MAH\nqKmpYezYsVx11VVMnz6dqVOnMmrUKDZt2sT73//+lmRjZgYVKkPdXS5DXXnuX8uTy1BXRm8uQ21m\nZr2IE4GZWcH16UTQF05r9UXuV7NiyfPh9XWS5ktaJGmZpG+l9iZJqyUtTD9Hbcv26+rqWL9+vT+0\nelhEsH79eurq6qodiplVSJ5XDb0CTIiIDZJqgd9KujO99oOI+H53Nj58+HBWrVrFM8880+1ArbW6\nujqGDx9e7TDMrEJySwSRfVXfkGZr00+PfX2vra1tdbetmZltm1zHCCTVSFoIrANmR8Qf0ktnSlos\n6UpJu+YZg5mZbV2uiSAiXo+IMcBw4GBJ+wM/AfYCxgBrgHaL70uaIukhSQ/59I+ZWX4qctVQRPwv\nMBc4MiLWpgSxGbgcOLiDdWZERGNENNbX11ciTDOzQsrzqqF6SYPS9A7A4cBjkoaVLHYcsDSvGMzM\nrHN5XjU0DJgpqYYs4VwfEb+SdI2kMWQDxyuB03OMwczMOpHnVUOLgbHttPtxWGZmvUifvrPYzMy6\nz4nAzKzgnAjMzArOicDMrOCcCMzMCs6JwMys4JwIzMwKzonAzKzgnAjMzArOicDMrOCcCMzMCs6J\nwMys4JwIzMwKzonAzKzgnAjMzArOicDMrOCcCMzMCi7PZxbXSZovaZGkZZK+ldoHS5otaUX6vWte\nMZiZWefyPCJ4BZgQEaOBMcCRkt4NnAvcExFvB+5J82ZmViW5JYLIbEiztekngGOBmal9JvCxvGIw\nM7PO5fbwegBJNcAC4G3AjyLiD5KGRsSatMjTwNAO1p0CTAEYMWJEnmGaWR/SNK/pjenxTR0uZ+XL\ndbA4Il6PiDHAcOBgSfu3eT3IjhLaW3dGRDRGRGN9fX2eYZqZFVpFrhqKiP8F5gJHAmslDQNIv9dV\nIgYzM2tfnlcN1UsalKZ3AA4HHgNuAyanxSYDt+YVg5mZdS7PMYJhwMw0TrAdcH1E/ErS/cD1kj4N\nPAmckGMMZmbWidwSQUQsBsa2074emJjXfs2se8oZjPWAbf/iO4vNzArOicDMrOCcCMzMCs6JwMys\n4HK9s9jMDFoPLlvv4yMCM7OCcyIwMys4JwIzs4JzIjAzKzgPFptZj+nuHcfdWd93O287HxGYmRWc\nE4GZWcE5EZiZFVxZiUDSAXkHYmZm1VHuYPGPJQ0ArgJmRcTz+YVkZpXmO3+Lrawjgog4FDgZeAuw\nQNJ/SDo818jMzKwiyh4jiIgVwDeArwEfAKZLekzSP7a3vKS3SJorabmkZZK+kNqbJK2WtDD9HNUT\nb8TMzLZNWaeGJI0CTgWOBmYDH42IhyW9GbgfuKmd1TYB56TldiI7kpidXvtBRHy/++GbmVl3lTtG\ncCnw78B5EfH35saI+Jukb7S3QkSsAdak6RclPQrs0c14zcysh5V7auho4D+ak4Ck7STtCBAR13S2\nsqQGsucX/yE1nSlpsaQrJe3a5ajNzKzHlHtEMAc4DNiQ5ncE7gbe29mKkgYCNwJnR8QLkn4CfBuI\n9Pti4FPtrDcFmAIwYsSIMsM0s96iElci+WqnnlHuEUFdRDQnAdL0jp2tJKmWLAnMioib0rprI+L1\niNgMXA4c3N66ETEjIhojorG+vr7MMM3MrKvKTQQvSRrXPCPpQODvW1keSQKuAB6NiH8raR9Wsthx\nwNLywzUzs55W7qmhs4EbJP0NEPB/gBM7Wed9wCRgiaSFqe084CRJY8hODa0ETu9q0GZm1nPKSgQR\n8aCkdwJ7p6Y/RsRrnazzW7Kk0dYdXQvRzMzy1JXnERwENKR1xkkiIq7OJSoz6xWqWeM/j4FgP7Og\nfeXeUHYN8FZgIfB6ag7AicDMrI8r94igEdg3IiLPYMzMrPLKvWpoKdkAsZmZ9TPlHhEMAZZLmg+8\n0twYEcfkEpWZmVVMuYmgKc8gzGzrOho47Q8PePfdwdVX7uWjv5G0J/D2iJiT6gzV5BuamZlVQrmP\nqjwN+CXws9S0B3BLXkGZmVnllDtYPJXsTuEXoOUhNbvnFZSZmVVOuYnglYh4tXlG0vZk9xGYmVkf\nV+5g8W8knQfskJ5V/Hng9vzCMrOu6o0DwdXS1b4oet+Ve0RwLvAMsISsSNwdZM8vNjOzPq7cq4aa\nnx1web7hmJlZpZVba+gJ2hkTiIi9ejwiMzOrqK7UGmpWBxwPDO75cMzMrNLKPTW0vk3TJZIWABf0\nfEhmBr7j1iqn3FND40pmtyM7QtjqupLeQlameijZaaUZEfFDSYOB/yR7tsFK4ISI+J8uR25mZj2i\n3FNDF5dMbyJ9gHeyzibgnIh4WNJOwAJJs4FPAvdExIWSziW7IulrXYrazMx6TLmnhj7Y1Q1HxBpg\nTZp+UdKjZKUpjgXGp8VmAvNwIjAzq5pyTw19aWuvR8S/dbJ+AzAW+AMwNCUJgKfJTh2ZmVmVdOWq\noYOA29L8R4H5wIrOVpQ0ELgRODsiXpDeeJ59RISkdktVSJoCTAEYMWJEmWGaGeT/vN+891UJfTXu\nPJSbCIYD4yLiRQBJTcB/RcQ/b20lSbVkSWBWRNyUmtdKGhYRayQNA9a1t25EzABmADQ2NrqukZlZ\nTsotMTEUeLVk/lU6OaWj7Kv/FcCjbU4d3QZMTtOTgVvLjMHMzHJQ7hHB1cB8STen+Y+RDfRuzfuA\nScASSQtT23nAhcD1kj4NPEnnVx+ZmVmOyr1q6F8l3QkcmppOjYhHOlnnt4A6eHli+SGamVmeyj0i\nANgReCEifi6pXtLIiHgir8DMzHpCdwaFi1KeutxHVX6T7Fr/r6emWuDavIIyM7PKKXew+DjgGOAl\ngIj4G7BTXkGZmVnllJsIXo2IIJWilvSm/EIyM7NKKjcRXC/pZ8AgSacBc/BDaszM+oVyrxr6fnpW\n8QvA3sAFETE718jMzKqgiHccd5oIJNUAc1LhOX/4m5n1M52eGoqI14HNknapQDxmZlZh5d5HsIHs\nDuHZpCuHACLirFyiMjOziik3EdyUfszMrJ/p7HGTIyLiqYjorK6QWeEU5a5T6/86GyO4pXlC0o05\nx2JmZlXQWSIoLRq3V56BmJlZdXSWCKKDaTMz6yc6GyweLekFsiODHdI0aT4iYudcozMzs9xtNRFE\nRE2lAjHry8oZOO7qMmaVUm6toS6TdKWkdZKWlrQ1SVotaWH6OSqv/ZuZWXlySwTAVcCR7bT/ICLG\npJ87cty/mZmVIbdEEBH3Ac/ltX0zM+sZeR4RdORMSYvTqaNdq7B/MzMr0ZVnFveEnwDfJrsU9dvA\nxcCn2ltQ0hRgCsCIESMqFZ9ZYXhg2ppV9IggItZGxOsRsZnswTYHb2XZGRHRGBGN9fX1lQvSzKxg\nKpoIJA0rmT0OWNrRsmZmVhm5nRqSdB0wHhgiaRXwTWC8pDFkp4ZWAqfntX8zMytPbokgIk5qp/mK\nvPZnZmbbptKDxWbWRuEGbefNy36PH1/NKLqsP5cdr8blo2Zm1os4EZiZFZwTgZlZwTkRmJkVnAeL\nrXC6M+jX1YHdjpav2ABx88AsbNvgbE8N7JbGYb2OjwjMzArOicDMrOCcCMzMCs6JwMys4DxYbNaH\nFe6uZMuFjwjMzArOicDMrOCcCMzMCs6JwMys4DxYbJb05zLDVdNP7yjub38rPiIwMyu43BKBpCsl\nrZO0tKRtsKTZklak37vmtX8zMytPnkcEVwFHtmk7F7gnIt4O3JPmzcysinJLBBFxH/Bcm+ZjgZlp\neibwsbz2b2Zm5an0YPHQiFiTpp8Ghna0oKQpwBSAESNGVCA0s4LobmnqvPXRZxr3ZVUbLI6IAGIr\nr8+IiMaIaKyvr69gZGZmxVLpRLBW0jCA9HtdhfdvZmZtVDoR3AZMTtOTgVsrvH8zM2sjz8tHrwPu\nB/aWtErSp4ELgcMlrQAOS/NmZlZFuQ0WR8RJHbw0Ma99Wt9VrTs1K1rGudqDtP30Lt9t5kHpFr6z\n2Mys4JwIzMwKzonAzKzgnAjMzArOZaitT8p7cLlpXtM2DyZW7TnCeQ5Gd2XbeQxKt7fN9uKowoB8\nfyhJ7SMCM7OCcyIwMys4JwIzs4JzIjAzKzgPFlsu+sMAWo8pd/C0Jwc6t2XAthpxdkdviaMf8BGB\nmVnBORGYmRWcE4GZWcE5EZiZFZwHi61qyrkDt+J36faWUs2dDYT2VAnl7r7f7qyfd193dzC5B8tU\n9/aLJ3xEYGZWcFU5IpC0EngReB3YFBGN1YjDzMyqe2rogxHxbBX3b2Zm+NSQmVnhVSsRBDBH0gJJ\nU6oUg5mZUb1TQ4dExGpJuwOzJT0WEfeVLpASxBSAESNGVCNG66JedxVQ0xv7ahrfje30llIGveWK\npkqp1HMNtuVZCx0sV87VQb3xCqKqHBFExOr0ex1wM3BwO8vMiIjGiGisr6+vdIhmZoVR8UQg6U2S\ndmqeBo4AllY6DjMzy1Tj1NBQ4GZJzfv/j4j4dRXiMDMzqpAIIuIvwOhK79fMzNrnEhPWZVUd7Opk\nYK/1YHTJsmy5bLf239GgYtEGdK1DFS+P0g2+j8DMrOCcCMzMCs6JwMys4JwIzMwKzoPF1r3B3+a7\nd0vu4m07YNo0b3yX7sjt6iBbq+U7Gqxtb5C3rwzs9pU4q6mn+qinns+wDXegV/MiDB8RmJkVnBOB\nmVnBORGYmRWcE4GZWcF5sLgC8hgEajugWk7J224tP69kZnxJe/Pdu929i7K9Qbo8BnZ7y3Z6SxzW\nuRxLV/eWu499RGBmVnBOBGZmBedEYGZWcE4EZmYF1+8Hi7vzDNGutncnnqZ5TS2DSk2Mb32nbppu\nKi2r3GbgqUsxzZuX3e3bVvM22xkca73FdtbdFr1lwNX6vzz/VjobTN6m9ZvemC79LMhJVY4IJB0p\n6Y+SHpd0bjViMDOzTDWeWVwD/Aj4MLAvcJKkfSsdh5mZZapxRHAw8HhE/CUiXgV+ARxbhTjMzIzq\nJII9gL+WzK9KbWZmVgWKiMruUPon4MiI+EyanwS8KyLOaLPcFGBKmt0b+GNFA83fEODZagfRi7g/\nWnN/tOb+aK3c/tgzIuo7W6gaVw2tBt5SMj88tbUSETOAGZUKqtIkPRQRjdWOo7dwf7Tm/mjN/dFa\nT/dHNU4NPQi8XdJISf8AfAK4rQpxmJkZVTgiiIhNks4A7gJqgCsjYlml4zAzs0xVbiiLiDuAO6qx\n716k35722kbuj9bcH625P1rr0f6o+GCxmZn1Lq41ZGZWcE4EOeqslIakkyUtlrRE0u8lja5GnJVS\nbmkRSQdJ2pQuNe63yukPSeMlLZS0TNJvKh1jJZXx/2UXSbdLWpT649RqxFkpkq6UtE7S0g5el6Tp\nqb8WSxq3zTuLCP/k8EM2EP5nYC/gH4BFwL5tlnkvsGua/jDwh2rHXc3+KFnuXrIxpH+qdtxV/vsY\nBCwHRqT53asdd5X74zzge2m6HngO+Idqx55jn7wfGAcs7eD1o4A7AQHv7s7nh48I8tNpKY2I+H1E\n/E+afYDsnor+qtzSImcCNwLrKhlcFZTTH/8XuCkingKIiP7cJ+X0RwA7SRIwkCwRbKpsmJUTEfeR\nvceOHAtcHZkHgEGShm3LvpwI8tPVUhqfJsvu/VWn/SFpD+A44CcVjKtayvn7eAewq6R5khZIOqVi\n0VVeOf1xGbAP8DdgCfCFiNhcmfB6pR4r19Pvn0fQF0j6IFkiOKTasVTZJcDXImJz9qWv8LYHDgQm\nAjsA90t6ICL+VN2wquZDwEJgAvBWYLak/46IF6obVt/nRJCfskppSBoF/Dvw4YhYX6HYqqGc/mgE\nfpGSwBDgKEmbIuKWyoRYUeX0xypgfUS8BLwk6T5gNNAfE0E5/XEqcGFkJ8gfl/QE8E5gfmVC7HXK\n+owph08N5afTUhqSRgA3AZMK8C2v0/6IiJER0RARDcAvgc/30yQA5ZVauRU4RNL2knYE3gU8WuE4\nK6Wc/niK7OgISUPJilH+paJR9i63Aaekq4feDTwfEWu2ZUM+IshJdFBKQ9Jn0+s/BS4AdgN+nL4F\nb4p+WlirzP4ojHL6IyIelfRrYDGwGfj3iGj3UsK+rsy/j28DV0laQnalzNciot9WJJV0HdlzYYdI\nWgV8E6iFlv64g+zKoceBjWRHTNu2r3QZkpmZFZRPDZmZFZwTgZlZwTkRmJkVnBOBmVnBORGYmRWc\nE0E/JOn1VLFyaarWOKiT5QdJ+nzJ/Jsl/bKHYpmWKkVO64ntlWz3/0k6rCe32cn+PttZiQdJtZIe\n7sI2j9laFdZKknRHZ38nJctelUdlWEnnlUw3dFR103qeLx/thyRtiIiBaXom8KeI+NetLN8A/Coi\n9s8hlueBwRHxek9vu4tx1OQdQyoV8o8RcWae+2lnv9tHRMWKr0m6iuzvpUe+LJRst/TvtoGc/iZt\nSz4i6P/uJxWikjRQ0j2SHk7PQGiu7ngh8NZ0FDGt9NuYpDpJP0/LP5I+7FpJdzZOS0cgSySdmNpv\nI6sSuaC5rWSdJkkzJf23pCcl/aOki9L6v5ZUm5a7QNKDadszUuXJVt9KJU1MsS1RVsN9QGpfKel7\n6Vv68W32/1FJf0jrzUl3qiLph5IuSNMfknSfpO1SvF9O7WdJWq6sBvwvSjZ7JHBn6r/HUox/kjRL\n0mGSfidphaSD03Y+KemykvczXdlzKf5S8t466tvxqe9uIytV3fbf5CeSHkpHY99Kbbsoq/e/d5q/\nTtJpJX01RNKbJP2Xspr/S9v+u7WznwMl/UZZUby7lKpfKiuU9z1J81MfHJrad5R0feq/m9O/QaOk\nC4Ed0t/grLT5GkmXp/dwt6QdthaLdUO1a277p+d/gA3pdw1wA3Bkmt8e2DlNDyG7I1FAAyU1z0vn\ngXPI7vKErK7LU0Bdm/19HJid9jc0LTOsNJZ2YmwCfkt2p+RosjsjP5xeuxn4WJoeXLLONcBH0/RV\nwD8BdWQVGN+R2q8Gzk7TK4GvdrD/XXnjiPgzwMVpekdgGfBB4I/AW0vi/XKa/hswIE0PKtnm/LR+\nA1l55APIvmwtAK5MfX0scEta/pPAZSXv54a0/L5kJZk77FuyO05fAkZ28P4Gl/wNzANGpfnDyb4c\nfAL4dcnyK9PfxMeBy0vad2ln2819Xwv8HqhP7Sfyxt/KvJI+PQqYk6a/DPwsTe+f+qmx7d9KSR+O\nSfPXA/9c7f9b/fXHRwT90w6SFgJPk314zE7tAr4raTEwh+xIYWgn2zoEuBYgIh4DniQrj9x2mesi\n4vWIWAv8BjiojDjvjIjXyEoK1wC/Tu1LyD4IAD6YvjUuIas6uV+bbewNPBFv1GqaSfZAj2b/2cG+\nhwN3pe1+pXm7EbEROI2szy6LiD+3s+5iYJakfybVw1dWQvu5tD4ppiWRlUleBtwT2Sda6Xtr65aI\n2BwRy3nj32VrfTs/Ip7oYFsnpCOhR9J72ze9v9kphh+RJcC2lgCHp2/zh0bE8x1sH7K+35+sCuhC\n4Bu0fqbGTen3gpL3fAjZswaIrFzG4q1s/4mIWNjONqyHORH0T3+PiDHAnmQf/lNT+8lkT3Y6ML2+\nluwbdbW8ApA+LF9LH5SQ1dXZXlId8GOyJ5UdAFxO1+N9qYP2S8k+6A8ATm+z3QOA9cCbO1j3aLIP\n0nHAg5K2JzstdFfb95ZsLpnfTMc1vkrXKacOd7vvTdJIsm/eEyNiFPBfpPcnaTuymv4byY6KWkkJ\ndRxZQvhO82myDghYFhFj0s8BEXFEO+/ndbatrllpf2zrNqwMTgT9WPp2ehZwTvqw2gVYFxGvKTvX\nv2da9EVgpw42899kCQRJ7wBGkJ0yabvMiZJqJNWTfSPvidLAzR/Oz0oaSHY6oq0/Ag2S3pbmJ5F9\na+7MLrxRsndyc6OkPclOh40FPizpXaUrpQ/St0TEXOBraTsDSeMD5bypLtqWvt2ZLEk8n8Y+Plzy\n2hfJKpj+X+DnSmMxzSS9GdgYEdcC08iSQkf+CNRLek9at1ZS2yO2tn4HnJCW35cs6TZ7rW08VhnO\nsP1cRDySTgWdBMwCbk+nQx4CHkvLrE8DmUvJPsx+VLKJHwM/SetsAj4ZEa/Q2s3Ae8ieMxtk5+Wf\n7oHY/1eHsCYJAAABG0lEQVTS5cBSstNcD265SLys7CHmN6Rk9yBQTiXTprTO/5A9I3mkJAFXkI0F\n/E3Sp8mqXZae5qoBrpW0C9k34ulkifRt6dRZT2u3byW9s6MVImKRpEfI/n3/SvbhSxok/gxwcES8\nqOz5Bt8gq2rZ7ABgmqTNwGvA57ayn1fToPb01B/bkz1caNlW3s+PgZmSlqf4lgHNp59mAIvTKa3z\nt7IN62G+fNT6JEm3A/+WvplXO5ZDyAYyP1vtWHo7STVAbUrgbyUbq9o7sucUW5X4iMD6HElXkl2d\n89tqxwIQEb+ll8TSB+wIzE2ngET28CEngSrzEYGZWcF5sNjMrOCcCMzMCs6JwMys4JwIzMwKzonA\nzKzgnAjMzAru/wOxWMTLj1C2fQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x117439e8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHntJREFUeJzt3XmcFOW97/HPz3EOg4IiMHA5EhxMjAvKOhiNSxAI8cTE\nJYnbNYgmikZcSHxpjB7j5N6cRCXeKHrPjZzjgkrUKOB245FFiOe6hEUGZFHRiAaCgJijIm7g7/5R\nzwzNMD1TPdPV3dP1fb9e/Zqq6qeqfv3M0D+e56l6ytwdERFJr92KHYCIiBSXEoGISMopEYiIpJwS\ngYhIyikRiIiknBKBiEjKKRGIiKTc7kke3MzWAB8A24Ft7l5rZt2BB4EaYA1wmrv/Pck4REQku0K0\nCI5z98HuXhvWrwLmuvsBwNywLiIiRWJJ3lkcWgS17v5OxrZXgBHuvt7M+gDz3f3Alo7Ts2dPr6mp\nSSxOEZFytHjx4nfcvbq1col2DQEOzDGz7cDt7j4F6O3u68P7bwO9WztITU0NixYtSjBMEZHyY2Zv\nximXdCI42t3XmVkvYLaZvZz5pru7mTXbJDGz8cB4gH79+iUcpohIeiU6RuDu68LPjcBM4HBgQ+gS\nIvzcmGXfKe5e6+611dWttmxERKSNEksEZranmXVtWAbGAMuBx4Bxodg44NGkYhARkdYl2TXUG5hp\nZg3n+b27/4eZLQT+YGY/BN4ETmvLwT/77DPWrl3Lxx9/nLeAJVJVVUXfvn2prKwsdigiUgCJJQJ3\n/wswqJntm4FR7T3+2rVr6dq1KzU1NYRkI3ng7mzevJm1a9fSv3//YocjIgXQYe8s/vjjj+nRo4eS\nQJ6ZGT169FBLSyRFOmwiAJQEEqJ6FUmXDp0IRESk/ZK+j6Bw6uoKfry3336biRMnsnDhQrp160bv\n3r25+eab+fKXv5zfWEREElQ+iaDA3J1TTjmFcePG8cADDwCwdOlSNmzYULBE4O64O7vtpoadSLmo\nm1+38/qIumbL5ZO+Qdpo3rx5VFZWcuGFFzZuGzRoEEOGDGHUqFEMHTqUww47jEcfjW6TWLNmDQcf\nfDDnn38+AwYMYMyYMXz00UcAvPbaa4wePZpBgwYxdOhQXn/9dQAmTZrE8OHDGThwINddd13jcQ48\n8EDOPvtsDj30UP76178W+JOLSLlRImij5cuXM2zYsF22V1VVMXPmTF588UXmzZvH5ZdfTsPEfqtX\nr2bChAmsWLGCbt26MX36dADOOussJkyYwNKlS3nuuefo06cPs2bNYvXq1SxYsID6+noWL17MM888\n03iciy66iBUrVrDffvsV7kOLSFlS11CeuTtXX301zzzzDLvtthvr1q1jw4YNAPTv35/BgwcDMGzY\nMNasWcMHH3zAunXrOOWUU4AokQDMmjWLWbNmMWTIEAC2bNnC6tWr6devH/vttx9HHHFEET6diJQj\nJYI2GjBgAA8//PAu26dNm8amTZtYvHgxlZWV1NTUNF6T36lTp8ZyFRUVjV1DzXF3fvazn3HBBRfs\ntH3NmjXsueeeefoUIiLqGmqzkSNH8sknnzBlypTGbcuWLePNN9+kV69eVFZWMm/ePN58s+VZYLt2\n7Urfvn155JFHAPjkk0/YunUr3/jGN7jzzjvZsmULAOvWrWPjxmbn5xMRaZfyaRHk+/LRVpgZM2fO\nZOLEidxwww1UVVVRU1NDXV0dl156KYcddhi1tbUcdNBBrR7r3nvv5YILLuDnP/85lZWVPPTQQ4wZ\nM4ZVq1Zx5JFHAtClSxfuu+8+Kioqkv5oIpIyiT6hLF9qa2u96YNpVq1axcEHH1ykiMqf6lekOPJ5\n+aiZLc54THBW5dMiEBFpp8wv4UJcv18qNEYgIpJySgQiIimnRCAiknJKBCIiKadEICKScmVz1VDT\nS67afbwYVwyYGT/5yU+46aabAPjNb37Dli1bqMvhnoYnn3ySa6+9lq1bt9KpUydGjhzZeDwRkUJQ\ni6AdOnXqxIwZM3jnnXfatP/y5cu5+OKLue+++1i5ciWLFi3iS1/6Up6jbN22bdsKfk4RKR1KBO2w\n++67M378eH7729/u8t6aNWsYOXIkAwcOZNSoUbz11lu7lLnxxhu55pprGu8+rqio4Ec/+hEAjz/+\nOF/5ylcYMmQIo0ePbpy4rq6ujh/84AeMGDGC/fffn8mTJzce75577mHgwIEMGjSIsWPHArBp0ya+\n+93vMnz4cIYPH86zzz7beJyxY8dy1FFHNZYVkXRSIminCRMmMG3aNN57772dtl9yySWMGzeOZcuW\ncdZZZ3HppZfusm+2qawBjj76aF544QWWLFnCGWecwY033tj43ssvv8xTTz3FggUL+MUvfsFnn33G\nihUr+OUvf8nTTz/N0qVLueWWWwC47LLL+PGPf8zChQuZPn065513XuNxVq5cyZw5c7j//vvzURUi\n0kGVzRhBsey1116cffbZTJ48mc6dOzduf/7555kxYwYAY8eO5corr8zpuGvXruX0009n/fr1fPrp\np/Tv37/xvRNOOIFOnTrRqVMnevXqxYYNG3j66ac59dRT6dmzJwDdu3cHYM6cOaxcubJx3/fff79x\nIrsTTzxxp5hFJJ3UIsiDiRMncscdd/Dhhx/mtN+AAQNYvHhxs+9dcsklXHzxxbz00kvcfvvtjVNZ\nw67TWbfUx//555/zwgsvUF9fT319PevWraNLly4Ams5aRAAlgrzo3r07p512GnfccUfjtq9+9auN\nzzKeNm0axxxzzC77XXHFFfzqV7/i1VdfBaIv7d/97ncAvPfee+y7774ATJ06tdUYRo4cyUMPPcTm\nzZsBePfddwEYM2YMt956a2O5+vr6tnxEESljZdM1VOwJoi6//HJuu+22xvVbb72Vc889l0mTJlFd\nXc1dd921yz4DBw7k5ptv5swzz2Tr1q2YGd/61reAaDD31FNPZZ999mHkyJG88cYbLZ5/wIABXHPN\nNXzta1+joqKCIUOGcPfddzN58mQmTJjAwIED2bZtG8cee2xjshERAU1DLVmofiWNSmH20WJMQ62u\nIRGRlFMiEBFJuQ6dCDpCt1ZHpHoVSZcOO1hcVVXF5s2b6dGjB2ZW7HDKhruzefNmqqqqih2KSEHk\ne56yjqjDJoK+ffuydu1aNm3aVOxQyk5VVRV9+/YtdhgiUiAdNhFUVlbudLetiIi0TYceIxARkfbr\nsC0CEZHWlMJ9AR1B4i0CM6swsyVm9kRY725ms81sdfi5T9IxiIhIdoXoGroMWJWxfhUw190PAOaG\ndRERKZJEE4GZ9QVOAP49Y/NJQMMsalOBk5OMQUREWpZ0i+Bm4Erg84xtvd19fVh+G+jd3I5mNt7M\nFpnZIl0iKiKSnMQSgZl9C9jo7s1PuA94dAtrs7exuvsUd69199rq6uqkwhQRSb0krxo6CjjRzL4J\nVAF7mdl9wAYz6+Pu682sD7AxwRhERKQVibUI3P1n7t7X3WuAM4Cn3f37wGPAuFBsHPBoUjGIiEjr\ninFD2fXA181sNTA6rIuISJEU5IYyd58PzA/Lm4FRhTiviJSufD6Apb3nTjtNMSEiknJKBCIiKadE\nICKScpp0TkRSQeMC2alFICKSckoEIiIpp0QgIpJyGiMQkQ5JD53JH7UIRERSTolARCTllAhERFJO\niUBEJOWUCEREUk6JQEQk5ZQIRERSTolARCTllAhERFJOiUBEJOWUCEREUk6JQEQk5TTpnIh0GHEe\nLpPEA2jKfYI7tQhERFJOiUBEJOWUCEREUk6JQEQk5ZQIRERSTolARCTllAhERFJOiUBEJOWUCERE\nUk6JQEQk5ZQIRERSTolARCTlNOmciJS0UphortzFahGY2WG5HtjMqsxsgZktNbMVZvaLsL27mc02\ns9Xh5z65HltERPInbtfQv4Yv9YvMbO+Y+3wCjHT3QcBg4HgzOwK4Cpjr7gcAc8O6iIgUSaxE4O7H\nAGcBXwAWm9nvzezrrezj7r4lrFaGlwMnAVPD9qnAyW0JXERE8iP2YLG7rwb+Gfgp8DVgspm9bGbf\nybaPmVWYWT2wEZjt7n8Gerv7+lDkbaB3ln3Hm9kiM1u0adOmuGGKiEiO4o4RDDSz3wKrgJHAt939\n4LD822z7uft2dx8M9AUON7NDm7zvRK2E5vad4u617l5bXV0d79OIiEjO4rYIbgVeBAa5+wR3fxHA\n3f9G1Epokbv/FzAPOB7YYGZ9AMLPjW0JXERE8iNuIjgB+L27fwRgZruZ2R4A7n5vczuYWbWZdQvL\nnYGvAy8DjwHjQrFxwKNtD19ERNorbiKYA3TOWN8jbGtJH2CemS0DFhKNETwBXA983cxWA6PDuoiI\nFEncG8qqMq4Awt23NLQIsnH3ZcCQZrZvBkblFKWIpEqabuYqBXFbBB+a2dCGFTMbBnyUTEgiIlJI\ncVsEE4GHzOxvgAH/DTg9sahERKRgYiUCd19oZgcBB4ZNr7j7Z8mFJSIihZLLpHPDgZqwz1Azw93v\nSSQqEZESlTl+UTeiLmu5jiRWIjCze4EvAvXA9rDZASUCEZEOLm6LoBY4JNwJLCIiZSTuVUPLiQaI\nRUSkzMRtEfQEVprZAqLppQFw9xMTiUpEypLuDyhNcRNBXZJBiIhI8cS9fPRPZrYfcIC7zwl3FVck\nG5qIiBRC3GmozwceBm4Pm/YFHkkqKBERKZy4g8UTgKOA96HxITW9kgpKREQKJ24i+MTdP21YMbPd\nyfJAGRER6VjiJoI/mdnVQOfwrOKHgMeTC0tERAolbiK4CtgEvARcAPyRGE8mExGR0hf3qqHPgX8L\nLxERKSNx5xp6g2bGBNx9/7xHJCIdnm4c61hymWuoQRVwKtA9/+GIiEihxRojcPfNGa917n4z0QPt\nRUSkg4vbNTQ0Y3U3ohZCLs8yEBGREhX3y/ymjOVtwBrgtLxHIyIdlsYFOq64Vw0dl3QgIiJSHHG7\nhn7S0vvu/r/yE46IiBRaLlcNDQceC+vfBhYAq5MISkRECiduIugLDHX3DwDMrA74v+7+/aQCExGR\nwoibCHoDn2asfxq2iUiKpX2AOPPz142oy1qu1MVNBPcAC8xsZlg/GZiaTEgiIlJIca8a+hczexI4\nJmw6192XJBeWiIgUStzZRwH2AN5391uAtWbWP6GYRESkgOJePnod0ZVDBwJ3AZXAfURPLRMRabe0\njzcUU9wWwSnAicCHAO7+N6BrUkGJiEjhxE0En7q7E6aiNrM9kwtJREQKKW4i+IOZ3Q50M7PzgTno\nITUiImUh7lVDvwnPKn6faJzg5+4+O9HIRESKaf78HcsjRhQrioJoNRGYWQUwJ0w8F/vL38y+QHT/\nQW+iLqUp7n6LmXUHHgRqCLOYuvvfcw9dRETyodWuIXffDnxuZnvneOxtwOXufghwBDDBzA4BrgLm\nuvsBwNywLiIiRRL3zuItwEtmNptw5RCAu1+abQd3Xw+sD8sfmNkqYF/gJGBEKDYVmA/8NNfARUQk\nP+Imghnh1SZmVgMMAf4M9A5JAuBtNGeRiEhRtZgIzKyfu7/l7m2eV8jMugDTgYnu/r6ZNb7n7m5m\nnmW/8cB4gH79+rX19CISlMsEaZJ/rY0RPNKwYGbTcz24mVUSJYFp7t7QothgZn3C+32Ajc3t6+5T\n3L3W3Wurq6tzPbWIiMTUWiKwjOX9czmwRf/1vwNY1eQJZo8B48LyOODRXI4rIiL51doYgWdZjuMo\nYCzRIHN92HY1cD3RDWo/BN4ETsvxuCIikketJYJBZvY+Ucugc1gmrLu775VtR3f/f+zcosg0KudI\nRaSgso0paHK48tNiInD3ikIFIiIixZHL8whERKQMKRGIiKRc3BvKRCTFNC5Q3tQiEBFJOSUCEZGU\nUyIQEUk5JQIRkZRTIhARSTklAhGRlFMiEBFJOSUCEZGU0w1lIilUFg+pmT+/+e0jRrT9OLnuG0NH\nqGu1CEREUk6JQEQk5ZQIRERSTmMEImWmJPukE+6Hl/ZRi0BEJOWUCEREUk6JQEQk5TRGICKNyu4B\nNAUcm+jIdacWgYhIyikRiIiknBKBiEjKKRGIiKScBotFykBHHqgsKdkmsitzahGIiKScEoGISMop\nEYiIpJzGCEQkf8q1j73MJ81Ti0BEJOWUCEREUk6JQEQk5TRGIFJEST9EJpX3F8QZpyjXsYw2SqxF\nYGZ3mtlGM1uesa27mc02s9Xh5z5JnV9EROJJsmvobuD4JtuuAua6+wHA3LAuIiJFlFgicPdngHeb\nbD4JmBqWpwInJ3V+ERGJp9CDxb3dfX1YfhvoXeDzi4hIE0UbLHZ3NzPP9r6ZjQfGA/Tr169gcYmU\ngjiDyHkdCK5rONb8eDdMFfIGqzK/masUFLpFsMHM+gCEnxuzFXT3Ke5e6+611dXVBQtQRCRtCp0I\nHgPGheVxwKMFPr+IiDSR5OWj9wPPAwea2Voz+yFwPfB1M1sNjA7rIiJSRImNEbj7mVneGpXUOUU6\nglz79gtz09n8th+gkDdntedcuoksK00xISKSckoEIiIpp0QgIpJymnRORLJL4hr+bH31mcdXf35B\nqUUgIpJySgQiIimnRCAiknJKBCIiKafBYpGE5XNyuNjHijPIm+uAbNIDuBogLhq1CEREUk6JQEQk\n5ZQIRERSTmMEInmS6ORw2fr8c73hK04/vPrqW1aGD8pRi0BEJOWUCEREUk6JQEQk5TRGIJJFq33+\ndXXUNTzQJQ8PfN/lHgH11ZedpB8y1FZqEYiIpJwSgYhIyikRiIiknBKBiEjKabA4z0p1MKjc5Vrv\ncQaCyWUguIXjF50GnaUVahGIiKScEoGISMopEYiIpJzGCKQg4xptPkdd3U7L7TlOszd/zZ8Pmcds\nKJMps8xOMTRTtrl9cynTnknMNBZQeO343ZXSeKJaBCIiKadEICKSckoEIiIppzGCYsjo964bkaVI\nid2DUJcRaF3d/B3L2fo5M/v2gWzX5Dfu36SvNdd7AZovUNd8n38bNB4nzv0B7Xn4i/r5O658PTxo\nl33aGlB8ahGIiKScEoGISMopEYiIpJy5e7FjaFVtba0vWrSoTfvu0ofd5Lr0Vsu3csym5Xbaf35m\noebPu1Mfdkb/YbZ9M/vqdyqfjz71lmTru87W5xmnfK5lcr3Gvj0xiCSh6d9w+PurY0Tjv/O6+XU7\n/V3W7fRlkBszW+zuta2VK0qLwMyON7NXzOw1M7uqGDGIiEik4InAzCqA/w38E3AIcKaZHVLoOERE\nJFKMFsHhwGvu/hd3/xR4ADipCHGIiAjFSQT7An/NWF8btomISBEUfLDYzL4HHO/u54X1scBX3P3i\nJuXGA+PD6oHAKwmH1hN4J+Fz5IPizC/FmV+KM//aE+t+7l7dWqFi3Fm8DvhCxnrfsG0n7j4FmFKo\noMxsUZzR9WJTnPmlOPNLceZfIWItRtfQQuAAM+tvZv8AnAE8VoQ4RESEIrQI3H2bmV0MPAVUAHe6\n+4pCxyEiIpGiTDrn7n8E/liMc7egYN1Q7aQ480tx5pfizL/EY+0QdxaLiEhyNNeQiEjKlX0iiDOd\nhZmNMLN6M1thZn/K2L7GzF4K77VtsqM8xmpmV4RY6s1suZltN7PucfYtoTgLVqcx4tzbzB43s6Xh\nd39u3H1LKM5Sqs99zGymmS0zswVmdmjcfUsozoLUp5ndaWYbzWx5lvfNzCaHz7DMzIZmvJf/unT3\nsn0RDUa/DuwP/AOwFDikSZluwEqgX1jvlfHeGqBnqcTapPy3gafbsm+x4ixkncb83V8N3BCWq4F3\nQ9mSqs9scZZgfU4CrgvLBwFzS/HvM1ucBa7PY4GhwPIs738TeBIw4Ajgz0nWZbm3COJMZ/HfgRnu\n/haAu28scIwNcp1640zg/jbuW6w4CylOnA50NTMDuhB9wW6LuW8pxFlIceI8BHgawN1fBmrMrHfM\nfUshzoJx92eIfo/ZnATc45EXgG5m1oeE6rLcE0Gc6Sy+DOxjZvPNbLGZnZ3xngNzwvbxJCv21Btm\ntgdwPDA9133zoD1xQuHqNE6ctwEHA38DXgIuc/fPY+5bCnFCadXnUuA7AGZ2OLAf0Q2jpVaf2eKE\nwv6bb0m2z5FIXeqZxVEdDANGAZ2B583sBXd/FTja3deZWS9gtpm9HDJ5sX0beNbdW/ofRSloLs5S\nqtNvAPXASOCLIZ7/LFIsLWk2Tnd/n9Kqz+uBW8ysnihhLQG2FymWlrQUZynVZ8GUe4sgznQWa4Gn\n3P1Dd38HeAYYBODu68LPjcBMomZZMWNtcAY7d7fksm97tSfOQtZpnDjPJeoWdHd/DXiDqM+41Ooz\nW5wlVZ/u/r67n+vug4GzicYz/hJn3xKJs9D/5luS7XMkU5dJD4oU80X0v/2/AP3ZMbAyoEmZg4G5\noewewHLgUGBPoGsosyfwHNFkeUWLNZTbm6hvcc9c9y2BOAtWpzF/9/8HqAvLvYn+QfUstfpsIc5S\nq89u7BjEPp+oj7vk/j5biLPQ/+ZryD5YfAI7DxYvSLIuE/mApfQiGn1/lWik/Zqw7ULgwowyVxBd\nObQcmBi27R8qeSmwomHfEoj1HOCBOPuWWpyFrtPW4gT+EZhF1D2wHPh+KdZntjhLsD6PDO+/AswA\n9inR+mw2zkLWJ1FLeT3wGVGvxA+bxGhED/B6Pfzea5OsS91ZLCKScuU+RiAiIq1QIhARSTklAhGR\nlFMiEBFJOSUCEZGUUyKQZoUZQxtmD33czLq1Ur6bmV2Usf6PZvZwnmKZFGbdnJSP4+Vw3qvM7KxC\nnjNXYWqUnJ5nG2bY7BmWtyQTmXQkSgSSzUfuPtjdDyW6MWxCK+W7AY2JwN3/5u7fy1Ms44GB7n5F\nrjuaWXumUfkG0fX70gwzqyh2DJIfSgQSx/OEia3MrIuZzTWzF8O87Q0zH14PfDG0IiaZWU3DXOtm\nVmVmd4XyS8zsuKYnCPOvTwotkJfM7PSw/TGiGTcXN2zL2OdwM3s+HPM5MzswbD/HzB4zs6eJ7hpv\neEbCwjC3+y8yjvFImGBsReYkY2a2F9Hdp5vMrHeYv35peH01lPlJiHe5mU0M22rMbJWZ/Vs45iwz\n62xmB5nZgozj15jZS2F5mJn9KcTxlJn1MbPdQ7wjQplfm9m/ZPn9nGrRvPqvmtkxGXVwW8b5nmg4\nVhwt1MsWM7vJzJYCRzYXeyh3foh/qZlNt2gCQilVSd7hp1fHfQFbws8K4CHCrfZEt7jvFZZ7Aq8R\n3QVZQ8bt8pnrwOXAnWH5IOAtoKrJ+b4LzA7n6x3K9MmMpZkY9wJ2D8ujgelh+RyiuzW7h/UxRM99\nNaL//DwBHBveayjTmeiu3R5h/TvA/wjLD7LjjvMKoukzhhHd8bknUaJaAQwJn3sbMDiU/wM77gSu\nB/qH5Z8C/wxUEk1lUB22n55RVwOAVeGzLSFMi9CkDuYDN4XlbwJzMurgtoxyTwAjwvIawpz7LdRt\ntnpx4LSw3FLsPTKO9UvgkmL/TeuV/aXZRyWbzmF2xn2Jvoxmh+0G/MrMjgUapmxubS73o4FbIZr/\n3czeJJr+e1mTMve7+3Zgg0VPihsOPNbCcfcGpprZAURfUJUZ7832HbOejgmvJWG9C3AA0QSDl5rZ\nKWH7F8L2zUTTZ98Vto8kmpyMEN97ZnY0MNPdPwQwsxnAMSHeN9y9Puy7mCg5QJQUTidqPZ0eXgcS\nzW0128wgSjTrw7lWmNm9RF/iR3o0/3xzZjRzrvbKVi/b2TGteNbYgUPN7JdEXYZdgKfyFJckQIlA\nsvnI3QeHJv1TRGMEk4GziGZrHObun5nZGqCqSDH+T2Ceu59iZjVE/ztu8GHGsgG/dvfbM3cOXSWj\nib5kt5rZfHZ8lsOBH7Uxrk8ylrcT/a8aopbFQyFpuLuvNrPDgBXufmSWYx0G/BfQK8b5trPj3/Q2\ndu76jf07aqVePg7JEKJ6zRb73cDJ7r7UzM4BRsQ9vxSexgikRe6+FbgUuDwMvO4NbAxJ4Diih3oA\nfAB0zXKY/yRKIJjZl4F+RBN+NS1zuplVmFk10aP8FtCyvdkxBe85LZR7CviBmXUJMexr0XzzewN/\nD192BxHN8oiZDQBezvjCm0tICiG+vUO8J5vZHma2J3BK2JaVu79O9GV9LVFSgKgeqs3syHD8ynB+\nzOw7QPdQF7daK1duNbEGGGxmu5nZF8htOuVm66UZWWMn+ltYb2aVhN+9lC4lAmmVuy8h6sY5E5gG\n1IaBzrOBl0OZzcCzYeC06WWe/wrsFvZ5EDjH3T9pUmZmOMdSoscIXunub7cS2o3Ar81sCS20bt19\nFvB7oocOvQQ8TPRF9R/A7ma2iqi75oWwyz+F9xpcBhwX9l1M9IzYF4n+17sA+DPw76GeWvMg8H2i\nbiJCd8/3gBvCAGw98FWLLu+8HjjPo4ck3QbcEuP4DZ4lem7BSqKW3Is57JutXnaSLfbw9rVE9fIs\n4W9ESpdmHxVpwsxmA2e7+/pWC4uUASUCEZGUU9eQiEjKKRGIiKScEoGISMopEYiIpJwSgYhIyikR\niIiknBKBiEjK/X9BA3e3vhgisQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11ab83c8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Exploratory analysis through data visualization\n",
"plt.scatter(table[\"LargestNoduleArea\"],table[\"MeanHU\"],color=\"red\")\n",
"plt.xlabel(\"Area (Pixels)\")\n",
"plt.ylabel(\"Mean radiodensity (HU)\")\n",
"plt.show()\n",
"\n",
"plt.hist(table[\"LargestNoduleArea\"],bins=100,alpha=0.5, color=\"red\")\n",
"plt.xlabel(\"Area (Pixels)\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.show()\n",
"\n",
"plt.hist(table[\"MeanHU\"],bins=100,alpha=0.5, color=\"red\")\n",
"plt.xlabel(\"Mean radiodensity (HU)\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.show()\n",
"\n",
"plt.scatter(inputfeatures[\"LargestNoduleArea\"].loc[inputfeatures[\"label\"]==True],inputfeatures[\"MeanHU\"].loc[inputfeatures[\"label\"]==True],alpha=0.5, color=\"red\")\n",
"plt.scatter(inputfeatures[\"LargestNoduleArea\"].loc[inputfeatures[\"label\"]==False],inputfeatures[\"MeanHU\"].loc[inputfeatures[\"label\"]==False], alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Area (Pixels)\")\n",
"plt.ylabel(\"Mean radiodensity (HU)\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"LargestNoduleArea\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"LargestNoduleArea\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Area (Pixels)\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"MeanHU\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"MeanHU\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Mean radiodensity (HU)\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"NoduleIndex\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"NoduleIndex\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Slice #\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"Diameter\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"Diameter\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Diameter\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"DiameterMajor\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"DiameterMajor\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Diameter Major Axis\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"Eccentricity\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"Eccentricity\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Ratio of major axis/minor axis length\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n",
"\n",
"plt.hist(inputfeatures[\"Spiculation\"].loc[inputfeatures[\"label\"]==True],bins=100,alpha=0.5, color=\"red\")\n",
"plt.hist(inputfeatures[\"Spiculation\"].loc[inputfeatures[\"label\"]==False],bins=100,alpha=0.5, color=\"green\")\n",
"plt.xlabel(\"Ratio of area/convex hull area\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.legend([\"Cancer\",\"No Cancer\"])\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#Normalize data\n",
"featureslist=[\"MeanHU\",\"NoduleIndex\",\"Diameter\",\"DiameterMajor\",\"Spiculation\",\"Eccentricity\"]\n",
"normalizedfeatures={}\n",
"for feature in featureslist:\n",
" mean=np.mean(inputfeatures[feature])\n",
" std=np.std(inputfeatures[feature])\n",
" normalizedfeatures[feature]=(inputfeatures[feature].values-mean)/std\n",
"normalizedfeatures=pd.DataFrame(normalizedfeatures)\n",
"rawfeatures=inputfeatures.copy()\n",
"inputfeatures=normalizedfeatures.copy()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1512"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(inputfeatures)"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"featureslist=[\"MeanHU\",\"NoduleIndex\",\"Diameter\",\"DiameterMajor\",\"Spiculation\",\"Eccentricity\"]\n",
"\n",
"#diameterpercentiles=[]\n",
"percentilefeatures={}\n",
"\n",
"for i,feature in enumerate(featureslist):\n",
" featurestemp=[]\n",
" for j,val in enumerate(rawfeatures[feature]):\n",
" featurestemp.append(percentileofscore(rawfeatures[feature],val))\n",
" percentilefeatures[feature]=np.round(np.array(featurestemp)/2,0)\n",
"percentilefeatures=pd.DataFrame(percentilefeatures)\n",
"\n",
"roundedfeatures={}\n",
"roundedfeatures[featureslist[0]]=np.round(rawfeatures[featureslist[0]]/100,0)*100\n",
"\n",
"roundedfeatures[featureslist[1]]=np.round(rawfeatures[featureslist[1]]/20,0)*20\n",
"roundedfeatures[featureslist[2]]=np.round(rawfeatures[featureslist[2]]/3,0)*3\n",
"roundedfeatures[featureslist[3]]=np.round(rawfeatures[featureslist[3]]/4,0)*4\n",
"roundedfeatures[featureslist[4]]=np.round(rawfeatures[featureslist[4]]/2.5,2)*2.5\n",
"roundedfeatures[featureslist[5]]=np.round(rawfeatures[featureslist[5]]/4,2)*4\n",
"roundedfeatures=pd.DataFrame(roundedfeatures)\n",
"\n",
"XtrainR, XtestR, YtrainR, YtestR = train_test_split(roundedfeatures,malignantlabel,test_size=.30, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEzCAYAAADesB8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4FOWZ/vHvzQEEIq7gBiLEoAn+FCMEjJpI4oaauIW4\n4LhNHHTEbcbE6JiFTDSjiTPG3WA0Ji4h7qLiMsZtCBIWBRSJgooCboiKC4iCz++PqlM0h7N0n1N9\n+pzm/lxXX3S9Vf30032afrqq3npfRQRmZmYAHSqdgJmZtR0uCmZmlnFRMDOzjIuCmZllXBTMzCzj\nomBmZhkXBTMzy7go2DpF0nxJn0rqUaf9GUkhqW8Zn7tv+hwd67TfIOn89P4wSQvreezjkk4sV25m\ntVwUbF30CnBU7YKkHYFulUvHrO1wUbB10Y3AsQXLxwF/ql2QtJ6kiyW9JuktSddI6pqu21jSfZIW\nS3ovvd+74LGPS/qlpL9J+lDSw3X3SszaMhcFWxdNBjaQ9BVJNcCRwE0F6y8EtgN2Br4E9AJ+lq7r\nAPwB2AboAywHrqgTfyRwArAZ0Bn4YXlehln+XBRsXVW7t7APMAdYlLYLGAX8W0S8GxEfAr8iKRxE\nxJKIuCMilqXrLgD2rBP7DxHxYkQsB24lKS6F3pH0fu2NpIiYtQkdm97ErCrdCDwJ9KPg0BHQk+T8\nwnRJtW0CagAkdQMuAYYDG6fru0uqiYhV6fKbBfGWAevXee4eEbEyCy7dULBuJdCpnnw7AZ8V88LM\nWsJ7CrZOiohXSU44HwDcWbDqHZJDQjtExEbpbcOIqP1iPwvYHhgaERsA30zbRT5eA3pIygqJkuq0\nDfBqTs9h1iAXBVuX/QD4dkR8XND2OXAtcImkzQAk9ZK0X7q+O0nReF/SJsDP80woIl4D/g5cJGl9\nSesBPyLZS5ic53OZ1cdFwdZZEfFSREyrZ9WPgXnAZEkfAI+Q7B0A/BboSrJHMRl4sAypHUFyknoe\nybmOvYADI+KTMjyX2RrkSXbMzKyW9xTMzCzjomBmZhkXBTMzy7gomJlZxkXBzMwy7e6K5h49ekTf\nvn0rnYaZWbsyffr0dyKiZ1Pbtbui0LdvX6ZNq69ruZmZNURSUVfE+/CRmZllXBTMzCzjomBmZpl2\nd06hPp999hkLFy7kk088NExr6NKlC71796ZTp/pGeDaz9qwqisLChQvp3r07ffv2pWAMfCuDiGDJ\nkiUsXLiQfv36VTodM8tZ2Q4fSbpe0tuSnmtgvSRdJmmepFmSdmnuc33yySdsuummLgitQBKbbrqp\n98rMqlQ5zyncQDI7VUP2B/qnt1HA1S15MheE1uP32qx6la0oRMSTwLuNbHIw8KdITAY2krRlufIp\nN0mcddZZ2fLFF1/MmDFjKpeQmVkzVPKcQi9gQcHywrTtjbobShpFsjdBnz591gq08L3lfLbw/Wz5\noCv+lmui80/fas2Grb661jbrrbced955J+eeey49evSADxbBx8vg9WcaDlxPnHo1FqOUWMXEaSDW\nqlWrqKmpWd3w/mswZtfG44xZ2vRzjdmwuJzyilVMnBxj9T3n/qKebv6FBxbxfDm9Pr/nQHHveTGx\ncvvbQW6vr6icGtAuuqRGxNiIGBwRg3v2bPIq7Yro2LEjo0aN4pJLLllr3fwFr/Pt749ip70PZ6/D\nT+K1RUndO/744zn99NPZbbfd+OIXv8jtt99eb+y3Fi/h0B+cxcC9j2Dg3kcwaepMAA75539n0PCR\n7PCtEYwdOzbbfv311+e8885j4MCB7Lrrrrz11luNxrnpjvsZcuAx7LzPkZx09vmsWrUqi3PWWWcx\ncOBAnnrqqfzeLDNrsypZFBYBWxcs907b2q3Ro0dz8803s3TpmtX+tJ9cxHHf/y6zHrmVow/bn9N/\n+pts3RtvvMHEiRO57777OOecc+qNe/pPf82eu+7CzEf+wtMP3cIO238RgOv/++dMf/AWpk24icsu\nu4wlS5YA8PHHH7Prrrsyc+ZMvvnNb3Lttdc2GGfO3Jf5y/iH+dvd1zPjf8dRU1PDzTffnMUZOnQo\nM2fOZI899sj9/TKztqeSRWE8cGzaC2lXYGlErHXoqD3ZYIMNOPbYY7nsssvWaH9q+rOMPDQ5537M\n9w5k4pQZ2bpDDjmEDh06MGDAgOwXfV2P/m0q/3rs9wGoqalhww26A3DZ9X9m4N5HsOt3j2PBggXM\nnTsXgM6dO/Od73wHgEGDBjF//vwG4/x14hSmPzuHrx2Q7Cn8deIUXn755Wyb733ve3m8NWbWTpTt\nnIKkPwPDgB6SFgI/BzoBRMQ1wATgAJLJyZcBJ5Qrl9Z05plnsssuu3DCiMY6Xq223nrrZfdr58s+\n77zzuP/+5LjhjBkz6n3c45Om8cj/TeGpe2+gW9euDBv5b1k30U6dOmU9hGpqali5cmWDzx8Bx33/\nu/zXuaetbkzPKXTp0mXN8whmVvXK2fvoqIjYMiI6RUTviLguIq5JCwJpr6PREbFtROwYEVUx9Okm\nm2zC4YcfznV/vidr223wToy75yEAbr7zAb4xtPGTwhdccAEzZszICsJeewzh6j/dBiQnfJd+8CFL\nP/yIjTfsTreuXfnHvFeYPHlyk7nVF2evPYZw+32P8PY7SUexd99byquvFjWYoplVoXZxorm9Oeus\ns3jn3dW9oS4//2z+8Jfx7LT34dx4x/1c+p8/LCnepf/5Ix6bNI0d9zqcQcOP5vkXX2b4sN1YuWoV\nX9nzMM751eXsumsTPYEaiDNguy9y/tmnsO9Rp7DT3oezz1H/yhtvtOujeGbWAlUxzEVd40/dfa22\nnXpv1PQDi+2yWY+PPvoou7/55puz7KVJ2fI2vbfi0dvGrvWYG264ocEYhTbvuSn3/GHtXk0P3HTF\n6oWCbqSFcUaMGMGIESMajXPEwftxxMH7rRWroXzMrHp5T8HMzDIuCmZmlnFRMDOzjIuCmZllXBTM\nzCzjomBmZhkXhRy9+eabHHnkkWy77bYMGj6SA445jRdf8oVgZtZ+VOV1Cjv9fpt8A456vMlNIoJD\nDz2U4447jnHjxsHrzzBz9ou89c4Stts253waySEi6NDBtd7Mmqcqi0IlPPbYY3Tq1ImTTz45axu4\nw3Z89PEy9jr8JN5b+iGfrVzJ+WefwsH7DWP+gtfZf6+R7LHHHkyaNIlevXpxzz330LVrV+bNm8fJ\nJ5/M4sWLqamp4bYrxrBt3635zdV/5NZ7/5cVn37KocO/xS9++K/MX/A6+40czdDdv8n06dOZMGEC\n22zTOkXI2qe+n9xS1Hbzy5uGtVH+SZmT5557jkGDBq3V3mW9ztx13X/z9EO38Nhtv+Os//yfbOC7\nuXPnMnr0aGbPns1GG23EHXfcAcDRRx/N6NGjmTlzJpMmTWLLzXvw8BNPMfeV15hy/43MeHgc02fN\n4cnJ05M4r7zGKaecwuzZs10QzKxFvKdQZhHBf1x4BU/+/Wk6qAOL3lzMW4uTeQ/69evHzjvvDKwe\n4vrDDz9k0aJFHHrooUAyUildu/LwE5N5+InJfHXfowD4aNky5r6ygD69tmSb3lsWNfaRmVlTXBRy\nssMOO9Q7c9rNdz7A4iXvMf2Bm+nUqRN9hx7IJys+BdYcNrumpobly5c3GD8iOPfUEzjpmBFrtM9f\n8Dpf6NY1p1dhZus6Hz7Kybe//W1WrFixxrSYs55/kVcXvcFmPTahU6dOPPa3qby6sPERSLt3707v\n3r25++67AVixYgXLli9nv2Ff5/q/jOejj5cBsOiNt7Phrs3M8uI9hZxI4q677uLMM8/koosuoktH\n6Nt7K8acdRKn//TX7LjX4Qze6St8+Ut9m4x14403ctJJJ/Gzn/2MTp06cdsVY9h3z68zZ+4rfP2g\n4wFYv1tXbrr8fE+CY1WjmBPg88ufxjqvKovCrBPXvjag3ENnA2y11Vbceuuta8V66t4/1rv9c889\nl93/4Q9Xz7HQv39/Hn300bXyOuPEkZxx4si14zx6W0vSNjPL+PCRmZllXBTMzCzjomBmZpmqKApB\nZBeEWfkl77Xfb7NqVBVF4dX3P2Plsg9cGFpBRLBkyRK6LH250qmYWRlURe+jy//+HqcB22z0DkL1\nbjPnwyIu8Hr/7eKecOmcfGIVEyfPWDm9vi5dutD76YuKi2Vm7UpVFIUPVnzOBU8uaXSb+Rce2HSg\nMUUOFTFmaT6xiomTZ6w8X9+n7xcXy8zalaooCmbrAl/cZa3BRcGsHv4CtnVVVZxoNjOzfLgomJlZ\nxkXBzMwyLgpmZpZxUTAzs4yLgpmZZcpaFCQNl/SCpHmSzqln/YaS7pU0U9JsSSeUMx8zM2tc2YqC\npBrgSmB/YABwlKQBdTYbDTwfEQOBYcB/S+pcrpzMzKxx5dxTGALMi4iXI+JTYBxwcJ1tAuguScD6\nwLvAyjLmZGZmjShnUegFLChYXpi2FboC+ArwOvAscEZEfF43kKRRkqZJmrZ48eJy5Wtmts6r9Inm\n/YAZwFbAzsAVkjaou1FEjI2IwRExuGfPnq2do5nZOqOcYx8tArYuWO6dthU6AbgwkokQ5kl6Bfgy\nMKWMeVmV8nhFZi1Xzj2FqUB/Sf3Sk8dHAuPrbPMasBeApM2B7QHP3mJmViFl21OIiJWSTgUeAmqA\n6yNitqST0/XXAL8EbpD0LCDgxxHxTrlyMjOzxpV16OyImABMqNN2TcH914F9y5mDmZkVr9Inms3M\nrA1xUTAzs4yLgpmZZTwdZzvgrpZm1lq8p2BmZhkXBTMzy/jwkVVUMYfGwIfHzFqLi8I6xF/AZtYU\nHz4yM7OMi4KZmWVcFMzMLOOiYGZmGZ9oLuATsWa2rvOegpmZZVwUzMws46JgZmYZFwUzM8v4RLM1\ni0duNatO3lMwM7OMi4KZmWVcFMzMLONzCmXiY+5m1h55T8HMzDIuCmZmlnFRMDOzTNFFQVJXSduX\nMxkzM6usooqCpO8CM4AH0+WdJY0vZ2JmZtb6it1TGAMMAd4HiIgZQL8y5WRmZhVSbFH4LCKW1mmL\nvJMxM7PKKvY6hdmSRgI1kvoDpwOTypeWmZlVQrF7CqcBOwArgD8DHwBnlispMzOrjKL2FCJiGXBe\nejMzsypVVFGQdC9rn0NYCkwDfhcRnzTwuOHApUAN8PuIuLCebYYBvwU6Ae9ExJ5FZ29mZrkq9vDR\ny8BHwLXp7QPgQ2C7dHktkmqAK4H9gQHAUZIG1NlmI+Aq4KCI2AH4fjNeg5mZ5aTYE827RcTXCpbv\nlTQ1Ir4maXYDjxkCzIuIlwEkjQMOBp4v2GYkcGdEvAYQEW+Xlr6ZmeWp2D2F9SX1qV1I76+fLn7a\nwGN6AQsKlhembYW2AzaW9Lik6ZKOLTIfMzMrg2L3FM4CJkp6CRDJhWunSPoC8McWPv8gYC+gK/CU\npMkR8WLhRpJGAaMA+vTps1YQM6sMDxFffYrtfTQhvT7hy2nTCwUnl3/bwMMWAVsXLPdO2wotBJZE\nxMfAx5KeBAYCaxSFiBgLjAUYPHiwL5ozMyuTUkZJ7Q9sT/KlfXgRh3qmAv0l9ZPUGTgSqDte0j3A\nHpI6SuoGDAXmlJCTmZnlqNguqT8HhpH0IppA0qNoIvCnhh4TESslnQo8RNIl9fqImC3p5HT9NREx\nR9KDwCzgc5Juq8+14PWYmVkLFHtOYQTJHsIzEXGCpM2Bm5p6UERMICkihW3X1Fn+DfCbIvMwM7My\nKvbw0fKI+BxYKWkD4G3WPF9gZmZVoNg9hWnphWbXAtNJLmR7qmxZmZlZRRTb++iU9O416TmADSJi\nVvnSMjOzSih25rW/1t6PiPkRMauwzczMqkOjewqSugDdgB6SNia5cA1gA9a+OtnMzNq5pg4fnUQy\nb8JWJOcSaovCB8AVZczLzMwqoNGiEBGXApdKOi0iLm+lnMzMrEKKPdF8uaTdgL6Fj4mIBi9eMzOz\n9qfYK5pvBLYFZgCr0uagkSuazcys/Sn2OoXBwICI8GB0ZmZVrNgrmp8DtihnImZmVnnF7in0AJ6X\nNAVYUdsYEQeVJSszM6uIYovCmHImYWZmbUOxvY+ekLQN0D8iHknnPqgpb2pmZtbaih3m4l+A24Hf\npU29gLvLlZSZmVVGsSeaRwO7k1zJTETMBTYrV1JmZlYZxZ5TWBERn0rJKBeSOpJcp2BmZk3o+8kt\nRW03v7xpFKXYPYUnJP0H0FXSPsBtwL3lS8vMzCqh2KJwDrAYeJZkkLwJwE/KlZSZmVVGsYePugLX\nR8S1AJJq0rZl5UrMzMxaX7F7Cn8lKQK1ugKP5J+OmZlVUrFFoUtEfFS7kN7vVp6UzMysUootCh9L\n2qV2QdIgYHl5UjIzs0op9pzCGcBtkl4nmX1tC+CIsmVlZmYV0WRRkNQB6Ax8Gdg+bX4hIj4rZ2Jm\nZtb6miwKEfG5pCsj4qskQ2ibmVmVKrr3kaTvqfaSZjMzq0rFFoWTSK5i/lTSB5I+lPRBGfMyM7MK\nKHbo7O7lTsTMzCqv2KGzJemfJP00Xd5a0pDypmZmZq2t2MNHVwFfB0amyx8BV5YlIzMzq5hir1MY\nGhG7SHoGICLek9S5jHmZmVkFFLun8Fk6CF4ASOoJfF62rMzMrCKKLQqXAXcBm0m6AJgI/KqpB0ka\nLukFSfMkndPIdl+TtFLSiCLzMTOzMii299HNkqYDe5EMc3FIRMxp7DHpnsWVwD7AQmCqpPER8Xw9\n210EPNyM/M3MLEeNFgVJXYCTgS+RTLDzu4hYWWTsIcC8iHg5jTUOOBh4vs52pwF3AF8rIW8zMyuD\npg4f/REYTFIQ9gcuLiF2L2BBwfLCtC0jqRdwKHB1Y4EkjZI0TdK0xYsXl5CCmZmVoqnDRwMiYkcA\nSdcBU3J+/t8CP07HV2pwo4gYC4wFGDx4cOScg5mZpZoqCtlIqBGxssShjxYBWxcs907bCg0GxqVx\newAHSFoZEXeX8kRmZpaPporCwIIxjgR0TZcFRERs0MhjpwL9JfUjKQZHsvriN0gC9Ku9L+kG4D4X\nBDOzymm0KERETXMDp3sWpwIPATXA9RExW9LJ6fprmhvbzMzKo9grmpslIiYAE+q01VsMIuL4cuZi\nZmZNK/biNTMzWwe4KJiZWcZFwczMMi4KZmaWcVEwM7OMi4KZmWVcFMzMLOOiYGZmGRcFMzPLuCiY\nmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzjomBmZhkXBTMzy7gomJlZxkXBzMwyLgpmZpZx\nUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaWcVEwM7OMi4KZmWVcFMzM\nLOOiYGZmmbIWBUnDJb0gaZ6kc+pZf7SkWZKelTRJ0sBy5mNmZo0rW1GQVANcCewPDACOkjSgzmav\nAHtGxI7AL4Gx5crHzMyaVs49hSHAvIh4OSI+BcYBBxduEBGTIuK9dHEy0LuM+ZiZWRPKWRR6AQsK\nlhembQ35AfBAGfMxM7MmdKx0AgCSvkVSFPZoYP0oYBRAnz59WjEzM7N1Szn3FBYBWxcs907b1iBp\nJ+D3wMERsaS+QBExNiIGR8Tgnj17liVZMzMrb1GYCvSX1E9SZ+BIYHzhBpL6AHcCx0TEi2XMxczM\nilC2w0cRsVLSqcBDQA1wfUTMlnRyuv4a4GfApsBVkgBWRsTgcuVkZmaNK+s5hYiYAEyo03ZNwf0T\ngRPLmYOZmRXPVzSbmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzjomBmZhkXBTMzy7gomJlZ\nxkXBzMwyLgpmZpZxUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaWcVEw\nM7OMi4KZmWVcFMzMLOOiYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzj\nomBmZhkXBTMzy7gomJlZpqxFQdJwSS9ImifpnHrWS9Jl6fpZknYpZz5mZta4shUFSTXAlcD+wADg\nKEkD6my2P9A/vY0Cri5XPmZm1rRy7ikMAeZFxMsR8SkwDji4zjYHA3+KxGRgI0lbljEnMzNrhCKi\nPIGlEcDwiDgxXT4GGBoRpxZscx9wYURMTJf/Cvw4IqbViTWKZE8CYHvghSJS6AG80+IXkl+cPGO1\nxZzyjOWcWjdOW43lnPKNtU1E9GwqUMd88imviBgLjC3lMZKmRcTglj53XnGqPac8Yzmn9ptTnrGc\nU2VilfPw0SJg64Ll3mlbqduYmVkrKWdRmAr0l9RPUmfgSGB8nW3GA8emvZB2BZZGxBtlzMnMzBpR\ntsNHEbFS0qnAQ0ANcH1EzJZ0crr+GmACcAAwD1gGnJBjCiUdbmqFOHnGaos55RnLObVunLYayzlV\nIFbZTjSbmVn74yuazcws46JgZmYZFwUzM8u4KJiZWaZdXLzWGEkbAucChwCbAQG8DdxDcrX0+yXG\n+zLJ8Bu90qZFwPiImFOJOOtATh2BHwCHAlsVxLoHuC4iPis1t5bK8zOVVyzn1L5fX3tSDXsKtwLv\nAcMiYpOI2BT4Vtp2aymBJP2YZIwmAVPSm4A/1zfKa7njVHtOqRuBnYExJN2TDwB+AQwEbioxrw0l\nXSjpH5LelbRE0py0baMSQuX2mcoxlnNq/Vh55lQ7KvRQSYelt6GSVGqcvGOtJSLa9Q14oTnrGtj+\nRaBTPe2dgbmtHafac6qN1Zx1DWz/EPBjYIuCti3Stocr9JnKJZZzavevb1+S67EeAH6f3h5M2/at\nVKz6btWwp/CqpLMlbV7bIGnz9NfsghJjfc7qQxiFtkzXtXacas8J4F1J35eUfRYldZB0BMkvslL0\njYiLIuLN2oaIeDMiLgK2KSFOnp+pvGI5p9aPlWdOlwJ7R8T+EXFiehsO7JOuq1SstbT7cwrAEcA5\nwBOSNkvb3iIZQuPwEmOdCfxV0lxW/9H7AF8CTm3wUeWLU+05QTL8yUXAVZJqi8BGwGPpulK8Kuls\n4I8R8RYk/4mB4yntP3Gen6m8Yjmn1o+VZ04dgYX1tC8COlUw1lp8RXMd6S/WIax5AnVqRKyqRJxq\nz6lOzE0BImJJMx+/Mcl/4oNJTgzC6v/EF0XEu83NzawlJJ1LUkjGsfoHytYkP3xujYj/qkSseuNX\nc1GQtEtEPF3pPKx5JG1ReCioLcjzM5VXLOfU+rGaE0fSV6i/x97zzXj+3GKtpaUnJdryDbg2x1j3\ntaU41Z5TGuv+HGPtklOcPD9TucRyTu379bW1W1XvKeRJ0paRw7DeecWp9pzyJunaiPiXSudhVpek\nMRExpq3EqoqikPbPrXt8e0pUw4tbR6QnhLO/X6QniiuYT26fqbxiOafWj9Ua3y2SvhsR97aVWO2+\nKEjaF7gKmMvqWdt6k/SEOSUiHi4hVpu7ErKac0pj7QxcA2zImn+/90n+fqUet23xf+KcP1O5xHJO\n7fv1tSuVPn7V0hswh6R/et32fsCcEmPldfFTLnGqPaf0cTOAofW07wrMLDFWLhf15PyZyiWWc2rf\nry993H7A1SS94can94eXGifvWGvFziNIJW8kVbxjPe2dgXklxmqLV0JWbU61f79G1pX698vryyDP\nz1QusZxTu399vyWZafJIYI/0dmTadmmlYtV3q4aL164Hpkqqr8/udSXGyuvip7ziVHtOAA9Iuh/4\nE2v+/Y4l+ZVfirwu6snzM5VXLOfU+rHyzOmAiNiubqOkv5AMG3NGhWKtpd2fUwCQNAA4iBb22a1z\n8VPtpe1vUuLFT3nFqfacCuLtz5p9rl8H7omICSXGyfMCoVw+U3nGck6tHyvHOLOAH0TE1DrtQ0hG\nA96xErHqjV8NRcGqi6SnI2KXZj42ty8Ws7xI2oXkuH93Vu/Nbg0sBUZHxPRKxKo3fnsvCnn2hEnj\nVfPcBW0upwZiPxMRX21pnBY8f5vrqeWc2vfrK4i5BWt2vW72Fft5xipUDaOkej6FdppTI65tzoPk\n+RScU76xcp9PgWS03uyWtpUsz1hraemZ6krf8HwK7TanMnwWPJ/COp5TG359nk+hFb0qz6fQXnPK\nW9/wfArrek55xsozJ8+n0IoKxzyv2xPG8ym07Zzy9qryn09hc5JjyXmM7d+SWA19zu9tQzm1hfcp\nz1i1cR4veM89n8K6RlU8d0FbzClPanw+hQsjouiZ3NIT6b2ByRHxUUH78Igo6fqJtKtgRMRUSTsA\nw0kupiupy209cW+MiGNaEiON8w2Sv+WzUdpwEkOBf0TEUkndSN77XYDZwK8iYmkJsU4H7oqIUn+B\n1xerM3AUycnXRyQdDewGPA+MjYjPSoi1LXAYSe+eVcALwC0R8UGJOXk+hdZU5p4wm0QOk7NIOigi\nxrc0Tp45lYOk9Qu/RNsKSSdExB+K3PZ0YDTJFdI7A2dExD3pupK6y0r6ObA/ya+7/yX58n2cZFf/\noYi4oMg49X12vg08ChARB5WQ05SIGJLeP5Hktd5Ncqz63oi4sMg4s4GBEbFS0ljgY+AOYK+0/bAS\nclqaPv4l4Bbgtoh4p9jH14l1M8n73ZWkm+YXgLvSvBQRxxUZ53TgO8CTwAHAMyRjch1KMvbR4yXm\nled8CuXret3SkxKVvpGcRJxB8ivln9LbObVtJcb6ScH9ASQnVF8B5lPP+DyNxDmsntubtfdLzGl3\nki+n2cBQki+Wl0h+IXy9hDg7AZPTx40FNi5YNyXHv8drlf5MtDQv4Flg/fR+X2AaSWEAeKbE530W\nqAG6AR8AG6TtXYFZJcR5GrgJGAbsmf77Rnp/zxJzeqbg/lSgZ3r/CyR7C8XGmVOYX511M0rNiaQ3\n5L4kVwsvJjl5ehzQvcRYs9J/O5LsKdakyyrxPX+24LHdgMfT+31K/Ry0p1s1nFP4AbBD1NkllPQ/\nJF+kRf3qSR0GnJ/e/w3JF8ED6e7/b0l2QYvxF5KeMG+TfBAh+Q/3XZLjm3eWkNMlJLuK6wP3A4dE\nxEQlF7BcTlI0inEVMIakMJwITEz3Xl6ixOOQkv69oVVpnhWh5ErPelex+srrYnSIdG8nIuZLGgbc\nLmkbVv+Mh3BrAAAFrklEQVQ9i7UykkNqyyS9FOlhh4hYLqmUk/KDSYYvOA/4UUTMkLQ8Ip4oMR+A\nDumhtg4kX3qL05w+lrSyhDjPFeyBzZQ0OCKmSdoOKPoQTSoi4nPgYeBhSZ1I9rCOAi4GepYQq0N6\nCOkLJF/mGwLvAuvRvOP3q9LHrp8m+lqaXy4kPRAR+5ew/QYk10/0BiZExJ8L1l0VEae0JJ9qKAq1\nPWFerdPe0p4wvSLiAYCImCKpawmP3Y2kGE2NiKsBJA2LiBOakUeniHg2jbE4IiamOT1dYk7dY/Wx\n8IslTQcelHQMSaEqxa9IimZ9XyCV7NG2OcnokXXPHQiYVEKctyTtHBEzACLiI0nfIRkLp9QhBD6V\n1C0ilgGDsoSSC6OK/nymX5iXSLot/fctmv//d0NgOsn7EkonRpK0PqUVvROBSyX9BHgHeErSApK9\n0RNLzGmN501/5I0HxqfnK0pxHfAPkj2084DbJL1MMvLuuBLi/J5k7KO/A98ALgKQ1JOkyBQt/RFX\n7yqSQ5Sl+APJYH13AP8saQQwMiJWkLzGlqn0rkpLbyQn7Wr77I5Nb7V9dksaSpbkeOF4kh4d7wDd\nCtY9V2KsDiS/7B4jOY78cjNf38yC+4fUWVd0TsBMYMM6bTulH64lJeY0CRjUwLoFFfwsXAfs0cC6\nW0qI05uCax3qrNu9xJzWa6C9B7BjC17rgSQnc/N8/7oB/ZrxuA2AgSRFb/NmPvd2Ob+WrYCt0vsb\nASOAIc2Is0P62C+3MJ9VJOd/HqvntrzEWDPqLJ8H/A3YlDqH8Zpzq5YTzXn1ztmzTtN0kl3GAEZE\nxJXNyG0rkkNPgyJi22Y8/iDgkUh+ada2bUGya/y9iPh1kXFGkhSmyXXidAZ+GiVMVSlpe5JC8k5B\n2xYR8aakzaPCs6aZtTWSngMOjYi59axbEBFblxBrDskh888L2o4HfkRyLqyUa3LWjl8NRaEhefSE\nKbW3SbnjVHtOZtUoPcTzbES8UM+6QyLi7hJi/ZrkCv1H6rQPBy6PiP4tybUazik05nmSngItkc94\nIvnFyTNWW8zJrOpExO2NrN64xFhnN9D+oKRflZRYPdp9UWiFnjDNGpytjHHyjNUWczJb1/yC5ORx\nm4jV7g8fSfqEhnvC/FtElDI6pplZ7proLr1dRKxXiVj1afd7CiQX9dwd9UwskV6taWZWaXl1l847\n1lqqoSicACwpbKjtCUNywY+ZWaXdR9IzaEbdFZIer2CstbT7w0f1cU8YM7PmqYb5FOrjnjBmZs1Q\nrUXBPWHMzJqhKg8fmZlZ81TrnoKZmTWDi4KZmWVcFGydJikk3VSw3FHSYkn3leG5Hpc0uGC5bzpQ\nGpKOl3RFY9ubtQYXBVvXfQz8v4K5KfYhGWXXbJ3komAGE0jmJ4Bkpq/Cmay+IOl6SVMkPSPp4LS9\nr6T/k/R0etstbR+W/sK/XdI/JN0syV2krd2ohiuazVpqHPCz9JDRTiQzrH0jXXce8GhE/LOkjYAp\nkh4hmWp1n4j4RFJ/kkJSe6jnqySTs7xOMvnJ7sDEdN3Nkpan9zvTstkBzXLnomDrvIiYJakvyV7C\nhDqr9wUOkvTDdLkLyXDsrwNXSNqZZFat7QoeMyUiFgJImgH0ZXVRODoipqXr+pIMWQANT4nqPuPW\nqlwUzBLjSSaIH0YyrWEtkcxwt8bkKJLGAG+RTEPZAfikYPWKgvurKO7/2RLWHld/E5JpYc1ajc8p\nmCWuB34REc/WaX8IOK32vICkr6btGwJvpFMiHkMySXxLTAV2T6dIJe11tB6woIVxzUriPQUzID3c\nc1k9q35JMsf2rHQu8FeA7wBXAXdIOhZ4kKQXU0ue/y1JZwAT0uf5CDiqcB5es9bgYS7MzCzjw0dm\nZpZxUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8u4KJiZWcZFwczMMv8f7kPhvLm5VQ8AAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118d9860>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEpCAYAAAB8/T7dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFdWd//H3hwbEfQE1UWSJISqoEEHE5RlJRCLGUfzF\niEvcJoqOa2bMgmMWk+hEs8tEY9C477uoGLeoGUVGQBFFNBDEAC4oKAq4od/fH1VdXpru29V9u/rS\n3Z/X89TDrVP1PefUpe/93tpOKSIwMzMD6FTtDpiZ2drDScHMzDJOCmZmlnFSMDOzjJOCmZllnBTM\nzCzjpGAGSDpH0rUtvW6FfTpW0uNFt2NWyknB2ixJ8yUtlrR+Sdnxkh6tYrdWI+lRScdXux9meTkp\nWFtXA5xR7U6YtRdOCtbW/Qr4rqRN6i6QtIekqZKWpf/uUbKsr6THJL0n6UGgR8my4ZIW1qlrvqQR\n9XVA0jBJkyW9I+lZScMbWG+4pIWSzkz3cF6TdFzJ8u6SJkp6V9JTwLZ14reX9KCkpZJeknRoWt5V\n0gxJp6XzNZKekPTjxt8+s9U5KVhbNw14FPhuaaGkzYB7gfFAd+C3wL2SuqerXA9MJ0kGPweOaU7j\nkrZO2zkX2Cztx22SNm8g5HPAxsDWwLeBiyRtmi67CPgA+Dzwb+lU2876wINpv7cADgMultQ/Ij4C\nvgX8TNIOwDiSPajzmrNN1rE5KVh78GPgtDpfxF8H5kTENRGxKiJuAF4E/lVSL2BX4EcR8WFE/A24\nu5ltfwuYFBGTIuLTiHiQJFHt38D6HwM/i4iPI2ISsBzYTlIN8A3gxxGxIiKeB64qiTsAmB8RV6Tb\n8wxwG/BNgHT9c4E7SRLTURHxSTO3yTowJwVr89IvxHtIfiHX2gp4pc6qr5D8Qt8KeDsiVtRZ1hy9\ngW+mh47ekfQOsBfJr/36LImIVSXzK4ENgM2BzsCCBvrUG9itTjtHkux51LoqXW9SRMxp5vZYB+ek\nYO3FT4ATSL70AV4l+YIs1QtYBLwGbFp61VK6rNYKYL3amfRXfEOHgxYA10TEJiXT+hFxfhP7/yaw\nCtimgT4tAB6r084GEfHvJetcTJIcvyZprya2bwY4KVg7ERFzgZuA09OiScCXJB0hqbOkMUB/4J6I\neIXkEM9P05O0ewH/WlLd34Fukr4uqQvwQ2CdBpq+luSQ1NfSE7zd0hPKPZvY/0+A24FzJK0nqT+r\nn+e4J92eoyR1Sadd03MISDoKGAwcm74HV0naoCl9MAMnBWtffgasDxARS0iOw58JLAG+DxwQEW+l\n6x4B7AYsJdnLuLq2kohYBpwMXEayZ7ECWO1qpJJ1FwAHAf9F8mt/AfA9mvfZOpXkUNLrwJXAFSXt\nvAeMJDnB/Gq6zgXAOuk5kt8DR0fE8oi4niTp/a4ZfbAOTn7IjpmZ1fKegpmZZZwUzMws46RgZmYZ\nJwUzM8s4KZiZWaZztTvQVD169Ig+ffpUuxtmZm3K9OnT34qIhm7CzLS5pNCnTx+mTZtW7W6YmbUp\nknIN5eLDR2ZmlnFSMDOzjJOCmZll2tw5BTNrWz7++GMWLlzIBx98UO2udAjdunWjZ8+edOnSpVnx\nTgpmVqiFCxey4YYb0qdPHyRVuzvtWkSwZMkSFi5cSN++fZtVR2GHjyRdnj6H9vkGlkvSeElzJc2U\ntEtRfTGz6vnggw/o3r27E0IrkET37t0r2isr8pzClcB+ZZaPAvql01jgjwX2xcyqyAmh9VT6XheW\nFNLn3i4ts8pBwNWRmAJsIqmhRxiamTWbJM4888xs/te//jXnnHNO9Tq0FqvmOYWtWf15tAvTstfq\nrihpLMneBL169Vp94Tkbl2/lnGWNLHe849tp/Fra9z7j7i0f10TzT9+q/gVbfTl7uc4663D77bdz\n1lln0aNHDwDeePcDZi58p8F6d+65SfmGX32m/PKS9ouO/+STT6ipqfls2TuLgR3KxzegTVySGhET\nImJIRAzZfPNG79I2M1tN586dGTt2LL/73ZoPo1u04J8cP+ZADtl3T0447CBeW5T8Vj322GM5/fTT\n2WOPPfjCF77ArbfeWm/db7y5hIO/fSYDR4xh4IgxTJ76LACjR49m8ODBDBgwgAkTJmTrb7DBBpx9\n9tkMHDGGYQcczRtvLqm/nsmTAbj22msZOnQogwYN4sQTT+STTz5J6um3J2f+9LcMHDGGJ6fPbLH3\nqppJYRGrP6S8Z1pmZtbiTjnlFK677jqWLVt9D+b8H3+fAw85nFsffIL9R3+TC348Llv22muv8fjj\nj3PPPfcwbty4ulUCcPqPfsnew3bh2Ydu4un7r2fAdl8A4PLLL2f69OlMmzaN8ePHs2RJ8uW/YsUK\nhg0bxrMP3cS/DNuFS6+7o/56Bgxg9uzZ3HTTTTzxxBPMmDGDmpoarrvuuqSele+z25d35NmHbmKv\noY3sVTRBNZPCRODo9CqkYcCyiFjj0JGZWUvYaKONOProoxk/fvxq5TOnT2XU6EMAOOAbY3hm6pRs\n2ejRo+nUqRP9+/fnjTfeqLfevz4xlX8/+psA1NTUsPFGGwIwfvx4Bg4cyLBhw1iwYAFz5swBoGvX\nrhxwwAEADN5pB+YvfLX+ejbemIcffpjp06ez6667MmjQIB5++GHmzZuXrfONr+/TIu9NqcLOKUi6\nARgO9JC0kOTh6F0AIuISYBKwPzAXWAkcV1RfzMwAvvOd77DLLrtw3HH5vm7WWWed7HXt8+zPPvts\n7r33Xvj4fWY8eGO9cY9OnsZDDz3Ek08+yXrrrcfw4cOzy0S7dOmSXSFUU1PDqlWfNNh+RHDMMcfw\ni1/8Yo1l3dbpuvp5hBZS5NVHh0fE5yOiS0T0jIg/R8QlaUIgverolIjYNiJ2iggPfWpmhdpss804\n9NBD+fOf/5yVDRw8lL9MvA2ASXfcwpeH7l62jvPOO48ZM2ZkCWGfvYbyx6tvAZITvsvefY9l7y1n\n0003Zb311uPFF19kypQp5aqsv55ly9hnn3249dZbWbx4MQBLly7llVdyDXbabG3iRLOZWUs588wz\neeutt7L5cT+/gLtuvp5D9t2Te26/iR/8dM1f5eVc+LPv8cjkaey0z6EM3u9IXvj7PPYbvgerVq1i\nhx12YNy4cQwbNqzp9bzwAv379+fcc89l5MiR7Lzzzuy777689lqxR9k9zIWZtar55389eVH0JZ0l\nli9fnr3ecsstWblyZXY56lY9e3HZTRPXiLnyyisbrKPUlpt3564r1ryq6b777mu0L4ccMIJDDhhR\nfz3p9o8ZM4YxY8asWc+cJ+qtv1LeUzAzs4yTgpmZZZwUzMws46RgZmYZJwUzM8s4KZiZWcZJwcza\nvddff53DDjuMbbfdlsGDB7P//vszf97candrreT7FMysdTU25HZTjX207OKI4OCDD+aYY47hxhuT\nu5CfffZZnpm7iD5f+GLL9qVMHyKCTp3W/t/ha38Pzcwq8Mgjj9ClSxdOOumkrGzgwIFsv+POnHDY\nQYwZtTffGLEHj9w/CUiG0h79ld044YQTGDBgACNHjuT9998HYO7cuYwYMYKBAweyy9eO4B/zk2G2\nf/XHq9h1/2+x84hD+cmvk4dIzp8/n+22246jjz6aHXfckQULFtAWOCmYWbv2/PPPM3jw4DXKu67T\njd9deg033fcYl918N7/5+Q+zQe/++fI/OOWUU5g1axabbLIJt92WjI105JFHcsopp/Dss88y+a4r\n+PyWPXjgsSeZ8/I/eerea5jxwI1Mnzmbv02ZDsCcOXM4+eSTmTVrFr179269ja6ADx+ZWYcUEYy/\n4Oc8/X+T6dSpE4tff40lbyYDz229TW8GDRoEwODBg5k/fz7vvfceixYt4uCDDwagW7dkBNUHHpvC\nA49N4csjDwdg+cqVzHl5Ab12gd69e+ca92ht4qRgVkV9Pri+7PL5rdONdm3AgAH1PjVt0h238PaS\nJdww6VG6dOnCqN135sMPPwSgS9eu2Xo1NTXZ4aP6RARnnXocJx51yGrl8z+C9ddfv4W2ovX48JGZ\ntWtf/epX+fDDD1d7JObMmTN5bdECNuvRgy5duvDU5P/l1YXlj/lvuOGG9OzZkzvvvBOADz/8iJXv\nv8/Xhu/O5TdNZPmKlQAsem0xi99aWtwGFcxJwczaNUnccccdPPTQQ2y77bYMGDCAs846i72+si8v\nzJzBN0bswd233kjfL36p0bquueYaxo8fz84778weBx3L64uXMHLv3Tli9H7sfuCx7LTPoRwy9nu8\nt3xFK2xZMXz4yMxa1znpM5Jbcejsrbbaiptvvnm1spkL3+Gaux6od/3bH34ye/3d7343e92vXz/+\n+te/rtH+GccfwRnHH1Gn0T48//zzufu4tvCegpmZZZwUzMws46RgZmYZJwUzK1ztTWFWvOS9bv77\n7aRgZoXq1q0bS5YscWJoBRHBkhWr6LZsXrPr8NVHZlaonj17snDhQt58883VF7yzuHzgstnll1cY\n/8bbDd+QBjD7vXULbb+Y+KDbsnn0fPoC2O/k8vENcFIws0J16dKFvn37rrngnEaGf6i9dLXB5ZXF\njxp3b9nl88//eqHtFx7fTE4KZm1YuWEy5rdeN6wd8TkFMzPLOCmYmVnGScHMzDI+p2BmzeJhv9sn\n7ymYmVnGScHMzDJOCmZmlin0nIKk/YALgRrgsog4v87yjYFrgV5pX34dEVcU2Sdbu/i4tNnapbA9\nBUk1wEXAKKA/cLik/nVWOwV4ISIGAsOB30jqipmZVUWRh4+GAnMjYl5EfATcCBxUZ50ANpQkYANg\nKbCqwD6ZmVkZRSaFrYHSJ2EvTMtK/QHYAXgVeA44IyI+rVuRpLGSpkmatsagWmZm1mKqfaL5a8AM\nYCtgEPAHSRvVXSkiJkTEkIgYsvnmm7d2H83MOowik8IiYJuS+Z5pWanjgNsjMRd4Gdi+wD6ZmVkZ\nRSaFqUA/SX3Tk8eHARPrrPNPYB8ASVsC2wHNfzqEmZlVpLBLUiNilaRTgftJLkm9PCJmSTopXX4J\n8HPgSknPAQJ+EBFvFdUnMzMrr9D7FCJiEjCpTtklJa9fBUZW0kZHv869o2+/mbWsap9oNjOztYiT\ngpmZZZwUzMws4+cpdHA+J2FmpTp8UvCXopnZZzp8UrDKOKmatS8+p2BmZhknBTMzyzgpmJlZxknB\nzMwyTgpmZpbx1UfWofnqKbPVOSmYVaAtJ5W23Hcrjg8fmZlZxknBzMwyTgpmZpZxUjAzs4yTgpmZ\nZXz1UYUqvYLDV4CY2drEewpmZpZxUjAzs4yTgpmZZXxOwdo0n5Mxa1neUzAzs4yTgpmZZXInBUnr\nStquyM6YmVl15UoKkv4VmAH8JZ0fJGlikR0zM7PWl3dP4RxgKPAOQETMAPoW1CczM6uSvEnh44hY\nVqcsWrozZmZWXXkvSZ0l6QigRlI/4HRgcnHdMjOzasi7p3AaMAD4ELgBeBf4TlGdMjOz6si1pxAR\nK4Gz08nMzNqpXElB0t2seQ5hGTAN+FNEfNBA3H7AhUANcFlEnF/POsOB3wNdgLciYu/cvTczsxaV\n9/DRPGA5cGk6vQu8B3wpnV+DpBrgImAU0B84XFL/OutsAlwMHBgRA4BvNmMbzMysheQ90bxHROxa\nMn+3pKkRsaukWQ3EDAXmRsQ8AEk3AgcBL5SscwRwe0T8EyAiFjet+2Zm1pLy7ilsIKlX7Uz6eoN0\n9qMGYrYGFpTML0zLSn0J2FTSo5KmSzo6Z3/MzKwAefcUzgQel/QPQCQ3rp0saX3gqgrbHwzsA6wL\nPClpSkT8vXQlSWOBsQC9evVaoxIzM2sZea8+mpTen7B9WvRSycnl3zcQtgjYpmS+Z1pWaiGwJCJW\nACsk/Q0YCKyWFCJiAjABYMiQIb5pzsysIE0ZJbUfsB3Jl/ahOQ71TAX6SeorqStwGFB3vKS7gL0k\ndZa0HrAbMLsJfTIzsxaU95LUnwDDSa4imkRyRdHjwNUNxUTEKkmnAveTXJJ6eUTMknRSuvySiJgt\n6S/ATOBTkstWn69ge8zMrAJ5zykcQrKH8ExEHCdpS+DaxoIiYhJJEiktu6TO/K+AX+Xsh5mZFSjv\n4aP3I+JTYJWkjYDFrH6+wMzM2oG8ewrT0hvNLgWmk9zI9mRhvTIzs6rIe/XRyenLS9JzABtFxMzi\numVmZtWQ98lrD9e+joj5ETGztMzMzNqHsnsKkroB6wE9JG1KcuMawEaseXeymZm1cY0dPjqR5LkJ\nW5GcS6hNCu8CfyiwX2ZmVgVlk0JEXAhcKOm0iPifVuqTmZlVSd4Tzf8jaQ+gT2lMRDR485qZmbU9\nee9ovgbYFpgBfJIWB2XuaDYzs7Yn730KQ4D+EeHB6MzM2rG8dzQ/D3yuyI6YmVn15d1T6AG8IOkp\n4MPawog4sJBemZlZVeRNCucU2QkzM1s75L366DFJvYF+EfFQ+uyDmmK7ZmZmrS3vMBcnALcCf0qL\ntgbuLKpTZmZWHXlPNJ8C7ElyJzMRMQfYoqhOmZlZdeRNCh9GxEe1M5I6k9ynYGZm7UjepPCYpP8C\n1pW0L3ALcHdx3TIzs2rImxTGAW8Cz5EMkjcJ+GFRnTIzs+rIe0nqusDlEXEpgKSatGxlUR0zM7PW\nl3dP4WGSJFBrXeChlu+OmZlVU96k0C0iltfOpK/XK6ZLZmZWLXmTwgpJu9TOSBoMvF9Ml8zMrFry\nnlM4A7hF0qskT1/7HDCmsF6ZmVlVNJoUJHUCugLbA9ulxS9FxMdFdszMzFpfo0khIj6VdFFEfJlk\nCG0zM2uncl99JOkbklRob8zMrKryJoUTSe5i/kjSu5Lek/Rugf0yM7MqyDt09oZFd8TMzKov79DZ\nkvQtST9K57eRNLTYrpmZWWvLe/joYmB34Ih0fjlwUSE9MjOzqsl7n8JuEbGLpGcAIuJtSV0L7JeZ\nmVVB3j2Fj9NB8AJA0ubAp4X1yszMqiJvUhgP3AFsIek84HHgvxsLkrSfpJckzZU0rsx6u0paJemQ\nnP0xM7MC5L366DpJ04F9SIa5GB0Rs8vFpHsWFwH7AguBqZImRsQL9ax3AfBAM/pvZmYtqGxSkNQN\nOAn4IskDdv4UEaty1j0UmBsR89K6bgQOAl6os95pwG3Ark3ot5mZFaCxPYWrgI+B/wVGATsA38lZ\n99bAgpL5hcBupStI2ho4GPgKZZKCpLHAWIBevXrlbN7M1mZ9Pri+7PL5rdONZmvr/W9IY0mhf0Ts\nBCDpz8BTLdz+74EfpOMrNbhSREwAJgAMGTIkWrgPZmaWaiwpZCOhRsSqJg59tAjYpmS+Z1pWaghw\nY1pvD2B/Sasi4s6mNGRmZi2jsaQwsGSMIwHrpvMCIiI2KhM7FegnqS9JMjiMz25+g6SCvrWvJV0J\n3OOEYGZWPWWTQkTUNLfidM/iVOB+oAa4PCJmSTopXX5Jc+s2M7Ni5L2juVkiYhIwqU5ZvckgIo4t\nsi9mZta4vDevmZlZB+CkYGZmGScFMzPLOCmYmVnGScHMzDJOCmZmlnFSMDOzjJOCmZllnBTMzCzj\npGBmZhknBTMzyzgpmJlZxknBzMwyTgpmZpZxUjAzs4yTgpmZZZwUzMws46RgZmYZJwUzM8s4KZiZ\nWcZJwczMMk4KZmaWcVIwM7OMk4KZmWWcFMzMLNO52h0wM2uOPh9cX3b5/NbpRrvjPQUzM8s4KZiZ\nWcZJwczMMk4KZmaWcVIwM7OMk4KZmWUKTQqS9pP0kqS5ksbVs/xISTMlPSdpsqSBRfbHzMzKKywp\nSKoBLgJGAf2BwyX1r7Pay8DeEbET8HNgQlH9MTOzxhW5pzAUmBsR8yLiI+BG4KDSFSJickS8nc5O\nAXoW2B8zM2tEkUlha2BByfzCtKwh3wbuK7A/ZmbWiLVimAtJXyFJCns1sHwsMBagV69erdgzM7OO\npcg9hUXANiXzPdOy1UjaGbgMOCgiltRXUURMiIghETFk8803L6SzZmZWbFKYCvST1FdSV+AwYGLp\nCpJ6AbcDR0XE3wvsi5mZ5VDY4aOIWCXpVOB+oAa4PCJmSTopXX4J8GOgO3CxJIBVETGkqD6ZmVl5\nhZ5TiIhJwKQ6ZZeUvD4eOL7IPpiZWX6+o9nMzDJOCmZmlnFSMDOzjJOCmZllnBTMzCzjpGBmZhkn\nBTMzyzgpmJlZxknBzMwyTgpmZpZxUjAzs4yTgpmZZZwUzMws46RgZmYZJwUzM8s4KZiZWcZJwczM\nMk4KZmaWcVIwM7OMk4KZmWWcFMzMLOOkYGZmGScFMzPLOCmYmVnGScHMzDJOCmZmlnFSMDOzjJOC\nmZllnBTMzCzjpGBmZhknBTMzyzgpmJlZxknBzMwyhSYFSftJeknSXEnj6lkuSePT5TMl7VJkf8zM\nrLzCkoKkGuAiYBTQHzhcUv86q40C+qXTWOCPRfXHzMwaV+SewlBgbkTMi4iPgBuBg+qscxBwdSSm\nAJtI+nyBfTIzszIUEcVULB0C7BcRx6fzRwG7RcSpJevcA5wfEY+n8w8DP4iIaXXqGkuyJwGwHfBS\nmaZ7AG9V0HXHO76txrflvju++PjeEbF5Y5V0rqADrSYiJgAT8qwraVpEDGluW453fFuNb8t9d3z1\n42sVefhoEbBNyXzPtKyp65iZWSspMilMBfpJ6iupK3AYMLHOOhOBo9OrkIYByyLitQL7ZGZmZRR2\n+CgiVkk6FbgfqAEuj4hZkk5Kl18CTAL2B+YCK4HjWqDpXIeZHO/4dhjflvvu+OrHAwWeaDYzs7bH\ndzSbmVnGScHMzDJOCmZmlnFSMDOzTJu4ea0xkrYEtk5nF0XEG02I3Z5kuI0sHpgYEbOLjG2pOlqi\nD9Z0kjYGzgJGA1sAASwG7iK5S/8dxzu+iPhK225Mm95TkDRI0hTgUeCX6fSYpCl5RlyV9AOSMZkE\nPJVOAm6ob1TXloptqTpaIH5jSedLelHSUklLJM1OyzZxfFk3A28DwyNis4joDnwlLbu5sbYd7/gK\n4ittu7yIaLMTMINkPKW65cOAZ3PE/x3oUk95V2BOUbEtVUcLxN8P/AD4XEnZ59KyBxxfNval5ixz\nvOMrja+07camNr2nAKwfEf9XtzCSEVfXzxH/KbBVPeWfT5cVFdtSdVQa3yciLoiI12sLIuL1iLgA\n6O34sl6R9P300CWQHMZM994W5Gjb8Y5vbnylbZfV1pPCfZLulTRG0h7pNEbSvcBfcsR/B3hY0n2S\nJqTTX4CHgTMKjG2pOiqNb8sfjGrHjwG6kxyuXCppKclhzM2AQ3O07XjHNze+0rbLavN3NEsaRf0n\nWifljO9E8uyH0vipEfFJkbEtVUeF/d8UGEfy/m2RFr9BMibVBRGx1PFmHUubTwpmaxtJu0TE0453\nfGvHV9o2tP3DRw1S8mCeSuLvqUZsS9XRAvEVPS+7g8f/eyVtO97xVWy7/e4pSDoxIv5UQfzno5nD\neFcS21J1tED8pRFxguPNOpY2nxTkm7esSiSJNc/nPBU5P1SOd3xz4yttu2zdbTkppFeJHE5yA9fC\ntLgnyQN9boyI8xuJr+pdhZXW0UJ9aLMfjGrGSxoJXAzM4bOnBfYEvgicHBEPON7xRcRX2najKr3R\noZoTVbx5q5LYlqqjBeJHkjzg6D7gsnT6S1o20vFlY2eT3OdQt7wvMDtH2453fLPiK2270b5VWkE1\nJ+BFoHc95b1pA3cVVlpHC8S32Q9GteNJfqV1rqe8KzA3R9uOd3yz4ittu7GprQ+IV3vz1hw+u9mo\nF8lu1Kk54l+R9H3gqkgH0VNyI9Ox5LyrsJmxLVVHpfGd+eywW6lFQBfHl3U5MFXSjXz2Xm9Dcujy\nzznaLiK+F8mNTdWKr/b2d5T3r9JtL6tNn1OAFr15a0uSY/K5bl6qJxbgdeBukuP5jd74VEn7LRR/\nFskdkPX9cd0cEb+oQnztB6ta8U3pf3/gQNa8yOGFcnEtGL8D9V9k0Vrx1d7+Dvv+VbrtZetu60mh\nUunVSz2BKRGxvKR8v4jIM1RGaV3XRMRRTVh/N+DFiFgmaT2SL/hdgFnAf0fEskbiu5KcaF8UEQ9J\nOhLYA3gBmBARH+fogz+YBX24WpukLSJicQXx3SNiSUv2qS3x+5eq9PhTW56A04GXgDuB+cBBJcue\nbiR2Yj3T8trXOdufRXpsEJgA/A7YC/gJcHuO+OuAm9I2rwFuB44CriQ5pFT197gZ/ydbVBjfvZX6\nuTFwPsl5raXAEpJzFOcDm+SI3wj4Rfr/dnidZRfniN+snmk+sCmwWY7484Ee6evBwDySY9WvAHvn\niB8CPAJcS7J39SDwDjAV+LLfv+K2v9Jtb7RvLf1haUsT8BywQfq6DzANOCOdf6aR2KfTD8RwYO/0\n39fS143+UaR1zC6tr86yGTniZ6b/diY5bFSTzqt2WSPxHf2D2ewvNiq/8uu2tP+jSZL6bcA69f0t\nNBD/KfBynenj9N95ef72S14/Auyavv4SMC1H/FPAKJI91QXAIWn5PsCTOeI7+vtXyZWPFW17o32r\ntIK2PAGz6sxvQHJJ4m9p5EuZZIiQ/0i/SAalZY3+MdWp4xbguPT1FcCQkj+sqTninye54mBT4D3S\nL1KgG/muvunoH8xmf7FR+ZVfM+rMnw08QTL6ZZ737sz0b3WnkrKXm/C3N5vP9lKnNPS+lol/puT1\nPxta5vev5be/0m1vtG+VVtCWJ+CvpF/oJWWdgauBT3LW0ZPky/0PdT8cOWI3JjnU8w/g/9IvxHnA\nY8DAHPH/ka7/CsmhsIeBS0n2gH6SI76jfzCb/cUGPAB8H9iypGxLkoT6UM6+d6pTdizJIcVXmvi3\n91tgQ5rwowQ4Ld2GrwLnABeS7OX+FLgmR/yTJPd5fDP9+xudlu9NvoTc0d+/Zm9/S2x72forraAt\nT+kfxecaWLZnE+v6OsnJ4eb0YyNgIMkhkC2bGLsVsFX6ehPgEGBoztiO/sFs9hcbyd7ZBSSH3t4m\nOfw2Oy3Lc+jrl8CIesr3I+eT+0piDgSmAK83MW44yTmpZ0h+SEwCxlLPDaH1xA4k2dO8D9g+fe/f\nSf/v98gxrFqnAAAEZ0lEQVQR39Hfv7rb/3a6/b9sbPtbctvrrb/SCjy13anOH+bSOh/MTXPEr80f\nzDVu7qknttIvtu2BEaTnpUq3P2fftyc5VFU3flRT44F1gR1bqP288TtUGD+Uzw75DSDZc9y/Cf/3\npfH9gf+sIH4n4IcVxDe5//XU1+gPmTKxVzc3tu7U4S9JtfpJOi4irmjNeEnrAttGxPPVaL8p8ZJO\nB04hSaKDSC5QuCtd9nRElB16W9JpJDdYNje+0vZbIv5kkh8UzYn/Ccn5nM4k5+WGkjw9bF/g/og4\nr4nxu5GcV2pufKXtNzV+Yj3FXyU5pE1EHNiEWAFfyRObS0tlF0/ta6KJ50c6WjwVXLnm+Cy+BlgP\neBfYKC1fl3xXzrX1+GZfvUiyV1zRlY/lprY+zIVVQNLMhhbx2V3ajq9fp0hvdoyI+ZKGA7dK6p3G\nN6ajx6+KZNSBlZL+ERHvpnW9L+nTDhA/hOQ56mcD34uIGZLej4jHcsQOriC2UU4KHduWwNdITnKV\nEjDZ8WW9IWlQRMwAiIjlkg4gGZdmpxxtd/T4jyStFxErSb7kgGw4+Dxfqm06PiI+BX4n6Zb03zfI\n+X1cSWwule5qeGq7E8ngWXs1sOx6x5eNrejKNccn97PUU96DkkuU22t8PXGVXL3Y7Nj6Jp9oNjOz\nTKdqd8DMzNYeTgpmZpZxUrB2R1JI+k3J/HclndPEOpbnWOdRSUMqXac5bZsVxUnB2qMPgf8nqUe1\nO2LW1jgpWHu0iuT5FP9Rd4GkPpL+KmmmpIcl9UrL+0p6UtJzks4tWX+4pHtK5v8g6dh66h2Zxj8t\n6RZJG9SzznJJ50l6VtIUJY9ObbDtdNn3JE1N+/vTtGzXdL6bpPUlzZK0Y7PfLbMSTgrWXl0EHJle\nN17qf0geQLQzyUOKxqflFwJ/jIidSO4OzS3dI/khyThQu5Dc3fuf9ay6PslorgOBvwEnlGtb0kig\nH8kQCoOAwZL+JSKmkgxVfi7J+FPXRsTzTemzWUOcFKxdiuQO06tJhhQvtTtwffr6GpIn3QHsCdxQ\nUt4Uw0gGZHtC0gzgGKB3Pet9BNTudUwnGR6iXNsj0+kZkmERtidJEgA/IxlnZwhJYjBrEb6j2dqz\n35N8meYdGK++m3ZWsfqPp271rCPgwYg4vJH6P47Pbgz6hNU/f/W1LeAXEfGnepZ1JxkdtUvapxWN\ntG2Wi/cUrN2KiKXAzcC3S4onA4elr48E/jd9/USd8lqvAP0lrSNpE5KhouuaAuwp6YsA6XH+LzWh\nqw21fT/wb7XnJyRtLWmLdNmfgB+RHAK7oAltmZXlpGDt3W9Ihh6odRpwXDoY3lEkA4uR/nuKpOeA\nrWtXjogFJInl+fTfZ+o2EBFvkjxc6Ia03idJDvXk1VDbD5Ac6noyXXYrsKGko0n2Oq4neRzqrpK+\n2oT2zBrkYS7MzCzjPQUzM8s4KZiZWcZJwczMMk4KZmaWcVIwM7OMk4KZmWWcFMzMLOOkYGZmmf8P\nLTKuT2nt6dMAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11d28f60>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VXW9//HXmwMIJuAADoiIGmqQogxi3koTB7RBLcTp\nOt1u6M3xRqVe6yeVlpUN4kSYaE5RojmFiSZWhqSggAoOCCigomIiyqDg5/fHWiy3mzPsc/ZZZ5/h\n/Xw89sO1vmutz/6c7WF/znet9f0uRQRmZmYA7SqdgJmZNR8uCmZmlnFRMDOzjIuCmZllXBTMzCzj\nomBmZhkXBWvzJI2T9P1K52HWHMjjFKy1k7QI2AZYB6wH5gI3AuMj4sMK5nUDsCQivlepHMyKuadg\nbcWXI6ILsCNwKXAecF1lUyqPpPaVzsFaHxcFa1MiYkVE3A0cA5ws6dOSbpB0MYCkLSTdK+kNSf9O\nl3ttOF7Sw5IuljRN0ruS7pG0laRbJL0j6XFJfQr2313SA5LekvScpJFp+yjgBOC7G+Kk7T0l3Z6+\n/0JJZxfEGiNpkqSbJb0DnJL/J2ZtjYuCtUkR8RiwBPhc0aZ2wPUkPYrewGrgyqJ9jgVOBLYHdgEe\nTY/ZEpgHXAQg6RPAA8CtwNbpcVdL6hcR44FbgJ9FxGYR8WVJ7YB7gNlp7GHAuZIOLXjvI4BJwObp\n8WaNykXB2rJXSL7IMxGxPCJuj4hVEbESuATYv+i46yPixYhYAdwHvBgRD0bEOuA2YO90vy8BiyLi\n+ohYFxFPArcDR9eQzxCgR0T8MCLej4gFwLUkxWSDRyPizoj4MCJWl/Gzm1XL5yStLdseeKuwQdKm\nwK+A4cAWaXMXSVURsT5dX1ZwyOpq1jdLl3cEhkp6u2B7e+CmGvLZEehZtH8V8I+C9cW1/kRmZXJR\nsDZJ0hCSovAIMLRg02hgN2BoRLwmaS/gSUANeJvFwN8i4uAathff+rcYWBgRfWuJ6dsFLVc+fWRt\niqSukr4ETARujoininbpQvLX/tuStiS9PtBA9wK7SjpRUof0NUTSp9Lty4CdC/Z/DFgp6TxJnSVV\npRfCh5SRg1m9uChYW3GPpJUkf41fCPwSOLWa/X4NdAbeBKYDf2noG6bXJA4huSbwCvAa8FNgk3SX\n64B+kt6WdGd6eupLwF7AwjSH3wLdGpqDWX158JqZmWXcUzAzs4yLgpmZZVwUzMws46JgZmYZFwUz\nM8u0uMFr3bt3jz59+lQ6DTOzFmXmzJlvRkSPuvZrcUWhT58+zJgxo9JpmJm1KJJeKmU/nz4yM7OM\ni4KZmWVcFMzMLNPirimYWcvywQcfsGTJEtasWVPpVNqETp060atXLzp06NCg410UzCxXS5YsoUuX\nLvTp0wepITOQW6kiguXLl7NkyRJ22mmnBsXI7fSRpAmSXpf0dA3bJWmspPmS5kgamFcuZlY5a9as\nYauttnJBaAKS2GqrrcrqleV5TeEGkqdX1eQwoG/6GgVck2MuZlZBLghNp9zPOreiEBF/p+hRh0WO\nAG6MxHRgc0nb5ZWPmbVdkhg9enS2ftlllzFmzJjKJdSMVfKawvZ8/HmzS9K2V4t3lDSKpDdB7969\nq482ph7PIRmzoh77NoO4ecZuaXHzjN2a4+YZu664h/4RXklPZ/Tcmz7n/7n02CVYdHZP6Ll3rfts\nsskm3HHHHVxwwQV0794d3lkK762CV56s+w3qiP0xpcTLIe769eupqqqqf9xqtIhbUiNifEQMjojB\nPXrUOUrbzOxj2rdvz6hRo/jVr3610bZFi1/hwKNHsedBIxk28jReXpr8XXrKuRdx9vd/xn777cfO\nO+/MpEmTqo29bNkyjjrqKAYMGMCAg45h2uOzATjyv77FoOHH0/8LIxh/8+3Z/pv1/Q8uvPRKBgwY\nwL777suyZcs2jjNgANOmTQPg5ptvZp8vnsheBx/Lad+9mPXr12dxRv/glww46BgenTmn0T6rShaF\npcAOBeu90jYzs0Z3xhlncMstt7Bixcd7QWd976ecfPSXmfPgHznhq4dx9vd/nm17ddmbPPLII9x7\n772cf/751cY9++yz2X///Zk9ezZP3H8r/XdLHrs94RcXMfMvtzJj8s2MnTCR5W+9DcB7q1az78A9\nmD17Np///Oe59tprN47zxBP079+fefPm8Yc//IF/3jmBWQ9MpKqqilvuuC+LM3TvTzP7wT/w2X3K\n6x0UquTpo7uBMyVNBIYCKyJio1NHZmaNoWvXrpx00kmMHTuWzgXtj858ijt+exkAJ37ti3z34rHZ\ntiOHH0C7du3o169f9hd9sYceeogbb7wRgKqqKrp17QLA2Am/50/3TQVg8SvLeGHhy2y15eZ07NiB\nLx38eQAGDRrEAw88UH2cbt246aabmDlzJkMOPxGA1WvWsnX3LbJ9vvbFYY3x0XxMbkVB0u+BA4Du\nkpYAFwEdACJiHDAZOByYD6yi+oeom5k1mnPPPZeBAwdy6ojaboz8yCYdO2bLG55nf+GFF/LnPyfX\nRWbNmlXtcQ9Pm8GD/3iMR++5gU07d+aAEd9gzdr3AejQvn12h1BVVRXr1q2r8f0jgpNPPpmfnDVy\no22dNun40XWERpTn3UfHRcR2EdEhInpFxHURMS4tCKR3HZ0REbtExB4R4alPzSxXW265JSNHjuS6\n39+Vte03eE8m3nU/ALfccR+fG1r7qZhLLrmEWbNmZQVh2LBhXHNNckf9+vXrWfHOSlasfJctunVh\n086deXb+QqY/8VSduW0UZ8UKhg0bxqRJk3j9zeRGzrf+vYKXlrxS/x+8HlrEhWYzs8YyevRo3kzP\n7wNccfF3uf4Pd7PnQSO56fY/c/kPv12veJdffjlTp05ljz32YNDwE5j7/AKGH7Af69av51P7f5Xz\nf3wF+w7co35xBg1i7ty59OvXj4svvphDjvsmex40koOP+x9eXfZmvX/m+vA0F2bWpBZd+sXSdqzP\n7Z11ePfdd7PlbbbZhlUvTsvWd+zVk4duG7/RMTf8+gc1xii0zTbbcNddac+jIOf7br6y+lxe+Ge2\nPGLECEaMGLFxnALHHHMMx3xu11rjNCb3FMzMLOOiYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlnFR\nMLNW77XXXuPYY49ll112YdCgQRx+4lk8/+JLlU6rWfI4BTNrWvWdKr0uox6udXNEcNRRR3HyyScz\nceJEAGY/8AeWvbmcXXfZsXFzqSWHiKBdu+b/d3jzz9DMrAxTp06lQ4cOnH766VnbgP67svend2fY\nyNMYeOjx7DFsJHfd/zCQTKX9qf2/yje+8yP6f2EEhxxyCKtXrwZg/vz5HHTQQQwYMICBAwfy4osv\nAvDzn/+cIUOGsOdBI7nosmuyOLt97ihOOvv7fPrAo1n8ymtN+4M3kIuCmbVqTz/9NIMGDdqovdMm\nHfnTdb/giftvZeptv2H0D3+ZTXr3wsLFnHHySJ6ZOonNN9+c229PnodwwgkncMYZZzB79mymTZvG\ndtttx5QpU3jhhRd47LHHmDVlIjPnzOPv02emcV7mmycfzTNTJ7Fjr55N90OXwaePzKxNigj+79Ir\n+fu/nqCd2rH0tTdY9sZyAHbaoSd7fXo3IJneetGiRaxcuZKlS5dy1FFHAdCpUycApkyZwpQpU9h7\n773hg9W8u2oVLyxcTO/tt2PHXtux76A9K/MDNpCLgpm1av3796/2qWm33HEfbyz/NzPvu4UOHTrQ\nZ+gXs+mtN9nkoymzq6qqstNH1YkILrjgAk477bSPzX20aPErfGLTzjUe11z59JGZtWoHHngga9eu\nZfz4jya9mzP3eV5a+ipbd9+SDh06MPWfj/PSktqf8dWlSxd69erFnXfeCcDatWtZtWoVhx56KBMm\nTMgmzFv66uvZVNctkYuCmbVqkvjTn/7Egw8+yC677EL//v254CdXcviBn2XG7LnsMWwkN066l90/\n2afOWDfddBNjx45lzz33ZL/99uO1117jkEMO4fjjj+czn/kMewwbyYhR32Hlu+/l/4PlxKePzKxp\njVlR9z7QqFNn9+zZkz/+8Y8bxX70nt9Vu//TD92WLX/72x89X6Fv37489NBDG+1/zjnncM4552yU\nc2GclsI9BTMzy7gomJlZxkXBzMwyreaaQp81t5a876L80jCzjSRTPEiqdCJtwoYBeA3lnoKZ5arT\nigUsf29d2V9WVreIYPny5dnAuoZoNT0FM2ueej3xU5ZwHm902xnemVf6gW+/Xvq+K+oRN8/YFY8b\ndNp2C3r16lV67CIuCmaWqw7vv81O0y9IVkq9HRVgzL712LcecfOM3dLiVsOnj8zMLOOiYGZmGRcF\nMzPL+JpChdTnFlrwbbRm1jTcUzAzs4yLgpmZZXz6qA4eKW1mbYl7CmZmlsm1KEgaLuk5SfMlnV/N\n9m6S7pE0W9Izkk7NMx8zM6tdbkVBUhVwFXAY0A84TlK/ot3OAOZGxADgAOAXkjpiZmYVkWdPYR9g\nfkQsiIj3gYnAEUX7BNBFyfSJmwFvAetyzMnMzGqRZ1HYHlhcsL4kbSt0JfAp4BXgKeCciPgwx5zM\nzKwWlb7QfCgwC+gJ7AVcKalr8U6SRkmaIWnGG2+80dQ5mpm1GXkWhaXADgXrvdK2QqcCd0RiPrAQ\n2L04UESMj4jBETG4R48euSVsZtbW5TlO4XGgr6SdSIrBscDxRfu8DAwD/iFpG2A3YEGOOVkz5Ck/\nzJqP3IpCRKyTdCZwP1AFTIiIZySdnm4fB/wIuEHSU4CA8yLizbxyMjOz2uU6ojkiJgOTi9rGFSy/\nAhySZw5mZla6Sl9oNjOzZsRzH7VCnq/JzBrKPQUzM8u4KJiZWcZFwczMMi4KZmaWcVEwM7OMi4KZ\nmWV8S6qVzLe6mrV+7imYmVnGRcHMzDIuCmZmlnFRMDOzjC80W6vmi+Nm9eOegpmZZVwUzMws46Jg\nZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaW8TgFszbCYzasFO4pmJlZxkXBzMwyPn1k1gA+FWOtVck9\nBUmdJe2WZzJmZlZZJRUFSV8GZgF/Sdf3knR3nomZmVnTK7WnMAbYB3gbICJmATvllJOZmVVIqUXh\ng4hYUdQWjZ2MmZlVVqkXmp+RdDxQJakvcDYwLb+0zMysEkrtKZwF9AfWAr8H3gHOzSspMzOrjJJ6\nChGxCrgwfZmZWStVUlGQdA8bX0NYAcwAfhMRa2o4bjhwOVAF/DYiLq1mnwOAXwMdgDcjYv+Sszcz\ns0ZV6umjBcC7wLXp6x1gJbBrur4RSVXAVcBhQD/gOEn9ivbZHLga+EpE9AeObsDPYGZmjaTUC837\nRcSQgvV7JD0eEUMkPVPDMfsA8yNiAYCkicARwNyCfY4H7oiIlwEi4vX6pW9mZo2p1J7CZpJ6b1hJ\nlzdLV9+v4ZjtgcUF60vStkK7AltIeljSTEknlZiPmZnloNSewmjgEUkvAiIZuPZNSZ8Aflfm+w8C\nhgGdgUclTY+I5wt3kjQKGAXQu3fvjYKYmVnjKPXuo8np+ITd06bnCi4u/7qGw5YCOxSs90rbCi0B\nlkfEe8B7kv4ODAA+VhQiYjwwHmDw4MEeNGdmlpP6TJ3dF9iN5Et7ZAmneh4H+kraSVJH4FigeL6k\nu4DPSmovaVNgKDCvHjmZmVkjKvWW1IuAA0juIppMckfRI8CNNR0TEesknQncT3JL6oSIeEbS6en2\ncRExT9JfgDnAhyS3rT5dxs9jZmZlKPWawgiSHsKTEXGqpG2Am+s6KCImkxSRwrZxRes/B35eYh5m\nZpajUk8frY6ID4F1kroCr/Px6wVmZtYKlNpTmJEONLsWmEkykO3R3LIyM7OKKPXuo2+mi+PSawBd\nI2JOfmmZmVkllPrktb9uWI6IRRExp7DNzMxah1p7CpI6AZsC3SVtQTJwDaArG49ONrMy9Vlza8n7\nLsovDWvD6jp9dBrJcxN6klxL2FAU3gGuzDEvMzOrgFqLQkRcDlwu6ayIuKKJcjIzswop9ULzFZL2\nA/oUHhMRNQ5eMzOzlqfUEc03AbsAs4D1aXNQy4hmMzNreUodpzAY6BcRnozOzKwVK3VE89PAtnkm\nYmZmlVdqT6E7MFfSY8DaDY0R8ZVcsjIzs4ootSiMyTMJMzNrHkq9++hvknYE+kbEg+mzD6ryTc3M\nzJpaqdNcfAOYBPwmbdoeuDOvpMzMrDJKvdB8BvAfJCOZiYgXgK3zSsrMzCqj1GsKayPifSmZ5UJS\ne5JxCmZmufA8UJVRak/hb5L+D+gs6WDgNuCe/NIyM7NKKLUonA+8ATxFMkneZOB7eSVlZmaVUerp\no87AhIi4FkBSVdq2Kq/EzMys6ZVaFP4KHETyGE5ICsIUYL88kjKzlsPn/luXUk8fdYqIDQWBdHnT\nfFIyM7NKKbUovCdp4IYVSYOA1fmkZGZmlVLq6aNzgNskvULy9LVtgWNyy8rMzCqizqIgqR3QEdgd\n2C1tfi4iPsgzMTMza3p1FoWI+FDSVRGxN8kU2mZm1kqVek3hr5K+pg1Dms3MrFUqtSicRjKK+X1J\n70haKemdHPMyM7MKKHXq7C55J2JmZpVX6tTZkvSfkr6fru8gaZ98UzMzs6ZW6umjq4HPAMen6+8C\nV+WSkZmZVUyp4xSGRsRASU8CRMS/JXXMMS8zM6uAUnsKH6ST4AWApB7Ah7llZWZmFVFqURgL/AnY\nWtIlwCPAj+s6SNJwSc9Jmi/p/Fr2GyJpnaQRJeZjZmY5KPXuo1skzQSGkUxzcWREzKvtmLRncRVw\nMLAEeFzS3RExt5r9fkoy66qZmVVQrUVBUifgdOCTJA/Y+U1ErCsx9j7A/IhYkMaaCBwBzC3a7yzg\ndmBIPfI2M7Mc1HX66HfAYJKCcBhwWT1ibw8sLlhfkrZlJG0PHAVcU4+4ZmaWk7pOH/WLiD0AJF0H\nPNbI7/9r4Lx0fqUad5I0ChgF0Lt370ZOwczMNqirKGQzoUbEunpOfbQU2KFgvVfaVmgwMDGN2x04\nXNK6iLizcKeIGA+MBxg8eHDUJwkzMytdXUVhQMEcRwI6p+sCIiK61nLs40BfSTuRFINj+WjwGyQB\ndtqwLOkG4N7igmBmZk2n1qIQEVUNDZz2LM4E7geqgAkR8Yyk09Pt4xoa28zM8lHqiOYGiYjJwOSi\ntmqLQUSckmcuZmZWt1IHr5mZWRvgomBmZhkXBTMzy7gomJlZxkXBzMwyLgpmZpZxUTAzs4yLgpmZ\nZXIdvGZm1pb0WXNryfsuyi+NsrinYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZll\nXBTMzCzjomBmZhmPaDazNqc1jDzOi3sKZmaWcVEwM7OMi4KZmWVcFMzMLOOiYGZmGRcFMzPLuCiY\nmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzjomBmZplci4Kk4ZKekzRf0vnVbD9B0hxJT0ma\nJmlAnvmYmVntcisKkqqAq4DDgH7AcZL6Fe22ENg/IvYAfgSMzysfMzOrW549hX2A+RGxICLeByYC\nRxTuEBHTIuLf6ep0oFeO+ZiZWR3yLArbA4sL1pekbTX5OnBfjvmYmVkdmsWT1yR9gaQofLaG7aOA\nUQC9e/duwszMzNqWPHsKS4EdCtZ7pW0fI2lP4LfAERGxvLpAETE+IgZHxOAePXrkkqyZmeVbFB4H\n+kraSVJH4Fjg7sIdJPUG7gBOjIjnc8zFzMxKkNvpo4hYJ+lM4H6gCpgQEc9IOj3dPg74f8BWwNWS\nANZFxOC8cjIzs9rlek0hIiYDk4vaxhUs/zfw33nmYGZmpfOIZjMzy7gomJlZxkXBzMwyLgpmZpZx\nUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaWcVEwM7OMi4KZmWVcFMzM\nLOOiYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzjomBmZhkXBTMzy7go\nmJlZxkXBzMwyLgpmZpZxUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8vkWhQkDZf0nKT5ks6vZrsk\njU23z5E0MM98zMysdrkVBUlVwFXAYUA/4DhJ/Yp2Owzom75GAdfklY+ZmdUtz57CPsD8iFgQEe8D\nE4EjivY5ArgxEtOBzSVtl2NOZmZWC0VEPoGlEcDwiPjvdP1EYGhEnFmwz73ApRHxSLr+V+C8iJhR\nFGsUSU8CYDfguRLT6A68WdYP0vSxW1rcPGO3tLh5xm5pcfOM3dLi5hm7PnF3jIgede3Uvrx8mkZE\njAfG1/c4STMiYnAOKeUWu6XFzTN2S4ubZ+yWFjfP2C0tbp6x84ib5+mjpcAOBeu90rb67mNmZk0k\nz6LwONBX0k6SOgLHAncX7XM3cFJ6F9K+wIqIeDXHnMzMrBa5nT6KiHWSzgTuB6qACRHxjKTT0+3j\ngMnA4cB8YBVwaiOnUe9TTs0gdkuLm2fslhY3z9gtLW6esVta3DxjN3rc3C40m5lZy+MRzWZmlnFR\nMDOzjIuCmZllXBTMzCzTIgav1YekbYDt09WlEbGsOcfNO7aBpN1JplTJPmPg7oiY1xzj5hm7pcXN\nM7bj1vA+reXuI0l7AeOAbnw0AK4X8DbwzYh4ojnFbYLY/keaxDwPOI5k7q0laXMvknEzEyPi0uYU\ntyXm7M+i5catVkS0ihcwi2RupeL2fYHZzS1uzjmfl8Y+H/jP9HX+hrYyc84ldo5xnwc6VNPeEXih\nucVtiTn7s2i5cat7tabTR5+IiH8VN0bEdEmfaIZx84z9daB/RHxQ2Cjpl8AzQDl/VeQVO6+4HwI9\ngZeK2rdLtzVUXnHzjN3S4uYZ23Fr0JqKwn2S/gzcCCxO23YATgL+0gzj5hnb/0g/ci7wV0kv8NFn\n3Bv4JHBmjUdVLm6esVta3DxjO24NWs01BQBJh1H9OenJzTFuXrElDQeuBKr9BYqIBhecvGLnnHM7\nkud7FH7Gj0fE+obGzDNunrFbWtw8YztuDe/TmoqCfcT/SM2sIdrEOIX0IT0tJm5jxI6IDyNiekTc\nnr6mN9aXa16x88y5OulDnlpM3Dxjt7S4ecZu63HbRFEA1MLi5hbb/0g/5hstLG6esVta3Dxjt+m4\nrer0kaR9gIiIxyX1A4YDz5Z5fn4oMC8i3pHUmeQ2yYHAXODHEbGizJx3Br5KcoF5PcmtZ7dGxDvl\nxK3l/baLnJ5ZkVfsPHNuTJK2jojXK51Haydpq4hYXuk8WqtW01OQdBEwFrhG0k9ILlp+Ajhf0oVl\nhJ5A8qwHgMtJBpr9NG27voy4SDqbZPBaJ2AIsAlJcZgu6YByYtckzy/XvGLnWMTuK+PYLYteWwGP\nSdpC0pZl5vWEpO9J2qWcONXE7SbpUknPSnpL0nJJ89K2zcuIu62kayRdJWkrSWMkPSXpj5K2KzPn\nSyV1T5cHS1oA/EvSS5L2LyPuZpJ+KOkZSSskvSFpuqRTysy3q6SfSLpJ0vFF264uI+7wguVukq6T\nNEfSrUpmRGg8jTnooZIv4CmSh/lsCrwDdE3bOwNzyog7r2D5iaJtsxoj53R5U+DhdLk38GQZcbsC\nPwFuAo4v2nZ1mTkPL1juBlwHzAFuBbYpI+5gYCpwM0lhfABYQfIEv73LiDuwhtcg4NUy4n4ILCx6\nfZD+d0GZn/FC4DLgZeAx4H+BnuXETOPeTzJIcNuCtm3TtillxP0LcBZJL3pOGm+HtO2uMnN+qmB5\nKjAkXd4VmFFG3LuAU0hGBX8L+D7QF/gdyRmAhsa9nWRMzZEkT5a8Hdgk3fZEGXGfKFj+LXAxsGP6\nu3Fnub8bH3uvxgxWyVfhl2jxF2o5X97AbcCp6fL1wOB0eVeSO2PKyfmpgl+YLQp/yYGny4ibyy9m\n8fGN+cuZfvkdRjKUfzEwIm0fBjxaRtz1wEPpF0rxa3UZcUenX4Z7FLQtLOezreEz/hxwNfBamvOo\nMuI+15BtJcQt/Lf3ctG2cv9wmge0T5enF217qoy4s4vWH0//247klHND484qWr8Q+CewVSMWheL3\nKOsz3ui9GjNYJV/Av4BNN/yPLWjvVub/jG7ADcCL6Xt8ACwA/gYMKDPnc0j+sroWeLag+PQA/l5G\n3Fx+MdNYufxy1vHFUk6v6Wmgbw3bFpf5WfQi+aPhl0AXyuwhVPcZF7RVkVwju76MuFOA71LQowO2\nIfnL/sEy4s4uWL64aFuDe+np8WeleR8IjCE5hbs/8APgpjLiTgM+my5/Bbi/YFs5BXJe4fdP2nYK\nyaj8l8qIu4SkRzOapCepxvqMi1+taUTz5yNiLSS3Nha0dwBObmjQSC4knyKpK7ATySjwJdEIM5lG\nxOWSHgQ+BfwiIp5N298APl9G6E0ktdvwOUTEJZKWAn8HNisz7a0lfYvk7qhukhTpbyblXaNaI+kQ\nkiIcko6MiDvT88bl3JY6ppa8ziojLhGxBDha0ldITndtWk68As9X817rSXom5Yx0P4bkFM/f0vPQ\nASwj6U2OLCPuXZI2i4h3I+J7GxolfZJqfpb6iIgrJD0F/A9J77w9yWmeO0l6qQ31P8C1kvqSfGH/\nV5pzD+CqMuLeQ1LAHtzQEBE3SHoNuKKMuNeS/OEByR+p3YE3JG1LMj9Yo2lVdx9ZQtLPSM4RP1jU\nPhy4IiL6lhH7oqKmqyNiwy/nzyLipAbGHQD8jORc/f+S/KM9mWQA2zciYloZOe9OMiDuXxHxbkH7\n8ChvpHQWl6Rw7RIRT5cbN+ecC+/Q60/S+5gX5Y/6b/Q7/5og56HAh3nkXPQ+Nzb030VF4rootC2S\nTo2Isu6aaurY5cRN7/A6g6RbvxdwTkTclW57IiIGNqe46fFnkcxn09g5X0Ry3aY9Sc9mH+Bh4GCS\n0yeXNFLcoSTXP8qK2xJzlnR3cRPwBZLrWkTEVxopLiQ9krLiVqsxz0X51fxfFJ2vbwmxy4lLcjF/\ns3S5DzCD5EsWyrtWkUvcJsg5jzv0conbEnMGniS5g+4AkmsfBwCvpsv7N7e41b1a0zUFS0maU9Mm\nkguLzS7GstExAAAC9ElEQVR2jjm3i/T0S0QsSsd/TJK0I+WNGs8rbp6x10VybWKVpBcjHSAZEasl\nlTMTbV5xW2LOg0huILkQ+E5EzJK0OiL+VkbMPONuxEWhddoGOBT4d1G7SO66aI6x84q7TNJeETEL\nICLelfQlkkGJezTDuHnGfl/SphGxiuRLBkgGQ1He9OR5xc0zdi5xI7m541eSbkv/u4xG+J7NK251\nXBRap3tJTj9sdFeCpIebaey84p4ErCtsiIh1wEmSftMM4+YZO5c79HKMm2fsPHMmProz7Yskp6ca\nRV5xC/lCs5mZZVrN3EdmZlY+FwUzM8u4KFibI2m9pFnpDJmzJY1W8tS3DTNxjs35/Y9MB0uZNTu+\npmBtjqR3I2KzdHlrkhle/xkRxaO183r/G4B7I2JSPY5pn15sNsuVi4K1OYVFIV3fmWSK7u4kg4G+\nHRFfSqdXuJzkeRerSSYsfE7JnPtHkjyvoy/JNNcdgROBtcDhEfGWkuchXEUyweEqkidkbUlyp9WK\n9PW1NI2P7RcRz6bFYw2wN0nR+lY+n4jZR3xLqrV5EbFAUhWwddGmZ4HPRcQ6SQcBP+ajL/FPk3xZ\ndwLmA+dFxN6SfkVyS+mvgfHA6RHxQjrPztURcWA6ZUHWU5D01+L9SKYwgGQm1v0ix2dVmxVyUTCr\nWTfgd+lMmkFyD/sGUyNiJbBS0gqS2TEhmT5hT0mbAfsBt0nZIORNit+ghP1uc0GwpuSiYG1eevpo\nPfA6yTTmG/yI5Mv/KEl9SCZi22BtwfKHBesfkvy7age8HRF71fH2de33Xgk/glmj8d1H1qal8+eP\nA66MjS+wdSOZuhuSB6WULJ1LZ6Gko9P3UTo9OMBK0rnx69jPrMm5KFhb1HnDLakkD0OZQvIkr2I/\nA34i6Uka1qs+Afi6pNkkD3I5Im2fCHxH0pPpxeia9jNrcr77yMzMMu4pmJlZxkXBzMwyLgpmZpZx\nUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8v8f0XpsE3ZOvrCAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x16351828>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVOWZ/vHvTYMigoqARkUEDYK4QCIi4z46cUmMOBHj\nQtxGJSZuyZiMTJyfOuPEuEwWTTQEE1xQg1HjguISl6hEUDAKiIgSRAGNCyogQhR5fn+c08ei6KW6\nug/V1dyf66qLOu95z1NPdTX91HuW9ygiMDMzA2hX6QTMzKz1cFEwM7OMi4KZmWVcFMzMLOOiYGZm\nGRcFMzPLuChYVZM0WtL/q3QelSTpAUknVToPaxtcFKxVkzRf0gpJyyR9KOlpSWdIagcQEWdExCUV\nyOsGSf/bzBgXSwpJ5xa1n5u2X1xKnIg4LCJubE4uZrVcFKwafD0iugDbAZcB5wO/q2xKzSOpffr0\nFeDEotUnpe3rKgezjIuCVY2IWBIR9wLHACdJ2qXwG7ukrpLuk/SupA/S5z1rt5f0Z0n/m442PpI0\nQVI3SbdIWippqqTeBf37S/qTpPclzZH0zbR9JDAC+I/aOGn71pLuTF//NUnnFMS6WNIdkm6WtBQ4\nOV01Fegkaee0385Ax7S9dttS3tdp6fN2kv5L0uuS3pF0k6RN03W90xHIqZLeAB5roY/G2hAXBas6\nEfEssBDYt2hVO+B6khFFL2AF8KuiPscCJwDbADsAk9NtNgdmAxcBSNoY+BNwK7BFut21kgZExBjg\nFuCKiOgcEV9Pd2dNAKansQ8CvifpkILXHgbcAWyWbl9rHJ+PFk5Kl5v6vmqdnD7+Gdge6FxH3/2B\nnYBDMCviomDV6k2SP+SZiFgcEXdGxMcRsQz4MckfwELXR8TfImIJ8ADwt4h4JCJWAbcDX0r7HQ7M\nj4jrI2JVRDwP3AkcXU8+ewA9IuJ/IuKTiJgHXEdSTGpNjoi7I2J1RKwoaL8ZOE5Sh7T/zWW8r1oj\ngJ9FxLyI+Aj4T+DYol1FF0fE8qIczADwPkWrVtsA7xc2SOoE/Bw4FOiaNneRVBMRn6XLbxdssqKO\n5c7p8+2APSV9WLC+PWt/i6eg/9ZF/WuApwqWF9S1YUS8IWkucCnwakQskNTU91Vra+D1guXX07y3\nbCwPM3BRsCokaQ+SojAJ2LNg1XlAP2DPiPi7pEHA84DWjtKoBcATEfGVetYXTy+8AHgtIvo2ELOh\nKYlvAsYCp9Sxrinv602SAlWrF7CKpPjVHofw1MhWL+8+sqohaRNJhwPjgZsjYmZRly4k3/Y/lLQ5\n6fGBMt0H7CjpBEkd0sceknZK179Nss++1rPAMknnS9pIUk16IHyPEl/vNuBg4A91rGvK+/o98H1J\nfSR1Jhl93JbuHjNrlIuCVYMJkpaRfBu/APgZdX+j/gWwEfAeMAV4sNwXTPfdH0yyj/9N4O/A5cCG\naZffAQPSayfuTnfjHA4MAl5Lc/gtsGmJr7ciPbZR137+pryvsSS7uJ5M81gJnF1KDmYA8k12zKqb\npCeB30bETZXOxaqfRwpmVSw9CL09yajArNlcFMyqlKQtSHZrPUFy0N2s2bz7yMzMMh4pmJlZxkXB\nzMwyVXfxWvfu3aN3796VTsPMrKo899xz70VEj8b6VV1R6N27N9OmTat0GmZmVUXS64338u4jMzMr\n4KJgZmYZFwUzM8u4KJiZWcZFwczMMrkVBUlj03vEvljPekm6WtJcSTMkfTmvXMzMrDR5jhRuILlT\nVH0OA/qmj5HAr3PMxczMSpBbUYiIJym6XWKRYcBNkZgCbCZpq7zyMTOzxlXy4rVtWPNesQvTtreK\nO0oaSTKaoFevXmtHurik+5ikfZeU2M8x20zMUuM55voZs0p+33uPur/kkPMv+1rpr1+kKg40R8SY\niBgcEYN79Gj0Km0zMytTJYvCImDbguWeaZuZmVVIJYvCvcCJ6VlIQ4ElEbHWriMzM1t3cjumIOn3\nwAFAd0kLgYuADgARMRqYCHwVmAt8TN03Yjczs3Uot6IQEcc1sj6AM/N6fTMza7qqONBsZmbrhouC\nmZllXBTMzCzjomBmZhkXBTMzy7gomJlZxkXBzMwylZwQr8X0XnlryX3n55eGmVnV80jBzMwyLgpm\nZpZxUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaWcVEwM7OMi4KZmWVc\nFMzMLOOiYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzjomBmZpn2lU6g\nteq98taS+87PLw0zs3XKIwUzM8vkWhQkHSppjqS5kkbVsX5TSRMkTZc0S9IpeeZjZmYNy233kaQa\n4BrgK8BCYKqkeyPipYJuZwIvRcTXJfUA5ki6JSI+ySuvSvIuKTNr7fIcKQwB5kbEvPSP/HhgWFGf\nALpIEtAZeB9YlWNOZmbWgDyLwjbAgoLlhWlboV8BOwFvAjOBcyNidY45mZlZAyp9oPkQ4AVga2AQ\n8CtJmxR3kjRS0jRJ09599911naOZ2Xojz6KwCNi2YLln2lboFOCPkZgLvAb0Lw4UEWMiYnBEDO7R\no0duCZuZre/yLApTgb6S+kjaADgWuLeozxvAQQCStgT6AfNyzMnMzBqQ29lHEbFK0lnAQ0ANMDYi\nZkk6I10/GrgEuEHSTEDA+RHxXl45mZlZw3K9ojkiJgITi9pGFzx/Ezg4zxzMzKx0lT7QbGZmrYiL\ngpmZZTwhXpXzVdJm1pI8UjAzs4yLgpmZZbz7yNbiXVJm6y+PFMzMLOOiYGZmGe8+snUij11SpcYs\nNZ6ZeaRgZmYFXBTMzCzjomBmZhkXBTMzy7gomJlZxkXBzMwyLgpmZpZxUTAzs4yLgpmZZVwUzMws\n46JgZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaWcVEwM7NMyUVB0kaS+uWZjJmZVVZJRUHS14EXgAfT\n5UGS7s0zMTMzW/dKHSlcDAwBPgSIiBeAPjnlZGZmFVJqUfg0IpYUtUVLJ2NmZpXVvsR+syQdD9RI\n6gucAzydX1pmZlYJpY4UzgZ2Bv4B/B5YCnwvr6TMzKwyShopRMTHwAXpw8zM2qiSioKkCax9DGEJ\nMA34TUSsrGe7Q4GrgBrgtxFxWR19DgB+AXQA3ouI/UvO3szMWlSpu4/mAR8B16WPpcAyYMd0eS2S\naoBrgMOAAcBxkgYU9dkMuBY4IiJ2Bo4u4z2YmVkLKfVA814RsUfB8gRJUyNiD0mz6tlmCDA3IuYB\nSBoPDANeKuhzPPDHiHgDICLeaVr6ZmbWkkotCp0l9ar94y2pF9A5XfdJPdtsAywoWF4I7FnUZ0eg\ng6Q/A12AqyLiphJzMqsKvVfeWlK/+fmmYVaSUovCecAkSX8DRHLh2nclbQzc2MzX3x04CNgImCxp\nSkS8UthJ0khgJECvXr2a8XJmZtaQUs8+mphen9A/bZpTcHD5F/VstgjYtmC5Z9pWaCGwOCKWA8sl\nPQkMBNYoChExBhgDMHjwYF80Z7nxt3pb3zVlltS+QD+SP9rflHRiI/2nAn0l9ZG0AXAsUDxf0j3A\nPpLaS+pEsntpdhNyMjOzFlTqKakXAQeQnEU0keSMoklAvfv/I2KVpLOAh0hOSR0bEbMknZGuHx0R\nsyU9CMwAVpOctvpiM96PmZk1Q6nHFIaTjBCej4hTJG0J3NzYRhExkaSIFLaNLlq+EriyxDzMzCxH\npe4+WhERq4FVkjYB3mHN4wVmZtYGlDpSmJZeaHYd8BzJhWyTc8vKzMwqotSzj76bPh2dHgPYJCJm\n5JeWmZlVQqkHmh+NiIMAImJ+cZuZrVs+ddby0mBRkNQR6AR0l9SV5MI1gE1Irlg2M7M2pLGRwrdJ\n7puwNcmxhNqisBT4VY55mZlZBTRYFCLiKuAqSWdHxC/XUU5mZlYhpR5o/qWkvYDehdt48jozs7al\n1APN44AdgBeAz9LmoIErms3MrPqUep3CYGBARHgyOjOzNqzUK5pfBL6QZyJmZlZ5pY4UugMvSXoW\n+EdtY0QckUtWZmZWEaUWhYvzTMLMKs8XxBmUfvbRE5K2A/pGxCPpvQ9q8k3NzMzWtZKOKUg6HbgD\n+E3atA1wd15JmZlZZZR6oPlMYG+SK5mJiFeBLfJKyszMKqPUovCPiPikdkFSe5LrFMzMrA0ptSg8\nIelHwEaSvgLcDkzILy0zM6uEUovCKOBdYCbJJHkTgf/KKykzM6uMUk9J3QgYGxHXAUiqSds+zisx\nMzNb90odKTxKUgRqbQQ80vLpmJlZJZVaFDpGxEe1C+nzTvmkZGZmlVJqUVgu6cu1C5J2B1bkk5KZ\nmVVKqccUzgVul/Qmyd3XvgAck1tWZmZWEY0WBUntgA2A/kC/tHlORHyaZ2JmZrbuNVoUImK1pGsi\n4kskU2ibmVkbVfLZR5KOkqRcszEzs4oqtSh8m+Qq5k8kLZW0TNLSHPMyM7MKKHXq7C55J2JmZpVX\nUlFIdxuNAPpExCWStgW2iohnc83OzKqab9xTfUrdfXQt8E/A8enyR8A1uWRkZmYVU+p1CntGxJcl\nPQ8QER9I2iDHvMzMrAJKHSl8mk6CFwCSegCrc8vKzMwqotSicDVwF7CFpB8Dk4BLG9tI0qGS5kia\nK2lUA/32kLRK0vAS8zEzsxyUevbRLZKeAw4imebiyIiY3dA26cjiGuArwEJgqqR7I+KlOvpdDjxc\nRv5mZtaCGiwKkjoCZwBfJLnBzm8iYlWJsYcAcyNiXhprPDAMeKmo39nAncAeTcjbzMxy0NjuoxuB\nwSQF4TDg/5oQextgQcHywrQtI2kb4F+BXzchrpmZ5aSx3UcDImJXAEm/A1r6uoRfAOen8yvV20nS\nSGAkQK9evVo4BTNbn5V6LQWsH9dTNFYUsplQI2JVE6c+WgRsW7DcM20rNBgYn8btDnxV0qqIuLuw\nU0SMAcYADB48OJqShJmZla6xojCwYI4jARulywIiIjZpYNupQF9JfUiKwbF8fvEbJAH61D6XdANw\nX3FBMDOzdafBohARNeUGTkcWZwEPATXA2IiYJemMdP3ocmObmVk+Sr2iuSwRMRGYWNRWZzGIiJPz\nzMXMzBpX6sVrZma2HnBRMDOzjIuCmZllXBTMzCzjomBmZhkXBTMzy7gomJlZxkXBzMwyLgpmZpZx\nUTAzs4yLgpmZZVwUzMws46JgZmYZFwUzM8u4KJiZWcZFwczMMi4KZmaWcVEwM7OMi4KZmWVcFMzM\nLOOiYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlnFRMDOzjIuCmZllXBTMzCzjomBmZhkXBTMzy7go\nmJlZxkXBzMwyuRYFSYdKmiNprqRRdawfIWmGpJmSnpY0MM98zMysYbkVBUk1wDXAYcAA4DhJA4q6\nvQbsHxG7ApcAY/LKx8zMGpfnSGEIMDci5kXEJ8B4YFhhh4h4OiI+SBenAD1zzMfMzBqRZ1HYBlhQ\nsLwwbavPqcADOeZjZmaNaF/pBAAk/TNJUdinnvUjgZEAvXr1WoeZmZmtX/IcKSwCti1Y7pm2rUHS\nbsBvgWERsbiuQBExJiIGR8TgHj165JKsmZnlWxSmAn0l9ZG0AXAscG9hB0m9gD8CJ0TEKznmYmZm\nJcht91FErJJ0FvAQUAOMjYhZks5I148GLgS6AddKAlgVEYPzysmqw6effsrChQtZuXJlg/2uO2Kr\nkuLNnj275NdeH2N27NiRnj19joclcj2mEBETgYlFbaMLnp8GnJZnDlZ9Fi5cSJcuXejduzfpl4U6\nfbrww5Li7dRzs5Jfe32LGREsXryYhQsXlvza1rb5imZrdVauXEm3bt0aLAjWMiTRrVu3Rkdltv5w\nUbBWyQVh3fHP2gq1ilNSzcxK1XvlrSX1m59vGm2Wi4K1er1H3d+i8eZf9rVG+wzctisnnH4mP7jw\nfwG4cfQv+fjj5Xzn39eawsusTfHuI7M6bLDhhjz64AQ+eL/OS2eq3meffVbpFKyVclEwq0NNTXuG\nH38SN1937VrrFi14gwMPPJDddtuNgw46iDfeeAOAk08+mXPOOYe99tqL7bffnjvuuKPO2IvffYfv\nnfYtjj54H44+eB9emPYMAEceeSS77747O++8M2PGfD43ZOfOnbngggsYOHAgQ4cO5e23324wzn1/\nvI3jDz+Ibx6yL9/+9rezAtC5c2fOO+88Bg4cyOTJk1vuh2VtiouCWT2OOek0Jt59O8uWLlmj/bIL\n/4OTTjqJGTNmMGLECM4555xs3VtvvcWkSZO47777GDWq7l1Nl104isFD9+b2hycx/oEn2GHH/gCM\nHTuW5557jmnTpnH11VezeHEySlm+fDlDhw5l+vTp7Lffflx33XX1xpn36hwemnAXN971IH946Clq\namq45ZZbsjh77rkn06dPZ5996pxRxsxFwaw+nbtswuFHHcutY9ec0X3Gc1M5/vjjATjhhBOYNGlS\ntu7II4+kXbt2DBgwIPtGX2zq00/yzRP+DYCamhq6bLIpAFdffXU2GliwYAGvvvoqABtssAGHH344\nALvvvjvz58+vN84zf3mC2TOmM+LwA/nmIfvy6KOPMm/evKzPUUcd1RI/GmvDfKDZrAHfOvU7HPvV\n/Rn2zREl9d9www2z5xEBwC8vv4SnHnsYgD889FSd202dPIlHHnmEyZMn06lTJw444IDs2oEOHTpk\np43W1NSwatWqel8/Ar5+9LGcO+oiAHYruHitY8eO1NTUlPQ+bP3lkYJZAzbt2pWDDz+Su8aPy9oG\n7j6E8ePHA3DLLbew7777Nhjj7PP/H3946KmsIAzZez/+MG4skBzwXbZ0CR8tXUrXrl3p1KkTL7/8\nMlOmTGk0t7ri7Ln3fjxy/70sfu9dAN5//31ef/31pr9xW295pGCtXn2nkM4ocaqH3ZowfURdThx5\nFuNv+G22POqSy7niR9/jyiuvpEePHlx//fVNinf+f1/G/5z/Pe4aP46amhouuPSn7H3AQTx4xzh2\n2mkn+vXrx9ChQ8uKM3D3IZz5wwv4zohvsHr1arp06sg111zDdttt1+T3besnFwWzOkyZ8/lcQN16\nbMEzr76ZLW/dsxePPfbYWtvccMMNayx/9NFHdcbu1mMLrhq79gVYDzxQ9z2mCuMMHz6c4cOHM2Ph\nh/XGOfSIb3DoEd8A1iyI9eVjVsi7j8zMLOOiYGZmGRcFMzPLuCiYmVnGRcHMzDIuCmZmlvEpqdb6\nXbxpnc27lR1vSaNd3nvnba64+D+ZNf15umy6Kd269+CHF/+E3tt/sdxXNasKLgpmRSKC759+Al8f\nfixXXJtcMTznpZm8/+4766woRAQRQbt2HszbuuXfOLMizz79FO3bt88mmwPoN2BX+u+yG6cfO4xj\nDtufXXfdlXvuuQeA+fPns9NOO3H66aez8847c/DBB7NixQoA5s6dy8jjjuTog/fhmMP2Z8H81wC4\nYfTVHP+1Axn+lb259qc/yeL069ePE088kV122YUFCxas43du5qJgtpa5c2YzYNdBa7VvsGFHfn7d\nOG574Akef/xxzjvvvGzSu1dffZUzzzyTWbNmsdlmm3HnnXcCMGLECI458TRuf3gSN931EN233JKn\nn3iMN16bxy33PcofHnqKl2a+wHNT/pLF+e53v8usWbM8NYVVhHcfmZUoIrj68kv46zNP02nDDixa\ntCibHrtPnz4MGpQUktrprZctW8aiRYs46LBk2usNO3YEYPKTjzP5ycc45tD9APh4+XJenz8PBu/M\ndtttV9K8R2Z5cVEwK/LFHfvzyP33rNU+8a7b+WDxYn4/8c/s3qcHvXv3zqa3Lpwyu6amJtt9VJeI\n4N/O/D5Hf+uUNVes+pCNN964Zd6EWZm8+8isyJC99+OTTz7hjltuyNpemf0iby1awObdu9OhQwce\nf/zxRqek7tKlCz179uSxB+8H4JN//IMVKz5mr/0P5O7bbuHj5ckEdW+/9WY21bVZpXmkYK1fPaeQ\n5jV1tiR+ft04rvzvH3H9tVexQceObNNzW874/iguv2gUR/3LXuzzT3vSv3//RmONGzeOESefyrU/\nvZT2HTrwf7++gb32P5DX5r7CCcMOBqDTxp259KrfwGZdm5SnWR5cFMzqsMUXtuLKX699n4Rx9yR3\nUCsuNC+++GL2/Ac/+EH2vG/fvvz2tnvXijPi1DMYceoZa7T17rnZGnHMKsG7j8zMLOOiYGZmGRcF\na5Vqz/+3/PlnbYVcFKzV6dixI4sXL/Yfq3UgIli8eDEd02sozHyg2Vqdnj17snDhQt59t+HTNN/+\noP5rAQrNXrZRya+9Psbs2LEjPXv2BF4q+fWt7XJRsFanQ4cO9OnTp9F+h426v6R48y/7WsmvvT7H\nNIOcdx9JOlTSHElzJY2qY70kXZ2unyHpy3nmY2ZmDcutKEiqAa4BDgMGAMdJGlDU7TCgb/oYCfw6\nr3zMzKxxeY4UhgBzI2JeRHwCjAeGFfUZBtwUiSnAZpK2yjEnMzNrgPI6w0PScODQiDgtXT4B2DMi\nzirocx9wWURMSpcfBc6PiGlFsUaSjCQA+gFzSkyjO/Bes95Idcashhwd0zEdc93G3C4iejTWqSoO\nNEfEGGBMU7eTNC0iBrdkLtUQsxpydEzHdMzWGTPP3UeLgG0LlnumbU3tY2Zm60ieRWEq0FdSH0kb\nAMcCxTOD3QucmJ6FNBRYEhFv5ZiTmZk1ILfdRxGxStJZwENADTA2ImZJOiNdPxqYCHwVmAt8DJxS\nX7wyNXmXUxuJWQ05OqZjOmYrjJnbgWYzM6s+nvvIzMwyLgpmZpZxUTAzs4yLgpmZZari4rVSSdoS\n2CZdXBQRb7fGmNVAUn+SaUiy9w7cGxGzHbPyMashx7xiVkuu1ZBjXdrESEHSIElTgD8DV6SPJyRN\nKXfm1TxiFsTuL+n8dIbYq9PnO7WWmJLOJ5mrSsCz6UPA7+ua7dYx123Masgxr5jVkms15FiviKj6\nB/ACybxKxe1DgemtJWa6/flp7FHAt9LHqNq21hATeAXoUEf7BsCrZebomC0UsxpyzCtmteRaDTnW\n92gru482johnihsjYoqkjVtRTIBTgZ0j4tPCRkk/A2YBl7WCmKuBrYHXi9q3SteVwzFbLmY15JhX\nzLzirq+f0VraSlF4QNL9wE3AgrRtW+BE4MFWFBOq45fle8Cjkl7l8/feC/gicFa9WznmuopZDTnm\nFbNacq2GHOvUZq5olnQYdR+AmdjKYh4K/Aqo84ONiCYXnJxitiO5J0bhe58aEZ81NZZjtnzMasgx\nr5jVkms15Fjna7SVolBNqvWXxczavjZx9lFD0hv0tKqYEbE6IqZExJ3pY0pz/3jnEbMu6Y2RHLOV\nxqyGHPOKmVfc9e0zavNFgeSUrWqI2ep/WVKnt3A8x2zd8aopZl5x16vPqM3uPpJ0U0Sc2Izta+8B\n8WZEPCLpeGAvYDYwpvhMn5Ygaato4ftJ5BGzpUjaIiLeqXQelSCpW0QsrnQeDVmfPx9o+c+oWn6e\nbWKkIOneoscE4Bu1y2WGvR74GnCupHHA0cAzwB7AdS2T+Zpa8o+3pG7lxpS0qaTLJL0s6X1JiyXN\nTts2KzOfzYse3YBnJXWVtHmZMQdLelzSzZK2lfQnSUskTZX0pTJjbiLpJ5LGpV8ECtddW2bMyyR1\nL8h5HvCMpNcl7V9GvPX280njVsNnVDU/z7W01AUPlXwAfwVuBg4A9k//fSt9vn+ZMWek/7YH3gZq\n0mXVrisz7ibAT4BxwPFF664tM+ZlQPf0+WBgHsmNi14v5/2T3BjpfOALBW1fSNseLjPH1cBrRY9P\n03/nlRnzWeAw4DiSs66Gp+0HAZPLjHln+vM8kuTOgHcCG9b+npUZc2bB88eBPdLnOwLT/Pm0yc+o\nan6ea71OSwWq5INkxPN94E/AoLStrB98QcwXSa4U7AosAzZP2zsCs5sRtxp+oeeUs66RmOeRXN+x\na0Hba838jJ4veP5GfeuaGPOFouULgL8A3Zrx+cwG2qfPp9T32fnzaVOfUdX8PIsfbeLitYhYDfxc\n0u3pv2/T/Avzfge8THIr0QuA29Mh5VCS+UfKtUNEHJU+v1vSBcBjko5oRsz2ktpHxCpgo4iYChAR\nr0jasIx4r0v6D+DGSCcAVDIx4Ml8fh1Ek0TETyXdRvL5LAAuApp7QGulpIOBTYGQdGRE3J0O98s9\n82pDSe3S3yki4seSFgFPAp3LjHktMFHSZcCDkq4C/ggcSDIVSVOtz58PVMFnVGU/zzW1VHVpTQ+S\nYwGXtkCcrYGt0+ebAcOBIc2MORtoV9R2Msl0FK+XGfNs4GGSX+CLgatIdp39NzCujHhdgctJiuIH\nwPtp3peTjpia+TM4ApgC/L2ZcQaS7Ep5AOifvu8P05/lXmXGvAL4lzraD6V58/UcANwGPA/MJLk/\n+UjqmMumjM/ng/TzuaKFPp9hLfT5DKrj8/kg/Xz2bkbcVv8ZFcXN8/e92T/P4kebPfuotZJ0Bcl+\n30eK2g8FfhkRfcuMewDwHZJdRu1JvjHeDYyNZATR1Hj9gZ4kQ+mPCvOMMq6QLoi5DckB+89IRk0v\nNjPmTiTF+5kWzHMIEBExVdIAkj82L0fzrmQvjLlzGnN2c2IWxR8XESe0RKw03kbATRFxdEvFTOO2\naJ5pzH1ILtx8MSIebqGY+6YxZ5YTU9KeJJ/vUkmdSL6sfRl4juQL65IyY74cEUvSz+c/05izyo1Z\n5+u4KLQekk6JiOsrHVPSOcCZJN8+BwHnRsQ96bq/RkSTpw7PMeZ3Sb4xt1TMi0gO5rUnOUa1J8lx\nmq8AD0XEj1sg5hCSKdnLiqm6z6g7EHgMICKavCuyWmKmcZ+NiCHp89NJfq/uAg4GJkREkyeVLIp5\nWhrz7nJjSpoFDIyIVZLGAMtJjh8elLZ/o4wcWzxmnVpqyOFH8x8UHTyqVEySoXPn9HlvYBrJH1wo\n/wBuNcWsAToBS4FN0vaNKPOss5aOST5n2+UR8/mWjln82QJTgR7p840p46BwHjEpOBmFooPfFB0o\nr2TMuh4tU0EoAAAEfElEQVRt4kBzNZE0o75VwJatJGa7SHfFRMT8dNfUHZK2o/yruasl5qpIpgf5\nWNLfImJpGn+FpHJnsW3pmIOBc0lOgPhhRLwgaUVEPFFmfnnF3D2HmADtJHUlOeuwJiLeBYiI5ZKa\nvKs0p5gvFozSp0saHBHTJO1IcmpqOfKIuRYXhXVvS+AQkgNEhQQ83Upivi1pUES8ABARH0k6HBgL\n7FpmjtUS8xNJnSLiY5I/akBywRjlT23eojEjh7PtqiVmalOSffMiOQtnq4h4S1Jnyv8y0NIxTwOu\nkvRfwHvA5PQspAXpunLkEXMtPqawjkn6HXB9REyqY92tEXF8HZut05iSepJ8u/17Hev2joi/lJFj\ntcTcMCL+UUd7d2CriJjZGmIWxfkaydknP2pOnGqMWRS/E7BlRLzWWmJK2gToQ1IMF0bL3De+xWOu\nEd9FwczMarWJuY/MzKxluCiYmVnGRcGqlqTPJL0gaZak6ZLOU3IHutoZJa/O+fWPTC9ua+p2J0sK\nSf9SFCskDW9k2/8p3M6spfnsI6tmKyJiECRz1QO3ksxCe1FETCO5biFPRwL3AS+VuoGk2v9zM0nu\n11F7ZftxwPTGto+IC5uSoKSa8C1ZrQk8UrA2IZKbl4wEzlLiAKV3nZM0RNJkSc9LelpSv7T9ZEl3\nK5mXfr6ksyT9e9pvitJ57yXtIOlBSc9JekpSf0l7kcxpc2U6Wtmhrn7p9jdIGi3pGZJ5ewCeAoZI\n6pCe9vhFCiZek3ShknnyX5Q0RpIKYg1Pnx+U5jpT0lilkx+m7+VySX8luQ+IWclcFKzNiIh5JFcO\nb1G06mVg34j4EnAhcGnBul2Ab5DcPOnHwMdpv8lA7Z37xgBnR8TuwA9I7nvxNMnU5z+MiEER8be6\n+hW8Tk+SSfr+vTZdklHCISQT0BVPCfGriNgjInYhufL58MKVkjoCNwDHRMSuJKP+7xR0WRwRX46I\n5szoa+sh7z6y9cGmwI2S+pL8Me5QsO7xiFgGLJO0BJiQts8Edku/xe9FMnV67TZrTUdeQr/b69iN\nMx44J83vPKDw/P1/VjI9didgc5JJzyYUrO9HMj//K+nyjSTz9fwiXb6tjp+DWaNcFKzNkLQ9yeyr\n7wA7Fay6hOSP/79K6k0yGV2twovKVhcsryb5/9EO+LD22EUDGuu3vLghIp6VtCvJ6OSV2mKSjgKu\nBQZHxAJJF5Pc3Kkp1no9s1J495G1CZJ6AKNJdrsUX5G5KbAofX5yU+Km8xS9Juno9HUkaWC6ehnQ\npYR+DRnFmiME+LwAvJeOQOo6I2kO0FvSF9PlE4Dmzilk5qJgVW2j2lNSSfbPP0xyY6FiVwA/kfQ8\n5Y2ORwCnSppOshtnWNo+HvhherB3hwb61SsiHoiIx4vaPgSuI7kl7EMks3YWdYmVwCkku6tmkoxs\nRpfx3szW4GkuzKqIpAnAz4oLiVlL8UjBrEpIGkty4HmtiQ/NWopHCmZmlvFIwczMMi4KZmaWcVEw\nM7OMi4KZmWVcFMzMLOOiYGZmmf8P1EqMxsD6Um0AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1452a080>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEpCAYAAAB8/T7dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm0VOWZ7/HvzyOIs0bQqAiowQHCICAOMa0JRtFronaM\n4xV1JUHifJv0iiadq+mkO+nErFaiCcGIxoREje3UXlQaxbZVjAICiqggogyKgBHFGXzuH3uzLQ+H\ncwqq3lNU8fusVcs9PvXUS1nPefd+996KCMzMzAA2q3UCZma28XBRMDOzgouCmZkVXBTMzKzgomBm\nZgUXBTMzK7gomAGS7pV0VoUxjpC0sIL9R0v6YSU5mFXKRcEaiqTDJD0maYWkNyQ9KunAtvaLiGMi\n4vftkSOApLMlPdIshxER8eP2ysGsJZvXOgGzapG0HXAP8B3gVqAj8EXgg1rmZVZP3FOwRrIPQET8\nOSJWR8R7ETEhImbmf5k/KumavBfxnKQha3aU9JCkb5XMf1vSbElvS3pW0oB8eUj6XMl2N0r6SUvJ\nSLpU0oslMU7Ml+8PjAYOkbRS0pstxcpzmJv3eO6WtFvJupA0QtIcSW9KulaSqtWQtulyUbBG8gKw\nWtLvJR0jacdm6w8CXgQ6A5cDt0v6TPMgkr4BXAEMA7YDvgYs34B8XiTrqWwP/Aj4o6RdI2I2MAKY\nHBHbRMQOLeTwZeCnwMnArsDLwM3NNjsOOBDom2939AbkaPYpLgrWMCLiLeAwIIDrgKX5X9i75Ju8\nDlwVER9FxC3A88D/aiHUt4CfR8STkZkbES9vQD5/iYjFEfFx/n5zgMFl7n4GMDYipkXEB8BlZD2L\nHiXb/Cwi3oyIV4BJQP/1zdGsORcFaygRMTsizo6IrsDngd2Aq/LVi+LTd4B8OV/f3B5kf+VXRNIw\nSdPzwztv5vl0LnP33fL8AIiIlWS9ld1LtnmtZPpdYJsKUzZzUbDGFRHPATeS/RgD7N7suHs3YHEL\nuy4A9l5H2HeBrUrmP9vSRpK6k/VWLgB2yg8RPQOsef+2bk+8GOheEm9rYCdgURv7mVXERcEahqT9\nJI2U1DWf3wM4DXg832Rn4CJJHfLzBvsD41sI9Tvgu5IGKvO5/EceYDpwuqQmSUOBw9eRztZkP/xL\n81zO4ZPiBLAE6Cqp4zr2/zNwjqT+krYA/hX4a0TMb6sdzCrhomCN5G2yk8l/lfQOWTF4BhiZr/8r\n0BNYBvwLcFJErHUCOSL+kq//Ux7zTmDNCemLga8Cb5Id97+zpUQi4lngl8BksgLQB3i0ZJMHgVnA\na5KWtbD/ROCHwH8Ar5L1XE4tow3MKiI/ZMc2BZLOBr4VEYfVOhezjZl7CmZmVnBRMDOzgg8fmZlZ\nwT0FMzMruCiYmVmh7u6S2rlz5+jRo0et0zAzqytTp05dFhFd2tqu7opCjx49mDJlSq3TMDOrK5LK\nun+XDx+ZmVnBRcHMzAouCmZmVqi7cwot+eijj1i4cCHvv/9+rVPZJHTq1ImuXbvSoUOHWqdiZlXW\nEEVh4cKFbLvttvTo0QM/kTCtiGD58uUsXLiQPffcs9bpmFmVJTt8JGmspNclPbOO9ZI0Kn8G7cw1\nz8DdEO+//z477bSTC0I7kMROO+3kXplZg0p5TuFGYGgr648hu41xT2A48JtK3swFof24rc0aV7Ki\nEBEPA2+0ssnxwE35M3AfB3aQtGuqfFKTxMiRI4v5K6+8kiuuuKJ2CZmZbYBanlPYneyxh2sszJe9\n2nxDScPJehN069at5WiLnyome4xq6QmLG27+RS09xvfTttiiI7fffjuXXXYZnTuX8RjeknzLstsB\n5W+7PrHLjLt69Wqalsz8ZMGbr8MVB697hytWlJ/DFduXv23K2I0cN2XseoubMna9xW1BXQxJjYgx\nETEoIgZ16dLmVdo1sXlTE8OHD+ff//3f11o3f/58vvzlL9O3b1+GDBnCK6+8AsDZl1zORT/8OYd+\n7Wz2OuSr3HbPxBZjL1m6nBNPPJF+/frRr18/HnvsMQBOOOEEBg4cSO/evRkzZkyx/TY9v8APfnYN\n/Y48hYOPG8aSpcs/ifPNkfQ78hT6HXkKjz05A4A//vGPDB48mP79+3PuueeyevXqLM422zBy5Ej6\n9evH5MmTq9dYZrbRqmVRWATsUTLflTp/KPn555/PuHHjWLHi05X6wgsv5KyzzmLmzJmcccYZXHTR\nRcW6V5cs45E7x3LP76/m0p+OajHuRT/8OYcffjgzZsxg2rRp9O7dG4CxY8cydepUpkyZwqhRo1i+\nPPvxf+fd9zh4QB9mTLyFvzt4ANeNu+OTOAcPYMbEW5h2/5/ove9ezJ49m1tuuYVHH32U6dOn09TU\nxLhx47I477zDQQcdxIwZMzjsMD+wzGxTUMuicDcwLB+FdDCwIiLWOnRUT7bbbjuGDRvGqFGf/nGf\nPHkyp59+OgBnnnkmjzzySLHuhKFHsNlmm9Frn71YsrTlUzAPPvok3/nOdwBoampi++2zruSoUaPo\n168fBx98MAsWLGDOnDkAdOzYgeO+8ncADOyzP/MXLv4kzrBvfBJnu2154IEHmDp1KgceeCD9+/fn\ngQceYN68ecU2X//616vSNmZWH5KdU5D0Z+AIoLOkhcDlQAeAiBgNjAeOBeYC7wLnpMqlPV1yySUM\nGDCAc84p7+Ns0bFjMb3mgUc/+Nk1/L8HssIx/b9ubnG/hx56iIkTJzJ58mS22morjjjiiGKYaIfN\nNy9GCDU1NbFq1ep1vn9EcNZZZ/HTn/50rXWdOnWiqamprM9hZo0h5eij0yJi14joEBFdI+L6iBid\nFwTyUUfnR8TeEdEnIhri1qef+cxnOPnkk7n++uuLZYceeig335z9uI8bN44vfvGLrcb4l0svYPp/\n3VwUhCGHDeY3v8lG7K5evZoVK1awYsUKdtxxR7baaiuee+45Hn/88TZzG3LYYH5z018+ifPW2wwZ\nMoTbbruN119/HYA33niDl18u62aKZtaA6uJEc70ZOXIky5YtK+Z/9atfccMNN9C3b1/+8Ic/cPXV\nV69XvKv/+R+ZNGkSffr0YeDAgTz77LMMHTqUVatWsf/++3PppZdy8MGtjAQqjfPYFPoMOZmBQ8/g\n2Rfm0atXL37yk59w1FFH0bdvX77yla/w6qt1fRTPzCrQELe5aK7NIaQJhneunPNoMb3LLrvw7rvv\nFvPdu3fnwQcfbBZ3OTde9aN1xii1S5eduOuuu9Zafu+997aZy0nHHclJxx35SZwb1h4ddcopp3DK\nKaesHWflyhbjm1njck/BzMwKLgpmZlZwUTAzs0JDnlMwM2skPd7/U9nbzq/wvdxTMDOzgouCmZkV\nXBSq6LXXXuPUU09l7733ZuDAgRx77LG88MILtU7LzKxsjXlOYcwR1Y03/KE2N4kITjzxRM4666zi\n6uUZM2awZMkS9tlnn+rm00oOEeFKb2YbzL8fVTLp0Sfp0KEDI0aMKJb169ePAw44gCFDhjBgwAD6\n9OlTXIQ2f8Fi9j/87/n2P/6Y3l86iaNOO4/33svuXTT3pVc48pQR9DvyFAYcfTovzs8eO/GLX/yC\nAw88kL59+3L55ZdncebPZ99992XYsGF8/vOfZ8GCBZiZbSgXhSp55vkXGThw4FrLO3XqxB133MG0\nadOYNGkSI0eOLG58N+elBZx/1snMmnQbO2y3Lf8x/gEAzrjwnzj/7JOZMfEWHrvrBnbdpTMTJkxg\nzpw5PPHEE0yfPp2pU6fy8MMPZ3HmzOG8885j1qxZdO/evf0+tJk1nMY8fLQRiQi+//3v8/DDD7PZ\nZpuxaNEilixZAsCee+xG/8/vC8DAvvszf8GrvL3yHRa9+jonHvNlADp12gKACRNuZ8KECRxwQHaL\njpUrVzJnzhy6detG9+7dy7r3kZlZW1wUqqT3Pntx27VrjyUeN24cS5cuZerUqXTo0IEePXoUt7je\nYotPbpvd1LQZ772/ap3xI4LLLruMc88991PL58+fz9Zbb12lT2FmmzofPqqSLx82mA8++OBTj8Wc\nOXMmL7/8MjvvvDMdOnRg0qRJbd6Wettttqbrrjtz532TAPjggw959733OProoxk7dmxxk7pFixYV\nt7s2M6sWF4UqkcQdd9zBxIkT2XvvvenduzeXXXYZxx57LFOmTKFPnz7cdNNN7Lfffm3G+sOonzDq\n+j/T98iTOfT4s3nt9eUcddRRnH766RxyyCH06dOHk046ibfffrsdPpmZbUoa8/DR8IdaX5/g1tkA\nu+22G7feeutay1t86H3Hv/HMg38pZr87Ylgx3XOvbjz4lzFr7XLxxRdz8cUXr7X8mWeeKTtHM7PW\nuKdgZmYFFwUzMyu4KJiZWaFhisKaC8Isvayt3d5mjaghikKnTp1Y/s4qF4Z2EBEsf2cVnVbMq3Uq\nZpZAQ4w+6tq1KwsfuJel2+8FqO0dVswuP/ib63EtQKq4KWOvd9yg04p5dJ32b+XvZ2Z1oyGKQocO\nHdjz8cvK3+GKFeux7XrcPiJV3JSxU+ZsZnWnIQ4fmZlZdbgomJlZwUXBzMwKLgpmZlZwUTAzs4KL\ngpmZFVwUzMys4KJgZmaFpBevSRoKXA00Ab+LiJ81W7898EegW57LlRFxQ8qcNgU93l/7saDrMj9d\nGmZWh5L1FCQ1AdcCxwC9gNMk9Wq22fnAsxHRDzgC+KWkjpiZWU2kPHw0GJgbEfMi4kPgZuD4ZtsE\nsK0kAdsAbwDrfnq9mZkllbIo7A4sKJlfmC8rdQ2wP7AYeBq4OCI+bh5I0nBJUyRNWbp0aap8zcw2\nebU+0Xw0MB3YDegPXCNpu+YbRcSYiBgUEYO6dOnS3jmamW0yUhaFRcAeJfNd82WlzgFuj8xc4CVg\nv4Q5mZlZK1KOPnoS6ClpT7JicCpwerNtXgGGAP8jaRdgX8BPbzGzutQII/+SFYWIWCXpAuB+siGp\nYyNilqQR+frRwI+BGyU9TfZ0nO9FxLJUOZmZWeuSXqcQEeOB8c2WjS6ZXgwclTIHMzMrX61PNJuZ\n2UbERcHMzAouCmZmVkh6TsHMbEM1wkieeuSegpmZFVwUzMys4MNHZrbJ8aGpdXNPwczMCi4KZmZW\ncFEwM7OCi4KZmRV8otlsI+IToFZr7imYmVnBRcHMzAouCmZmVvA5Bau59TmODj6WbpaSi4LZJsIn\nsa0cPnxkZmYF9xTMrCLugTQW9xTMzKzgomBmZgUXBTMzKzTMOYVUxzV9vPQTbguzxueegpmZFVwU\nzMysUHZRkLSlpH1TJmNmZrVVVlGQ9FVgOnBfPt9f0t0pEzMzs/ZXbk/hCmAw8CZAREwH9kyUk5mZ\n1Ui5ReGjiFjRbFlUOxkzM6utcoekzpJ0OtAkqSdwEfBYurTMNm4enmuNqtyewoVAb+AD4M/AW8Al\nqZIyM7PaKKunEBHvAj/IX1YFfoaAmW2MyioKkv6Ttc8hrACmAL+NiPfXsd9Q4GqgCfhdRPyshW2O\nAK4COgDLIuLwsrM3M7OqKvfw0TxgJXBd/noLeBvYJ59fi6Qm4FrgGKAXcJqkXs222QH4NfC1iOgN\nfGMDPoOZmVVJuSeaD42IA0vm/1PSkxFxoKRZ69hnMDA3IuYBSLoZOB54tmSb04HbI+IVgIh4ff3S\nNzOzaiq3p7CNpG5rZvLpbfLZD9exz+7AgpL5hfmyUvsAO0p6SNJUScPKzMfMzBIot6cwEnhE0ouA\nyC5cO0/S1sDvK3z/gcAQYEtgsqTHI+KF0o0kDQeGA3Tr1m2tIGZmVh3ljj4an1+fsF++6PmSk8tX\nrWO3RcAeJfNd82WlFgLLI+Id4B1JDwP9gE8VhYgYA4wBGDRokC+aMzNLZH3uktoT2JfsR/vkMg71\nPAn0lLSnpI7AqUDz+yXdBRwmaXNJWwEHAbPXIyczM6uicoekXg4cQTaKaDzZiKJHgJvWtU9ErJJ0\nAXA/2ZDUsRExS9KIfP3oiJgt6T5gJvAx2bDVZyr4PGZmVoFyzymcRNZDeCoizpG0C/DHtnaKiPFk\nRaR02ehm878AflFmHmZmllC5h4/ei4iPgVWStgNe59PnC8zMrAGU21OYkl9odh0wlexCtsnJsjIz\ns5ood/TRefnk6PwcwHYRMTNdWmZmVgvlPnntgTXTETE/ImaWLjMzs8bQak9BUidgK6CzpB3JLlwD\n2I61r0422+j4uQdm66etw0fnkj03YTeycwlrisJbwDUJ8zIzsxpotShExNXA1ZIujIhftVNOZmZW\nI+WeaP6VpEOBHqX7RMQ6L14zM7P6U+4VzX8A9gamA6vzxUErVzSbmVn9Kfc6hUFAr4jwzejMzBpY\nuVc0PwN8NmUiZmZWe+X2FDoDz0p6AvhgzcKI+FqSrMzMrCbKLQpXpEzCzMw2DuWOPvpvSd2BnhEx\nMX/2QVPa1MzMrL2Ve5uLbwO3Ab/NF+0O3JkqKTMzq41yTzSfD3yB7EpmImIOsHOqpMzMrDbKLQof\nRMSHa2YkbU52nYKZmTWQcovCf0v6PrClpK8AfwH+M11aZmZWC+UWhUuBpcDTZDfJGw/8U6qkzMys\nNsodkrolMDYirgOQ1JQvezdVYmZm1v7K7Sk8QFYE1tgSmFj9dMzMrJbKLQqdImLlmpl8eqs0KZmZ\nWa2UWxTekTRgzYykgcB7aVIyM7NaKfecwsXAXyQtJnv62meBU5JlZWZmNdFmUZC0GdAR2A/YN1/8\nfER8lDIxMzNrf20WhYj4WNK1EXEA2S20zcysQZU9+kjS1yUpaTZmZlZT5RaFc8muYv5Q0luS3pb0\nVsK8zMysBsq9dfa2qRMxM7PaK/fW2ZL0vyX9MJ/fQ9LgtKmZmVl7K/fw0a+BQ4DT8/mVwLVJMjIz\ns5op9zqFgyJigKSnACLib5I6JszLzMxqoNyewkf5TfACQFIX4ONkWZmZWU2UWxRGAXcAO0v6F+AR\n4F/b2knSUEnPS5or6dJWtjtQ0ipJJ5WZj5mZJVDu6KNxkqYCQ8huc3FCRMxubZ+8Z3Et8BVgIfCk\npLsj4tkWtvs3YMIG5G9mZlXUalGQ1AkYAXyO7AE7v42IVWXGHgzMjYh5eaybgeOBZ5ttdyHwH8CB\n65G3mZkl0Nbho98Dg8gKwjHAlesRe3dgQcn8wnxZQdLuwInAb1oLJGm4pCmSpixdunQ9UjAzs/XR\n1uGjXhHRB0DS9cATVX7/q4Dv5fdXWudGETEGGAMwaNCgqHIOZmaWa6soFHdCjYhV63nro0XAHiXz\nXfNlpQYBN+dxOwPHSloVEXeuzxuZmVl1tFUU+pXc40jAlvm8gIiI7VrZ90mgp6Q9yYrBqXxy8Rtk\nAfZcMy3pRuAeFwQzs9pptShERNOGBs57FhcA9wNNwNiImCVpRL5+9IbGNjOzNMq9onmDRMR4YHyz\nZS0Wg4g4O2UuZmbWtnIvXjMzs02Ai4KZmRVcFMzMrOCiYGZmBRcFMzMruCiYmVnBRcHMzAouCmZm\nVnBRMDOzgouCmZkVXBTMzKzgomBmZgUXBTMzK7gomJlZwUXBzMwKLgpmZlZwUTAzs4KLgpmZFVwU\nzMys4KJgZmYFFwUzMyu4KJiZWcFFwczMCi4KZmZWcFEwM7OCi4KZmRVcFMzMrOCiYGZmBRcFMzMr\nuCiYmVnBRcHMzAouCmZmVkhaFCQNlfS8pLmSLm1h/RmSZkp6WtJjkvqlzMfMzFqXrChIagKuBY4B\negGnSerVbLOXgMMjog/wY2BMqnzMzKxtKXsKg4G5ETEvIj4EbgaOL90gIh6LiL/ls48DXRPmY2Zm\nbUhZFHYHFpTML8yXrcs3gXsT5mNmZm3YvNYJAEj6EllROGwd64cDwwG6devWjpmZmW1aUvYUFgF7\nlMx3zZd9iqS+wO+A4yNieUuBImJMRAyKiEFdunRJkqyZmaUtCk8CPSXtKakjcCpwd+kGkroBtwNn\nRsQLCXMxM7MyJDt8FBGrJF0A3A80AWMjYpakEfn60cD/BXYCfi0JYFVEDEqVk5mZtS7pOYWIGA+M\nb7ZsdMn0t4BvpczBzMzK5yuazcys4KJgZmYFFwUzMyu4KJiZWcFFwczMCi4KZmZWcFEwM7OCi4KZ\nmRVcFMzMrOCiYGZmBRcFMzMruCiYmVnBRcHMzAouCmZmVnBRMDOzgouCmZkVXBTMzKzgomBmZgUX\nBTMzK7gomJlZwUXBzMwKLgpmZlZwUTAzs4KLgpmZFVwUzMys4KJgZmYFFwUzMyu4KJiZWcFFwczM\nCi4KZmZWcFEwM7OCi4KZmRVcFMzMrJC0KEgaKul5SXMlXdrCekkala+fKWlAynzMzKx1yYqCpCbg\nWuAYoBdwmqRezTY7BuiZv4YDv0mVj5mZtS1lT2EwMDci5kXEh8DNwPHNtjkeuCkyjwM7SNo1YU5m\nZtYKRUSawNJJwNCI+FY+fyZwUERcULLNPcDPIuKRfP4B4HsRMaVZrOFkPQmAfYHny0yjM7Csog/S\n/rHrLW7K2PUWN2XseoubMna9xU0Ze33ido+ILm1ttHll+bSPiBgDjFnf/SRNiYhBCVJKFrve4qaM\nXW9xU8aut7gpY9db3JSxU8RNefhoEbBHyXzXfNn6bmNmZu0kZVF4EugpaU9JHYFTgbubbXM3MCwf\nhXQwsCIiXk2Yk5mZtSLZ4aOIWCXpAuB+oAkYGxGzJI3I148GxgPHAnOBd4FzqpzGeh9y2ghi11vc\nlLHrLW7K2PUWN2XseoubMnbV4yY70WxmZvXHVzSbmVnBRcHMzAouCmZmVnBRMDOzQsMWBUmHSfoH\nSUdVGGdoyfT2kq7Pb973J0m7VBh7h0r2byVuspybvU9V2jiPlbKdNy+Z3kbSIEmf2VjzbeG9Nvrv\nch6zi6QDJPWVtE2l8fKYdfVdbs/vRSoNUxQkPVEy/W3gGmBb4PKW7tC6Hv61ZPqXwKvAV8muw/ht\nBXEBlkmaKOmbVS4QSXJO2MaQLuezgSWSXpB0DDAT+DdghqTTNjzddN+LevsuS+olaSIwGfgrcB3w\ntKQbJW1fQb5Qf9/llL8XAEjaRdKA/FX9QhMRDfECniqZfhLokk9vDTxdQdxpJdPTm62bvqFx8/2f\nBo4DxgHLgbvILvLbssK4SXJO1caJc36a7P4wewJvAXvny3cBZm5s+aZs54Rt/Diwbz49GPh9Pv1t\n4LaN9HtRV22c798/b+vZwMT89Vy+bEAlsUtfdXHvozJtJmlHst5PU0QsBYiIdyStqiDuzpL+ARCw\nvSRF/i9E5T2tjyLiHuAeSVuS/UVxKnCtpPsj4vSNLOdUbQzpcl4dEcvIemUrI+LFPOclkjbGfKH+\nvstbRsTzeY5PSBqdT1+Xv18l6u27nPJ7cSNwbkT8tXRhfjeIG4B+FcYH6uSGeGXaHphK9o8RknaN\niFfzY5uV/N9/HVm3ErJ/lM7AUkmfBaZXEJfSvCLiPeBW4Na8y31CBXFT5ZyqjSFdzq9I+mke+zlJ\nvwRuB44k69pvqJTfi3r7Lr8o6YfAg8Dfr4klqQOV/xDW23c55fdi6+YFASAiHpe0dYWxCw1/RbOk\nrYBdIuKlWufSnKTvRsSVtc6jUht5G28HnA8E2XHjo8lup/Iy8JOoo3ttbaztnJ8P+z7Zw7RmkN0O\n/+38j5v9I3tWSl3YWNsYQNIoYG/gJmBBvngPYBjwUpQ8lqCi92nUoiDpc2TdqdkR8WwFcS4Cbo+I\nhVVLrh1I2g/YHfhrRKwsWT40Iu7bwJg7RMSb1cqxWey6a+cUbVwSY/OIWJVPbwPsB8yLiDcqiFl3\nbQzJ27kL2d2ZV5O178o2dmkrXtI2zgdLHE/WHpDdVfruiBhftTep1smJWr+ASUDnfPpM4AXgd2Qn\nGi+sIO4KYDHwP8B55Cek2uHzDK9g34vIHkR0JzAfOL5k3bQK4q4iO7n1TWCHKn/edm/njbGN8/3P\nJht48ALZI2vnAQ+Q/XV42qbSxinbmaxXM5HsZpwfko2aeonskM/29dTGVf83q3UCVfsg8EzJ9JPA\nTvn0VlQ2yuQpsuOiRwHXA0uB+4CzgG0Tfp5zK9j3aWCbfLoHMAW4eM3nqTBu1UdL1aqdN8Y2Lomd\nYsRUXbVxynYm0YipGv5eVFR8S1+NdKL5I0m7R8QiYCXwTr78A7Jbd2+oiIiPgQnAhPzk2THAacCV\nQJuPt2tN3jVuqTtYyZjmzSLvBkfEfElHALdJ6k5lJ9FSjZbKU03TznXWxpBuxFS9tTGka+dUI6aS\n/l60otLvXKFhLl4D/g/ZP8I/A7OAByVdTlalb6gg7qcaOyI+ioi7I+I0oHsFcZH0PeDm/D2eyF8C\n/lzhBTRLJPUvyXkl2V/4nYE+FcT91GipiLg1Iv4e2IvsuRmVSNLOddjGkI+YknQN+YgpSV/Iv8+V\nnBivtzaGdO38oqQf5u36S6o3YirZ70UbPqxWoIY60ZyPdjgd2IdsuO1C4K6IeK6CmPtExAtVSrF5\n7BeA3hHxUbPlHYFZEdFzA+N2BVZFxGstrPtCRDy6gXGTjZZK1c711sb5/klGTNVbG+cxUn2Xk4yY\nSvl70cb7vhIR3aoSq5GKQnuo1qimPNZzwNER8XKz5d2BCRGx7wbGTTZKKJVUOadq4zxG1UcIpZZo\nVFOyNi6JVdVRQqmlyFfSzHWtAvaJiC0qfQ+gcU40t/aislEmSUY15fGGko1+uJfssXpjyA53zQWG\nVhA32SihFG2cMueEbXw2CUYIpWznVDmnauM8dpJRQgnbOFm+wBKyW110b/bqASyu2udP0agb24vK\nRpkkGdVUEnMz4GDg6/nrYLLL7iuJmWyUUIo2Tp1zwjau+gihlO2cMucUbZzHTXZfpURtnPI+UNcD\nh61j3Z+q9fkb6vBRKyMgZlcQ8ynguIhYJGkScExEvC+piex/pN4VJ15lkqZFxIB8unSU0OFARaOE\nUrRx6pxTkDQ9Ivrn04sjYreSdTMjom+F8VN8l5PmnIKkGRHRr2S+9HsyOyL2ryB2ijZOlm97aZjR\nRwlHQKQa1ZRSklFCiUeZpBzZlEKqEUIp2zlZzgklGSWUsI1TjWpqNw3TU0g8AqLqo5pSSjVKKHEb\n19V9oFJUU3HFAAADwElEQVSNEMpjpxoxVXf3gUo4SihVG9f9faAaqSgkHwGxqXMbtw+3c3pu43Vr\npCuaLwEekDSHT+4g2A34HFCVuwc2J2l4RIxJETuVCnNu9zaG+mvnKuTr73IZ6u27XC9t3DBFISLu\nk7QP2Rn/0hNHT0bE6kRvW7VLy9vRBudcozaG+mvnSu9F4e9yeertu1wXbdwwh49SSjXiJiXnnF69\n5QvOuT3UW77N1cXZ8FpKPOImCeecXr3lC865PdRbvi1xT6ENKUfcpOKc06u3fME5t4d6y7cl7im0\n7WNgtxaW75qv2xg55/TqLV9wzu2h3vJdS8OcaE6oJiNuKuSc06u3fME5t4d6y3ctPnxUBkmb0f4j\nbirinNOrt3zBObeHesu3ORcFMzMr+JyCmZkVXBTMzKzgomCbBEk/kDRL0kxJ0yUd1Mq2IyQN28D3\neUjSoDa2uUTSViXz4/MbqZnVnEcfWcOTdAjZA3wGRMQHkjoDHde1fUSMTpzSJcAfgXfz9zs28fuZ\nlc09BdsU7Aosi4gPACJiWUQsljRf0s8lPS3pCWXP30bSFZK+m09/TtJESTMkTZO0t6QjJN2zJrik\naySd3fxNJf1G0pS8h/KjfNlFZOPYJyl7aBN5Hp3z6X+Q9Ez+uiRf1kPSbEnX5bEmKHsQkVnVuSjY\npmACsIekFyT9WtLhJetWREQfsucLXNXCvuOAa/OnaR3K+j2M5gcRMQjoCxwuqW9EjAIWA1+KiC+V\nbixpINnzDQ4ie5zltyUdkK/umefRG3iT7JGXZlXnomANLyJWAgOB4cBS4JaSv+z/XPLfQ0r3k7Qt\nsHtE3JHHeT8i3l2Ptz5Z0jTgKaA32YNXWnMYcEdEvJPnfDvwxXzdSxExPZ+eSvawdrOq8zkF2yTk\nFw49BDwk6WngrDWrSjcrM9wqPv0HVafmG0jaE/gucGBE/E3SjS1ttx4+KJleDfjwkSXhnoI1PEn7\nSiq9EVl/skdQApxS8t/JpftFxNvAQkkn5HG2yEcNvQz0yud3AIa08LbbAe8AKyTtAhxTsu5tYNsW\n9vkf4ARJW0naGjgxX2bWbtxTsE3BNsCv8h/wVcBcskNJxwE7SppJ9pf4aS3seybwW0n/DHwEfCMi\n5km6FXgGeIns8NCnRMQMSU8Bz5HdA+fRktVjgPskLS49rxAR0/IexRP5ot9FxFOSemzwJzdbT77N\nhW2yJM0HBkXEslrnYrax8OEjMzMruKdgZmYF9xTMzKzgomBmZgUXBTMzK7gomJlZwUXBzMwKLgpm\nZlb4/770/iRZVhWsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11901208>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFdWZ//HPlwYEBXfiqIigcUNZwiYSExdcMBM1KkrE\ncUsUjWtmTCaajKMzk0QTzS9xiwQTNCqRjPsSXKKgRtFhMYAiURBRQEXBiPsCPr8/qrpyafrevn3p\n6u7bfN+v131R21N16jR9nz6nTlUpIjAzMwNo19IFMDOz1sNJwczMMk4KZmaWcVIwM7OMk4KZmWWc\nFMzMLOOkYNYCJI2VdGEZ290v6cTmKJMZgHyfgrUFkhYBWwGrCxbfEBFnNXM5TgJOiYi9q2nfZrXa\nt3QBzJrQoRHxcEsXoiGSaiJidcNbmjU/dx9ZmyfpVEnzJL0n6XlJA9Ll20m6Q9JbklZIurog5ltp\nzN8lPShp+4J1Iel0SfMlvSPpGiV2A8YCe0l6X9I76fY3SLpW0iRJHwD7pct+XLDPwyXNkvSupJck\njUiXPyrplPr2LWmwpGWSagr2c6Sk2TlXqbVhTgrWpkk6GrgYOAHYGDgMWJF+kd4HvAL0BLYFJqYx\nhwM/BI4EugF/AW6ps+uvA4OBvsAxwMERMQ84HXgqIrpExKYF248GfgJ0BZ6oU8YhwI3A94FNga8C\niwq3qW/fETEdWAEcVLDp8em+zCripGBtyV3pX9C1n1OBU4CfR8T0SCyIiFeAIcA2wPcj4oOI+Dgi\nar+sTwcuiYh5EbEK+CnQv7C1AFwaEe9ExKvAFKB/A2W7OyKejIjPI+LjOuu+DYyPiD+n65dGxN/K\nPOffA/8CIGlz4GDgD2XGmq3FScHakm+kf0HXfq4DtgNeqmfb7YBX0i/9urYHrqhNLsDbgEhaE7Xe\nKJj+EOjSQNkWl1hXrIzluBk4VNJGJC2Wv0TE6xXuy8xJwdq8xcCORZb3kFTfYIvFwGl1EkzniJha\nxvGKDecrNcyvWBkb3EdELAWeIunqOh64qYz9mBXlpGBt3W+B70kamF4M/mLaDTQNeB24VNJGkjpJ\n+nIaMxa4QNLuAJI2Sa9NlGMZ0F1Sx0aU8XfAyZKGS2onaVtJuzZi3zcC/w70Ae5oxHHN1uKkYG3J\nvenInNrPnRFxK8kF3j8A7wF3AZunQ0IPBb4IvAosAUYBRMSdwM+AiZLeBZ4DDimzDJOBucAbkpaX\nExAR04CTgV8CK4HHSLqwyt33nen2d0bEh2WW06xevnnNrA2Q9BJJl1erv0/DWje3FMyqnKSjSK43\nTG7pslj18x3NZlVM0qNAb+D4iPi8hYtjbYC7j8zMLOPuIzMzyzgpmJlZpuquKWy55ZbRs2fPli6G\nmVlVmTlz5vKI6NbQdlWXFHr27MmMGTNauhhmZlVF0ivlbOfuIzMzyzgpmJlZxknBzMwyVXdNwcyq\ny2effcaSJUv4+OO6r5GwPHTq1Inu3bvToUOHiuKdFMwsV0uWLKFr16707NkTSS1dnDYtIlixYgVL\nliyhV69eFe0jt+4jSeMlvSnpuSLrJelKSQskzal9b66ZtS0ff/wxW2yxhRNCM5DEFltssU6tsjyv\nKdwAjCix/hBgp/QzBrg2x7KYWQtyQmg+61rXuSWFiHic5DWGxRwO3Ji+N/dpYFNJW+dVHjNbf0ni\nvPPOy+Yvv/xyLr744pYrUCvWktcUtmXN99YuSZet9X5ZSWNIWhP06NFjjXU9z/9T0QMsuvSfi65r\n7jgu3qTEupVNF+M4x7XyuFK/Q5VYdM42sM2Xim/w2l/ZYIOO3HHrRC44+Z/ZcvPN4N2l8EED7yN6\n7a/F1zVwvOaOW716NTU1Nf9Y9s6bcPHQ0j+/IqpiSGpEjIuIQRExqFu3Bu/SNjNbQ/uaGsYcdyS/\nHDdhrXWLFi1i//33p2/fvgwfPpxXX30VgJO+exHnXPhzhh12EjvsdSi33Vf/+4uWLVvGEUccQb9+\n/ejXrx9Tp88G4Bvf+jcGjhjN7vuNZNzNt2fbd+nShR/96Ef069ePoUOHsmzZsmQ/b63giG+fR78D\nRtHvgFHZfm6+/U8MGTKE/v37c9ppp7F69epsP+edl2z/1Mw5TVZXLZkUlgLbFcx3T5eZmTW5M086\nhgl33s/Kd99bY/nZZ5/NiSeeyJw5czjuuOM455xzsnWvL1vOE3eN577fX8H5l1xZ737POecc9tln\nH2bPns0zzzzD7rvsAMD4X1zEzAf+wIxJN3Pl+ImsePsdAD744AOGDh3K7Nmz+epXv8p1112X7OfC\nn7PP0AHMfviPPPPgH9h9lx2YN38hf7znIZ588klmzZpFTU0NEyZMyPaz5557MvvhP7L3kBItiUZq\nyaRwD3BCOgppKLAyItbqOjIzawobd+3CCSO/zpW/m7jG8qeeeorRo0cDcPzxx/PEE09k674xYl/a\ntWtH7513YNlb9V8inTx5Mt/5zncAqKmpYZONuwJw5fhb6HfAKIYeeiKLX1vG/JeTFkjHjh35+te/\nDsDAgQNZtGhRsp8np/OdE45eYz+PPDGNmc/OY/DgwfTv359HHnmEhQsXZtscddRRTVE1a8jtmoKk\nW4B9gS0lLQEuAjoARMRYYBLwNWAB8CHJi8vNzHLz3VNGM2DEaE4edVhZ22/QsWM2XftCsh9dejV/\nenwmALNmzao37tGpM3j4L9N46t4b2LBzZ/YdeSoff/IpAB06dMhGCNXU1LBq1aqix4+AE48+lEuu\nGr/Wuk6dOq15HaGJ5Dn66NiI2DoiOkRE94j4XUSMTRMC6aijMyNix4joExF+9KmZ5WrzzTbhmEMP\n5He33J0tGzZsGBMnJq2HCRMm8JWvfKXkPn5y/lnMmjUrSwjDhw/n2muTEfWrV69m5bvvsfK999ls\nk65s2Lkzf1vwMk8/82yDZRu+9xCuvfHWNfYzfO8h3Hbfw7z55psAvP3227zySlkPO61YVVxoNjNr\nKueddjzL0/59gKuuuorrr7+evn37ctNNN3HFFVc0an9XXHEFU6ZMoU+fPgwcOJDnX1zIiH2HsWr1\nanbb50jO/+lVDB3Qp+H9/Pf3mTJ1Bn2GH8PAEcfx/IsL6b3zDvz438/goIMOom/fvhx44IG8/nq+\nvex+zIWZNatF52xTfGWlQzYb8P78J7PprbptwYcvTc3mt99+eyZPnrxWzA2/+q+i+yi01VZbcffd\n/2h51Jbz/puvrr8s77+fTY8cOZKRI0dm5br7+l+utf2oww9m1HfOL7mfpuSWgpmZZZwUzMws46Rg\nZmYZJwUzM8s4KZiZWcZJwczMMh6SamZt3htvLue7F13O9NnPs+nGXdiq2xb86uLvsXOpIbDrKScF\nM2te4/Zt2v2NebTk6ojgiG+fx4lHH8rEay8FYPbcF1m2fAU7N21JSpYhIqqia6YaymhmVrEpT06n\nQ4f2nH7CyGxZv9135kt77Mrw4cMZMGAAffr0yW5AW7RoEbvtthunfv9/2H2/kRx07Bl89FHyessF\nL7/KAaNOp1+/fgwYMICXXnoJgMsuu4zBgwfTt29fLro8eeTFosWvsctXjuCEcy5kj/2PZvFrbzTz\nmVfGScHM2rTnXniJgX12W2t5pw06cuedd/LMM88wZcoUzjvvvOyhd/Pnz+fME49h7pTb2HTjrtw+\n6REAjjv7PzjzpGOYPXs2U6dOZeutt+ahhx5i/vz5TJs2jVmzZjFzzjwefzp5YN78l1/ljBOPZu6U\n29i+e4k7uVsRdx+Z2XopIvjhD3/I448/Trt27Vi6dGn2wptevXrRf49dABjYdzcWLX6d997/gKWv\nv8kRh+wPJE8pBXjooYd46KGH+NKXkusT769cwfyXF9Nj263ZvvvWDB3YtwXOrnJOCmbWpu2+8w7c\n9qe135o24Y77eeutt5g5cyYdOnSgZ8+efPxx0k20wQYbZNvV1LTjo49LPd46uOCCCzjttNOSBemz\njxYtfo2NNuzchGfSPNx9ZGZt2v57D+GTTz9b45WYc55/kVeWvs4XvvAFOnTowJQpUxp8JHXXLhvR\nfesvcNcDUwD45JNP+PDDDzn44IMZP3589oC6pa+/yZvL638hTzVwUjCzNk0Sd/72Fzz8l2nsOOww\ndt9vJBdccjVf239vZsyYQZ8+fbjxxhvZddddG9zXTVf+mCt/dwt9+/Zl2LBhvPHGGxx00EGMHj2a\nvfbaiz59+jByzPd57/0PmuHM8uHuIzNrXmMeLb4up0dnb/NP3fjf3/xsreVPPfVUvds/99xz2fG+\nd/oJ2fKddujB5FvHrVXOc889l3PPPXetcj43+daKy9xS3FIwM7OMk4KZmWWcFMzMLOOkYGa5q70p\nzPKX1HXl9e2kYGa56tSpEytWrHBiaAYRwYoPVtFp5cKK9+HRR2aWq+7du7NkyRLeeuutZME7bxbf\neOW84uscV0Zc0GnlQro/s/ZIq3I5KZhZrjp06ECvXr3+seDiocU3vnhliXWOa3RcBdx9ZGZmGScF\nMzPLOCmYmVnGScHMzDJOCmZmlvHoozao58d/KLpuUfMVo0HVUk6z9YlbCmZmlnFSMDOzTK5JQdII\nSS9IWiDp/HrWbyLpXkmzJc2VdHKe5TEzs9Jyu6YgqQa4BjgQWAJMl3RPRDxfsNmZwPMRcaikbsAL\nkiZExKd5lcvM1i++dtU4eV5oHgIsiIiFAJImAocDhUkhgK6SBHQB3gaKvyHbzKyNai3JK8/uo22B\nxQXzS9Jlha4GdgNeA54Fzo2Iz3Msk5mZldDSF5oPBmYB2wD9gaslbVx3I0ljJM2QNCN70qKZmTW5\nPJPCUmC7gvnu6bJCJwN3RGIB8DKwa90dRcS4iBgUEYO6deuWW4HNzNZ3eSaF6cBOknpJ6gh8E7in\nzjavAsMBJG0F7AJU/nYIMzNbJ7ldaI6IVZLOAh4EaoDxETFX0unp+rHA/wA3SHoWEPCDiFieV5nM\nzKy0XB9zERGTgEl1lo0tmH4NOCjPMphVm9YyCsXWTy19odnMzFoRPxDPzKwe62uLzS0FMzPLuKVg\nZlVhff3Lvbm5pWBmZhm3FJqJ/8oxWz9U+++6WwpmZpZxUjAzs4yTgpmZZXxNwayNqPa+bGsd3FIw\nM7OMk4KZmWWcFMzMLONrCq2Y+4jr53ppHfxzaJucFMysWTmZtG5OCmbrOX9JWyFfUzAzs4yTgpmZ\nZdx9ZJYTd8tYNXJLwczMMm4p2HrDf7mbNcwtBTMzy7ilYJlK/5Ju63+Bt/XzMyvkloKZmWWcFMzM\nLFN2UpDUWdIueRbGzMxaVllJQdKhwCzggXS+v6R78iyYmZk1v3JbChcDQ4B3ACJiFtArpzKZmVkL\nKTcpfBYRK+ssi6YujJmZtaxyh6TOlTQaqJG0E3AOMDW/YpmZWUsot6VwNrA78AlwC/Au8N28CmVm\nZi2jrJZCRHwI/Cj9mJlZG1VWUpB0L2tfQ1gJzAB+ExEfF4kbAVwB1AC/jYhL69lmX+BXQAdgeUTs\nU3bpzcysSZXbfbQQeB+4Lv28C7wH7JzOr0VSDXANcAjQGzhWUu8622wK/Bo4LCJ2B46u4BzMzKyJ\nlHuheVhEDC6Yv1fS9IgYLGlukZghwIKIWAggaSJwOPB8wTajgTsi4lWAiHizccU3M7OmVG5LoYuk\nHrUz6XSXdPbTIjHbAosL5pekywrtDGwm6VFJMyWdUGZ5zMwsB+W2FM4DnpD0EiCSG9fOkLQR8Pt1\nPP5AYDjQGXhK0tMR8WLhRpLGAGMAevTosdZOzMysaZQ7+mhSen/CrumiFwouLv+qSNhSYLuC+e7p\nskJLgBUR8QHwgaTHgX7AGkkhIsYB4wAGDRrkm+bMzHLSmKek7gTsQvKlfUwZXT3TgZ0k9ZLUEfgm\nUPd5SXcDe0tqL2lDYE9gXiPKZGZmTajcIakXAfuSjCKaRDKi6AngxmIxEbFK0lnAgyRDUsdHxFxJ\np6frx0bEPEkPAHOAz0mGrT63DudjZmbroNxrCiNJWgh/jYiTJW0F3NxQUERMIkkihcvG1pm/DLis\nzHKYmVmOyu0++igiPgdWSdoYeJM1rxeYmVkbUG5LYUZ6o9l1wEySG9meyq1UZmbWIsodfXRGOjk2\nvQawcUTMya9YZmbWEsp989ojtdMRsSgi5hQuMzOztqFkS0FSJ2BDYEtJm5HcuAawMWvfnWxmZlWu\noe6j00jem7ANybWE2qTwLnB1juUyM7MWUDIpRMQVwBWSzo6Iq5qpTGZm1kLKvdB8laRhQM/CmIgo\nevOamZlVn3LvaL4J2BGYBaxOFwcl7mg2M7PqU+59CoOA3hHhh9GZmbVh5d7R/BzwT3kWxMzMWl65\nLYUtgeclTQM+qV0YEYflUiozM2sR5SaFi/MshJmZtQ7ljj56TNL2wE4R8XD67oOafItmZmbNrdzH\nXJwK3Ab8Jl20LXBXXoUyM7OWUe6F5jOBL5PcyUxEzAe+kFehzMysZZSbFD6JiE9rZyS1J7lPwczM\n2pByk8Jjkn4IdJZ0IHArcG9+xTIzs5ZQblI4H3gLeJbkIXmTgP/Iq1BmZtYyyh2S2hkYHxHXAUiq\nSZd9mFfBzMys+ZXbUniEJAnU6gw83PTFMTOzllRuUugUEe/XzqTTG+ZTJDMzaynlJoUPJA2onZE0\nEPgonyKZmVlLKfeawrnArZJeI3n72j8Bo3IrlZmZtYgGk4KkdkBHYFdgl3TxCxHxWZ4FMzOz5tdg\nUoiIzyVdExFfInmEtpmZtVFljz6SdJQk5VoaMzNrUeUmhdNI7mL+VNK7kt6T9G6O5TIzsxZQ7qOz\nu+ZdEDMza3nlPjpbkv5F0oXp/HaShuRbNDMza27ldh/9GtgLGJ3Ovw9ck0uJzMysxZR7n8KeETFA\n0l8BIuLvkjrmWC4zM2sB5bYUPksfghcAkroBn+dWKjMzaxHlJoUrgTuBL0j6CfAE8NOGgiSNkPSC\npAWSzi+x3WBJqySNLLM8ZmaWg3JHH02QNBMYTvKYi29ExLxSMWnL4hrgQGAJMF3SPRHxfD3b/Qx4\nqILym5lZEyqZFCR1Ak4Hvkjygp3fRMSqMvc9BFgQEQvTfU0EDgeer7Pd2cDtwOBGlNvMzHLQUPfR\n74FBJAnhEODyRux7W2BxwfySdFlG0rbAEcC1jdivmZnlpKHuo94R0QdA0u+AaU18/F8BP0ifr1R0\nI0ljgDEAPXr0aOIimJlZrYaSQvYk1IhY1chHHy0FtiuY754uKzQImJjud0vga5JWRcRdhRtFxDhg\nHMCgQYOiMYUwM7PyNZQU+hU840hA53ReQETExiVipwM7SepFkgy+yT9ufoNkB71qpyXdANxXNyGY\nmVnzKZkUIqKm0h2nLYuzgAeBGmB8RMyVdHq6fmyl+zYzs3yUe0dzRSJiEjCpzrJ6k0FEnJRnWczM\nrGHl3rxmZmbrAScFMzPLOCmYmVnGScHMzDJOCmZmlnFSMDOzjJOCmZllnBTMzCzjpGBmZhknBTMz\nyzgpmJlZxknBzMwyTgpmZpZxUjAzs4yTgpmZZZwUzMws46RgZmYZJwUzM8s4KZiZWcZJwczMMk4K\nZmaWcVIwM7OMk4KZmWWcFMzMLOOkYGZmGScFMzPLOCmYmVnGScHMzDJOCmZmlnFSMDOzjJOCmZll\nnBTMzCyTa1KQNELSC5IWSDq/nvXHSZoj6VlJUyX1y7M8ZmZWWm5JQVINcA1wCNAbOFZS7zqbvQzs\nExF9gP8BxuVVHjMza1ieLYUhwIKIWBgRnwITgcMLN4iIqRHx93T2aaB7juUxM7MG5JkUtgUWF8wv\nSZcV823g/hzLY2ZmDWjf0gUAkLQfSVLYu8j6McAYgB49ejRjyczM1i95thSWAtsVzHdPl61BUl/g\nt8DhEbGivh1FxLiIGBQRg7p165ZLYc3MLN+kMB3YSVIvSR2BbwL3FG4gqQdwB3B8RLyYY1nMzKwM\nuXUfRcQqSWcBDwI1wPiImCvp9HT9WOA/gS2AX0sCWBURg/Iqk5mZlZbrNYWImARMqrNsbMH0KcAp\neZbBzMzK5zuazcws46RgZmYZJwUzM8s4KZiZWcZJwczMMk4KZmaWcVIwM7OMk4KZmWWcFMzMLOOk\nYGZmGScFMzPLOCmYmVnGScHMzDJOCmZmlnFSMDOzjJOCmZllnBTMzCzjpGBmZhknBTMzyzgpmJlZ\nxknBzMwyTgpmZpZxUjAzs4yTgpmZZZwUzMws46RgZmYZJwUzM8s4KZiZWcZJwczMMk4KZmaWcVIw\nM7OMk4KZmWWcFMzMLJNrUpA0QtILkhZIOr+e9ZJ0Zbp+jqQBeZbHzMxKyy0pSKoBrgEOAXoDx0rq\nXWezQ4Cd0s8Y4Nq8ymNmZg3Ls6UwBFgQEQsj4lNgInB4nW0OB26MxNPAppK2zrFMZmZWgiIinx1L\nI4EREXFKOn88sGdEnFWwzX3ApRHxRDr/CPCDiJhRZ19jSFoSALsALxQ57JbA8gqK6zjHtbW4aiij\n45o3bvuI6NbQDtpXcNBmFxHjgHENbSdpRkQMauz+Hee4thZXDWV0XOuJK5Rn99FSYLuC+e7pssZu\nY2ZmzSTPpDAd2ElSL0kdgW8C99TZ5h7ghHQU0lBgZUS8nmOZzMyshNy6jyJilaSzgAeBGmB8RMyV\ndHq6fiwwCfgasAD4EDh5HQ/bYBeT4xy3nsRVQxkd13riMrldaDYzs+rjO5rNzCzjpGBmZhknBTMz\nyzgpmJlZpmqTgqSOkk6QdEA6P1rS1ZLOlNShgdhdJQ2X1KXO8hElYvaUtHE63VnSf0m6V9LPJG3S\nFOfUEEk3lrFNRfXS0nUi6bDGbF8Ql1udpNu2WL1I+qKko+p5Zlg5sW2qXiS1L5juImmQpM0bOsd6\n9tOm6iUPVTv6SNIEkiG1GwLvAF2AO4DhJOd1YpG4c4AzgXlAf+DciLg7XfdMRNT7pFZJc4F+6VDb\ncSRDaG9Lj9cvIo4sEtcHuA7YFrif5DEef0/XTYuIIUXi6t7TIWA/YDJARNT7JVpJvbRAndRdLpKH\nJ56RntsdReKarU7SuOaulynA0RGxXMljYS4EHgf2BMZFxFVF4tp6vZwE/AJYAZxL8n/lZWBn4N8j\n4pYicW26XgrityL5fgFYGhHLSm3foIioyg8wJ/23PbAMqEnnVbuuSNyzQJd0uicwg+SHB/DXEnHz\nCqafqbNuVom4J4ARwKbA94C5wI5lHO8Z4GZgX2Cf9N/X0+l9mrJeWqBOPgPuA8YD16ef99J/x7eG\nOmmhenmuYHo6sEU6vWED5Wzr9fIsyTN9egHv8o/fn63W83rpDzxNkoQeTj9/S5cNKBbX0Kdqu4+A\ndkrulO5K8ktT28zaACjVxGsXEe8DRMQikv8oh0j6fyQ/9GKek1R7c91sSYMAJO1M8iVXTNeIeCAi\n3omIy4GzgAeU3MFdqpk2CJgJ/IjkTu9HgY8i4rGIeKzU+VVQL81dJ8OAzsD0iDg5Ik4GlqfT3yoR\n15x1As1fL59Jqv2L733gg3T6E5IbQItp6/WyOiKWR8TLwPsR8VJ67Ib+Im7r9XIDSdLZLSIOSD+7\nAt8l+QOrMpVmk5b+AP8KLAReAc4BHiHppnkWuKhE3GSgf51l7YEbSf7zFYvbJP0hvAT8X/rDWgg8\nRtLEKxY3G9ikzrK+wHxgRRnn2R24FbgaeDWPemnuOklj25F0BUwhecz6wkb87HOvkxb6v7IvSUvy\nv9NzmwpcBPwZ+N56XC/3AJek5zWZpCvpy2ndPLge18v8EusWlPv7VPdTtdcUACRtAxARr0naFDiA\n5Ic+rURMd2BVRLxRz7ovR8STDRxzY5JmbHtgSTTw14qk0SRfeE/XWd4DuDAiTi0VX7D9PwNfjogf\nlrFto+qlueuknrL+ChgUETuUG5fG5lYnaUyz10t6YXE0SX95e2AJcHdE/K2h2IJ9tKl6Sbc/k6Rl\nfTVwMMkjcV4BfhxlPi+tDdbLlcCOJElncbp4O+AE4OUoeE1BY1R1UoCmvcgiqUukzb/miGvNJG0e\nEW83V1ylJB0WEXUvKOYZ1+rrRdIXgX4kfdXPN3WcpE0j4p0KylVR3LqQ1D4iVqXTXYBdSf5IK/mz\nqDQu3b4bSetkdRpT1ndDJXGSDiF5WVn2HQjcExGTyjlmvSptYrT0hxwuslBG07KJ48aUWNcnPZfF\nJA+52qxg3bQScX0bG0fSFJ9H0nWxJ0l3xUvpPvYqcayK4tahTo6s5/NG7XQj4o4qM+4/CqZ7Ay+S\njHpZRPLCqCaNW4d6mQJsmU4fnx7vtyTdHWfnELcq/X37NrBpI86horh1qJeTSEYsvUjy6t+FJF1B\ni4Fjc4jrnZ7fAuBTkq6gl0m6hjZp6ri8Ps16sCYtOMyq7xcMGArMLhH3b0U+5wFvN3VcA+dwWol1\nlY5aanQcMI0kCe1F8tamvdPlA4AnSxyrorh1qJNKRy1VPNqpYPpPwCHp9BBgalPHrUO9VDpqqdK4\nZ4GvAxNIvjzvJnk0fucGzqGiuHWol0pHLVUa9zSwS8HP+vfp9KnAbU0d10C9FE2WDX2q4s1rRWwU\nEf9Xd2FEPC1poxJxPwUuI/mrpa5So7EqjUPSrtTfxPtNibCuEfFAOn25pJkko5aOp/SopUriOkTE\ns2lZ34r09agR8YykziWOVWlcpXUyDLiUZNTStel+9o1k9FIplcYV2jYi7geIiGkNnV+lcRXWy2eS\nto2IpTRu1FLFcRFxH3Bfej6Hkny5XyPpwYgY3cRxldbL6ohYDiyXtMaoJanUYKCK4zpHxAvpttMk\njU2nr5P0bznElVKyoKVUc1K4X9KfqP8iywNFo5Kxy3dFxMy6KySd0tRxkn4AHAtMJPnLGpJ+w1sk\nTYyIS0vEbhIRKwEiYoqko4DbgZJ3clYQV5jULqizrmOJQ1UUV2mdRMR0SQcCZyu50esHlE6Q6xQH\n7KDkBigB3SVtGBEfputKDU2sKG4d/q/8K/CQpNtJWoaTJT0I7E3poYmVxmVfOBHxEfC/wP+mF8m/\n0dRx61Avr0q6hGRo6d8k/YLkJrQDSO5XKKbSuJckXUgyCulIkt4MlNwFXeoPx0rjSvm0wrjq7T5K\nm0iHAGPcEBS7AAAEt0lEQVSBe9PPWOBrDcTsQtqPWs+6rXKIe5HkL+q6yztSekjZaGBoPct7ANc1\nZRxwGLBhPct3JLljtNixKo2rqE7qbLsNyZdK2UNZGxtHepNTwaf2xqStgDNziKu4XkiGNX4H+CVw\nFUni27WMc2x0HGUMj23iuEp/hzYm+WPlfJK7ko8i6Ua8Btg6h7hNgZ+n2/6EpNVeW8dr/U6ua1wD\ndVbRdc6IKh+SWg0k/Q04OCJeqbN8e+ChiNilZUrWclwn9XO91M/1Uj9Jc4qtAnaOiA0q2W8139Fc\nlKQxrSjuu8Ajku6XNC79PEAymuHcVlTO5jxWVddJjnGul/q5Xuq3FUl3+aH1fFZUcjyo7msKpVR6\nkaXJ4yLiASW3qw9hzYtk0yNidVMfL4c410kzxble6ud6Keo+kq7JWWsFSY9WeLzq7j4qMSJhXmuK\nq1RzltN10jriKlUt5+d6adq4PFRt91E6ImEiSSadln5EMiLh/NYSV6nmLKfrpHXEVapazs/10rRx\nuan0CnVLf6h8REKzxlXD+blOWkec68X10hz10tCnalsKwOckwwvr2jpd11riKtWc5XSdtI64SlXL\n+blemjYuF9V8obl2RMJ8/nHzWg/giyTvLGgtcZVqznK6TlpHXKWq5fxcL00bl4tqv9DcjgpGJDR3\nXKWas5yuk9YRV6lqOT/XS9PG5aGqk4KZmTWtar6mYGZmTcxJwczMMk4K1mZJWi1pVsEn9zHfkvpL\n+lqJ9YOUvEax1D4mSdo0/ZzR9KU0K87XFKzNUvIs/C7NfMyTSN43vdaoERW84rHMffUE7ouIPZqs\ngGYNcEvB1juSBkuaKmm2pGmSukqqkXS5pOckzZF0drrtQEmPSZop6UFJW6fLH5X0szT+RUlfkdQR\n+G9gVNoyGSXpYkk3SXoSuEnSvpLuS/fRRdL1kp5Nj3lUunyRpC1JXgy0Y7qvyyTdKOkbBecxQdLh\nzVx91sZV830KZg3pLKnwYWGXAHcCfwRGRfLynY2Bj4AxQE+gf0SskrS5kpecXAUcHhFvSRpF8rz7\nb6X7ax8RQ9Luoosi4gBJ/0lBS0HSxSTv4N07Ij6StG9BeS4EVkZEn3TbzeqU/3xgj4jon67fh+TF\nOHcpeTHNMODEda0ks0JOCtaWfVT7hVpLUh/g9YiYDhAR76bLDwDG1nbvRMTbkvYA9gD+rOQ1jDWs\n+eatO9J/Z5IklGLuieRNY3UdQPI6StJj/r3UyUTEY5J+LakbyYtfbm9Md5RZOZwUzIoTMDci9iqy\n/pP039WU/l36oMS6xroR+BeSZNKYd0yblcXXFGx98wKwtaTBAOn1hPbAn4HT0mkkbZ5u203SXumy\nDpJ2b2D/75G827ccfwbOrJ2pp/uovn3dQPJYBCLi+TKPY1Y2JwVryzrXGZJ6aUR8CowCrpI0m+SL\nuRPwW+BVYE66fHS67UjgZ+myWST9+KVMAXrXXmhuYNsfA5ulF7dnA/sVroyIFcCT6frL0mXLgHnA\n9eVXg1n5PCTVrIpI2hB4FhgQEStbujzW9rilYFYl0ovh84CrnBAsL24pmJlZxi0FMzPLOCmYmVnG\nScHMzDJOCmZmlnFSMDOzjJOCmZll/j9YsDfq9UuWOQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11ba4cc0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNW5//HPwzAKiLgAGgRZYnABAWVzuSaiqBfNjcsN\nCWoS0RtFE5R4L8nVrPpLTDTXbKJGg4kLaoLR4BrcxRgFIiCLLFGIoiwKiIqCLILP749TUxQ93T09\nQ9d0z/T3/XrVa6rOqXP69OmeerqqTlWZuyMiIgLQotQNEBGR8qGgICIiMQUFERGJKSiIiEhMQUFE\nRGIKCiIiElNQEBGRmIKCVBQzW2pmW8ysQ0b6bDNzM+ue4mt3j16jZUb67WZ2VTQ/xMyWZyn7rJmd\nn1bbRGooKEgleh04q2bBzPoAbUrXHJHyoaAglehO4JzE8khgQs2Cme1qZr8wszfNbJWZ3WxmraO8\nvczsETNbY2bvRfNdEmWfNbOfmNkLZvahmT2RuVciUs4UFKQSTQfamdkhZlYFnAnclci/BjgQOAz4\nDNAZ+FGU1wK4DegGdAU2Ajdk1H82cB6wD7AL8O103oZI8SkoSKWq2Vs4EVgErIjSDRgF/Le7v+vu\nHwI/IwQO3H2tu//F3T+K8n4KHJtR923u/qq7bwT+TAguSe+Y2fs1EyGIiJSFlnWvItIs3Qk8B/Qg\ncegI6Eg4vzDLzGrSDKgCMLM2wK+BYcBeUf7uZlbl7tui5bcT9X0EtM147Q7uvjWu3Oz2RN5WoDpL\ne6uBjwt5YyI7Q3sKUpHc/Q3CCedTgEmJrHcIh4R6u/ue0bSHu9ds2McCBwFHuHs74HNRulEcbwId\nzCwOJBaiUzfgjSK9hkhOCgpSyb4OHO/uGxJpnwC3AL82s30AzKyzmf17lL87IWi8b2Z7A1cUs0Hu\n/ibwD+DnZtbWzHYFvkPYS5hezNcSyUZBQSqWu//L3WdmyboMWAJMN7MPgKcIewcAvwFaE/YopgOP\npdC0EYST1EsI5zqGAp93900pvJbIDkwP2RERkRraUxARkZiCgoiIxBQUREQkpqAgIiIxBQUREYk1\nuSuaO3To4N27dy91M0REmpRZs2a94+4d61qvyQWF7t27M3NmtqHlIiKSi5kVdEW8Dh+JiEhMQUFE\nRGIKCiIiEmty5xSy+fjjj1m+fDmbNunWMI2hVatWdOnSherqbHd4FpGmrFkEheXLl7P77rvTvXt3\nEvfAlxS4O2vXrmX58uX06NGj1M0RkSJL7fCRmd1qZqvNbH6OfDOzcWa2xMzmmVn/hr7Wpk2baN++\nvQJCIzAz2rdvr70ykWYqzXMKtxOeTpXLyUDPaBoF3LQzL6aA0HjU1yLNV2pBwd2fA97Ns8ppwAQP\npgN7mlmntNqTNjNj7Nix8fIvfvELrrzyytI1SESkAUp5TqEzsCyxvDxKeytzRTMbRdiboGvXriHx\nyj22rzAi8UCqlbPpPm5lURu6dMx+YWa/w3fMWDk7nt11112ZNGkS3/3ud+mwZRl8sAI2fBTWSZZL\nlMmZni9vZ8sUWl9GmW3LZlJVVVU7L/k5AFy5LntervRCyxRaX0PKNNV2V9J7VbuL1+46NIkhqe4+\n3t0HuvvAjh3rvEq7JFq2bMmoUaP49a9/XStv6dKlHH/88fTt25ehX76QN1eEuHfuuecyZswYjj76\naD591Be475Gnsta9as1azvj6WPqdMIJ+/foxdepUAE7/r/9hwLCz6X3ccMbf9Zd4/bZt2/L9a26g\n3wkjOPI/zmHVqlWhnlWrOOOMM0I9J4xg6oy5ANx1110MHjyYw048kwv/9yq2bdsW1zN27Fj69evH\ntFnzitdZIlK2ShkUVgD7J5a7RGlN1ujRo7n77rtZ98GHO6RfcskljBw5knnz5vGV/zyZMT+8Ns57\n6623eP7553nkjuu4/OpxWesd88P/49gj+zP3qXt46aWX6N27NwC3/vIKZj32R2ZOvotxt05k7dq1\nAGzYsIEj+/dh7lP38Lkj+3PLLbeEesaM4dhjjw31PP5Heh/0aRYtWsQ999zDCy+8wJwnJ1JVVcXd\nkx6N6zniiCOYO3cuxww+PGvbRKR5KeXho4eAi81sInAEsM7dax06akratWvHOeecw7g/TKR1613j\n9GnTpjFp0iQAvvbFz/O/V23f+J9++um0aNGCXgd+mlVrsp+CeeaFGUy47icAVFVVscceYddw3K1/\n4v5HpwCwbOUqFi9eTPv27dlll134jxM/B8CAPofw5KwloZ5nnmHChAmwdmGop93u3DnpaWbNmsWg\nQYPg441s3LSZfTrsFb/WF7/4xWJ2kYiUudSCgpn9CRgCdDCz5cAVQDWAu98MTAZOITyc/CPgvLTa\n0pguvfRS+vc7lPNGnFrQ+rvuuj141Dwv+/vX3MBfn5sFwJw5c7KWe/bZZ3nq7y8y7eHbadO6NUOG\nXxAPE62uro5HCFVVVbF169acr+/ujBw5kquvvrrWOYpWrVptP48gIhUhzdFHZ7l7J3evdvcu7v4H\nd785CghEo45Gu/sB7t7H3ZvFrU/33ntvvvyFE/nDnx6M044++mgmTpwIwN2THuWzR+Q/FPPTyy9m\nzpw5cUAYesxgbppwLwDbtm1j3bp1rFu3jr322J02rVvzzyWvM/2ll+ts29ChQ7npppu21/PBhwwd\nOpT77ruP1atXA/Due+t4Y3lxT9SLSNPRJE40NzVjL/wa77z7frx8/fXXc9ttt9G3b1/u/Mtfue7H\n365Xfdf9+DtMmTqTPkO/zIABA1i4cCHDhg1j67ZtHHLsf3L5z67nyP596q7nuuuYMmVKqGfYV1j4\n6mv06tWLq666ipNOOom+J3yZE8/6Bm+teqfe71lEmodmcZuLTPEQUijuMM081q9fH8/v27E9H/1r\narzcrVs3nnnmmVr13X777TvWsfiFrHXv27E9D97261pte/SuG3ZcMcpbv359/DrD/+MEho/6Tqhn\n33158MEHa72nESNGMGLEiFrpyfckIpVBewoiIhJTUBARkZiCgoiIxBQUREQkpqAgIiIxBQUREYk1\nyyGppfL2229z6aWXMmP6C+zZri37dmzPb678NgdmDn8VESlQ901/jOeXNsLrNc+gMH5Icesb9Wyd\nq7g7Z5xxBiNHjmTiry4DYO6CV1n1zloOLG5r8rbB3WnRQjuAItIw2noUyZQpU6iuruaiiy6K0/r1\nPpDDDz2YoUOH0r9/f/r06cODjz8LwNJlKznkkEO44IIL6N27Nyed9U02bgz3Llry+puccMIJ9OvX\nj/79+/OvpeGxE9fedAeDBg2ib9++XHHFFXE9B332DM4Z80MOPfRQli1bhohIQykoFMn8+fMZMGBA\nrfRWu+7C/fffz0svvcSUKVMY++NfxTe+W7x4MaNHj2bBggXs2W53/jL5aQC+cskPGD16NHPnzmXq\n1Kl02rcDT/xtGotff5MXX3yROXPmMGvWLJ6bHm6at/j1N/nmyC+xYMECunXr1nhvWkSaneZ5+KiM\nuDvf+973eO6552jRogUr3l7DqjXhuQc9evTgsMMOA2BA30NYuuwtPly/gRVvreaMM84Awp1Kad2a\nJ/42nSf+Np3DD99+K4vFry+ja+dOdOvSiSMH9C3NGxSRZkVBoUh69+7NfffdVyv97kmPsmbNGmbN\nmkV1dTXd99+PTZu3ADveNruqqgUbN+W/xfV3Lz6PCy/76fbElbNZumwlu7VpXbw3IiIVTYePiuT4\n449n8+bNjB8/Pk6bt/BV3ljxFvvssw/V1dVMmTKFN5bnf47Q7m13o0unfXjggQcA2Lx5Mx9t3Mi/\nDzmKW+95KL5J3YoVK1j9TvaH8oiINJSCQpGYGffffz9PPfUUBxx9Kr2PG853r76BU44/hpkzZ9Kn\nTx8mTJjAwZ/pXmddd467inHjxtG3b1+OPvpo3l69lpOOPYqzTx/GUUcdRZ8+fRg+fDgfrt+Q/hsT\nkYrSPA8fjXp2+3wj3TobYL/99uPPf/5zrTLTpk3LWt/8+fPj+W9fdE483/PTXbffajtR5lvnn823\nfnRtrfT5z9xbcBtFRPLRnoKIiMQUFEREJKagICIisWZzTsHdMbNSN6Mi1Fx8JyLlaWful9Qs9hRa\ntWrF2rVrtbFqBO7O2rVrw0V1ItLsNIs9hS5durB8+XLWrFkD76/eMXPdou3zybxker68nS1TaH2N\nVabQ+nKWcVp9ai+6dOlCXRr77o4iTVXyfwVK+//SLIJCdXU1PXr0CAtXHrlj5pXrEvNHZk/Pl7ez\nZQqtr7HKFFpfoWVEpFlpFoePRESkOBQUREQkpqAgIiIxBQUREYk1ixPNIiJNQVMYkdfsgkJDh3Y1\n1ofVFL4UIhJU4v+rDh+JiEhMQUFERGKpBgUzG2Zmr5jZEjO7PEv+Hmb2sJnNNbMFZnZemu0REZH8\nUgsKZlYF3AicDPQCzjKzXhmrjQYWuns/YAjwSzPbJa02iYhIfmnuKQwGlrj7a+6+BZgInJaxjgO7\nW7i9aVvgXSD30+tFRCRVaQaFzsCyxPLyKC3pBuAQYCXwMvAtd/8kxTaJiEgepR6S+u/AHOB44ADg\nSTP7u7t/kFzJzEYBowC6du0KlMdQsXJoQ2MphyG7xWxDOd2VsqmppO99JUpzT2EFsH9iuUuUlnQe\nMMmDJcDrwMGZFbn7eHcf6O4DO3bsmFqDRUQqXZpBYQbQ08x6RCePzwQeyljnTWAogJntCxwEvJZi\nm0REJI/UDh+5+1Yzuxh4HKgCbnX3BWZ2UZR/M/AT4HYzexkw4DJ3fyetNomISH6pnlNw98nA5Iy0\nmxPzK4GT0myDiIgUrtQnmiWiE5/paG4nRZvb+5Hyo9tciIhITHsKIhn0a1wKUQ7fkzTaoD0FERGJ\nKSiIiEhMQUFERGIKCiIiElNQEBGRmIKCiIjENCS1CSiHoW+5VNJFd5X0XqXhmvr3RHsKIiISU1AQ\nEZGYgoKIiMR0TkGkCMr5vE9T1ZjH5vX5bac9BRERiWlPoZmqpF8+5f5eG9K+xnoedbH7rhye5V3M\nMpVIewoiIhJTUBARkZiCgoiIxBQUREQkphPNddDJqeJr6rcBEGnOtKcgIiIx7SmkoLF+CesXd9PW\nVIeDSvOmPQUREYkpKIiISKzgoGBmrc3soDQbIyIipVVQUDCzLwBzgMei5cPM7KE0GyYiIo2v0D2F\nK4HBwPsA7j4H6JFSm0REpEQKDQofu/u6jDQvdmNERKS0Ch2SusDMzgaqzKwnMAaYml6zpBQ0pFFK\nobHuCCuFKXRP4RKgN7AZ+BPwAXBpWo0SEZHSKGhPwd0/Ar4fTSIi0kwVFBTM7GFqn0NYB8wEfufu\nm3KUGwZcB1QBv3f3a7KsMwT4DVANvOPuxxbcehERKapCDx+9BqwHbommD4APgQOj5VrMrAq4ETgZ\n6AWcZWa9MtbZE/gtcKq79wa+1ID3ICIiRVLoieaj3X1QYvlhM5vh7oPMbEGOMoOBJe7+GoCZTQRO\nAxYm1jkbmOTubwK4++r6NV8aQieUpS46YVu5Ct1TaGtmXWsWovm20eKWHGU6A8sSy8ujtKQDgb3M\n7Fkzm2Vm5xTYHhERSUGhewpjgefN7F+AES5c+6aZ7QbcsZOvPwAYCrQGppnZdHd/NbmSmY0CRgF0\n7dq1ViUiIlIchY4+mhxdn3BwlPRK4uTyb3IUWwHsn1juEqUlLQfWuvsGYIOZPQf0A3YICu4+HhgP\nMHDgQF00JyKSkvrcJbUncBBho/3lAg71zAB6mlkPM9sFOBPIvF/Sg8AxZtbSzNoARwCL6tEmEREp\nokKHpF4BDCGMIppMGFH0PDAhVxl332pmFwOPE4ak3uruC8zsoij/ZndfZGaPAfOATwjDVufvxPsR\nEZGdUOg5heGEPYTZ7n6eme0L3FVXIXefTAgiybSbM5avBa4tsB0iIpKiQg8fbXT3T4CtZtYOWM2O\n5wtERKQZKHRPYWZ0odktwCzChWzTUmuViIiURKGjj74Zzd4cnQNo5+7z0muWiDQnumCy6Sj0yWtP\n18y7+1J3n5dMExGR5iHvnoKZtQLaAB3MbC/ChWsA7ah9dbKIiDRxdR0+upDw3IT9COcSaoLCB8AN\nKbZLRERKIG9QcPfrgOvM7BJ3v76R2iQiIiVS6Inm683saKB7soy757x4TUREmp5Cr2i+EzgAmANs\ni5KdPFc0i4hI01PodQoDgV7u3qRvRqdhcSIi+RV6RfN84FNpNkREREqv0D2FDsBCM3sR2FyT6O6n\nptIqEREpiUKDwpVpNkJERMpDoaOP/mZm3YCe7v5U9OyDqnSbJiIija3Q21xcANwH/C5K6gw8kFaj\nRESkNAo90Twa+DfClcy4+2Jgn7QaJSIipVFoUNjs7ltqFsysJeE6BRERaUYKDQp/M7PvAa3N7ETg\nXuDh9JolIiKlUGhQuBxYA7xMuEneZOAHaTVKRERKo9Ahqa2BW939FgAzq4rSPkqrYSIi0vgK3VN4\nmhAEarQGnip+c0REpJQKDQqt3H19zUI03yadJomISKkUGhQ2mFn/mgUzGwBsTKdJIiJSKoWeU/gW\ncK+ZrSQ8fe1TwIjUWiUiIiVRZ1AwsxbALsDBwEFR8ivu/nGaDRMRkcZXZ1Bw90/M7EZ3P5xwC20R\nEWmmCh59ZGZfNDNLtTUiIlJShQaFCwlXMW8xsw/M7EMz+yDFdomISAkUeuvs3dNuiIiIlF6ht842\nM/uqmf0wWt7fzAan2zQREWlshR4++i1wFHB2tLweuDGVFomISMkUep3CEe7e38xmA7j7e2a2S4rt\nEhGREih0T+Hj6CZ4DmBmHYFPUmuViIiURKFBYRxwP7CPmf0UeB74WV2FzGyYmb1iZkvM7PI86w0y\ns61mNrzA9oiISAoKHX10t5nNAoYSbnNxursvylcm2rO4ETgRWA7MMLOH3H1hlvV+DjzRgPaLiEgR\n5Q0KZtYKuAj4DOEBO79z960F1j0YWOLur0V1TQROAxZmrHcJ8BdgUD3aLSIiKajr8NEdwEBCQDgZ\n+EU96u4MLEssL4/SYmbWGTgDuKke9YqISErqOnzUy937AJjZH4AXi/z6vwEui+6vlHMlMxsFjALo\n2rVrkZsgIiI16goK8Z1Q3X1rPW99tALYP7HcJUpLGghMjOrtAJxiZlvd/YHkSu4+HhgPMHDgQK9P\nI0REpHB1BYV+iXscGdA6WjbA3b1dnrIzgJ5m1oMQDM5k+8VvECroUTNvZrcDj2QGBBERaTx5g4K7\nVzW04mjP4mLgcaAKuNXdF5jZRVH+zQ2tW0RE0lHoFc0N4u6TgckZaVmDgbufm2ZbRESkboVevCYi\nIhVAQUFERGIKCiIiElNQEBGRmIKCiIjEFBRERCSmoCAiIjEFBRERiSkoiIhITEFBRERiCgoiIhJT\nUBARkZiCgoiIxBQUREQkpqAgIiIxBQUREYkpKIiISExBQUREYgoKIiISU1AQEZGYgoKIiMQUFERE\nJKagICIiMQUFERGJKSiIiEhMQUFERGIKCiIiElNQEBGRmIKCiIjEFBRERCSmoCAiIjEFBRERiaUa\nFMxsmJm9YmZLzOzyLPlfMbN5ZvaymU01s35ptkdERPJLLSiYWRVwI3Ay0As4y8x6Zaz2OnCsu/cB\nfgKMT6s9IiJStzT3FAYDS9z9NXffAkwETkuu4O5T3f29aHE60CXF9oiISB3SDAqdgWWJ5eVRWi5f\nBx5NsT0iIlKHlqVuAICZHUcICsfkyB8FjALo2rVrI7ZMRKSypLmnsALYP7HcJUrbgZn1BX4PnObu\na7NV5O7j3X2guw/s2LFjKo0VEZF0g8IMoKeZ9TCzXYAzgYeSK5hZV2AS8DV3fzXFtoiISAFSO3zk\n7lvN7GLgcaAKuNXdF5jZRVH+zcCPgPbAb80MYKu7D0yrTSIikl+q5xTcfTIwOSPt5sT8+cD5abZB\nREQKpyuaRUQkpqAgIiIxBQUREYkpKIiISExBQUREYgoKIiISU1AQEZGYgoKIiMQUFEREJKagICIi\nMQUFERGJKSiIiEhMQUFERGIKCiIiElNQEBGRmIKCiIjEFBRERCSmoCAiIjEFBRERiSkoiIhITEFB\nRERiCgoiIhJTUBARkZiCgoiIxBQUREQkpqAgIiIxBQUREYkpKIiISExBQUREYgoKIiISU1AQEZGY\ngoKIiMQUFEREJJZqUDCzYWb2ipktMbPLs+SbmY2L8ueZWf802yMiIvmlFhTMrAq4ETgZ6AWcZWa9\nMlY7GegZTaOAm9Jqj4iI1C3NPYXBwBJ3f83dtwATgdMy1jkNmODBdGBPM+uUYptERCQPc/d0KjYb\nDgxz9/Oj5a8BR7j7xYl1HgGucffno+WngcvcfWZGXaMIexIABwGvRPMdgHdyNKEheeVcphzaUEnt\nrqT3Wg5tqKR2l+q9dnP3jjnW287dU5mA4cDvE8tfA27IWOcR4JjE8tPAwHq8xsxi5pVzmXJoQyW1\nu5Leazm0oZLaXQ7vNd+U5uGjFcD+ieUuUVp91xERkUaSZlCYAfQ0sx5mtgtwJvBQxjoPAedEo5CO\nBNa5+1sptklERPJomVbF7r7VzC4GHgeqgFvdfYGZXRTl3wxMBk4BlgAfAefV82XGFzmvnMuUQxsq\nqd2V9F7LoQ2V1O5yeK85pXaiWUREmh5d0SwiIjEFBRERiSkoiIhITEFBRERiqY0+SouZ7Qt0jhZX\nuPuqnSmTK68hZYpdX0PeayUxs4MJt0qJ+4gwzNmzpbv7oqZYphzaUEntLucyO5NHgZrM6CMzOwy4\nGdiD7Re4dQHeB77p7i9lbkSBTnnK/Aa4NEvelmi+uh5lil1fvjLfJAzfreh/auBU4CzCPbWWJ/po\nTDQ/LiP9TOAtwneiKZUphzZUUrvLuczO5E1092soQFMKCnOAC939HxnpRwJ3AO9Re+O6P/ANd5+Q\npcwUYEiW+l4l9EvPepQpdn35ykwCVpP+P2E5/BPkK9MZ2M/dP87oo1x9twuwHtitiZUphzZUUrvL\nuczO5C3IfK2c6ntfjFJNwOI8eZsJN9vLTF8GzM1RZkuu1yHc3bXgMsWur64yQHWW9F3y5L2arf/q\nKFPs+tIo0y1L3hLgX1nSu0Xfk6ZWphzaUEntLucyO5P3SmZ6rqkpnVN41Mz+CkwgbOwh7AmcA2z0\njF/bkfuBr5vZiCxlFuWoryXh+T/1KVPs+vKV2QDsB7yR8V47EQ61ZMtrAViW/slXptj1FbvMKuBp\nM1vM9j7qCrQBMLNHM9I/A/y4CZYphzZUUrvLuczO5MV3p65Lkzl8BGBmJ5P9+PIw4ACyb6y3ASsz\ny7j75Dz15Tr2nbNMsevLVQb4BLiBsDeR+cHfRrhVSGZe32h+bj3KFLu+Ype5GHiC8NyOZB/NiPqu\nVrq7bzOzFk2tTDm0oZLaXc5ldiaPAjWpoJBPvo116VqVjsb6JyyHf4J8ZerXayJSkEKPM5XzBIwq\nZplceQ0pU+z6GvJeK20CHqlPelMtUw5tqKR2l3OZncmrtW6hK5bzRBiVlCsv18Y1X5mseQ0pU+z6\n6ihT8i9gmZTpVJ/0plqmHNpQSe0u5zI7k5c5NanDRw25MMPMfgS8APzD3dcn0ocB7wLu7jPMrBfh\n3MQ/PeOQk5lNcPdzstR9DOHQxnxgHbDI3T8ws9bA5UB/oDUwxt0XZilf85yJle7+lJmdDRwNLAKe\nJIzF359wXuRV4I/u/kGe99rJczyPIldeQ8oUu75il0mbme3j7qvrWaa9u69Nq02NrSF9EJWr+H4o\n+z4oNHqUegIuA+YQNrZfjabLa9JylBlDGAP/ALAUOC2RtxKYDswErgaeAX4IrCVslB+KpocJ438f\nAt5LlL8geu0rCEFnFdAyyhtPuDDtGGATsBH4O+HCs46JOu4G7ole407CaKmvAf8gBLwfAFOBG4Gf\nAgsJ1zWU8nPYpwFl2qfQjj2Aa4B/EoJ7zed2DbBnjjJPRJ/1ncDZifRPEQL7jUB74ErgZeDPwCHA\n3ompffRdGg7snWjLH4B5wB8J11V0iPIGAq8RhiBuBn4PHJClbQMJ163cRfgh8CThh8YMwg+FHwML\norQ10Xf3Gw3og3bAvzL7IMq7DbgpSz88kNEPNX2wFzA84zNJqx9mEf6vMvvgXH0XGt4PWfumlBuY\nem4EXiX3ePqs1zBEH+ayaL47IQB8K1reSHj4TxvgA6BdlD6bcCHcEODY6O9b0fziRN0ziDbwwG7A\npkTeS4n52YTgcVL0ZVkDPAaMBOZH67QkBJWqRLvnRfNtgGej+a6EkTiNsSEoh3+CfBuCxwk/FD6V\n8Q99HTCNsJeWnAZEn/k1wOmEIP8XYNfo81hG+JExL6p3f+ASwonu1zOmj6P381r0ur8HriKMB/9v\nwhMEa9o0BRgUzS8D3gbeBF6M1t0vynsROJlwlfYyoo0tMDT6nM8lXLj3P4QfLz0JPxyeydIHl+Xo\ng/6E56Cvz+yDqOy66D1n9sMnhKHQmX3wOrA58dpp9sMLhO9RZh/cQfiOVfp3IV8/XAY80RyDwj/J\nfWHGpugDzJw2ZXxp20Yf+q+Aj5Ib7sR8C8I/25PAYVFazQc+l/DrqD2JDX+U9x5wXmJDOzCaX0AY\nLVOzXjXhsNCfgK2EoLYX8CHbN7TzCYexiPJmJsp/mOeDL+aGoBz+CfJtCNbm+J5sI2zApmSZPslY\n9/vRa8yr+TyBNzPWWRF9Z/ok0l5nx8A/J6PMJrbvNU5PpL8EvBzNfxb4bdQnU5Kvm6UNGzOWZ0R/\nX6n5nmTpBycEjMw++DBZX6IP2rPj/0SyPWMJP5x26IOa99QY/UD435udpQ9akPgfr+DvQs5+qPmu\n5MqrtW6hK5Z6IhzvXwI8Svj1OD76gJYQNsiHETZMyWkqsDqjnpaE6xkcaFPToYn8PaIPrAtwL+Ga\ngDejvKWEaPx69LdTlN42+jLdTvhF/g/CxvM1wj9hvxzv6X+jdd4gHOp6GriFcGjr7Wj+n2wPNh1J\n/ONmqa9oG4Jy+Ccg/4ZgQ9R/+yby943qfCFH/3yc/KyjtHOjNr8RLV+Vkf9y4rvwK2D36DNbTghU\nY6M+sYzP0E1ZAAAGyklEQVR+ewI4nrDndR1hT/Mt4M6M+qsI3+3VhL3JL0Xfh9Oj/GMJAf2YaPlU\n4PFo/omoXGYfXBaV6ZmlDxYR7T1n9MECElfYZ+mHRZl9EKU3Vj8kfyjFfRAtN9Z3YV65fhfq6IfL\ngKcK3tYWumI5TISNwZHAF6PpyKgj/1DTURnrdwEm5ahrSI70Duy4Efw88LM62tUG6BHNtwP6EXZR\n9wUOrKPsfmz/xbwn4dDMYKB3NH9wxvpP5Pngi70hKPUGMd+GYDHwc0LQfI+wW72IcPx7cI6+ngSc\nkCX9brLcVoRwkdx9ieVTCYev3iacS0pONYcSP0X40TGEcL5odtSPkwmHHGsdAo3K9SMcEnsUODjq\nt/ejz+gcwt7Ue8DzwEGJ9j2VpQ9+Hn2+B2V5nf8DfpQlfRjhUGTbfP2Q7INouTH64T3Cj7+FiT44\nMFq/I+G7n/wuvNcI34XT6vFdOK6efXBYjj5YQDjs/GL03Uh+F7L1Q/L7sHe+7dAOr1/oiprKYyIc\nTqr54N/N+OBHprEhiJaLsUFsmeM95dog5tsQjInWPSGz/cD5hOOvmenDojLZ8i4opAxhNNmhO/E6\n+cocUkdetvc6hu2H6HoTAvUp0fLgRF4vQiA/JVd6Pcr0IQyCyFsmS17cvjrKHJGjzBG5ymT5Tt2Z\nI31Cnv+trHl50lsD96b9OvneTx31fTbqu5Nylc02NakhqZKfmZ3n7rfVJ68+ZaKhtge4+/xi1LeT\nZe4mnKBeRPhl9S13f9DMxhCC4GPJ9KjMMsJtxzPLXAJcWwZlNhCCfUF5ZnYFYa+xZgjzYOBZ4ETC\nDQPbEg6XPknYoE4Bvk7Y416dkV6fMvlep5C8+rShkDIdCXuOSccT9pwh/LKGcB+t4wiHWAcn0pN5\n9SmT63Vq0utTppDXqSvvs+6+F4CZnQ+MJuwtnQQ87AXeOrvkv3w1FW8i45xAIXkNKVPs+hpYZgvR\nr2YSI8sIeyZzM9Oj5Y1NrUwB9c2m9gi61uQeXTefcGw87TKN3Ya7qD1icDHhUGZm+rFRXn3LvNpI\nZXK1rc68xP9H5ujIlwvejpR6Q6apfhPZR1nNI2wgPsmRtzFHXr4yxa6v6GUy+qVmZNk7JE5+s+OI\ns8yRG02hTL681TX1kTghHy3nGl03uzHKNHIb5hBGs+0wYpCwZ1ErPfqbNa+cyxSQl2905A59lncb\nU+qNnKb6TYTrGbKNtOpOGIKXLW8NYQNSnzLFrq/YZTbX/FMk+qYl4VfTtizpNSPOmlqZfHlrauqj\n9gi6DWQfXTeTaAORcpnGbEPNENJaIwbzpTfVMrnyyD86codRgvmmpvQ8BQkeIRxKmJOZYWZLs+WZ\n2UNAV3fPfF5BzjLFri+FMpMJJ71j7r7VzAYBh2emA+eY2aSmVqaO+roQzqvg7p8ksqsJx5c/ypJ3\nKuGXZNplGrMNI6P05cCXzOzzhENM5EtvqmVy5bl7d7L7BDgjR14tOtEsIiKxFqVugIiIlA8FBRER\niSkoSEUxs21mNsfM5pvZvWbWpkTtuDT52mY22cz2jObX5y4pki4FBak0G939MHc/lHCtw0WFFjSz\nqiK241Kih7cDuPsp7v5+EesXaRAFBalkfyfczgMz+6qZvRjtRfyuJgCY2Xoz+6WZzQWOMrNBZjbV\nzOZG6+9uZlVmdq2ZzTCzeWZ2YVR2iJk9a2b3mdk/zexuC8YQ7nk1xcymROsuNbMOmQ00s+8k6v1/\njdUxUrkUFKQimVlLwu26XzazQ4ARwL+5+2GE6ya+Eq26G+Gpff0Itxe4h3ClcT/CvYg2Em7BsM7d\nBwGDgAvMrEdU/nDCXkEv4NPRa4wj3An3OHc/Lk8bTyLcKnww4TqOAWb2uWL1gUg2uk5BKk1rM6u5\nHuLvhDvsjiLc1XaGmUG4dULNIxa3EZ4/AXAQ8Ja7zwDw6NGo0ca7r5kNj9bbg7Ax3wK8GI0pJ3rd\n7oSb+xXipGiaHS23jep9rvC3K1I/CgpSaTZGewMxC5HgDnf/bpb1N7n7tjrqNOASd388o94hhCuv\na2yjfv9zBlzt7r+rRxmRnaLDRyLh4UbDzWwfADPb28y6ZVnvFaBTdGUy0fmEloTbfn/DzKqj9APN\nbLc6XvNDwvMp8nkc+C8zaxvV27mmjSJp0Z6CVDx3X2hmPwCeMLMWhKdyjSY88Ce53hYzGwFcH91G\nfCPhvMLvCYeFXor2OtYQHn2az3jgMTNbmeu8grs/EZ3vmBYd1loPfJXth7ZEik63uRARkZgOH4mI\nSExBQUREYgoKIiISU1AQEZGYgoKIiMQUFEREJKagICIiMQUFERGJ/X+oo2sTrJX62wAAAABJRU5E\nrkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x16347630>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVNWZ//HPQ9MIiCvgiixxcAEBZVMZM6KoQZO4jCSo\niaITRSOK/oYkmlXHmGjGTBJRo0HjgkswKq7BuKJG0QgoIIsKUZRNQFQUZBF8fn+c25dLUVVd3dTt\nqu76vl+venXdc+459dSp6vvU3c3dERERAWhW6gBERKR8KCmIiEhMSUFERGJKCiIiElNSEBGRmJKC\niIjElBREADO73MzuKva8WxnTmWb2YtqvI5KkpCCNlpnNN7NlZrZtouxsM3uuhGFtxsyeM7OzSx2H\nSKGUFKSxqwIuKnUQIk2FkoI0dtcAPzCzHTMrzGyAmU02s5XR3wGJui5m9ryZfWZmTwHtEnUDzWxh\nRl/zzeyobAGY2SFmNsnMPjGz6WY2MMd8A81soZmNitZwlpjZWYn6tmb2iJl9amavAntntN/PzJ4y\ns4/M7C0z+3ZU3sLMppnZhdF0lZm9ZGa/qH34RDanpCCN3RTgOeAHyUIz2xn4GzAaaAv8DvibmbWN\nZrkHmEpIBr8EhtXnxc1sz+h1rgR2juJ4wMza52iyG7ADsCfwPeAGM9spqrsBWAvsDvxX9Kh5nW2B\np6K4dwFOAf5oZt3cfT3wXeAKM9sfuJSwBvWr+rwnqWxKCtIU/AK4MGNB/HVgrrvf6e4b3P0vwJvA\nN82sI9AP+Lm7r3P3F4BH6/na3wUmuPsEd//S3Z8iJKrjcsz/BXCFu3/h7hOAVcC+ZlYFnAz8wt1X\nu/tM4I5Eu28A8939tuj9vA48AHwLIJr/SuAhQmI63d031vM9SQVTUpBGL1ogPkb4hVxjD+C9jFnf\nI/xC3wP42N1XZ9TVRyfgW9Gmo0/M7BPgMMKv/WxWuPuGxPTnQBugPdAcWJAjpk7AwRmv8x3CmkeN\nO6L5Jrj73Hq+H6lwSgrSVFwGnENY6AMsJiwgkzoCi4AlwE7Jo5aiuhqrgdY1E9Gv+FybgxYAd7r7\njonHtu5+dR3jXw5sAPbKEdMC4PmM12nj7t9PzPNHQnL8mpkdVsfXFwGUFKSJcPd5wL3AyKhoArCP\nmZ1mZs3NbCjQDXjM3d8jbOL5n2gn7WHANxPdvQ20NLOvm1k18DNgmxwvfRdhk9TXoh28LaMdyh3q\nGP9GYDxwuZm1NrNubL6f47Ho/ZxuZtXRo1+0DwEzOx3oA5wZjcEdZtamLjGIgJKCNC1XANsCuPsK\nwnb4UcAK4EfAN9z9w2je04CDgY8Iaxljazpx95XA+cAthDWL1cBmRyMl5l0AnAD8hPBrfwHwQ+r3\nv3UBYVPSB8DtwG2J1/kMOIawg3lxNM9vgG2ifSR/AM5w91Xufg8h6f2+HjFIhTPdZEdERGpoTUFE\nRGJKCiIiElNSEBGRmJKCiIjElBRERCTWvNQB1FW7du28c+fOpQ5DRKRRmTp16ofunuskzFijSwqd\nO3dmypQppQ5DRKRRMbOCLuWizUciIhJTUhARkZiSgoiIxBrdPoVsvvjiCxYuXMjatWtLHUpFaNmy\nJR06dKC6urrUoYhIkTWJpLBw4UK22247OnfujJmVOpwmzd1ZsWIFCxcupEuXLqUOR0SKLLXNR2Z2\na3Qf2pk56s3MRpvZPDObYWa96/taa9eupW3btkoIDcDMaNu2rdbKRJqoNPcp3A4MzlN/LNA1egwH\nbtyaF1NCaDgaa5GmK7WkEN339qM8s5wAjPXgFWBHM8t1C8OyZ2aMGjUqnv7tb3/L5ZdfXrqARETq\noZT7FPZk8/vRLozKlmTOaGbDCWsTdOwY3aHw8h02zTD0lU3PF79O59GLixro/JF7hCd7HLR5xeLX\n46fbbLMN48eP58c//jHt1i+ATxfB6s/DPMl2iTY5y/PVbW2bQvvLaLNxwRSqqqq2rEt+DgCXr8xe\nl6u80DaF9lefNo017kp6r4q7eHHXolEckuruY9y9r7v3bd++1rO0S6J58+YMHz6c3/9+y5tdzZ8/\nnyOPPJKePXsy6Nvn8v6ikPfOPPNMRo4cyYABA/jKod/k/seeztr30uUrOOl7o+h11FB69erFpEmT\nADjxv/6bPoNPo/sRQxhz1wPx/G3atOGnV19Pr6OGcsg3zmDp0qWhn6VLOemkk0I/Rw1l0uTpANx1\n113079+fA48+hXN/dCUbN26M+xk1ahS9evXi5akzijdYIlK2SpkUFrH5Tco7RGWN1ogRI7j77rtZ\n+elnm5VfeOGFDBs2jBkzZvCd/zyWkT+/Jq5bsmQJL774Io/dcS2XXjU6a78jf/6/HH5Ib6Y/fS+v\nvfYa3bt3B+DW/7uMqX+/hykT7mL0reNYsWIFAKtXr+aQ3j2Y/vS9/Mchvbn55ptDPyNHcvjhh4d+\nnriH7vt+hTlz5nDvvffy0ksvMe2pcVRVVXH3+Mfjfg4++GCmT5/OYf0PyhqbiDQtpdx89AhwgZmN\nI9wrd6W7b7HpqDHZfvvtOeOMMxj953G0arXpPu8vv/wy48ePB+D0k7/Oj67ctPA/8cQTadasGd32\n+QpLl2ffBfPsS5MZe+0vAaiqqmKHHcKq4ehb/8KDj08EYMHipcydO5e2bdvSokULvnH0fwDQp8f+\nPDV1Xujn2WcZO3YsrJgd+tl+O+4c/wxTp06lX79+8MUa1qxdxy7tdopf6+STTy7mEIlImUstKZjZ\nX4CBQDszW0i4OXo1gLvfBEwAjgPmAZ8DZ6UVS0O6+OKL6d3rAM4aenxB82+zzabkUXO/7J9efT1/\ne2EqANOmTcva7rnnnuPpf7zKy4/eTutWrRg45Jz4MNHq6ur4CKGqqio2bNiQ8/XdnWHDhnHVVVdt\nsY+iZcuWm/YjiEhFSPPoo1PdfXd3r3b3Du7+Z3e/KUoIREcdjXD3vd29h7s3iUuf7rzzznz7m0fz\n5788HJcNGDCAcePGAXD3+Mf56sH5N8X86tILmDZtWpwQBh3WnxvH3gfAxo0bWblyJStXrmSnHbaj\ndatWvDnvXV557Y1aYxs0aBA33njjpn4+/YxBgwZx//33s2zZMgA++ngl7y0s7o56EWk8GsWO5sZm\n1Lmn8+FHn8TT1113Hbfddhs9e/bkzgf+xrVX/KBO/V17xQ+ZOGkKPQZ9mz59+jB79mwGDx7Mho0b\n2f/w/+TSX1/HIb171N7PtdcyceLE0M/g7zD77Xfo1q0bV155Jccccww9j/o2R5/6fZYs/bDO71lE\nmoYmcZmLTPEhpFDcwzTzWLVqVfx81/Zt+fxfk+LpTp068eyzz27R3+233755H3Nfytr3ru3b8vBt\nv98itsfvun7zGaO6VatWxa8z5BtHMWT4D0M/u+7Kww8/vMV7Gjp0KEOHDt2iPPmeRKQyaE1BRERi\nSgoiIhJTUhARkZiSgoiIxJQUREQkpqQgIiIxJYUi+uCDDzjllFPYe8Dx9Bl8GsedfiFv/+u9Uocl\nIlKwJnmeAmMGFre/4c/VOou7c9JJJzFs2DDG/e4SAKbPepulH65gn+JGkzcGd6dZM+V6kbR1XntP\n/Hx+6cIoOi09imTixIlUV1dz3nnnxWW9uu/DQQfsx6BBg+jduzc9evTg4SeeA2D+gsXsv//+nHPO\nOXTv3p1jTj2fNWvCtYvmvfs+Rx11FL169aJ37978a3647cQ1N95Bv3796NmzJ5dddlncz75fPYkz\nRv6cAw44gAULFiAiUl9KCkUyc+ZM+vTps0V5y21a8OCDD/Laa68xceJERl3xu/jCd3PnzmXEiBHM\nmjWLHbffjgcmPAPAdy78GSNGjGD69OlMmjSJ3Xdtx5PPv8zcd9/n1VdfZdq0aUydOpUXXgkXzZv7\n7vucP+xbzJo1i06dOjXcmxaRJqdpbj4qI+7OT37yE1544QWaNWvGog+Ws3R5uO9Bly5dOPDAAwHo\n03N/5i9YwmerVrNoyTJOOukkIFyplFatePL5V3jy+Vc46KBNl7KY++4COu65O5067M4hfXqW5g2K\nSJOipFAk3bt35/7779+i/O7xj7N8+XKmTp1KdXU1nffag7Xr1gObXza7qqoZa9bmv8T1jy84i3Mv\n+dWmwsWvM3/BYrZt3ap4b0REKpo2HxXJkUceybp16xgzZkxcNmP227y3aAm77LIL1dXVTJw4kfcW\n5r+P0HZttqXD7rvw0EMPAbBu3To+X7OGrw08lFvvfSS+SN2iRYtY9mH2m/KIiNSXkkKRmBkPPvgg\nTz/9NHsPOJ7uRwzhx1ddz3FHHsaUKVPo0aMHY8eOZb9/61xrX3eOvpLRo0fTs2dPBgwYwAfLVnDM\n4Ydy2omDOfTQQ+nRowdDhgzhs1Wr039jIlJRmubmo+HPbXreQJfOBthjjz3461//ukWbl19+OWt/\nM2fOjJ//4Lwz4uddv9Jx06W2E20uOvs0LvrFNVuUz3z2voJjFBHJp2kmBZEyUszj2ZvqsfFSPrT5\nSEREYkoKIiISazJJoeaEMEmfxlqk6WoSSaFly5asWLFCC6sG4O6sWLEinFQnIk1Ok9jR3KFDBxYu\nXMjy5cvhk2WbV66cs+l5si5Znq9ua9sU2l9DtSm0v5xtnJa77USHDh0QkaanSSSF6upqunTpEiYu\nP2TzystXJp4fkr08X93Wtim0v4ZqU2h/hbYRkSalSWw+EhGR4lBSEBGRWJPYfJSUPLkHdIKPSGOl\n/+XS0JqCiIjElBRERCTW5DYfiZSCrknUNFXi56qkIFIgbeOWSqCkIGWlEn+ZiZSTVPcpmNlgM3vL\nzOaZ2aVZ6ncws0fNbLqZzTKzs9KMR0RE8kttTcHMqoAbgKOBhcBkM3vE3WcnZhsBzHb3b5pZe+At\nM7vb3denFVdD0GYGKSdN8ftY7DVKraFukuaaQn9gnru/Ey3kxwEnZMzjwHZmZkAb4CMg993rRUQk\nVWkmhT2BBYnphVFZ0vXA/sBi4A3gInf/MsWYREQkj1LvaP4aMA04EtgbeMrM/uHunyZnMrPhwHCA\njh07NniQIiKl0tCbttJcU1gE7JWY7hCVJZ0FjPdgHvAusF9mR+4+xt37unvf9u3bpxawiEilSzMp\nTAa6mlkXM2sBnAI8kjHP+8AgADPbFdgXeCfFmEREJI/UNh+5+wYzuwB4AqgCbnX3WWZ2XlR/E/BL\n4HYzewMw4BJ3/7CQ/uuzSqUjFkRE8kt1n4K7TwAmZJTdlHi+GDgmzRhERKRwpd7RLCIlpLVdyaSr\npIqISExrCiIijVQaa3pKCiLSZDTFS3o0NCUFESkp7dcoL0oKDUz/ANLY5fsO6/udX2MYH+1oFhGR\nmNYURMpQY/hFKU2TkkKZ0A4yESkHSgpSkHK4rIg0XvouNB5KChVI/6Aikot2NIuISExJQUREYtp8\nJDFtVgo0DlLJlBSaKC3YRKQ+lBQiWog2Xvrsik+HSFcu7VMQEZGYkoKIiMS0+UhEpIga+6Y3rSmI\niEhMawpSkRr7rzmRtGhNQUREYlpTkEajqV2Ur5xjk8qlNQUREYkpKYiISKzgpGBmrcxs3zSDERGR\n0ipon4KZfRP4LdAC6GJmBwJXuPvxaQYn+TXWI2gaa9wilaDQNYXLgf7AJwDuPg3oklJMIiJSIoUm\nhS/cfWVGmRc7GBERKa1CD0mdZWanAVVm1hUYCUxKLywRESmFQtcULgS6A+uAvwCfAhenFZSIiJRG\nQWsK7v458NPoISIiTVShRx89ypb7EFYCU4A/ufvaHO0GA9cCVcAt7n51lnkGAn8AqoEP3f3wgqNv\nADrrVEQqSaGbj94BVgE3R49Pgc+AfaLpLZhZFXADcCzQDTjVzLplzLMj8EfgeHfvDnyrHu9BRESK\npNAdzQPcvV9i+lEzm+zu/cxsVo42/YF57v4OgJmNA04AZifmOQ0Y7+7vA7j7srqFLyIixVRoUmhj\nZh1rFt5m1hFoE9Wtz9FmT2BBYnohcHDGPPsA1Wb2HLAdcK27jy0wJikDOhFNpGkpNCmMAl40s38B\nRjhx7Xwz2xa4Yytfvw8wCGgFvGxmr7j728mZzGw4MBygY8eOW/FyIlKptH+wMIUefTQhOj9hv6jo\nrcTO5T/kaLYI2Csx3SEqS1oIrHD31cBqM3sB6AVslhTcfQwwBqBv3746aU5EJCV1uUpqV2BfwkL7\n22Z2Ri3zTwa6mlkXM2sBnAI8kjHPw8BhZtbczFoTNi/NqUNMIiJSRIUeknoZMJBwFNEEwhFFLwI5\nt/+7+wYzuwB4gnBI6q3uPsvMzovqb3L3OWb2d2AG8CXhsNWZW/F+RERkKxS6T2EIYQ3hdXc/y8x2\nBe6qrZG7TyAkkWTZTRnT1wDXFBiHiOSgbeZSDIVuPlrj7l8CG8xse2AZm+8vEBGRJqDQNYUp0Ylm\nNwNTCSeyvZxaVCIiUhKFHn10fvT0pmgfwPbuPiO9sEREpBQK2nxkZs/UPHf3+e4+I1kmIiJNQ941\nBTNrCbQG2pnZToQT1wC2J5yxLCIiTUhtm4/OJdw3YQ/CvoSapPApcH2KcYmISAnkTQrufi1wrZld\n6O7XNVBMIiJSIoXuaL7OzAYAnZNtdPE6EZGmpdAzmu8E9gamARujYifPGc0iItL4FHqeQl+gm7vr\nYnQiIkVWTpegL/SM5pnAbmkGIiIipVfomkI7YLaZvQqsqyl09+NTiUpEREqi0KRweZpBSH660JmI\nNJRCjz563sw6AV3d/eno3gdV6YYmIiINrdDLXJwD3A/8KSraE3goraBERKQ0Ct3RPAL4d8KZzLj7\nXGCXtIISEZHSKDQprHP39TUTZtaccJ6CiIg0IYUmhefN7CdAKzM7GrgPeDS9sEREpBQKTQqXAsuB\nNwgXyZsA/CytoEREpDQKPSS1FXCru98MYGZVUdnnaQUmIiINr9A1hWcISaBGK+Dp4ocjIiKlVGhS\naOnuq2omouet0wlJRERKpdCksNrMetdMmFkfYE06IYmISKkUuk/hIuA+M1tMuPvabsDQ1KISEZGS\nqDUpmFkzoAWwH7BvVPyWu3+RZmAiItLwak0K7v6lmd3g7gcRLqEtIiJNVMFHH5nZyWZmqUYjIiIl\nVWhSOJdwFvN6M/vUzD4zs09TjEtEREqg0Etnb5d2ICIiUnqFXjrbzOy7ZvbzaHovM+ufbmgiItLQ\nCt189EfgUOC0aHoVcEMqEYmISMkUep7Cwe7e28xeB3D3j82sRYpxiYhICRS6pvBFdBE8BzCz9sCX\nqUUlIiIlUWhSGA08COxiZr8CXgR+XVsjMxtsZm+Z2TwzuzTPfP3MbIOZDSkwHhERSUGhRx/dbWZT\ngUGEy1yc6O5z8rWJ1ixuAI4GFgKTzewRd5+dZb7fAE/WI34RESmivEnBzFoC5wH/RrjBzp/cfUOB\nffcH5rn7O1Ff44ATgNkZ810IPAD0q0PcIiKSgto2H90B9CUkhGOB39ah7z2BBYnphVFZzMz2BE4C\nbqxDvyIikpLaNh91c/ceAGb2Z+DVIr/+H4BLousr5ZzJzIYDwwE6duxY5BBERKRGbUkhvhKqu2+o\n46WPFgF7JaY7RGVJfYFxUb/tgOPMbIO7P5Scyd3HAGMA+vbt63UJQkRECldbUuiVuMaRAa2iaQPc\n3bfP03Yy0NXMuhCSwSlsOvkNQgddap6b2e3AY5kJQUREGk7epODuVfXtOFqzuAB4AqgCbnX3WWZ2\nXlR/U337FhGRdBR6RnO9uPsEYEJGWdZk4O5nphmLiIjULtWkICIiDa/z2nvi5/Pr2LbQM5pFRKQC\nKCmIiEhMSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRERiSkpiIhITElBRERiSgoi\nIhJTUhARkZiSgoiIxJQUREQkpqQgIiIxJQUREYkpKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSU\nFEREJKakICIiMSUFERGJKSmIiEhMSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSWalIws8Fm9paZ\nzTOzS7PUf8fMZpjZG2Y2ycx6pRmPiIjkl1pSMLMq4AbgWKAbcKqZdcuY7V3gcHfvAfwSGJNWPCIi\nUrs01xT6A/Pc/R13Xw+MA05IzuDuk9z942jyFaBDivGIiEgt0kwKewILEtMLo7Jcvgc8nmI8IiJS\ni+alDgDAzI4gJIXDctQPB4YDdOzYsQEjExGpLGmuKSwC9kpMd4jKNmNmPYFbgBPcfUW2jtx9jLv3\ndfe+7du3TyVYERFJNylMBrqaWRczawGcAjySnMHMOgLjgdPd/e0UYxERkQKktvnI3TeY2QXAE0AV\ncKu7zzKz86L6m4BfAG2BP5oZwAZ375tWTCIikl+q+xTcfQIwIaPspsTzs4Gz04xBREQKpzOaRUQk\npqQgIiIxJQUREYkpKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSUFEREJKakICIiMSUFERGJKSmI\niEhMSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRERiSkpiIhITElBRERiSgoiIhJT\nUhARkZiSgoiIxJQUREQkpqQgIiIxJQUREYkpKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSUFERE\nJJZqUjCzwWb2lpnNM7NLs9SbmY2O6meYWe804xERkfxSSwpmVgXcABwLdANONbNuGbMdC3SNHsOB\nG9OKR0REapfmmkJ/YJ67v+Pu64FxwAkZ85wAjPXgFWBHM9s9xZhERCQPc/d0OjYbAgx297Oj6dOB\ng939gsQ8jwFXu/uL0fQzwCXuPiWjr+GENQmAfYG3ouftgA9zhFCfunJuUw4xVFLclfReyyGGSoq7\nVO+1k7u3zzHfJu6eygMYAtySmD4duD5jnseAwxLTzwB96/AaU4pZV85tyiGGSoq7kt5rOcRQSXGX\nw3vN90hz89EiYK/EdIeorK7ziIhIA0kzKUwGuppZFzNrAZwCPJIxzyPAGdFRSIcAK919SYoxiYhI\nHs3T6tjdN5jZBcATQBVwq7vPMrPzovqbgAnAccA84HPgrDq+zJgi15Vzm3KIoZLirqT3Wg4xVFLc\n5fBec0ptR7OIiDQ+OqNZRERiSgoiIhJTUhARkZiSgoiIxFI7+igtZrYrsGc0ucjdl25Nm1x19WlT\n7P7q814riZntR7hUSjxGhMOcPVu5u89pjG3KIYZKiruc22xNHQVqNEcfmdmBwE3ADmw6wa0D8Alw\nvru/lrkQBXbP0+YPwMVZ6tZHz6vr0KbY/eVrcz7h8N2K/qcGjgdOJVxTa2FijEZGz0dnlJ8CLCF8\nJxpTm3KIoZLiLuc2W1M3zt2vpgCNKSlMA851939mlB8C3AF8zJYL172A77v72CxtJgIDs/T3NmFc\nutahTbH7y9dmPLCM9P8Jy+GfIF+bPYE93P2LjDHKNXYtgFXAto2sTTnEUElxl3ObramblflaOdX1\nuhilegBz89StI1xsL7N8ATA9R5v1uV6HcHXXgtsUu7/a2gDVWcpb5Kl7O9v41dKm2P2l0aZTlrp5\nwL+ylHeKvieNrU05xFBJcZdzm62peyuzPNejMe1TeNzM/gaMJSzsIawJnAGs8Yxf25EHge+Z2dAs\nbebk6K854f4/dWlT7P7ytVkN7AG8l/FedydsaslW1wywLOOTr02x+yt2m6XAM2Y2l01j1BFoDWBm\nj2eU/xtwRSNsUw4xVFLc5dxma+riq1PXptFsPgIws2PJvn15MLA32RfWG4HFmW3cfUKe/nJt+87Z\nptj95WoDfAlcT1ibyPzgbyNcKiSzrmf0fHod2hS7v2K3uQB4knDfjuQYTY7Gbotyd99oZs0aW5ty\niKGS4i7nNltTR4EaVVLIJ9/CunRRpaOh/gnL4Z8gX5u6jZqIFKTQ7Uzl/ACGF7NNrrr6tCl2f/V5\nr5X2AB6rS3ljbVMOMVRS3OXcZmvqtpi30BnL+UE4KilXXa6Fa742Wevq06bY/dXSpuRfwDJps3td\nyhtrm3KIoZLiLuc2W1OX+WhUm4/qc2KGmf0CeAn4p7uvSpQPBj4C3N0nm1k3wr6JNz1jk5OZjXX3\nM7L0fRhh08ZMYCUwx90/NbNWwKVAb6AVMNLdZ2dpX3OficXu/rSZnQYMAOYATxGOxd+LsF/kbeAe\nd/80z3vd3XPcjyJXXX3aFLu/YrdJm5nt4u7L6timrbuvSCumhlafMYjaVfw4lP0YFJo9Sv0ALgGm\nERa2340el9aU5WgzknAM/EPAfOCERN1i4BVgCnAV8Czwc2AFYaH8SPR4lHD87yPAx4n250SvfRkh\n6SwFmkd1Ywgnph0GrAXWAP8gnHjWPtHH3cC90WvcSTha6nTgn4SE9zNgEnAD8CtgNuG8hlJ+DrvU\no03bFOLYAbgaeJOQ3Gs+t6uBHXO0eTL6rO8ETkuU70ZI7DcAbYHLgTeAvwL7AzsnHm2j79IQYOdE\nLH8GZgD3EM6raBfV9QXeIRyCuA64Bdg7S2x9Ceet3EX4IfAU4YfGZMIPhSuAWVHZ8ui7+/16jMH2\nwL8yxyCquw24Mcs4PJQxDjVjsBMwJOMzSWscphL+rzLH4Ex9F+o/DlnHppQLmDouBN4m9/H0Wc9h\niD7MBdHzzoQEcFE0vYZw85/WwKfA9lH564QT4QYCh0d/l0TP5yb6nky0gAe2BdYm6l5LPH+dkDyO\nib4sy4G/A8OAmdE8zQlJpSoR94zoeWvgueh5R8KROA2xICiHf4J8C4InCD8Udsv4h74WeJmwlpZ8\n9Ik+86uBEwlJ/gFgm+jzWED4kTEj6ncv4ELCju53Mx5fRO/nneh1bwGuJBwP/v8IdxCsiWki0C96\nvgD4AHgfeDWad4+o7lXgWMJZ2guIFrbAoOhzPpNw4t5/E368dCX8cHg2yxhckmMMehPug74qcwyi\ntiuj95w5Dl8SDoXOHIN3gXWJ105zHF4ifI8yx+AOwnes0r8L+cbhEuDJppgU3iT3iRlrow8w87E2\n40vbJvrQfwd8nlxwJ543I/yzPQUcGJXVfODTCb+O2pJY8Ed1HwNnJRa0faPnswhHy9TMV03YLPQX\nYAMhqe0tjRJfAAAIHUlEQVQEfMamBe1MwmYsoropifaf5fngi7kgKId/gnwLghU5vicbCQuwiVke\nX2bM+9PoNWbUfJ7A+xnzLIq+Mz0SZe+yeeKfltFmLZvWGl9JlL8GvBE9/yrwx2hMJiZfN0sMazKm\nJ0d/36r5nmQZByckjMwx+CzZX2IM2rL5/0QynlGEH06bjUHNe2qIcSD8772eZQyakfgfr+DvQs5x\nqPmu5KrbYt5CZyz1g7C9fx7wOOHX45joA5pHWCAfSFgwJR+TgGUZ/TQnnM/gQOuaAU3U7xB9YB2A\n+wjnBLwf1c0nZON3o7+7R+Vtoi/T7YRf5P8kLDzfIfwT9srxnn4UzfMeYVPXM8DNhE1bH0TP32RT\nsmlP4h83S39FWxCUwz8B+RcEq6Px2zVRv2vU50s5xueL5GcdlZ0ZxfxeNH1lRv0bie/C74Dtos9s\nISFRjYrGxDLG7UngSMKa17WENc0lwJ0Z/VcRvtvLCGuT34q+DydG9YcTEvph0fTxwBPR8yejdplj\ncEnUpmuWMZhDtPacMQazSJxhn2Uc5mSOQVTeUOOQ/KEUj0E03VDfhRnl+l2oZRwuAZ4ueFlb6Izl\n8CAsDA4BTo4eh0QD+eeagcqYvwMwPkdfA3OUt2PzheDXgV/XEldroEv0fHugF2EVdVdgn1ra7sGm\nX8w7EjbN9Ae6R8/3y5j/yTwffLEXBKVeIOZbEMwFfkNImh8TVqvnELZ/988x1uOBo7KU302Wy4oQ\nTpK7PzF9PGHz1QeEfUnJR82mxN0IPzoGEvYXvR6N4wTCJsctNoFG7XoRNok9DuwXjdsn0Wd0BmFt\n6mPgRWDfRHxPZxmD30Sf775ZXud/gV9kKR9M2BTZJt84JMcgmm6IcfiY8ONvdmIM9onmb0/47ie/\nCx83wHfhhDp8F46o4xgcmGMMZhE2O78afTeS34Vs45D8Puycbzm02esXOqMe5fEgbE6q+eA/yvjg\nh6WxIIimi7FAbJ7jPeVaIOZbEIyM5j0qM37gbML218zywVGbbHXnFNKGcDTZAVvxOvna7F9LXbb3\nOpJNm+i6ExL1cdF0/0RdN0IiPy5XeR3a9CAcBJG3TZa6OL5a2hyco83Budpk+U7dmaN8bJ7/rax1\necpbAfel/Tr53k8t/X01GrtjcrXN9mhUh6RKfmZ2lrvfVpe6urSJDrXd291nFqO/rWxzN2EH9RzC\nL6uL3P1hMxtJSIJ/T5ZHbRYQLjue2eZC4JoyaLOakOwLqjOzywhrjTWHMPcHngOOJlwwsA1hc+lT\nhAXqROB7hDXuZRnldWmT73UKqatLDIW0aU9Yc0w6krDmDOGXNYTraB1B2MTaP1GerKtLm1yvU1Ne\nlzaFvE5tdV91950AzOxsYARhbekY4FEv8NLZJf/lq0fxHmTsEyikrj5tit1fPdusJ/rVTOLIMsKa\nyfTM8mh6TWNrU0B/r7PlEXStyH103UzCtvG02zR0DHex5RGDcwmbMjPLD4/q6trm7QZqkyu2WusS\n/x+ZR0e+UfBypNQLMj3q9iD7UVYzCAuIL3PUrclRl69NsfsrepuMcak5suxDEju/2fyIs8wjNxpD\nm3x1y2r6I7FDPprOdXTd6w3RpoFjmEY4mm2zIwYJaxZblEd/s9aVc5sC6vIdHbnZmOVdxpR6IadH\n3R6E8xmyHWnVmXAIXra65YQFSF3aFLu/YrdZV/NPkRib5oRfTRuzlNcccdbY2uSrW17TH1seQbea\n7EfXTSFaQKTcpiFjqDmEdIsjBvOVN9Y2uerIf3TkZkcJ5ns0pvspSPAYYVPCtMwKM5ufrc7MHgE6\nunvm/Qpytil2fym0mUDY6R1z9w1m1g84KLMcOMPMxje2NrX014GwXwV3/zJRXU3Yvvx5lrrjCb8k\n027TkDEMi8oXAt8ys68TNjGRr7yxtslV5+6dye5L4KQcdVvQjmYREYk1K3UAIiJSPpQUREQkpqQg\nFcXMNprZNDObaWb3mVnrEsVxcfK1zWyCme0YPV+Vu6VIupQUpNKscfcD3f0AwrkO5xXa0MyqihjH\nxUQ3bwdw9+Pc/ZMi9i9SL0oKUsn+QbicB2b2XTN7NVqL+FNNAjCzVWb2f2Y2HTjUzPqZ2SQzmx7N\nv52ZVZnZNWY22cxmmNm5UduBZvacmd1vZm+a2d0WjCRc82qimU2M5p1vZu0yAzSzHyb6/Z+GGhip\nXEoKUpHMrDnhct1vmNn+wFDg3939QMJ5E9+JZt2WcNe+XoTLC9xLONO4F+FaRGsIl2BY6e79gH7A\nOWbWJWp/EGGtoBvwleg1RhOuhHuEux+RJ8ZjCJcK7084j6OPmf1HscZAJBudpyCVppWZ1ZwP8Q/C\nFXaHE65qO9nMIFw6oeYWixsJ958A2BdY4u6TATy6NWq08O5pZkOi+XYgLMzXA69Gx5QTvW5nwsX9\nCnFM9Hg9mm4T9ftC4W9XpG6UFKTSrInWBmIWMsEd7v7jLPOvdfeNtfRpwIXu/kRGvwMJZ17X2Ejd\n/ucMuMrd/1SHNiJbRZuPRMLNjYaY2S4AZrazmXXKMt9bwO7RmclE+xOaEy77/X0zq47K9zGzbWt5\nzc8I96fI5wngv8ysTdTvnjUxiqRFawpS8dx9tpn9DHjSzJoR7so1gnDDn+R8681sKHBddBnxNYT9\nCrcQNgu9Fq11LCfc+jSfMcDfzWxxrv0K7v5ktL/j5Wiz1irgu2zatCVSdLrMhYiIxLT5SEREYkoK\nIiISU1IQEZGYkoKIiMSUFEREJKakICIiMSUFERGJKSmIiEjs/wNFlAL5Y3FtkgAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11a7e208>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8FNWZ//HPwwUEBTdEoyJLDC4gorKIjkYialCjxAnu\nEXWi4Ir+xt9v1JhEJpPMaMxk4hYVFVcSMu5oUFHEGBUjIIssKgRREEVERVAWwef3x6lbFE133773\ndt3upr/v16tft+ucOqefru5bT1fVqSpzd0RERACalToAEREpH0oKIiISU1IQEZGYkoKIiMSUFERE\nJKakICIiMSUFqXpmdruZ/bzUcYiUA9N5CrKlM7OFwC7AemADMAe4Hxjp7t+UMK57gcXu/rNSxSCS\nSVsKUi1OcPe2QCfgOuBK4O7ShtQ4Zta81DHIlkdJQaqKu69w97HAqcDZZrafmd1rZr8CMLMdzOwp\nM1tmZp9FzzvUtjezF83sV2b2qpmtMrMnzaydmY02sy/MbLKZdU7Mv4+ZPWdmn5rZ22Z2SlQ+FDgT\n+LfafqLy3czskej13zWz4Ym+RpjZw2b2oJl9AZyT/hKTaqOkIFXJ3V8HFgOHZ1Q1A+4hbFF0BFYD\nt2TMcxpwFrA7sCcwKWqzIzAXuBbAzLYBngP+COwctfuDmXVz95HAaOA37t7G3U8ws2bAk8CMqO8B\nwOVm9v3Eaw8CHga2j9qLFJWSglSzJYQVeczdl7v7I+7+lbuvBH4NHJHR7h53/4e7rwCeBv7h7s+7\n+3rgIeDAaL4fAAvd/R53X+/u04BHgJNzxNMHaO/uv3T3de6+ALiTkExqTXL3x939G3df3Yj3LpKV\n9klKNdsd+DRZYGZbA/8DDAR2iIrbmlmNu2+IppcmmqzOMt0met4JONjMPk/UNwceyBFPJ2C3jPlr\ngL8lphflfUcijaSkIFXJzPoQksLLwMGJqiuAvYGD3f0jMzsAmAZYA15mEfBXdz86R33m0L9FwLvu\n3jVPnxouKKnS7iOpKma2rZn9ABgDPOjub2bM0pbwa/9zM9uR6PhAAz0F7GVmZ5lZi+jRx8z2jeqX\nAt9OzP86sNLMrjSz1mZWEx0I79OIGETqRUlBqsWTZraS8Gv8GuB3wLlZ5vs90Br4BHgNeKahLxgd\nkziGcExgCfARcD2wVTTL3UA3M/vczB6Pdk/9ADgAeDeK4S5gu4bGIFJfOnlNRERi2lIQEZGYkoKI\niMSUFEREJKakICIiMSUFERGJVdzJazvttJN37ty51GGIiFSUqVOnfuLu7euar+KSQufOnZkyZUqp\nwxARqShm9l4h82n3kYiIxJQUREQkpqQgIiKxijumICKV5euvv2bx4sWsWbOm1KFUhVatWtGhQwda\ntGjRoPZKCiKSqsWLF9O2bVs6d+6MWUOuQC6FcneWL1/O4sWL6dKlS4P6SG33kZmNMrOPzWxWjnoz\ns5vMbL6ZzTSzg9KKRURKZ82aNbRr104JoQmYGe3atWvUVlmaxxTuJdy9Kpdjga7RYyhwW4qxiEgJ\nKSE0ncYu69SSgru/RMatDjMMAu734DVgezPbNa14RKR6mRlXXHFFPP3b3/6WESNGlC6gMlbKYwq7\ns+n9ZhdHZR9mzmhmQwlbE3Ts2DEUjkjcd2TEisTzjPuR5KpLlhfaX0PaFNpfU7UptL9ye6+Kuzht\nCu2v2O91ybT4aeebllBMC687PuvrALDbgQBstdVWPPrQGK4+93h22nEHNpNsF7XJW15om0L7a0ib\nRN2GDRuo2aP3xvLP34cR/cLzzM+oDhUxJNXdR7p7b3fv3b59nWdpi4hsonnz5gw985/5n5GjN6tb\nuHAhR548lP2POoUBpwzj/fffB+Ccc85h+M9/w6EnnsO3DzmBhx9+OGvfS5ct56STTqJnz5707NmT\nVyfPAOCH//Kv9Bp4Bt27d2fkyJHx/G26/hPXXHcLPXv2pF+/fixdunRjPz+5gp5HnRr6efVVAB58\n5C/0Pf4sDjj6NIYNG8aGDRtCP23acMW//46eR53KpKkzi7asSpkUPgD2SEx3iMpERIru4nNOYfRj\nT7Pii5WblF966aWcffIJzHz+fznzn49l+PDhcd2HSz/h5cdH8dR9N3LVVVdl7Xf4z3/DEUccwYwZ\nM3jjjTfovne47fao/76Wqc/8kSlTpnDTTTexfPlyAL78ajX9DurBjBkz+O53v8udd965sZ9+BzHj\n+T+Hfrp3Z+7cufx57HheeXwU058bQ01NDaNHh8T25ZdfcvCB+zHj+T9zWN8Ds8bWEKVMCmOBIdEo\npH7ACnffbNeRiEgxbNu2DUMG/4Cb7h6zSfmkSZM446QwJuasHx3Pyy+/HNf9cGB/mjVrRre9vh3/\nos/0wiuTufDCCwGoqalhu23bAnDTqD/R86hT6devH4sWLWLevHkAtGzZgh8c/V0AevXqxcKFCzf2\nM+Tkjf1stx0TJkxg6ptz6XNc2FKYMGECCxYsiOf50fEDirFoNpHaMQUz+xPQH9jJzBYD1wItANz9\ndmAccBwwH/iK7DdRFxEpmsvPO4ODBp7BuecNK2j+rVq2jJ/X3s/+mmuu4S9/+Qt8vZrpz43J2u7F\nV6fw/N9eZ9KT97L1nofSv3//aJjoVrRo3jweIVRTU8P69etzvr67c/bJJ/BfV18aChLHFFq1akVN\nTU1B76M+0hx9dLq77+ruLdy9g7vf7e63RwmBaNTRxe6+p7v3cHdd+lREUrXjDttxyglHc/fdd8dl\nhx56KGOeeBaA0Y8+zeGHH563j1//+tdMnz49TggDDuvLbbeFEfUbNmxgxRcrWbFyFTts15atW7fm\nrbfe4rXXXqsztgGH9eW2+x/a2M+KFQwYMICHn3qejz8JAzk//fRT3nuvoIudNlhFHGgWESmWK4ad\nxSeffBJP33zzzdzz57Hsf9QpPPDIX7jxxhvr1d+Nv/x/TJw4kR49etCrVy/mvLOAgf0PZf2GDex7\nxD9z1VVX0a9fv8L6eXUKPQacEvqZM4du3brxq3+7iGNOv4j9jzqFo48+mg8/THcvuy5zISJNapMh\npND4YZoFWLVqVdxml/bt+Oqrr+K6Tp068cJDG0cHsVsY9n7vvfdu8jqrVq3K2vcu7dvxxBNPbBbb\n0w/ekjXuVfNeiScHDx7M4MGDYcm00M89/7NZm1MHfZ9TB31/s/LkeyombSmIiEhMSUFERGJKCiIi\nElNSEBGRmJKCiIjElBRERCSmpCAiW7yPPvqI0y68ij0PPZFeA8/guOOO45133il1WGVJ5ymISNPK\nvCx3o/vLf2lod+ekk07i7EFHMua26wCYsawZS5cuZa+99ipuLHlicPeK+BVeCTGKiDTYxIkTadGi\nBRcMGRyX9ezZkwMPPJABAwZw0EEH0WPAKTzx7ItAuJT2vvvuy/nnn0/37w3mmNMvYvXqcHvL+fPn\nc9RRR9GzZ08O+v4Z/GNhuCXMDTfcQJ8+fdh///259rfhkhcLFy1h78NPYsiQIey3334sWrSISqCk\nICJbtFmzZtGrV6/Nylu1asVjjz3GG2+8wcSH7uCKX/4uvujdvHnzuPjii5k98WG237Ytj4ybAMCZ\nZ57JxRdfzIwZM3j1iXvYdZedGP/XScybN4/XX3+d6dOnM3XmXF56bWro5933ueiii5g9ezadOnVq\nujfdCNp9JCJVyd356U9/yksvvUSzDWv54KNlLF22HLbfkS5dunDAAQfAkmn02n9fFi76kJUrV/LB\nBx9w0kknAdCq1VYAjP/ra4wf/xIHHhguQbFqxXLmvbuIjrvvSqcOuxZ03aNyoqQgIlu07t27R3dN\nG7JJ+ejRo1m2bBlTp06lxbJZdD74eNasXQeE23fWqqlpxuo1+S9vffXVVzNsWHQ57uh6RAsXLWGb\nrVsX9800Ae0+EpEt2pFHHsnatWsZ+eAjcdnMmTN577332HnnnWnRogUTX5nMe4vzX320bdu2dOjQ\ngccffxyAtWvX8dXq1Xy//yGMGjUqvmDeBx9+HF/quhJpS2EL1XnNH+PnC0sXhjSQPr/iMTMee+wx\nLh92Dtf/4T5abdWSzt/ZhxEjRjB8+HB69OhB725d2Oc7nevs64EHHmDYsGH84he/oAVf89Adv+GY\nIw5h7sdfc8ghhwDQpqXx4M2/SuUGOE1BSUFEmlbmENImuHT2brvtxv/ecf1mfU2aNClLDJ2ZNWtW\nPPl/L9i426lr16688MILm7W57LLLuOyyyzYrn/XCQ/WKsxwoKaQg+SsP9EtPRCqHkkIjaBNfRLY0\nOtAsIiIxbSmIVLGm2tp1d8wsxVeQWuEEPG9w+y0uKZT7/vxc/4TlHnc502688taqVSuWf7mSdts0\nV2JImbuzfPlyWq1Y0OA+KjYpaEUgUhk6dOjA4glPs2y7bwMGK+ZuOsPnH298nqxLluera2ybQvur\nkLhbtWpFhzeup6EqNimISGVo0aIFXV67emNB5pDUEf2y143IuDxErrrGtim0v0qKe93nNJQONIuI\nSExJQUREYkoKIiIS0zEFaXIaaSVSvpQUREpEI+ikHCkpRPQPKiKiYwoiIpKgpCAiIrFUdx+Z2UDg\nRqAGuMvdr8uo3w54EOgYxfJbd78nzZgkN+1CE5HUkoKZ1QC3AkcDi4HJZjbW3eckZrsYmOPuJ5hZ\ne+BtMxvt7uvSiqu+ymFFWQ4xiEh1SHNLoS8w390XAJjZGGAQkEwKDrS1cJWsNsCnQO47ZMsmyn1o\np5KZSOVJ85jC7sCixPTiqCzpFmBfYAnwJnCZu3+TYkwiIpJHqYekfh+YDhwJ7Ak8Z2Z/c/cvkjOZ\n2VBgKEDHjh0b/GL65SpSmIZuhep/rPKluaXwAbBHYrpDVJZ0LvCoB/OBd4F9Mjty95Hu3tvde7dv\n3z61gEVEql2aSWEy0NXMuphZS+A0YGzGPO8DAwDMbBdgb6Dhd4cQEZFGSW33kbuvN7NLgGcJQ1JH\nuftsM7sgqr8d+A/gXjN7EzDgSnf/JK2YREQkv1SPKbj7OGBcRtntiedLgGPSjEFERAqnM5pFRCSm\npCAiIrFSD0kVkSqgoaqVQ1sKIiIS05aCSMr0K1kqiZKCSIHK/VpTIsWg3UciIhLTloKUlaba1aJf\n/SLZaUtBRERi2lIQEWkilTDoQElBRLYY2i3YeEoKUpBK+IUjIo2nYwoiIhLTlkIVKuavfm2uNy1t\nsUnatKUgIiIxbSlIxSjFOQxpvk5T0dac1Ie2FEREJKakICIiMe0+EtlCbGm7vaQ0tKUgIiIxbSmI\nFEE1/Uovh/daDjHkUukH9rWlICIiMW0piEhZqvRf3JVKWwoiIhJTUhARkVjBu4/MrDXQ0d3fTjEe\nEZFUlPPB6XJS0JaCmZ0ATAeeiaYPMLOxaQYmIiJNr9DdRyOAvsDnAO4+HeiSUkwiIlIihSaFr919\nRUaZFzsYEREprUKPKcw2szOAGjPrCgwHXk0vLJHi0H5kkfopdEvhUqA7sBb4E/AFcHlaQYmISGkU\ntKXg7l8B10QPEZEtirYoNyooKZjZk2x+DGEFMAW4w93X5Gg3ELgRqAHucvfrsszTH/g90AL4xN2P\nKDh6EREpqkJ3Hy0AVgF3Ro8vgJXAXtH0ZsysBrgVOBboBpxuZt0y5tke+ANwort3B05uwHsQEZEi\nKfRA86Hu3icx/aSZTXb3PmY2O0ebvsB8d18AYGZjgEHAnMQ8ZwCPuvv7AO7+cf3CFxGRYip0S6GN\nmXWsnYiet4km1+VoszuwKDG9OCpL2gvYwcxeNLOpZjakwHhERCQFhW4pXAG8bGb/AIxw4tpFZrYN\ncF8jX78XMABoDUwys9fc/Z3kTGY2FBgK0LFjx806ERGR4ih09NG46PyEfaKitxMHl3+fo9kHwB6J\n6Q5RWdJiYLm7fwl8aWYvAT2BTZKCu48ERgL07t1bJ82JbEE08qe81OcqqV2BvQkr7VMK2NUzGehq\nZl3MrCVwGpB5vaQngMPMrLmZbQ0cDMytR0wiIlJEhQ5JvRboTxhFNI4wouhl4P5cbdx9vZldAjxL\nGJI6yt1nm9kFUf3t7j7XzJ4BZgLfEIatzmrE+xERkUYo9JjCYMIWwjR3P9fMdgEerKuRu48jJJFk\n2e0Z0zcANxQYh4iIpKjQ3Uer3f0bYL2ZbQt8zKbHC0REZAtQ6JbClOhEszuBqYQT2SalFpWIiJRE\noaOPLoqe3h4dA9jW3WemF5aIiJRCoXdem1D73N0XuvvMZJmIiGwZ8m4pmFkrYGtgJzPbgXDiGsC2\nbH52soiIVLi6dh8NI9w3YTfCsYTapPAFcEuKcYmIlLUt9aS7vEnB3W8EbjSzS9395iaKSURESqTQ\nA803m9mhQOdkG3fPefKaiIhUnkLPaH4A2BOYDmyIip08ZzSLiEjlKfQ8hd5AN3fXxehERLZghZ7R\nPAv4VpqBiIhI6RW6pbATMMfMXgfW1ha6+4mpRCUiIiVRaFIYkWYQIiJSHgodffRXM+sEdHX356N7\nH9SkG5qIiDS1Qi9zcT7wMHBHVLQ78HhaQYmISGkUeqD5YuCfCGcy4+7zgJ3TCkpEREqj0GMKa919\nnVm4yoWZNSecpyAiIilq6stpFLql8Fcz+ynQ2syOBh4CnkwvLBERKYVCk8JVwDLgTcJF8sYBP0sr\nKBERKY1Cdx+1Bka5+50AZlYTlX2VVmAiIqW2pV4JNZ9CtxQmEJJArdbA88UPR0RESqnQpNDK3VfV\nTkTPt04nJBERKZVCk8KXZnZQ7YSZ9QJWpxOSiIiUSqHHFC4DHjKzJYS7r30LODW1qEREqkjy2AWU\n9vhFnUnBzJoBLYF9gL2j4rfd/es0AxMRkaZXZ1Jw92/M7FZ3P5BwCW0REdlCFTz6yMx+ZLWnNIuI\nyBap0KQwjHAW8zoz+8LMVprZFynGJSIiJVDopbPbph2IiIiUXqGXzjYz+7GZ/Tya3sPM+qYbmoiI\nNLVCdx/9ATgEOCOaXgXcmkpEIiJSMoWep3Cwux9kZtMA3P0zM2uZYlwiIlIChW4pfB1dBM8BzKw9\n8E1qUYmISEkUmhRuAh4DdjazXwMvA/9ZVyMzG2hmb5vZfDO7Ks98fcxsvZkNLjAeERFJQaGjj0ab\n2VRgAOEyFz9097n52kRbFrcCRwOLgclmNtbd52SZ73pgfAPiFxGRIsqbFMysFXAB8B3CDXbucPf1\nBfbdF5jv7guivsYAg4A5GfNdCjwC9KlH3CIikoK6dh/dB/QmJIRjgd/Wo+/dgUWJ6cVRWczMdgdO\nAm6rR78iIpKSunYfdXP3HgBmdjfwepFf//fAldH1lXLOZGZDgaEAHTt2LHIIIiKVKY07w9WVFOIr\nobr7+npe+ugDYI/EdIeoLKk3MCbqdyfgODNb7+6PJ2dy95HASIDevXt7fYIQEZHC1ZUUeiaucWRA\n62jaAHf3bfO0nQx0NbMuhGRwGhtPfoPQQZfa52Z2L/BUZkIQEZGmkzcpuHtNQzuOtiwuAZ4FaoBR\n7j7bzC6I6m9vaN8iIpKOQs9obhB3HweMyyjLmgzc/Zw0YxERkboVevKaiIhUASUFERGJKSmIiEhM\nSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRERiSkpiIhITElBRERiSgoiIhJL9Sqp\nIiLS9BpzRzZtKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSUFEREJKakICIiMSUFERGJKSmIiEhM\nSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRERiSkpiIhITElBRERiqSYFMxtoZm+b\n2XwzuypL/ZlmNtPM3jSzV82sZ5rxiIhIfqklBTOrAW4FjgW6AaebWbeM2d4FjnD3HsB/ACPTikdE\nROqW5pZCX2C+uy9w93XAGGBQcgZ3f9XdP4smXwM6pBiPiIjUIc2ksDuwKDG9OCrL5SfA0ynGIyIi\ndWhe6gAAzOx7hKRwWI76ocBQgI4dOzZhZCIi1SXNLYUPgD0S0x2isk2Y2f7AXcAgd1+erSN3H+nu\nvd29d/v27VMJVkRE0k0Kk4GuZtbFzFoCpwFjkzOYWUfgUeAsd38nxVhERKQAqe0+cvf1ZnYJ8CxQ\nA4xy99lmdkFUfzvwC6Ad8AczA1jv7r3TiklERPJL9ZiCu48DxmWU3Z54fh5wXpoxiIhI4XRGs4iI\nxJQUREQkpqQgIiIxJQUREYkpKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSUFEREJKakICIiMSUF\nERGJKSmIiEhMSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRERiSkpiIhITElBRERi\nSgoiIhJTUhARkZiSgoiIxJQUREQkpqQgIiIxJQUREYkpKYiISExJQUREYkoKIiISU1IQEZGYkoKI\niMRSTQpmNtDM3jaz+WZ2VZZ6M7ObovqZZnZQmvGIiEh+qSUFM6sBbgWOBboBp5tZt4zZjgW6Ro+h\nwG1pxSMiInVLc0uhLzDf3Re4+zpgDDAoY55BwP0evAZsb2a7phiTiIjkYe6eTsdmg4GB7n5eNH0W\ncLC7X5KY5yngOnd/OZqeAFzp7lMy+hpK2JIA2Bt4O3q+E/BJjhAaUlfObcohhmqKu5reaznEUE1x\nl+q9dnL39jnm28jdU3kAg4G7EtNnAbdkzPMUcFhiegLQux6vMaWYdeXcphxiqKa4q+m9lkMM1RR3\nObzXfI80dx99AOyRmO4QldV3HhERaSJpJoXJQFcz62JmLYHTgLEZ84wFhkSjkPoBK9z9wxRjEhGR\nPJqn1bG7rzezS4BngRpglLvPNrMLovrbgXHAccB84Cvg3Hq+zMgi15Vzm3KIoZrirqb3Wg4xVFPc\n5fBec0rtQLOIiFQendEsIiIxJQUREYkpKYiISExJQUREYqmNPkqLme0C7B5NfuDuSxvTJlddQ9oU\nu7+GvNdqYmb7EC6VEi8jwjBnz1bu7nMrsU05xFBNcZdzm8bUUaCKGX1kZgcAtwPbsfEEtw7A58BF\n7v5G5koU2DVPm98Dl2epWxc9b1GPNsXuL1+biwjDd6v6nxo4ETidcE2txYllNDx6flNG+WnAh4Tv\nRCW1KYcYqinucm7TmLox7n4dBaikpDAdGObuf88o7wfcB3zG5ivXPYAL3f3+LG0mAv2z9PcOYbl0\nrUebYveXr82jwMek/09YDv8E+drsDuzm7l9nLKNcy64lsArYpsLalEMM1RR3ObdpTN3szNfKqb7X\nxSjVA5iXp24t4WJ7meWLgBk52qzL9TqEq7sW3KbY/dXVBmiRpbxlnrp3si2/OtoUu7802nTKUjcf\n+EeW8k7R96TS2pRDDNUUdzm3aUzd25nluR6VdEzhaTP7C3A/YWUPYUtgCLDaM35tRx4DfmJmp2Zp\nMzdHf80J9/+pT5ti95evzZfAbsB7Ge91V8Kulmx1zQDLsnzytSl2f8VusxSYYGbz2LiMOgJbA5jZ\n0xnl3wF+WYFtyiGGaoq7nNs0pi6+OnVdKmb3EYCZHUv2/csDgT3JvrLeACzJbOPu4/L0l2vfd842\nxe4vVxvgG+AWwtZE5gd/D+FSIZl1+0fPZ9SjTbH7K3abS4DxhPt2JJfR5GjZbVbu7hvMrFmltSmH\nGKop7nJu05g6ClRRSSGffCvr0kWVjqb6JyyHf4J8beq31ESkIIXuZyrnBzC0mG1y1TWkTbH7a8h7\nrbYH8FR9yiu1TTnEUE1xl3ObxtRtNm+hM5bzgzAqKVddrpVrvjZZ6xrSptj91dGm5F/AMmmza33K\nK7VNOcRQTXGXc5vG1GU+Kmr3UUNOzDCzXwCvAH9391WJ8oHAp4C7+2Qz60Y4NvGWZ+xyMrP73X1I\nlr4PI+zamAWsAOa6+xdm1hq4CjgIaA0Md/c5WdrX3mdiibs/b2ZnAIcCc4HnCGPx9yAcF3kH+KO7\nf5Hnve7qOe5HkauuIW2K3V+x26TNzHZ294/r2aaduy9PK6am1pBlELWr+uVQ9sug0OxR6gdwJTCd\nsLL9cfS4qrYsR5vhhDHwjwMLgUGJuiXAa8AU4L+AF4CfA8sJK+Wx0eNJwvjfscBnifbnR699LSHp\nLAWaR3UjCSemHQasAVYDfyOceNY+0cdo4M/RazxAGC11FvB3QsL7GfAqcCvwa2AO4byGUn4OOzeg\nTbsU4tgOuA54i5Dcaz+364Dtc7QZH33WDwBnJMq/RUjstwLtgBHAm8D/AvsCOyYe7aLv0mBgx0Qs\ndwMzgT8SzqvYKarrDSwgDEFcC9wF7Jkltt6E81YeJPwQeI7wQ2My4YfCL4HZUdmy6Lt7YQOWwbbA\nPzKXQVR3D3BbluXweMZyqF0GOwCDMz6TtJbDVML/VeYyOEffhYYvh6zLppQrmHquBN4h93j6rOcw\nRB/mouh5Z0ICuCyaXk24+c/WwBfAtlH5NMKJcP2BI6K/H0bP5yX6nky0gge2AdYk6t5IPJ9GSB7H\nRF+WZcAzwNnArGie5oSkUpOIe2b0fGvgxeh5R8JInKZYEZTDP0G+FcGzhB8K38r4h74RmETYSks+\nekWf+XXADwlJ/hFgq+jzWET4kTEz6ncP4FLCge53Mx5fR+9nQfS6dwG/IowH/z+EOwjWxjQR6BM9\nXwR8BLwPvB7Nu1tU9zpwLOEs7UVEK1tgQPQ5n0M4ce9fCT9euhJ+OLyQZRlcmWMZHES4D/qqzGUQ\ntV0RvefM5fANYSh05jJ4F1ibeO00l8MrhO9R5jK4j/Adq/bvQr7lcCUwfktMCm+R+8SMNdEHmPlY\nk/GlbRN96L8DvkquuBPPmxH+2Z4DDojKaj/wGYRfR+1IrPijus+AcxMr2t7R89mE0TK187Ug7Bb6\nE7CekNR2AFaycUU7i7Abi6huSqL9yjwffDFXBOXwT5BvRbA8x/dkA2EFNjHL45uMea+JXmNm7ecJ\nvJ8xzwfRd6ZHouxdNk380zParGHjVuNrifI3gDej54cDf4iWycTk62aJYXXG9OTo79u135Msy8EJ\nCSNzGaxM9pdYBu3Y9H8iGc8VhB9OmyyD2vfUFMuB8L83LcsyaEbif7yKvws5l0PtdyVX3WbzFjpj\nqR+E/f1ja/qJAAAHc0lEQVTzgacJvx5HRh/QfMIK+QDCiin5eBX4OKOf5oTzGRzYunaBJuq3iz6w\nDsBDhHMC3o/qFhKy8bvR312j8jbRl+lewi/yvxNWngsI/4Q9c7ynf4vmeY+wq2sCcCdh19ZH0fO3\n2Jhs2pP4x83SX9FWBOXwT0D+FcGX0fLbJVG/S9TnKzmWz9fJzzoqOyeK+b1o+lcZ9W8mvgu/A9pG\nn9liQqK6IlomlrHcxgNHEra8biRsaX4IPJDRfw3hu/0xYWvy5Oj78MOo/ghCQj8smj4ReDZ6Pj5q\nl7kMrozadM2yDOYSbT1nLIPZJM6wz7Ic5mYug6i8qZZD8odSvAyi6ab6Lsws1+9CHcvhSuD5gte1\nhc5YDg/CyqAf8KPo0S9akHfXLqiM+TsAj+boq3+O8p3YdCV4PPCfdcS1NdAler4t0JOwiboLsFcd\nbXdj4y/m7Qm7ZvoC3aPn+2TMPz7PB1/sFUGpV4j5VgTzgOsJSfMzwmb1XML+7745lvWjwFFZykeT\n5bIihJPkHk5Mn0jYffUR4VhS8lG7K/FbhB8d/QnHi6ZFy3EcYZfjZrtAo3Y9CbvEngb2iZbb59Fn\nNISwNfUZ8DKwdyK+57Msg+ujz3fvLK/zG+AXWcoHEnZFtsm3HJLLIJpuiuXwGeHH35zEMtgrmr89\n4buf/C581gTfhUH1+C58r57L4IAcy2A2Ybfz69F3I/ldyLYckt+HHfOthzZ5/UJn1KM8HoTdSbUf\n/KcZH/zZaawIoulirBCb53hPuVaI+VYEw6N5j8qMHziPsP81s3xg1CZb3fmFtCGMJtuvEa+Tr82+\nddRle6/D2biLrjshUR8XTfdN1HUjJPLjcpXXo00PwiCIvG2y1MXx1dHm4BxtDs7VJst36oEc5ffn\n+d/KWpenvDXwUNqvk+/91NHf4dGyOyZX22yPihqSKvmZ2bnufk996urTJhpqu6e7zypGf41sM5pw\ngHou4ZfVZe7+hJkNJyTBZ5LlUZtFhMuOZ7a5FLihDNp8SUj2BdWZ2bWErcbaIcx9gReBowkXDGxD\n2F36HGGFOhH4CWGL++OM8vq0yfc6hdTVJ4ZC2rQnbDkmHUnYcobwyxrCdbS+R9jF2jdRnqyrT5tc\nr1NbXp82hbxOXXWHu/sOAGZ2HnAxYWvpGOBJL/DS2SX/5atH8R5kHBMopK4hbYrdXwPbrCP61Uxi\nZBlhy2RGZnk0vbrS2hTQ3zQ2H0HXmtyj62YR9o2n3aapY3iQzUcMziPsyswsPyKqq2+bd5qoTa7Y\n6qxL/H9kjo58s+D1SKlXZHrU70H2UVYzCSuIb3LUrc5Rl69NsfsrepuM5VI7suwTEge/2XTEWebI\njUpok6/u49r+SByQj6Zzja6b1hRtmjiG6YTRbJuMGCRsWWxWHv3NWlfObQqoyzc6cpNllncdU+qV\nnB71exDOZ8g20qozYQhetrplhBVIfdoUu79it1lb+0+RWDbNCb+aNmQprx1xVmlt8tUtq+2PzUfQ\nfUn20XVTiFYQKbdpyhhqh5BuNmIwX3mltslVR/7RkZuMEsz3qKT7KUjwFGFXwvTMCjNbmK3OzMYC\nHd09834FOdsUu78U2owjHPSOuft6M+sDHJhZDgwxs0crrU0d/XUgHFfB3b9JVLcg7F/+KkvdiYRf\nkmm3acoYzo7KFwMnm9nxhF1M5Cuv1Da56ty9M9l9A5yUo24zOtAsIiKxZqUOQEREyoeSgoiIxJQU\npKqY2QYzm25ms8zsITPbukRxXJ58bTMbZ2bbR89X5W4pki4lBak2q939AHffj3CuwwWFNjSzmiLG\ncTnRzdsB3P04d/+8iP2LNIiSglSzvxEu54GZ/djMXo+2Iu6oTQBmtsrM/tvMZgCHmFkfM3vVzGZE\n87c1sxozu8HMJpvZTDMbFrXtb2YvmtnDZvaWmY22YDjhmlcTzWxiNO9CM9spM0Az+3+Jfv+9qRaM\nVC8lBalKZtaccLnuN81sX+BU4J/c/QDCeRNnRrNuQ7hrX0/C5QX+TDjTuCfhWkSrCZdgWOHufYA+\nwPlm1iVqfyBhq6Ab8O3oNW4iXAn3e+7+vTwxHkO4VHhfwnkcvczsu8VaBiLZ6DwFqTatzaz2fIi/\nEa6wO5RwVdvJZgbh0gm1t1jcQLj/BMDewIfuPhnAo1ujRivv/c1scDTfdoSV+Trg9WhMOdHrdiZc\n3K8Qx0SPadF0m6jflwp/uyL1o6Qg1WZ1tDUQs5AJ7nP3q7PMv8bdN9TRpwGXuvuzGf32J5x5XWsD\n9fufM+C/3P2OerQRaRTtPhIJNzcabGY7A5jZjmbWKct8bwO7RmcmEx1PaE647PeFZtYiKt/LzLap\n4zVXEu5Pkc+zwL+YWZuo391rYxRJi7YUpOq5+xwz+xkw3syaEe7KdTHhhj/J+daZ2anAzdFlxFcT\njivcRdgt9Ea01bGMcOvTfEYCz5jZklzHFdx9fHS8Y1K0W2sV8GM27toSKTpd5kJERGLafSQiIjEl\nBRERiSkpiIhITElBRERiSgoiIhJTUhARkZiSgoiIxJQUREQk9v8BO5rBaQBeLNgAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11161e48>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8FNWZ//HPwwUFBTdEoyJCDC6gorKIjkYiLqhR4wT3\niDpRcEVn/M2oWZlMMqMxk3GNiooricZ9Ce5ijIoRUEAQFYIoiAuiIiio4PP745xbFE133773dt3u\n5n7fr1e/btc5dU4/Xd23nq6qU1Xm7oiIiAC0qXQAIiJSPZQUREQkoaQgIiIJJQUREUkoKYiISEJJ\nQUREEkoKUtPM7Foz+3ml46gkM3vEzE6qdByydlBSkKpmZnPNbJmZLTGzT83sBTM73czaALj76e7+\nXxWI62Yz+3Uz+xhlZm5m5+aUnxvLR5XSj7sf7O63NCcWkXpKClILDnP3TsA2wMXABcCNlQ2pecys\nbXz6JjAsp/qkWN5SMYgklBSkZrj7Ynd/EDgGOMnMdkr/Yjezjc3sYTNbaGafxOdd69ub2TNm9uu4\ntbHUzB4ys85mNtbMPjOziWbWPTX/Dmb2hJl9bGZvmNnRsXw4cALwH/X9xPItzeye+PpvmdnIVF+j\nzOxuM7vdzD4DTo5VE4H1zKx3nK830D6W17ct5X2dGp+3MbOfmdnbZvahmd1qZhvGuu5xC+THZvYO\n8HSZPhpZiygpSM1x95eA+cA+OVVtgJsIWxTdgGXAVTnzHAucCGwFbAtMiG02AWYCvwQws/WBJ4A/\nApvFdn8ws17uPhoYC/zW3Tu6+2Fxd9ZDwNTY92DgPDM7KPXaRwB3AxvF9vVuY9XWwklxurHvq97J\n8fE94NtAxzzz7gvsCByESA4lBalVCwgr8oS7L3L3e9z9C3dfAvyGsAJMu8nd/+Hui4FHgH+4+5Pu\nvgK4C9gtzvd9YK673+TuK9z9FeAe4KgC8fQHurj7r9z9K3efA1xPSCb1Jrj7/e7+jbsvS5XfDhxn\nZu3i/Lc34X3VOwH4vbvPcfelwEXAsTm7ika5++c5MYgAoH2KUqu2Aj5OF5jZesD/AUOAjWNxJzOr\nc/eVcfqDVJNleaY7xufbAHuY2aep+ras+Sue1Pxb5sxfB/wtNT0vX0N3f8fMZgP/Dcxy93lm1tj3\nVW9L4O3U9Nsx7s0bikMElBSkBplZf0JSeA7YI1V1PrA9sIe7v29muwKvALZmLw2aB/zV3Q8oUJ97\neeF5wFvu3rNIn8UuSXwrMAY4JU9dY97XAkKCqtcNWEFIfvXHIXRpZClIu4+kZpjZBmb2feAO4HZ3\nfzVnlk6EX/ufmtkmxOMDTfQwsJ2ZnWhm7eKjv5ntGOs/IOyzr/cSsMTMLjCzDmZWFw+E9y/x9e4E\nDgT+nKeuMe/rT8C/mlkPM+tI2Pq4M+4eE2mQkoLUgofMbAnh1/hPgd+T/xf1ZUAH4CPgReDRpr5g\n3Hd/IGEf/wLgfeASYN04y41Ar3juxP1xN873gV2Bt2IMNwAblvh6y+KxjXz7+RvzvsYQdnE9G+NY\nDpxTSgwiAKab7IjUNjN7FrjB3W+tdCxS+7SlIFLD4kHobxO2CkSaTUlBpEaZ2WaE3Vp/JRx0F2k2\n7T4SEZGEthRERCShpCAiIomaO3lt00039e7du1c6DBGRmjJ58uSP3L1LQ/PVXFLo3r07kyZNqnQY\nIiI1xczebngu7T4SEZEUJQUREUkoKYiISKLmjimISG35+uuvmT9/PsuXL690KK1C+/bt6dq1K+3a\ntWtSeyUFEcnU/Pnz6dSpE927dyd9nwgpP3dn0aJFzJ8/nx49ejSpj8x2H5nZmHiP2OkF6s3MrjCz\n2WY2zcx2zyoWEamc5cuX07lzZyWEFmBmdO7cuVlbZVkeU7iZcKeoQg4GesbHcOCaDGMRkQpSQmg5\nzV3WmSUFd3+WnNsl5jgCuNWDF4GNzGyLrOIRkdbLzDj//POT6d/97neMGjWqcgFVsUoeU9iK1e8V\nOz+WvZc7o5kNJ2xN0K1bt1A4KnXvklGLU89z7mlSqC5dXmp/TWlTan8t1abU/qrtvSru8rQptb9y\nv9cFryRPu1+xgHKae/GheV8HgC13A2Ddddfl3rvu4KJTDmXTTTZmDel2sU3R8lLblNpfU9qk6lau\nXEnd1v1WlX/6DowaGJ7nfkYNqIkhqe4+2t37uXu/Ll0aPEtbRGQ1bdu2ZfgJ/8z/jR67Rt3cuXPZ\n76jh7LL/0Qw+egTvvPMOACeffDIjf/5b9jr8ZL6952Hcfffdefv+YOEijjzySPr06UOfPn14YeJU\nAH7wL/9G3yHH07t3b0aPHp3M37HnP/HTi6+iT58+DBw4kA8++GBVPz8+nz77HxP6eeEFAG6/5y8M\nOPREdj3gWEaMGMHKlStDPx07cv5//p4++x/DhMnTyrasKpkU3gW2Tk13jWUiImV31slHM/a+R1j8\n2ZLVys855xxOOuowpj35Z07454MZOXJkUvfeBx/x3P1jePiWy7nwwgvz9jvy579l3333ZerUqbz8\n8sv03j7cunvM//6SyY/+kUmTJnHFFVewaNEiAD7/YhkDd9+ZqVOn8t3vfpfrr79+VT8Dd2fqk3eG\nfnr3ZubMmdz54OM8f/8YpjxxB3V1dYwdGxLb559/zh677cTUJ+9k7wG75Y2tKSqZFB4EhsVRSAOB\nxe6+xq4jEZFy2KBTR4YN/T5X3HjHauUTJkzg+CPDmJgTf3gozz236n5FPxgyiDZt2tBru28nv+hz\nPf38RM444wwA6urq2HCDTgBcMeZP9Nn/GAYOHMi8efOYNWsWAOus047vH/BdAPr27cvcuXNX9TPs\nqFX9bLghTz31FJNfnUn/Q8KWwlNPPcWcOXOSeX546OByLJrVZHZMwcz+BAwCNjWz+cAvgXYA7n4t\nMA44BJgNfEH+G7GLiJTNeacez+5DjueUU0eUNP+666yTPK+/IdlPf/pT/vKXv8DXy5jyxB152z3z\nwiSe/NtLTHjoZtbbdi8GDRoUh4muS7u2bZMRQnV1daxYsaLg67s7Jx11GP9z0TmhIHVMoX379tTV\n1ZX0Phojy9FHx7n7Fu7ezt27uvuN7n5tTAjEUUdnufu27r6zu+vSpyKSqU023pCjDzuAG2+8MSnb\na6+9uOOBxwAYe+8j7LPPPkX7+M1vfsOUKVOShDB47wFcc00YUb9y5UoWf7aExUuWsvGGnVivQwde\nf/11XnzxxQZjG7z3AK659a5V/SxezODBg7n74Sf58KMwkPPjjz/m7bdLuthpk9XEgWYRkXI5f8SJ\nfPTRR8n0lVdeyU13Psgu+x/Nbff8hcsvv7xR/V3+q39n/Pjx7LzzzvTt25fX3pzDkEF7sWLlSnbc\n95+58MILGThwYGn9vDCJnQcfHfp57TV69erFr//jTA487kx22f9oDjjgAN57L9u97LrMhYi0qNWG\nkELzh2mWYOnSpUmbzbt05osvvkjqttlmG56+a9XoILYMw95vvvnm1V5n6dKlefvevEtnHnjggTVi\ne+T2q/LGvXTW88nk0KFDGTp0KCx4JfRz0/+t0eaYIw7imCMOWqM8/Z7KSVsKIiKSUFIQEZGEkoKI\niCSUFEREJKGkICIiCSUFERFJ1OyQ1O7L/5g8n1ugPLdORFqn999/n/POuJCJU19jow06snnXHlx2\n2WVst912lQ6t6tRsUhCRGpV7We5m91f80tDuzpFHHslJR+zHHddcDMDUhW344IMPWiwpuDvuXhO7\nZmohRhGRJhs/fjzt2rXj9GFDk7I+ffqw2267MXjwYHbffXd2Hnw0Dzz2DBAupb3jjjty2mmn0ft7\nQznwuDNZtizc3nL27Nnsv//+9OnTh90POp5/zA23hLn00kvp378/u+yyC7/8Xbjkxdx5C9h+nyMZ\nNmwYO+20E/PmzaMWKCmIyFpt+vTp9O3bd43y9u3bc9999/Hyyy8z/q7rOP9Xv08uejdr1izOOuss\nZoy/m4026MQ9454C4IQTTuCss85i6tSpvPDATWyx+aY8/tcJzJo1i5deeokpU6YwedpMnn1xcujn\nrXc488wzmTFjBttss03Lvelm0O4jEWmV3J2f/OQnPPvss7RZ+SXvvr+QDxYugo02oUePHuy6666w\n4BX67rIjc+e9x5IlS3j33Xc58sgjAWjffl0AHv/rizz++LPstlu4BMXSxYuY9dY8um21Bdt03aKk\n6x5VEyUFEVmr9e7dO941bdhq5WPHjmXhwoVMnjyZdgun032PQ1n+5VdAuH1nvbq6NixbXvzy1hdd\ndBEjRsTLccfrEc2dt4D11+tQ3jfTArT7SETWavvttx9ffvklo2+/JymbNm0ab7/9Npttthnt2rVj\n/PMTeXt+8auPdurUia5du3L//fcD8OWXX/HFsmUcNGhPxowZk1ww7933PkwudV2LtKWQgbVxWGyh\nIcAi1c7MuO+++zhvxMlc8odbaL/uOnT/zg6MGjWKkSNHsvPOO9OvVw92+E73Bvu67bbbGDFiBL/4\nxS9ox9fcdd1vOXDfPZn54dfsueeeAHRcx7j9yl9ncgOclqCkICItK3cIaQtcOnvLLbfkz9ddskZf\nEyZMyBNDd6ZPn55M/r/TV+126tmzJ08//fQabc4991zOPffcNcqnP31Xo+KsBtp9JCIiCSUFERFJ\nKCmIiEhCSUFEMld/UphkLyzrpi9vHWhuhSo9kmhtHJ0lhbVv355Fny+h8/ptMbNKh7NWc3cWLVpE\n+8VzmtyHkkIztNTKVVeElVrWtWtX5j/1CAs3/DZgsHjm6jN8+uGq5+m6dHmxuua2KbW/Gom7ffv2\ndH35EppKSUFEMtWuXTt6vHjRqoLcIamjBuavG5VzeYhCdc1tU2p/tRT3V5/SVDqmICIiCSUFERFJ\nKCmIiEhCSUFERBI60CxSBpUe5itSLkoKLUwrj+qwNg7nrfQQaVk7aPeRiIgklBRERCSRaVIwsyFm\n9oaZzTazC/PUb2hmD5nZVDObYWanZBmPiIgUl1lSMLM64GrgYKAXcJyZ9cqZ7SzgNXfvAwwC/tfM\n1skqJhERKS7LA80DgNnuPgfAzO4AjgBeS83jQCcLV8nqCHwMFL5Dtkgrp4O8krUsdx9tBcxLTc+P\nZWlXATsCC4BXgXPd/ZsMYxIRkSIqPST1IGAKsB+wLfCEmf3N3T9Lz2Rmw4HhAN26dcskEP0Ca9oy\nqIahnfrsqp8+o9qR5ZbCu8DWqemusSztFOBeD2YDbwE75Hbk7qPdvZ+79+vSpUtmAYuItHZZJoWJ\nQE8z6xEPHh8LPJgzzzvAYAAz2xzYHmj63SFERKRZMtt95O4rzOxs4DGgDhjj7jPM7PRYfy3wX8DN\nZvYqYMAF7v5RVjGJiEhxmR5TcPdxwLicsmtTzxcAB2YZg4iIlK7SB5qrXiWuJ5P1a4k0pBq+j9UQ\nQ2uky1yIiEiiVW0paFiclELfE2nNtKUgIiIJJQUREUkoKYiISEJJQUREEkoKIiKSUFIQEZFEqxqS\nKtVvbRwOWug9tab3KrVDWwoiIpJQUhARkYSSgoiIJHRMQdZq2sctpdD3ZBVtKYiISEJbCpIZ/fqq\nftXwGVVDDLKKthRERCShpCAiIgklBRERSSgpiIhIQklBREQSSgoiIpLQkFSpGZUeuph+/UrFIJI1\nbSmIiEhCSUFERBIlJwUz62Bm22cZjIiIVFZJScHMDgOmAI/G6V3N7MEsAxMRkZZX6oHmUcAA4BkA\nd59iZj0yiklEZK1U6cESpSh199HX7r44p8zLHYyIiFRWqVsKM8zseKDOzHoCI4EXsgtLmqsWfpFI\nYeX8/FrTUNrW9F6zUuqWwjlAb+BL4E/AZ8B5WQUlIiKVUdKWgrt/Afw0PkREZC1VUlIws4dY8xjC\nYmAScJ27Ly/QbghwOVAH3ODuF+eZZxBwGdAO+Mjd9y05ehERKatSdx/NAZYC18fHZ8ASYLs4vQYz\nqwOuBg4GegHHmVmvnHk2Av4AHO7uvYGjmvAeRESkTEo90LyXu/dPTT9kZhPdvb+ZzSjQZgAw293n\nAJjZHcARwGupeY4H7nX3dwDc/cPGhS8iIuVU6pZCRzPrVj8Rn3eMk18VaLMVMC81PT+WpW0HbGxm\nz5jZZDMbVmI8IiKSgVK3FM4HnjOzfwAG9ADONLP1gVua+fp9gcFAB2CCmb3o7m+mZzKz4cBwgG7d\nuq3RiYi0Li015LrY61RDDFkodfTRuHh+wg6x6I3UweXLCjR7F9g6Nd01lqXNBxa5++fA52b2LNAH\nWC0puPtoYDRAv379dNKciEhGGnOV1J7A9oSV9tEl7OqZCPQ0sx5mtg5wLJB7vaQHgL3NrK2ZrQfs\nAcxsREwiIlJGpQ5J/SUwiDCKaBxhRNFzwK2F2rj7CjM7G3iMMCR1jLvPMLPTY/217j7TzB4FpgHf\nEIatTm/G+xERkWYo9ZjCUMIWwivufoqZbQ7c3lAjdx9HSCLpsmtzpi8FLi0xDhERyVCpu4+Wufs3\nwAoz2wD4kNWPF4iIyFqg1C2FSfFEs+uByYQT2SZkFpWIiFREqaOPzoxPr43HADZw92nZhSUi0npU\n09VdS73z2lP1z919rrtPS5eJiMjaoeiWgpm1B9YDNjWzjQknrgFswJpnJ4uISI1raPfRCMJ9E7Yk\nHEuoTwqfAVdlGJeIiFRA0aTg7pcDl5vZOe5+ZQvFJCIiFVLqgeYrzWwvoHu6jbsXPHlNRERqT6ln\nNN8GbAtMAVbGYqfIGc0iIlJ7Sj1PoR/Qy911MToRkSKqaXhpU5R6RvN04FtZBiIiIpVX6pbCpsBr\nZvYS8GV9obsfnklUIiJSEaUmhVFZBiEiItWh1NFHfzWzbYCe7v5kvPdBXbahiYhISyv1MhenAXcD\n18WirYD7swpKREQqo9QDzWcB/0Q4kxl3nwVsllVQIiJSGaUmhS/d/av6CTNrSzhPQURE1iKlJoW/\nmtlPgA5mdgBwF/BQdmGJiEgllJoULgQWAq8SLpI3DvhZVkGJiEhllDoktQMwxt2vBzCzulj2RVaB\niYhIyyt1S+EpQhKo1wF4svzhiIhIJZWaFNq7+9L6ifh8vWxCEhGRSik1KXxuZrvXT5hZX2BZNiGJ\niEillHpM4VzgLjNbQLj72reAYzKLSkSkzNJXL51buTDKKov31GBSMLM2wDrADsD2sfgNd/+6TDGI\niEiVaDApuPs3Zna1u+9GuIS2iIispUoefWRmPzQzyzQaERGpqFKTwgjCWcxfmdlnZrbEzD7LMC4R\nEamAUi+d3SnrQEREpPJKvXS2mdmPzOzncXprMxuQbWgiItLSSt199AdgT+D4OL0UuDqTiEREpGJK\nPU9hD3ff3cxeAXD3T8xsnQzjEhGRCih1S+HreBE8BzCzLsA3mUUlIiIVUWpSuAK4D9jMzH4DPAf8\nd0ONzGyImb1hZrPN7MIi8/U3sxVmNrTEeEREJAOljj4aa2aTgcGEy1z8wN1nFmsTtyyuBg4A5gMT\nzexBd38tz3yXAI83IX4RESmjoknBzNoDpwPfIdxg5zp3X1Fi3wOA2e4+J/Z1B3AE8FrOfOcA9wD9\nGxG3iIhkoKHdR7cA/QgJ4WDgd43oeytgXmp6fixLmNlWwJHANY3oV0REMtLQ7qNe7r4zgJndCLxU\n5te/DLggXl+p4ExmNhwYDtCtW7cyhyAiIvUaSgrJlVDdfUUjL330LrB1arprLEvrB9wR+90UOMTM\nVrj7/emZ3H00MBqgX79+3pggRESkdA0lhT6paxwZ0CFOG+DuvkGRthOBnmbWg5AMjmXVyW8QOuhR\n/9zMbgYezk0IIiLScoomBXeva2rHccvibOAxoA4Y4+4zzOz0WH9tU/sWEZFslHpGc5O4+zhgXE5Z\n3mTg7idnGYuIiDSs1JPXRESkFVBSEBGRhJKCiIgklBRERCShpCAiIgklBRERSSgpiIhIQklBREQS\nSgoiIpJQUhARkYSSgoiIJJQUREQkoaQgIiKJTK+SKiIiLa/78j8mz+c2sq22FEREJKGkICIiCSUF\nERFJKCmIiEhCSUFERBJKCiIiklBSEBGRhJKCiIgklBRERCShpCAiIgklBRERSSgpiIhIQklBREQS\nSgoiIpJQUhARkYSSgoiIJJQUREQkoaQgIiKJTJOCmQ0xszfMbLaZXZin/gQzm2Zmr5rZC2bWJ8t4\nRESkuMySgpnVAVcDBwO9gOPMrFfObG8B+7r7zsB/AaOzikdERBqW5ZbCAGC2u89x96+AO4Aj0jO4\n+wvu/kmcfBHommE8IiLSgCyTwlbAvNT0/FhWyI+BRzKMR0REGtC20gEAmNn3CElh7wL1w4HhAN26\ndWvByEREWpcstxTeBbZOTXeNZasxs12AG4Aj3H1Rvo7cfbS793P3fl26dMkkWBERyTYpTAR6mlkP\nM1sHOBZ4MD2DmXUD7gVOdPc3M4xFRERKkNnuI3dfYWZnA48BdcAYd59hZqfH+muBXwCdgT+YGcAK\nd++XVUwiIlJcpscU3H0cMC6n7NrU81OBU7OMQURESqczmkVEJKGkICIiCSUFERFJKCmIiEhCSUFE\nRBJKCiIiklBSEBGRhJKCiIgklBRERCShpCAiIgklBRERSSgpiIhIQklBREQSSgoiIpJQUhARkYSS\ngoiIJJQUREQkoaQgIiIJJQUREUkoKYiISEJJQUREEkoKIiKSUFIQEZGEkoKIiCSUFEREJKGkICIi\nCSUFERFJKCmIiEhCSUFERBJKCiIiklBSEBGRhJKCiIgklBRERCSRaVIwsyFm9oaZzTazC/PUm5ld\nEeunmdnuWcYjIiLFZZYUzKwOuBo4GOgFHGdmvXJmOxjoGR/DgWuyikdERBqW5ZbCAGC2u89x96+A\nO4AjcuY5ArjVgxeBjcxsiwxjEhGRIszds+nYbCgwxN1PjdMnAnu4+9mpeR4GLnb35+L0U8AF7j4p\np6/hhC0JgO2BN+LzTYGPCoTQlLpqblMNMbSmuFvTe62GGFpT3JV6r9u4e5cC863i7pk8gKHADanp\nE4GrcuZ5GNg7Nf0U0K8RrzGpnHXV3KYaYmhNcbem91oNMbSmuKvhvRZ7ZLn76F1g69R011jW2HlE\nRKSFZJkUJgI9zayHma0DHAs8mDPPg8CwOAppILDY3d/LMCYRESmibVYdu/sKMzsbeAyoA8a4+wwz\nOz3WXwuMAw4BZgNfAKc08mVGl7mumttUQwytKe7W9F6rIYbWFHc1vNeCMjvQLCIitUdnNIuISEJJ\nQUREEkoKIiKSUFIQEZFEZqOPsmJmmwNbxcl33f2D5rQpVNeUNuXurynvtTUxsx0Il0pJlhFhmLPn\nK3f3mbXYphpiaE1xV3Ob5tRRopoZfWRmuwLXAhuy6gS3rsCnwJnu/nLuShTYokiby4Dz8tR9FZ+3\na0SbcvdXrM2ZhOG7rfqfGjgcOI5wTa35qWU0Mj6/Iqf8WOA9wneiltpUQwytKe5qbtOcujvc/WJK\nUEtJYQowwt3/nlM+ELgF+IQ1V65bA2e4+6152owHBuXp703CcunZiDbl7q9Ym3uBD8n+n7Aa/gmK\ntdkK2NLdv85ZRoWW3TrAUmD9GmtTDTG0priruU1z6mbkvlZBjb0uRqUewKwidV8SLraXWz4PmFqg\nzVeFXodwddeS25S7v4baAO3ylK9TpO7NfMuvgTbl7i+LNtvkqZsN/CNP+Tbxe1JrbaohhtYUdzW3\naU7dG7nlhR61dEzhETP7C3ArYWUPYUtgGLDMc35tR/cBPzazY/K0mVmgv7aE+/80pk25+yvW5nNg\nS+DtnPe6BWFXS766NoDlWT7F2pS7v3K3+QB4ysxmsWoZdQPWAzCzR3LKvwP8qgbbVEMMrSnuam7T\nnLrk6tQNqZndRwBmdjD59y8PAbYl/8p6JbAgt427jyvSX6F93wXblLu/Qm2Ab4CrCFsTuR/8TYRL\nheTW7RKfT21Em3L3V+42ZwOPE+7bkV5GE+OyW6Pc3VeaWZtaa1MNMbSmuKu5TXPqKFFNJYViiq2s\nKxdVNlrqn7Aa/gmKtWncUhORkpS6n6maH8DwcrYpVNeUNuXurynvtbU9gIcbU16rbaohhtYUdzW3\naU7dGvOWOmM1PwijkgrVFVq5FmuTt64pbcrdXwNtKv4FrJI2WzSmvFbbVEMMrSnuam7TnLrcR03t\nPmrKiRlm9gvgeeDv7r40VT4E+Bhwd59oZr0IxyZe95xdTmZ2q7sPy9P33oRdG9OBxcBMd//MzDoA\nFwK7Ax2Ake7+Wp729feZWODuT5rZ8cBewEzgCcJY/K0Jx0XeBP7o7p8Vea9beIH7URSqa0qbcvdX\n7jZZM7PN3P3DRrbp7O6LsoqppTVlGcR2rX45VP0yKDV7VPoBXABMIaxsfxQfF9aXFWgzkjAG/n5g\nLnBEqm4B8CIwCfgf4Gng58Aiwkr5wfh4iDD+90Hgk1T70+Jr/5KQdD4A2sa60YQT0/YGlgPLgL8R\nTjzrkupjLHBnfI3bCKOlTgT+Tkh4PwNeAK4GfgO8RjivoZKfw2ZNaNM5gzg2BC4GXick9/rP7WJg\nowJtHo+f9W3A8anybxES+9VAZ2AU8CrwZ2BHYJPUo3P8Lg0FNknFciMwDfgj4byKTWNdP2AOYQji\nl8ANwLZ5YutHOG/ldsIPgScIPzQmEn4o/AqYEcsWxu/uGU1YBhsA/8hdBrHuJuCaPMvh/pzlUL8M\nNgaG5nwmWS2HyYT/q9xlcLK+C01fDnmXTSVXMI1cCbxJ4fH0ec9hiB/mvPi8OyEBnBunlxFu/rMe\n8BmwQSx/hXAi3CBg3/j3vfh8VqrvicQVPLA+sDxV93Lq+SuE5HFg/LIsBB4FTgKmx3naEpJKXSru\nafH5esAz8Xk3wkicllgRVMM/QbEVwWOEHwrfyvmHvhyYQNhKSz/6xs/8YuAHhCR/D7Bu/DzmEX5k\nTIv9bg2cQzjQ/VbO4+v4fubE170B+DVhPPi/Eu4gWB/TeKB/fD4PeB94B3gpzrtlrHsJOJhwlvY8\n4soWGBw/55MJJ+79G+HHS0/CD4en8yyDCwosg90J90FfmrsMYtvF8T3nLodvCEOhc5fBW8CXqdfO\ncjk8T/jiL5HnAAAIdElEQVQe5S6DWwjfsdb+XSi2HC4AHl8bk8LrFD4xY3n8AHMfy3O+tB3jh/57\n4Iv0ijv1vA3hn+0JYNdYVv+BTyX8OupMasUf6z4BTkmtaPvF5zMIo2Xq52tH2C30J2AFIaltDCxh\n1Yp2OmE3FrFuUqr9kiIffDlXBNXwT1BsRbCowPdkJWEFNj7P45uceX8aX2Na/ecJvJMzz7vxO7Nz\nquwtVk/8U3LaLGfVVuOLqfKXgVfj832AP8RlMj79unliWJYzPTH+faP+e5JnOTghYeQugyXp/lLL\noDOr/0+k4zmf8MNptWVQ/55aYjkQ/vdeybMM2pD6H2/F34WCy6H+u1Kobo15S52x0g/C/v7ZwCOE\nX4+j4wc0m7BC3pWwYko/XgA+zOmnLeF8BgfWq1+gqfoN4wfWFbiLcE7AO7FuLiEbvxX/bhHLO8Yv\n082EX+R/J6w85xD+CfsUeE//Eed5m7Cr6yngesKurffj89dZlWy6kPrHzdNf2VYE1fBPQPEVwedx\n+W2eqt889vl8geXzdfqzjmUnx5jfjtO/zql/NfVd+D3QKX5m8wmJ6vy4TCxnuT0O7EfY8rqcsKX5\nHnBbTv91hO/2h4StyaPi9+EHsX5fQkLfO04fDjwWnz8e2+Uugwtim555lsFM4tZzzjKYQeoM+zzL\nYWbuMojlLbUc0j+UkmUQp1vquzCtWr8LDSyHC4AnS17XljpjNTwIK4OBwA/jY2BckDfWL6ic+bsC\n9xboa1CB8k1ZfSV4KPDfDcS1HtAjPt8A6EPYRN0c2K6Btluy6hfzRoRdMwOA3vH5DjnzP17kgy/3\niqDSK8RiK4JZwCWEpPkJYbN6JmH/94ACy/peYP885WPJc1kRwklyd6emDyfsvnqfcCwp/ajflfgt\nwo+OQYTjRa/E5TiOsMtxjV2gsV0fwi6xR4Ad4nL7NH5GwwhbU58AzwHbp+J7Ms8yuCR+vtvneZ3f\nAr/IUz6EsCuyY7HlkF4GcbollsMnhB9/r6WWwXZx/i6E7376u/BJC3wXjmjEd+F7jVwGuxZYBjMI\nu51fit+N9Hch33JIfx82KbYeWu31S51Rj+p4EHYn1X/wH+d88CdlsSKI0+VYIbYt8J4KrRCLrQhG\nxnn3z40fOJWw/zW3fEhsk6/utFLaEEaT7dSM1ynWZscG6vK915Gs2kXXm5CoD4nTA1J1vQiJ/JBC\n5Y1oszNhEETRNnnqkvgaaLNHgTZ7FGqT5zt1W4HyW4v8b+WtK1LeAbgr69cp9n4a6G+fuOwOLNQ2\n36OmhqRKcWZ2irvf1Ji6xrSJQ223dffp5eivmW3GEg5QzyT8sjrX3R8ws5GEJPhoujy2mUe47Hhu\nm3OAS6ugzeeEZF9SnZn9krDVWD+EeQDwDHAA4YKBHQm7S58grFDHAz8mbHF/mFPemDbFXqeUusbE\nUEqbLoQtx7T9CFvOEH5ZQ7iO1vcIu1gHpMrTdY1pU+h16ssb06aU12mobh933xjAzE4FziJsLR0I\nPOQlXjq74r989Sjfg5xjAqXUNaVNuftrYpuviL+aSY0sI2yZTM0tj9PLaq1NCf29wpoj6DpQeHTd\ndMK+8azbtHQMt7PmiMFZhF2ZueX7xrrGtnmzhdoUiq3ButT/R+7oyFdLXo9UekWmR+Me5B9lNY2w\ngvimQN2yAnXF2pS7v7K3yVku9SPLPiJ18JvVR5zljtyohTbF6j6s74/UAfk4XWh03Sst0aaFY5hC\nGM222ohBwpbFGuXxb966am5TQl2x0ZGrLbOi65hKr+T0aNyDcD5DvpFW3QlD8PLVLSSsQBrTptz9\nlbvNl/X/FKll05bwq2llnvL6EWe11qZY3cL6/lhzBN3n5B9dN4m4gsi4TUvGUD+EdI0Rg8XKa7VN\noTqKj45cbZRgsUct3U9BgocJuxKm5FaY2dx8dWb2INDN3XPvV1CwTbn7y6DNOMJB74S7rzCz/sBu\nueXAMDO7t9baNNBfV8JxFdz9m1R1O8L+5S/y1B1O+CWZdZuWjOGkWD4fOMrMDiXsYqJYea22KVTn\n7t3J7xvgyAJ1a9CBZhERSbSpdAAiIlI9lBRERCShpCCtipmtNLMpZjbdzO4ys/UqFMd56dc2s3Fm\ntlF8vrRwS5FsKSlIa7PM3Xd1950I5zqcXmpDM6srYxznEW/eDuDuh7j7p2XsX6RJlBSkNfsb4XIe\nmNmPzOyluBVxXX0CMLOlZva/ZjYV2NPM+pvZC2Y2Nc7fyczqzOxSM5toZtPMbERsO8jMnjGzu83s\ndTMba8FIwjWvxpvZ+DjvXDPbNDdAM/v3VL//2VILRlovJQVplcysLeFy3a+a2Y7AMcA/ufuuhPMm\nToizrk+4a18fwuUF7iScadyHcC2iZYRLMCx29/5Af+A0M+sR2+9G2CroBXw7vsYVhCvhfs/dv1ck\nxgMJlwofQDiPo6+Zfbdcy0AkH52nIK1NBzOrPx/ib4Qr7A4nXNV2oplBuHRC/S0WVxLuPwGwPfCe\nu08E8Hhr1Ljy3sXMhsb5NiSszL8CXopjyomv251wcb9SHBgfr8TpjrHfZ0t/uyKNo6Qgrc2yuDWQ\nsJAJbnH3i/LMv9zdVzbQpwHnuPtjOf0OIpx5XW8ljfufM+B/3P26RrQRaRbtPhIJNzcaamabAZjZ\nJma2TZ753gC2iGcmE48ntCVc9vsMM2sXy7czs/UbeM0lhPtTFPMY8C9m1jH2u1V9jCJZ0ZaCtHru\n/pqZ/Qx43MzaEO7KdRbhhj/p+b4ys2OAK+NlxJcRjivcQNgt9HLc6lhIuPVpMaOBR81sQaHjCu7+\neDzeMSHu1loK/IhVu7ZEyk6XuRARkYR2H4mISEJJQUREEkoKIiKSUFIQEZGEkoKIiCSUFEREJKGk\nICIiCSUFERFJ/H+i6zd5Cufx2QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11898470>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYFNW57/HvyzAKiqABNCDXbfBGEMQBb2RrJBI0iehR\nozEquqPIDkpIPOdoNFETNZqdZB+vEdEY76K4hRDFqBEMUUARw1VEEJCbCqKiICDge/5YNUXRdPd0\nD9Pd0zO/z/P0M11r1Vq1ek11vV2rbubuiIiIADQpdQNERKT+UFAQEZGYgoKIiMQUFEREJKagICIi\nMQUFERGJKSiIAGb2rJkN3sU6jjezFbtQfqSZ/XJX2iCyqxQUpEExs35mNsXM1pnZR2b2ipn1qamc\nu5/k7g8Uo40AZnaBmb2c0oah7n59sdogkk7TUjdApK6YWUvgaeA/gSeA3YBvAJtL2S6RcqI9BWlI\nDgRw98fcfZu7b3T35919dvTL/BUzuyPai3jLzPpXFzSzl8zsosT0xWY238w+M7M3zax3lO5m9rXE\nfPeb2Q3pGmNmV5rZO4k6TovSDwFGAkeb2Xoz+yRdXVEbFkV7POPNrH0iz81sqJktNLNPzOxOM7O6\n6khpvBQUpCF5G9hmZg+Y2Ulmtk9K/pHAO0Ab4FrgKTP7SmolZnYmcB1wPtASOAVYW4v2vEPYU2kF\n/Ap42Mzauft8YCgw1d1buPveadpwAnAT8H2gHfAuMDpltu8CfYDDovm+XYs2iuxAQUEaDHf/FOgH\nOHAPsCb6hb1fNMtq4BZ33+LujwMLgO+kqeoi4L/cfboHi9z93Vq0Z4y7r3L3L6PlLQT65lj8h8B9\n7v6Gu28Gfk7Ys+iSmOdmd//E3ZcBk4Be+bZRJJWCgjQo7j7f3S9w9w7A14H2wC1R9krf8Q6Q70b5\nqToSfuXvEjM738xmRsM7n0TtaZNj8fZR+wBw9/WEvZX9E/O8n3j/OdBiF5ssoqAgDZe7vwXcT9gY\nA+yfMu7eCViVpuhy4IAM1X4O7JGY/mq6mcysM2Fv5VKgdTRENBeoXn5NtydeBXRO1Lcn0BpYWUM5\nkV2ioCANhpkdbGaXm1mHaLoj8ANgWjTLvsBwM6uMjhscAkxIU9W9wP82syMs+Fq0kQeYCZxjZhVm\nNhA4LkNz9iRs+NdEbbmQ7cEJ4AOgg5ntlqH8Y8CFZtbLzHYHfgO86u5La+oHkV2hoCANyWeEg8mv\nmtkGQjCYC1we5b8KdAM+BG4EznD3nQ4gu/uYKP/RqM5xQPUB6Z8A3wM+IYz7j0vXEHd/E/gDMJUQ\nAHoAryRmmQjMA943sw/TlP878Evgf4D3CHsuZ+fQByK7xPSQHWkMzOwC4CJ371fqtojUZ9pTEBGR\nmIKCiIjENHwkIiIx7SmIiEhMQUFERGJld5fUNm3aeJcuXUrdDBGRsjJjxowP3b1tTfOVXVDo0qUL\nr7/+eqmbISJSVswsp/t3afhIRERiCgoiIhJTUBARkZiCgoiIxBQUREQkVrCgYGb3mdlqM5ubId/M\n7LboGbSzq5+BKyIipVPIPYX7gYFZ8k8i3Ma4GzAEuKuAbRERkRwULCi4+2TgoyyzDAIejJ6BOw3Y\n28zaFao9IiJSs1JevLY/4bGH1VZEae+lzmhmQwh7E3Tq1CkkXtdq+wzXrduxQKa8ZHq2vIZSXzGX\n1VDqK+ayGkp9xVxWQ6mvmMtKra8GZXGg2d1HuXuVu1e1bVvjVdoiIlJLpQwKK4GOiekO6KHkIiIl\nVcqgMB44PzoL6ShgnbvvNHQkIiLFU7BjCmb2GHA80MbMVgDXApUA7j4SmACcDCwCPgcuLFRbREQk\nNwULCu7+gxryHRhWqOWLiEj+yuJAs4iIFIeCgoiIxBQUREQkVnZPXhMRkey6bHo0fr80z7LaUxAR\nkZiCgoiIxBQUREQkpqAgIiIxBQUREYkpKIiISExBQUREYgoKIiISU1AQEZGYgoKIiMQUFEREJKZ7\nH4mI1GO7ch+j2tCegoiIxLSnICJShpJ7EFB3exHaUxARkZiCgoiIxBQUREQkpmMKIrLLin2GjBSO\ngoKISBEU6sBwXdPwkYiIxBQUREQkpqAgIiIxBQUREYkpKIiISExBQUREYjolVUSkxOrTdR4KCiJZ\n1Kcvq0gxKCiIFJGCzHbqi/qpoMcUzGygmS0ws0VmdmWa/FZm9lczm2Vm88zswkK2R0REsivYnoKZ\nVQB3AicCK4DpZjbe3d9MzDYMeNPdv2dmbYEFZvaIu39RqHaJ1FcN8ZdzudzaQbYr5PBRX2CRuy8G\nMLPRwCAgGRQc2MvMDGgBfARsLWCbRHaiDdd2DTEwSX4KOXy0P7A8Mb0iSku6AzgEWAXMAX7i7l8W\nsE0iIpJFqa9T+DYwE2gP9ALuMLOWqTOZ2RAze93MXl+zZk2x2ygi0mgUcvhoJdAxMd0hSku6ELjZ\n3R1YZGZLgIOB15IzufsoYBRAVVWVF6zFInnQUIs0RIUMCtOBbmbWlRAMzgbOSZlnGdAf+KeZ7Qcc\nBCwuYJtEpBFSAM9dwYKCu281s0uB54AK4D53n2dmQ6P8kcD1wP1mNgcw4Ap3/7BQbWqotMKLSF0p\n6MVr7j4BmJCSNjLxfhUwoJBtEBGR3JX6QLOIiNQjCgoiIhLTvY92gS56qn8a4vEVrWdSTAoKIlI2\nFCALT8NHIiISU1AQEZGYgoKIiMR0TKEeKeZ4aWMbm21sn1dKoyGsZ9pTEBGRmPYUSqAhnjYpIg2D\ngoLkRQFNpGHT8JGIiMQUFEREJKbhI5Ey1lCH84r1uRrC2UJ1TXsKIiISa5B7Cg3111Ox1If+0y84\nyVd9WG8bAu0piIhITEFBRERiDXL4SEQ0nCK1oz0FERGJKSiIiEhMQUFERGJle0yhNuOlpbo1dSGX\nIyJSl7SnICIiMQUFERGJ5Tx8ZGbNgU7uvqCA7ZEGKNtQmobZyof+V41DTnsKZvY9YCbwt2i6l5mN\nL2TDRESk+HLdU7gO6Au8BODuM82sa4HaJGVI9yoSaRhyPaawxd3XpaR5XTdGRERKK9c9hXlmdg5Q\nYWbdgOHAlMI1S1JpPHc79YVI4eS6p3AZ0B3YDDwGfAqMKFSjRESkNHLaU3D3z4Gro5eIiDRQOQUF\nM/srOx9DWAe8Dtzt7psylBsI3ApUAPe6+81p5jkeuAWoBD509+Nybr2IiNSpXI8pLAbaEoaOAM4C\nPgMOBO4BzkstYGYVwJ3AicAKYLqZjXf3NxPz7A38ERjo7svMbN/afhARkbrUWK+vyTUoHOPufRLT\nfzWz6e7ex8zmZSjTF1jk7osBzGw0MAh4MzHPOcBT7r4MwN1X59f84mjIK4A0Pjp9WLLJ9UBzCzPr\nVD0RvW8RTX6Rocz+wPLE9IooLelAYB8ze8nMZpjZ+Tm2R0RECiDXPYXLgZfN7B3AgK7Aj81sT+CB\nXVz+EUB/oDkw1cymufvbyZnMbAgwBKBTp047VSIiInUj17OPJkTXJxwcJS1IHFy+JUOxlUDHxHSH\nKC1pBbDW3TcAG8xsMtAT2CEouPsoYBRAVVWVLprLg4a+RCQf+dwltRtwEGGj/f0chnqmA93MrKuZ\n7QacDaTeL+kvQD8za2pmewBHAvPzaJOIiNShXE9JvRY4HjgUmACcBLwMPJipjLtvNbNLgecIp6Te\n5+7zzGxolD/S3eeb2d+A2cCXhNNW5+7C5xERkV2Q6zGFMwh7CP9y9wvNbD/g4ZoKufsEQhBJpo1M\nmf4d8Lsc2yFS7+nsHilnuQ4fbXT3L4GtZtYSWM2OxwtERKQByHVP4fXoQrN7gBnAemBqwVolIiIl\nkevZRz+O3o6MjgG0dPfZhWuWiIiUQq5PXnux+r27L3X32ck0ERFpGLLuKZhZM2APoI2Z7UO4cA2g\nJTtfnSwiImWupuGjSwjPTWhPOJZQHRQ+Be4oYLtERKQEsgYFd78VuNXMLnP324vUJhERKZFcDzTf\nbmbHAF2SZdw948VrIiJSfnK9ovkh4ABgJrAtSnayXNEsIiLlJ9frFKqAQ929wd6MTjeOExHJ/Yrm\nucBXC9kQEREpvVz3FNoAb5rZa8Dm6kR3P6UgrRIRkZLINShcV8hGiIhI/ZDr2Uf/MLPOQDd3/3v0\n7IOKwjZNRESKLdfbXFwMPAncHSXtD4wrVKNERKQ0cj3QPAw4lnAlM+6+ENi3UI0SEZHSyDUobHb3\nL6onzKwp4ToFERFpQHINCv8ws6uA5mZ2IjAG+GvhmiUiIqWQa1C4ElgDzCHcJG8C8ItCNUpEREoj\n11NSmwP3ufs9AGZWEaV9XqiGiYhI8eW6p/AiIQhUaw78ve6bIyIipZRrUGjm7uurJ6L3exSmSSIi\nUiq5BoUNZta7esLMjgA2FqZJIiJSKrkeU/gJMMbMVhGevvZV4KyCtUpEREqixqBgZk2A3YCDgYOi\n5AXuvqWQDRMRkeKrMSi4+5dmdqe7H064hbaIiDRQOZ99ZGanm5kVtDUiIlJSuQaFSwhXMX9hZp+a\n2Wdm9mkB2yUiIiWQ662z9yp0Q0REpPRyvXW2mdm5ZvbLaLqjmfUtbNNERKTYch0++iNwNHBONL0e\nuLMgLRIRkZLJ9TqFI929t5n9C8DdPzaz3QrYLhERKYFc9xS2RDfBcwAzawt8WbBWiYhISeQaFG4D\nxgL7mtmNwMvAb2oqZGYDzWyBmS0ysyuzzNfHzLaa2Rk5tkdERAog17OPHjGzGUB/wm0uTnX3+dnK\nRHsWdwInAiuA6WY23t3fTDPfb4Hna9F+ERGpQ1mDgpk1A4YCXyM8YOdud9+aY919gUXuvjiqazQw\nCHgzZb7LgP8B+uTRbhERKYCaho8eAKoIAeEk4Pd51L0/sDwxvSJKi5nZ/sBpwF151CsiIgVS0/DR\noe7eA8DM/gS8VsfLvwW4Irq/UsaZzGwIMASgU6dOddwEERGpVlNQiO+E6u5b87z10UqgY2K6Q5SW\nVAWMjuptA5xsZlvdfVxyJncfBYwCqKqq8nwaISIiuaspKPRM3OPIgObRtAHu7i2zlJ0OdDOzroRg\ncDbbL36DUEHX6vdmdj/wdGpAEBGR4skaFNy9orYVR3sWlwLPARXAfe4+z8yGRvkja1u3iIgURq5X\nNNeKu08AJqSkpQ0G7n5BIdsiIiI1y/XiNRERaQQUFEREJKagICIiMQUFERGJKSiIiEhMQUFERGIK\nCiIiElNQEBGRmIKCiIjEFBRERCSmoCAiIjEFBRERiSkoiIhITEFBRERiCgoiIhJTUBARkZiCgoiI\nxBQUREQkpqAgIiIxBQUREYkpKIiISExBQUREYgoKIiISU1AQEZGYgoKIiMQUFEREJKagICIiMQUF\nERGJKSiIiEhMQUFERGIKCiIiElNQEBGRWEGDgpkNNLMFZrbIzK5Mk/9DM5ttZnPMbIqZ9Sxke0RE\nJLuCBQUzqwDuBE4CDgV+YGaHpsy2BDjO3XsA1wOjCtUeERGpWSH3FPoCi9x9sbt/AYwGBiVncPcp\n7v5xNDkN6FDA9oiISA0KGRT2B5YnpldEaZn8CHi2gO0REZEaNC11AwDM7JuEoNAvQ/4QYAhAp06d\nitgyEZHGpZB7CiuBjonpDlHaDszsMOBeYJC7r01XkbuPcvcqd69q27ZtQRorIiKFDQrTgW5m1tXM\ndgPOBsYnZzCzTsBTwHnu/nYB2yIiIjko2PCRu281s0uB54AK4D53n2dmQ6P8kcA1QGvgj2YGsNXd\nqwrVJikPW7Zs4ep/b03nvSsxDID58+fH+fec0i5+n0zPlpdMr21eXS+rPtTnOEuWLKFDhw5UVlYi\nUtBjCu4+AZiQkjYy8f4i4KJCtkHKz4oVK+h9QHua7rEX0Y8FDumwd5y/ZcUn8ftkera8ZHpt8+p6\nWfWhPndnr+bbWLFiBV27dkVEVzRLvbNp06YdAoIUjpnRunVrNm3aVOqmSD2hoCD1kgJC8aivJUlB\nQUREYvXiOgWRbE6545U6rW/8pcfWOI+Z8bOf/YzBP/0lAA+MvJ29mm7juuuuq9O2iNQ32lMQSWP3\n3Xfnqaee4uOP0l46U/a2bdtW6iZIPaWgIJJG06ZNGTJkCA/f88ed8pYuXcoJJ5zAGScey8VnD+K9\nleFuLhdccAHDhw/n/FMHcPKxvXjhmb+krXvtmtWMuOhcevbsSc+ePZkyZQoAI370Q84++XhO6380\no0ZtvzfkUQd14PbfXs+ZA/px7ikn8sEHHwDwwQcfMOKiczlzQD/OHNAvrufhhx+mb9++fP/b3+DX\nV46IA0CLFi24/PLLOXNAP2bNeK3uOksaFAUFkQyGDRvGhHFj+OzTdTukX3bZZQwePJgnX3iFk089\nk99es/2u8O+99x73P/U3bv/zaG696Vdp6735miupOupYZs2axRtvvEH37t0B+NXv72D0hJd47OmJ\n3HbbbaxdG/ZSNn6+gR69qxjz/MscceTR3HPPPQAMHz6cqqOOZczzLzP62X/QvXt35s+fz+OPP84r\nr7zCE8/9k4omFUwYOwaADRs2cOSRRzLm+Zfp3ffoOu8vaRgUFEQyaNmyJd89/WwevW/HO7pPnTqV\nc845B4Dvnn4W/5o+Lc479dRTadKkCQcceDBrP1yTtt7pUybz/fP+A4CKigpatWoFwKN/vpszB/Tj\nvEEnsnz5chYuXAhA5W67cdy3BgJwSI9eLF26FICJEyfuVM+LL77IjBkz6NOnD9//9jd49ZXJrFi2\nNJ7n9NNPr4OekYZMB5pFsjj3R//J2Scfx6Dv/5C99tq9xvl33337PO4OwNVXX80zzzwDwINPv5S2\n3EsvvcS0l1/iwb88T/PmezD83FPjaweaNq2MTxutqKhg69atGZfv7gwePJibbrqJ2SkXvTVr1oyK\niooaP4M0btpTEMmi1T77MOC7pzJ29ENx2jHHHMPo0aMBmDB2DIfXMBRz4403MnPmTGbOnAlA32P/\nnSceug8IB3zXrVvHunXraNlqb5o334Mli95m2rRp2aoEoH///jvV079/f5588klWr14NwLqPP2bV\nimX5f3BptLSnIPXe+EuP5bDEbRqSv4APS7m1Q6a81F/N+Th/yKWMvv/eePr222/nwgsvZMVvbmaf\n1m349R/uyKu+K351M7++YgQ9ejxKRUUFd911FwMHDuR3t9zOqd88ki7/9jWOOuqoGuu59dZbOfu8\nCxk7+iEqKir4872jOProo7nhhhsYMGAAn2/eQtPKSq664Xd5f2ZpvBQURNJYv359/L512315deGq\nOMh07tyZiRMn7hRo7r//fmB7AJq2YEXaulu33Zdb73t0p4D2x4eejN8n85L1nPidQVx+yWAA9ttv\nP26979Gdypx11lmcddZZO7Uv+ZlEMtHwkYiIxBQUREQkpqAgIiIxBQUREYkpKIiISExBQUREYjol\nVeq9w+7tvON0tnlzSJ990bs1LvP9999nxIgRvDL1VfZq1YrWbdryp5F3cuCBB9ZYVqScKSiIpHB3\nTjvtNAYPHsxVvw+PFF/w5hw++OCDogUFd8fdadJEO/NSXFrjRFJMmjSJyspKhg4dGqcddGgPDj/8\ncPr370/v3r3p0aMHk56bAMDK5cs45JBDuPjii+nevTuXnPO/2LRxIwDLlizmW9/6Fj179qR3794s\nX7oEgPtH3kafPn047LDDuPbaa+N6TjmuD1ePGMrXv/51li9fXuRPLqKgILKTuXPncsQRR+yU3qxZ\nM8aOHcsbb7zBpEmT+MP1v4hverdw4UKGDRvGvHnzaNmqFX9/djwAPx8+hGHDhjFr1iymTJlCm/32\nY8o/JrJsyWJee+01Zs6cyYwZM5g8eTIAy5a8w1nn/4h58+bRuXPnndogUmgaPhLJkbtz1VVXMXny\nZJo0acLq999j7Zpw47muXbvSq1cvAA7p0ZNVy5ezYf1nrH7/PU477TQgBJXmzfdg6uRJTJ08kcMP\nPxwIt59YuHAh7Q/tQ7sOHTmsd5/SfEARFBREdtK9e3eefPLJndIfeeQR1qxZw4wZM6isrGT/jp3Y\nvHkzsOMtsyuaVLB526aM9bs7/zHsp1x/5U93SH926myaN9+jjj6FSO1o+EgkxQknnMDmzZt3eCTm\n2/Pn8u6777LvvvtSWVnJpEmTWLUi+5j/ni32Yr927Rk3bhwAmzdvZuPGzznmuBMY9/gj8Q3qVq5c\nGd/qWqTUtKcg9d7si94t6q2zzYyxY8cyYsQIrr/xJnZr1oz9O3TkDzffyPDhw+nRowdVVVV0/VrN\nZyLdeOtI/t+1/4drrrmGyspKrr/tTxxz3AksWfQ2Rx8dnsPQokULHn744ZzbJ1JICgoiabRv354n\nnnhipyAzderUeDqZN3fu3Pj94KGXxe87dz2AiRMn7lTmhz8aym+v3f5sZ4ANu3/CUy9ORaSUNHwk\nIiIxBQUREYkpKEi9VH3+vxSe+lqSFBSk3mnWrBlbP/9UG6sicHfWrl1Ls2bNSt0UqSd0oFnqnQ4d\nOvD3F2bQee8PMQyA+Z81j/M/+Hhj/D6Zni0vmV7bvLpeVn2oz3FatvsKHTp0QAQUFKQeqqys5MbJ\na3dIW3rzd+L3J135TNr0bHnJ9Nrm1fWy6k99O9/SQxqvgg4fmdlAM1tgZovM7Mo0+WZmt0X5s82s\ndyHbIyIi2RUsKJhZBXAncBJwKPADMzs0ZbaTgG7RawhwV6HaIyIiNSvknkJfYJG7L3b3L4DRwKCU\neQYBD3owDdjbzNoVsE0iIpKFFeoMDzM7Axjo7hdF0+cBR7r7pYl5ngZudveXo+kXgSvc/fWUuoYQ\n9iQADgIWJLLbAB+maUKm9Nrm1ff6irmsxlZfMZdV3+sr5rIaW32FXlZnd2+bYb7tqp/wVNcv4Azg\n3sT0ecAdKfM8DfRLTL8IVOW5nNfzSa9tXn2vr5zbXt/rK+e2qy/Kp75iLyvTq5DDRyuBjonpDlFa\nvvOIiEiRFDIoTAe6mVlXM9sNOBsYnzLPeOD86Cyko4B17v5eAdskIiJZFOw6BXffamaXAs8BFcB9\n7j7PzIZG+SOBCcDJwCLgc+DCWixqVJ7ptc2r7/UVc1mNrb5iLqu+11fMZTW2+oq9rLQKdqBZRETK\nj+59JCIiMQUFERGJKSiIiEhMQUFERGJld5dUM9sP2D+aXOnuH+xKuWz11SavmPVJYGYHE26ZEvcT\nMN7d59cmD/DGVF85t1315VYfeSibs4/MrBcwEmjF9gvcOgCfAD929zfSbUCzlPsiel+Zpr5bgBEZ\nlpUpr5j1VX/eer0iFmlZbYFvEe6ttSLRT2cD7wHt8swbHr2/rZHUV85tV3251Tfa3W8mR+UUFGYC\nl7j7qynpRwEPAB+TfqO7D3B+mnJvEz5/tzT1TQKOz7CsTHnFrO9u4FHgB9TfFbFYy7oO+LW7/yal\nn3YD1gN7uvuWPPIy9XtDra+c2676cqtvXmqZrPK9L0apXsDCLHmbCTfbS00/CticqT7CXVzT5X2R\nZVlp84pc3yLgbaAyTd7b6foK2I2w95GuTLa8uq6vrpf1FrAkTXrnaL3onGfeIuCdRlRfObdd9eVW\n34LU9Gyvcjqm8KyZPQM8CCyP0joC5wMbPeWXNoC7TzOzjRnKNSU85+esNPXNz7KsTHnFrO9vhCGT\n9sC7KR+7CUTPsNxRO8LQTLoy2fLqur66XtZvgHvN7Fm291Mn4GvAr4EXzWxhHnl7ADSi+sq57aov\nt/riO1PnomyGjwDM7CTSj0MPBA4g/UZ3CfBMhnKZxq8nZFpWtrwi1zcQuIOwR5FcCQ6L3s9i55Xj\nz4RbiaRbcTLl1XV9hVjWZYThw2Q/TXf3bWbWhPBsj5zzCP2eV5lyrq+c2676cquPPJRVUMgm20a3\ndK0qrPq+ItbXlV5EsshnrKm+voAhdVkuW321yStmfXrt0E9P12VeY6uvnNuu+nLLSzt/PjPX1xfh\nrKRMedk2umnL1VBf3nnFrC/bSlBfVsRiLQtol6VM3nmNrb5ybrvqyy0v3ausho9qc3GGmV0C/CMq\n86q7r0/kDQemuvt0MzuUcGziLU8z5GRmD7r7+WnS+xGGNLYAD7j7p2bWHLgS6A28CawFHnP35WnK\nVz9rYpW7/93MzgGOAeYDLwCnEI6PbCOcnfOou39aQz+18zTPpciUXtu8uq6vEMsqNDPb191X51mm\ntbuvLVSbSkV9sV1Z90U+EaSUL+AKYCZhY3tu9LqyOi1LuUcIz3QeBywFBkXp1wIbgNeBm4CJwC+B\nyYQN8vjE66+E84DHAx8n6r44Wv61hOdBXBWljyJclNYvytsCrAL+CfwYaJvSvsejZTwEjCU8uvRV\nQtD7BTAFuBO4kRBkji/x/2LfWpZrXYC2tAJuJpya+hEhAM+P0vbOUu756P/+EHBOIv2rwNyov1sT\nroOYAzwBHAJ8JfFqHa1T+wBnpLTpT8BsYB5wSJReBSwmnFr4LiHI/wI4IE37qgjXsDxM+FHwArAO\nmBGtX/Oi6TXANOAC9cWu9QXQEngntR+ivD8Dd+XZF2cAX0nTD48SrsVpk09fZOmH6YQfkr9O1xd5\nf6dKuXHJ88uf6bz83ch+DcMXQIvofRdCEPhJ9A/9F+E0r0+BltE8zYGNUccfDxwX/X0ver8wUfd0\nog18tPLNid6/kdKGzwmnWw6IVow1hNNKBwNzo3maAh8AFdH0HGB29H4P4KXofaeo3bVZ6dN++WtY\n6celrPS5fPmLudLPIfxg+GrKxuwKYCphby31dUT0P74ZOJUQ7P8H2D36vywn/OCYHdXTkXCGkxPO\nZku+tkR/NyeWfy9wA+Ec8VXAuCh9EtAnen8g4dzy3wPLgNeAnwLto/zXgJMIFygur+5r4JWoHzsA\nPyP8kOlGuIBzsfpil/riRcKPvx36ISq7Lvrc+fTFZmBxmn74KeEpk+TTF1n6oT9hG3BBhr74TUMN\nCm+R+eKMTdE/KvU1B/gyZf4W0cq+GpgZpf0rZZ6Z0T/iBaBXlFb9z51F2CC2JrHxB8YA7yY2sFWJ\nf/KGlPorCcNCjwFbCYFtH+Aztv+ymEsYyiLKez1Rfi7hiXbpVvpbM6z0Gb/8Naz0XxL2qPL58hdz\npV+XaaXgSWggAAAHuUlEQVQnfFknRstPfaWuF1cTNjKzq/+vwLKUeVZG606PRNqS6G9yXZiZeD+f\n7evZtJT6NibefwP4I/B+1L5libzk+1kk1lfC2VcQfnSkvVBTfZFzX3yW0o7qfmgNfJ6uDdn6IlM/\nRNObgKZ59sVnRMdI07RhY8p0si/eytQXafsnn5lL+SKM9y8CniXsMo6K/hGLCOeo9yJskJKvLoQN\nUK+UupoSfmluq+64RF6rxBehA2Fjf0f1P4HwK3lx9E9fTHQQh7BR+4iw+/kqYcO5mHA8Y36Wz/V/\no/neJdzm4UXgHsKvqvej928BF0bztyUMcaW9SpFw7GFDmhU+25c/40oPXE7Yk8r5y1/klf55QoDf\nL5G3HyGorQe6ZeinLcn/e5R2QdTu6uB+Q0r+nMQ68d/AXmz/sbCCEKwuj9aN6uN1l0Wf6wTC3tet\nhD3OXwFr07SrgrCurybsWZ4ZrRunRvnJHwunAM8lym6I1qdi9MXshtYXhKC1PE0/zCNx54Fc+yJT\nP0RlVhLW3Xz6Yj7hx2BqPxwXfaZ+GfoiryuaS76xz6uxIeodBZwevY6KOutP1R2SpsxYEr+mE+m7\nA8emSW9DYgMYpX2HGnbBCEM8XQnjkj0Jv8z3i/IOrKFse7bvKu9NGIvsC3SP3h+cpszzGVb694FX\nMiwn05e/ppV+fuoKH6WXfKUn7EWtJQTOjwmBeT7w2+izHZShL54CvpUm/RHS3F6EcJHck4npUwjD\nV+9H09emvKqHFb8afabHCcN+cwjPJh8CPJ5lnegZlXsWODjqv08IP4LejD7ry9Wfj/Bj4YroczeG\nvvg4TV8cmKUvPo764r8y9UWUd02a9IHROtYih74YVN0XNfTDg8A30/TFJZn6gvDDN10/zCMMRb8W\nrSOp68XwbNufnZaTz8x61Z8XYWNYvdJ/lNgAjCMaqklTJtOXP6eVPs8v/4OEYzE5bwAyfPk/iVb6\n86KVPt0G4AbCbT9apPlcBxOGn/LJuziXMoTjT1/Pob6LatGGgYRjOZnal+nz9mX7UF13QsA+OZpO\n5h1KCOhZ8/Io04NwnCif+vJp35HpyqWk71Amzfr1UJbv04P5pNdQpjkwpq7qq2FZeX+mml5ldUqq\n5MbMLnT3P+eank9edLrtAe4+ty7q29W2R6cV/5wwZNcL+Im7/yXKW044yD8/1zwzuwz4HWFosi7q\nG074BVqb+jYQgn6u9a0iHKdpSjge1hd4CTiR6ISLRN6RhCHFbHk/Iuydr86hTLZlVeel1lfb9mWq\nL1mmLeGWKEknEI4l9CX8wKhmhF/t1aerv5aSnq1MurzqZaXWl60NtWlfrvXh7qeQq9pEEr3q94uU\n8fia0mubV9f11WZZhD2Q5dH7LkRnl0XTG0lz5lm2vKi+WWVcXwWZz6jLN28uYby8XOvLeAZhhryF\nhCHPfMocRzibLt/6MpUpRPuOy2v7UeoNmF61e5H+bKvZ0ZfhyzTpczKk15RX1/XV9bI2seNZUNVn\nl/03Ox+cziXvQ3Y8Y6ac6kueLJB6Rl3eeYRhv0xn6NX3+rKdQdgkXV6m9GxlyqG+vLctpdig6bXr\nL8I1DenOuFpD2J1OTe9CODMp01lamfLqur66XtYUYHVK3zQlHNNw0p95li3vPaKz0sq0vj2itNQz\n6jbUIu91oo1tGdaX8QzCxHxp82pTphzqy3nbUqqNml679iLDGVdR+gsZyryTrky2vLqur66XFX0J\nnspQ5lTSnHmWLS+q73tlWt/xGdLbAL1rkdeelDPxyqi+nM8gzJRXmzLlUF9NLx1oFhGRWJNSN0BE\nROoPBQUREYkpKEijYmbbzGymmc01szFmtkeJ2jEiuWwzm2Bme0fv12cuKVJYCgrS2Gx0917u/nXC\nRVFDcy1oZhV12I4RRA9iB3D3k939kzqsX6RWFBSkMfsn4TYemNm5ZvZatBdxd3UAMLP1ZvYHM5sF\nHG1mfcxsipnNiubfy8wqzOx3ZjbdzGZHD3bCzI43s5fM7Ekze8vMHrFgOOHMmUlmNimad6mZtUlt\noJn9n0S9vypWx0jjpaAgjZKZNSXcpnuOmR0CnEW4QWIvwjURP4xm3ZPwxL6ehNsIPE64grgn4f5D\nGwm3W1jn7n2APsDFZtY1Kn84Ya/gUODfomXcRrgL7jfd/ZtZ2jiAcHvwvoRrNI4ws3+vqz4QSadp\nqRsgUmTNzWxm9P6fhGsjhhDuajvdzCDcJqH6UYrbCM+dADgIeM/dpwN49FjUaON9mJmdEc3XirAx\n/wJ4zd1XRPPNJFyI93KObR0Qvf4VTbeI6p2c+8cVyY+CgjQ2G6O9gZiFSPCAu/88zfyb3H1bDXUa\ncJm7P5dS7/GE53lU20Z+3zkDbnL3u/MoI7JLNHwkEh5sdIaZ7QtgZl8xs85p5lsAtDOzPtF8e0XD\nUM8B/2lmlVH6gWa2Zw3L/IzwbIpsngP+w8xaRPXuX91GkULRnoI0eu7+ppn9AnjezJoQHkY0jPCg\nn+R8X5jZWcDt0S3ENxKOK9xLGBZ6I9rrWEO4TUU2o4C/mdmqTMcV3P356HjH1GhYaz1wLtuHtkTq\nnG5zISIiMQ0fiYhITEFBRERiCgoiIhJTUBARkZiCgoiIxBQUREQkpqAgIiIxBQUREYn9f+cQagkf\nmS3KAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11ae2d30>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVNWZ//HPQ9MIimAENMo+xpWwiIBxybiQEDSJ6KjR\nGBUdFUlQQuIvo2MSNVGjjuPENSIa4x4SHXAbjBsYF1ARBQQJiqLSiIJEURRQ8Pn9cW5fL0VV9e2m\nbld19/f9et1X1z3nnlNPnaq+T921zN0REREBaFXuAEREpHIoKYiISExJQUREYkoKIiISU1IQEZGY\nkoKIiMSUFETKwMzGm9mvUyz3kJmNbIyYRABM1ylIc2BmbwLbAxsSxbe4+xmNHMdJwKnuvn9T6luk\nVutyByBSQt9398fKHURdzKzK3TfUvaRI49PuI2n2zOw0M1tgZh+b2StmNjAq725mk8xshZmtNLNr\nE23+PWrzgZk9bGY9E3VuZqPN7DUz+9DMrrNgd2A8sI+ZrTazD6PlbzGz681sipl9AhwUlV2U6HOE\nmc02s4/M7HUzGx6VP2Fmp+br28wGm9l7ZlaV6OffzGxOxkMqzZiSgjRrZnY0cAFwItABOAxYGa1I\nHwTeAnoBXYGJUZsRwLnAvwFdgKeAP+d0/T1gMNAP+AHwHXdfAIwGZrh7e3ffJrH8ccDFwNbA0zkx\nDgFuA34BbAP8K/Bmcpl8fbv7TGAlMCyx6AlRXyINoqQgzcm90Tfo2uk04FTgv9x9pgeL3P0tYAiw\nI/ALd//E3de6e+3KejRwibsvcPf1wO+AAcmtBeBSd//Q3d8GpgED6ojtPnd/xt2/cPe1OXWnADe7\n+6NR/VJ3/0fK13wrcDyAmW0LfAe4K2VbkU0oKUhzcnj0Dbp2uhHoDryeZ9nuwFvRSj9XT+Cq2uQC\n/BMwwtZErXcTjz8F2tcR25IidYViTOMO4PtmthVhi+Upd1/WwL5ElBSk2VsC7FSgvIeZ5TvZYglw\nek6Caefu01M8X6HT+Yqd5lcoxjr7cPelwAzCrq4TgNtT9CNSkJKCNHc3Af/PzPaKDgZ/LdoN9Dyw\nDLjUzLYys7Zmtl/UZjzwn2bWB8DMOkbHJtJ4D+hmZm3qEeMfgZPNbKiZtTKzrma2Wz36vg34D6Av\nMKkezyuyCSUFaU4eiM7MqZ0mu/vdhAO8dwEfA/cC20anhH4f+BrwNlADHAPg7pOBy4CJZvYRMA84\nJGUMU4H5wLtm9n6aBu7+PHAy8HtgFfB3wi6stH1Pjpaf7O6fpoxTJC9dvCbSDJjZ64RdXhV/nYZU\nNm0piDRxZnYk4XjD1HLHIk2frmgWacLM7AlgD+AEd/+izOFIM6DdRyIiEtPuIxERiSkpiIhIrMkd\nU+jcubP36tWr3GGIiDQps2bNet/du9S1XJNLCr169eKFF14odxgiIk2Kmb2VZjntPhIRkZiSgoiI\nxJQUREQkpqQgIiIxJQUREYlllhTM7GYzW25m8wrUm5ldbWaLzGxu7e/miohI+WS5pXALMLxI/SHA\nztE0Crg+w1hERCSFzJKCuz9J+BnDQkYAt0W/m/sssI2Z7ZBVPCIiUrdyXrzWlY1/t7YmKtvk92XN\nbBRha4IePXqEwgs6frnABasSjxPlxeqS5Wn7a0ibtP01Vpu0/VXaa1XcpWmTtr9Ke62Ku3Rx16FJ\nHGh29wnuPsjdB3XpUudV2iIi0kDlTApLge6J+W5RmYiIlEk5k8L9wInRWUjfAFa5+ya7jkREpPFk\ndkzBzP4MHAh0NrMa4HygGsDdxwNTgEOBRcCnhB8uFxGRMsosKbj7D+uod2BMVs8vIiL11yQONIuI\nSONQUhARkZiSgoiIxJQUREQkpqQgIiIxJQUREYkpKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSU\nFEREJKakICIiMSUFERGJKSmIiEhMSUFERGJKCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRER\nibUudwDSNPRae1f8+M3yhSHSqFri515bCiIiElNSEBGRmJKCiIjElBRERCSmpCAiIjGdfVQhkmc5\nQMs500FEKouSgohImVXSl0LtPhIRkZiSgoiIxDJNCmY23MwWmtkiMzsnT31HM3vAzOaY2XwzOznL\neEREpLjMjimYWRVwHfBtoAaYaWb3u/sricXGAK+4+/fNrAuw0MzudPfPsopLRKS525zbc2R5oHkI\nsMjd3wAws4nACCCZFBzY2swMaA/8E1ifYUwiImXTFO6llOXuo67AksR8TVSWdC2wO/AO8DLwU3f/\nIsOYRESkiHKfkvodYDZwMLAT8KiZPeXuHyUXMrNRwCiAHj16AA3LuE0hS0vjqIRTAJvj57Hcr6nY\n+1ru2JqKLLcUlgLdE/PdorKkk4FJHiwCFgO75Xbk7hPcfZC7D+rSpUtmAYuItHRZJoWZwM5m1tvM\n2gDHAvfnLPM2MBTAzLYHdgXeyDAmEREpIrPdR+6+3szOAB4GqoCb3X2+mY2O6scDFwK3mNnLgAFn\nu/v7WcUkIiLFZXpMwd2nAFNyysYnHr8DDMsyBhERSa/cB5qlDMp9wK0SDvKKSH66zYWIiMS0pdAE\nlPubfUMp7mz625znL0UMlTA+5R7T5hyDthRERCSmpCAiIjElBRERiSkpiIhITAeaRaQiNeapy5Vw\n0LhSaEtBRERi2lKINNXT4spNF6KJbKyp/09oS0FERGJKCiIiElNSEBGRmI4piDQhjXUcq6nvF5eG\n05aCiIjEmt2Wgr7hNFxTPZuqqcZdTHN7Tc3t9TSmxh47bSmIiEhMSUFERGJKCiIiElNSEBGRWLM7\n0CxSDjqQKs2FthRERCSmLYVmSt9cWx7d1FFKQVsKIiISU1IQEZFY6qRgZu3MbNcsgxERkfJKlRTM\n7PvAbOBv0fwAM7s/y8BERKTxpT3QfAEwBHgCwN1nm1nvjGISKRkdSBWpn7S7jz5391U5ZV7qYERE\npLzSbinMN7PjgCoz2xkYC0zPLixJozneEbaSv9k3x/EWyZV2S+FMoA+wDvgz8BEwLqugRESkPFJt\nKbj7p8Avo0lERJqpVEnBzB5g02MIq4AXgBvcfW2BdsOBq4Aq4CZ3vzTPMgcCVwLVwPvufkDq6EVE\npKTS7j56A1gN3BhNHwEfA7tE85swsyrgOuAQYA/gh2a2R84y2wB/AA5z9z7A0Q14DSIiUiJpDzTv\n6+6DE/MPmNlMdx9sZvMLtBkCLHL3NwDMbCIwAnglscxxwCR3fxvA3ZfXL/zsVfKBTxGRUku7pdDe\nzHrUzkSP20eznxVo0xVYkpivicqSdgG+YmZPmNksMzsxZTwiIpKBtFsKZwFPm9nrgAG9gZ+Y2VbA\nrZv5/HsBQ4F2wAwze9bdX00uZGajgFEAPXr02KSTSlPs1EVteTScxk4ke2nPPpoSXZ+wW1S0MHFw\n+coCzZYC3RPz3aKypBpgpbt/AnxiZk8C/YGNkoK7TwAmAAwaNEgXzYmIZKQ+d0ndGdiVsNL+QYpd\nPTOBnc2st5m1AY4Fcu+XdB+wv5m1NrMtgb2BBfWISURESijtKannAwcSziKaQjij6GngtkJt3H29\nmZ0BPEw4JfVmd59vZqOj+vHuvsDM/gbMBb4gnLY6bzNej4iIbIa0xxSOImwhvOTuJ5vZ9sAddTVy\n9ymEJJIsG58zfzlweco4REQkQ2l3H61x9y+A9WbWAVjOxscLRESkGUi7pfBCdKHZjcAswoVsMzKL\nSkREyiLt2Uc/iR6Oj44BdHD3udmFJSIi5ZD2l9cer33s7m+6+9xkmYiINA9FtxTMrC2wJdDZzL5C\nuHANoAObXp0sIiJNXF27j04n/G7CjoRjCbVJ4SPg2gzjEhGRMiiaFNz9KuAqMzvT3a9ppJhERKRM\n0h5ovsbM9gV6Jdu4e8GL10REpOlJe0Xz7cBOwGxgQ1TsFLmiWUREmp601ykMAvZwd92MTkSkGUt7\nRfM84KtZBiIiIuWXdkuhM/CKmT0PrKstdPfDMolKRETKIm1SuCDLIEREpDKkPfvo72bWE9jZ3R+L\nfvugKtvQRESksaW9zcVpwD3ADVFRV+DerIISEZHySHugeQywH+FKZtz9NWC7rIISEZHySJsU1rn7\nZ7UzZtaacJ2CiIg0I2mTwt/N7FygnZl9G7gbeCC7sEREpBzSJoVzgBXAy4Sb5E0BfpVVUCIiUh5p\nT0ltB9zs7jcCmFlVVPZpVoGJiEjjS7ul8DghCdRqBzxW+nBERKSc0iaFtu6+unYmerxlNiGJiEi5\npE0Kn5jZwNoZM9sLWJNNSCIiUi5pjyn8FLjbzN4h/PraV4FjMotKRETKos6kYGatgDbAbsCuUfFC\nd/88y8BERKTx1ZkU3P0LM7vO3fck3EJbRESaqdRnH5nZkWZmmUYjIiJllTYpnE64ivkzM/vIzD42\ns48yjEtERMog7a2zt846EBERKb+0t842MzvezH4dzXc3syHZhiYiIo0t7e6jPwD7AMdF86uB6zKJ\nSEREyibtdQp7u/tAM3sJwN0/MLM2GcYlIiJlkHZL4fPoJngOYGZdgC8yi0pERMoibVK4GpgMbGdm\nFwNPA7+rq5GZDTezhWa2yMzOKbLcYDNbb2ZHpYxHREQykPbsozvNbBYwlHCbi8PdfUGxNtGWxXXA\nt4EaYKaZ3e/ur+RZ7jLgkQbELyIiJVQ0KZhZW2A08DXCD+zc4O7rU/Y9BFjk7m9EfU0ERgCv5Cx3\nJvC/wOB6xC0iIhmoa/fRrcAgQkI4BPjvevTdFViSmK+JymJm1hU4Ari+Hv2KiEhG6tp9tIe79wUw\nsz8Cz5f4+a8Ezo7ur1RwITMbBYwC6NGjR4lDEBGRWnUlhfhOqO6+vp63PloKdE/Md4vKkgYBE6N+\nOwOHmtl6d783uZC7TwAmAAwaNMjrE4SIiKRXV1Lon7jHkQHtonkD3N07FGk7E9jZzHoTksGxfHnx\nG4QOetc+NrNbgAdzE4KIiDSeoknB3asa2nG0ZXEG8DBQBdzs7vPNbHRUP76hfYuISDbSXtHcIO4+\nBZiSU5Y3Gbj7SVnGIiIidUt78ZqIiLQASgoiIhJTUhARkZiSgoiIxJQUREQkpqQgIiIxJQUREYkp\nKYiISExJQUREYkoKIiISU1IQEZGYkoKIiMSUFEREJKakICIiMSUFERGJKSmIiEhMSUFERGJKCiIi\nElNSEBGRmJKCiIjElBRERCSmpCAiIjElBRERiSkpiIhITElBRERiSgoiIhJTUhARkZiSgoiIxJQU\nREQkpqQgIiIxJQUREYkpKYiISCzTpGBmw81soZktMrNz8tT/yMzmmtnLZjbdzPpnGY+IiBSXWVIw\nsyrgOuAQYA/gh2a2R85ii4ED3L0vcCEwIat4RESkblluKQwBFrn7G+7+GTARGJFcwN2nu/sH0eyz\nQLcM4xERkTpkmRS6AksS8zVRWSGnAA9lGI+IiNShdbkDADCzgwhJYf8C9aOAUQA9evRoxMhERFqW\nLLcUlgLdE/PdorKNmFk/4CZghLuvzNeRu09w90HuPqhLly6ZBCsiItkmhZnAzmbW28zaAMcC9ycX\nMLMewCTgBHd/NcNYREQkhcx2H7n7ejM7A3gYqAJudvf5ZjY6qh8PnAd0Av5gZgDr3X1QfZ/r888/\np6amhrVr13LjYTtsVLdgwYL4cbIuWV6sbnPbpO2vsdqk7a9QG8dZvHgx3bp1o7q6GhFpXjI9puDu\nU4ApOWXjE49PBU7d3Oepqalh6623plevXny+dNVGdbt32yZ+/HnNh3nLi9Vtbpu0/TVWm7T9FWrj\n7mzdbgM1NTX07t0bEWlemsUVzWvXrqVTp05EWxuSITOjU6dOrF27ttyhiEgGmkVSAJQQGpHGWqT5\najZJQURENl9FXKdQaodd+0xJ+7v/jP3qXMbM+PnPf84VV1wBwK3jr+HTTz/hxz/f5JZPIiIVS1sK\nJbLFFlswadIk3n///XKHkokNGzaUOwQRaQRKCiXSunVrRo0axe9///tN6t58800OPvhg+vXrx2nH\njmDZ0nD3j5NOOomxY8ey7777cuh+A3j0/+7L2/fKFcsZd+rxHD1sf/r378/06dMBGHfKjzj20AM5\nYug+3HPnLfHy7du355rLLuToYftz/GHf5r333gPgvffe44gjjuDoYftz9LD9mf3CcwDccccdDBky\nhB9855v89pxxcQJo3749Z511Fv3792fOrOdLNVQiUsGUFEpozJgx3HnnnXz80canxZ555pmMHDmS\nuXPncujhR3PZeV/uUlq2bBlPP/001/xpIldd8pu8/V563jkM+sZ+3P3I07z44ov06dMHgN/897VM\nnPIEf35wKnfdfAMrV4YLwj/55BP6DhzE3Y88zV5778ONN94IwNixYznggAO4+5GnmfjQ39lpl91Y\nsGABf/nLX3jmmWf468NPUdWqiimT74772XvvvZkzZw4Dh+xT8vESkcrTLI8plEuHDh048cQTuevm\nCbRt2zYunzFjBpMmTQLge0cew5W/Oz+uO/zww2nVqhU77bIbK99fkbffmdOf5OIrrwegqqqKjh07\nAnDXn25g6t8eBOC9ZUt57bXX6NSpE23atOGAbw0HYPe+A3j1xbBlMXXqVG677TYWrlhDVVUVW3fo\nyOP3PsCsWbMYPHgwaz/fwNq1a9m2c5f4uY488shSDpGIVDglhRIbN24cffsPYMQPfpRq+S222CJ+\n7O4AXHPZhcx86nEAZs+enbfdE088wbNPP8Ft9z1Cu3ZbcsrR34uvHaiuro5PG62qqmL9+vUFn9/d\nGTlyJJdccglzcy6Ga9u2LVVVValeh4g0D9p9VGLbbrstw753OJMn3h6X7bvvvkycOBGAKZPvZs86\ndsWcefavmT17dpwQhuz3r/z19puBcMB31apVrFq1ig4dt6Fduy1ZvOhV5r70Qp2xDR06lOuvvz7u\n5+OPVjF06FDuueceli9fDsCqDz7gnZq36//CRaRZaJZbCslTSPslbteQ/CbcL+c2DoXqcr89p3Hi\nqDOYeMtN8fw111zDySefzOWXX067Dl/ht1dcW6/+zv7Npfz27HFMnng7W7Vtw/XXX8/w4cO5/Mpr\nOPygven1L1+j35513zLqqquuYtSoUVw3fgJVVVX88ndXcMKIYVx00UUMGzaMT9d9Tuvqas696PJ6\nv2YRaR6aZVIoh9WrV8ePO3XZjudeeyee79mzJ1OnTgU2TjK33HLLRn08u7Amb9+dumzHVTffBWyc\nsP5w+z0bLVdbt3r16vh5vv3dEZx1+kgAtt9+e+67775NEt0xxxzDMcccs0l58jWJSMug3UciIhJT\nUhARkZiSgoiIxJQUREQkpqQgIiIxJQUREYk1y1NS+93UM395sTZFyuee+laq53333XcZN24cz8x4\njq07dqRT5y784oJL6Net3j87LSJSFs0yKZSDu3PEEUcwcuRIzv3v8DPUC195mX+uWN6oMbg7rVpp\nA1BEGkZrjxKZNm0a1dXVjB49Oi7bdY++7Pb1fgwdOpSBAwfSt29fpj08BYClS95m991357TTTqNP\nnz6cfty/sXbNGgDeXvwG3/rWt+jfvz8DBw5kyZuLAbhl/NUMHjyYfv36cf7558f9HHbAYH45bjRf\n//rXWbJkSSO/chFpTpQUSmTevHnstddem5S32aItkydP5sUXX2TatGlcceGv4hvfvfbaa4wZM4b5\n8+fToWNHHnvofgD+c+woxowZw5w5c5g+fTqdt9+e6X+fytuL3+D5559n9uzZzJo1i1nPhl+Ye3vx\n6xxz4inMnz+fnj3z7zoTEUlDu48y5u6ce+65PPnkk7Rq1Yrl7y5jZbRLqXfv3gwYMACA3fv2550l\nS/hk9ccsf3cZRxxxBBDuVNqu3ZbMeHIaM56cyp577gmEW1C89eYbfLVrd3bo1p1+AweX5wWKSLOi\npFAiffr04Z577tmkfMrku1mxYgWzZs2iurqart17sG7dOmDj22ZXtapi3Ya1Bft3d/59zM+48Jyf\nxWVzaz5k6ZK3adduyxK+EhFpybT7qEQOPvhg1q1bx4QJE+KyVxfMY9nSJWy33XZUV1czbdo03qkp\nvs9/q/Zbs/0OO3LvvfcCsG7dOtas+ZR9DziYe/9yZ3yTuqVLlxb8UR4RkYZqllsKyVNIG+vW2WbG\n5MmTGTduHBdefAlt2rala7fujP7ZOVxz8S/p27cvgwYNovfXdqmzr4uvGs/vz/8F5513HtXV1Vx4\n9R/Z94CDWbzoVfbZJ/wWQ/v27fnV5X+glX4ER0RKqFkmhXLZcccd+etf/7pJIpkxY0b8OFk3b968\n+PHI0WfGj3v23im+1XayzY9OGc1l55+zSfmkx7/sX0Rkc2j3kYiIxJQUREQk1mySQu25/5I9jbVI\n89UskkLbtm1ZuXKlVlaNwN1ZuXIlbdu2LXcoIpKBZnGguVu3btTU1LBixQre+2DNRnULPm4XP07W\nJcuL1W1um7T9NVabtP0VauM4HXbYlm7duiEizU+zSArV1dX07t0bgEPO+b+N6t689Lvx42RdsrxY\n3ea2SdtfY7VJ21/xNpvezkNEmodMdx+Z2XAzW2hmi8zsnDz1ZmZXR/VzzWxglvGIiEhxmSUFM6sC\nrgMOAfYAfmhme+QsdgiwczSNAq7PKh4REalbllsKQ4BF7v6Gu38GTARG5CwzArjNg2eBbcxshwxj\nEhGRIiyrM3bM7ChguLufGs2fAOzt7mcklnkQuNTdn47mHwfOdvcXcvoaRdiSANgVWBg97gy8XyCE\nhtRVcptKiKElxd2SXmslxNCS4i7Xa+3p7l0KLPel2l/rKvUEHAXclJg/Abg2Z5kHgf0T848Dg+rx\nHC+Usq6S21RCDC0p7pb0WishhpYUdyW81mJTlruPlgLdE/PdorL6LiMiIo0ky6QwE9jZzHqbWRvg\nWOD+nGXuB06MzkL6BrDK3ZdlGJOIiBSR2XUK7r7ezM4AHgaqgJvdfb6ZjY7qxwNTgEOBRcCnwMn1\nfJoJJa6r5DaVEENLirslvdZKiKElxV0Jr7WgzA40i4hI09Ms7n0kIiKloaQgIiIxJQUREYkpKYiI\nSKzJ3SXVzLYHukazS939vc1pU6iuIW1K3V9DXmtLYma7EW6VEo8R4TRnz1fu7guaYptKiKElxV3J\nbTanjpSazNlHZjYAGA905MsL3LoBHwI/cfcXc1eiwA5F2lwJjMtT91n0uLoebUrdX7E2PyGcvtui\n/6mBw4AfEu6pVZMYo7HR46tzyo8FlhE+E02pTSXE0JLiruQ2m1M30d0vJYWmlBRmA6e7+3M55d8A\nbgU+YNOVa3fgx+5+W54204AD8/T3KmFcdq5Hm1L3V6zNJGA52f8TVsI/QbE2XYEd3f3znDEqNHZt\ngNXAVk2sTSXE0JLiruQ2m1M3P/e5CqrvfTHKNQGvFalbR7jZXm75EmBOgTafFXoewt1dU7cpdX91\ntQGq85S3KVL3ar7xq6NNqfvLok3PPHWLgNfzlPeMPidNrU0lxNCS4q7kNptTtzC3vNDUlI4pPGRm\n/wfcRljZQ9gSOBFY4znftiOTgVPM7Jg8bRYU6K814fd/6tOm1P0Va/MJsCPwVs5r3YGwqyVfXSvA\n8oxPsTal7q/Ubd4DHjez1/hyjHoAWwKY2UM55V8DftsE21RCDC0p7kpuszl18d2p69Jkdh8BmNkh\n5N+/PBzYifwr6w3AO7lt3H1Kkf4K7fsu2KbU/RVqA3wBXEvYmsh94/9EuFVIbl2/6PGcerQpdX+l\nbnMG8AjhdzuSYzQzGrtNyt19g5m1amptKiGGlhR3JbfZnDpSalJJoZhiK+vyRZWNxvonrIR/gmJt\n6jdqIpJK2v1MlTwBo0rZplBdQ9qUur+GvNaWNgEP1qe8qbaphBhaUtyV3GZz6jZZNu2ClTwRzkoq\nVFdo5VqsTd66hrQpdX91tCn7B7BC2uxQn/Km2qYSYmhJcVdym82py52a1O6jhlyYYWbnAc8Az7n7\n6kT5cOCfgLv7TDPbg3Bs4h+es8vJzG5z9xPz9L0/YdfGPGAVsMDdPzKzdsA5wECgHTDW3V/J0772\ndybecffHzOw4YF9gAfAo4Vz87oTjIq8Cd7n7R0Ve6w5e4PcoCtU1pE2p+yt1m6yZ2XbuvryebTq5\n+8qsYmpsDRmDqF2LH4eKH4O02aPcE3A2MJuwsj0+ms6pLSvQZizhHPh7gTeBEYm6d4BngReAS4Cp\nwK+BlYSV8v3R9ADh/N/7gQ8S7U+Lnvt8QtJ5D2gd1U0gXJi2P7AWWAM8RbjwrEuijzuBv0TPcTvh\nbKkTgOcICe9XwHTgOuBi4BXCdQ3lfB+2a0CbThnE0RG4FPgHIbnXvm+XAtsUaPNI9F7fDhyXKP8q\nIbFfB3QCLgBeBv4K7A5sm5g6RZ+lo4BtE7H8EZgL3EW4rqJzVDcIeINwCuI64CZgpzyxDSJct3IH\n4YvAo4QvGjMJXxR+C8yPylZEn90fN2AMOgCv545BVPcn4Po843BvzjjUjsFXgKNy3pOsxmEW4f8q\ndwxO0meh4eOQd2zKuYKp50rgVQqfT5/3GobozVwSPe5FSAA/jebXEH78Z0vgI6BDVP4S4UK4A4ED\nor/LosevJfqeSbSCB7YC1ibqXkw8fomQPIZFH5YVwN+AkcC8aJnWhKRSlYh7bvR4S+CJ6HEPwpk4\njbEiqIR/gmIrgocJXxS+mvMPfRUwg7CVlpz2it7zS4HDCUn+f4EtovdjCeFLxtyo3+7AmYQD3Ytz\nps+j1/NG9Lw3ARcRzgf/GeEXBGtjmgYMjh4vAd4F3gaej5bdMap7HjiEcJX2EqKVLTA0ep9PIly4\n93PCl5edCV8cpuYZg7MLjMFAwu+gr84dg6jtqug1547DF4RToXPHYDGwLvHcWY7DM4TPUe4Y3Er4\njLX0z0KxcTgbeKQ5JoV/UPjCjLXRG5g7rc350LaP3vT/AT5NrrgTj1sR/tkeBQZEZbVv+BzCt6NO\nJFb8Ud0HwMmJFe2g6PF8wtkytctVE3YL/RlYT0hqXwE+5ssV7TzCbiyiuhcS7T8u8saXckVQCf8E\nxVYEKwtoN70dAAAH/klEQVR8TjYQVmDT8kxf5Cz7y+g55ta+n8DbOcssjT4zfRNli9k48c/OabOW\nL7can02Uvwi8HD3+JvCHaEymJZ83TwxrcuZnRn8X1n5O8oyDExJG7hh8nOwvMQad2Ph/IhnPWYQv\nThuNQe1raoxxIPzvvZRnDFqR+B9vwZ+FguNQ+1kpVLfJsmkXLPdE2N+/CHiI8O1xQvQGLSKskAcQ\nVkzJaTqwPKef1oTrGRzYsnZAE/UdozesG3A34ZqAt6O6NwnZeHH0d4eovH30YbqF8I38OcLK8w3C\nP2H/Aq/pP6Jl3iLs6nocuJGwa+vd6PE/+DLZdCHxj5unv5KtCCrhn4DiK4JPovHbPlG/fdTnMwXG\n5/Pkex2VnRTF/FY0f1FO/cuJz8L/AFtH71kNIVGdFY2J5YzbI8DBhC2vqwhbmsuA23P6ryJ8tpcT\ntiaPjj4Ph0f1BxAS+v7R/GHAw9HjR6J2uWNwdtRm5zxjsIBo6zlnDOaTuMI+zzgsyB2DqLyxxiH5\nRSkeg2i+sT4Lcyv1s1DHOJwNPJZ6XZt2wUqYCCuDbwBHRtM3ooH8Y+1A5SzfDZhUoK8DC5R3ZuOV\n4HeB39UR15ZA7+hxB6A/YRN1e2CXOtruyJffmLch7JoZAvSJHu+Ws/wjRd74Uq8Iyr1CLLYieA24\njJA0PyBsVi8g7P8eUmCsJwHfylN+J3luK0K4SO6exPxhhN1X7xKOJSWn2l2JXyV86TiQcLzopWgc\npxB2OW6yCzRq15+wS+whYLdo3D6M3qMTCVtTHwBPA7sm4nsszxhcFr2/u+Z5nv8CzstTPpywK7J9\nsXFIjkE03xjj8AHhy98riTHYJVq+C+Gzn/wsfNAIn4UR9fgsHFTPMRhQYAzmE3Y7Px99NpKfhXzj\nkPw8bFtsPbTR86ddUFNlTITdSbVv/D9z3viRWawIovlSrBBbF3hNhVaIxVYEY6Nlv5UbP3AqYf9r\nbvnwqE2+utPStCGcTfb1zXieYm12r6Mu32sdy5e76PoQEvWh0fyQRN0ehER+aKHyerTpSzgJomib\nPHVxfHW02btAm70Ltcnzmbq9QPltRf638tYVKW8H3J318xR7PXX0981o7IYVaptvalKnpEpxZnay\nu/+pPnX1aROdaruTu88rRX+b2eZOwgHqBYRvVj919/vMbCwhCf4tWR61WUK47XhumzOByyugzSeE\nZJ+qzszOJ2w11p7CPAR4Avg24YaB7Qm7Sx8lrFCnAacQtriX55TXp02x50lTV58Y0rTpQthyTDqY\nsOUM4Zs1hPtoHUTYxTokUZ6sq0+bQs9TW16fNmmep666b7r7VwDM7FRgDGFraRjwgKe8dXbZv/lq\nKt1EzjGBNHUNaVPq/hrY5jOib80kziwjbJnMyS2P5tc0tTYp+nuJTc+ga0fhs+vmEfaNZ92msWO4\ng03PGHyNsCszt/yAqK6+bV5tpDaFYquzLvH/kXt25Mup1yPlXpFpqt9E/rOs5hJWEF8UqFtToK5Y\nm1L3V/I2OeNSe2bZ+yQOfrPxGWe5Z240hTbF6pbX9kfigHw0X+jsupcao00jxzCbcDbbRmcMErYs\nNimP/uatq+Q2KeqKnR250ZgVXceUeyWnqX4T4XqGfGda9SKcgpevbgVhBVKfNqXur9Rt1tX+UyTG\npjXhW9OGPOW1Z5w1tTbF6lbU9semZ9B9Qv6z614gWkFk3KYxY6g9hXSTMwaLlTfVNoXqKH525EZn\nCRabmtLvKUjwIGFXwuzcCjN7M1+dmd0P9HD33N8rKNim1P1l0GYK4aB3zN3Xm9lgYM/ccuBEM5vU\n1NrU0V83wnEV3P2LRHU1Yf/yp3nqDiN8k8y6TWPGMDIqrwGONrPvEnYxUay8qbYpVOfuvcjvC+CI\nAnWb0IFmERGJtSp3ACIiUjmUFEREJKakIC2KmW0ws9lmNs/M7jazLcsUx7jkc5vZFDPbJnq8unBL\nkWwpKUhLs8bdB7j71wnXOoxO29DMqkoYxziiH28HcPdD3f3DEvYv0iBKCtKSPUW4nQdmdryZPR9t\nRdxQmwDMbLWZXWFmc4B9zGywmU03sznR8lubWZWZXW5mM81srpmdHrU90MyeMLN7zOwfZnanBWMJ\n97yaZmbTomXfNLPOuQGa2S8S/f6msQZGWi4lBWmRzKw14XbdL5vZ7sAxwH7uPoBw3cSPokW3Ivxq\nX3/C7QX+QrjSuD/hXkRrCLdgWOXug4HBwGlm1jtqvydhq2AP4F+i57iacCfcg9z9oCIxDiPcKnwI\n4TqOvczsX0s1BiL56DoFaWnamVnt9RBPEe6wO4pwV9uZZgbh1gm1P7G4gfD7EwC7AsvcfSaARz+N\nGq28+5nZUdFyHQkr88+A56Nzyometxfh5n5pDIuml6L59lG/T6Z/uSL1o6QgLc2aaGsgZiET3Oru\n/5ln+bXuvqGOPg04090fzun3QMKV17U2UL//OQMucfcb6tFGZLNo95FI+HGjo8xsOwAz29bMeuZZ\nbiGwQ3RlMtHxhNaE237/2Myqo/JdzGyrOp7zY8LvUxTzMPDvZtY+6rdrbYwiWdGWgrR47v6Kmf0K\neMTMWhF+lWsM4Qd/kst9ZmbHANdEtxFfQziucBNht9CL0VbHCsJPnxYzAfibmb1T6LiCuz8SHe+Y\nEe3WWg0cz5e7tkRKTre5EBGRmHYfiYhITElBRERiSgoiIhJTUhARkZiSgoiIxJQUREQkpqQgIiIx\nJQUREYn9f6rUequX43lXAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x162bde10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for feature in featureslist:\n",
" dist = pd.crosstab(roundedfeatures[feature],np.array(malignantlabel))\n",
" dist.div(dist.sum(1).astype(float), axis=0).plot(kind='bar',stacked=True)\n",
" plt.ylabel(\"Percentage\")\n",
" plt.legend([\"Non-cancer\",\"Cancer\"])\n",
" plt.title(feature)\n",
" plt.savefig(\"stacked\"+str(feature)+\".png\",dpi=150)\n",
" plt.show()\n",
"\n",
" \n",
"for feature in featureslist:\n",
" dist = pd.crosstab(percentilefeatures[feature],np.array(malignantlabel))\n",
" dist.div(dist.sum(1).astype(float), axis=0).plot(kind='bar',stacked=True)\n",
" plt.xlabel(\"Percentile\")\n",
" plt.ylabel(\"Percentage\")\n",
" plt.legend([\"Non-cancer\",\"Cancer\"])\n",
" plt.title(feature)\n",
" plt.show()\n",
"\n",
"#shift MeanHU values so the lowest value is 0\n",
"roundedfeatures[featureslist[0]]=roundedfeatures[featureslist[0]].values-min(roundedfeatures[featureslist[0]].values)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model selection, evaluation, and optimization"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Performance of features discretized by transforming to percentiles and rounding, multinomial naive bayes\n",
"[ 0.58059024 0.58059024 0.57812448 0.57812448 0.57812448]\n",
"Cross-validated logloss 0.579110784073\n",
"Performance of features discretized by rounding, multinomial naive bayes.\n",
"[ 0.56471945 0.56237559 0.54337234 0.54241964 0.54991449]\n",
"Cross-validated logloss 0.55256030172\n"
]
}
],
"source": [
"#Naive bayes may work better if discretized into categories.\n",
"#Compare features discretized by transforming into percentiles vs rounded\n",
"\n",
"featureslist=[\"Diameter\"]\n",
"clf=MultinomialNB()\n",
"scores=cross_val_score(clf,percentilefeatures[featureslist], malignantlabel, cv=StratifiedKFold(n_splits=5, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
"print(\"Performance of features discretized by transforming to percentiles and rounding, multinomial naive bayes\")\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"\n",
"featureslist=[\"Diameter\",\"Spiculation\",\"MeanHU\",\"Eccentricity\"]\n",
"clf=MultinomialNB()\n",
"print(\"Performance of features discretized by rounding, multinomial naive bayes.\")\n",
"scores=cross_val_score(clf,roundedfeatures[featureslist], malignantlabel, cv=StratifiedKFold(n_splits=5, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gaussian Naive Bayes\n",
"Average precision score: 0.414522511619\n",
"Area under curve: 0.638017121599\n",
"Cross-validated logloss 0.585657323734\n",
"---------------------------------------\n",
"Multinomial Naive Bayes\n",
"Average precision score: 0.409703998488\n",
"Area under curve: 0.645878714535\n",
"Cross-validated logloss 0.744464855609\n",
"---------------------------------------\n",
"Logistic Regression\n",
"Average precision score: 0.413949770137\n",
"Area under curve: 0.645074178656\n",
"Cross-validated logloss 0.552311390514\n",
"---------------------------------------\n",
"Random Forest\n",
"Average precision score: 0.311568121202\n",
"Area under curve: 0.559712697772\n",
"Cross-validated logloss 1.53144104481\n",
"---------------------------------------\n",
"Gradient Boosting\n",
"Average precision score: 0.351506917541\n",
"Area under curve: 0.589460355878\n",
"Cross-validated logloss 0.580872393613\n",
"---------------------------------------\n",
"SVM with rbf kernel\n",
"Average precision score: 0.260709649793\n",
"Area under curve: 0.488246828918\n",
"Cross-validated logloss 0.579591160447\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Wd0FFUDh/HnJpveOyEQCC30uhRBESyUiAIKYgcRy6ug\niGJBUcEO2FGKKAgKQiiCEgFRUVSIhF4klJCEQEjvdct9P0xYEghhk5Cl3d85HpnZ2Zk7gex/51Yh\npURRFEVRAOwudQEURVGUy4cKBUVRFMVChYKiKIpioUJBURRFsVChoCiKolioUFAURVEsVCgoiqIo\nFioUFKUKQoh4IUSRECJfCHFKCLFACOFe7vWeQojfhBB5QogcIcSPQojWZ53DUwjxsRAisew8R8u2\n/W1/R4pSNRUKinJht0sp3YGOQCfgZQAhxHXABmA1UB8IA3YDfwshmpQd4wj8CrQBBgCewHVAOtDN\ntrehKBcm1IhmRTk/IUQ8MEZKubFsexrQRkp5mxBiM7BXSvnkWe/5GUiTUj4khBgDvA00lVLm27j4\nilJt6klBUawkhGgADASOCCFcgZ5AZCWHLgNuLfvzLcA6FQjKlUKFgqJc2A9CiDzgOJAKvA74ov3+\nJFdyfDJwur3A7zzHKMplSYWColzYECmlB9AHaIn2gZ8FmIHgSo4PRmszAMg4zzGKcllSoaAoVpJS\n/gEsAGZIKQuALcDwSg69G61xGWAj0F8I4WaTQipKLalQUJTq+Ri4VQjRAXgJGCmEeFoI4SGE8BFC\nvIXWu2hK2fGL0KqdVgghWgoh7IQQfkKISUKIiEtzC4pyfioUFKUapJRpwELgNSnlX0B/4E60doME\ntC6r10spD5cdX4LW2HwQ+AXIBf5Fq4KKtvkNKMoFqC6piqIoioV6UlAURVEsVCgoiqIoFioUFEVR\nFAsVCoqiKIqF7lIXoLr8/f1l48aNL3UxFEVRrijbt29Pl1IGXOi4Ky4UGjduTExMzKUuhqIoyhVF\nCJFgzXGq+khRFEWxUKGgKIqiWKhQUBRFUSxUKCiKoigWKhQURVEUizoLBSHE10KIVCHEvvO8LoQQ\nnwohjggh9gghOtdVWRRFURTr1OWTwgK0hcrPZyDQvOy/x4BZdVgWRVEUxQp1Nk5BSvmnEKJxFYcM\nBhZKbZrWrUIIbyFEsJRSLV2oKIoCmA0G4vdm8PvGSHL276TIz45XPpxXp9e8lIPXQtAWHzktqWzf\nOaEghHgM7WmC0NBQmxROURTFllITcjm6Iw3yTkBGHDknszia1wGz8SSleesB8EwJqvNyXBEjmqWU\nc4G5AHq9Xi0AoSjKVaO4wMDfyw9zcMspAOwwAMGY0b4AG3KXgYACP1eCR75e5+W5lKFwAmhYbrtB\n2T5FUZRrwjff/0j+pjPLdyeELMHOvInefznQ8ATsaOxHsYcXDk7OTP58KUKIOi/TpQyFNcBYIcT3\nQHcgR7UnKIpyNYo8FElUXBQA9qWO6EqdaLCvMz6ntKeBdN+/yfJcxPVbBM2OOBIb7MOGdt6W9z/w\n3sc2CQSow1AQQiwB+gD+Qogk4HXAAUBKORuIAiKAI0Ah8HBdlUVRFMVWpJQU5pby49Ef+fPw3wQc\nCyetKBUXwmiR0QkHo1uF430D3mXY7oOkHvVgS9MG/NrW0fJaz7vvJ6yjHt/6DWxW/itujWa9Xi/V\nLKmKolyOIg9FkjBXh0u+1zmvCfscHM12GKQznTwW4yzzkSdPotubj9ls5o92zTBIEwA3jX6CwMZN\nCQlvddHKJoTYLqXUX+i4K6KhWVEU5XJmyExlxT9z+WVnPp3z+wEQ23A5+pJcepam09RpC5+bBpPn\n34Zox17k/NeGgTE/4pSVjUOfG1mdlQTShLO7B/e//SHe9YIv2b2oUFAURbFSSZGRotxSQKsm2r4u\nAXnqAIfifYGenJ6WoafPDO4xxeJkX8xGvwjecn+efp2ac3vxMQZ/8D4lh4/g3KE9bm+/waI5HwEQ\n3Dycwc+/ipu3z6W5uTIqFBRFUSpjNkPGYZASClJJ/3UZS2PurORAX/KcMkh3PUm6fSEE9Manx2w6\nddcakYcA/ffsIXX6ZJK2bcOhUSgB06dBx/YsmzoJAFcvb+59c4bNGpOrokJBURSlTGTMJ0QdWAwI\nKM0HYwkAQtrRMGkEgUCG73ZyvPcDYMTIH/4HMNkbCDY8wKh293Nf9zMDbEsTEkj9+GPyfl6H8PXF\n4ZmxHMXAvm/nwLdnrvvo5/Mvi0AAFQqKolzjImMjifpvCeQkEUMRAPpSE9g7gGd9/NN60fi/WwAw\n2RlZ23yr5b25RQYobsCgprcxvf/jlv3GjAzSv5hF1tKlCAcHjvTvw6FTx2HTz5ZjmnXtQctefQht\n1wGdg4ON7vbCVCgoinJN0sYOrCUmZTsA+qJi9MKOiEA9w4d+Zznu8yd+A8De34lviotJjR1N9zBf\n7UV7GNwxxPJ0YC4sJPObb8iY9xXm4mK8hw0jt/d1HJr7GQBBTZrT/c67CW3THifXil1TLxcqFBRF\nuSZFHf2J2FPb0ZeUEFFQwPDBi6DpTVBWjZOZXMDuX7Xp2RyauPNOZhro4J2h7SpUEQFIo5HslStJ\n/2wmxrQ03G+5mcAJE0jMSOGnGW8DMOzVt2jUrqNtb7IGVCgoinLVKT+C+ByGIsg6Rqwxn/DSUuaf\nSoWXjoOzp+WQhP0Z/PTZbsv2tykZ4HBuIEgpyf/9d1I/+JDSo0dx6diRkE8+xrFtWxa/+hxpCccA\n6DZ4GKFtO9TNzV5kKhQURbnypR+B3CQik/8mKi2GmJwjAOi9mp05piAdSgugJA+AcCDCJQSe/5vF\nu7NZvUtrPHY0SHrsKwYgrr6Otfl5FNudGwhFu3aRMn0GRdu34xgWRshnn+Jxyy0IIZj9+IMUZGcB\ncPuEl2nRvZcNfggXhwoFRVGubId/IXLNSKLc3IhxcQa09oGIggKGH0s89/iG3aHVHaAfzeKd6Yz4\n7igHjmbhZxK0CvKgbZw2DsFkB0mBOjoE+VZoNyg5doy0jz4mb8MG7P39qffGG3gPuwuh0z5Oi/Pz\nLYHwzKKV6Bwdzy3DZUyFgqIoVx6zici/phAVuwJMpcT4+wGg92pBRFBXhtfvDcAvB1L460i65W0n\n7RuQa/SGvcDe3UQfyyTEaMcT+VqYUBYIPsFujHilK0/rzixOaUxPJ/2LL8haugzh5IT/uLH4jRqF\nnVvFBuNju7WG614jHrziAgFUKCiKcoWwtBOYDJBznBhDJjjaoS+xR+8RRkTbBxneYniF98xbt4UD\nGa60Dvas9Jx3unnS9IQBgNbX16dVz2Ds7AX+DT2ws9ManM0FBWTMX0Dm119jLi3FZ8Td+D/5JDp/\n/0rPWZSTDUDz7j0v1q3blAoFRVEua5FbpxN14k9i8uMBrWoIQA9EtL6P4Te8YekxtDg6kdW7zizL\nciA5l9bBnix9/DoAThzKoijPwOFtKWSnFpJ5UguELgMb0WNw0wrXlQYD2StWkDbzc0zp6Xj060fA\ns+NxCgs7p4xGg4F9v//Cv6sjyUtPA8DZzf1i/hhsRoWCoiiXn6JsOPgTrJ9ElLcTsY6O6EtLtXaC\nvALo8SR0fxx8GlcIguhjmQCWcQStgz25o0N9fpq5m5T4XIrzDRUu06RjAE07B9CiWz3LPikleRs3\nkvbBh5TGx+Oi70LQzM9w6Xhud9KMpERSE45xaMtmjmzTBrX5N2xEs249L/kcRjWlQkFRlMtG5M9P\nEnVyMxi0pwG8nYh1ciLcK4z5vd4HYOlRHSv3ZkBCMpBcIQi6h51pFC7IKeGnmbspWHmchLJJ7MI6\n+NPmhhDcfZzw8HPG0bniR2Dhjh2kTp9B0c6dODZtSoMvPse9b9/zTkGx9rMZpMXHWbYfeO8TgsKa\nVnrslUKFgqIol4XIFfcwNX8/6EDvGAB2OvBqQLjOCX/RgxE/5ADnPg2UDwKAtON5zH3mDwwl2toE\nbt5OhPeoh35gY7yDXCu9dklcHKkffkj+xl/RBQRQb+oUvO+809KjqDI71/9EWnwcYR270Gfkozi7\nuePq5X3e468UKhQURblkIg9FEnVoJSTFWLqT3ufSl11Z92oH5JcddywTyDznaeBseZnFLHt7GwBe\nAS6Etvalx9Cm5zwRnGZITSV95udkr1iBnbMzAeOfwfehh7BzrTw8AKTZzLI3J5F0YB8A+tvvtOnK\naHVNhYKiKLZx+BfITqiwKyp+ObF5xwkH2hebMXAbc/67kdMBcFpVQXBabnoRu3/TpqVo0T2IWx9u\nc95jTfkFZH79FRnzFyANBnzuvRf/J/+Hztf3vO85raSokKQD+whq0owuEYOvmJHK1lKhoChK3SrO\ngc+6QIHWKyfSw42osr79sY6OhJeW8vJJByaHzEMA3cO4YACcLXpNHDFR8QAIO4F+YONKjzOXlJAd\nuZz0L77AlJmJx8ABBI4fj2OjRlZf67evZwPQvHsvWt3Q1+r3XSlUKCiKcnEk/APzB4KDK9iVmwq6\nJMfyx8gBrzI1diEAuqJQXNGRYdeJmNtGs7QaIQAgzZKVM3aQfjwPo8EMwA0jWtCyRz0cXSp+tJny\n8sha8j2ZCxdiSk/HtWtXAmfPwqV9e6uvZzaZWD3jLeJ2aNVTra/CQAAVCoqiXCx/aL2DCGoDIWfW\nh48sSiSqNAW8Q4kpC4RgwwP4iN4sHX1djS4lzZKvJ/5FcYHWxbT9TQ1o1MaP0DZ+FY4zpKaStWgR\nWUu+x5yfj9v11+P36KO4dutq9aI2Ukr2bfqFYztjLIEw6sNZePhVPnjtSqdCQVGUiyNuE/iHw5iN\nwJkRyDF5ewHQE0qoSzsMuR1ITuqITw3Xpt/35wn+WBwLgM7BjlHv98LJteIiNaUJCWR8PZ+cVauQ\nRiOeA/rjN2YMzq1bV+taeRnpbF3xPXt+XWfZ98B7n+AX0rBmhb8CqFBQFKVmMo/BnmWAhP2rAIj0\ndGfBsvtILyih0O4QAK7mFniZulGY0Jv9lu6kngzuGFKty0kp+f7Nf8k8WQBoTwcdbwmtEAhF+/eT\nMW8eees3IHQ6vIYOxW/0w9VqMzgtI+k43748HmOptiTnXa+8ScPWbbHXXT6rpNUFFQqKolRP4lb4\n7S2I31xhd6SHG1NlGhSlYSwKw9NFCwMfU2/LMdb0IjqbyWjm29e2kJ9ZYtk3aGwHGrXVqoqklBRG\n/0vGl19S8Pff2Lm74/fII/g+9CC6gACrrmE2mcjPzGDfpl+QZjNFeXns/kVbj8G3fgNGzvgcO3t7\nq8t8JVOhoChK9fz+NpEZO4iqFwj+zUk1e5GeX0qhvfZkEGx4gFFd7q3WB39lzGaJ2WjmcEyqJRC6\n39GEVr2CcfNyQprN5P36KxlfzqN4zx7s/f0JmDABn3vvwd7Dw+rr/LZgDjt//rHS13oOv58ed91j\ndfvD1UCFgqIo1jEZ4cAPRGbsYmrZVNWueS7kFmnVOZ4uLehdv1+FBexrIj0pj9joFHb9UnEthPun\n9MA7yBVZWkr2ipVkfPUVpXFxODRsSL033sBr6BDsnJyqdS2zyWQJhK6DhxHQsNFV2c20OlQoKIpy\nftFzITNO60GUqvW8ifHTpnIoTh5KXnb3GlUJVaa02IjZJFn98S5t4joBgaEeNO0ciHegK57ukowF\nC8hc8A3GU6dwatWKkA8/wKNfvyqno6iMlJKtK74ncb+25GaHWwfS+75RtSr/1UKFgqIo5zKWwj+f\nwm9vam0F/n7g4kwHgz3epgacSu2MIbt7pYvY18TGBQeI3XrKsq1zsufxT27UipKVRdaibzn8xHeY\nc3Jw7daN4DffxO36XjWq1kmJO8Kq96dYVkdz8/Gl04Dba30PVwsVCoqinGEyELntY6J2zdW26wVa\n5iQaUG8skb9rc/x0D/NlcN/aPx0AZKcWWgKh+x1NcHSxp3E7fwwnT5IxfwHZkZHI4mLcb7kZ/zFj\nKp3C2hrSbGbLiu/ZsnyxtkMI/jdn0VUxid3FpEJBURRN9nH4uC1R9QK16SdwAJ/GhBpcMeR2sARC\nbZ8OigsM/LPyiLYh4b9/kgG48b5w2vYOoeTwYTKmT+HE2rUAeN1+O36PjMapWbMaX9NkNLDmg3cs\ng88ixj53zbcdnI8KBUW51qXFwp8ziIxfqwWCkxPh3k25tf5nrN51otzYgtq3HSQdzGT1x7ss225e\njji7ORDaxpdGrikcf/Id8n/7DeHigu/99+E7ahQOwTUc5VYmNy2VL8eOtmzfM2UaIS2rN4jtWlKn\noSCEGAB8AtgD86SU7531uhfwLRBaVpYZUsr5dVkmRVHKGEtg9VOwNxJACwQXN8KDOhHRJILlv5/g\nQHLuRWtIllJaAsG3vhv3TO4GQMHmzWTMfY+kaTHYe3nhP3YsPvffh86n9iuXSSktgeDu48udL08h\noNG5y2kqZ9RZKAgh7IHPgVuBJGCbEGKNlPJAucOeAg5IKW8XQgQAsUKI76SUpXVVLkVRgINR8P29\n2oyl9QIhIJzYkkzCfcOZP2A+i6MTiT62l+5hvpb1jWujtMjI1h+OAuDp78w9k7qQ+9NaMubNoyQ2\nFl1wMEGTXsZ72LAq1zKorgN//gaAu68fj32x4Joab1BTdfmk0A04IqWMAxBCfA8MBsqHggQ8hPY3\n5Q5kAsY6LJOiXNMiD0USdTASTu6s0Iisdwsg3C2AiCYRLI5OZNIqbb6i6k5FUZ6UkpzUInasT7C0\nGwDc3CyBowNex5CUhGPTpgS/+y5et0UgHB1rd3NnOb5/D+u++AiAu197RwWCleoyFEKA4+W2k4Du\nZx0zE1gDnAQ8gBFSSvPZJxJCPAY8BhAaWvveDopyrYn8aQxRmXuJkYUA6AG8G6H3bkhEkwiGtxgO\nUCEQatOgHL0mjv2bT1CUZ7Dsa+CVT/3t35GzaQ/OHdoT9PJL2vrHdna1urfzifr8QwDCr7sBn+Ca\nh9u15lI3NPcHdgE3AU2BX4QQm6WUueUPklLOBeYC6PV6afNSKsrlTko4tVdrJ8g7Cf9+CTrtKSDS\nnM1UmQKA3mRPhNGR4W7NYdgS0J0ZAVybQIiNPkXs1mTLB3zi/gwAPLwdaOV0CNeor7HLy8Tthhvw\ne+cbXLtaP3V1Tbl5eaNzcGDQ+Bfr9DpXm7oMhRNA+fllG5TtK+9h4D0ppQSOCCGOAS2Bf+uwXIpy\n9TgdButegoS/K7wU6V+fKDdnYuy0GtnXmgxj+A2vV3oaawLBbJakJeQR/WOcdt0yhhITp+K073GB\njbQ5hwLrO9Gi4F+c1s5Hmkx4DhyI35hHcG7Vqvb3fB6G4mJS4o9yaMtfZJw4TlbyCUJann9JTqVy\ndRkK24DmQogwtDC4B7jvrGMSgZuBzUKIICAciKvDMinK1SHjKGx4FY5HQ2HGmf0jvgWdC5GZu5l6\ncAFgRB+kt1QRLY5OZPWus7+bQXRZt9PKAsFQYiI1IZc/lhwiK7nAsr9eE09Aywf/hu507t+IBs7p\nZVNXr0c4OOA17C78Hn4YRxtU+349/jHyszIt28EtWtK8e886v+7Vps5CQUppFEKMBdajdUn9Wkq5\nXwjxRNnrs4E3gQVCiL2AAF6UUqbXVZkU5aqQcwI+63xmu157uH48NOhKZGo0UUdXEpMSA2ijkBPj\n27M8AZb/vsXy4d89rOIC9ZV1O5VSkhKfy59LDpGWmGfZf8fTHanf3Bt7BzvLcYXR0WR8MYn4f/7R\npq5+9FF8H3zA6qmrayI75RRrPnwHR2dnQFgCYdgrb+Ef2gg379p3ab0WCSmvrCp6vV4vY2JiLnUx\nFMW2Tu6Evz6GnCQ4UfbvP/w2uOtLcHSzHPbwuoeJzYwl3Dccf9GjwrQUp1kz5kCaJZHvxVQIgyHP\ndsK7nituXk5lx5jJ27hRm7p6717sA/zxGzkS7xEjqjV1tbV+nvkBWcknta+PQPJhbfU1B2cX6jVt\njhCgv/0uwjp2uejXvhoIIbZLKfUXOu5SNzQrinI+x7dBYToUpMOasWf2N+kLwR3gpleJPPoDUXFR\npOaWkF5QQrE4jrNsSGHCY0RWUSVUmahZe8jPKkEIKC02kZ2i9VQa+EQ7Aht54u5TFgalpeT8+CMZ\n876i9NgxHEJDqTdlCl5DBld76mprpSUc48Dm3wFo1L6T5f/+oY258YHRqrvpRaRCQVEuR1kJ8NUt\nFff1egZueA6cvbTxBr88ZqkmMhZoo3Q9XRriZdJGCls7Erkgp4SV07eTm14MQKO2frh4gHeQKz0G\nN8EvxB0AU34B2ZGRZC5YgDElBafWrQj56ENt6uo6WpUs82QSSf/t45e5MwG47ZkXaNmz9wXepdSG\nCgVFuZyYDHBkIyy5R9u+biy0Gwb2ThDYCoQg8lAkU7dMBbT1jzNT2tRoGuvfvzvIqaM5ljWPHV10\njHilK57+LhWOM2ZmkvXtt2R+t1iburp7d4Lffhu3Xj3r5Bv6P5GLid2yGTs7O9KPJ1j2N2rfifDr\nbrjo11MqUqGgKJcDsxkOr4e1z0Fuud5Bt74JZX3/Iw9FEhUXZXk6IH0Yjd370diHak9jvfbz3cTv\n1XotNekUgKOzPTfc3QJHlzMfCYYTJ7Spq5cvRxYX43HrLfiNGYNLhw61v98qbF/7A6VFhTTv1hPv\nesGEtGxDM30PvOvVbmI8xToqFBTlUjuxHb68qeK+xzeDbxMij6wgKk5bQP50GLiaW1CY2Z7W7v1q\nNC/Rjg0JlkC468Uu1AvzqvC6MT2dtE8+JXvlShACrzvu0Kaubtq0BjdXPTmppygtKqRFj+u5/dmX\n6vx6yrlUKCjKpfLfj7D+FcguqyJx9ICRa8C/OZEJ64ja/VGFIHBFqyoqvwRmTaQfzwfggTd74BVw\nZvI5c2kpWYsWkf7FLMwlJfjcey9+j4yu9dTV1RH51qsA6qngElKhoCiXyqb3tUBofw+06E+ko4kF\nf88gvaCEQrtDgNaAbMztSGufgQA1qiqqjFegiyUQpJTk//orKdOmY0hMxL1PHwJffAGnMNtNMW0y\nGlj6+kvkpGgrsF0/4kGbXVupSIWCotjCsc3wze3g4g12OijJJ9LFTpu22rUUkn4801ZQ0gRXpxZ4\nmbrhY9/7ooRAabGRdXP3kRqfi7HUjIefNi9ScWwsKe++R+HWrTg2a0rDefNwv75Xbe+22g5s/p3k\nI9q4gwff/7TOJslTLkyFgqLUpfQj8HU/y1QUkf7BRDlrv3YxxmxAm7E0NbekYlvBw7Vfw6C8X7/5\nj+MHtHELbXqHUC9YR/Lrb5AdGYm9hwdBk1/FZ8QIhO7SfCREr1wKaIEQ2LjJJSmDolGhoCh15at+\n2txEZSL7jGVqwhowgj5Ijx6IaBKBIas7kzZpk9HVpq2gKmkJ2sjkxz/oSc7SJaRP/ILsoiJ87r+f\ngKeexN7btovXpx9P4Jvnn0Ln6ISdvT2lRdpAORUIl54KBUW52Iqy4INWZ6qH/FuAeyAxCWsAeO26\n1y76+gVnO3Ush5OHsomNPkVWcgFSgqMDxN85GENCIm69byDoxRdt0qPotN8WzGHvbxsAMJaUABAY\n1pR6TZuDlLTufVNVb1dsRIWColxsyx8BYxFRboHEevgR7h4IYJmt1JDVnRFztgBVz05aU2aTmRXv\nb6+wr4npAAH/rkDUc6Xh3Dm497btqGBDcTE7f/4RD78AwntqA9A8AwLp1H+QTcuhXJgKBUW5yCJF\nAVH1Aon1DKiw5vHqXSdYngDRx85UFVk7FcWFlBYZ2ftHEiaDmeSjOQCEtvSkU/bP5C5bir2HOwHj\nn8Ln3nsQDg61vsfq+mbiUwAENA7jxgdG2/z6ivVUKCjKxWAyEHloBVH7FxJjOgkuzuh9w89Z8/hi\nBkF5S6ZGk59VUmFf/ZVTycuIw/fee/Af+xQ6H9tPJZ24bzerZ7xtaTMY/PwrNi+DUj0qFBSlBk5P\nOUFpAaT9B4ZiYly0bp76omLCAoaxP+GOCk8GF7OKCMBkMpOVXMjhbacsgfDgCEHatOmUHjuGW69e\nBH31AU7Nm1+0a1ZHaXERkW9qIWBnb8+D73+KnV3dTJynXDwqFBSlGs6ef0hvAIza7KJ65yAi3JpQ\nz9iNB7cGA5l18mRwbE86h7elcHhbimWfENDauJ0T//sax8aNaTB7Fu433mjzKaWllBza+jdbVyyx\nTGbXtu+t9H/iGZuWQ6k5FQqKYqXys5PqHXyJEB4MP7ZZe/ENrR5/cXQiD9ZBb6LTDm5N5tcF/1m2\nm3X0ITDxH5xXz8LOzY2Al1/C5957EY6OF/W6VTEZjWxduZSSwnz2blyP0VBqee2G+0bRtu+tNiuL\nUnsqFBSlKqUF2n9A1N5vAHgtPYPBRVmYTQaM2PORz6vE1GFvotIiI9ui4jGWmtj3hzaDao87GhOW\n/jdpn0/CnJeHzz0j8B83zubtBiWFBXw9/nEKc7SBeA5Ozji6uHDvmzPwb9jIpmVRLg4VCopyHpG/\nTCDq6I+W7VhHR/Slpdh3/YkWUcmAdWsd18aO9QlsWXXUsu3kpkPfXuLx+dOkHD2KW8/rCHzpJZxb\ntLgo17uQ3PQ0y+jjtMRjliUxnVzdePTzr3Fydavq7coVQIWCopQXtwn2RBIZ/zNTfdy0XkT2XuRJ\nZzxLjJhlOyaUBUJdVA9JsyQrpZCdGxKQZoiN1iaI6zKgEW1bSjI/nEbBu5uRjUJp8MUXuPftY7N2\ng6L8PL586mHLtounF3b2OroPHU67m/qrQLhKqFBQFACzCbITiNw8lajiJGJ8tA+4tsX9KGQYMWXV\nQl5hvnQP46J3KT3t35+OERMVb9l28XBAf3M9Arcv5firS7BzdibwhRfwfeB+m7YbAKyf9TEATfU9\nGPzcJDVp3VVKhYKipMXC592I9HBjqr8fODsR6tKOQ3HN2JLdne5hF79a6Gy56UWYjGZiouJxcLLn\npodaEdbWh5zly0h/fSJZeXl4Dx9OwNPj0Pn51UkZzsdsNnF0WzRHY7R5nG57+nkVCFcxFQrKtc1s\ngnm3ngkEYKj3CBZu6QTUTRXR2dbN3cfRHamWbTt7Qb2iw8Tf9S6lR47i2r07QZNexjk8vE7LcTZD\ncTEJ+3bqSwXdAAAgAElEQVSzevqbln29RjyIg5OzTcuh2JYKBeXaVZgJs3oR6Wi0BMKAemNZ+HsD\noO4D4cBfJ4nfm86x3ekA9H2wJWRn4PDjVxwfsx6H0FAazPwM95tvtvl4g/ysTOY88ZBl28MvgEHj\nX6R+i5Y2LYdieyoUlGuT2QQftgJjsTaTKRBseIDIixgIZpOZ7esSSInPpbKP9NPrJPuFuNPpxgC8\n/1xI5nffYXZyInDi8/g8+CB2Nm43AEjct4fINycB4B0UzIAnnyWkZWubl0O5NFQoKNcOkxFO7dYC\nYeciMBYTGdCAGBc7KGqCj+hd40Zkk9HMb4v+ozjfYNmXuD/T8ueAUI9z3uPf0J22NwRT/8RfpL3w\nDJk5OXgPG0bAM0+j8/ev+X3WQMxPq0jYsxOEIH6XNsNqcIuWDHvlTRydXWxaFuXSUqGgXBuObYZv\nKk7THOnhxlR3rcE0WNeTpWNqvtrZjvUJHIrWpp0IbOyp/b+RB2azZODj7fD0P/eDtWDLFlLeeYpT\nhw/j2rWr1m7QqlWNy1AdxtJS/vj2KzJPJIEQJO7dBUC9Zi0IDGtKy1430vX2O21SFuXyokJBufqZ\njJZAyPBqwxy7ezni+B/bXLUpKoINDzCq3b1Wnao430B6Up5lO35fBmkJeZw8rI3ovX9qD7wDXas8\nR2l8PCnTppP/2284NGhAyKef4HHrrTZtN/h55gcciv4bgPotWlGvaXO6DBpKy562XWdBufyoUFCu\nboZiWDkGgBT7enRPeQUH72icvbVAGFBvLNP7P37B05hN2joFP3y4s9LXg5t50aRjQJWBYMrLI33W\nbDIXLcLOwYGACRPwHfkQdk5ONbixmstJPWUJhP/N/RZXL9suxalc3lQoKFev4lx4r6Fl877C5+ge\n5ku+zxESiyoui1mV5CPZrJyxw7Lt5Koj4n/tLNue/q64+5z/g12aTGQvX0HaJ59gysrC686hBI4f\njy4goIY3VnP5WZl8N2kCoE1WpwJBOVudhoIQYgDwCWAPzJNSvlfJMX2AjwEHIF1KeWNdlkm5hpQL\nhDvqj8fZexOunls4nhmPPkh/wUAwGc1EzdpjaTB2cLLn9nEdCAzzxN7eusFbBVujSXn3XUpiY3Hp\n0oWgL+fi0qZNze+pFqSUlm6mji4uqs1AqVSdhYIQwh74HLgVSAK2CSHWSCkPlDvGG/gCGCClTBRC\nBNZVeZRriJSw/MwcPUsG7MIveyqxmfEEEk542YpoF7JzQ4IlEG55uDUtugVZXe9fmphI6vTp5P2y\nEYf69Qn5+CM8+ve3+XgDs8lEwp6dbP5+ISaD1jPK0cWVRz79Uo1KVipVl08K3YAjUso4ACHE98Bg\n4EC5Y+4DVkopEwGklKnnnEVRqmv9JNi/ikgPNz716Uyz7KnEZsZa1ks+H2mWLH8/BkOJCYQgK1mb\nMvvBt66rtPdQZUz5+WTMnk3mNwvBwYGA8ePxHTUSO2fbjQIuzM3h+P49GEpKLPMVnda8W0963HUP\nrp5eNiuPcmWpy1AIAY6X204Cup91TAvAQQixCfAAPpFSLjz7REKIx4DHAEJD63bKAeUKlJ9K3JLn\ncD8VjREdf7tmE1UvsGx5zAQgwKqng7TjeaQmaD2LmnYOwDfYlYatfK0KBGkykb1yJWkff4IpIwOv\nIUMIePZZHIJs//Ab9dkMbcxBGSdXN4ZPfpuAxmFqOUzlgi51Q7MO6ALcDLgAW4QQW6WUh8ofJKWc\nC8wF0Ov10ualVC5PqQfh5A744X80Kdv1nk8nvvPWPvhCXdoxquNQqxqT0xLz+PUbbUWz28d1ILSN\n9ZPOFfz7LynvvkfJf//h0rkzQbNn49KubbVvp7Yyko6z/K1XyM/SqrxGfTALewcHvIPq2bwsypWr\nLkPhBNCw3HaDsn3lJQEZUsoCoEAI8SfQATiEolRh1aZ/GbrpzDKP2dKN97q/yNq0ecCFexaVFBn5\n4cMdFOUZEHaQn1lieS2oiXVVK6VJSaROm07ehg3o6gcT8uEHeAwcaPN2g5LCQo5s28K6Lz6y7Bv6\n0uv4NWhYxbsUpXJ1GQrbgOZCiDC0MLgHrQ2hvNXATCGEDnBEq176CEU5j8XRiazedYI7jk8HHex1\n7Mgcr/G4NE1hXcrngHVdTVd/tJP04/k4ueoI6+CPlNCwlS9h7f1xdKn618KUX0DGnDlkLlgAOh3+\nT4/Db/Rom7YblLdh9ieWcQeN2nfirklTbR5MytWjzkJBSmkUQowF1qN1Sf1aSrlfCPFE2euzpZT/\nCSHWAXsAM1q31X11VSblyrY4OpE/Vn/FKPu/Gajbhhk7Dt75JAXxa/gjJQawLhCObE8lLVFrO7h/\nag9c3K2bdE6azeSs+oHUjz/ClJaO1+A7CJgwAYegoNrdWC0civ7bEgijP5mLV6D1PaQUpTJCyiur\nil6v18uYmJhLXQzFRhZHJ2K/eToj8rX+B5EebkS5lS376N+cmAKtL4M+SE9Ek4gLBkJSbBarP9Ia\nYQc+0Y4mHa0bQFZ6/Dgnn59I0e7duHTsSNCkl3Fp376Gd1V9uelpHPn3H8r/uv69dBGGkmIABo1/\nkfDrbrBZeZQrjxBiu5RSf6HjLvikIIRwBZ4DQqWUjwohmgPhUsqfLkI5FeW8FkcnsvKHSEb4r+Dh\neoHk2XkS61QKgD6wMwg79O5B5w2D2K3JFOZqffMlki0rj1pea9Uz2OpAyPlpLadefx3s7an//nt4\n3nGHTb+NL397coXeROXpnJy4Y8Ikwjp2sVl5lKubNdVH84HtwOkpJE8AkYAKBaVOnG43iD6WyUN+\nqywL4OiD2qOHKp8IDKUmDmw+yeGYFFKO5Z7zuruvE7c+3IbgZhduTDYXFHDq7XfIWbkSl06dCJkx\nHYeQkFrdW3XlZaZbAuHmR56kZa8zE9YJIXBydbNpeZSrnzWh0FRKOUIIcS+AlLJQqEpLpY5MXD+H\nn46uBSAo3IFVdjmAdW0Ffy49xN7fkyrsu+e1bnj4ag3Awk7g4GhdP/3i//7jxITnKI2Px+9/TxDw\n1FMIne17cOdnaAvx9HnoUTr2u/AobEWpLWv+lZcKIVwACSCEaAqUVP0WRameyEORRMVFEZMSg84N\nQl3aElh8DAqLiXAIvGAg5GYUWQJBf1tjOvdvhL3ODju76n1/kVKStehbUqdPx97Hh9D583HrcfaY\ny7qXdeokXz/zmGVbdS9VbMWaUHgDWAc0FEJ8B/QCHq7yHYpipfJhABBc6M7IwmTuz4s6c9DLO87z\n7jMObD4JQN8HWtL6+vo1KosxK4vklyeRv2kT7n37EvzO2+h8fGp0rtr46/uFRK9aBkBws3CadbtO\nLYep2MwFQ0FKuUEIsR3oAQjgGSllep2XTLkmRB39idjMg+iLiokoKGB4XqL2gp0O+rwMHe8Hp3OX\nsjzNZDCTfDSb7esSAGjRvWbdQwu2RnNy4kRM2dkEvfIKPg/cb/OunUaDgQN//GoJhK6Dh9H7vlE2\nLYOiWNP76Fcp5c3A2kr2KUr1SQn5qUQuuZ0YpyL0RcXMP5XKMuONLL59ptXrI2enFPLdG1vLKjah\n++Am6ByqN7ePNBpJmzmTjDlzcWzcmIZz59hsSczy4nZuY9V7Uyzbd770BmGdLth7UFEuuvOGghDC\nGXAF/IUQPmhPCQCeaJPdKUq1LY5OxPnPtzHZ/WjpVWSf24ovPUfgcd3DVgcCwJ7fk0BCWAd/Grf3\np1XP4GqVpTTpBCeff56iXbvwuutO6r3yCnauVS+lebFlnTrJjqg17Fqvdebr2P82OkcMxqdezarA\nFKW2qnpSeBwYD9RH65J6OhRygZl1XC7lKvXjzkTuLBcIIaX3cdON91crDIylJgpzS9m7SWtY7v9Y\nW6sXvTktd916kidPBimp/8EMvG67rVrvr42SwkL+XroIs8nE7l+0thM7e3vqh7fi5tH/s1k5FKUy\n5w0FKeUnwCdCiHFSys9sWCblKhV5KJJkh68tgWDtcpinFRcYiNuVxu+LDlr2Ne0UUK1AMBcVkfLu\ne2QvW4Zzh/aEzJiBY0Pb9OzZs3EdyUcOse/3DZZ9ji4uhPfsTb/HxtmkDIpyIdY0NH8mhGgLtAac\ny+0/Z90DRTmfievnsO7UTNChNSq3vq9agfDrNwc4uOWUZbtxOz/COgbQrLP16xUUxx7ixIQJlMbF\n4ffoowQ8PQ7h4FCt+6ipzUu+4d8fIgFwdvegcYfO9P/feHQ2ur6iWMuahubXgT5ooRAFDAT+AlQo\nKFWKPBTJgl2rSC8oodBOmw39tfQMbqE+Pj0nWX2elGO5lkDQRzSmy8BG1WpQllKStWQJqe+9j52X\nJ6FfzcOtZ8/q3UwNlRQWsGH2p5ZJ6yKenkirXmoZcuXyZc04hWFoaxzslFI+LIQIAr6t22IpV4MF\nu1aRkH8YU3EwbXSOjMhLZnheAbz4C+icrDrH8f8yWfPJLgCGPNuJkPDqjRswZWeTPHkyeb9sxK33\nDdR/9110ftYvoFNbi156hpyUU+gcHBn5wRdqwRvlsmdNKBRJKc1CCKMQwhNIpeLiOYpiGYR2Wmpu\nCQn5h7EvDuCDpo/Tf0vZUhojfwIX6z7Yi/MNlkAICPWgfgvvapWpcNs2Tkx8AWNGBoEvvojvyIds\nvlh9Tsop/EMb89C0z9SU1soVwZpQiBFCeANfovVCyge21GmplCvG2SOSQ13akZFfjLEknxDsGVO0\n60wg9HoGwi48vfOpuBy2rT1G4n5tWckGLX0YPL6T1WWSRiPps2aTPmsWDg0b0HjJElzatqn+zdVC\nUX4eCbu1kdjBzVqoQFCuGFWGQtnEd+9KKbOB2WUL4nhKKffYpHTKZS8qLorYzFhCXdoQkBHAo0e2\n08t+f8WDer8ADbtBk75VnktKyYZ5+zmyPRUAD19nAhp50P9R69c7NiQnc2LiRIpituM1eDBBkydj\n727bmURNRiNfPHKvZbtJF9vPnaQoNVVlKEgppRAiCmhXth1vi0Ipl7/TTwixmQcJdwth4v4kWpf+\nDPZgFvbY1e8ENzwHgS3Bt4lV5/zl6wOWQOg6KIxug8KqVaa8jRs5+cqrYDBQf9r7eN1xR7Xvq7ZS\njh3lh+lvAuDi4cltz7xAwzbtbF4ORakpa6qPdgghukopt9V5aZTLn9kMa8YSlbONWEoJLyokIjmB\n1qUF2uuj1mIX2hOsrLuXZklqQh5/Lj1Eary2/sHo6dfj4mHdEpkA5uJiUqdNI2vxEpzbtCHkww9w\nbNSo2rdWG8UF+WxdsYTta1cD4Ozmzogp7+MXoprflCuLNaHQHXhACBEPFKCNbJZSStutRahcFiau\nn8Oe499T35hErKMjDY06njrpjcSbt/1H0rZdJwY37lWtc0b/GMf2nxMs27eP61CtQCg5coQTE56j\n5NAhfEePJnD8MwhH699fGyWFhax4ezJ2Oh0nDp6pMrvp4cfp2H+QakdQrkjWhEL/Oi+FcllbHJ3I\ngr1LSHb4FhygvhF0sjFZdr2ZHtKbwR1DeKUa01SYzZKN8w+Ql1HEqTjt6WDQuA6ENPdGZ+UiOFJK\nspdFkvLuu9i5udHwy7m432C7NYrjd+9gxTuvWbYbtm6Hm48vN9w3Ek9/6wfUKcrl5kIT4j0BNAP2\nAl9JKY22KphyeVgcnciU3+fiGKxVi7yWnsFwl0bwyNoLvLNyKcdyWf5+jGW7QUsf6jf3plEb68cO\nmHJzSX7tdfLWrcOtZ0/qv/8eugDr1luujdKiQpIO7ufvpd+Sekxb79krqB6PfDzX5l1dFaWuVPWk\n8A1gADajjWJuDTxji0Ipl9bpJ4Mcu38JLI3HMbgUKAsEv84w7OsanVeapSUQ7HSCh9+7Hmf36k3z\nULhjJyeffx5DaiqBzz+H7+jRNvlA/vXrWexaXzEIb5/wMs279VTVRMpVpapQaC2lbAcghPgK+Nc2\nRVIumbxTvPvzu/yUsYdcV20dJX+K8S+CCNeGDH9wGQTWbK2BP5bEsu+PEwCEtvFl0NgO1fowlSYT\nGV9+SdpnM3GoX5/Gi7/Dpb1tmrVy01LZtX4tngGBhIS3pnPEYAIaNcZep+YtUq4+VYWC4fQfpJRG\n9W3o6rU4OpENOw5xS+FjLPZ3A1fKrYRWAI9vhuCafQDH7Upj6+o4spK13kmN2/tzy6hW1QoEQ0oK\nJ194kcLoaDxvu416U97A3t29RuWprpzUU8wbNwaA1r1vptfd99vkuopyqVQVCh2FELllfxaAS9n2\n6d5HnnVeOuWiWxydyOpdJyrsM8Rv5V7/6ZYprYd6383UAXdpL/o1A131evMkHsigKM9A+vE8dm08\nDkCzLoG069uA+s2qN1VF3u+/k/zyJMwlJQS/8w5eQ4fYpLomK/kEyUcO8ed38wFo1rUH1w27p86v\nqyiXWlWhsFtKaf3cAsoVYfWuExxIzqV18JlMv9v/wzNrHHR9ieGta/5tuCCnhB8/3V1hX5cBjegx\npGm1zmMuLSV1+gyyFi3CqVUrQj74AKcm1RvMZq3S4iKObtuKyWQC4HD038TtqDgsJ+LpidjZVW+p\nT4PBQFJSEsXFxRetrIpyIc7OzjRo0ACHGk7LXlUoyJoVSblcLY5OJPpYJt3DfFn6+HWW/Q/P0769\nV3fRm8qYjGYAegxpQtPOgTi56nBxr96TRkncMU489xwl//2Hz0MPEvj889jVwdiD5MOxrPviIzJP\nJlX6ep+HHqVJl664eXnj4GjdrK7lJSUl4eHhQePGjVVjtGITUkoyMjJISkoiLKxmX6KqCoVAIcSE\nKi7+YY2uqFwyp6uNBncMKZumYi1kxBFrZ0Zv51XrQNixIYGYqHgAXD2d8A6s3nrHUkpyVq7i1Ftv\nYefsTINZX+DRt+r5kmoq48RxFr/6nGW7Y//b0A8ayulVZ129vHBwcj7Pu61TXFysAkGxKSEEfn5+\npKWl1fgcVYWCPeDOmbWZlSvY6aeEFs328UvWcmIOal1D9UXFhAMR4RE1Pnd+VgkLX/kHadYeLtv1\naUBoG99qncOUl8epN6aQu3Ytrt27U3/aNByC6mYQmMloZMEEbS3ktn37cetjT1W7ashaKhAUW6vt\nv7mqQiFZSjm1VmdXLguLoxOZtGovDt7RJDusIjmlXO+ihrdCxAxwr/ngrz8WH0SaJe6+TvS+J5yw\n9v7Ven/R7t2ceO55DMnJBIwfj9+jYxD2dfMhnbhvNzvX/QiAh18A/R4fpz64FaWcqkJB/aZc4U4v\nhxmXno9LKOjcjgFlg9DyCmDwF9Cp5o3KSQcziV5zjFNxOQDc90YPHKycpgJAms1kfPUVaZ98ikNg\nII0WLcK188Xr25B0YB8nDx8EIHrVUoylBsymM4Pyh7365lUdCCkpKTz77LNs3boVHx8fHB0deeGF\nFxg6dGidXjcmJoaFCxfy6aef1vpcffr0IT8/n5iYGMu5n3/+eTZt2nTe95w8eZKnn36a5cuX1+ra\n8fHxtGrVivDwcKSUuLm5MX/+fMLDw2t13stdVaFwc21PLoQYAHyCVhU1T0r53nmO64q2cM89Usra\n/U0qFlFxUSQVHqGjXQHOlEIR2tOB8IbXkqyeybQyuzYm8vfyI5bteyZ3q1YgGNPSOPniixT8swWP\nAQMInjoFe8/a9XJOSzhG3I5tHN0eTfLh2HNet9fp6HLbEJp360lgk6Y1ajy+UkgpGTJkCCNHjmTx\n4sUAJCQksGbNmjq/tl6vR6/XX7Tzpaam8vPPPzNw4ECrjq9fv36tA+G0pk2bsmuXtvrfnDlzeOed\nd/jmm28uyrkvV+cNBSllZm1OLISwBz4HbgWSgG1CiDVSygOVHPc+sKE211Mqmrh+DjEpMXQpLmHB\nqRRw9YdOD0C9dtBmaK0CwWQwWwJhyIROBDfzxs7O+m/c+Zs3c/LFlzAXFlJv6hS8hw+v9Td2k9HI\nwhfGVdinv/1OmnbpRlCTZgDoHJ0u2ZPBlB/3c+Bk7oUPrIbW9T15/fbKV5T77bffcHR05IknnrDs\na9SoEePGaT+j+Ph4HnzwQQoKtEGFM2fOpGfPnmzatIkZM2bw008/ATB27Fj0ej2jRo3ipZdeYs2a\nNeh0Ovr168eMGTOIjIxkypQp2Nvb4+XlxZ9//lnhHP/++y/PPPMMxcXFuLi4WL5pL1iwgDVr1lBY\nWMjRo0cZOnQo06ZNq/ReJk6cyNtvv31OKJzvHuLj4xk0aBD79u2jR48efPXVV7Rpo/2c+vTpw4wZ\nM2jVqhXjxo1j3759GAwG3njjDQYPHlzlzzs3NxcfH58qr/3QQw9x5513MmTIEADuv/9+7r77bgYN\nGsRLL73Epk2bKCkp4amnnuLxxx8nOTmZESNGkJubi9FoZNasWdxgw4kdK2PNLKk11Q04IqWMAxBC\nfA8MBg6cddw4YAXQtQ7Lck04PTAty/5PbUZT4LaCfDK82uD36OpatRuclpaYx7J3tD78IeHehLSw\nbr1lAFlaSupHH5M5fz5OLVoQ8uEHODVrVqvynD1bab1mLbhnyvvY2dlf05PU7d+/n86dO5/39cDA\nQH755RecnZ05fPgw9957r6WKpjIZGRmsWrWKgwcPIoQgOzsbgKlTp7J+/XpCQkIs+8pr2bIlmzdv\nRqfTsXHjRiZNmsSKFSsA2LVrFzt37sTJyYnw8HDGjRtHw4bnrj9x3XXXsWrVKn7//Xc8PDyqdQ8j\nRoxg2bJlTJkyheTkZJKTk9Hr9UyaNImbbrqJr7/+muzsbLp168Ytt9yCm1vFVfqOHj1Kx44dycvL\no7CwkOjo6Cqv/cgjj/DRRx8xZMgQcnJy+Oeff/jmm2/46quv8PLyYtu2bZSUlNCrVy/69evHypUr\n6d+/P6+88gomk4nCwsLz/h3YSl2GQghwvNx2EtraDBZCiBBgKNCXKkJBCPEY8BhAaKj1UzRfa1bv\nOkF48g/sDNkMwKvp2Qzv/gJ0HQNOtZsWImFfBicPZ7Njvbb2QWgbXyKesH7qi9L4eE489zzF+/fj\nc999BL4wETvn2nX5lFKy8r03AAjr2IWGbdrTacDtl+WcROf7Rm8rTz31FH/99ReOjo5s27YNg8HA\n2LFj2bVrF/b29hw6dKjK93t5eeHs7MwjjzzCoEGDGDRoEAC9evVi1KhR3H333dx5553nvC8nJ4eR\nI0dy+PBhhBAYDJbZc7j55pvx8vICoHXr1iQkJFQaCgCvvvoqb731Fu+//75lnzX3cPfdd9OvXz+m\nTJnCsmXLGDZsGAAbNmxgzZo1zJgxA9C6DycmJtKqVcW5vcpXHy1dupTHHnuMdevWnffaN954I08+\n+SRpaWmsWLGCu+66C51Ox4YNG9izZ4+lWisnJ4fDhw/TtWtXRo8ejcFgYMiQIXTs2LHKvwdbqMtQ\nsMbHwItSSnNVj/VSyrnAXAC9Xq8G1VVicXQi24+lMixgEasc/dAXlzLCpy1cP77W5zaWmvhp5plR\nyo3b+3Pbk9YHQs7q1ZyaMhUcHGgw8zM8brml9mUyGFjzwdtIsxnPgCDufHlKrc95NWnTpo3lGznA\n559/Tnp6uqWu/6OPPiIoKIjdu3djNptxLgtonU6H2Wy2vO/0aGydTse///7Lr7/+yvLly5k5cya/\n/fYbs2fPJjo6mrVr19KlSxe2b99eoRyTJ0+mb9++rFq1ivj4ePr06WN5zcnpTJuOvb09RuP5Z+a/\n6aabePXVV9m6datl3/nuobyQkBD8/PzYs2cPS5cuZfbs2YD2hWLFihXVajS+4447ePjhhy947Yce\neohvv/2W77//nvnz51uu99lnn9G//7nL0/z555+sXbuWUaNGMWHCBB566CGry1QX6vL5+gRQPvYb\nlO0rTw98X7aq2zDgCyHEkDos01Vr9c4knvN70TJdRUTft2D0z7U+b15mMXOe/gOA9jc14KnZN1kd\nCKb8fE6++CInX3wJ59atafLDqloHQmp8HGs/nc4nDwzl2E6tquCeKe9f4F3Xnptuuoni4mJmzZpl\n2Ve+aiInJ4fg4GDs7OxYtGiRZYqPRo0aceDAAUpKSsjOzubXX38FID8/n5ycHCIiIvjoo4/YvVv7\nknD06FG6d+/O1KlTCQgI4Pjx8pUD2nVCQkIAWLBgQa3u6dVXX63Q7nC+ezjbiBEjmDZtGjk5ObQv\nm1m3f//+fPbZZ0ipfcfcuXPnBa//119/0bRp0wtee9SoUXz88ceA9gR0+nqzZs2yPCkdOnSIgoIC\nEhISCAoK4tFHH2XMmDHs2LGjuj+Wi64unxS2Ac2FEGFoYXAPcF/5A6SUlnHYQogFwE9Syh/qsExX\nHW1kchQnHNP5IlCrNnmt04Raj04+LXbrKQB0jnZ0G2T9sPnCmBhOvvgShuRk/MeOxf9/T9R67MHx\n/XtYNnWSZbv1DX3pesddePhVb1zEtUAIwQ8//MCzzz7LtGnTCAgIwM3NzVL98uSTT3LXXXexcOFC\nBgwYYKlLb9iwIXfffTdt27YlLCyMTp20LsJ5eXkMHjyY4uJipJR8+KE2ocHEiRM5fPgwUkpuvvlm\nOnTowB9//GEpxwsvvMDIkSN56623uO2222p1TxEREQSUW0zpfPdwtmHDhvHMM88wefJky77Jkycz\nfvx42rdvj9lsJiwszNK4Xt7pNgUpJY6OjsybN++C1w4KCqJVq1aWxmaAMWPGEB8fT+fOnZFSEhAQ\nwA8//MCmTZuYPn06Dg4OuLu7s3Dhwlr9jC4GcTop/9/eecdlVf1x/H3YU0AFxYW4TUFc4Qj3zjRN\nxVXiyDS35uyXK1QsLcvcpZiaIu5Bapa5FyC5FQcOXAgiezxwf3888AgKskHgvF8vXnLvPffc7wF8\nPveszzdPKheiC+ohIm1graIo84QQIwAURVn5Wll31KLw1rVkjRo1Ut42IVbcGHxgMJeCrlI2IgFL\n8ZIu1brTu92iHNerJCrcvxbCvqXqN8IvlrZERzfjD3UlLo6gpb8Q/Ouv6FasSLmFbhjVz529BzsX\nzive9XUAACAASURBVOGO73ma9HSmufOnuVJnXnLt2rU3xqglRZ+oqCjs7Ozw9fXVzJnkN2n97Qkh\nfBRFyXCtcJ7OKSiK4gV4vXZuZTplXfIyliJJYgK8fIhdZAjrnj5Tn+vaL8fVRryIYf30U5pju5bl\nMyUIsf7+BE6ZSuy1a5j37kWZadPQSuftLStEhr7A75AXd3zPY2xRslAIgqR4cvjwYYYOHcqECRMK\nTBBySkFPNEuyy5VdeB74Eu/SpWgEhGpZYP61P2jnbOXNk7sv2b7w1WRhj0kNKFf97TkQlMREXmzc\nyLNFi9EyMaHC8mWYtmmToziiI8I5uWUDd3zPEx78ytyrRX+XHNUrkeQl7dq14969ewUdRo6QolDY\nUBQ89w3DK/AY3kmTypdCu+HVcRz9cygIAFeSUmY27GxD4662aGu/fS1C/NOnPJ4+g8hTpzBp1Qpr\n12/RKZ2zMX7/86f5a9VSosPVm7109Q1wGuBCpTr1KFUh7SWLEokkd5CiUFhIiMdz/3C8npzGW18X\nDA1oZGBNYHhbLCxa0N8x5/s3ElSJJCSo55gcu1XJcPdv2J9/8nj2HJS4OMrOmYN5n5zvTA55FMie\nRfMAKFOlGp/MmIuhqUzyJ5HkF1IUCgmeHt2ZG/8A9HVpFJdIl/cnEB/TgRk7L+GYSwnJjnncxP/8\nU4zN9N764Z4QHs6Tb78lbM9eDOrZU37hQvQqV872cyNehPDX6qVo6+jif049l/HxlG+o2tAxgzsl\nEkluI0WhEODpt1otCMBMh3H0rqdOJO+86jSgTpqTE2Ii4gkLjubq8UcYm+nRdUy9dMtGnjvHo2nT\nUD19pl5qOuILhE7W/owCLl7A7+Cr5X+3vc9qvi9VoRJaWlrYOuSeoZpEIsk8xdccphDgedOTwQcG\nM/e/pQDMtGxGfEwHnFedxnnVaa4+DsPRtmSOho7iYlS4TzuJ5wL1Ml89Qx1KVzB9o1xiXBxPv/+e\n+4Nc0NLVo/Ifm7AcPSrLggCw/+fvue19lrDnQYQ9D8LSxpZazVsycfMeXBYv57Pvf0Erj/IpFCeE\nEAwcOFBzrFKpsLS01FhUvA0TE7UtSkBAgMZlFdTW1WPHjs39YFOwZ88e3NzSNFTW4O7uzujRo9M8\nr6WlxcWLFzXn6tatS0BAwFvrGzZsGFevvm7LlnVatWpFzZo1cXBwoHbt2qxevTrHdeY3sqfwjuJ5\n05O5p9U5jjQJcQb+gvOv3lx9HMZ71iV4z7pEjnoJsVHx/DpR7ZNkWtKAFv1qUK7amyuNYm7c5NGU\nKcTeuIG5szNlpk5ByyiLqTYTE3l69zaxkZHEhIdhYGzCZwtz7rcvSR9jY2MuX75MdHQ0hoaG/PXX\nX5rdxZklWRT691fvO81tW+y06NatG926dcv2/RUqVGDevHl4eHhk+p7kTWm5waZNm2jUqBEhISFU\nrVoVFxcX9PIgx3heIUXhHcXruifwKiHOxWpfphIEjy+a5qj+8JAYPBeo3U4NTXXp83VjDIxTr15S\nEhMJWf87QT/8gFaJEtnOmRwdEc6Z7Vvw9dqtOWfXrlOO4i90/DkNnlzK3TrL2kHnt79Rd+nShf37\n99OrVy82b95Mv379OH5c/SIwe/ZsTExM+OqrrwD1G/W+ffuonGJ+aNq0aVy7dg0HBwcGDRpE/fr1\nNbbYs2fP5v79+9y5c4f79+8zfvx4TS/ihx9+YO3atYD6LXz8+PEEBATQqVMnmjRpwqlTp2jcuDGD\nBw9m1qxZPHv2jE2bNvH+++/j7u6Ot7c3v/zyC3v37sXV1ZW4uDhKlSrFpk2bKFOmzFvb3LVrV44d\nO8aNGzfe8DYaOXIk58+fJzo6ml69ejFnjtozK9lS29vbm9u3b/P9998DpIpl48aN/Pzzz8TFxeHo\n6Mjy5cvRfkuPNiIiAmNjY02ZtJ79zz//8PPPP7Nrl9rI4a+//mL58uXs3LmTQ4cOMWvWLGJjY6la\ntSrr1q3DxMQkTQvz3EQOH72DeF7fiveLazSKjqGlTk1mlPqJbpebc/ZuSI57B8nc8nlGdHg85aqb\n0/cbxzcEIf7xY+4PGcqzhQsxdnKiyp7dWRaEkEcP8XT9H8uH9tMIQufRk+g75zs+6Cs3oOUHffv2\nZcuWLcTExHDx4kUcHbM2ee/m5oaTkxN+fn5MmDDhjevXr1/n4MGDnDt3jjlz5hAfH4+Pjw/r1q3j\n7NmznDlzhjVr1mi8hW7dusWkSZO4fv06169f548//uDEiRMsWrSI+fPnv1H/Bx98wJkzZ7hw4QJ9\n+/ZNN+dCSrS0tJgyZUqa9c2bNw9vb28uXrzI0aNHUw0zAXzyySfs3LlTc+zh4UHfvn25du0aHh4e\nnDx5UuOMumnTpjSfP2DAAOzt7alZsybffPONRhTSenbr1q25fv06QUHqvTjr1q1jyJAhPH/+HFdX\nVw4fPoyvry+NGjXihx9+0FiYX7lyhYsXL/K///0vw59HVpE9hXcQr1vqt4a6sVY4Pp6IghaOtiXp\n7lA+V5aeAnh7BQDQ1qU2RiVSd21f7tvPk7lzUVQqrF2/xeyTT7K11PSOzznuX/LDukYtSlpXoGHX\nj7GsVDkXoi+EZPBGn1fY29sTEBDA5s2b6dKlS67X/+GHH6Kvr4++vj5WVlY8ffqUEydO0KNHD40f\nUM+ePTl+/DjdunXD1tYWOzs7QO3k2rZtW4QQ2NnZpTnu//DhQ5ydnXn8+DFxcXHY2mZuqV3//v2Z\nN28ed+/eTXV+69atrF69GpVKxePHj7l69arGJA/A0tKSKlWqcObMGapXr87169dp3rw5y5Ytw8fH\nh8aN1Q7/0dHRWFlZpfns5OGjoKAgmjVrRqdOnbCxsUn32Z9++ikbN25k8ODBnD59mt9//50DBw5w\n9epVmjdvDkBcXBxNmzZN18I8N5Gi8C4R9ghPv1V4B1+iUXQMkS868L5t6VwVg2R09bWxKGtEiVKG\nmnMJL1/yZO63hO3fj6GDA+W+W4heNvNX3DxzgqMb1cMHH0/+BqMShXPLf1GgW7dumrzGwcHBmvPp\n2WRnhazYX79eXktLS3OspaWV5r1jxoxh4sSJdOvWjX///ZfZs2dnKi4dHR0mTZqUKv/C3bt3WbRo\nEefPn8fCwgIXF5c029y3b1+2bt1KrVq16NGjB0IIFEVh0KBBLFiwIFPPB7XANGjQgLNnz5KYmJju\nswcPHsxHH32EgYEBvXv3RkdHB0VRaN++PZs3b36j3rQszHMTOXz0DuG5qRNz7+4A1LmUb5fpgscX\nTXNNEBISErl3OZg7F4JIUCViUfbVZHHkmTPc6f4xYQcPYjluLDYbN2RbEHz272bvj+o340Yf9ZSC\nUMAMGTKEWbNmad7Qk6lcubLGqtnX1/eNt2oAU1NTwsPDs/Q8Jycndu3aRVRUFJGRkezcuTPbKSZT\nWm9nNTeyi4sLhw8f1gzNhIWFYWxsjJmZGU+fPuXPP9O2lu/Rowe7d+9m8+bN9O3bF1AnBNq2bRvP\nnqk9xkJCQjK0s4iKiuLChQtUrVr1rc8uV64c5cqVw9XVVZOvoUmTJpw8eZJbt9RpbyMjI7l582a6\nFua5iewpvCN4XlzHXCP1buKSj534X2h7ZvWonmv1x8clsHrs0VTn9I10SYyNJeiHHwlZvx49W1sq\nb96MoV3dbD3j5bMnBN64xr+/rwGg1Wef0/DDt+e9leQ9FSpUSHMZabL1c506dXB0dKRGjRpvlLG3\nt0dbW5t69erh4uKisdJ+Gw0aNMDFxYX3338fUE80169fP8NloWkxe/ZsevfujYWFBW3atElTuNJD\nT0+PsWPHMm7cOADq1atH/fr1qVWrFhUrVtQMzbyOhYUFtWvX5urVq5o2vPfee7i6utKhQwcSExPR\n1dVl2bJl2NjYvHH/gAEDMDQ0JDY2FhcXFxo2bAjw1mcPGDCAoKAgjbOppaUl7u7u9OvXj9jYWABc\nXV0xNTVN08I8N8lT6+y8oChaZ6dcftoh/D22P/yM+T3scnXI6PcZpwgPUXdXe09vhJa2wPDlQ55O\nm0qsvz8W/fthNXkyWoaGGdT0Jk9u+/Pi0UO8flmsOVe3dXs6jhiXa/EXRqR1tiSzjB49mvr16zN0\n6NBcqe+dtc6WZA6vq+pxw5nPg5kbPhhHW7Ncn0NIFoSRy1ohUAhxd+fBkp/QMjej4upVmLRoka16\nH169jMecaZrjMlWq8+G4yZiXsc6VuCWSok7Dhg0xNjZm8eLFGRfOB6QoFCCeNz3xurWHGyE3aBQX\nh3loLd6rYJYrS04BYqNVHFx9iRdP1GkY67evRMKTxzyaNp2o8+cxbd+OsnPnomNhkeW646KjOLvL\nk3O71PspHHv0oW6r9piVKZtjUzyJpDjxel7rgkaKQgGRasdyXBwWYZUJ6vobHrnQQ7h45CE+fwYQ\nFRanOVermTXlY65zp/scSEzEev58zHp8nKkP8AdXL7F9/kwMjE0QWuq1CREhr1axfNBvEI4f5076\nT4lEUrBIUSggvO6oE9LNfB5MGVUTHrb8MVeGjPwO3+fkNvWKhdrNrdEz1KFxy1IEzfuW8AMHMGzQ\ngHIL3dCrmLm8BCe3buLMdvXwltDWprJ9A801XQN9mvUagEGST45EIin8SFEoIJ6FxVIxypAPIxSM\nZu3IlTr//v0a1089BqDd4Peo6ViWyFOnuP/JMFQhIVhOmECpYUMRmTCbe/HkEXcveGsE4ZPpc6js\n0DBX4pRIJO8uUhTyGc+bnnjd8eJx1A3qiTC0s+Ey+jpRYXFcPflIIwhdRtphU9OUJ/Pn8+L3DehV\nrUrlFcsxrFMnw7rCnj/j5pmTHN3wm+Zc3dYdpCBIJMUEuXktn3H324nvkyvYxCTSJTIS/TbTMr4p\nA/Yv+4+zu+8A0LRnVax1g7jbqxcvft+AxcCB2G7flilBANg4bbxGEKyr1WT0Og86jshbq2RJ3mCS\nC8N6jx49olevXuleDw0NZfny5Zku/zouLi7Y2tri4OBAvXr1+Pvvv3MUb26zcuVKfv/994IOI1+R\nPYV8xPOmJ/ejL6EXU5GdT06qTzYaku364qJVbJx5mujweAA+//EDwjas5+6kpeiYm1NxzRpMnD7I\ndH2nt28mOjwMfWNjhi9bh46+PlpaMq9BcaZcuXJs27Yt3evJovDll19mqnxafP/99/Tq1YsjR44w\nfPhw/P39cxQzqHNH6ORCL3zEiBE5rqOwIUUhH0geMvJ+qt501y0+yW+myyLQzfpmMYBH/i+47RtE\ndHg8le1L06xVCR59PoRobx9MO3ak7OxZWV5q+vxeAAC9v5mPnmHW8iVI3s7Ccwu5HnI9V+usVbIW\nU9+fmqV7AgICNC6clpaWrFu3jkqVKnH79m0GDBhAZGQk3bt3Z8mSJURERBAQEEDXrl25fPkyV65c\nYfDgwcTFxZGYmMj27dv55ptvuH37Ng4ODrRv355Ro0ZpyickJDB16lQOHDiAlpYWn3/+OWPGjEk3\ntqZNmxIYGKg59vHxYeLEiURERFC6dGnc3d2xtrbm/PnzDB06FC0tLdq3b8+ff/7J5cuXcXd3Z8eO\nHURERJCQkMDRo0f5/vvv2bp1K7GxsfTo0YM5c+YQGRlJnz59ePjwIQkJCXzzzTc4OzunaUmd0l7c\nz8+PESNGEBUVRdWqVVm7di0WFha0atUKR0dHjhw5QmhoKL/99lu2bT3eBaQo5DEpl54aJdbA+pkx\ns6J3g64xVGmVrTqf3H3JzsVqK2ItHUGt0s95Nng4qFRYuy3ArHv3LO8VCAt6xs2zJylZviJlbKtm\nKy7Ju8+YMWMYNGgQgwYNYu3atYwdO5Zdu3Yxbtw4xo0bR79+/Vi5cmWa965cuZJx48YxYMAA4uLi\nSEhIwM3NjcuXL+Pn5weQyspi9erVBAQE4Ofnh46ODiEhIW+N7cCBA3z88ccAxMfHM2bMGHbv3o2l\npSUeHh58/fXXrF27lsGDB7NmzRqaNm3KtGmph199fX25ePEiJUuW5NChQ/j7+3Pu3DkURaFbt24c\nO3aMoKAgypUrx/79+wG1v1KyJfX169cRQhAaGvpGfJ999hlLly6lZcuWzJw5kzlz5rBkyRJA3TM5\nd+4cXl5ezJkzh8OHD2fuF/IOIkUhj0leelohzpnygQb8yrfqC8P/hdJZ9zYKDoxg+0L1Zpe2n9XE\n/PgfvJi5Fv33alPhxx/RS8OLJSOiI8JZM1o9jFW6uFpb5zFZfaPPK06fPs2OHerVbp9++ilTpkzR\nnE9O9NK/f39N4p2UNG3alHnz5vHw4UN69uxJ9epv//s9fPgwI0aM0AzjlCxZMs1ykydPZsaMGTx8\n+JDTp9V5x2/cuMHly5dp3749AAkJCVhbWxMaGkp4eDhNmzbVxLpv36t83+3bt9c859ChQxw6dEjj\n1xQREYG/vz9OTk5MmjSJqVOn0rVrV5ycnFCpVG+1pH758iWhoaG0bNkSgEGDBtG796u9OT179gTU\nu5Oz4/H0LiFFIY9IHjK6EXIDmzgz9gV+/+pi+YZZEoRH/qHc/S+IxESFi/88BKBq3RLo//wVL/z8\nMO/XlzLTpqGVwpY403XfvMbmbyYDYGNfn4/GvxsfXpJ3j/79++Po6Mj+/fvp0qULq1atokqVKjmu\nN3lOYenSpQwZMgQfHx8URaFOnToakUgmrTf4lCTncABQFIXp06fzxRdfvFHO19cXLy8v/ve//9G2\nbVtmzpyZI0vqZAvwzNiHv+vI1Ud5RLIgWOhUZlCYemUQ7ebA0L/g838gk8M7dy8+Z+diX/wOP+Dq\nyccYm+nRyEFQZcNo4vz9Kf/DYqxnzcqWIACc3bkVUK80+mT6nGzVISk8NGvWjC1btgDqZDDJY99N\nmjRh+/btAJrrr3Pnzh2qVKnC2LFj6d69OxcvXnyrtXb79u1ZtWqV5kMyo+Gj0aNHk5iYyMGDB6lZ\nsyZBQUEaUYiPj+fKlSuYm5tjamrK2bNn3xorQMeOHVm7di0REREABAYG8uzZMx49eoSRkREDBw5k\n8uTJ+Pr6ZmhJbWZmhoWFhSaV6YYNGzS9hqKG7CnkMil7CBY6lQn17UBvg/2EmNai5AfjM1VHQkIi\nt7yf8eT2Sy4fU0+82bWugFNPW4J++ongJb+hU7s2FX78Ab0U+XQzi5KYSFTYS1RxcdzxPY+FdXn6\nz3s3zLgkuUdUVBQVKlTQHE+cOJGlS5cyePBgvv/+e81EM8CSJUsYOHAg8+bNo1OnTpiZvZkDY+vW\nrWzYsAFdXV3Kli3LjBkzKFmyJM2bN6du3bp07tyZUaNGacoPGzaMmzdvYm9vj66uLp9//jmjR49O\nN14hBP/73//47rvv6NixI9u2bWPs2LG8fPkSlUrF+PHjqVOnDr/99huff/45WlpatGzZMs1YATp0\n6MC1a9c0Q00mJiZs3LiRW7duMXnyZLS0tNDV1WXFihWEh4dnaEm9fv16zURzlSpVND+7ooa0zs5F\nUvkZlbbH9nYQM0PUbzR0nA9NR73lbjWPboWyc5Gv5ljfSIf6HSphX0+fwElfEe3ri7mzM2VmTM9W\n7yAuOopVI12Ii47SnKvaqAkfT879XK/FncJknR0VFYWhoSFCCLZs2cLmzZvZvXt3QYeVJhEREZo9\nGG5ubjx+/JiffvqpgKN6t5DW2e8AKQWhU9nR9PXdRsPYc+qLFRrD+2+Oa76Oz4EAzuxSDzVZVjKl\n7aDalCpvQsSxY9ztMRUlLo5yixZh1vXDbMUYHxvDUpc+muO2Q79Ez8CAms2yZ5stKTr4+PgwevRo\nFEXB3NyctWvXFnRI6bJ//34WLFiASqXCxsYGd3f3gg6pSJGnoiCE6AT8BGgDvyqK4vba9QHAVEAA\n4cBIRVFyP79cPpC8ysg6fiCeRyrQTjcRtOGPzpfSNLpLTEjU5DhQEuG8111unn0KQJ0W5WnVvyaK\nSsWzxT8QvGYN+jVrUv7HH9GvkrnE5a8T9jyINaPUqf7KVqtBj6mzZJpMiQYnJ6c8Se2YFzg7O+Ps\n7FzQYRRZ8kwUhBDawDKgPfAQOC+E2KMoytUUxe4CLRVFeSGE6AysBhzzKqa8wvOmJ95PvTFKrMHj\nhw442pag42NvMLZMUxDiYlSsGX8szbq6jXOgYu2SxD99SuDESUT7+GDep496uMjAIMuxJSYksO+n\nhfifPaU51/t/rnJzmkQiSZO87Cm8D9xSFOUOgBBiC9Ad0IiCoiinUpQ/A1SgEOLutxOAqBA72liG\n81Nr4A/A7M3mxEarOLPrtua4nYt63E9LRwtb+9Lo6GkTcfwEj6ZMITE2lnLff4fZRx9lO7ZDq5Zq\nBKHNkBHYt+2Ito5utuuTSCRFm7wUhfLAgxTHD3l7L2Ao8GdaF4QQw4HhAJUq5W6aypyS7GdEdBW+\nVkLoGzRULQgATb5MVfbOhSD+XHVJczxoQTNMLF69/SsqFc9+XELwqlXoV69O+Z+WoJ/DdeBXjqp3\nVg5f7o5pqdI5qksikRR93omJZiFEa9SikKZ7m6Ioq1EPLdGoUaN3ZrlUysnlmZHn6R3xr/pCl0Vg\nbgNV22jKJiYkagShWkMr6neolEoQ4p8+49GkSUR5e2PW6xPKfv01WobZ80UCSFCpeH4/AD1DI8pW\nrS4FQSKRZIq83LwWCKRM71Uh6VwqhBD2wK9Ad0VRgl+//i6TPLk8ILQUvcMjoXRNGHIQ3v8canQA\n7Veau3uJ2hvGysaUjp/XxcqmhOZaxMmT3O3Rg+grVyi30I1yrq45EgSAQyt/YuP08cRFR2FZOee7\nTiWFD21tbRwcHKhbty4fffRRhruBM0tAQAB169bNlbpSMnv2bMqXL4+DgwMODg5v+BrlJn5+fnh5\neeVZ/YWZvBSF80B1IYStEEIP6AvsSVlACFEJ2AF8qijKzTyMJddJnlw2TqjGtBcXSETA6HNQqUma\n5V88Ve8L+Hjiq3SWSkICQT//zINhn6NTqiS22zwx6949x7E9uHKRq8ePANBj6iyaftI3x3VKCh+G\nhob4+flx+fJlSpYsybJlywo6pAyZMGECfn5++Pn54ebmlvENSSQkJGTpOVIU0ifPho8URVEJIUYD\nB1EvSV2rKMoVIcSIpOsrgZlAKWB5kqunKjObKwqaP87e56erW0ALqjxXT9o+t6iPVRplz++/S8DF\n50SHxVG2Sgl09dX5CeKfPePRV5OJOncOs549KfvN/3LcO3hy25+/f1vOk9tqP/qOI8ZRpUHjHNUp\nyR2ezJ9P7LXctc7Wr12LsjNmZKps06ZNuXjxIqDe/NW9e3devHhBfHw8rq6udO/enYCAADp37swH\nH3zAqVOnKF++PLt378bQ0BAfHx+GDFGbJnbo0EFTb0xMDCNHjsTb2xsdHR1++OEHWrdujbu7O7t2\n7SIyMhJ/f3+++uor4uLi2LBhA/r6+nh5eaVrkPc6f//9N1999RUqlYrGjRuzYsUK9PX1qVy5Ms7O\nzvz1119MmTKFxo0bM2rUKIKCgjAyMmLNmjXUqlULT09P5syZg7a2NmZmZhw+fJiZM2cSHR3NiRMn\nmD59ulzimoI89T5SFMVLUZQaiqJUVRRlXtK5lUmCgKIowxRFsVAUxSHp650XBI9TN7lw1IUorZu8\nF6vNqqTFVFaD1r9R9sG1EM7tvcuze+FYVS5Bk+5qS+rIU6e426Mn0ZcuYb1gAeXmz8uRIESGvuDQ\n6qVsmjGBJ7f9MS1liX27TtRt3T7bdUqKDgkJCfz9999069YNAAMDA3bu3Imvry9Hjhxh0qRJJDsb\n+Pv7M2rUKI3PULIf0uDBg1m6dOkbexmWLVuGEIJLly6xefNmBg0aREyMev/N5cuX2bFjB+fPn+fr\nr7/GyMiICxcu0LRp03Szmf3444+a4aODBw8SExODi4sLHh4eXLp0CZVKxYoVKzTlS5Uqha+vL337\n9mX48OEsXboUHx8fFi1apEn8M3fuXA4ePMh///3Hnj170NPTY+7cuTg7O+Pn5ycF4TXeiYnmd50/\nzt5nt18gjWJOMfnFXA6UtQIM6KVvjmkZUzBpCiXKA6AkKjy6FcrJbbcIuq82CmvasyoNOtgkDRct\n5fmKFehVrYLNenf0q1XLdlxRYS95cusmOxe+MrJr1nsATXv1y1F7JblPZt/oc5Po6GgcHBwIDAyk\ndu3aGhtqRVGYMWMGx44dQ0tLi8DAQJ4+VW+cTE6NCa9soENDQwkNDaVFC/XO908//ZQ//1QvFDxx\n4oQmcU6tWrWwsbHh5k31SHDr1q0xNTXF1NQUMzMzPkpaWm1nZ6fptbzOhAkTUtl2//fff9ja2lKj\nRg1AbVm9bNkyxo9X+4glf6BHRERw6tSpVHbWsbGxADRv3hwXFxf69OmjsbiWpI8UhUyw2y+QW4+f\n08t0MYPLWnHNwJBGpe3p/eHGVOVu+Tzj4JrLqc51/LwuVRtYogoKInDyFKLOnMGse3fKzpqJllHO\nNpD9u34N1078C4BpKUsGLvgRIzPzHNUpKTokzylERUXRsWNHli1bxtixY9m0aRNBQUH4+Pigq6tL\n5cqVNW/3+in8tLS1tYmOjs7281PWpaWlpTnW0tLKNXvpZKvsxMREzM3NNcl+UrJy5UrOnj3L/v37\nadiwIT4+Prny7KKKtM7OJO1Lr2Nu6VJ4GxpQu2xDulR/NSEcExnP3qX/aQShdEUTuk+oz4ilrajW\n0Iqos+e406Mn0X5+WM+fT7mFbjkWBEVRuHbiX8zLWDNwwRKG/fKrFARJmhgZGfHzzz+zePFiVCoV\nL1++xMrKCl1dXY4cOcK9e/feer+5uTnm5uacOHECUFtuJ+Pk5KQ5vnnzJvfv36dmzZq5FnvNmjUJ\nCAjg1q1bQPqW1SVKlMDW1hZPT09A/f8jeajr9u3bODo6MnfuXCwtLXnw4MFbLb+LO7KnkAkixF/s\nN1VP3s5sOJnedT/TXFPFJ/DbpOOa43aD36OmY1nN8YvNm3niOg89Gxsqrf0Ng6RucFZJUMVz7Re3\nyAAAGTxJREFU18+XhPg4XjwK5ORWdS8lMTGRMlWyPwQlKR7Ur18fe3t7Nm/ezIABA/joo4+ws7Oj\nUaNG1KpVK8P7161bx5AhQxBCpJpo/vLLLxk5ciR2dnbo6Ojg7u6eqoeQUwwMDFi3bh29e/fWTDSP\nGDEizbKbNm1i5MiRuLq6Eh8fT9++falXrx6TJ0/G398fRVFo27Yt9erVo1KlSri5ueHg4CAnml9D\nWmdnQKoNavFG9B52NtX1XT9eIPDGC/SNdRi0oDm6eurVRUpCAk/dFvJiwwZMWrak3OLFaJsYv1F/\nRkRHhBPwny9H3FcTHfYy1bWy1WrQc9psDE1LpHO3pCApTNbZkqKFtM7OIzz/+5W5fmqf9pnPg+k9\nIfXKi9CnUQTeeAGA89fvawQhISKCwEmTiDx6jJKDBmE1ZTJCWzvLzw+6d5ffp4xJde6z75aipa2N\nvpExJiVLZadZEolEki5SFNIj8jlepxeCoQETgqIxsV8HWq+mYJREhU2zzgDQemAtTEuqLSviAwN5\nMGIksXfuUHb2LCz6Zn/jWNC9uwBUbeRIy4FDMLYoiZ5BzvYySCQSyduQopAGnjc98fJZwQ09Peyi\nEzBw+ofOKSyw42JUnNmtToajb6zDex+UAyDaz48Ho0ajxMVRcfUqTJo3z9bzE1QqPGZPJfjhfQBa\nffY55mXKZnCXRCKR5BwpCmngdceLG/EvqBkXR6D20FQ5EYIehLN13nnNcZcRdgCEeXnxaNp0dMqU\noeLv69GvWjXbz//FpQ+q+DgA3v+4N2aWae2VlkgkktxHikIaPAuLpWZUBL8+CaK/9avlb4kJiRpB\nsKlbig5D66BroE3QsmU8X/oLhg0bUuGXpehYWGTvuQF32PXdtxpBGLt+G7rZSKwjkUgk2UWKwmv8\ncfY+gcEvsBKgjUJ3B/VO5bDn0Wz432kALMoa0XV0PRJjY3k0eTph+/Zh1r0bZb/9Fi09vWw9Nz42\nhg1Tx2qOv1j5uxQEiUSS78jNayn44+x9Zuy8hL1Qzxfw8Qo+MDXGc8F5jSBYVjKl2zgHVMHB3HcZ\nTNi+fViOH4+1m1uWBSE+NoZjm9ax2LkrP3/WC4CK79kxYfNuTCwyZxYmkaTH06dP6d+/P1WqVKFh\nw4Y0bdqUnTt35qjO2bNns2jRIgBmzpzJ4cOHs1XP21xK//33X8zMzHBwcMDe3p527drx7NmzbMf8\nOgEBAfzxxx+aY29vb8aOHfuWO4oXsqeQgt1+6nQPQksLFAXFri97R/2ruf5B7+rUa1uRWH9/AkaM\nRPX8OeWXLKFEp45Zes7VY/9w5ehh7l9+5f9i69AQ6+q1cOzRBy2trC9flUhSoigKH3/8MYMGDdJ8\nAN67d489e/a8UValUqGjk/WPgrlz52Y7Pj8/P7y9venSpUua152cnNi3bx8A06dPZ9myZcyZMyfN\nslklWRT69+8PQKNGjWjU6J334sw3pCi8Ro1ql/HV1aFZfA1+/0bdO6ha35IOn9dFS0sQcfwEgRMm\nIAwNsNm4AUM7uyzVv3PhHO74vpqobvJJXxx7OKOjK/MmF2WOb73J8wcRuVpn6YomOPVJe4f8P//8\ng56eXqrdvzY2NhrzOnd3d3bs2EFERAQJCQns378/TTttgHnz5rF+/XqsrKyoWLEiDRs2BMDFxYWu\nXbvSq1cvfHx8mDhxIhEREZQuXRp3d3esra1p1aoVjo6OHDlyhNDQUH777TccHR0zbV2tKArh4eFU\nSzKODAkJYciQIdy5cwcjIyNWr16Nvb19uuePHj3KuHHjABBCcOzYMaZNm8a1a9dwcHBg0KBB1K9f\nn0WLFrFv3z5mz57N/fv3uXPnDvfv32f8+PGaXsS3337Lxo0bsbS01PwcUpr3FRWkKKTghfYxHuuq\n7SMcLg4jIk7tsthqYC20tAQhmzbxdN589KtXp+KK5eiWK5flZyTnOhi+3B0Ti5LqXolEkstcuXKF\nBg0avLWMr68vFy9epGTJkqhUKnbu3EmJEiV4/vw5TZo0oVu3bvj6+rJlyxb8/PxQqVQ0aNBAIwrJ\nxMfHM2bMGHbv3o2lpSUeHh58/fXXrF27FlD3RM6dO4eXlxdz5szh8OHDzJ07F29vb3755Zc0Yzt+\n/DgODg4EBwdjbGzM/PnzAZg1axb169dn165d/PPPP3z22Wf4+fmle37RokUsW7aM5s2bExERgYGB\nAW5ubhoRAPVwVUquX7/OkSNHCA8Pp2bNmowcORI/Pz+2b9/Of//9R3x8fJo/h6KCFIUk/jh7n0dx\nxxG66t3L8eZmxEQLhnzvhKJS8cR1Hi82bsSkVSvKLVqUZcsKJTGR+NgYol6GUqdlO5kzuZiR3ht9\nfjFq1ChOnDiBnp4e58+re6rt27fXJLpJz077+PHj9OjRA6MkA8fknAwpuXHjBpcvX9ZYcyckJGBt\nba25nmxXnWzFnRlSDh8tXLiQKVOmsHLlSk6cOKHJ8dCmTRuCg4MJCwtL93zz5s2ZOHEiAwYMoGfP\nnlSoUCHDZ3/44Yfo6+ujr6+PlZUVT58+5eTJk3Tv3h0DAwMMDAw0NuBFkWIvCsm5Es7eDcHaJopa\n0TE0Mf6MPf4qKtUppbasmDiRyGPHM7SsuHb8CE/v3k7zms/+XZrvlcSspQ6USLJKnTp1NB+SoE6G\n8/z581Rj58m208Bb7bQzQlEU6tSpw+nTp9O8nmyQp62tnS3L7G7duvHJJ59k+T6AadOm8eGHH+Ll\n5UXz5s05ePBghve8bh+eWzbfhYViPXaRvNrI98WfVKixEqH/FN14M/b4qV0gK1bS5l6//kSePEXZ\n2bMpM31auoLw8tkTvH5ZjM/+XVz8++AbX9o6OpSwtKK1yxe0HfZlfjZTUgxp06YNMTExqbKURUVF\npVs+PTvtFi1asGvXLqKjowkPD2fv3r1v3FuzZk2CgoI0ohAfH8+VK1feGl9WrKtPnDhB1aTNoCmt\nuv/9919Kly5NiRIl0j1/+/Zt7OzsmDp1Ko0bN+b69evZss1u3rw5e/fuJSYmhoiICE0vpihSrHsK\nu/0C0TU/i4H1Tl4C70do4fi4FzFA3XoGGH03gvhMWFYkqOLZ++NCANoPH41920750wCJJB2EEOza\ntYsJEybw3XffYWlpibGxMQsXLkyzfHp22g0aNMDZ2Zl69ephZWVF48Zv5vzW09Nj27ZtjB07lpcv\nX6JSqRg/fjx16tRJN77WrVu/1bo6eU5BURTMzMz49ddfAfWS2CFDhmBvb4+RkRHr169/6/klS5Zw\n5MgRtLS0qFOnDp07d0ZLSwttbW3q1auHi4sL9evXz/Dn2bhxY7p164a9vT1lypTBzs4OMzOzDO8r\njBRb62zPm54sOrmFKC116sCZz4OpZryAU34VAXC84IZ5Cai4ckW6lhWKohD5IoRVIwdpzk3cvEdO\nHksAaZ1d1IiIiMDExISoqChatGjB6tWrM5zMLyikdXY28LrjRay4T6PoGLpERvJJ2yUc+a8u8IQP\nTk7DzL5GupYViQkJ+J87xYEVS1Al5YEFGLRomRQEiaSIMnz4cK5evUpMTAyDBg16ZwUhpxRLUfC8\n6Yn3U29KRluw7ulNrhuPYMXK0sATdOPCKd25Fdaurpodyoqi8PLpExQlkef377Hnh/mauvSNjGkz\n+AuqOzZDV1/aUkgkRZWUu6CLMsVSFNz91Fv9a4Sbk6ho8fdt9Y5ko8jHNK0XR7lJCxFCaMqf3eGh\nSX+ZTOlKlen4xVjKVivYpYYSiUSSmxRLUUgIC6SRKobVkUc5EqLe8Vk2yJv2w+wo0blzqrIvnz3V\nCEKX0ZMAMCtTlnI15FixRCIpehQ7UZh8cBWBOiHYhldm5dPlJKJeYtpiYjtKNH9zjPDPZYsBqO7Y\njNpOrfM1VolEIslvip0o+N9bR7t7g6gW3IDEpHMd7Z5g2bxNmuUDr18FoNvEGfkUoUQikRQcxWqp\njOeJy1R9XpVqweoeQb2AP+gcvJKqI1KvkU5MSGCH22zWfzUKgDJVqud7rBJJTpk3bx516tTB3t4e\nBwcHzp49y5w5c5g+fXqqcn5+fprli5UrV8bJySnVdQcHB+rWrZutGJo1awa8aVft7u7O6NGjs1xf\nq1atSGtJemxsLO3atcPBwQEPD49M3ZNXBAQEZPvn9S5QrHoKly6cxuKlWhBamJ5H58EZym3flmqX\ncoJKxabp4wm6HwCoJ5Q7fDGmIMKVSLLN6dOn2bdvH76+vujr6/P8+XPi4uLo168fnTp1YsGCBZqy\nW7ZsoV+/fprj8PBwHjx4QMWKFbl27VqO4jh16hTwpl11dkhISN8e5sKFC4Ba4HKThIQEtNNxMSiq\nFCtRAEBRryrS3rueUsM/xyBp52Yy53dv0wjCmPWe6BkY5neEkiLIEffVPLt3J1frtLKpQmuX4Wle\ne/z4MaVLl9b4+JQu/cqA0cLCgrNnz+Lo6AjA1q1bU3kC9enTBw8PD7766is2b95Mv3792LBhwxvP\nGDVqFB07dqRbt2706NEDCwsL1q5dy9q1a7l9+zbz5s3DxMSEiIiIN+yqLSwsePToEZ06deL27dv0\n6NGD77777o1nVK5cGWdnZ/766y+mTJkCwIYNGxg2bBgqlYq1a9dSuXJlBg4cSFBQEA4ODmzfvl1j\ni5GSxMREhgwZQoUKFXB1deXQoUPMmjWL2NhYqlatyrp16zAxMXnjmStXrnzD/tvJyYmEhASmTZvG\nv//+S2xsLKNGjeKLL77Iwm/w3aRYDR8ZRZzCIswBg+hA9GwqUvrLkamuB/znq1lpNGzpr1IQJIWW\nDh068ODBA2rUqMGXX37J0aNHNdf69evHli1bADhz5gwlS5akevVXQ6SffPIJO3bsAGDv3r3pOoI6\nOTlx/PhxAAIDA7l6VT3/dvz4cVq0aJGqrJubG05OTvj5+TFhwgRA/Vbv4eHBpUuX8PDw4MGDB2k+\np1SpUvj6+tK3b19A7eHk5+fH8uXLGTJkCFZWVvz666+a+tMSBJVKxYABA6hevTqurq48f/4cV1dX\nDh8+jK+vL40aNeKHH35I95nJ9t9LlizRJPv57bffMDMz4/z585w/f541a9Zw9+7dNNtQmCg2PQWP\nUzcJj7HAFKj48BTW8+YSExeL//F/uHBgH7r6+ppcB00+6YeZVdmCDVhSpEjvjT6vMDExwcfHh+PH\nj3PkyBGcnZ1xc3PDxcUFZ2dnmjVrxuLFi98YOgL1B6KFhQVbtmyhdu3aGtvs13FycmLJkiVcvXqV\n9957jxcvXvD48WNOnz7Nzz//nGGMbdu21fgHvffee9y7d4+KFSu+Ue51X6TkeFu0aEFYWBihoaEZ\nPuuLL76gT58+fP3114BaDK9evUrzJE+zuLg4mjZtmu4z07L/PnToEBcvXmTbtm2A2lTQ39+fGjUK\n996lPBUFIUQn4CdAG/hVURS3166LpOtdgCjARVEU37yIZfelVVSOsgXAqhY81lY4NOlLosNeAmBR\nrgKVHRpStko1mvcZkBchSCT5ira2Nq1ataJVq1bY2dmxfv16XFxcqFixIra2thw9epTt27enaXnt\n7OzMqFGjcHd3T7f+8uXLExoayoEDB2jRogUhISFs3boVExMTTE1NM4wvsxbVKS2+gVQbS9M6Totm\nzZpx5MgRJk2ahIGBAYqi0L59ezZv3pypZ6Zl/60oCkuXLqVjx9TpeDObM+JdJc9EQQihDSwD2gMP\ngfNCiD2KolxNUawzUD3pyxFYkfRvrhMVf5/y4R+iir3C31EPYJErAPrGxvR3/YGS5crnxWMlkgLh\nxo0baGlpaYaF/Pz8sLGx0Vzv168fEyZMoEqVKmkmnunRowePHz+mY8eOPHr0KN3nNGnShCVLlvDP\nP/8QHBxMr1696NWr1xvlsmNXnR4eHh60bt2aEydOYGZmlim30qFDh3Ls2DH69OnDjh07aNKkCaNG\njeLWrVtUq1aNyMhIAgMDs/SW37FjR1asWEGbNm3Q1dXl5s2blC9f+D9H8rKn8D5wS1GUOwBCiC1A\ndyClKHQHflfUVq1nhBDmQghrRVEe53YwzW6UIvblepTEYAC6jPmKkuUrYmZVBgNjk9x+nERSoERE\nRDBmzBhCQ0PR0dGhWrVqrF69WnO9d+/ejB07lqVLl6Z5v6mpKVOnTs3wOU5OThw6dIhq1aphY2ND\nSEjIG0taAezt7VPZVVukYTSZWQwMDKhfvz7x8fGalJ+ZYeLEibx8+ZJPP/2UTZs24e7uTr9+/YhN\nMrV0dXXNkigMGzaMgIAAGjRogKIoWFpasmvXroxvfMfJM+tsIUQvoJOiKMOSjj8FHBVFGZ2izD7A\nTVGUE0nHfwNTFUXxfq2u4cBwgEqVKjVMTgCSFW5s3YL3nl0YV6tMhYbv0+ijntltmkSSKaR1tqSg\nKPLW2YqirAZWgzqfQnbqqNmnLzX79M3VuCQSiaSokZdLUgOBlEsJKiSdy2oZiUQikeQTeSkK54Hq\nQghbIYQe0BfY81qZPcBnQk0T4GVezCdIJAVFYctsKCn85PRvLs+GjxRFUQkhRgMHUS9JXasoyhUh\nxIik6ysBL9TLUW+hXpI6OK/ikUjyGwMDA4KDgylVqlSmlk1KJDlFURSCg4MxMMh+wq9im6NZIslr\n4uPjefjwITExMQUdiqQYYWBgQIUKFdDV1U11vkhNNEskhRFdXV1sbW0LOgyJJEsUK+8jiUQikbwd\nKQoSiUQi0SBFQSKRSCQaCt1EsxAiCMj6lmY1pYHnuRhOYUC2uXgg21w8yEmbbRRFscyoUKEThZwg\nhPDOzOx7UUK2uXgg21w8yI82y+EjiUQikWiQoiCRSCQSDcVNFFZnXKTIIdtcPJBtLh7keZuL1ZyC\nRCKRSN5OcespSCQSieQtSFGQSCQSiYYiKQpCiE5CiBtCiFtCiGlpXBdCiJ+Trl8UQjQoiDhzk0y0\neUBSWy8JIU4JIeoVRJy5SUZtTlGusRBClZQNsFCTmTYLIVoJIfyEEFeEEEfzO8bcJhN/22ZCiL1C\niP+S2lyo3ZaFEGuFEM+EEJfTuZ63n1+KohSpL9Q23beBKoAe8B/w3mtlugB/AgJoApwt6Ljzoc3N\nAIuk7zsXhzanKPcPapv2XgUddz78ns1R50GvlHRsVdBx50ObZwALk763BEIAvYKOPQdtbgE0AC6n\ncz1PP7+KYk/hfeCWoih3FEWJA7YA3V8r0x34XVFzBjAXQljnd6C5SIZtVhTllKIoL5IOz6DOcleY\nyczvGWAMsB14lp/B5RGZaXN/YIeiKPcBFEUp7O3OTJsVwFSok1aYoBYFVf6GmXsoinIMdRvSI08/\nv4qiKJQHHqQ4fph0LqtlChNZbc9Q1G8ahZkM2yyEKA/0AFbkY1x5SWZ+zzUACyHEv0IIHyHEZ/kW\nXd6QmTb/AtQGHgGXgHGKoiTmT3gFQp5+fsl8CsUMIURr1KLwQUHHkg8sAaYqipJYjDKf6QANgbaA\nIXBaCHFGUZSbBRtWntIR8APaAFWBv4QQxxVFCSvYsAonRVEUAoGKKY4rJJ3LapnCRKbaI4SwB34F\nOiuKEpxPseUVmWlzI2BLkiCUBroIIVSKouzKnxBzncy0+SEQrChKJBAphDgG1AMKqyhkps2DATdF\nPeB+SwhxF6gFnMufEPOdPP38KorDR+eB6kIIWyGEHtAX2PNamT3AZ0mz+E2Al4qiPM7vQHORDNss\nhKgE7AA+LSJvjRm2WVEUW0VRKiuKUhnYBnxZiAUBMve3vRv4QAihI4QwAhyBa/kcZ26SmTbfR90z\nQghRBqgJ3MnXKPOXPP38KnI9BUVRVEKI0cBB1CsX1iqKckUIMSLp+krUK1G6ALeAKNRvGoWWTLZ5\nJlAKWJ705qxSCrHDZCbbXKTITJsVRbkmhDgAXAQSgV8VRUlzaWNhIJO/528BdyHEJdQrcqYqilJo\nLbWFEJuBVkBpIcRDYBagC/nz+SVtLiQSiUSioSgOH0kkEokkm0hRkEgkEokGKQoSiUQi0SBFQSKR\nSCQapChIJBKJRIMUBYnkNYQQCUkuo8lflZOcR18mHV8TQszKYp3mQogv8ypmiSS3kKIgkbxJtKIo\nDim+ApLOH1cUxQH1TumBr1sWCyHetu/HHJCiIHnnkaIgkWSRJAsJH6CaEMJFCLFHCPEP8LcQwkQI\n8bcQwjcpd0Wyo6cbUDWpp/E9gBBishDifJIn/pwCao5Ekooit6NZIskFDIUQfknf31UUpUfKi0KI\nUqh97L8FGqP2vrdXFCUkqbfQQ1GUMCFEaeCMEGIPMA2om9TTQAjRAaiO2hpaAHuEEC2SbJMlkgJD\nioJE8ibRyR/er+EkhLiA2j7CLcluoTHwl6Ioyf73ApgvhGiRVK48UCaNujokfV1IOjZBLRJSFCQF\nihQFiSTzHFcUpWsa5yNTfD8AdfavhoqixAshAgCDNO4RwAJFUVblfpgSSfaRcwoSSe5iBjxLEoTW\ngE3S+XDANEW5g8AQIYQJqBMCCSGs8jdUieRNZE9BIsldNgF7kxw7vYHrAIqiBAshTiYlY/9TUZTJ\nQojaqJPgAEQAAykaaUMlhRjpkiqRSCQSDXL4SCKRSCQapChIJBKJRIMUBYlEIpFokKIgkUgkEg1S\nFCQSiUSiQYqCRCKRSDRIUZBIJBKJhv8DjWtJsAOaWuUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118a1908>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"n_splits=24\n",
"kfold=StratifiedKFold(n_splits=n_splits, shuffle=False)\n",
"\n",
"featurelist=[\"Diameter\",\"MeanHU\",\"Spiculation\",\"Eccentricity\"]\n",
"models=[GaussianNB(), MultinomialNB(),\n",
" LogisticRegression(C=0.1),\n",
" RandomForestClassifier(),\n",
" GradientBoostingClassifier(),\n",
" SVC(C=0.02,kernel='rbf', probability=True),\n",
" SVC(C=0.02, kernel='linear', probability=True)]\n",
"name=[\"Gaussian Naive Bayes\", \"Multinomial Naive Bayes\", \"Logistic Regression\", \"Random Forest\", \"Gradient Boosting\", \"SVM with rbf kernel\", \"SVM with linear kernel\"]\n",
"\n",
"predictedmodels={}\n",
"\n",
"for nm, clf in zip(name[:-1], models[:-1]):\n",
" print(nm)\n",
" predicted=[]\n",
" mallabelcv=[]\n",
" for train,test in kfold.split(inputfeatures,malignantlabel):\n",
" if nm==name[1]:\n",
" clf.fit(roundedfeatures[featurelist].iloc[train],[malignantlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(roundedfeatures[featurelist].iloc[test])[:,1])\n",
" else:\n",
" clf.fit(inputfeatures[featurelist].iloc[train],[malignantlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(inputfeatures[featurelist].iloc[test])[:,1])\n",
" mallabelcv.append([malignantlabel[i] for i in test])\n",
" if nm==name[1]: \n",
" scores=cross_val_score(clf,roundedfeatures[featurelist], malignantlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" else:\n",
" scores=cross_val_score(clf,inputfeatures[featurelist], malignantlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" predicted=np.concatenate(np.array(predicted),axis=0)\n",
" mallabelcv=np.concatenate(np.array(mallabelcv),axis=0)\n",
" predictedmodels[nm]=predicted\n",
" roc=roc_curve(mallabelcv,predicted)\n",
" print(\"Average precision score:\", average_precision_score(mallabelcv,predicted))\n",
" print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
" plt.plot(roc[0],roc[1])\n",
" #print(-scores)\n",
" print(\"Cross-validated logloss\",-np.mean(scores))\n",
" print(\"---------------------------------------\")\n",
" #plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(name)\n",
"plt.savefig(\"clfroccomparison.png\",dpi=300)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Models averaged: ['Gaussian Naive Bayes', 'Multinomial Naive Bayes', 'Logistic Regression', 'SVM with rbf kernel']\n",
"Area under curve: 0.639771861414\n",
"Average precision score: 0.394218031035\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF6FJREFUeJzt3X+w5XV93/HnC5BRCyvirs66sGFDSHSNSnRhxVqLpcqP\nxtnQsQ2gsaFxVkaxdjqTkTpTqTU1pGZaNaAbYgg1kWBarSztKhqdKImyAhFBMNgN4LIrHRAsKDrB\nLe/+cX5wONx77rl77/f8fD5m7uz5fs93731/Z+G87ufH9/NJVSFJEsAh4y5AkjQ5DAVJUpehIEnq\nMhQkSV2GgiSpy1CQJHUZCpKkLkNBGiDJPUl+kuRHSf5PkiuTHNHz/iuTfCnJD5M8nOTaJJv7vsea\nJB9Msrf9ff62fbx29HckDWYoSEt7fVUdAZwI/BLwbwGSnAJ8HrgGeD6wCfgm8FdJfrZ9zeHAF4EX\nAWcAa4BTgO8DJ4/2NqSlxSeapcUluQd4S1X9efv4PwEvqqp/kuR64Laqelvf3/ks8EBVvTnJW4D/\nCBxfVT8acfnSstlSkIaU5BjgTGBPkmcCrwT+2wKX/hnw2vbrfwx8zkDQtDAUpKV9JskPgXuB+4GL\ngaNp/f9z3wLX3wd0xgues8g10kQyFKSl/UpVHQmcCryA1gf+D4DHgfULXL+e1pgBwIOLXCNNJENB\nGlJVfRm4EvjdqnoU+Brwzxa49J/TGlwG+HPg9CR/byRFSitkKEjL80HgtUleClwE/Isk/yrJkUme\nneS3aM0uem/7+j+m1e30qSQvSHJIkuckeXeSs8ZzC9LiDAVpGarqAeDjwHuq6i+B04F/Smvc4Lu0\npqy+qqr+d/v6v6M12Pw3wBeAR4Cv0+qC2j3yG5CW4JRUSVKXLQVJUpehIEnqMhQkSV2GgiSp67Bx\nF7Bca9eureOOO27cZUjSVLn55pu/X1Xrlrpu6kLhuOOO46abbhp3GZI0VZJ8d5jr7D6SJHUZCpKk\nLkNBktRlKEiSugwFSVJXY6GQ5Iok9yf51iLvJ8mHk+xJcmuSlzVViyRpOE22FK6ktVH5Ys4ETmh/\nbQc+2mAtkqQhNBYKVfUV4KEBl2wDPl4tNwBHJXGHKknqc9Xuvfzq73+N9157e+M/a5wPr22gtflI\nx772uafsZ5tkO63WBBs3bhxJcZI0Dlft3ss1t+x/0rndd7d+v978/DWN//ypGGiuqsuraktVbVm3\nbsmntCVpal1zy37uuO+RJ53buulo3n/2i7n49S9q/OePs6WwHzi25/iY9jlJmktX7d7L7rsfYuum\no/nkW08ZSw3jDIWdwIVJrga2Ag9X1VO6jiRplvV2F3W6ibaduGFs9TQWCkn+FDgVWJtkH3Ax8DSA\nqtoB7ALOAvYAPwbOb6oWSZokCwXB1k1Hs3XT0Ww7cQPnbR3f2GljoVBV5y7xfgFvb+rnS9Ikumr3\nXt79P24DJicIek3d0tmSNAkWmiU0jE7L4P1nv3higqCXoSBJixj0wd/b7bMck9Yy6GcoSNIC+rt5\n+k36h/vBMhQkza1hWgKT2s3TFENB0tzphMGgLqBZbQksxVCQNPP6WwS9YTCPH/yDGAqSZtZiLQLD\nYHGGgqSZ1D9QbAgMx1CQNDMWelJ43gaKV8pQkDS1Bo0V2Do4OIaCpKmy2LpBnT8NgpUxFCRNrEEb\nztgaaIahIGniDHqOwCBolqEgaex8jmByGAqSxsbnCCaPoSBppBYbKDYEJoOhIGlkJn2DGRkKkhrm\nA2XTxVCQ1BhbBtPHUJC06voHkG0ZTA9DQdKKOaV0dhgKkg6aU0pnj6EgadkWCgNDYDYYCpKWxX0K\nZpuhIGlovYHg4PFsMhQkLcnZRPPDUJC0pGtu2c8d9z1id9EcMBQkDXTV7r3svvshtm46mk++9ZRx\nl6OGHTLuAiRNrt4xhG0nbhhzNRoFWwqSnsIxhPllKEgCXNJaLY2GQpIzgA8BhwIfq6pL+t5/FvAn\nwMZ2Lb9bVX/UZE2SWgYtTWEYzK/GQiHJocBlwGuBfcCNSXZW1R09l70duKOqXp9kHXBnkk9U1WNN\n1SXpqQ+gdf40CNRkS+FkYE9V3QWQ5GpgG9AbCgUcmSTAEcBDwIEGa5IE3RaCYwXq1+Tsow3AvT3H\n+9rnel0KvBD4HnAb8M6qerz/GyXZnuSmJDc98MADTdUrzYXeKaYGgvqNe0rq6cAtwPOBE4FLk6zp\nv6iqLq+qLVW1Zd26daOuUZoZTjHVUprsPtoPHNtzfEz7XK/zgUuqqoA9Se4GXgB8vcG6pLmx2GCy\n3UZaTJOhcCNwQpJNtMLgHOC8vmv2AqcB1yd5HvALwF0N1iTNvMWmlnb+dDBZgzQWClV1IMmFwHW0\npqReUVW3J7mg/f4O4H3AlUluAwK8q6q+31RN0qxzT2StVKPPKVTVLmBX37kdPa+/B7yuyRqkeeAT\nyFotPtEsTTF3QNNqMxSkKeUOaGqCoSBNKR9AUxMMBWmK9M4s6mx6YyBoNRkK0hRYaOxg8/o1PoCm\nVWcoSBPKpaw1DoaCNEEWCwLDQKNiKEgTYKHuIYNA42AoSGPm1FJNEkNBGoOFuomcWqpJYChII2Q3\nkSadoSCNgMtRaFoYClKDDANNG0NBWmU+X6BpZihIq8TxAs0CQ0FaBU4r1awwFKQVcHMbzRpDQVqB\na27Z312t1NaBZoGhIC1T//LVm9ev4ZNvPWXMVUmr45BxFyBNk87YQae7yOWrNWtsKUhD6h1MduxA\ns8qWgjQkt7/UPLClIC2hM4bg9peaB4aCtIjFlqiQZpmhIC3C6aaaR4aC1Ke3u8jpppo3hoLUY6Hl\nKqR5Yiho7rkLmvQEQ0Fzr7eryPEDzTtDQXOnt2UALlUh9Wr04bUkZyS5M8meJBctcs2pSW5JcnuS\nLzdZj9S/TAW4VIXUq7GWQpJDgcuA1wL7gBuT7KyqO3quOQr4CHBGVe1N8tym6tH8csxAGl6T3Ucn\nA3uq6i6AJFcD24A7eq45D/h0Ve0FqKr7G6xHc6h/NpFjBtJgTYbCBuDenuN9wNa+a34eeFqSvwCO\nBD5UVR/v/0ZJtgPbATZu9H9mLc3Nb6SDM+6B5sOAlwOnAc8Avpbkhqr6Tu9FVXU5cDnAli1bauRV\namostjSFgSANp8lQ2A8c23N8TPtcr33Ag1X1KPBokq8ALwW+g3QQXJpCWpkmQ+FG4IQkm2iFwTm0\nxhB6XQNcmuQw4HBa3Uv/pcGaNKNcmkJaHY2FQlUdSHIhcB1wKHBFVd2e5IL2+zuq6ttJPgfcCjwO\nfKyqvtVUTZpdvYHg9FLp4DU6plBVu4Bdfed29B1/APhAk3Votl21ey+7736IrZuOtoUgrdCSD68l\neWaSf5fkD9rHJyT55eZLk5bWO+XUFoK0csM80fxHwN8BnV/B9gO/1VhF0pDcM1lafcN0Hx1fVb+a\n5FyAqvpxkjRcl7Qon0GQmjNMKDyW5BlAASQ5nlbLQRoLp51KzRkmFP498Dng2CSfAP4+cH6TRUkL\ncdqp1LwlQ6GqPp/kZuAVQIB3VtX3G69MalvsKWVJq2/JUEjyxao6DfhfC5yTGmd3kTQ6i4ZCkqcD\nzwTWJnk2rVYCwBpai91JjXATHGl8BrUU3gr8a+D5wM08EQqPAJc2XJfmWO+4AbgJjjRKi4ZCVX0I\n+FCSd1TV742wJs2h3taBLQNpfIYZaP69JL8IbAae3nP+KfseSMPo7x4CnjSIbMtAGp9hBpovBk6l\nFQq7gDOBvwQMBS1pqQDocBBZmgzDPKfwBlp7HHyjqs5P8jzgT5otS9NsoT2RDQBpOgwTCj+pqseT\nHEiyBrifJ2+eIwELP09gAEjTZZhQuCnJUcAf0JqF9CPga41Wpank8wTS9BsYCu2F7367qv4vsKO9\nIc6aqrp1JNVpovk8gTR7BoZCVVWSXcCL28f3jKIoTb7eZas74wXOGpKm3zDdR3+d5KSqurHxajTR\nFhpAdtlqabYMEwpbgTcluQd4lNaTzVVVL2myME0OB5Cl+TFMKJzeeBWaSIutTmoQSLNrqQXxLgB+\nDrgN+MOqOjCqwjRe/WMGhoE0Hwa1FP4r8FPgelpPMW8G3jmKojQ+bnUpzbdBobC5ql4MkOQPga+P\npiSNk88aSPNtUCj8tPOiqg60HlnQrHKrS0kwOBROTPJI+3WAZ7SPO7OP1jRenUZiofEDSfNpUCh8\ns6p+aWSVaKR85kDSQgaFQo2sCo1cb1eR4weSOgaFwnOT/JvF3qyq/9xAPWqQu5tJWsohA947FDgC\nOHKRL02ZTusAXKdI0sIGtRTuq6r/MLJK1BhnFkka1qCWgnNQZ0RvINg6kDTIoFA4baXfPMkZSe5M\nsifJRQOuO6m9s9sbVvoztbBOC8HBZEmDLBoKVfXQSr5xkkOBy3hiiYxzk2xe5LrfAT6/kp+nhV21\ne293yqkkLWVQS2GlTgb2VNVdVfUYcDWwbYHr3gF8itbez1plndlGdhtJGsYwS2cfrA3AvT3H+2jt\nzdCVZANwNvAa4KTFvlGS7cB2gI0b7f4YRu/g8tZNR9ttJGkoTbYUhvFB4F1V9figi6rq8qraUlVb\n1q1bN6LSpldn2Yrddz/k4LKkZWmypbAfOLbn+Jj2uV5bgKvbi+2tBc5KcqCqPtNgXTOv02XkshWS\nlqvJULgROCHJJlphcA5wXu8FVbWp8zrJlcD/NBBWh11Gkg5GY91H7V3aLgSuA74N/FlV3Z7kgiQX\nNPVz552zjSStRJMtBapqF7Cr79yORa799SZrmQe9S2A7jiDpYIx7oFmryLEESStlKMyITreRYwmS\nVqLR7iM1r/M8QmccwW4jSSthKEyhhXZNc6McSavBUJgy/fspGwaSVpOhMCX6u4kcTJbUBENhCvS3\nDmwZSGqKoTDhegPB1oGkpjkldcL57IGkUTIUJpjPHkgaNUNhgrlBjqRRMxQmlK0ESePgQPOE8Qll\nSeNkKEyI/jBw6qmkcTAUJkTvfsqGgaRxMRQmyOb1a/jkW08ZdxmS5pgDzRPA3dIkTQpDYQI49VTS\npDAUxsypp5ImiaEwRu6pLGnSGApj5LpGkiaNoTAmdhtJmkSGwhjYbSRpUhkKI+b+CJImmaEwYo4j\nSJpkPtE8Ip21jTpLWRgIkiaRLYUR6QTC5vVrHEeQNLFsKYxA70wj1zaSNMlsKTTMmUaSpomh0DAH\nliVNk0ZDIckZSe5MsifJRQu8/8Yktya5LclXk7y0yXrGxYFlSdOisVBIcihwGXAmsBk4N8nmvsvu\nBv5hVb0YeB9weVP1SJKW1mRL4WRgT1XdVVWPAVcD23ovqKqvVtUP2oc3AMc0WM/IuU+CpGnT5Oyj\nDcC9Pcf7gK0Drv8N4LMLvZFkO7AdYOPGye+G6d9v2QFmSdNiIqakJnkNrVB41ULvV9XltLuWtmzZ\nUiMsbdl6Zxu537KkadNkKOwHju05PqZ97kmSvAT4GHBmVT3YYD0j4WwjSdOsyTGFG4ETkmxKcjhw\nDrCz94IkG4FPA79WVd9psJaRcraRpGnVWEuhqg4kuRC4DjgUuKKqbk9yQfv9HcB7gOcAH0kCcKCq\ntjRVU5N61zbavH7NuMuRpIPS6JhCVe0CdvWd29Hz+i3AW5qsoWn9g8qdcQRJmkYTMdA8jRYLA7uN\nJE0zQ+Eg9S6DbRhImhWGwgpsXr/GVU8lzRQXxDsIPqksaVYZCsvkUtiSZpmhsAy9geDDaZJmkaGw\nDD6tLGnWOdC8hM7UU6A728hAkDSrbCkM0Oku6gwqb16/xnEESTPNlsIAdhdJmje2FBbRmXZqd5Gk\neWIoLMBpp5LmlaHQx2mnkuaZodDHcQRJ88xQ6OE4gqR5Zyi0OY4gSYZCl91GkmQoPIndRpLmnaGA\nS2FLUoehwBNdR44lSJp3cx8KzjiSpCfMfSjYSpCkJ8x1KNhKkKQnm+tQsJUgSU82t6FgK0GSnmou\nQ8GnlyVpYXMXCq6CKkmLm7tQcDkLSVrc3IUCuJyFJC1mLkNBkrSwuQoF1ziSpMEaDYUkZyS5M8me\nJBct8H6SfLj9/q1JXtZkPT6XIEmDNRYKSQ4FLgPOBDYD5ybZ3HfZmcAJ7a/twEebqqfD8QRJWlyT\nLYWTgT1VdVdVPQZcDWzru2Yb8PFquQE4Ksn6Jop577W323UkSUtoMhQ2APf2HO9rn1vuNSTZnuSm\nJDc98MADB13Q1k1H23UkSQMcNu4ChlFVlwOXA2zZsqUO5ntc/PoXrWpNkjSLmmwp7AeO7Tk+pn1u\nuddIkkakyVC4ETghyaYkhwPnADv7rtkJvLk9C+kVwMNVdV+DNUmSBmis+6iqDiS5ELgOOBS4oqpu\nT3JB+/0dwC7gLGAP8GPg/KbqkSQtrdExharaReuDv/fcjp7XBby9yRokScObqyeaJUmDGQqSpC5D\nQZLUZShIkrrSGuudHkkeAL57kH99LfD9VSxnGnjP88F7ng8rueefqap1S100daGwEkluqqot465j\nlLzn+eA9z4dR3LPdR5KkLkNBktQ1b6Fw+bgLGAPveT54z/Oh8XueqzEFSdJg89ZSkCQNYChIkrpm\nMhSSnJHkziR7kly0wPtJ8uH2+7cmedk46lxNQ9zzG9v3eluSryZ56TjqXE1L3XPPdSclOZDkDaOs\nrwnD3HOSU5PckuT2JF8edY2rbYj/tp+V5Nok32zf81SvtpzkiiT3J/nWIu83+/lVVTP1RWuZ7r8F\nfhY4HPgmsLnvmrOAzwIBXgHsHnfdI7jnVwLPbr8+cx7uuee6L9FarfcN4657BP/ORwF3ABvbx88d\nd90juOd3A7/Tfr0OeAg4fNy1r+CeXw28DPjWIu83+vk1iy2Fk4E9VXVXVT0GXA1s67tmG/DxarkB\nOCrJ+lEXuoqWvOeq+mpV/aB9eAOtXe6m2TD/zgDvAD4F3D/K4hoyzD2fB3y6qvYCVNW03/cw91zA\nkUkCHEErFA6MtszVU1VfoXUPi2n082sWQ2EDcG/P8b72ueVeM02Wez+/Qes3jWm25D0n2QCcDXx0\nhHU1aZh/558Hnp3kL5LcnOTNI6uuGcPc86XAC4HvAbcB76yqx0dT3lg0+vnV6CY7mjxJXkMrFF41\n7lpG4IPAu6rq8dYvkXPhMODlwGnAM4CvJbmhqr4z3rIadTpwC/CPgOOBLyS5vqoeGW9Z02kWQ2E/\ncGzP8THtc8u9ZpoMdT9JXgJ8DDizqh4cUW1NGeaetwBXtwNhLXBWkgNV9ZnRlLjqhrnnfcCDVfUo\n8GiSrwAvBaY1FIa55/OBS6rV4b4nyd3AC4Cvj6bEkWv082sWu49uBE5IsinJ4cA5wM6+a3YCb26P\n4r8CeLiq7ht1oatoyXtOshH4NPBrM/Jb45L3XFWbquq4qjoO+O/A26Y4EGC4/7avAV6V5LAkzwS2\nAt8ecZ2raZh73kurZUSS5wG/ANw10ipHq9HPr5lrKVTVgSQXAtfRmrlwRVXdnuSC9vs7aM1EOQvY\nA/yY1m8aU2vIe34P8BzgI+3fnA/UFK8wOeQ9z5Rh7rmqvp3kc8CtwOPAx6pqwamN02DIf+f3AVcm\nuY3WjJx3VdXULqmd5E+BU4G1SfYBFwNPg9F8frnMhSSpaxa7jyRJB8lQkCR1GQqSpC5DQZLUZShI\nkroMBalPkv/XXmW083Vce+XRh9vH305y8TK/51FJ3tZUzdJqMRSkp/pJVZ3Y83VP+/z1VXUirSel\n39S/ZHGSQc/9HAUYCpp4hoK0TO0lJG4Gfi7JryfZmeRLwBeTHJHki0n+ur13RWdFz0uA49stjQ8A\nJPnNJDe218R/75huR3qSmXuiWVoFz0hyS/v13VV1du+bSZ5Dax379wEn0Vr7/iVV9VC7tXB2VT2S\nZC1wQ5KdwEXAL7ZbGiR5HXACraWhA+xM8ur2ssnS2BgK0lP9pPPh3ecfJPkGreUjLmkvt3AS8IWq\n6qx/H+D9SV7dvm4D8LwFvtfr2l/faB8fQSskDAWNlaEgDe/6qvrlBc4/2vP6jbR2/3p5Vf00yT3A\n0xf4OwF+u6p+f/XLlA6eYwrS6noWcH87EF4D/Ez7/A+BI3uuuw74l0mOgNaGQEmeO9pSpaeypSCt\nrk8A17ZX7LwJ+BuAqnowyV+1N2P/bFX9ZpIX0toEB+BHwJuYjW1DNcVcJVWS1GX3kSSpy1CQJHUZ\nCpKkLkNBktRlKEiSugwFSVKXoSBJ6vr/dmNp8w5xpC8AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11b67630>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Logistic Regression logloss 0.554847995102\n",
"Ensemble of models logloss 0.556005624441\n"
]
}
],
"source": [
"#Ensemble of multiple models by averaging their prediction outputs\n",
"\n",
"predictedmodels=pd.DataFrame(predictedmodels)\n",
"models=[name[i] for i in [0,1,2,5]]\n",
"predictedmean=np.mean(predictedmodels[models],axis=1)\n",
"roc=roc_curve(mallabelcv,predictedmean)\n",
"print(\"Models averaged:\",models)\n",
"print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
"print(\"Average precision score:\", average_precision_score(mallabelcv,predictedmean))\n",
"plt.plot(roc[0],roc[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.show()\n",
"print(\"Logistic Regression logloss\",log_loss(mallabelcv,predictedmodels[name[2]]))\n",
"print(\"Ensemble of models logloss\",log_loss(mallabelcv,predictedmean))"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gaussian Naive Bayes\n",
"Average precision score: 0.264615359245\n",
"Area under curve: 0.48319454528\n",
"Cross-validated logloss 0.601300244897\n",
"---------------------------------------\n",
"Multinomial Naive Bayes\n",
"Average precision score: 0.249989475393\n",
"Area under curve: 0.460893695932\n",
"Cross-validated logloss 0.590140187634\n",
"---------------------------------------\n",
"Logistic Regression\n",
"Average precision score: 0.243979584085\n",
"Area under curve: 0.452701993475\n",
"Cross-validated logloss 0.591648749961\n",
"---------------------------------------\n",
"Random Forest\n",
"Average precision score: 0.267203732376\n",
"Area under curve: 0.474753549155\n",
"Cross-validated logloss 1.50520689192\n",
"---------------------------------------\n",
"Gradient Boosting\n",
"Average precision score: 0.267844392757\n",
"Area under curve: 0.48298789395\n",
"Cross-validated logloss 0.619576237054\n",
"---------------------------------------\n",
"SVM with rbf kernel\n",
"Average precision score: 0.275422835589\n",
"Area under curve: 0.493881371203\n",
"Cross-validated logloss 0.590280065819\n",
"---------------------------------------\n",
"SVM with linear kernel\n",
"Average precision score: 0.291751930655\n",
"Area under curve: 0.50785275054\n",
"Cross-validated logloss 0.590642358879\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8T9f/x583e4gMEpvECrKHEWmIEVQ1RUVqh1a1NVpt\nlaKKL4pqafGjqsSqXatUNUiJETPSiBEjIRKZEtnz/v74yJVEIkYixHk+Hn3U595zz3mfT5LP63PW\n6y3JsoxAIBAIBABqlR2AQCAQCF4ehCgIBAKBQEGIgkAgEAgUhCgIBAKBQEGIgkAgEAgUhCgIBAKB\nQEGIgkAgEAgUhCgIBI9BkqRwSZIyJElKlSTpriRJvpIkVSt0v70kSYckSUqRJClZkqQ9kiS1KlZH\ndUmSFkmSdOtBPdcfvK754nskEDweIQoCQdm8LctyNcAecAC+BpAkyQU4AOwC6gIWwAXgmCRJjR+U\n0QIOAlZAD6A64ALEA21ebDcEgrKRxIlmgaB0JEkKBz6QZdnvwev5gJUsy29JknQU+E+W5U+KPfMX\nECfL8lBJkj4AZgNNZFlOfcHhCwRPjRgpCARPiCRJ9YE3gWuSJOkB7YGtJRTdAng8+HdXYL8QBMGr\nghAFgaBsdkqSlALcBmKBbwETVH8/0SWUjwYK1gtqlFJGIHgpEaIgEJRNb1mWDQB3oAWqD/x7QD5Q\np4TydVCtGQAklFJGIHgpEaIgEDwhsiz/C/gCC2RZTgNOAF4lFO2PanEZwA/oLkmS/gsJUiB4ToQo\nCARPxyLAQ5IkO2ASMEySpHGSJBlIkmQsSdIsVLuLZjwovw7VtNN2SZJaSJKkJklSDUmSJkuS1LNy\nuiAQlI4QBYHgKZBlOQ5YC0yTZTkA6A70RbVuEIFqy+obsiyHPSifhWqx+TLwD3AfOIVqCirwhXdA\nICgDsSVVIBAIBApipCAQCAQCBSEKAoFAIFAQoiAQCAQCBSEKAoFAIFDQqOwAnpaaNWvK5ubmlR2G\nQCAQvFKcPXs2XpZl07LKvXKiYG5uzpkzZyo7DIFAIHilkCQp4knKiekjgUAgECgIURAIBAKBghAF\ngUAgECi8cmsKJZGTk0NkZCSZmZmVHYrgNUNHR4f69eujqalZ2aEIBOVClRCFyMhIDAwMMDc3R5Kk\nyg5H8JogyzIJCQlERkZiYWFR2eEIBOVChU0fSZK0SpKkWEmSQkq5L0mS9LMkSdckSQqWJMnxWdvK\nzMykRo0aQhAELxRJkqhRo4YYoQqqFBW5puCLKlF5abwJNHvw34fAsudpTAiCoDIQv3eCqkaFTR/J\nsnxEkiTzxxR5B1grq2xaT0qSZCRJUh1ZlkXqQoFAIADy8/JZu3EvGuGJtErQJZ44ui0cXaFtVubu\no3qoko8UEPng2iNIkvShJElnJEk6ExcX90KCe1piYmIYOHAgjRs3xsnJCRcXF3bs2FHh7Z45c4Zx\n48aVS13u7u44OzsXqdvd3f2xz0RFRdGvX7/nbjs8PBxdXV3s7e2xs7Ojffv2XLly5bnrFQheVbIy\nclk22p+0AH2sk8wx066DZlbFpzp4JbakyrK8QpZlZ1mWnU1Nyzyl/cKRZZnevXvToUMHbty4wdmz\nZ9m0aRORkZEV3razszM///xzudUXGxvLX3/99cTl69aty7Zt28ql7SZNmhAUFMSFCxcYNmwYc+bM\nKZd6BYJXkX++DsC1mjqu+moYk0Vsxi1CdK9XeLuVKQp3gAaFXtd/cO2V49ChQ2hpafHRRx8p1xo1\nasTYsWMB1bdgNzc3HB0dcXR05Pjx4wD4+/vTq1cv5ZkxY8bg6+sLwKRJk2jVqhW2trZ8+eWXAGzd\nuhVra2vs7Ozo0KHDI3WcOnUKFxcXHBwcinzT9vX1pW/fvvTo0YNmzZrx1VdfldqXCRMmMHv27Eeu\nl9aH8PBwrK2tAWjXrh0XL15UnnF3d+fMmTOkpaUxYsQI2rRpg4ODA7t27SrzPb1//z7GxsaPbXvo\n0KHs3LlTeWbQoEHs2rWLvLw8JkyYQOvWrbG1teWXX34BIDo6mg4dOmBvb4+1tTVHjx4tMw6B4EWQ\nfj8bv9Wh7F/xH/tX/Mcv049TX0PCUF1CM+MmCTlxRKSF0vHN7hUeS2VuSd0NjJEkaRPQFkguj/WE\nGXsuEhp1/7mDK0yrutX59m2rUu9fvHgRR8fSN0+ZmZnxzz//oKOjQ1hYGAMGDHisf1NCQgI7duzg\n8uXLSJJEUlISADNnzuTvv/+mXr16yrXCtGjRgqNHj6KhoYGfnx+TJ09m+/btAAQFBXH+/Hm0tbWx\ntLRk7NixNGjQ4JE6Cqa9Dh8+jIGBwVP1wdvbmy1btjBjxgyio6OJjo7G2dmZyZMn07lzZ1atWkVS\nUhJt2rSha9eu6OsXzWV//fp17O3tSUlJIT09ncDAwMe2/f7777Nw4UJ69+5NcnIyx48fZ82aNfz2\n228YGhpy+vRpsrKycHV1pVu3bvzxxx90796dKVOmkJeXR3p6eqk/A4HgRZCbnUdsxH2ObbtGbEQK\n5tpq1NVMxyw3jepaJiRl3uVQgupv2GPkGGy7Pm7vTvlQYaIgSdJGwB2oKUlSJPAtoAkgy/JyYB/Q\nE7gGpAPDKyqWF83o0aMJCAhAS0uL06dPk5OTw5gxYwgKCkJdXZ2rV68+9nlDQ0N0dHR4//336dWr\nlzIScHV1xcfHh/79+9O3b99HnktOTmbYsGGEhYUhSRI5OTnKvS5dumBoaAhAq1atiIiIKFEUAKZO\nncqsWbOYN2+ecu1J+tC/f3+6devGjBkz2LJli7LWcODAAXbv3s2CBQsA1RbiW7du0bJlyyLPF0wf\nAWzevJkPP/yQ/fv3l9p2x44d+eSTT4iLi2P79u28++67aGhocODAAYKDg5VpreTkZMLCwmjdujUj\nRowgJyeH3r17Y29v/9ifg0BQkeTl5rP75yCiryUD0EhLwk5XHTAgLieRe9lRhMj/oW2QQof+X74Q\nQYCK3X00oIz7MlDuy+iP+0ZfUVhZWSnfyAGWLl1KfHy8smi7cOFCatWqxYULF8jPz0dHRwcADQ0N\n8vPzlecK9rtraGhw6tQpDh48yLZt21iyZAmHDh1i+fLlBAYGsnfvXpycnDh79myROL755hs6derE\njh07CA8PL7JIrK2trfxbXV2d3NzcUvvTuXNnpk6dysmTJ5VrpfWhMPXq1aNGjRoEBwezefNmli9f\nDqjWXLZv346lpWWZ72UBnp6eDB8+vMy2hw4dyvr169m0aROrV69W2lu8eDHduz861D5y5Ah79+7F\nx8eHzz//nKFDhz5xTAJBefKffyTR15JppCVhVF0D8wd/kmdj/+KcHMgf7rFMi09gWEoaePR6fGXl\nyCux0Pyy07lzZzIzM1m27OFRi8JTE8nJydSpUwc1NTXWrVtHXl4eoFp3CA0NJSsri6SkJA4ePAhA\namoqycnJ9OzZk4ULF3LhwgVANb3Stm1bZs6ciampKbdvF968pWqnXj3VBq6CtYlnZerUqcyfP7/M\nPhTH29ub+fPnk5ycjK2tLQDdu3dn8eLFqL4HwPnz58tsPyAggCZNmpTZto+PD4sWLQJUI6CC9pYt\nW6aMlK5evUpaWhoRERHUqlWLkSNH8sEHH3Du3LmnfVsEgmcmNuI+m2adYvXEANZ8fYxj267RQC0K\nez2VIMRm3OJ0/H5OapwipHE60+IT8GrQFfqtghd4HqZK2FxUNpIksXPnTsaPH8/8+fMxNTVFX19f\nmX755JNPePfdd1m7di09evRQ5tIbNGhA//79sba2xsLCAgcHBwBSUlJ45513yMzMRJZlfvzxR0C1\nCBwWFoYsy3Tp0gU7Ozv+/fdfJY6vvvqKYcOGMWvWLN56663n6lPPnj0pvNOrtD4Up1+/fnz66ad8\n8803yrVvvvmGzz77DFtbW/Lz87GwsODPP/985NmCNQVZltHS0mLlypVltl2rVi1atmxJ7969lWsf\nfPAB4eHhODo6Issypqam7Ny5E39/f77//ns0NTWpVq0aa9eufa73SCB4Em6cj8PPN5ScrIdfZlq2\nr8PdS7E4yo0ACI3cQ7h6GAeaRHOlUZpKEMbdAM1HR+QVjVTw7e1VwdnZWS6+wHnp0qVH5qcFrwfp\n6enY2Nhw7tw5Zc3kRSN+/wTFkfNlcrLyOLTuEtfPqc5W2XaqTz1LY8xtanBg0R6s40wAuBj1J2es\nL7Op1g0AlSCYtYMhf5RrTJIknZVl2bmscmKkIHhl8fPz4/3332f8+PGVJggCQXEy03L47Yui253f\n6N+Mi/oySwKvYbZ9M8PvG4OuCcF3/2RrvX85UysN54xMeqal4ZWrDYO3l1J7xSNEQfDK0rVrVyIi\nnijDoEBQ4aQlZfHXL/8Rc/PhlvgO7zWnhUsd1qzdzMUAfxrm59Jeuw5mNe2Iy7jOjr53Ia8205Lv\n4XU3CIbshCadKrEXQhQEAoHgucjLzSc+MpW/lv9HWlIWAG3etsC+a0M0tdVZ+evv1Ai8yBCjjqjn\n51ND3xyA+51r8GubL2HvF3DnItS2hbqVv01aiIJAIBA8B3//GsLNC/HK69HLOwPwe+AtdgXd4c0L\n12hdU3XGIDM5jEid22QZnqFj0Go4/2BLeqM3YPjeFx57SQhREAgEgmckyO+WIghvjbbFuLYeAFd8\n/Wj6XxLj5VzqV1dNB92L3kQrp2CaJgZD8oMKatmA+ySo61AZ4ZeIEAWBQCB4BuR8mcA9NwHo84UD\n1RMzSf/jGsHRMZhk6qCvWYuEtHASs8O5l3OSDubrkRKBpl2hfhtw+wLUX76PYHF4rZyQJInBgwcr\nr3NzczE1NS1ieFca1apVA1TGb7///rtyvTxtsUtj9+7dzJ0797FlfH19GTNmTInX1dTUCA4OVq5Z\nW1sTHh7+2Po++OADQkNDnynewri7u2NpaYm9vT0tW7ZkxYoVz12nQPAk5GTnsXysP7lZeViaaKFx\n6DZJO66RfTOZzJRkYjNucTtsK6kn5nDb9Gc61lmPZN0HptxV7Sxyn/hSCgKIkUK5oa+vT0hICBkZ\nGejq6vLPP/8op4uflAJRGDhwIKCyxS6c36Ai8PT0xNPT85mfr1+/PrNnz2bz5s1P/EzBobTyYMOG\nDTg7O5OYmEiTJk3w8fFBS0ur3OoXCErCf8Nl8vNUZ7ys61cjJzqVHKM8QhJPcvX2EUzSstDLi0bz\ni9b0vfLAFbjf6hd6MvlZESOFcqRnz57s3ataLNq4cSMDBjy0f5o+fbpiCAclf6OeNGkSR48exd7e\nnoULFxaxxZ4+fTojRozA3d2dxo0bF8mh8OOPP2JtbY21tbVi+RAeHk6LFi3w8fGhefPmDBo0CD8/\nP1xdXWnWrBmnTp0Cio4C9uzZQ9u2bXFwcKBr167ExMSU2edevXpx8eLFEhPifPzxxzg7O2NlZcW3\n336rXC+w1F6+fDkTJkxQrheOZf369bRp0wZ7e3tGjRpVqq1GAampqejr66Ourl5q24cOHSpy8vmf\nf/6hT58+gMq0z8XFBUdHR7y8vEhNTVV+JsUtzAWvN3f/uonpxXhcq6nj5VCDvNh0snWy+eP8Aq5G\nBGCSlkWciYzad589FIQPDr0SggBVcaTw1yS4+1/51lnbBt58/BQLwHvvvcfMmTPp1asXwcHBjBgx\n4qk8++fOncuCBQsUCwh/f/8i9y9fvszhw4dJSUnB0tKSjz/+mODgYFavXk1gYCCyLNO2bVs6duyI\nsbEx165dY+vWraxatYrWrVvz+++/ExAQwO7du5kzZ06RXAQAb7zxBidPnkSSJFauXMn8+fP54Ycf\nHhuzmpoaX331FXPmzGHNmjVF7s2ePRsTExPy8vLo0qULwcHBih8SwLvvvouLiwvff/89oHJGnTJl\nCpcuXWLz5s0cO3YMTU1NPvnkEzZs2FCied2gQYPQ1tYmLCyMRYsWKaJQUtudOnVSXFVNTU1ZvXo1\nI0aMID4+nlmzZuHn56fYk/z444+MHj26RAtzwetL5O7rcDyKmhpqJGqrExp9H62sVGIiAwBoHBPP\nXjdDur65FK+zH6se6jQV6jtVYtRPR9UThUrE1taW8PBwNm7cSM+ePcu9/rfeegttbW20tbUxMzMj\nJiaGgIAA+vTpo/gB9e3bl6NHj+Lp6YmFhQU2NjaAysm1S5cuSJKEjY1NifP+kZGReHt7Ex0dTXZ2\nNhYWFk8U18CBA5k9ezY3b94scn3Lli2sWLGC3NxcoqOjCQ0NLSIKpqamNG7cmJMnT9KsWTMuX76M\nq6srS5cu5ezZs7Ru3RqAjIwMzMzMSmy7YPooLi6O9u3b06NHDxo1alRq20OGDGH9+vUMHz6cEydO\nsHbtWvbv309oaCiurq4AZGdn4+LiUqqFueD1IzUwmuTAaIhKAyBYXWJ05j1cEk7hlKJyK66Wc5+f\n38vFvFoq7x0oJAJvjK+MkJ+ZqicKT/CNviLx9PTkyy+/xN/fn4SEBOV6aTbZT8PT2F8XL6+mpqa8\nVlNTK/HZsWPH8vnnn+Pp6Ym/vz/Tp09/org0NDT44osviuRfuHnzJgsWLOD06dMYGxvj4+NTYp/f\ne+89tmzZQosWLejTpw+SJCHLMsOGDeO77757ovZBJTCOjo4EBgaSn59fatvDhw/n7bffRkdHBy8v\nLzQ0NJBlGQ8PDzZu3PhIvSVZmAteD3Jz8ji58wbqN5JocE/1+xObGcONrHCOpV3h/awUdFFNM8aa\nxBPSpSbm8dH0jEkDY3MwbAA9F7y0C8qlIdYUypkRI0bw7bffKt/QCzA3N1esms+dO/fIt2oAAwMD\nUlJSnqo9Nzc3du7cSXp6OmlpaezYsQM3N7dnir2w9XbxqaCy8PHxwc/Pj7g4lfnX/fv30dfXx9DQ\nkJiYmFLzPvfp04ddu3axceNG3nvvPUCVEGjbtm3ExsYCkJiYWKadRXp6OufPn6dJkyaPbbtu3brU\nrVuXWbNmKfka2rVrx7Fjx7h27RoAaWlpXL16tVQLc0HVJzUwmsvTTlAtMEoRhNPx+zkc7cuplFCa\npsVQLzUO7dwMLjSNx7npLVaHHGX13Vi8TFvDpxfA508wa1HJPXl6Xi0JewWoX79+idtIC6yfrays\naNu2Lc2bN3+kjK2tLerq6tjZ2eHj46NYaT8OR0dHfHx8aNOmDaDa7ung4FDmttCSmD59Ol5eXhgb\nG9O5c+cShas0tLS0GDduHJ9++ikAdnZ2ODg40KJFCxo0aKBMzRTH2NiYli1bEhoaqvShVatWzJo1\ni27dupGfn4+mpiZLly6lUaNGjzw/aNAgdHV1ycrKwsfHBycn1bD9cW0PGjSIuLg4xdnU1NQUX19f\nBgwYQFaWyqZg1qxZGBgYlGhhLqjayPky945FoZ+fTzIQlnufpKTj3Ei5QFyNHPqfPIVWTj7rO0rs\nd5b4JiERr5Q0cJ8MzTygXumpeV8FhHW24LVjzJgxODg48P7775dLfeL3r+pwd384d/0iMFSXSM6T\n+Tk7iwZZO6medAut/Di6/nefuw30+XNQUxLNNOkZdxuvm+ehsTsM3VXZ4T8WYZ0tEJSAk5MT+vr6\nZe6qErw+pAZGkx4UR8y9DIyTsqmpoUZUbj5njdVxMY3j/sFbVM/MxOXqfWLfc8d9ys900tSEFe4Q\n9SCLYL/VldqH8kSIguC1onhea8HrS4EYZN9UGRFl58vE58tcUYP7zSMxuXOByIOqk/dGGals+NSK\n7z74Cf6dC0cfnjli0i3QqTr5PIQoCASC145Dmy7SPCgRgGs6EKwjoR6uyumt63aC+7tPcB8wSc0g\nsXoqB7yhW9JxmPUwRS3tx0Lbj6qUIIAQBYFA8JqRGhitCMLWGmqcrK6GZehpjFJCydXPJnO3atdb\n0/gEgrpq08qiNl9c9lc93PlB7nGLjtCgdSVEX/EIURAIBK8NqYHRJO1QbT3eWkON8RNckWWZhYPX\nIOfFoR+fgl5WHkbGuvR615B3Yk/AZUDHCDxmgtOwyu3AC0CIgkAgeC0oLAjzyaBdhxac+GMXp3f/\njZwXh5paTdrcCOVe+3S6mSVB7IMHPzj0StlUPC/i8Fo5UWB//TxERUXRr1+/Uu8nJSXxf//3f09c\nvjg+Pj5YWFhgb2+PnZ0dBw8efK54y5vly5ezdu3ayg5DUAW54uunCMKBpJM0y/mL/J2LOb75V3Iy\nbiGpm1I9/QprP6mlEgRJDbw3wIQbr5UggBCFl4q6deuybdu2Uu8XF4WyypfE999/T1BQEIsWLeKj\njz565lgLU5bdxpPy0UcflWh6JxA8K6mB0cT+Eoz+ZZXFy8H7J4mQb2JWXZuk2BgkjfqYZtXjrkkQ\nASPr0yHlqurB8aHQshfo16jE6CsHIQoVSHh4OJ07d8bW1pYuXbpw69YtAK5fv067du2wsbFh6tSp\nRZLsWFtbA3Dx4kXFOtrW1pawsDAmTZrE9evXsbe3Z8KECUXK5+Xl8eWXX2JtbY2trS2LFy9+bGwu\nLi7cuXNHeX327Fk6duyIk5MT3bt3Jzo6GoDTp09ja2urtFnQnq+vL56ennTu3JkuXboAKsFp3bo1\ntra2il11Wloab731FnZ2dlhbWyt5F0qypC5sLx4UFES7du2wtbWlT58+3Lt3D1DZbk+cOJE2bdrQ\nvHnzp3KhFbw+/B54i4XfH1MS38Rm3OJA0kn22b1BK+/RtE6WkDR90DboT0jPfFrbSaw+vUd1Mtmm\nP1SvU9ldqDSq3JrCvFPzuJx4uVzrbGHSgoltJj71c2PHjmXYsGEMGzaMVatWMW7cOHbu3Mmnn37K\np59+yoABA1i+fHmJzy5fvpxPP/2UQYMGkZ2dTV5eHnPnziUkJISgoCCAIlYWK1asIDw8nKCgIDQ0\nNEhMTHxsbPv371dyC+Tk5DB27Fh27dqFqampYmG9atUqhg8fzq+//oqLiwuTJk0qUse5c+cIDg7G\nxMSEAwcOEBYWxqlTp5BlGU9PT44cOUJcXBx169ZV8kwkJyeTkJBQpiX10KFDWbx4MR07dmTatGnM\nmDFDyRWRm5vLqVOn2LdvHzNmzMDPz+/JfiCC14aYI7fxSlAZUJ6O38+NlAsYdh3Ib63yiZzyKRf1\n20ADSDdIYN6drUjSA2cH5/eh89RKjLzyESOFCuTEiRNKFrUhQ4YQEBCgXPfy8gJQ7hfHxcWFOXPm\nMG/ePCIiItDV1X1sW35+fowaNQoNDZXOm5iYlFhuwoQJNG/enIEDBzJxokrorly5QkhICB4eHtjb\n2zNr1iwiIyNJSkoiJSUFFxeXEmP18PBQ2jlw4AAHDhzAwcEBR0dHLl++TFhYGDY2Nvzzzz9MnDiR\no0ePYmhoWMSS+o8//kBPT69IvcnJySQlJdGxY0cAhg0bxpEjR5T7ffv2BVSnk5/F40lQtTm06eIj\ngtDEuR8WV3P49387OdhiMrcadAXgZp1lKkGoVgsmXIdeP4JeyX87rwtVbqTwLN/oX0YGDhxI27Zt\n2bt3Lz179uSXX36hcePGz13v999/T79+/Vi8eDEjRozg7NmzyLKMlZUVJ06cKFK2rKQyBTkcAGRZ\n5uuvv2bUqFGPlDt37hz79u1j6tSpdOnShWnTpj2XJXWBBfiT2IcLqj6/B95iV9DDqdDBNzMBDUUQ\nNPS6cud6Q9VNc5ULcD75nLcdx5sZSVDPCUYKS/QCxEihAmnfvj2bNm0CVMlgCiyt27Vrx/bt2wGU\n+8W5ceMGjRs3Zty4cbzzzjsEBwc/1lrbw8ODX375RfmQLGv6aMyYMeTn5/P3339jaWlJXFycIgo5\nOTlcvHgRIyMjDAwMCAwMfGysAN27d2fVqlVKGss7d+4QGxtLVFQUenp6DB48mAkTJnDu3LkyLakN\nDQ0xNjZW1gvWrVunjBoEguLEHLnNsPAsPo7O5eOoXFrJErEZtxRB0NC2pcnNVcS2WsJyl/Esd/mU\n2s2Gsir2Dl4jTghBKEaFjhQkSeoB/ASoAytlWZ5b7L4hsB5o+CCWBbIsv5LOUunp6dSvX195/fnn\nn7N48WKGDx/O999/r6R/BFi0aBGDBw9m9uzZ9OjRA0PDR4/Jb9myhXXr1qGpqUnt2rWZPHkyJiYm\nuLq6Ym1tzZtvvsno0aOV8h988AFXr17F1tYWTU1NRo4cqeQ7LglJkpg6dSrz58+ne/fubNu2jXHj\nxpGcnExubi6fffYZVlZW/Pbbb4wcORI1NTU6duxYYqwA3bp149KlS8pUU7Vq1Vi/fj3Xrl1jwoQJ\nqKmpoampybJly0hJSSnTknrNmjV89NFHpKen07hxY+W9EwgK83vgLZomZNNM0kDPWJ+42ykk58YT\nkRaKlm4nquWakpX+A9/2jaCVngHOaZn0TEtTLShPDAdd48ruwktHhVlnS5KkDlwFPIBI4DQwQJbl\n0EJlJgOGsixPlCTJFLgC1JZlObu0equCdXZ6ejq6urpIksSmTZvYuHEju3a9nLa7qampyu6ouXPn\nEh0dzU8//VTJUb1cvGq/f68yBSZ2ALEpmdyMT6OZrE5mnsyx1Dxys4LJTfejWhY4345gWbd8Aluo\nMS3+Hl4Fo+y+K8GiAxjUqsSevHheBuvsNsA1WZZvPAhoE/AOEFqojAwYSJIkAdWARKDKTxKfPXuW\nMWPGIMsyRkZGrFq1qrJDKpW9e/fy3XffkZubS6NGjfD19a3skASvKYVPJGtZGBKfmoWmDJn5cCv9\nNnkZx8jNvA2AmhzH6q9syTNQY1rkJZUg6JvCsFczG9qLpCJFoR5wu9DrSKBtsTJLgN1AFGAAeMuy\nnF+sDJIkfQh8CNCwYcMKCfZF4ubm9sqkdvT29sbb27uywxC8xhS3uDbq05Td5DD55m3GxYcRmnkZ\nOTdSdS8tgxt102jYKZslcWFw6crDikYeAqNX//Ojoqns3UfdgSCgM9AE+EeSpKOyLN8vXEiW5RXA\nClBNH73wKAUCwQunuBgk1dTmHzmHM2duknrtPm/ka0DmZci9i3FqJuryfdZ1S2eUoTFe+paqSsxa\nqkYIHjNBS+8xrQkKqEhRuAM0KPS6/oNrhRkOzJVVCxvXJEm6CbQATlVgXAKB4CWl8JpBgRhoWRii\nZ2/KF0FaDOQuAAAgAElEQVThXIlKZXjoJfKyVQdU5bw49LPhZv1o7thlMyojDa/hIZUWf1WgIkXh\nNNBMkiQLVGLwHlD8pNYtoAtwVJKkWoAlcKMCYxIIBC8ZpQlBgRhUa1uH3wNvEXgjkQnJumRlX0bO\ni8MoNYVsDZmzzVLoVvse/4tNe+nzJL8KVJgoyLKcK0nSGOBvVFtSV8myfFGSpI8e3F8O/A/wlSTp\nP0ACJsqyHF9RMQkEgpeP9KA4cqJT0axTrYgQFPB74C0m7/iP/glXyMq4ipwXh3FKEvdNoghpm0v3\nrDS8ZAPwnAuN3SutH1WFCl1TkGV5H7Cv2LXlhf4dBXSryBheFOrq6tjY2JCbm4uFhQXr1q3DyMjo\nuesNDw+nV69ehISU75B4+vTp/Prrr5iaqtIL9ujRg7lz55bx1LMRFBREVFQUPXv2rJD6Ba8uqYHR\nZN9MRsvCELNRto/cX3/4Bif+uMaAjMvUTDms2q6Ylc1/LXJIapbL6rwa8OlF0NB68cFXUcSJ5nJC\nV1eXoKAgQkJCMDExYenSpZUdUpmMHz+eoKAggoKCnkoQ8vLynqqdoKAg9u3bV3ZBwWtHwbSRnr1p\nkeu/B95i8JLjJKzdTZPEP6iZchgADY36rOwZRZJlLD3T0sB+gBCEckaIQgVQ2JY6NTWVLl264Ojo\niI2NjXJILTw8nJYtWzJy5EisrKzo1q0bGRkZgOocg52dHXZ2dkXEJTMzk+HDh2NjY4ODgwOHD6v+\nUHx9fenduzceHh6Ym5uzZMkSfvzxRxwcHGjXrl2ZlheFOXjwIA4ODtjY2DBixAiysrIAMDc3Z+LE\niTg6OrJ161auX79Ojx49cHJyws3NjcuXVQt/W7duxdraGjs7Ozp06EB2djbTpk1j8+bN2NvbK9bZ\ngteXghwHsb8EkxOdipaFYZHpIoDje/dgcXoNuel+yLmRGGZkEmUaz8pux5iQksjqvBp4aZiB/aBK\n6kXVpbK3pJY7d+fMIetS+Vpna7dsQe3Jk5+obF5eHgcPHuT9998HQEdHhx07dlC9enXi4+Np164d\nnp6eAISFhbFx40Z+/fVX+vfvz/bt2xk8eDDDhw9nyZIldOjQgQkTJih1L126FEmS+O+//7h8+TLd\nunXj6lVVUpCQkBDOnz9PZmYmTZs2Zd68eZw/f57x48ezdu1aPvvss0diXbhwIevXrwdg3rx5dOzY\nER8fHw4ePEjz5s0ZOnQoy5YtU56tUaMG586dA6BLly4sX76cZs2aERgYyCeffMKhQ4eYOXMmf//9\nN/Xq1SMpKQktLS1mzpzJmTNnWLJkyTP+BARVheIH0DTrVCsySlj56+/cPhOARZIq94ikUR/dzAhW\n97hLc7Usphm/gdfgX0G9yn10vTSId7acyMjIwN7enjt37tCyZUs8PDwAlXvo5MmTOXLkCGpqaty5\nc4eYmBgAJTUmPLSBTkpKIikpiQ4dOgAqy+2//voLgICAAMaOHQtAixYtaNSokSIKnTp1wsDAAAMD\nAwwNDXn77bcBsLGxITg4uMSYx48fryS4Abhw4QIWFhY0b94cUFlWL126VBGFgkNsqampHD9+XLH/\nBpQRhaurKz4+PvTv31+xuBYISjqAVnx0AHD7TADVkyKRNOqjrtUCDW1bzriM5bOcTLx6/gLNur7o\n0F87qpwoPOk3+vKmYE0hPT2d7t27s3TpUsaNG8eGDRuIi4vj7NmzaGpqYm5uTmZmJvDQAhpUC9UF\n00fPQuG61NTUlNdqamrlZi9dYJWdn5+PkZGRkuynMMuXLycwMJC9e/fi5OTE2bNny6VtwatJcTEo\naXdRsN9+Lh3zJzEuHuPEKCT12mgY9CdTJ4oLHVewqsNuqNGksrrw2iHWFMoZPT09fv75Z3744Qdy\nc3NJTk7GzMwMTU1NDh8+TERExGOfNzIywsjISEnIs2HDBuWem5ub8vrq1avcunULS0vLcovd0tKS\n8PBwrl1TDe9Ls6yuXr06FhYWbN26FVCNhgpsO65fv07btm2ZOXMmpqam3L59+7GW34KqS8FUUcHu\nIqM+TTEbZfuIIPzz6xIiQ0PQjbiBlmwAuqpdSL4O85B1dYUgvGCEKFQADg4O2NrasnHjRgYNGsSZ\nM2ewsbFh7dq1tGhRthnX6tWrGT16NPb29hR2sf3kk0/Iz8/HxsYGb29vfH19i4wQnhcdHR1Wr16N\nl5cXNjY2qKmp8dFHH5VYdsOGDfz222/Y2dlhZWWlLKBPmDABGxsbrK2tad++PXZ2dnTq1InQ0FCx\n0PwaUXjtoCQxgIeCAGB9O5aaGm2Qa45CQ9uWLbbzAOjZWGxjftFUmHV2RVEVrLMFVQvx+1f0VDJQ\n6tpBsN9+/v3rb+JTs6j+YDHZOjIWDYu2XK7WB4D9zX8jvEYw01ym4dXcC0H58DJYZwsEgipOSWsG\nBf8vvHZQIAbZkWEANMrNRMqUaZiZRM23WxMQrhKEoDe3EJ4kBKEyEaIgEAiemidZQIaHi8iRoQ9O\n5KtrYRt1i5r3NAhzHkpGk8YEhKsOn2lqq5OrnYVzLWchCJWIEAWBQPDEPKkYQNE1g3qWLbl/KRq3\nC2fRrJ7D3y4rVIVug2lDA5JI4LTVTq4kXsHSpPw2TwieHiEKAoGgTJ5ma2kBBaMDs1aumP/5Jwap\n96jRMgXZtT1cA00ddUb+2IFt17ax+MRMSALnWs5icbmSEaIgEAjKpMDJ9HEjg0vH/IkLv4mpuQXE\nX6OOXjq17qVSd+NaIhu7cdGpB5pq2aRcMwPA9d2mSGoS+26ofLHEOsLLgRAFgUBQKgUjhAJr65Kc\nTEE1SogMDaF+K2u8v/yStC9aEnXBiJx0DU67TiBF0xyA2iZ3qGNeg3otTQmpeYwF+/dxJfGKWEd4\niRDnFMqJmJgYBg4cSOPGjXFycsLFxYUdO3Y8V53Tp09nwYIFAEybNg0/P79nqudxLqX+/v4YGhpi\nb2+Pra0tXbt2JTY29pljLk54eDi///678vrMmTOMGzeu3OoXVCyFBaG4k2kBhdcOLJ1dOPHZNG75\n1yRWqxb+XZcogtDnS0femjUEjw/suGh6jP+dnMmZmDNYmliKKaOXCDFSKAdkWaZ3794MGzZM+QCM\niIhg9+7dj5TNzc1FQ+Pp3/aZM2c+c3xBQUGcOXOm1HwGbm5u/PnnnwB8/fXXLF26lBkzZjxze4Up\nEIWBA1VJ95ydnXF2LnOrtKCSKW2EUHzdAB6uHXTo/Cb68+ajHZdA9ZY5HKo1E3LBqJYe73xmz19x\ne9i3X/Xl5EyM6qyRmDJ6+RAjhXLg0KFDaGlpFTn926hRI8W8ztfXF09PTzp37kyXLl1KtdMGmD17\nNs2bN+eNN97gypUrynUfHx+2bdsGqKy1O3bsiJOTE927dyc6OhoAd3d3Jk6cSJs2bWjevDlHjx59\nKutqWZZJSUnB2NgYgMTERHr37o2trS3t2rVTjPVKu/7vv/9ib2+Pvb09Dg4OpKSkMGnSJI4ePYq9\nvT0LFy7E39+fXr16AaqR0IgRI3B3d6dx48b8/PPPSiz/+9//sLS05I033mDAgAHKiElQ8RS2pyg+\nQihYNyhMPctWtKndiGoLl5CflUyjLvGctXtHue/1tTN/xe1h5omZihg413IWgvCSUuVGCke3XCX+\ndmq51lmzQTXc+jcv9f7FixdxdHR8bB3nzp0jODgYExMTcnNzS7TTPnfuHJs2bSIoKIjc3FwcHR1x\ncnIqUk9OTg5jx45l165dmJqasnnzZqZMmcKqVasA1Ujk1KlT7Nu3jxkzZuDn51emdXXBh3ZCQgL6\n+vrMmTMHgG+//RYHBwd27tzJoUOHGDp0KEFBQaVeX7BgAUuXLsXV1ZXU1FR0dHSYO3cuCxYsUEYi\n/v7+Rdq+fPkyhw8fJiUlBUtLSz7++GOCgoLYvn07Fy5cICcnp8T3QVAxFLenKGlB2dTcAu9vVUmZ\n0k6eJHryFHKiozHxehNT+TfUNOCe7Ui4G42RdzKj/EeKkcErRJUThZeB0aNHExAQgJaWFqdPnwbA\nw8MDExMToHQ77aNHj9KnTx/09PQAlLwLhbly5QohISGKNXdeXh516jz8wy2wqy6w4n4SCk8fzZs3\nj6+++orly5cTEBDA9u3bAejcuTMJCQncv3+/1Ouurq58/vnnDBo0iL59+1K/fv0y237rrbfQ1tZG\nW1sbMzMzYmJiOHbsGO+88w46Ojro6OgoNuCCiqfAqqJAEIpPFxXsLspPSyNmwQKSNm5Cy9wcrf5N\nqCX9BsAevXfJCIwE1PEN8eVu9RvKVlMhCC8/VU4UHveNvqKwsrJSPiRBlQwnPj6+yNx5ge008Fg7\n7bKQZRkrKytOnDhR4v0Cgzx1dfVnssz29PTk3XfffernACZNmsRbb73Fvn37cHV15e+//y7zmeL2\n4eVl8y14cgr7FuVEp5JjlMfe/T/B/ofrBfVbWQOqUULjOg254fkOOVFRmAwdhIbGHmqkqxJbjTHt\nTd3w7himqAPQqFFtPmwxWIjBK4RYUygHOnfuTGZmJsuWLVOupaenl1q+NDvtDh06sHPnTjIyMkhJ\nSWHPnj2PPGtpaUlcXJwiCjk5OVy8ePGx8T2NdXVAQABNmqisigtbdfv7+1OzZk2qV69e6vXr169j\nY2PDxIkTad26NZcvX34m22xXV1f27NlDZmYmqampyihGUP4UXj8AyNbJJujaP0XEwGPkGLy/nYvX\nl9/QUdKj2o+LkTQ0aLRhPVnGQYogzLD7lPhUPQxTVGsQJj73WOn5ixCEV4wqN1KoDCRJYufOnYwf\nP5758+djamqKvr4+8+bNK7H8oEGDePvtt7GxscHZ2Vmx03Z0dMTb2xs7OzvMzMxo3br1I89qaWmx\nbds2xo0bR3JyMrm5uXz22WdYWVmVGl+nTp2YO3cu9vb2fP3110oGtQIK1hRkWcbQ0JCVK1cCDxeC\nbW1t0dPTY82aNY+9vmjRIg4fPoyamhpWVla8+eabqKmpoa6ujp2dHT4+Pjg4OJT5frZu3RpPT09s\nbW2pVasWNjY2GBoalvmc4MkpLRPa5hmTiEwJwWPkGGy79lDKpwWeInrKFHLu3MFk2DAOufZl5+kE\nNsf8A8C0xj9jcMgItxwDAPpOcKJOE/EzexUR1tmCl5LU1FSqVatGeno6HTp0YMWKFWUu5lcWr9rv\nX/E8yfe0YwmKUJ2BKVgzKFhIzk9LI/aHH7n3++9oNmpI3Tlz0HNywvuXEwyOnk2mwTn8JRdaXR2t\n1N/nC0fqNjN68R0TPBZhnS14pfnwww8JDQ0lMzOTYcOGvbSC8CpSeDH5RsoF5eBZ/VbWmJpb0NLV\nHSg2OvB0x7STGZGn5hDofwI9fX3+qA1ndGvwxg0bAKq/mcJgT08kSaqUfgnKByEKgpeSwqegBeVH\namC0kh6zsCAUni7KT0/n7v9mcW/DBjQbNaTRrI/R+28qBEJD4NvaZlzU1sNczYg3Uz1okt8GWVON\nIe+885iWBa8KQhQEgteEwtNGevamXNqvEt7CgpB26hTRU6aSExmJ8dAhmHk0RG2vamrow6zPCdLT\nQkc+zFtRXjgZtiEiJIFcoGErMV1UVRCiIBBUcQrOGlhntcOQGlzTDCZm/17iwm9Sv5U1tl17kJ+e\nTuyPC7m3fj2aDRvSaN1a9Jyc4Cc7knNrsyxrKnYp9bC7B9xpC0DE7QTqNDGk2wdWVDPWqdxOCsoN\nIQoCQRUm2G8/1zcdpZm+Dfq61UlWSyBG4zaAsn6Qfvo0UZOnkHP7NsZDhmDWrz1qRybCwevkpaew\nIXEVBvkGZGikkGeQSV0XHVwbtqeRdQ3UNcSu9qqGEAWBoIpSIAita6qmhrQsDKlp3xKrtr0B1dpB\n7MJFRKxbh2aDBjRauxa9u+tgo2pt4EaOPYH3vZHzDcgnj5i37/J991GV1h/Bi0HIfDkxe/ZsrKys\nsLW1xd7ensDAQGbMmMHXX39dpFxQUJCyfdHc3Bw3N7ci9+3t7bG2tn6mGNq3bw88alft6+vLmDFj\nnro+d3d3im//BcjKyqJr164lGuyV9kxFER4e/szvV1Ul2G8//t8sJXdPgiIIRn2aYjbKVvEySj9z\nhhu9+3Bv3TpiPd5huufXxBwYBefWkJhbn+nJ8/kr4VsSc1RnaEK67RKC8JpQoSMFSZJ6AD8B6sBK\nWZbnllDGHVgEaALxsix3rMiYKoITJ07w559/cu7cObS1tYmPjyc7O5sBAwbQo0cPvvvuO6Xspk2b\nGDBggPI6JSWF27dv06BBAy5duvRccRw/fhx41K76WcjLyyv13vnz5wGVwJUneXl5qKurl2udrxup\ngdGoH8qkab4t6EKOUR6mnSwVMcjPyCB24UIS163nXvWa7PKayJYcU96IDoR8Y/ZmfE14VhsKfFED\nG+7hiukpvrT+rPI6JXihVNhIQZIkdWAp8CbQChggSVKrYmWMgP8DPGVZtgJeyfPw0dHR1KxZU/Hx\nqVmzJnXr1qV58+YYGxsTGBiolN2yZUsRUejfv7/ybXvjxo1F7hVm9OjRSn6GPn36MGLECABWrVrF\nlClTAKhWrRrAI3bVAFFRUfTo0YNmzZrx1VdfldiGubk5EydOxNHRka1btwKwbt06ZfRy6tQpYmNj\nGTx4MKdPn8be3p7r16+XWFd+fj4+Pj5MnToVgAMHDuDi4oKjoyNeXl6kpqaW2GZJ9t+gEowJEybQ\nunVrbG1t+eWXX0r/gbymFOwuMsyvQbJaAkZ9mmIxyZ1qbevwe+AtJkxbw/FOPbi3dh17zNszwu0z\nIupbMrReNN00QtiXNIXwrDbEN7hOuP0J1jp9w/l6fnzZ8TNhVfEaUZEjhTbANVmWbwBIkrQJeAcI\nLVRmIPCHLMu3AGRZfu6UX4d9VxAbceN5qymCWaPGdPL5sNT73bp1Y+bMmTRv3pyuXbvi7e1Nx46q\nAc+AAQPYtGkTbdu25eTJk5iYmNCsWTPl2XfffZfhw4fz5ZdfsmfPHjZs2MC6deseacPNzY2jR4/i\n6enJnTt3lBwKR48e5b333itStrhdta+vL0FBQZw/fx5tbW0sLS0ZO3YsDRo0eKSdGjVqcO7cOQCW\nL19Oeno6QUFBHDlyhBEjRhASEsLKlSuL1F+c3NxcBg0ahLW1NVOmTCE+Pp5Zs2bh5+en2H/8+OOP\nTJs2rcQ2S7L//u233zA0NOT06dNkZWXh6upKt27dxEEpHrWsOB2/n+wGeQ/XDjIyyFy0AJ/zfiRX\nr8Hi/t05a3Gbpvrb0Kuuze3wAOSMidQG/vPYQZa+SrBb0Vw4m76GVKQo1ANuF3odCbQtVqY5oClJ\nkj9gAPwky/La4hVJkvQh8CFAw4YNKyTY56FatWqcPXuWo0ePcvjwYby9vZk7dy4+Pj54e3vTvn17\nfvjhh0emjkD1gWhsbMymTZto2bKlYptdHDc3NxYtWkRoaCitWrXi3r17REdHc+LEiSLJaUqjS5cu\nin9Qq1atiIiIKFEUivsiFcTboUMH7t+/T1JSUpltjRo1iv79+ysjmJMnTxIaGoqrqysA2dnZuLi4\nlNpmSfbfBw4cIDg4WEk0lJycTFhYGM2bv3hX3JeNggxpOUZ5BF37hxspF/BwVa0hpZ87x5XxX+ES\nc4cj9i04O8CAE0kHAair/Qa1zzdDLbUBJul10LbMYvm7iyuzK4KXgMrefaQBOAFdAF3ghCRJJ2VZ\nvlq4kCzLK4AVoPI+elyFj/tGX5Goq6vj7u6Ou7s7NjY2rFmzBh8fHxo0aICFhQX//vsv27dvL9Hy\n2tvbm9GjR+Pr61tq/fXq1SMpKYn9+/fToUMHEhMT2bJlC9WqVcPAwKDM+J7UorqwxTfwyDfxJ/lm\n3r59ew4fPswXX3yBjo4Osizj4eHBxo0bn6jNkuy/ZVlm8eLFdO/evUjZJ80ZUVUpfEI54O7vipmd\ntWtHYr6bS8LatSTpGrG4e0fCHI9hcLcG/RLGUk/LjNyTuuTJmgDo6ubjZGdZyb0RvAxUpCjcAQp/\nFa3/4FphIoEEWZbTgDRJko4AdsBVXiGuXLmCmpqaMi0UFBREo0aNlPsDBgxg/PjxNG7cuMTEM336\n9CE6Opru3bsTFRVVajvt2rVj0aJFHDp0iISEBPr160e/fv0eKfcsdtWlsXnzZjp16kRAQACGhoZP\n5Fb6/vvvc+TIEfr3788ff/xBu3btGD16NNeuXaNp06akpaVx586dp/qW3717d5YtW0bnzp3R1NTk\n6tWr1KtX73m69spQON9BcQqmjPTsTWG/yr+oqYkZN3v3ITsigr0WLuy3boeBw5+QAyMi+pOV2BSk\nFPTVEtBVS+adj5uh2arri+yS4CWmIkXhNNBMkiQLVGLwHqo1hMLsApZIkqQBaKGaXlpYgTFVCKmp\nqYwdO5akpCQ0NDRo2rQpK1asUO57eXkxbtw4Fi8ueWhuYGDAxIkTy2zHzc2NAwcO0LRpUxo1akRi\nYuIjW1oBbG1ti9hVF+RcfhZ0dHRwcHAgJydHSfn5JHz++eckJyczZMgQNmzYgK+vLwMGDCArKwuA\nWbNmPZUofPDBB4SHh+Po6Igsy5iamrJz586n7s+rQmEhKPjg17J4VJBzjPKISLv44ITyDQzVNIkY\nNJgU42p836ceMbVTccjaS3JEXYbEvUNWugUAI5pPQ63jF9DCG/RMXlzHBC89FWqdLUlST1TbTdWB\nVbIsz5Yk6SMAWZaXPygzARgO5KPatrrocXUK62zBy0Z5/P4VHw0UFwI9e9MS02MWJMOp28CcrJs3\nqRMdR1pLC35wukG3a+OomV50NGVipkHLDubYd3351uYEFctLYZ0ty/I+YF+xa8uLvf4e+L4i4xAI\nXnYKFos166i2FWtZGCpCAA/8i2b89Eh6zPotWlEvPQeTP/8m2cCEXR6jOFF/DQMvPEzw1No5lYad\nO6Kjr4lRrZI3MggEBZQpCpIk6QFfAA1lWR4pSVIzwFKWZZEjUSAoRzTrVMNslG2J9y4d81cM7Fq6\numPbtQfp588TPXkK2Tdvste8HVtaeuKol0zj+HbKc59M1kdq2PlFdUFQBXiSkcJq4CxQsIfwDrAV\nEKIgEJQDhXcQlUSw334iQ0Oo38oa72/nkp+ZScz870n09SXbuCbftv+QWJMWDEvVhtuGqLIeQM9P\nbJEa1nyBPRFUBZ5EFJrIsuwtSdIAAFmW0yVxYkggKBeK5zgoiYI1hJau7mQEBRH19WSybt4kzXM0\nuzRa4ZEIqM6bEat/i1a1ZtFnwG60GghBEDw9TyIK2ZIk6QIygCRJTYCsCo1KIKjiFD+FbNSnqbJ+\nUBhllNDCilrn/yN89Rdo1KrF8V4/kXVfgzpAvpRLhuZ9bjf8DTedW/TvsxnqtXqkLoHgSXgSUZgO\n7AcaSJK0AXBFtVtIIBA8JcXFoPiCcmGC/fYr6TI1QuM5kleDe20ncNe0ITXuq8qYNJzInHqZOKsZ\nsNp5MrTs9cL6IqialGmIJ8vyAaAv4ANsBJxlWT5cwXG9clQF6+zCttc9e/Z8IkuL8sLf359evV7s\nB5qPj49im/EiKJgqKlg/KG5nDSoh2DxjEptnTFIEoWX0fe7WGESsmTOxeg3QzZJI15aoXmsZc+pl\nAtCz7XghCIJy4Ul2Hx2UZbkLsLeEawKqpnX2vn37yi70HOTm5qKhUT47osuzrorgSaaKCs4fFGw5\nrVnbnOqyDib3comxngj58LduNrotDOnXKZJ9l7ex9t5lAKa1nSpM6wTlRqkjBUmSdCRJMgFqSpJk\nLEmSyYP/zFGZ3QkeUFWsswtjbm5OfHw84eHhtGzZkpEjR2JlZUW3bt3IyMgA4Pr16/To0QMnJyfc\n3Ny4fFn1IbVnzx7atm2Lg4MDXbt2JSYmBoDp06czZMgQXF1dGTJkSKltnz59GgcHB65fv05aWhoj\nRoygTZs2ODg4sGvXLkA1+vH09KRz58506dIFf39/3N3d6devHy1atGDQoEEUHMw8e/YsHTt2xMnJ\nie7duysOsy+CkkYHJQnCP78uITI0BD0jC7T0upCa1Zdsk0+422Qc6fm6AFxvspxU48XMPDGTM/dC\ncc7IZFrDXni18C6paYHgmXjc16tRwGdAXVRbUgt2HN0HllRwXM9M0p7rZEellWudWnX1MXq7San3\nq5J1dkmEhYWxceNGfv31V/r378/27dsZPHgwH374IcuXL6dZs2YEBgbyySefcOjQId544w1OnjyJ\nJEmsXLmS+fPn88MPPwAQGhpKQEAAurq6JbZ1/Phxxo4dy65du2jYsCGTJ0+mc+fOrFq1iqSkJNq0\naUPXriqfnnPnzhEcHIyJiQn+/v6cP3+eixcvUrduXVxdXTl27Bht27ZV6jM1NWXz5s1MmTLlqSw7\nnoeCU8qPW0hW1g30upIv2aKmDRrZUYQ0rUOGjg4hUclkNVyDruFdzDDELCOTnmlpeOXrgdv0F9IP\nwetDqaIgy/JPwE+SJI2VZVn46T6GqmSdXRIWFhbY29sDD+2sU1NTOX78OF5eD6ctCnyNIiMj8fb2\nJjo6muzsbCwsLJQynp6epQrCpUuX+PDDDzlw4AB169YFVJbZu3fvZsGCBQBkZmZy69YtADw8PDAx\neejb06ZNG8Vw0N7envDwcIyMjAgJCcHDwwNQJeupU+fRD+eKoPD5g5IsKuChTYWGXlc0tG2pfesv\nNteqi9Tu4QG0Rs2MSTfMo2ZqKquvP5hibOwOfVeChjYCQXlS5kSsLMuLJUmyRpU9TafQ9UfyHrwM\nPO4bfUVSVayzn+TZjIwM8vPzMTIyKjEl59ixY/n888/x9PTE39+f6dOnK/eK22QXpk6dOmRmZnL+\n/HlFFGRZZvv27VhaFrV1DgwMLNVyu3AfZVnGysqqxPe9Iil+/qDwiKBmoxZkZ6jef02dBshqllTL\nr4NO3Ga+aenB1P5tGNj2oTfR1gsrmRl0hZq5D3aCjzkDNZshEFQEZe4+kiTpW2Dxg/86AfMBzwqO\n60+yZV4AACAASURBVJXiypUrhIWFKa+fxTr7q6++eiRXQHEKrLM7dOiAm5sbCxYsKNEltTyts0uj\nevXqWFhYKGk75f9v787jo6zuPY5/TiaZ7AtZyUIgbIEEAkJYbN2wLoBWSisVsXWrWm1rl+t1aStq\nsVJ726v1KrgUt9q6dFAUNcSCiCIoEBaRLQgEspF9n2wzmXP/eGaGSQgxSCYhye/9euWVzDzPPDkH\n8prvnOdsWvPFF18AxgY4rmWtX3755W5fMyIigvfff5/f/va3bNiwATCWzH7yySfd/QOu/aG7KzU1\nlfLycnco2Gw29u7de1rXOF2egWAd18L72U+4A2H09GtoqJtLq+0qWm3fxRS4AF//DCKnmvj9mKuY\nODaxXSCwbzVZnxnrGM01x8ED1RIIwqu6s0fz1Rib4JRorW/C2O/g6xfVH0QaGhq44YYbSEtLIyMj\ng3379rX7dLxgwQL27t17yk5k19LZZrO5y99z/vnnY7fbGT16NFOmTOnW0tmujmZv+Ne//sXzzz/P\npEmTSE9Pd3cCP/TQQyxYsICpU6cSHX16s2rj4uJ47733+PnPf86WLVtYvHgxNpuNjIwM0tPTWbx4\n8Wldz2w2s3LlSu69914mTZrE5MmT3aO0vMWzH2HXsXWU5R0hOHIkoXFzKPzKCMvxLVu4eMMvmOe3\nipgfRPObYuOW2rzJiaA1VB2BysOw6qcAZAYmsuCmjeDjtW3VhQC6sXS2Umqr1nq6Umo7RkuhHtiv\ntR7XGwXsSJbOFmcbz7+/3JfWEXzAn1pVyU42GfuFqxj8Q38IQHhwGxM3P0pAay1x999P+PfmsfC5\nz9mSV8XS76WzaEQDvH4t1ORjCQ0mKziYXLOZ1IRpvDj7pT6spejvenLp7BylVATwd4xRSA1A796g\nFaIfcAUCwFeVhyiz1oOKwWQex0U/GEbIqv+j8f111I/LYPm3fk1NWTQ89zn7jtexPPIN5ma/0+56\nWSOmkNtUQmrkeOaOvKIvqiQGoS5Dwbnw3Z+01jXAM0qpbCBMa727V0onRD+xe1029p2VBAcms6Pu\nGEU+U0jOuIips4cTUvwl1Q/dRENtHWsv+CFPDMlEV/kwIxz8HU1km+4isbHAuFDcRJj1W0jMhE33\nkRocw4uzX+zbyolBpctQ0FprpVQWMNH5+GhvFOqb0Fp3a1N5IXpKY10tTfV1NFfXod+tJMIcS3lr\nPQWOBG7+y3mYlY3SR/9Exco3aUweyV0ZN3I0PJ4ZKZHMm+zsUP7kL7DeGQg/3QjxGVgOWsjadB+5\nVbmkRqZ2XQghelh3bh/tUEpN01pv83ppvqGAgAAqKyuJioqSYBBe11hXS3NDPS2NjVibWzDVOggN\nGEqtvYUieyCZVwxHH/ySvHvvw1ZcTMkV13CbzznYTL4snT/RCIPGKsh5EY4578QurgSTL5aDFpZ8\ntgSAzLhM5o6c24c1FYNRd0JhBvAjpdRRwIoxs1lrrTvfIqoPJCUlUVhYSHl5+defLMQZstZUo9oU\nfj5mTFZNxE5NtcOPTVbF2Okx1Kx/g6NrXqE6PJpVV9/LytYoACMQJobA5ifhs2VQ71xuIzz5pEB4\n4NwHZD0j0Se6EwpdD54/C/j5+bWbNSuEt+xel03B6xuZFj0bsGNOCcdq0hS0tOBjBt8XfsPQikLW\nDJ/Bziuvp9UcyAxg/sRoFm68BNaUnriYfxj8YhuWwvVkZd9ETqkxqk4CQfSlU4aCUioAuB0YDXwJ\nPK+17v40WCEGmN3rsjnsDgRjHsKW3BoO7KwAYNqWh7A7mnj1ql8y/gdX8MqMZNi2AsoOwLZ10FAK\ngZEw63dwzo/B5Ac+JrKOrSW3Ktd9u0gCQfSlrloKLwM2YCMwB2OZi1/1RqGEOJvsXpdN1ceHCauL\ncAfCwcmRPLszjwt2GfsZTNi7gsKEJOy/upeHp4aAoxk++Susf9i4iH84oOD2jVhKPyPrwzvc13d1\nKMsoI3E26CoU0rTWEwGUUs8DW3unSEL0PdceCNbqKuzHKxkdmAGBYItoI29EDDfvzGNhSREEjiGx\n6COa5l3M/Lt+gnphNmz+vP3FfrkTS8V2so5kwWeL3beJMuOMeUSpkanSoSzOGl2Fgs31g9baLqN6\nxGDQcUOc6qYiwAiDmFmphMyIZ8njH3D/tlcZEppOSeAYZv31FsJTh4O9BQqcgfCD543vw6ZjKdvS\nbkSR3CYSZ7OuQmGyUsq5EywKCHQ+do0+CvN66YToBQ1bjlP+US6NdTWEO4yRQmVN+Ryz7qN1WBvj\nv30RKZdcBMDq5Ra+s7mY2rG3UAL4+kHY2mtggz8cd64YO+1WmHi1Md/g8welA1n0K12Fwhda63N6\nrSRC9AHX0hR+mGhpslIbDOWmIkoDCxj/3YvIuMToQ2hrsFL250epPDaexqiJAIwJ28FM87OoijJI\nmgZjLsNiryBLlYHHaCJpGYj+pKtQ6HqlPCH6MdeGN2OqJhIcmMwhv91EXjKKdGcIeHrnlTXEPLmU\nguTv0xg9FIBbY6/F7NMME34AQyfCeb85Mc+gvEJuE4l+q6tQiFVK/depDmqtH/NCeYTocafa8Wxk\n6CRio5OxRbRx0X0/dx97dUs+7+wqwtRm58LP3mZEUQO7M+6jzddY3np+5O+NQJj9KMw8MYoo60gW\nILeJRP/WVSiYgBBO7M0sRL/iCgPXlpdJaRPcx6aOncNomzEpP2ZWKuUF9RzcWooCdn9RTGJlFdNL\n91EXdj6HxhrdZz7YWBj9G4ZcuxRGfwf8T+x4ZzloIac0h8y4TAkE0a91FQrHtdZLeq0kQvQgz+0v\nk9ImMP7bJ/oHPHdGC583irymNj55xLm0l0mRaLfj6wigOnIK2uQHGm6OvYGAyVegvrfnpI1uPJen\nkKGlor/rKhSkhSD6Ldftoktv/YU7DKDDVplpUbzz8gH3seBxZgItfyKj8gg1U77FtKf+gu/eF+HD\nJeAXDLOXtgsEy0ELWUeyZHSRGFC6CoXvnOnFlVKzgScwbkWt0Fo/eorzpmFs3LNQa73yTH+vEGC0\nEDI6dBy7tsoMu2ok7/wjF4DaYIWpZS8zV6wA4Ngtd3H5XT8xPhVtcP7J3nMYS9577n4DQEYXiQHp\nlKGgta46kwsrpUzAMuBSoBDYppRarbXe18l5fwb+cya/Twg40Y9QfjSPCUkXUPassR9UWX0zVXUt\nJNig1Bcs648wBthjauLS3FcZf2gHRxPHYv3N77n6yunQZsPy2hVkxUSA8oEPf3bSTGQJAzEQdWeV\n1G9qOnBIa30EQCn1OjAP2NfhvDuBN4FpXiyLGMA8Rxe5RhXNir+WcFsUrXm1HPYH/0YHYdrYS7ba\n6mBMhTHieuGB14gr+5KYu+9m3I03oEwm47bQ1r+R01YHgQFkRqYDEgJicPBmKCQCBR6PCzH2ZnBT\nSiUC84FZdBEKSqnbgNsAkpOTe7ygon9ztQxiRqScGFXkgJ3Y+dhhI6XU+WfuA1MuHc6UscGkvPIK\n1rUfEJUUQuLylQSkjj2pjyCzqZm5597Dgkm39mHthOhd3gyF7vgbcK/W2tHV2kpa6+eA5wAyMzNl\nUp0A2t8qihmRwpxL76Ru9REAtjXaOerQpNiNP/HAUD+ufXAG+uAein99Bz6FhYy45SdE33knPmYz\nYMwzyC3daYSB1coCUzRIIIhBxpuhUAQM83ic5HzOUybwujMQooG5Sim71vptL5ZLDBD7N22g6PBh\n4sNnMqw5zR0IuxrtFLdqplyYCEBYdCCTLxxK+VPLqFyxAr+EBIb/8xWCpk6F7S9BfQmW+q/Iqcoh\ns6mZF0vKYNotMOv3fVg7IfqGN0NhGzBGKZWCEQYLgUWeJ2it3dulKaVeAt6TQBBfJ/eldTTuq2N0\n6ySSo6YyzH8oaChrc1Dc4qDm6hHccd4IfHyM1mfzwYPkXbOQlv37CZ8/j7jf/Jy3ch4h69lrQRsN\nz5zAAADmNjbDHZ9BXFqf1U+IvuS1UHAut/0L4AOMIakvaK33KqVudx5/xlu/WwwsruWsAazVVQTX\n+BPsE0OBKgH/ECoVFFjtHGvVjP9WPFdeYHzW0A4HVS//g/LHHsMnJJikO+cSWv40llf+wZLoKAjw\nJ7PFBomZZJr8mJsylwVjrwZZJl4MYl7tU9BaZwFZHZ7rNAy01jd6syyi/yr/KBdV46DaUYNuaQJg\ns8OOOXEctqNWXFt/TLl8OOnnJwBgKyqi+Le/o3HrVkISm4ifVoBvuTHwLSthLLRW8sCUu1gw8ca+\nqJIQZ62+7mgW4iQdWwa60kZ1axmv1HwMQHj4BGJsE7AdtRIeE0jS+EguWpQKgNaamlVvU/rII6A1\n8dOrCU9pMj78f+8ZLM0F5OS+YqxRJIEgxEkkFMRZxXMZimJbKb72FgD+g52tMfO5deYIrB8eJyjM\nTMbFSUydPcL9Wnt1NSUPPEj92rUEjoknYWoxZpogJA7L3AfJyv+Pe7iprFEkROckFMRZoeM2mNsq\nsvnEVk5YgC+Vcem0hE9i0VetWNcdB2DyJcmcc9mJOSv1GzZw/P7FOGprib15PpENy1CAZdR0soZE\nk7PNWK5CJqAJ0TUJBdHnPFsHrm0wV5gjuPa6nxB3tImCfVU0lbUCcMHCsQwdGU5UYjAADquV0kf/\nTI3Fgv/woSRcFkBA4zLwAct5t7Ck6D9QWSJhIEQ3SSiIPtOxdbClah27VTl7gkeRFjmN2jeOUus8\nd8y0OEKjAph4UZL79Y1v/o3iPy3H1uBD1PgGoicU4+MwjllmXm8EArJ6qRCnQ0JB9LqOYWBOCefD\nPWvZYSshf+aNTD7UQuRxOwCZV4xgymXD8fM3GS+uPIze/k/Kn/47lQdC8AvSDJ/TTNClxhQYS2wS\nWRU7yCndAEggCHG6JBSE13iOIvLkGQY7GvL4bMdrBNSVEBw6lF/HxbJj5zEAbnn8AvwDPf5Em2tp\n+eN0ij4bQktNKOGpEPfkW5iSJwLtN7uR20VCfDMSCsIrPPsJzCnh7Y6ZU8IpaCpg47bXaas/Rhhg\nDxjGENtYdmQbgXDdH2YagaA11BxDv//fVL23mfLdMfiYIWn5MkIvvrjddWWPZCHOnISC6HGegRAx\nfzQhM+LbHd/y9mo+fe05ABy+iQSEpBMdOZW2Ns3QlDCmXD6ciLgg4+Td/8b2zzso3hJBY1k4IRlJ\nxP9tBb4Jwzv93bJHshBnRkJB9JiOfQUdA2H3umw2vJ+NrdgIjPqQixl729UsmtH5cui6xUrt26so\nzY4BUwDxf7iX8B9ei2tFXddS1y65VbmkRqZ6q3pCDAoSCqJHdLxdFDQ5pl0gvLoln1zLasJqS1G+\nSTSGpzHmuqs6D4Sjm7CvXkzJ6iPUFwYSGGMn4eWVmEeOaXda1pGsdkGQGpkqk9KEOEMSCqJHuDqU\nO7tdBLD5/XdJqclH+SbhH/pDfvXkRZhMPiedp23N1C/5PiU7wnHYgoi9NIHI+5eh4k4EgquF4AqE\nF2e/6L2KCTHISCiIM9aw5TitebWYU8LdgfDqlnze2WVsnxFTtIOU3DUAmMzjuPLOSZ0GQut7f6Xk\nr8uwlkQSMKSV+DfeJSDVaAV43iry3CtZWgZC9CwJBXFaOhtm6upD2BNu4tlnPyOmaAd+x74gAQgL\n8CWsJh+AwNR56LJRmEztl6Z2tLZSuWIFlU+tQPmYifvuaIY8/BoqIMR9jmfLQIabCuE9EgritDTu\nKsd2vAG/+BNv2K4+hGd3HcW+bzMpJR8ZzyeNISbEH+LSSZn6bbZnG6+JG3liiKp182ZKliyh9egx\nwpKbiT0/CL/F73b6u+VWkRDeJ6EgusXVQnAFQuxPM04+addRJjQfBmDavJvJ3x9PZamx/0GlcfeI\nkCH++PnYsR/ZT+nj/0fd2o34hdgZdmEtIfEt8MtP212yY/+BEMK7JBREt3gGQtDkmJOOr/j7qwzb\ntIFgeyXBQ0by5ScRgBEIM783EpOvDwEhfowd20r17edQtqUN3aaITm8gapLGZ/YjkHENBIQBJ8JA\n+g+E6F0SCuKUPPsPOrYQdq/LZv+mDbTZNeXVTdjLjxAPKN8kWlpG4usPV/w8gxETo93Xa7Y8wrG7\nXqC50kxQXBtD//tn+I8eA+OudG+BeaowkP4DIXqHhIJw69iJ7LlGkauF4AqDwn17ACMEXN9N5nGc\n+4N5DBkaRFRCCJEJxvLWbQ1WKp74G1X/fAWT2UTBj9J5bbIZfL+EY1/Csbfcv1PCQIi+JaEgOl21\n1PXdNQlt97ps9me/6g6DIv8EhpvS8PXPoD5QkTArgR9/d6x7tjEYW2PW/2ctpUuXYi8tIWJ0I5sv\nGcJDQ3Kh0njj70jCQIi+JaEwiHUWBh1nIu9el83+PzzhDgMfvySazamMMk8CwNffxH//z3n4+pna\nXbu1sJCShx/G+vEn+CcNIXeelTdTAsgJNDY8kEXrhDg7SSgMYq7O487CAIxAWPv3pwCIGT6O6vIk\nfP0zsCuNX0oII6KCufj6ce0CQbe2UvnCi1Q8/TTK0UzcdDtDRuzl4YRYckOjyIwaLy0BIc5iEgqD\nTFedxy4d+w38gi6hvi4DX3/Ii/elYKgfb/x0+knXtm7dSsmDD9Cad4zQYU3EnVOLX5ADS/pl5DQe\nIDNqvMwzEOIsJ6EwSHR2q6iz4aWerYPgISNpaRmJyT8DmwkOjDCzyWolDb92r7FXVlL2P3+h9p13\n8BtiZtgFlYQktMD027CknMOSrX8CkCGlQvQDEgqDxNfdKmq22ljz9Osc2fYGAL5Bl9CG0Tp4NaSF\nIl8HM8ICSQsLY97kRAC0w0HNypWU/e9jOKxWom5YSHTYenzKj8LiSiyHV7l3QpM+BCH6BwmFAarj\n8NKuZiJXFjXw+sNbaanfBBi3i869eh57Khr40758WhUsnT+x3TLXzfv2UrL4dzTtPUjQiBCGfquY\n1eZnyTIFQ8pYWHure3ipBIIQ/YeEwgDU2VaYp5qJDLB2xb9pqd+KooL41HT0Fd/nr7uK2JJXBa5A\nmBwJb96Co66a8o/LqNpSjsnsIH5GHeEjilGBEWQNGUKuny+pEaMAGV4qRH8koTDAfN1WmJ7a2hy8\n8/hOig9uRbeV45uQzCaSeW/VlwDMSIlk3uREFiWWo3e8R/2adyndGYndChETA4k9P4K3Mn5IVs1+\nCAiT/Q2EGAAkFAaQ7gSCtaaF4kM1fP7WasqPbQdAt5XTEhjLk+ZLoNUjDDJCYc19tFoslO4Ip6E4\nEv+UJBIf+R+CppyD5aDF3WeQGZApO58JMQBIKAwgX7f7mcOheW3JFqzVO7A3rgPAFJxMvj2K3MCR\nzEiJ5LakfL6z907YHIx+P5/K3BAq9sSAbwCxP7uWyNv/C2U2twsE6TMQYuDwaigopWYDTwAmYIXW\n+tEOx68D7gUUUA/cobX+wptlGug8dz9z0Vrz6b+/YvdHhQC0tR4A4OjYObxrGwF4dCQ/NBuARt9R\nlGww01LWSOisC4h74CH84k9c17ULmgSCEAOL10JBKWUClgGXAoXANqXUaq31Po/T8oALtdbVSqk5\nwHPADG+VaSDz3BKzsa6VfZ8W0damQUNO1lEA7C278fc/DD6VFAYk8K5txIlbRTOS4YPfY2/xoWxP\nLLVfFeKXkEDS8r8SevEs9+/x3N8gMy5TAkGIAcabLYXpwCGt9REApdTrwDzAHQpa680e538OJHmx\nPAOO57BT16Q0a2QAlns+PencgKBcaqrXYW+EwoAEDgaPaTfMVDfXU/vPFyj7Ipa2Nj+ibr2Z6Dtu\nxycoqN11PDe8kf4DIQYeb4ZCIlDg8biQrlsBPwHWdHZAKXUbcBtAcnJyZ6cMOh2HnfoND8MaFcC2\ngzUAXHjtWNIvSOTLDz9ot2TF+qgLCZl0HtdNTmTRtESoOkLzgX2U3PNLmioiCEwOIX7Zq/iPGQOc\naBm4yAgjIQa2s6KjWSk1CyMUzuvsuNb6OYxbS2RmZupeLNpZy9VCCLtqJJ/trebQzjL3sYQxEaSf\nbwSCa8mKuohkckwpXHfDNUbrwOHA8fAwKnYqKnNDMPn5Ej8nirU33kzW4aVg7KrZbn8DQFoIQgxw\n3gyFImCYx+Mk53PtKKUygBXAHK11pRfLM2B49h98nFNO/r4qAMZMi2PyJcOIHW5safnxmg8AyEud\nw8c+o0mLD3PfLqp/4nZK3gnC3uhL+KxziL1+LqsifNzrFLlCQCagCTG4eDMUtgFjlFIpGGGwEFjk\neYJSKhl4C/ix1vqgF8vS73XWf7C/pJH8440AfHt+M7mfv8JHL0FZXQsVDS3415VQHpBAeeIU0oB5\nkxOxFRdTcv/dNGzegX+45uCShawMOwq1H5JzUJalEGKw81ooaK3tSqlfAB9gDEl9QWu9Vyl1u/P4\nM8ADQBSw3Lljl11rffJ2XINUZ0FgTgnHERPI7mP1HC7djq/vIYLCzHz4gpGpdRHJ1DXbAQgLG0p6\n5nk8fuu56KYGqu7/EYc/OABaEzupnvXf/xZLmlZCk9EikFaBEEJp3b9u0WdmZuqcnJy+LobXdbZ+\nUdDkGJriQ/j30m3YW3a7J6DVRRi3hHJMKewNS2s/zBRo3LGDkl/eQEuFnZCEZrZ/P4V3EkLIqc8D\npGUgxGCglNrenQ/dZ0VHs2ivs+UqHA7Nvk+L+bhDIHj2F4QASz3CwF5dTfljj1FjWYlvkJ2k8+rI\n/vWfWbL9f6G+XFoGQoiTSCicZToGgm14GMtuXw8Yk8/aWg+g7cbMZM9AeOOn57qvoW02alatovyx\nx2irrSVyXAOfzmxj6Yh0crb/LyCtAyFE5yQUzjId1y/auTYfe8tuTD6HsDceBaDQP4GDIWMI8ehA\nBiMMalevpuLpZ7AVFmIdqvn3FW2UxwSQExgALdI6EEJ0TULhLOHqVHbtjuZav+hQTiltrQfw8aui\nLiKZPQGj8E37ljH5zDUb2Waj5s23qHjmGWwFBQQkhHDoMit3TwkD5Udm7BQylY+EgRDia0konAU6\ndiq7NsNZ+/y/KdizHt1WTkVIHG/Fz2t3q8hoGbxLxdPLsRUWERAfRNz5lWSn1rIkJgqAB2bcz4Jx\n1/RNxYQQ/Y6EQh871R4I/9qYR+l6IxDq/aKpjEsnLd7YH1nb7UYYPPMMtvx8AoZFEHd+JSEJxai4\nNLLCfKCtTvoNhBCnTUKhj7n6ECxRPny+6yjsOgrAsG2fEW8vxBY4jLF3/JaHZiS7w+Dw4luNMEhL\nI+4PvyRk330oBdx9GIKjIfsmMkECQQhx2iQU+pBruYpDAfCCtYG0sDBiinYQVbqXsPp8AC66ag4z\npiZQs+ptKp5++kQYLF9OyEUXopbGG7tRnH8XBEdjOWghpzTHvUyFEEKcDgmFPuDqVHbNUv68+gjf\nb95CmgqjMNdYzVT5JhE3cirjlIPDc6/Alp+Pf9p4kpYvI2TWLJRSsP0lsDcDYBk2nqzsm9wL2Mmi\ndUKIb0JCoZd0tmRFTbQ/z1XUYKrZxDBdDYSRlDYB/6DxFB0exrhdL3PcstUIg7/+kZCwoyi2w0Zj\nb2WObsISGkxW6oXkuPZKliGnQogzIKHQS1zDTf3iQ6gKaGZv5W62Hs/FBAzT1SSOGsWcO+5n+4sb\nKd5bBgEQ4ddA7LKnCAk9gsq6+aRrWkKDWRIdBZV7JAyEED1CQqGXWKuraGytYf1BC62FXwEQFpFM\nVLA/0YHhBDRH8coDWwF/CBjGkHBNynILPk9lQpVzc4NLH4aZdwBg+epNlmx5BJDZyUKIniOh0At2\nr8vGftzYKqKiuYW6gATSz7uIay+4nFWPf0F1I1Q7zx01QnP5vRcbfQYH/3MiEK5fDSMvBIzd0CQQ\nhBDeIKHgZbvXZbP2708xa+i1NAdF8taQeUyIC+aBmEpeffwLAMJbS0g7N5ZR82YSbjsIhdugdA+8\n9xvjIov+7Q4EwL09pgSCEKKnSSj0sN3rstm/aYP7ceG+PYwMnURsYDI7HTYW1uxi7oY1rI28HGKn\nYDZrrlu+EFVfDB/dA7v+1f6Clz0CYy8HTuyXnFuVS2ZcpgSCEKLHSSj0IFerAGDq2DmEt8STnDCV\nYf5DAYgq+4pEWwx7Rv2EOr9YAK7/3l7Ucw9Bye4TF1pkAR8fCIqGhMnup12BIPskCyG8RUKhh3gG\nQvr0WxldHgk+kKdraGoooaDZwX7/MeAPIyZGEakUIydH479+EZiDYOxsiEuHb/8aAsLc13W1DgB3\nILw4+8U+qaMQYuCTUDhDrttFhfuMSWfp029lQnmkcay+icImB7vNUe5/6R/cM5WhI42d1CjeCfYm\nGDICFr3R7rquMHBNRsuMy5QWghDC6yQUzlDVx4dJtU5mwqiZBAaFYC73B2BXo51Cu2ZUajC+ifGM\nyYxj6KhwfP1MJ15cfQwAy8TLyMq+qd11PcNA5h8IIXqLhMI3lPvSOuwHGxjtyAAz1DY30Gi1Uefn\nR2Grg3yb5o6nL0P5qM4v4GjDsumPZA2NJSdvFUC79YokDIQQfUFC4TQ1bDlO+Ue5BNf4A/6UN5dQ\n0NpCgSMBrR2oljZCv5vEHXPHGHMNPLj7B9paobaIHP8WIIDMmMnMHX2VBIAQos9JKHRDx3WL/DBR\n1pRPoU1T4EjAgZV/RTYwfHhMu72SXSzbHidr/xvkaCsAmU3GInaZwNxv/54FE2/sraoIIUSXJBS6\n0HE1U2tbOU0tLeQ1HiCvqRT/0B/yXGgjtSYfZgyP5MejW+DY5nbXsORlseTYOwBk2mCuzcSC+ja4\neDFEjmw3KU0IIfqahMIpeO6IVt1cQH7tVxxo3AYYy1o3+qeyPLyJB2M/YrZpGzG2Jth4EDaeuIZ7\nwTrgAaJZcMtHvV4PIYQ4HRIKHRitgzJa8+oA2FGWRWXVLqqDh6N8kygfms4an1HUmDR/uXIEC9at\nMF6YciEERGBJTier0RhVlFNrhMoD425kwfT/6pP6CCHE6ZBQ6KBxRwktR6torM1nn/0Q1qAKMBMu\nWQAACI1JREFUGs134w/km9p4w6+VGSlDmDc5kQVBWwGwpF9KVmgoADnHPwSM0UOZATKCSAjRv0go\nODVsOY51WxHNx6qpbSphbfWbAPi2XYKvMfWAlSGtLJ0/kUUR+6BiG7y52LhF1JgLjc4gkKGkQoh+\nTEKB9v0Hla1lHGs+gPJNwmQeh69/BsUBhcQGr+fT+FLi15zoSG7XZyArlgohBoBBGwqdbY+5rSKb\norYq2kjFP/Q7hM5N5KFNBzkSeKfxogrjm2XibLL8NDnV+wEJBCHEwDEoQ8GzZdDsU0VdUwPHrPvI\nb4vB1/87+AJJsR/QsnU/RwI/Nl6UcQ2WCZeetB6R3CoSQgwkgy4UPAOhtGkrG0qMYaK+QZcQGTWW\nc3yeIdl/B2E+5bwYMZQbQpLw8fWDwBZyPlsCSBgIIQYur4aCUmo28ARgAlZorR/tcFw5j88FGoEb\ntdY7vFUez0AoznubjeQCRiBUJpazK2kZ64FyHYGOmkZ+k7HyaWbcOc7vEgZCiIHNa6GglDIBy4BL\ngUJgm1JqtdZ6n8dpc4Axzq8ZwNPO7z2u+q0DWLcafQg7KjbxlTMQTMEX8+q5FhrNdaQ2BXLIkUhi\n9BBiw/yJDZMQEEIMLt5sKUwHDmmtjwAopV4H5gGeoTAP+IfWWgOfK6UilFLxWuvjPV2YnR+tI8Jn\nCMes+8hrqsRhjqYtOIFD41aR1lbG0PoJHPG7h3umJrJoRnJP/3ohhOgXvBkKiUCBx+NCTm4FdHZO\nItAuFJRStwG3ASQnf7M37A2mLYRWaOqigggbd5zz7Q6gHJrDiA0ewchbXwCT3ze6thBCDBT9oqNZ\na/0c8BxAZmam/ibXWPK3V3q0TEIIMRD5ePHaRcAwj8dJzudO9xwhhBC9xJuhsA0Yo5RKUUqZgYXA\n6g7nrAauV4aZQK03+hOEEEJ0j9duH2mt7UqpXwAfYAxJfUFrvVcpdbvz+DNAFsZw1EMYQ1JvOtX1\nhBBCeJ9X+xS01lkYb/yezz3j8bMGfu7NMgghhOg+b94+EkII0c9IKAghhHCTUBBCCOEmoSCEEMJN\nGX29/YdSqhw49g1fHo17V4RBQ+o8OEidB4czqfNwrXXM153U70LhTCilcrTWmX1djt4kdR4cpM6D\nQ2/UWW4fCSGEcJNQEEII4TbYQuG5vi5AH5A6Dw5S58HB63UeVH0KQgghujbYWgpCCCG6IKEghBDC\nbUCGglJqtlIqVyl1SCl1XyfHlVLq/5zHdyulpvRFOXtSN+p8nbOuXyqlNiulJvVFOXvS19XZ47xp\nSim7Uurq3iyfN3Snzkqpi5RSu5RSe5VSH/d2GXtaN/62w5VS7yqlvnDWuV+vtqyUekEpVaaU2nOK\n4959/9JaD6gvjGW6DwMjATPwBZDW4Zy5wBpAATOBLX1d7l6o87eAIc6f5wyGOnuctx5jtd6r+7rc\nvfD/HIGxD3qy83FsX5e7F+r8O+DPzp9jgCrA3NdlP4M6XwBMAfac4rhX378GYkthOnBIa31Ea90K\nvA7M63DOPOAf2vA5EKGUiu/tgvagr62z1nqz1rra+fBzjF3u+rPu/D8D3Am8CZT1ZuG8pDt1XgS8\npbXOB9Ba9/d6d6fOGghVSikgBCMU7L1bzJ6jtf4Eow6n4tX3r4EYColAgcfjQudzp3tOf3K69fkJ\nxieN/uxr66yUSgTmA0/3Yrm8qTv/z2OBIUqpDUqp7Uqp63utdN7RnTo/BYwHioEvgV9prR29U7w+\n4dX3L69usiPOPkqpWRihcF5fl6UX/A24V2vtMD5EDgq+wFTgO0Ag8JlS6nOt9cG+LZZXXQ7sAi4G\nRgFrlVIbtdZ1fVus/mkghkIRMMzjcZLzudM9pz/pVn2UUhnACmCO1rqyl8rmLd2pcybwujMQooG5\nSim71vrt3ilij+tOnQuBSq21FbAqpT4BJgH9NRS6U+ebgEe1ccP9kFIqDxgHbO2dIvY6r75/DcTb\nR9uAMUqpFKWUGVgIrO5wzmrgemcv/kygVmt9vLcL2oO+ts5KqWTgLeDHA+RT49fWWWudorUeobUe\nAawEftaPAwG697f9DnCeUspXKRUEzAD293I5e1J36pyP0TJCKRUHpAJHerWUvcur718DrqWgtbYr\npX4BfIAxcuEFrfVepdTtzuPPYIxEmQscAhoxPmn0W92s8wNAFLDc+cnZrvvxCpPdrPOA0p06a633\nK6Wygd2AA1ihte50aGN/0M3/54eBl5RSX2KMyLlXa91vl9RWSr0GXAREK6UKgQcBP+id9y9Z5kII\nIYTbQLx9JIQQ4huSUBBCCOEmoSCEEMJNQkEIIYSbhIIQQgg3CQUhOlBKtTlXGXV9jXCuPFrrfLxf\nKfXgaV4zQin1M2+VWYieIqEgxMmatNaTPb6OOp/fqLWejDFT+kcdlyxWSnU17ycCkFAQZz0JBSFO\nk3MJie3AaKXUjUqp1Uqp9cCHSqkQpdSHSqkdzr0rXCt6PgqMcrY0/gKglLpbKbXNuSb+H/qoOkK0\nM+BmNAvRAwKVUrucP+dpred7HlRKRWGsY/8wMA1j7fsMrXWVs7UwX2tdp5SKBj5XSq0G7gMmOFsa\nKKUuA8ZgLA2tgNVKqQucyyYL0WckFIQ4WZPrzbuD85VSOzGWj3jUudzCNGCt1tq1/r0CliqlLnCe\nlwjEdXKty5xfO52PQzBCQkJB9CkJBSG6b6PW+spOnrd6/Hwdxu5fU7XWNqXUUSCgk9co4E9a62d7\nvphCfHPSpyBEzwoHypyBMAsY7ny+Hgj1OO8D4GalVAgYGwIppWJ7t6hCnExaCkL0rH8B7zpX7MwB\nDgBorSuVUpucm7Gv0VrfrZQaj7EJDkAD8CMGxrahoh+TVVKFEEK4ye0jIYQQbhIKQggh3CQUhBBC\nuEkoCCGEcJNQEEII4SahIIQQwk1CQQghhNv/A6G/GOBAueo8AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11876940>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Benchmark model with stratified random labels\n",
"\n",
"n_splits=24\n",
"kfold=StratifiedKFold(n_splits=n_splits, shuffle=False)\n",
"\n",
"featurelist=[\"Diameter\",\"MeanHU\",\"Spiculation\",\"Eccentricity\"]\n",
"models=[GaussianNB(), MultinomialNB(),\n",
" LogisticRegression(C=0.1),\n",
" RandomForestClassifier(),\n",
" GradientBoostingClassifier(),\n",
" SVC(C=0.02,kernel='rbf', probability=True),\n",
" SVC(C=0.02, kernel='linear', probability=True)]\n",
"name=[\"Gaussian Naive Bayes\", \"Multinomial Naive Bayes\", \"Logistic Regression\", \"Random Forest\", \"Gradient Boosting\", \"SVM with rbf kernel\", \"SVM with linear kernel\"]\n",
"\n",
"predictedmodels={}\n",
"tprmodels={}\n",
"fprmodels={}\n",
"\n",
"\n",
"for nm, clf in zip(name[:-1], models[:-1]):\n",
" print(nm)\n",
" predicted=[]\n",
" mallabelcv=[]\n",
" for train,test in kfold.split(inputfeatures,randomlabel):\n",
" if nm==name[1]:\n",
" clf.fit(roundedfeatures[featurelist].iloc[train],[randomlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(roundedfeatures[featurelist].iloc[test])[:,1])\n",
" else:\n",
" clf.fit(inputfeatures[featurelist].iloc[train],[randomlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(inputfeatures[featurelist].iloc[test])[:,1])\n",
" mallabelcv.append([randomlabel[i] for i in test])\n",
" if nm==name[1]: \n",
" scores=cross_val_score(clf,roundedfeatures[featurelist], randomlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" else:\n",
" scores=cross_val_score(clf,inputfeatures[featurelist], randomlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" predicted=np.concatenate(np.array(predicted),axis=0)\n",
" mallabelcv=np.concatenate(np.array(mallabelcv),axis=0)\n",
" predictedmodels[nm]=predicted\n",
" roc=roc_curve(mallabelcv,predicted)\n",
" print(\"Average precision score:\", average_precision_score(mallabelcv,predicted))\n",
" print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
" plt.plot(roc[0],roc[1])\n",
" #print(-scores)\n",
" print(\"Cross-validated logloss\",-np.mean(scores))\n",
" print(\"---------------------------------------\")\n",
" #plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(name)\n",
"plt.savefig(\"clfroccomparison.png\",dpi=300)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LogisticRegression(C=2.9999999999999996, class_weight=None, dual=False,\n",
" fit_intercept=True, intercept_scaling=1, max_iter=100,\n",
" multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,\n",
" solver='liblinear', tol=0.0001, verbose=0, warm_start=False)\n",
"['Optimized Logistic Regression']\n",
"[ 0.58413531 0.54038305 0.5748129 0.52855611 0.54155647]\n",
"Cross-validated logloss 0.553888769981\n",
"---------------------------------------\n",
"[ 0.58393711 0.54044453 0.5747408 0.52868858 0.54150315]\n",
"Cross-validated logloss 0.553862832778\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl81NW9//HXhxCTQEISSARlR4NWIAQJWymKIgJqxY1f\nKyqCVWtVtNVSua3X5WpvtViX64bUIqWXW6xL1Vau4nKtaEVlK5sIyJZAgAAhJJCQhfP7YxYneyCz\nJJn38/HgYWa+Z2Y+30ycz5xzvudzzDmHiIgIQJtIByAiIs2HkoKIiPgpKYiIiJ+SgoiI+CkpiIiI\nn5KCiIj4KSmIiIifkoJIPcxsm5mVmFmxme02s3lmlhhw/Ltm9qGZFZlZoZn9zczOqvYcHczsSTPb\n4X2eb7y308J/RiL1U1IQadj3nXOJQBYwCPg3ADMbASwG3gROBXoD/wI+NbM+3jYnAR8A/YDxQAdg\nBLAPGBre0xBpmGlFs0jdzGwbcKNz7n3v7d8C/ZxzF5vZEmCNc+7Wao/5XyDfOTfFzG4Efg2c5pwr\nDnP4IsdNPQWRRjKzbsAEYLOZtQO+C7xSS9O/AGO9P18AvKOEIC2FkoJIw94wsyIgB9gL3A90xPP/\nT14t7fMA33xBpzraiDRLSgoiDbvMOZcEjAbOxPOBXwAcA06ppf0peOYMAPbX0UakWVJSEGkk59w/\ngHnAY865w8BnwKRamv4/PJPLAO8D48ysfViCFGkiJQWR4/MkMNbMBgIzgevN7A4zSzKzVDN7GM/V\nRQ962/8Jz7DTa2Z2ppm1MbNOZvZLM7soMqcgUjclBZHj4JzLB+YD9znnPgHGAVfgmTfYjueS1e85\n5zZ52x/FM9m8AXgPOAR8gWcI6vOwn4BIA3RJqoiI+KmnICIifkoKIiLip6QgIiJ+SgoiIuLXNtIB\nHK+0tDTXq1evSIchItKiLF++fJ9zLr2hdi0uKfTq1Ytly5ZFOgwRkRbFzLY3pp2Gj0RExE9JQURE\n/JQURETEr8XNKdSmvLyc3NxcSktLIx2KSMjEx8fTrVs3YmNjIx2KtGKtIink5uaSlJREr169MLNI\nhyMSdM459u/fT25uLr179450ONKKhWz4yMzmmtleM1tbx3Ezs/8ys81mttrMzj7R1yotLaVTp05K\nCNJqmRmdOnVSb1hCLpRzCvPwbFRelwlAhvffzcDzTXkxJQRp7fQ3LuEQsuEj59zHZtarniYTgfnO\nU6Z1qZmlmNkpzjltXSgi4rVp1RIKtq4CID7lFDLPuyqkrxfJq4+64tl8xCfXe18NZnazmS0zs2X5\n+flhCe545ebmMnHiRDIyMjjttNO48847KSsrq/cxBw8e5LnnnvPf3rVrF1dddXxv+H333cf7779/\nQjEHSkxMPK77j0dD59XU38PUqVPp3bs3WVlZDBw4kA8++KDhB4XR7NmzmT9/fqTDkBaqYOsqKg/t\nDt8LOudC9g/oBayt49jf8WxG4rv9AZDd0HMOHjzYVbd+/foa94XTsWPH3JAhQ9zcuXOdc85VVFS4\nG264wf385z+v93Fbt251/fr1C0eIDWrfvv1x3R9MTf09XH/99e6VV15xzjn34YcfutNPPz0ocZWX\nlwfleYIp0n/rEmY7V7i1/32P+/z1/2ryUwHLXCM+tyPZU9gJdA+43c17X4vz4YcfEh8fz7Rp0wCI\niYnhiSeeYO7cuRw5coR58+YxceJERo8eTUZGBg8+6NmpcebMmXzzzTdkZWUxY8YMtm3bRv/+/QGY\nN28el112GWPHjqVXr14888wzPP744wwaNIjhw4dz4MABwPMt+dVXX2XZsmVkZWWRlZXFgAED/OPP\n33zzDePHj2fw4MGMGjWKDRs2ALB161ZGjBjBgAEDuPfee4/rfLdt28b5559PZmYmY8aMYceOHf7X\nGj58uP85fb2MwPNat24dQ4cOJSsri8zMTDZt2lTv76GyspKf//zn9O/fn8zMTJ5++ul6YxsxYgQ7\nd377Z7R8+XLOPfdcBg8ezLhx48jL84xOfvnll2RmZvpfM/D3fumll3L++eczZswYAGbNmsWQIUPI\nzMzk/vvvB+Dw4cNcfPHFDBw4kP79+/Pyyy/739OzzjqLzMxMfv7znwPwwAMP8NhjjwGwatUqhg8f\nTmZmJpdffjkFBQUAjB49mnvuuYehQ4fSt29flixZclzvibQ+m1YtYd3/vcyRskoKkzLC9rqRvCT1\nLeB2M1sIDAMKXRDmEz76ei/5RUebHFyg9KQ4Rp9xcp3H161bx+DBg6vc16FDB3r06MHmzZsB+OKL\nL1i7di3t2rVjyJAhXHzxxTzyyCOsXbuWVas844Xbtm2r8hxr165l5cqVlJaWcvrpp/Poo4+ycuVK\nfvaznzF//nx++tOf+ttmZ2f7n2fGjBmMH++Z47/55puZPXs2GRkZfP7559x66618+OGH3Hnnnfzk\nJz9hypQpPPvss8f1+5g+fTrXX389119/PXPnzuWOO+7gjTfe4M477+TOO+/k6quvZvbs2bU+dvbs\n2dx5551cc801lJWVUVlZWe/vYc6cOWzbto1Vq1bRtm1bfzKsyzvvvMNll10GeNavTJ8+nTfffJP0\n9HRefvllfvWrXzF37lymTZvG73//e0aMGMHMmTOrPMeKFStYvXo1HTt2ZPHixWzatIkvvvgC5xyX\nXnopH3/8Mfn5+Zx66qm8/fbbABQWFrJ//37++te/smHDBsyMgwcP1ohvypQpPP3005x77rncd999\nPPjggzz55JMAVFRU8MUXX7Bo0SIefPDBoAwLSstVsHUVVlbJwe5j6HLmiLC9bsiSgpn9GRgNpJlZ\nLnA/EAvgnJsNLAIuAjYDR4BpoYqlORg7diydOnUC4IorruCTTz7xf3jV5bzzziMpKYmkpCSSk5P5\n/ve/D8CAAQNYvXp1rY95+eWXWbFiBYsXL6a4uJh//vOfTJo0yX/86FFPwvz000957bXXALjuuuu4\n5557Gn0un332Ga+//rr/sb/4xS/897/xxhsATJ482f9NOdCIESP49a9/TW5uLldccQUZGfV/A3r/\n/fe55ZZbaNvW86fasWPHWtvNmDGDX/7yl+Tm5vLZZ58B8PXXX7N27VrGjh0LeHodp5xyCgcPHqSo\nqIgRI0b4Y/373//uf66xY8f6X2fx4sUsXryYQYMGAVBcXMymTZsYNWoUd999N/fccw+XXHIJo0aN\noqKigvj4eH70ox9xySWXcMkll1SJsbCwkIMHD3LuuecCcP3111d5b6644goABg8eXOMLgrQua3IL\n2bD7ECkH15FctKnWNpWHdhOT0oOxF9R3EWfwhfLqo6sbOO6A24L9uvV9ow+Vs846i1dffbXKfYcO\nHWLHjh2cfvrprFixosblhI25vDAuLs7/c5s2bfy327RpQ0VFRY32a9eu5YEHHuDjjz8mJiaGY8eO\nkZKS4v8GXl0kLnGcPHkyw4YN4+233+aiiy7ihRdeoE+fPk1+3lmzZnHVVVfx9NNPc8MNN7B8+XKc\nc/Tr18+fJHxq+wYfqH379v6fnXP827/9Gz/+8Y9rtFuxYgWLFi3i3nvvZcyYMdx333188cUXfPDB\nB7z66qs888wzfPjhh40+B9/7GxMTU+v7K63Hht2HyC8+Ss+iTcQf3UdpXFqNNjEdupDaOyvssbWK\nFc2RNmbMGGbOnMn8+fOZMmUKlZWV3H333UydOpV27doB8N5773HgwAESEhJ44403mDt3LklJSRQV\nFQUlhoMHD3L11Vczf/580tM9JdM7dOhA7969eeWVV5g0aRLOOVavXs3AgQMZOXIkCxcu5Nprr2XB\nggXH9Vrf/e53WbhwIddddx0LFixg1KhRAAwfPpzXXnuNH/zgByxcuLDWx27ZsoU+ffpwxx13sGPH\nDn88df0exo4dywsvvMB5553nHz6qq7cAcPvttzN37lzeffddzjvvPPLz8/nss88YMWIE5eXlbNy4\nkX79+pGUlMTnn3/OsGHD6owVYNy4cfz7v/8711xzDYmJiezcuZPY2FgqKiro2LEj1157LSkpKbz4\n4osUFxdz5MgRLrroIkaOHFkj2SUnJ5OamsqSJUsYNWoUf/rTn/y9BmkZAi8PbYqOpeX0jI9laFo5\nJPaFQdcEIbrgUFIIAjPjr3/9K7feeisPPfQQx44d46KLLuI///M//W2GDh3KlVdeSW5uLtdeey3Z\n2dkAjBw5kv79+zNhwgRuu+3EO05vvvkm27dv56abbvLft2rVKhYsWMBPfvITHn74YcrLy/nhD3/I\nwIEDeeqpp5g8eTKPPvooEydOrPN5jxw5Qrdu3fy377rrLp5++mmmTZvGrFmzSE9P56WXXgLgySef\n5Nprr+XXv/4148ePJzk5ucbz/eUvf+FPf/oTsbGxdOnShV/+8pd07Nixzt/DjTfeyMaNG8nMzCQ2\nNpabbrqJ22+/vc54zYx7772X3/72t4wbN45XX32VO+64g8LCQioqKvjpT39Kv379+MMf/sBNN91E\nmzZtOPfcc2uNFeDCCy/kq6++8g81JSYm8t///d9s3ryZGTNm0KZNG2JjY3n++ecpKipi4sSJlJaW\n4pzj8ccfr/F8f/zjH7nllls4cuQIffr08f/uJPx8Qzi1qWtYp/KAZ0uCmI49m/TaSfGxnJKcAIkd\nofNZTXquYDPPKE7LkZ2d7apvsvPVV1/xne98J0IRNWzevHksW7aMZ555JtKhhNSRI0dISEjAzFi4\ncCF//vOfefPNNyMdVq2Ki4v9V0c98sgj5OXl8dRTT0U4qoY197/1luSVZTnkFx8lPTGuxrGeOW/U\nOayT2juLjKxR4QgxqMxsuXMuu6F26ilI0Cxfvpzbb78d5xwpKSnMnTs30iHV6e233+Y3v/kNFRUV\n9OzZk3nz5kU6JImAjIrNjI3ZX/NAMxzWCRf1FERaEP2tB88ry3LomfOGd1y/c80Gnc+CUweFP7AQ\nUU9BRGTXSnI2LCevsKTGoY6l5cRbYdT2COqinddEpPXas56CvTkUlZbXOJQUH0vqyd2b3URvpKmn\nICKtWmlcGge6X8aY7O4NNxb1FESk9copKKHgcP3ViqUqJYUgiYmJISsri379+jFw4EB+97vfcezY\nsQYfN2PGDPr168eMGTNO6HUDi879z//8T61tAgvMNcWyZcu444476jxePYaG2lc3evRozjjjDAYO\nHMiQIUPqXIkdKcEqUy5BsmslrFxQ67+cD1/ki78+zfbtWwA4s0uHCAfbcmj4KEgSEhL8H2J79+5l\n8uTJHDp0yF8RtS5z5szhwIEDxMTENOn1fR/IkydPbtLz1Cc7O9u/6K4xMTTUvjYLFiwgOzubl156\niRkzZvDee+81KWbwFJrz1U5qiv/4j/9o8nNIEO1ZD8V7ar1yKK+whKLScpJSTqFz7ywyutW+OFFq\nUk8hBE4++WTmzJnDM888g3OOyspKZsyY4S+//MILLwBw6aWXUlxczODBg3n55Zf529/+xrBhwxg0\naBAXXHABe/bsAaqWXgbo379/jYJpM2fOZMmSJWRlZfHEE080Ks66yjjXVVb6o48+8hd5+8c//uEv\n1T1o0CCKiopqxBDYvri4mGnTpjFgwAAyMzP9xfjqUr0E9uLFixkxYgRnn302kyZNori4GIBFixZx\n5plnMnjwYO644w7/6z3wwANcd911jBw5kuuuu67O9yAvL49zzjmHrKws+vfvz5IlS6isrGTq1Kn0\n79+fAQMG+H+fvjLlAB988AGDBg1iwIAB3HDDDf5Cg7169eL+++/n7LPPZsCAAf5S5dIEdfUIiveQ\nU96BVyrPqfFvWeoEDmRMYujl01vkQrNIan09hU3ve749BFNiZ8i44Lge0qdPHyorK9m7dy9vvvkm\nycnJfPnllxw9epSRI0dy4YUX8tZbb5GYmOjvYRQUFLB06VLMjBdffJHf/va3/O53v2vU6z3yyCM8\n9thjVap9NqSuMs71lZX2eeyxx3j22WcZOXIkxcXFxMfH14jho48+8rd/6KGHSE5OZs2aNf5zrU9g\nCex9+/bx8MMP8/7779O+fXseffRRHn/8cX7xi1/w4x//mI8//pjevXtz9dVVazCuX7+eTz75hISE\nBObMmVPre/D6668zbtw4fvWrX1FZWcmRI0dYtWoVO3fuZO3atUDNAnqlpaVMnTqVDz74gL59+zJl\nyhSef/55fynztLQ0VqxYwXPPPcdjjz3Giy++2Mh3RGpVV48gsTMb9neqdVVyemKchoxOUOtLCs3Q\n4sWLWb16tf9bZmFhIZs2baJ3795V2uXm5vKDH/yAvLw8ysrKahwPprrKODdUVtpn5MiR3HXXXVxz\nzTVcccUVVeoj1eb999+vUnguNTW11na+fRaKi4v9yXLp0qWsX7+ekSNHAlBWVsaIESPYsGEDffr0\n8f+err76aubMmeN/rksvvZSEhASg7vdgyJAh3HDDDZSXl3PZZZeRlZVFnz592LJlC9OnT+fiiy/m\nwgsvrBLj119/Te/evenbt6//d/fss8/6k0JgCWxfiXE5QbtWwsEd5Lh0llaeU+NwfltPQpikK4uC\npvUlheP8Rh8qW7ZsISYmhpNPPhnnHE8//TTjxo2r9zHTp0/nrrvu4tJLL+Wjjz7igQceAKBt27ZV\nJq1LS0tDGXqjzJw5k4svvphFixYxcuRI3n333aA874IFCxg8eDAzZsxg+vTpvP766zjnGDt2LH/+\n85+rtG1oIrp6Cey63oOPP/6Yt99+m6lTp3LXXXcxZcoU/vWvf/Huu+8ye/Zs/vKXvxxXyQ6VwG6C\nXSthz3pyCkrIKyyh/RHPEOKqdmext7KEbqkJVZqrRxB8mlMIgfz8fG655RZuv/12zIxx48bx/PPP\nU17uWUCzceNGDh8+XONxhYWFdO3aFfBU0/Tp1asXK1asADw1/Ldu3VrjscdbhjuwjDPgL+OckpLi\nLysN1FlW+ptvvmHAgAHcc889DBkyhA0bNtQbw9ixY6vs8Fbf8JGZ8dBDD7F06VI2bNjA8OHD+fTT\nT/272B0+fJiNGzdyxhlnsGXLFv/8im9LzNrU9R5s376dzp07c9NNN3HjjTeyYsUK9u3bx7Fjx7jy\nyit5+OGH/b97nzPOOINt27b541EJ7CDyDhX5JooPt+vKrs6jOan72Vzwnc5Myu5e498ATSIHVevr\nKURISUkJWVlZlJeX07ZtW6677jruuusuwFP+edu2bZx99tk450hPT/fvUBbogQceYNKkSaSmpnL+\n+ef7P/yvvPJK5s+fT79+/Rg2bJh/2CJQZmYmMTExDBw4kKlTp/Kzn/2syvGvv/66yhDPE088UWcZ\n58aUlX7yySf5v//7P9q0aUO/fv2YMGECbdq0qRKDb7cygHvvvZfbbruN/v37ExMTw/333+8fZqlN\nQkICd999N7NmzeIPf/gD8+bN4+qrr/ZP6D788MP07duX5557jvHjx9O+fXuGDBlS5/PV9R589NFH\nzJo1i9jYWBITE5k/fz47d+5k2rRp/t7Zb37zmyrPFR8fz0svvcSkSZOoqKhgyJAh3HLLLXW+tjSS\nd6iIlB5sT/AMFWnBWfipIJ7U0JLKSvtidc5x2223kZGRUSMhtiat+m995QJPUjhjPK/s8pSs1lxB\n8KggnpywllRW+ve//z1//OMfKSsrY9CgQbVumynNQ22b2gRuZuPbv2D7rrQ69zmQ0FNPQaQFaSl/\n67UlgLKcFaQd3kxq+5P89/kmkg+388ylFSZlcDClH+BZhaz5guCJup6Ccy4iG9GLhEtL+gLn25g+\n8Nt+BjvokXqULqd2CWjZsdXtW9DStYqkEB8fz/79++nUqZMSg7RKzjn2799PfHx8pENp0JrcQnIL\nPJePTsru7r/M1LObWU/tXdDMtYqk0K1bN3Jzc8nPz490KCIhEx8f3+AiweZgw+5DnFz8FcNj8mFl\ngmfyGCClh/YuaAFaRVKIjY0N6epfETk+Geyge2w5kPBtMtAQUYvQKpKCiESeb3I5v/goPcFTq0hD\nRS2OkoKIBEXg5PIpxxIafoA0S0oKItJ0u1bSM+cTegJDkztC7CFAiaElUu0jEWmynA3LKTuY9+0d\niZ01qdxCqacgIk2WV1jC4dhOJA+ZAlpw1qIpKYjICdu0agkFW1dReWg3qR26aAVyK6DhIxE5Yb6E\nENOhC6m9syIdjgRBSJOCmY03s6/NbLOZ1djX0cySzexvZvYvM1tnZtNCGY+IBM+a3EIKDpcR06GL\n9kJuRUI2fGRmMcCzwFggF/jSzN5yzq0PaHYbsN45930zSwe+NrMFzrmyUMUlIsfPN0wUqOBwGe3L\n93NKcp8IRSWhEMqewlBgs3Nui/dDfiEwsVobBySZp2BRInAA0P6FIs2Mb5goUGr7k+jZsw/dzxwc\noagkFEI50dwVyAm4nQsMq9bmGeAtYBeQBPzAOXesWhvM7GbgZoAePXqEJFiRaOZbjRy4v0Eg37zB\n0MunRyA6CadIX300DlgFnA+cBrxnZkucc1UKsTvn5gBzwLOfQtijFGktvBVLcwpKyCss8d9dcLiM\nDsCp5ikq6dvfwEcTydEjlElhJxC4l143732BpgGPOE+h+M1mthU4E/gihHGJRK8966F4D3mFsRSV\nlpMUHwt4hoJOSU6ge2oXFa+LcqFMCl8CGWbWG08y+CEwuVqbHcAYYImZdQbOALaEMCaRqObpIcSy\nLHUC6YlxjNEeyFJNyJKCc67CzG4H3gVigLnOuXVmdov3+GzgIWCema0BDLjHObcvVDGJRLu8whKK\nSstJT4zjzC4dIh2ONEMhnVNwzi0CFlW7b3bAz7uAC0MZg0jU8+18BsQf3QfxaeohSJ0iPdEsIqEQ\nkAj27NjIvuKjHG7XlSKXzLGkjAgHJ82ZkoJIa+SdUCaxM9uPpbG9Qy84xXP1kIaNpD5KCiItVG2r\njH3ij+6jNC6N7QnnkJ/q2fhmkoaMpBGUFESCKWDYpjbV1wc0ReWB7QDEdOxZ41hpXBqF3mEiTSrL\n8VBSEAmmgGGb2viu/vGtD2iKmI49Se2dpUJ0ElRKCiLHqb6SEIHDNrXxDeXo6h9prrSfgshx8m1Q\nn1y0yXOJZ4DAYZvaaChHmjv1FETqsCa3kN0bPqvRG+hYWk7P+FiGppVDYl8YdE2EIhQJPiUFEagx\nQZxTUMKuXYV0OJpH+/i2VQrEJcXHckpyAiR21Ob00uooKYhAjQli3xVC3Xqf6dkvQAXiJEooKYh4\n5ZR3YGmlZ4I4P/Uo6d3j6K4JYYkymmgW8corLCG/+CigCWGJXuopSPSpbYFZ8R4gVit/JeopKUjU\nydmwnIK9OZTGpQXcG8v2tr0iFZJIs6GkIFEnr7CEIpfMge6X1TimISOJdkoK0rrVsidx5aHdJHXo\nolXFIrVQUpBWyVeKomfOJ8Qf3UdehacHkNr+JG1CL1IPJQVplXylKHriKT1x6PTLOLNLBwZ0S450\naCLNmpKCtBj17R9QXdVSFJ0ZOkhDRSKNoXUK0mIUbF1F5aHdjWr7bSmKzipFIXIc1FOQ5s87WRx/\ndB+lHbow9PLpkY5IpNVSUpDmbddK+Pod9hwqJa+iA23StOm8SCgpKUjz5l15vLr9CNa368MFZ9a+\no5mIBIeSgjRbm1YtoWz9Gg6368qm1NPplhinq4dEQkwTzdJsFWxdxZGySgqTMlSgTiRM1FOQZsd3\n6Wnlod3EpPRg7AXjIx2SSNRQUpDQC6hKGlhuoi6VB7YDENOxp1Yei4SZkoKEXsCuZnmFJRSVlpMU\nH1tnc18yyMgaFcYgRQSUFCRcEjuzJv0SPt23h27dE1SMTqSZUlKQoPEVofNJObiO5KJNnkVncWl8\num8PoPLUIs2ZkoIEja8IXXpiHECVhFCYlEG3lAQVpRNp5kKaFMxsPPAUEAO86Jx7pJY2o4EngVhg\nn3Pu3FDGJKGxJreQ3IISuqUmfLudZUxHoCMMuiaisYlI44UsKZhZDPAsMBbIBb40s7ecc+sD2qQA\nzwHjnXM7zOzkUMUjoeUbNtLQkEjLFsqewlBgs3NuC4CZLQQmAoE7pk8GXnfO7QBwzu0NYTwSYt1S\nExjQZgus9L7F3iuORKTlCGVS6ArkBNzOBYZVa9MXiDWzj4Ak4Cnn3PzqT2RmNwM3A/To0SMkwUo9\natnSsrqOvstMi4o9d6T0UNlqkRYo0hPNbYHBwBggAfjMzJY65zYGNnLOzQHmAGRnZ7uwRxntvOsM\n8gpj61xj4N+/IKWjJxGcOigCgYpIU4UyKewEAi9G7+a9L1AusN85dxg4bGYfAwOBjUhEBV5e2jPn\nABDLstQJpCfGaY2BSCsWyqTwJZBhZr3xJIMf4plDCPQm8IyZtQVOwjO89EQIY5IA1dcVBMot8AwT\n9bcttD+yk8PtuqoonUgUCFlScM5VmNntwLt4Lkmd65xbZ2a3eI/Pds59ZWbvAKuBY3guW10bqpik\nqurrCgJ1S/WuKcj/EmKS4YzvMfRU9RBEWrsGk4KZtQPuBno4524yswzgDOfc3xt6rHNuEbCo2n2z\nq92eBcw6rqglaNIT475dV1CbfDyTxpojEIkKjdlP4SXgKDDCe3sn8HDIIhIRkYhpzPDRac65H5jZ\n1QDOuSNmZiGOS0IscAVyFQFlrgGtNRCJMo1JCmVmlgA4ADM7DU/PQVow3wRzVtttsPLjbw8c3OH5\nb4p3PYjWGohElcYkhQeAd4DuZrYAGAlMC2VQEh7dUhPIcDuq9gZSemidgUgUazApOOcWm9lyYDhg\nwJ3OuX0hj0xCZk1uIWU5K8hgB6SVexKCitaJCI2YaDazD5xz+51zbzvn/u6c22dmH4QjOAmNDbsP\nkXZ4Mz1OKtLwkIhUUWdPwczigXZAmpml4uklAHTAU9dIWhrvJHLPnAPEtz1El1P7qocgIlXUN3z0\nY+CnwKnAcr5NCoeAZ0Icl4SCb69kYimNS1MPQURqqDMpOOeeAp4ys+nOuafDGJOEUmJntiecA6AV\nyiJSQ2Mmmp82s/7AWUB8wP01SlxL85dTUEJuZS3rE0REaFyZi/uB0XiSwiJgAvAJoKTQAuUVlkCi\ndkgTkdpc9nU7AAAQCElEQVQ1pszFVXj2O9jtnJuGp7S1dl5vwbqlJjCgm95CEampMUmhxDl3DKgw\nsw7AXqrukyAtwa6V365WFhGpQ2NWNC8zsxTg93iuQioGPgtpVBJ83npGhUkZEQ5ERJqzepOCt/Dd\nb5xzB4HZ3r0POjjnVoclOgmKNbmFlGw7ACSyKfV00iMdkIg0W/UmBeecM7NFwADv7W3hCEqCw7ez\nWlnOCvoc2E5Mx57aPU1E6tWY4aMVZjbEOfdlyKORoPLtrJbNDnqmtafzEO2eJiL1a0xSGAZca2bb\ngMN4VjY751xmKAOTpks5uI6eRZsYmlYOiX1V+VREGtSYpDAu5FFISCQXbSL+6D5PQlBJCxFphIYK\n4t0CnA6sAf7gnKsIV2ASHKVxaSp6JyKNVl9P4Y9AObAEzyrms4A7wxGUHIeA7TNzCko8K5a9Kg/t\nJqZDl0hFJiItUH1J4Szn3AAAM/sD8EV4QpLj4qt8mtiZvMISikrLSYqPBSCmQxdSe2dFOEARaUnq\nSwrlvh+ccxWeJQvSrPhWKaf0gEHXsL0yB4Ax2brCSEROTH1JIcvMDnl/NiDBe9t39ZEudg+3gKEi\n4NuyFZpEFpEgqS8p/Ms5p2sYm5OAoSLA00PofJYuNRWRoKkvKbiwRSGNl9hZVxOJSMjUlxRONrO7\n6jronHs8BPGIiEgE1ZcUYoBEvt2bWUREWrn6kkKec+4/whaJ1C/wSqNqfIXv8ouPkp4YF4HgRKS1\nqG+THfUQmhPfVUe1XGkUmBBUAVVEmqK+nsKYsEUhjZPSo8qVRtV7CJO0PkFEmqjOnoJz7kBTn9zM\nxpvZ12a22cxm1tNuiJlVmNlVTX3NaKIegogEW2OqpJ4QM4sBngXGArnAl2b2lnNufS3tHgUWhyqW\nFitgsdruXdvZUZbkX7UMqIcgIkFX35xCUw0FNjvntjjnyoCFwMRa2k0HXgP2hjCWlsm3WA08CaFt\nryqH1UMQkWALWU8B6ArkBNzOxbNhj5+ZdQUuB84DhtT1RGZ2M3AzQI8eNa++adW8i9V8PQT1CkQk\nlELZU2iMJ4F7nHPH6mvknJvjnMt2zmWnp0fXtvM5BSW8siyH/OKjkQ5FRKJAKHsKO4HAr7XdvPcF\nygYWeiuwpgEXmVmFc+6NEMbVMuxayZ4dG1lf1IHcyhK6pSZoqEhEQi6USeFLIMPMeuNJBj8EJgc2\ncM719v1sZvOAvysheO1Zz77io+xrfzoXfKczA7olRzoiEYkCIUsK3j0YbgfexVMyY65zbp2Z3eI9\nPjtUr93S+NYbpBxcR3LRJgDij+4jv83JnNT9bCUEEQmbUPYUcM4tAhZVu6/WZOCcmxrKWJoz33qD\nnkWbiD+6j9K4NErj0jiWlKEhIxEJq5AmBanfmtxCdm/4jI756+kZH8vQtHJI7KvS2CISMUoKkeBd\nlFay7QApB3fQ7qQYOiSfDokdtYuaiESUkkIk+BelxeJSetBv2Pe0e5qINAtKCmG2JreQkm0HgFiW\npU4gPTGOoadqQZqINA+RXrwWdTbsPkRRaTmgMhUi0vyopxABSfGxDO3VkaGD1EMQkeZFPYUwSzm4\njvZHqi/sFhFpHpQUwsy3OE1XGYlIc6Tho3DwXoKaU1BC2cE8SOmqq41EpFlSUgi1XSvh63cAyCtM\n5HBsJzr3zopwUCIitVNSCDXvzmmcMZ7tu9IAyMjSBLOINE+aUwilXSvh4A5I6aHhIhFpEZQUQsnX\nS9Cksoi0EEoKoaJegoi0QEoKoRAwuezrJazJLSS3oCSCQYmINExJIRQCJpd9vYQNuw8BqKyFiDRr\nSgqhEjBs5OsldEtN0C5qItKs6ZLUYPIuUqN4DyR29t+tXoKItBTqKQRTYEKodsWRegki0hKopxBk\nOeUdWFp5DuwCduUAkF98lPTEuMgGJiLSCOopBFleYQn5xUer3Kd9E0SkpVBPoal88wjA7l3bKTgc\nR3r3OCZlq5SFiLQ8SgpNtWc9u3dtZ0dZEgWH49jX/nQy1SsQkRZKSSEIdpQlefZb7h5HZpcOmlAW\nkRZLSaEJ1uQWUrLtAEWl5aQnashIRFo+JYUm2LD7EB1Ly0mKj+VkDRmJSCugpHAivJPLPXMOEG+F\nZPbqCxoyEpFWQJekngjfIjWgNC5NpbFFpNVQT+FEJXZme8I5AAw9VXMJItI6qKdwgnIKSlQKW0Ra\nHfUUjsOa3EI27D5Ez5wDFBwug84qcicirUtIewpmNt7MvjazzWY2s5bj15jZajNbY2b/NLOBoYyn\nqTbsPuQvYZHa/iQu+E5nrUkQkVYlZD0FM4sBngXGArnAl2b2lnNufUCzrcC5zrkCM5sAzAGGhSqm\npko5uI6eRZsYmlbuqYSqhCAirUwoewpDgc3OuS3OuTJgITAxsIFz7p/OuQLvzaVAtxDG02TJRZuI\nP7qv1tLYIiKtQSjnFLoCOQG3c6m/F/Aj4H9rO2BmNwM3A/To0SNY8TWaby6hY2k5xKfBoGvCHoOI\nSDg0i4lmMzsPT1L4Xm3HnXNz8AwtkZ2d7cIWmHeRWsm2A3QsLSfdCklN1uWnItJ6hTIp7AQCP0G7\nee+rwswygReBCc65/SGM5/j5F6nFkhQf61m5rGEjEWnFQpkUvgQyzKw3nmTwQ2ByYAMz6wG8Dlzn\nnNsYwliOz66V5GxYTsHeHErj0jwVUBPjGDpIvQQRad1ClhSccxVmdjvwLhADzHXOrTOzW7zHZwP3\nAZ2A58wMoMI5lx2qmBptz3oK9uaQ75I5lpShndNEJGqEdE7BObcIWFTtvtkBP98I3BjKGE5UaVwa\nB7pfpnLYIhJVVOZCRET8lBRERMRPSaEWOQUlntpGIiJRplmsU2g2vFcdbd++BWI7aXJZRKKOkkIg\n71VHh2M70af/UDJU20hEooySgs+ulezZsZG8ig4cOvP/kZGlq45EJPpoTsFnz3r2FR9lX/vTNWwk\nIlEr6nsKm1YtoWDrKuKP7iO/zcmc1P1s7ZEgIlEr6pNCwdZVVB7aTWmHLhxLylAvQUSiWtQnBYCY\nDl0Yevn0SIchIhJxUT2nsGnVEioPbI90GCIizUZUJ4WCrasASO2dFeFIRESah6hOCgAxHXuSkTUq\n0mGIiDQL0ZsUdq2k/ZEae/6IiES16E0Ke9YDUJiUEeFARESaj+hMCrtWwsEdHG7XlYMp/SIdjYhI\nsxGdSUG9BBGRWkXvOoWUHhysVC9BRCRQ9CUFb+G77cfSyE89SnpiXKQjEhFpNqJv+Mhb+G57216k\nJ8aprIWISIDo6il4ewm5Lh1OyWJStspji4gEiqqeQs6G5WzZd1jlsUVE6hBVSSGvsIRDcaeQOWS0\nymOLiNQiqpICQGr7k5QQRETqEHVJQURE6qakICIifkoKIiLip6QgIiJ+UZMUtMuaiEjDoiYpaJc1\nEZGGhTQpmNl4M/vazDab2cxajpuZ/Zf3+GozOzuU8WiXNRGR+oUsKZhZDPAsMAE4C7jazM6q1mwC\nkOH9dzPwfKjiERGRhoWypzAU2Oyc2+KcKwMWAhOrtZkIzHceS4EUMzslFMHEp5xCfEpInlpEpNUI\nZUG8rkBOwO1cYFgj2nQF8oIdTOZ5VwX7KUVEWp0WMdFsZjeb2TIzW5afnx/pcEREWq1QJoWdQGBt\n6m7e+463Dc65Oc65bOdcdnp6etADFRERj1AmhS+BDDPrbWYnAT8E3qrW5i1givcqpOFAoXMu6ENH\nIiLSOCGbU3DOVZjZ7cC7QAww1zm3zsxu8R6fDSwCLgI2A0eAaaGKR0REGhbSndecc4vwfPAH3jc7\n4GcH3BbKGEREpPFaxESziIiEh5KCiIj4KSmIiIifeYb1Ww4zywdOtNxpGrAviOG0BDrn6KBzjg5N\nOeeezrkGr+lvcUmhKcxsmXMuO9JxhJPOOTronKNDOM5Zw0ciIuKnpCAiIn7RlhTmRDqACNA5Rwed\nc3QI+TlH1ZyCiIjUL9p6CiIiUg8lBRER8WuVSaG57Q0dDo0452u857rGzP5pZgMjEWcwNXTOAe2G\nmFmFmbX4nZYac85mNtrMVpnZOjP7R7hjDLZG/G0nm9nfzOxf3nNu0YU1zWyume01s7V1HA/t55dz\nrlX9w1OR9RugD3AS8C/grGptLgL+FzBgOPB5pOMOwzl/F0j1/jwhGs45oN2HeAozXhXpuMPwPqcA\n64Ee3tsnRzruMJzzL4FHvT+nAweAkyIdexPO+RzgbGBtHcdD+vnVGnsKzWpv6DBp8Jydc/90zhV4\nby7Fs6FRS9aY9xlgOvAasDecwYVIY855MvC6c24HgHOupZ93Y87ZAUlmZkAinqRQEd4wg8c59zGe\nc6hLSD+/WmNSqGvf5+Nt05Ic7/n8CM83jZaswXM2s67A5cDzYYwrlBrzPvcFUs3sIzNbbmZTwhZd\naDTmnJ8BvgPsAtYAdzrnjoUnvIgI6edXSPdTkObHzM7DkxS+F+lYwuBJ4B7n3DHPl8io0BYYDIwB\nEoDPzGypc25jZMMKqXHAKuB84DTgPTNb4pw7FNmwWqbWmBSCtjd0C9Ko8zGzTOBFYIJzbn+YYguV\nxpxzNrDQmxDSgIvMrMI590Z4Qgy6xpxzLrDfOXcYOGxmHwMDgZaaFBpzztOAR5xnwH2zmW0FzgS+\nCE+IYRfSz6/WOHwUjXtDN3jOZtYDeB24rpV8a2zwnJ1zvZ1zvZxzvYBXgVtbcEKAxv1tvwl8z8za\nmlk7YBjwVZjjDKbGnPMOPD0jzKwzcAawJaxRhldIP79aXU/BReHe0I085/uATsBz3m/OFa4FV5hs\n5Dm3Ko05Z+fcV2b2DrAaOAa86Jyr9dLGlqCR7/NDwDwzW4Pnipx7nHMttqS2mf0ZGA2kmVkucD8Q\nC+H5/FKZCxER8WuNw0ciInKClBRERMRPSUFERPyUFERExE9JQURE/JQURKoxs0pvlVHfv17eyqOF\n3ttfmdn9x/mcKWZ2a6hiFgkWJQWRmkqcc1kB/7Z571/inMvCs1L62uoli82svnU/KYCSgjR7Sgoi\nx8lbQmI5cLqZTTWzt8zsQ+ADM0s0sw/MbIV37wpfRc9HgNO8PY1ZAGY2w8y+9NbEfzBCpyNSRatb\n0SwSBAlmtsr781bn3OWBB82sE5469g8BQ/DUvs90zh3w9hYud84dMrM0YKmZvQXMBPp7exqY2YVA\nBp7S0Aa8ZWbneMsmi0SMkoJITSW+D+9qRpnZSjzlIx7xllsYArznnPPVvzfgP83sHG+7rkDnWp7r\nQu+/ld7biXiShJKCRJSSgkjjLXHOXVLL/YcDfr4Gz+5fg51z5Wa2DYiv5TEG/MY590LwwxQ5cZpT\nEAmuZGCvNyGcB/T03l8EJAW0exe4wcwSwbMhkJmdHN5QRWpST0EkuBYAf/NW7FwGbABwzu03s0+9\nm7H/r3Nuhpl9B88mOADFwLW0jm1DpQVTlVQREfHT8JGIiPgpKYiIiJ+SgoiI+CkpiIiIn5KCiIj4\nKSmIiIifkoKIiPj9f2fgfZIHKXkqAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1118e978>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"featureslist=['Diameter','Spiculation','Eccentricity','MeanHU']\n",
"def fit_model(X, y, clf):\n",
" cv_sets = ShuffleSplit(X.shape[0], n_iter = 5, test_size = 0.20, random_state = 42)\n",
" params = [{'C':np.arange(0.9,3.1,0.1),'solver':['liblinear'],'penalty':['l1','l2']},\n",
" {'C':np.arange(0.01,0.1,0.01),'solver':['newton-cg'],'penalty':['l2']},\n",
" {'C':np.arange(0.01,0.1,0.01),'solver':['lbfgs'],'penalty':['l2']},\n",
" {'C':np.arange(0.01,0.1,0.01),'solver':['sag'],'penalty':['l2']},\n",
" {'C':np.arange(0.01,0.1,0.01),'solver':['saga'],'penalty':['l1']}]\n",
" grid = GridSearchCV(clf, params, cv=cv_sets, scoring=\"neg_log_loss\", n_jobs=-1)\n",
" grid = grid.fit(X, y)\n",
" return grid.best_estimator_\n",
"\n",
"optimal_lr=fit_model(inputfeatures[featurelist],malignantlabel,LogisticRegression())\n",
"\n",
"print(optimal_lr)\n",
"\n",
"name=[\"Optimized Logistic Regression\"]\n",
"print(name)\n",
"scores=cross_val_score(optimal_lr,inputfeatures[featurelist], malignantlabel, cv=5, scoring='neg_log_loss')\n",
"#print(classification_report(Ytest,model.predict(Xtest[featurelist])))\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"print(\"---------------------------------------\")\n",
"clf=optimal_lr\n",
"clf.fit(Xtrain[featurelist],Ytrain)\n",
"roc=roc_curve(Ytest,clf.predict_proba(Xtest[featurelist])[:,1])\n",
"\n",
"#ROC curve\n",
"plt.plot(roc[0],roc[1], alpha=0.5)\n",
"#plt.plot(rocrandom[0],rocrandom[1])\n",
"\n",
"scores=cross_val_score(LogisticRegression(),inputfeatures[featurelist], malignantlabel, cv=5, scoring='neg_log_loss')\n",
"#print(classification_report(Ytest,model.predict(Xtest[featurelist])))\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"print(\"---------------------------------------\")\n",
"clf=LogisticRegression()\n",
"clf.fit(Xtrain[featurelist],Ytrain)\n",
"roc=roc_curve(Ytest,clf.predict_proba(Xtest[featurelist])[:,1])\n",
"\n",
"#ROC curve\n",
"plt.plot(roc[0],roc[1], alpha=0.5)\n",
"#plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(['Optimized Logistic Regression', 'Default Logistic Regression'])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n",
" max_depth=5, max_features='auto', max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=15, n_jobs=1,\n",
" oob_score=False, random_state=None, verbose=0,\n",
" warm_start=False)\n",
"['Optimized Random Forest Classifier']\n",
"[ 0.60736264 0.5680371 0.57758907 0.54069499 0.54751972]\n",
"Cross-validated logloss 0.568240704889\n",
"---------------------------------------\n",
"[ 1.91837366 1.87828671 1.70397392 1.02801084 0.94509846]\n",
"Cross-validated logloss 1.49474871942\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VNeZ+PHvq1FHFRWKBEiAQBQVQDRjDDamuYF7ARPs\nTfxzvE4cJ8vau9knYZ3sBqesE8dOWDbrOHa8tuMSg21csTG4YHqvAgkQTb23Kef3xx3GAtQAzYzK\n+3kePWjuPTP3vZKYd+4957xHjDEopZRSAAH+DkAppVTnoUlBKaWUhyYFpZRSHpoUlFJKeWhSUEop\n5aFJQSmllIcmBaWUUh6aFJRqhYjki0idiFSLyGkReV5EIprsv0JEPhGRKhGpEJG3RWTkea8RJSK/\nFZFj7tc57H4c7/szUqp1mhSUatuNxpgIIBsYA/wLgIhMBj4EVgL9gVRgB/CFiAx2twkG1gCjgDlA\nFDAZKAYm+PY0lGqb6IxmpVomIvnAt40xH7sf/xIYZYy5XkTWA7uMMQ+d95z3gCJjzCIR+TbwH8AQ\nY0y1j8NX6qLplYJS7SQiycBcIFdEwoErgNeaafo3YKb7+2uB9zUhqK5Ck4JSbXtLRKqA40Ah8FOg\nN9b/n1PNtD8FnO0viGuhjVKdkiYFpdo23xgTCUwH0rHe8MsAF9Cvmfb9sPoMAEpaaKNUp6RJQal2\nMsZ8BjwP/NoYUwN8BdzeTNM7sDqXAT4GZotIL58EqdRl0qSg1MX5LTBTRLKAx4Fvicj3RSRSRGJF\n5OdYo4v+3d3+RazbTm+ISLqIBIhInIj8q4hc559TUKplmhSUugjGmCLgBeAnxpjPgdnALVj9Bkex\nhqxeaYw55G7fgNXZvB/4CKgENmLdgvra5yegVBt0SKpSSikPvVJQSinloUlBKaWUhyYFpZRSHpoU\nlFJKeQT6O4CLFR8fb1JSUvwdhlJKdSlbtmwpNsYktNWuyyWFlJQUNm/e7O8wlFKqSxGRo+1pp7eP\nlFJKeWhSUEop5aFJQSmllEeX61Nojt1up6CggPr6en+HohQAoaGhJCcnExQU5O9QlLoo3SIpFBQU\nEBkZSUpKCiLi73BUD2eMoaSkhIKCAlJTU/0djlIXxWu3j0TkOREpFJHdLewXEXlaRHJFZKeIjL3U\nY9XX1xMXF6cJQXUKIkJcXJxeuaouyZt9Cs9jLVTekrlAmvvrAeCPl3MwTQiqM9G/R9VVee32kTFm\nnYiktNJkHvCCscq0bhCRGBHpZ4zRpQuVUj1SXaOTXScqcLhc52wPsFfTq2w/sX1TSE5N92oM/hx9\nlIS1+MhZBe5tFxCRB0Rks4hsLioq8klwF6ugoIB58+aRlpbGkCFDeOSRR2hsbGz1OeXl5fzhD3/w\nPD558iS33XbbRR33Jz/5CR9//PElxdxUREREs9ttNhvZ2dmMHj2aG2+8kfLy8ss+FkB+fj6jR4/u\nkNdqaunSpSQlJZGdnU12djaPP/54hx/jrO3bt7N69Wqvvb7qedbsP8MXucVszCtl05FCcndvouLr\nlzBfPkvN3o8pO37A6zF0iSGpxpgVxpgcY0xOQkKbs7R9zhjDLbfcwvz58zl06BAHDx6kurqaH//4\nx60+7/yk0L9/f15//fWLOvYTTzzBtddee0lxt0dYWBjbt29n9+7d9O7dm2effdZrx+oojz76KNu3\nb2f79u0sW7as3c9zOp0XdRxNCqoj1NudvPhVPivWHebQ6Squ6mfnBwPzeCTsAxZFbWduio3J069n\n0l3/QsZV87wejz+TwglgQJPHye5tXc4nn3xCaGgo9913H2B9un7qqad47rnnqK2t5fnnn2fevHlM\nnz6dtLQ0/v3frZUaH3/8cQ4fPkx2djZLliw559Pz888/z/z585k5cyYpKSk888wz/Nd//Rdjxoxh\n0qRJlJaWArB48WJef/11Nm/e7Pl0nJGR4bmnffjwYebMmcO4ceOYOnUq+/fvByAvL4/JkyeTkZHB\nv/3bv7XrPCdPnsyJE9avqLq6mhkzZjB27FgyMjJYuXIlYF0BjBgxgu985zuMGjWKWbNmUVdXB8CW\nLVvIysoiKyvrnORSX1/PfffdR0ZGBmPGjOHTTz+9qJ9Be6xZs4YxY8aQkZHB/fffT0NDA2CVTXns\nsccYO3Ysr732Wos/r9dee43Ro0eTlZXFVVddRWNjIz/5yU949dVXyc7O5tVXX213LEo1VdPgoKK8\njLSGPcxzrCa7cCWc2gm9B0PWnTDpIRg8HXrF+SQefw5JXQU8LCKvABOBio7oT1h7oJCiqobLDq6p\nhMgQpg9PbHH/nj17GDdu3DnboqKiGDhwILm5uQBs3LiR3bt3Ex4ezvjx47n++utZtmwZu3fvZvv2\n7YD1htrU7t272bZtG/X19QwdOpQnn3ySbdu28eijj/LCCy/wgx/8wNM2JyfH8zpLlixhzhyrj/+B\nBx5g+fLlpKWl8fXXX/PQQw/xySef8Mgjj/Dd736XRYsWtevTv9PpZM2aNfzDP/wDYI3D//vf/05U\nVBTFxcVMmjSJm266CYBDhw7x8ssv8z//8z/ccccdvPHGGyxcuJD77ruPZ555hquuuoolS5Z4XvvZ\nZ59FRNi1axf79+9n1qxZHDx48KJ/Bmc99dRT/PWvfwXgySefZNq0aSxevJg1a9YwbNgwFi1axB//\n+EfPc+Pi4ti6dSsAM2bMaPbn9cQTT/DBBx+QlJREeXk5wcHBPPHEE2zevJlnnnmmzZ+fUhdwOqDk\nEMH5Wxl3cjvD+vQirv9g6JsBCSMgKNQvYXktKYjIy8B0IF5ECoCfAkEAxpjlwGrgOiAXqAXu81Ys\nncHMmTOJi7My/S233MLnn3/O/PnzW33O1VdfTWRkJJGRkURHR3PjjTcCkJGRwc6dO5t9zquvvsrW\nrVv58MMPqa6u5ssvv+T222/37D/7CfmLL77gjTfeAODee+/lsccea/b16urqyM7O5sSJE4wYMYKZ\nM2cC1i2zf/3Xf2XdunUEBARw4sQJzpw5A0BqairZ2dkAjBs3jvz8fMrLyykvL+eqq67yHPO9994D\n4PPPP+d73/seAOnp6QwaNMiTFC7lZ/Doo4/yT//0T57HO3bsIDU1lWHDhgHwrW99i2effdaTFO68\n806AVn9eU6ZMYfHixdxxxx3ccsstzR5XqeYUVzewMa8Uh8uAMYTWFxJVsY+oikPYXA3UB4RzIiqL\nhIyriBs00N/henX00d1t7DfAP3b0cVv7RO8tI0eOvKAvoLKykmPHjjF06FC2bt16wRDF9gxZDAkJ\n8XwfEBDgeRwQEIDD4big/e7du1m6dCnr1q3DZrPhcrmIiYnxXEGcrz0xnO1TqK2tZfbs2Tz77LN8\n//vf56WXXqKoqIgtW7YQFBRESkqKZ1x+07htNpvn9tGluNifwaXo1asXQKs/r+XLl/P111/z7rvv\nMm7cOLZs2dIhx1ZdT73dSXuXtjcYPthzmprKcgY68oitPEBoYykmIJDCXoMpi0qnOqw/QTYbcfF9\nvRt4O3WLGc3+NmPGDB5//HFeeOEFFi1ahNPp5Ec/+hGLFy8mPDwcgI8++ojS0lLCwsJ46623eO65\n54iMjKSqqqpDYigvL+fuu+/mhRde4GxnfFRUFKmpqbz22mvcfvvtGGPYuXMnWVlZTJkyhVdeeYWF\nCxfy0ksvtfn64eHhPP3008yfP5+HHnqIiooKEhMTCQoK4tNPP+Xo0dar8sbExBATE8Pnn3/OlVde\nec4xp06dyksvvcQ111zDwYMHOXbsGMOHD/fc0rlcw4cPJz8/n9zcXIYOHcqLL77ItGnTLmjX2s/r\n8OHDTJw4kYkTJ/Lee+9x/PjxDv39qc6vst7O54eKOXC6fb9zMQ561+aTUHOQWVEVJEQEQ59k6Dsb\nEtL9dnuoLZoUOoCI8Pe//52HHnqIn/3sZ7hcLq677jr+8z//09NmwoQJ3HrrrRQUFLBw4UJycnIA\n67bE6NGjmTt3Lv/4j5d+4bRy5UqOHj3Kd77zHc+27du389JLL/Hd736Xn//859jtdu666y6ysrL4\n3e9+xz333MOTTz7JvHntG9EwZswYMjMzefnll1mwYAE33ngjGRkZ5OTkkJ7e9tjpP//5z9x///2I\nCLNmzfJsf+ihh/jud79LRkYGgYGBPP/88+dcIVyu0NBQ/vznP3P77bfjcDgYP348Dz74YLNtW/p5\nLVmyhEOHDmGMYcaMGWRlZTFw4ECWLVtGdnY2//Iv/+K5DaW6l9zCKk6U17OroBxjYNygWKLCWqhp\nZQxBtacJK9lLaNkBAqSBwIQo4oZOg76ZEN7bt8FfAjHtvQ7qJHJycsz5i+zs27ePESNG+Cmitj3/\n/PPaIdkDdfa/S9U+T31k9W+l9YlgaloC0c0lhPpKOLMHTu+C2hKwBUL8cKvTOGYQBPh/9L+IbDHG\n5LTVTq8UlFLqPMYY1h4oIq+4BoDxKb25Mi3+3EZOOxQfshJBWR4YA9HJMHwuJI6AwI672vUlTQo+\nsHjxYhYvXuzvMJRS7ZRXXMP24+UM7B1OUmwYw/tGWjuMgcqTViIo3AuOBgiNgoGTrauCLnB7qC2a\nFJRS6jw7CsqJCgti/pgkbAFi3R46usV9e6jUuj2UkA59RkNsCnSjAoiaFJRS6jwOpyE62GAr2uu+\nPZRvXSXEDICBk6yE0EVvD7VFk4JSSgF2pwvjMlB5gr6nPyOm+hDUhFm3hwZdYV0VdIPbQ23RpKCU\n6vGOnDjN5g3rSKg+QKijggAJpDoxHbKnW6OHutHtobb4f5xUN3G2xPSoUaPIysriN7/5Da7zaqI3\nZ8mSJYwaNeqcWkAX42zJ6/z8fP7v//6v2Tb5+fmEhYWRnZ3NyJEjWbRoEXa7/ZKOd761a9dyww03\ndMhrNbV48WJPuYzs7GyefvrpDj/GWWvXruXLL7/02uurTsrpgML9sPNvhG3+IwPKNzKgbzxR2fMI\nnfYIg6+6q9v1F7SHXil0kLPlIAAKCwu55557qKys9FREbcmKFSsoLS3FZrNd1vHPJoV77rmn2f1D\nhgxh+/btOJ1OZs6cyd/+9jcWLFhwWcf0tl/96lcXvb4EWMX7LubnuXbtWiIiIrjiiisu+liqC6o6\nA6d3wpndYK+HkEiORWSxO2QAi68dR5CtZ39W7tln7yWJiYmsWLGCZ555BmMMTqeTJUuWMH78eDIz\nM/nv//5vAG666Saqq6sZN24cr776Km+//TYTJ05kzJgxXHvttZ4Cc0uXLuXXv/615/VHjx59QUXV\nxx9/nPXr15Odnc1TTz3VYmw2m40JEyZ4SmDn5+czdepUxo4dy9ixYz2fmNeuXcv06dO57bbbSE9P\nZ8GCBZyd6Pj++++Tnp7O2LFjefPNNz2vXVpayvz588nMzGTSpEmegnVLly7lW9/6FlOnTmXQoEG8\n+eab/PM//zMZGRnMmTPnoq5aXn75ZTIyMhg9evQ5RfwiIiL40Y9+RFZWFl999RVbtmxh2rRpjBs3\njtmzZ3PqlFWA9+mnn2bkyJFkZmZy1113kZ+fz/Lly3nqqafIzs5m/fr17Y5FdSGNtVCwGTb9L2x+\nDk5ug9gUqtNv4RXbDXzpGs2otNQenxCgO14pHPoYqs907GtG9IG0i1vIZvDgwTidTgoLC1m5ciXR\n0dFs2rSJhoYGpkyZwqxZs1i1ahURERGeK4yysjI2bNiAiPCnP/2JX/7yl/zmN79p1/GWLVvGr3/9\na955551W29XX1/P111/zu9/9DrAS2EcffURoaCiHDh3i7rvv5uyM8W3btrFnzx769+/PlClT+OKL\nL8jJyeE73/kOn3zyCUOHDj2ntMNPf/pTxowZw1tvvcUnn3zCokWLPOd2+PBhPv30U/bu3cvkyZN5\n4403+OUvf8nNN9/Mu+++22zF2CVLlvDzn/8cgBdffJG4uDgee+wxtmzZQmxsLLNmzeKtt95i/vz5\n1NTUMHHiRH7zm99gt9uZNm0aK1euJCEhgVdffZUf//jHPPfccyxbtoy8vDxCQkIoLy8nJiaGBx98\nkIiIiHMqq6puwOWyJpWd2gEluTgcdqqD4rH3uwp7/AgIDONMZT2nKovoExVKzqDu34ncHt0vKXRC\nH374ITt37vRUUq2oqODQoUOkpqae066goIA777yTU6dO0djYeMH+y3F2MZ+8vDyuv/56MjMzAbDb\n7Tz88MNs374dm83mKVkNVr2m5ORkALKzs8nPzyciIoLU1FTS0tIAWLhwIStWrACsEthny3Ffc801\nlJSUUFlZCcDcuXMJCgoiIyMDp9PpWe8hIyPjgques86/fbRy5UqmT5/uKfi3YMEC1q1bx/z587HZ\nbNx6660AHDhwgN27d3vKfDudTvr16wdAZmYmCxYsYP78+W2WLlddVG2plQjO7IaGaggKg/5j+aAo\nnoM14dYiwMeLz3nKtSMSCQ7UqwTojknhIj/Re8uRI0ew2WwkJiZijOH3v/89s2fPbvU53/ve9/jh\nD3/ITTfdxNq1a1m6dCkAgYGB53Rany1RfTHO9ikUFxczZcoUVq1axU033cRTTz1Fnz592LFjBy6X\ni9DQbyo3nl8C+3JKVTcteR0UFOQp291RJbBDQ0M9/QjGGEaNGsVXX311Qbt3332XdevW8fbbb/Mf\n//Ef7Nq167KPrToBRwMU7sNxcgcF+YdwGKiNGERVzFhqIlOg0cZxew19ooK4Ysi5K5gFBwaQENk9\n5xxcCk2NXlBUVMSDDz7Iww8/jIgwe/Zs/vjHP3runR88eJCampoLnldRUUFSUhIAf/nLXzzbU1JS\nPGWkt27dSl5e3gXPbW8Z5/j4eJYtW8YvfvELzzH79etHQEAAL774YpvrFKenp5Ofn8/hw4cB6x7/\nWWdLYIPVJxEfH09UVFSbMbXXhAkT+OyzzyguLsbpdPLyyy83WwJ7+PDhFBUVeZKC3W5nz549uFwu\njh8/ztVXX82TTz5JRUUF1dXVWgK7CzLGYFwuTFk+Zu8qzBdPYw6sprq6iq8li89638HGiBnsc/Tj\nWFkDx0prCQwQhiZGkBLf65yv/jFh7VpbpKfoflcKfnJ2hTK73U5gYCD33nsvP/zhDwH49re/TX5+\nPmPHjsUYQ0JCAm+99dYFr7F06VJuv/12YmNjueaaazxv/rfeeisvvPACo0aNYuLEiZ4VxJrKzMzE\nZrORlZXF4sWLefTRR1uMdf78+SxdupT169fz0EMPeV5/zpw5ngVnWhIaGsqKFSu4/vrrCQ8PZ+rU\nqZ431KVLl3L//feTmZlJeHj4OYmtI/Tr149ly5Zx9dVXY4zh+uuvb7bsd3BwMK+//jrf//73qaio\nwOFw8IMf/IBhw4axcOFCKioqMMbw/e9/n5iYGG688UZuu+02Vq5cye9//3umTp3aoXGrjrUj9ygH\ntn9JYs1BQhxVOAOCKAkfQmGv4VQHJ0KUcEt2EoPiWv9bVs3T0tlKeYn+XXYgpx2KD8KpneTl7qWo\nso7eA4ZR23skddFDMQHflLMOsgmZyTE6kug8WjpbKdW1GQNVp+DUziYVSaMpT5jA7phk7r92jL8j\n7JY0KSilOpeGaveCNTuhphgCAiFhOPTLhJhBlOwrpLGo2t9RdlvdJikYY7SzSHUaXe22rD+5XIaS\nqjoCyg4TWLgLW3keYlw4I/rhGHANjrjhEGiNinNW1nOwsIr+0WF+jrr76hZJITQ0lJKSEuLi4jQx\nKL8zxlBSUnLO8F7VguoiDu34nDMHtxLkqsNuC6Oo1zCKeg2jrjYW8oC8wnOeEiBy4SpoqsN0i6SQ\nnJxMQUEBRUVF/g5FKcD6oHJ24p86j70eCvfQULCDU8ePUF/vpDo0mVFjp2CPTqV/QOt1q2LCg4iP\n0HkF3tItkkJQUFCHzv5VSnUwY6ySE6d3QdFBcDkodUbyVcAYqvoNIy4mlkHDNYl2Bt0iKSil/Kui\nzs7LG4/R6Di3XHyIvZKEmoPE1xwgxFGNIyCE4l5DKe41nOqgeFyRcP8VqUSHBbXwysrXNCkopS5J\nUVUDRVUNAJTVNlLX6GR430iigwzhFbn0KttLaM0JDEJ934HUxI7AHjWEuIBAzhaaCAu2ERWqb0Od\nif42lFIXraLWujJwutyjrIwhsvEMUxz7iC47ZE02i4mF9DnQdzSERvs3YNVumhSUUh5rDxRS6P70\n35qqege2AOGurFjCSvdiO7OLwIBygqtCIHEE9M2A6AE9btWy7kCTglIKsBau33asnMjQQGLCg1ts\nJy4HyY6jZAYeJXH3KasTOWYADL0SEkZAYMvPVZ2fJgWlFI0OF3/dcBSAkf2iuGJoM/MAqk5bo4fO\n7AZTD7ZISJoEfTMhXBeo6S40KSil2Hy0lIo6O9OHJzCiX5Ny5421Vt2hUzuguhACbBCfZiWC2FQI\n0KJz3Y1Xk4KIzAF+B9iAPxljlp23Pxr4KzDQHcuvjTF/9mZMSqlzVdbb2ZJfxvC+kYwZGGstY1ly\n2LOMJS4nRPaFtFnQZ6S1kpnqtryWFETEBjwLzAQKgE0issoYs7dJs38E9hpjbhSRBOCAiLxkjGn0\nVlxKKcvOgnK+yC3B4bTmFlyZFg8VBbB3FdRXeJaxpF8mRCT6OVrlK968UpgA5BpjjgCIyCvAPKBp\nUjBApFgFiyKAUuDy12ZUSrWqqt7OuoNFxEWE0C86lJTe4UQVbYfDn0BoFIy62bpN1EbJCdX9eDMp\nJGEtkX1WATDxvDbPAKuAk0AkcKcxxnVeG0TkAeABgIEDB3olWKV6koNnqrA7DXNH9yUm2MCB1VC4\n30oE6TdAkBbz66n83Us0G9gO9AeygWdE5IJFfY0xK4wxOcaYnISEBF/HqFS3475jRISjDLb8BYoO\nwODpMPpWTQg9nDevFE4AA5o8TnZva+o+YJmxis/nikgekA5s9GJcSvVotY0OGhxO4mpyka27ISgE\nsu6C2BR/h6Y6AW8mhU1AmoikYiWDu4B7zmtzDJgBrBeRPsBw4IgXY1KqRztZXsffNuaRUraBYdV7\nkQGZMPpmCIn0d2iqk/BaUjDGOETkYeADrCGpzxlj9ojIg+79y4GfAc+LyC5AgMeMMcXeikmpnq6+\nqoxRZ94mvVc1IWOvISBrtnYmq3N4dZ6CMWY1sPq8bcubfH8SmOXNGJRSbiWHidr7BmGOcsLH3k1c\nSqa/I1KdkM5oVqqbczqdrP3wLaILv6YmMJa9fW5mWNwwf4elOilNCkp1YcYYCsrqsDsvGMkNgNjr\nCM19h/CTe6hPHIUjdSajQ0KI66XLWarmaVJQqgs7VVHP61sKmt0X0XCGtOI1BLtqyes9leyx0xiV\nFOPjCFVXo0lBqS5o3cEiyuvs1DVaBQCuHdGHhEj3p39jCDqzjeD89ZhBsdQPW8zQqL4k6GL3qh00\nKSjVxThdhi1Hy+gVYiM8OJCk2DCGJPYiPDgQHI1w8D04sxf6pcGIG4jSAnbqImhSUKqLyh4Qy4TU\nJusY1BTDnr9DbQkMngYDJ+vKZ+qiaVJQqjs4s9eqX2QLgsw7oXeqvyNSXZQmBaW6MpfTqmxasBmi\nk2DkfKvKqVKXSJOCUp1MeW0jb+84id1pWm0X0FgF296GypOQPB6GXK2zk9Vl06SgVCdSVNXAkaJq\niqsbSY3vRWhQ84WMhwYVMfLEegg0MGo+JI7wcaSqu9KkoFQnUd3g4K8bjnoeTxuWQGyv4HMbGQNH\nv4DizyEiDkbdAr3ifByp6s40KSjVCWzMK+VURR0AE1N7k9Yn8sKE0FgL+9+x1k/uMwqGzYHA4GZe\nTalLp0lBKT+wO12YJl0GG46UEGQLID4yhGF9I4k/f6JZ5SlruGljNQybDf3H6HBT5RWaFJTysS1H\ny1h3sOiC7Tkp0VwxJP7cjcbAyW2Q+zEE94IxCyGqv48iVT2RJgWlfMDudLHvVCUOl+FwYTVBNmHS\n4G/6AkRgeN/zhpI6GuHg+3BmD/QeDCNuhOBwH0euehpNCkr5wNGSGtbsK/Q8TowKISeld8tPqCmB\nPW9as5NTp8KgKXq7SPmEJgWlfKCizipcd9eEAcSGBxNsa36oKQCF++HAuyA2yLzDukpQykc0KSjl\nZTsLyll/qIg+UaEkRoZiC2jhE7/LCUc+heObrH6DUfMhNNq3waoeT5OCUl5UWW9nzb5CUuLDuT6j\nf8sJob4S9q6EigJIzoEh1+jsZOUXmhRUj+dyGT7PLabe7uzw1653WCuije4fTXBgC7eMyvKthOC0\nw8h50Gdkh8ehVHtpUlA9ijEX1hMqq21ky9EyQoNsBNk6vjM3NjyI3udPRLOCgWNfQd46CI+D7Juh\nV/yF7ZTyIU0KqsdoaX7AWdeOSCStT6RvgrHXwb53oCTXujIYNldnJ6tOQZOC6vbq7U5yC6s5XFhN\ncGAA4wbFXtAmMEAYGOejOQBVp63ZyQ1VkDYLksbqcFPVaWhSUN3egdNVfLLfmiOQGBVyzqQxnzIG\nTm2HQx9bk9CyF1hrICjViWhSUN2KMYb3dp+mvNbu2VbrXtz+W1ekEBXqpz95px0OfgCnd1mroo24\nSWcnq05Jk4LqNurtTspqGzlwuorevYKJDgsCIDzYxuCEXsSGByH+uE1TW2rNTq4phpQrrdnJAa1M\nXlPKjzQpqG7j9S0FFFU1AJCZHM2YgRf2Hfhc0QGr3LUEQMbtEDfE3xEp1SpNCqpLMMaw4Uhpq3MJ\nKursDOgdztiBMQzo7edbMy6Xe3byRojqZ62dHBbj35iUagdNCqpLKK+1s+FICcGBAS3OCrYFCGmJ\nEQxOiPBxdOdpqLImo5Uft0YWDZkBNv2vproG/UtVndLaA4XsLKjwPD475+zaEX0Y3tdHcwkuRdlR\n9+zkBhh5k7VCmlJdiFeTgojMAX4H2IA/GWOWNdNmOvBbIAgoNsZM82ZMqmsoqmogPNhGepM1BmwB\nwiBfzSW4WMbAsQ2Q9xmE9YasuyEiwd9RKXXRvJYURMQGPAvMBAqATSKyyhizt0mbGOAPwBxjzDER\nSfRWPKrriQoL4sq0LlD2wV5vdSYXH4LEdBh+HQSGtP08pTohb14pTAByjTFHAETkFWAesLdJm3uA\nN40xxwB1HnimAAAaNklEQVSMMYUXvIpSnVnVGWt2cn0FpM2EpHE6O1l1ad4cLJ0EHG/yuMC9ralh\nQKyIrBWRLSKyqLkXEpEHRGSziGwuKmq5do1SPnVqB2x9AVwOGLPAKnmtCUF1cf7uaA4ExgEzgDDg\nKxHZYIw52LSRMWYFsAIgJyfnwjKXSvlSfSUc+tC6XRSbYnUoB/fyd1RKdQhvJoUTwIAmj5Pd25oq\nAEqMMTVAjYisA7KAg6geqbi6gX2nKqmosxPlnpHcabhccHKr1ZlsXDB4OgyYqLOTVbfizaSwCUgT\nkVSsZHAXVh9CUyuBZ0QkEAgGJgJPeTEm1cntKqhg+/FygmzC0EQ/zzdoqroQDqyGylNW7aJhsyGs\nE8yYVqqDeS0pGGMcIvIw8AHWkNTnjDF7RORB9/7lxph9IvI+sBNwYQ1b3e2tmFTndby0lnd3naLR\n4SI82Mb/m9ZJykE47ZC/3lo3OSjUulWUOFL7DlS35dU+BWPMamD1eduWn/f4V8CvvBmH6tycLsOm\n/FLqGp1kJEWTFBvm75AsJYetvoO6cuiXaa2bHNRJYlPKS9pMCiISDvwIGGiM+Y6IpAHDjTHveD06\n1SPkFddwtKQWgGnDEwiy+fkefWMN5H4MZ/ZCeG/IvgdiB/k3JqV8pD1XCn8GtgCT3Y9PAK8BmhRU\nh3C6rAFlt41L9m9CMAZO74TDn1i3jVKmwMArtG6R6lHa89c+xBhzp4jcDWCMqRW/FKVX3V2vED++\n+daUwMH3ofwYRCfD8LnQqwvMplaqg7Xnf2GjiIQBBkBEhgANXo1KKV9xOuD4Bjj6JQQEwvA50C9b\nO5JVj9WepLAUeB8YICIvAVOA+7wZlOp+TlfUc6S4utl9JdWNPo7Grfy4dXVQUwyJI2DotRDSiYbB\nKuUHbSYFY8yHIrIFmAQI8IgxptjrkaluZWN+KYcLq1v8AB4WbCM82OabYOx1cGQtnNwOodGQeYeu\niKaUW3tGH60xxswA3m1mm1LtYowhMSqEBRP9OIrHGCjcZ40sstfCgAmQMhUCg/0Xk1KdTItJQURC\ngXAgXkRisa4SAKK4sLCdUi2qtzs5XlpLbC8/vvnWlVtzDkoOQ2Rf6+ogsq//4lGqk2rtSuH/AT8A\n+mMNST2bFCqBZ7wcl+pGvjxcjN1pCAn00e2hplwuKNgE+esAsfoNksZpvSKlWtBiUjDG/A74nYh8\nzxjzex/GpLqJ4uoGNhwp4XRFPQA3ZPbzbQCVp+Dge9aaB3FDYdgsqw9BKdWi9nQ0/15ERgMjgdAm\n21/wZmCq68svruHQmWriI0NI6xNJaJCPrhQcjZC3Dk5shqBwGHUzJAzXYaZKtUN7Opp/CkzHSgqr\ngbnA54AmBdUud40f4LuZysW5cOgDa82D/mOs8tZBoW09Synl1p55CrdhrXGwzRhzn4j0Af7q3bBU\nV9fgcLL9eLkPD1gFhz6CogPWTOQxCyFmQNvPU0qdoz1Joc4Y4xIRh4hEAYWcu3iOUhdYe6CIqnoH\nkaGB2Lx528YYOLkNjnxqdSqnXgUDJ0GAHzq1leoG2pMUNotIDPA/WKOQqoGvvBqV6nJW7ThJcdU3\n1U8q6uzkpMQyZUg8AQFeSgrVRVZHcsUJq4rpsDlWVVOl1CVrNSm4C9/9whhTDix3L4gTZYzZ6ZPo\nVJeRX1xDbHgQCZHW/fuhiRFMSO3tnYTgdMDRL+D412ALhvTroW+GdiQr1QFaTQrGGCMiq4EM9+N8\nXwSluqbBCRFMGerlyqJl+XDgfagrg76jrYVvgnt595hK9SDtuX20VUTGG2M2eT0a1eXsOVnB0ZJa\nXMZ490CNtdY6B6d3WWsjZ91lrZWslOpQ7UkKE4GFIpIP1GDNbDbGmExvBqY6B6fLeBbBac7Wo2VU\n1juIDQ+mX7QXhn4aA2d2Q+4acDTAoMkwaArYgjr+WEqpdiWF2V6PQnVKdqeL//08j7pGZ6vt0vpE\ncENm/44PoLYUDn5g3TKK6m8tfBOR2PHHUUp5tFUQ70FgKLAL+F9jjMNXgSn/a3S4qGt0MjQxgv4x\nLV8FDIrr4Hv6LqfViZz/hVWjaNgs6DdG6xUp5QOtXSn8BbAD67FmMY8EHvFFUKpzGdg7nKwBMb45\nWEUBHHjPWvgmYRgMnQmhUb45tlKq1aQw0hiTASAi/wts9E1IqjMwxvDurlO+O6C9HvI+syaiBUdA\nxm0Qn+a74yulgNaTgv3sN8YYh+gY8G6vweH0LI1pgBNldQAMigv33kGNsUpT5H4EjTVWWevUqyAw\nxHvHVEq1qLWkkC0ile7vBQhzPz47+kiv6buZT/cXse9U5TnbrhqWQEy4lxbHqa+w6hUVH7I6kEff\nanUoK6X8prWksMMYM8ZnkSi/a3S6iA4L4pp0a4RPgEirHcyXzOWCE1us20UYGHI1JI/XekVKdQKt\nJQUvz0ZSnYkxBmMMwYEBpMR7cYZw1RmrXlHlKeg92BpZFBbrveMppS5Ka0khUUR+2NJOY8x/eSEe\n5Qe7T1Tw8b4zGAOJUV66l+9ohKOfw/FN1voGI2+CxJFar0ipTqa1pGADIvhmbWbVDdXbnXx1uARj\nYPKQOJJiwjr+ICWHrUlo9RXQL8u6XRTkheMopS5ba0nhlDHmCZ9Fovxi36lKqhsc9AqxMWlwXMe+\neEM1HF4DZ/ZCeByMWQAxAzv2GEqpDtVaUtArhB7gbCG7hZMGdeCLuuDUNjjyGbgckHIlDJwMtvZU\nVVFK+VNrdQNmXO6Li8gcETkgIrki8ngr7ca7V3a77XKPqdrPGENpjTUdxdZR6x6UHYUtz8HBDyGi\nD+TcD6lTNSEo1UW0+D/VGFN6OS8sIjbgWWAmUABsEpFVxpi9zbR7Evjwco6nLt6R4hp2n6gArOGn\nl6Wu3FoSs3C/VZZi1HxISNeOZKW6GG9+fJsA5BpjjgCIyCvAPGDvee2+B7wBjPdiLArYWVBOcfU3\nS2aevUq4LqMfQbZLLDbntMOxDdYXuG8VTdLS1kp1Ud5MCknA8SaPC7DWZvAQkSTgZuBqWkkKIvIA\n8ADAwIHaUXmp1h0swhgICvwmAcRFBJN6KfMSjIGi/dbCN/WVkJhurYIWGt2BESulfM3fN3p/Czxm\njHG1VlvJGLMCWAGQk5Ojk+oukTGQPTCGqWkJl/dC1YVWeYryYxCRANn3QGwHdlQrpfzGm0nhBDCg\nyeNk97amcoBX3AkhHrhORBzGmLe8GJe6VI21kL/eqmQaGKLrHCjVDXkzKWwC0kQkFSsZ3AXc07SB\nMcazyK6IPA+8owmhE3K5rESQv86amdx/rDWiSCegKdXteC0puMttPwx8gDU7+jljzB4RedC9f7m3\njq06UFm+dauopti6RTR0pnXLSCnVLXm1T8EYsxpYfd62ZpOBMWaxN2NRF6mu3OpELjpgdR6PvgXi\nh+kQU6W6OX93NKvOxtEIxzfAsa+tOe2pU2HARB1iqlQPoUmhB8grruF4aS2u1sZtGQOF+6yrg4Yq\nSBxhFa7TIaZK9SiaFHqArw6XUFhVT5AtgPiIZkpjV52xlsMsP26tgDbyJi1cp1QPpUmhm/syt5gz\nlfUMTujFvOykc3c21kLeOji1HQJDYfgc6JulQ0yV6sE0KXRT9XYnx0trOVxcA0BOSu9vdrqc1hDT\nvHVWmYqkHEiZokNMlVKaFLqrzfllbMq3ahqmxvf6ZvGc0jzI/dg9xDQFhl6rQ0yVUh6aFLoph8tF\ncGAAd44fQHRYENSVQe4aKD4EYTEw+laIT9Mhpkqpc2hS6IZqGhw0OlyIQHyowNH1cHyjNcR08DRI\nnqDrGyilmqXvDN1MbmE1b+84CUBMQC1s/Yt1q6jPKBg83VrrQCmlWqBJoZupbXQAcM0AIeXkp9Dg\ngqy7oHdqG89USilNCt1SZP0p0k9vIiQ0BDLvtOYeKKVUO+iA9G6kpLqBrVs2MqJoNQSFw5h7NSEo\npS6KXil0QVX1doqqGi7cfmQjw4s/IjwuieDx34LgS1hRTSnVo2lS6II+3neG/OLabzYYQ3LlVpIr\ntlAeOoCR134b0YSglLoEmhQ6sbpGJ2sPFGI/r5Ld6YoG+kSFMmNEIhgXwXkfE+TKxTH4Chg2l+gI\nnZmslLo0mhT8zBhDnd3Z7L6Csjr2n64iJjyIINs33T+RoYGk94ukTy8b7H0Hyg5B2pXWkFOdjKaU\nugyaFPzsy8MlbMwrbbXN3NH96Bsdeu5Gez3sfNWqbDr0Whgw3otRKqV6Ck0KflRRZ2djXimhQTYm\nD4lrtk2wLYDEyPPKXddXWgmhrgxGzoM+I30QrVKqJ9Ck4Ec7C8oB6BMVQvaAmPY9qabYSgiOesi4\nXSelKaU6lCYFP3IZCAwQbh6T1HZjgIoC2PUaiA2yF0BkX+8GqJTqcTQp+InD6eJEWR0GkPZ0Dhfn\nwt6/Q3AkZN0JYbFej1Ep1fNoUvCT3ScrOVNZT3iwre3Gp3bAgfet2cmZd+ikNKWU12hS8BO70wXA\nHTkDWm5kDBz7Co58ZvUdjLoZAptZY1kppTqIJgU/iwxt4VfgclkrpJ3YYo0uSr8BAtpxVaGUUpdB\nk0Jn5HTA/rehcL81/2DIDJ2UppTyCU0KPpBXXENZbeM5206W1zXf2F4Pe96EsqMw5BoYONEHESql\nlEWTgg+8s+MkjvPqFwFEhAQS0PQKoKEKdv7Nmosw4kboO9qHUSqllCYFr9h9ooKtx8o8jx0uw7hB\nsUxI7X1OuyBbAAEB7qRQWwo7XgF7LWTcBnFDfBmyUkoBmhS84mhJLVX1DgbFhQMQHxFCet9IQoNa\n6CiuPGldIQBk3wNR/X0UqVJKnUuTgpdEhgZyQ2Y73txLDsOev1tzDzLvhPDebT9HKaW8xKvLcYrI\nHBE5ICK5IvJ4M/sXiMhOEdklIl+KSJY34/GF0xX1HDxThbmwC6GZxrth1+vW7OQx92pCUEr5ndeu\nFETEBjwLzAQKgE0issoYs7dJszxgmjGmTETmAiuALj3cZu+pCgAG9g5vveGxr+HwJxA7CEbfqpPS\nlFKdgjdvH00Aco0xRwBE5BVgHuBJCsaYL5u03wAkezEenwkPtnF1emLzO42Bw2vg+CZITIf0G8Gm\nd/GUUp2DN28fJQHHmzwucG9ryT8A7zW3Q0QeEJHNIrK5qKioA0P0MZcT9q2yEkJyDoycrwlBKdWp\ndIp3JBG5GispXNncfmPMCqxbS+Tk5LTnbn3n03RS2uBpMHCyzlJWSnU63kwKJ4Cm1d6S3dvOISKZ\nwJ+AucaYEi/G4z/1FdaQ07oyGHED9M3wd0RKKdUsbyaFTUCaiKRiJYO7gHuaNhCRgcCbwL3GmINe\njMUnXC5DcVUj50xerjptLYzjtFtlr2NT/BWeUkq1yWtJwRjjEJGHgQ8AG/CcMWaPiDzo3r8c+AkQ\nB/zBvdCMwxiT462YvG3b8XJOlNcRFRZkbTg7ByEozBpyGpHg3wCVUqoNXu1TMMasBlaft215k++/\nDXzbmzH4UoPDCcD87P5wchsc/NBKBBm3Q0ikn6NTSqm2dYqO5m7FGOIKv4KjX0HvwTBqvs5BUEp1\nGZoUOsjRkho2Hi5kaOk6OFoG/bMhbTYEeHXSuFJKdShNCh2krKKSEYXvkRFRAYPn6JBTpVSXpEmh\nI9SVE3fwb9Q2nqF3zr2QrENOlVJdk97buFyVp2DrC9js1exLuA6TONLfESml1CXTK4XL0WTIacmw\nO6g81jUnWyul1FmaFC7Via1w6EOISISM23GccQBduC6TUkqhSeHiGQNH1sKxDdaSmSPnQ2AwUNbW\nM5VSqtPTpHAxnA7Y/w4U7oP+YyBtlg45VUp1K5oU2steB7vfgPLjfOYYye4TQ+DkEc9ul7vgkY5C\nVUp1ZZoU2qOu3KpyWl8OI29i994QosOCSI4NO6dZZGgQoUE2PwWplFKXT5NCexx4DxqrIfNOa/nM\nvbkkx4YxfXgLq6sppVQXpTfE21J1GsryYdAVVkJQSqluTK8U2nJsAwQG4+qbRXW93d/RKKWUV2lS\naE1dORQdgOQc1uRWsvtEhWdXoI46Ukp1Q5oUWlOwyfo3eTy1+6uIDA1k0uA4RCA1vpd/Y1NKKS/Q\npNASex2c2g59RkJoFFBFWLCN0UnR/o5MKaW8Ru+BtOTEVmuy2oCJ/o5EKaV8Rq8UmuFy2Kk89BWN\nYf2prguHumpqG53+DksppbxOk0IzCnM3k3fsNHsTx1G5/aRn+4De4X6MSimlvE+TgpsxhrUHi6is\nbSTp0FpqguOZPHYscZHfrK8cHRbkxwiVUsr7NCkATpehut7B9mPlJDmOE9xQjjNpNoMTI7RshVKq\nR9GkAPxt83FOV9QDMDHoEIOGDiJz4nStgKqU6nF6/LteQVktpyvq6R8TytwBDpKkBAZM0ISglOqR\nevw732cHrdXShiREkG7fS2BIOPTN9HNUSinlHz0+KdgdLgYn9CInwUBJLiSNc6+kppRSPU+P6VNw\nuQynK+txOI1nW2ltI2W1djIHxEDBBhCblRSUUqqH6jFJ4WhpLW9tO3HB9riwALIatsGpHdYSm8Fa\n00gp1XP1mKRgd7oAmD2qL1Fh1mkH1BSRcOJDbAXFVkIYfLU/Q1RKKb/rMUnhrMSoEOJ7BVsVUI+s\nhcAQyLgd4of6OzSllPK7HpcUADi8Bo5vgvg0GD5XbxkppZSbV0cficgcETkgIrki8ngz+0VEnnbv\n3ykiY70ZD4DUFkPBFuiXBaNv1YSglFJNeC0piIgNeBaYC4wE7haRkec1mwukub8eAP7orXgAMIbg\n/E/BFgSDp4OIVw+nlFJdjTevFCYAucaYI8aYRuAVYN55beYBLxjLBiBGRPp5I5ghtkIejviUiOpj\nkDIVgrXiqVJKnc+bSSEJON7kcYF728W2QUQeEJHNIrK5qKjokoKxBYUQFJWIDJwISV6/S6WUUl1S\nl+hoNsasAFYA5OTkmDaaNy862fpSSinVIm9eKZwABjR5nOzedrFtlFJK+Yg3k8ImIE1EUkUkGLgL\nWHVem1XAIvcopElAhTHmlBdjUkop1Qqv3T4yxjhE5GHgA8AGPGeM2SMiD7r3LwdWA9cBuUAtcJ+3\n4lFKKdU2r/YpGGNWY73xN922vMn3BvhHb8aglFKq/Xp86WyllFLf0KSglFLKQ5OCUkopD00KSiml\nPMTq6+06RKQIOHqJT48HijswnK5Az7ln0HPuGS7nnAcZYxLaatTlksLlEJHNxpgcf8fhS3rOPYOe\nc8/gi3PW20dKKaU8NCkopZTy6GlJYYW/A/ADPeeeQc+5Z/D6OfeoPgWllFKt62lXCkoppVqhSUEp\npZRHt0wKIjJHRA6ISK6IPN7MfhGRp937d4pIl1+KrR3nvMB9rrtE5EsRyfJHnB2prXNu0m68iDhE\n5DZfxucN7TlnEZkuIttFZI+IfObrGDtaO/62o0XkbRHZ4T7nLl1tWUSeE5FCEdndwn7vvn8ZY7rV\nF1aZ7sPAYCAY2AGMPK/NdcB7gACTgK/9HbcPzvkKINb9/dyecM5N2n2CVa33Nn/H7YPfcwywFxjo\nfpzo77h9cM7/Cjzp/j4BKAWC/R37ZZzzVcBYYHcL+736/tUdrxQmALnGmCPGmEbgFWDeeW3mAS8Y\nywYgRkT6+TrQDtTmORtjvjTGlLkfbsBa5a4ra8/vGeB7wBtAoS+D85L2nPM9wJvGmGMAxpiuft7t\nOWcDRIqIABFYScHh2zA7jjFmHdY5tMSr71/dMSkkAcebPC5wb7vYNl3JxZ7PP2B90ujK2jxnEUkC\nbgb+6MO4vKk9v+dhQKyIrBWRLSKyyGfReUd7zvkZYARwEtgFPGKMcfkmPL/w6vuXVxfZUZ2PiFyN\nlRSu9HcsPvBb4DFjjMv6ENkjBALjgBlAGPCViGwwxhz0b1heNRvYDlwDDAE+EpH1xphK/4bVNXXH\npHACGNDkcbJ728W26UradT4ikgn8CZhrjCnxUWze0p5zzgFecSeEeOA6EXEYY97yTYgdrj3nXACU\nGGNqgBoRWQdkAV01KbTnnO8DlhnrhnuuiOQB6cBG34Toc159/+qOt482AWkikioiwcBdwKrz2qwC\nFrl78ScBFcaYU74OtAO1ec4iMhB4E7i3m3xqbPOcjTGpxpgUY0wK8DrwUBdOCNC+v+2VwJUiEigi\n4cBEYJ+P4+xI7TnnY1hXRohIH2A4cMSnUfqWV9+/ut2VgjHGISIPAx9gjVx4zhizR0QedO9fjjUS\n5TogF6jF+qTRZbXznH8CxAF/cH9ydpguXGGynefcrbTnnI0x+0TkfWAn4AL+ZIxpdmhjV9DO3/PP\ngOdFZBfWiJzHjDFdtqS2iLwMTAfiRaQA+CkQBL55/9IyF0oppTy64+0jpZRSl0iTglJKKQ9NCkop\npTw0KSillPLQpKCUUspDk4JS5xERp7vK6NmvFHfl0Qr3430i8tOLfM0YEXnIWzEr1VE0KSh1oTpj\nTHaTr3z39vXGmGysmdILzy9ZLCKtzfuJATQpqE5Pk4JSF8ldQmILMFREFovIKhH5BFgjIhEiskZE\ntrrXrjhb0XMZMMR9pfErABFZIiKb3DXx/91Pp6PUObrdjGalOkCYiGx3f59njLm56U4RicOqY/8z\nYDxW7ftMY0yp+2rhZmNMpYjEAxtEZBXwODDafaWBiMwC0rBKQwuwSkSucpdNVspvNCkodaG6s2/e\n55kqItuwykcsc5dbGA98ZIw5W/9egP8Ukavc7ZKAPs281iz31zb34wisJKFJQfmVJgWl2m+9MeaG\nZrbXNPl+AdbqX+OMMXYRyQdCm3mOAL8wxvx3x4ep1KXTPgWlOlY0UOhOCFcDg9zbq4DIJu0+AO4X\nkQiwFgQSkUTfhqrUhfRKQamO9RLwtrti52ZgP4AxpkREvnAvxv6eMWaJiIzAWgQHoBpYSPdYNlR1\nYVolVSmllIfePlJKKeWhSUEppZSHJgWllFIemhSUUkp5aFJQSinloUlBKaWUhyYFpZRSHv8fegwE\nSWB50MwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11c47240>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"featureslist=['Diameter','Spiculation','Eccentricity','MeanHU']\n",
"def fit_model(X, y, clf):\n",
" cv_sets = ShuffleSplit(X.shape[0], n_iter = 5, test_size = 0.20, random_state = 42)\n",
" params = {'n_estimators':[2,5,7,8,9,10,15],'max_depth':[2,3,4,5,6,7,8,None]}\n",
" grid = GridSearchCV(clf, params, cv=cv_sets, scoring=\"neg_log_loss\", n_jobs=-1)\n",
" grid = grid.fit(X, y)\n",
" return grid.best_estimator_\n",
"\n",
"optimal_rf=fit_model(roundedfeatures[featurelist],malignantlabel,RandomForestClassifier())\n",
"\n",
"print(optimal_rf)\n",
"\n",
"name=[\"Optimized Random Forest Classifier\"]\n",
"print(name)\n",
"scores=cross_val_score(optimal_rf,roundedfeatures[featurelist], malignantlabel, cv=5, scoring='neg_log_loss')\n",
"#print(classification_report(Ytest,model.predict(Xtest[featurelist])))\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"print(\"---------------------------------------\")\n",
"clf=optimal_rf\n",
"clf.fit(Xtrain[featurelist],Ytrain)\n",
"roc=roc_curve(Ytest,clf.predict_proba(Xtest[featurelist])[:,1])\n",
"\n",
"#ROC curve\n",
"plt.plot(roc[0],roc[1], alpha=0.5)\n",
"#plt.plot(rocrandom[0],rocrandom[1])\n",
"\n",
"scores=cross_val_score(RandomForestClassifier(),inputfeatures[featurelist], malignantlabel, cv=5, scoring='neg_log_loss')\n",
"#print(classification_report(Ytest,model.predict(Xtest[featurelist])))\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"print(\"---------------------------------------\")\n",
"clf=RandomForestClassifier()\n",
"clf.fit(Xtrain[featurelist],Ytrain)\n",
"roc=roc_curve(Ytest,clf.predict_proba(Xtest[featurelist])[:,1])\n",
"\n",
"#ROC curve\n",
"plt.plot(roc[0],roc[1], alpha=0.5)\n",
"#plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(['Optimized Random Forest', 'Default Random Forest'])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GradientBoostingClassifier(criterion='friedman_mse', init=None,\n",
" learning_rate=0.01, loss='deviance', max_depth=2,\n",
" max_features=None, max_leaf_nodes=7,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=150,\n",
" presort='auto', random_state=None, subsample=1.0, verbose=0,\n",
" warm_start=False)\n",
"['Optimized Gradient Boosting Classifier']\n",
"[ 0.58064747 0.55548926 0.57106105 0.54778498 0.55003075]\n",
"Cross-validated logloss 0.561002702355\n",
"---------------------------------------\n",
"[ 0.62537118 0.56627308 0.61344228 0.57352499 0.56654021]\n",
"Cross-validated logloss 0.589030349815\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VNe16PHfmlHvXQgVejEgECAwNrgAwd24xzZxzcv1\nc0/iG8fOzb224+Tea8dOnMR2wvPzdYjzHJu4ghMSd4zBjY7poggQCPVep+z3xxkGCVVAMyON1vfz\n0UdzztkzZx2VWXPO3mdtMcaglFJKAdgCHYBSSqn+Q5OCUkopL00KSimlvDQpKKWU8tKkoJRSykuT\nglJKKS9NCkoppbw0KSjVDREpFJEmEakXkaMiskREYtpsP1tEPhaROhGpEZF3RWTCCa8RJyK/EZGD\nntfZ61lO8f8RKdU9TQpK9exyY0wMkAdMBX4CICJnAe8Dy4ChwAhgM7BGREZ62oQBHwETgYuAOOAs\noByY6d/DUKpnonc0K9U1ESkEvmeM+dCz/EtgojHmUhH5DPjGGHP3Cc/5B1BmjLlFRL4H/CcwyhhT\n7+fwlTppeqagVC+JSBZwMbBHRKKAs4HXO2n6V2CB5/G3gH9qQlADhSYFpXr2jojUAYeAUuBRIAnr\n/6e4k/bFwLH+guQu2ijVL2lSUKpnVxpjYoHzgfFYb/hVgBvI6KR9BlafAUBFF22U6pc0KSjVS8aY\nT4ElwNPGmAbgC+C6Tpp+G6tzGeBD4EIRifZLkEqdJk0KSp2c3wALRGQK8DBwq4jcLyKxIpIoIr/A\nGl30M0/7P2NddnpTRMaLiE1EkkXk30TkksAcglJd06Sg1EkwxpQBLwOPGGNWAxcCV2P1GxzAGrI6\nxxhT4GnfgtXZvBP4AKgFvsa6BPWV3w9AqR7okFSllFJeeqaglFLKS5OCUkopL00KSimlvDQpKKWU\n8goJdAAnKyUlxQwfPjzQYSil1ICyfv36cmNMak/tBlxSGD58OOvWrQt0GEopNaCIyIHetNPLR0op\npbw0KSillPLSpKCUUsprwPUpdMbhcFBUVERzc3OgQ1HqtEVERJCVlUVoaGigQ1GDUFAkhaKiImJj\nYxk+fDgiEuhwlDplxhgqKiooKipixIgRgQ5HDUI+u3wkIi+JSKmIbO1iu4jI70Rkj4hsEZFpp7qv\n5uZmkpOTNSGoAU9ESE5O1rNeFTC+7FNYgjVReVcuBsZ4vu4A/nA6O9OEoIKF/i2rQPLZ5SNjzCoR\nGd5NkyuAl41VpvVLEUkQkQxjjE5dqJQanFob4chGMK52qx0uw76yeuIzRjJk+Bk+DSGQo48ysSYf\nOabIs64DEblDRNaJyLqysjK/BHeyioqKuOKKKxgzZgyjRo3i+9//Pq2trd0+p7q6mt///vfe5SNH\njnDttdee1H4feeQRPvzww1OKua2YmJhO15eUlLBo0SJGjhzJ9OnTOeuss3j77bdPa1+PPfYYTz/9\nNHB68W/atIkVK1Z0um3lypXEx8eTl5fH5MmT+da3vkVpaekpx3yiwsJC/vKXv3iX161bx/33399n\nr68GqfJdsH8VFK6BA5/j2r+GI5s/YvPqv1O5fSVlB3f7PIQB0dFsjHkBeAEgPz+/300AYYzh6quv\n5q677mLZsmW4XC7uuOMOfvrTn/LUU091+bxjSeHuu+8GYOjQobzxxhsnte/HH3/8tGLvjjGGK6+8\nkltvvdX7BnjgwAGWL1/eoa3T6SQk5OT/nE4n/k2bNrFu3TouuaTzCczOOecc/va3vwHwk5/8hOef\nf56f/exnnbY9WceSwqJFiwDIz88nPz+/T15bDQK734Pygo7rXdYHScese9hS6mJdYSWN0S6G5UQx\na2QyQxMifR5aIM8UDgPZbZazPOsGnI8//piIiAhuv/12AOx2O8888wwvvfQSjY2NLFmyhCuuuILz\nzz+fMWPGeN+YHn74Yfbu3UteXh4PPvgghYWFTJo0CYAlS5Zw5ZVXsmDBAoYPH85zzz3Hr3/9a6ZO\nncqsWbOorKwE4LbbbuONN95g3bp15OXlkZeXR25urve69N69e7nooouYPn0655xzDjt37gRg//79\nnHXWWeTm5vLv//7vXR5XWFgYd955p3fdsGHDuO+++7wxLly4kHnz5jF//nzq6+uZP38+06ZNIzc3\nl2XLlnmf95//+Z+MHTuWOXPmsGvXLu/6Y/EDrF+/nvPOO4/p06dz4YUXUlxsXUk8//zzeeihh5g5\ncyZjx47ls88+o7W1lUceeYSlS5eSl5fH0qVLu/z9GGOoq6sjMTERgMrKSq688komT57MrFmz2LJl\nS7frP/30U+/PdurUqdTV1fHwww/z2WefkZeXxzPPPMPKlSu57LLLAOtM6Lvf/S7nn38+I0eO5He/\n+503lp///OeMGzeOOXPmcOONN3rPmNQgU3UAxAZJI9p9uVLGsjtyMn/8upRVu8tIiQnn2zOyuXpa\nll8SAgT2TGE5cK+IvAacCdT0RX/Cyl2llNW1nHZwbaXGhnP+uLQut2/bto3p06e3WxcXF0dOTg57\n9uwB4Ouvv2br1q1ERUUxY8YMLr30Up544gm2bt3Kpk2bAOvTZ1tbt25l48aNNDc3M3r0aJ588kk2\nbtzID3/4Q15++WV+8IMfeNvm5+d7X+fBBx/koousPv477riDxYsXM2bMGL766ivuvvtuPv74Y77/\n/e9z1113ccstt/D88893eVzTpnU/KGzDhg1s2bKFpKQknE4nb7/9NnFxcZSXlzNr1iwWLlzIhg0b\neO2119i0aRNOp5Np06Z1+Hk5HA7uu+8+li1bRmpqKkuXLuWnP/0pL730EmCdiXz99desWLGCn/3s\nZ3z44Yc8/vjjrFu3jueee67T2I69aVdUVBAdHc1//dd/AfDoo48ydepU3nnnHT7++GNuueUWNm3a\n1OX6p59+mueff57Zs2dTX19PREQETzzxBE8//bT3TGTlypXt9r1z504++eQT6urqGDduHHfddReb\nNm3izTffZPPmzTgcjk5/DmoQicuA8Ze2W7XzSA3vF5WQlRjOJZOTyUqM8ntYPksKIvIqcD6QIiJF\nwKNAKIAxZjGwArgE2AM0Arf7Kpb+YMGCBSQnJwNw9dVXs3r1aq688spunzN37lxiY2OJjY0lPj6e\nyy+/HIDc3Fzvp9gTLV26lA0bNvD+++9TX1/P559/znXXXefd3tJiJcw1a9bw5ptvAnDzzTfz0EMP\n9XgM99xzD6tXryYsLIy1a9d6jyspKQmwPpH/27/9G6tWrcJms3H48GFKSkr47LPPuOqqq4iKsv7A\nFy5c2OG1d+3axdatW1mwYAEALpeLjIwM7/arr74agOnTp3dInl1pe/noySef5Mc//jGLFy9m9erV\n3mOfN28eFRUV1NbWdrl+9uzZPPDAA3znO9/h6quvJisrq8d9X3rppYSHhxMeHk5aWholJSWsWbOG\nK664goiICCIiIry/TxW8mh0uimuaKa5poqbRAUBMbQFDigqpjwvlqLv95+DqJqvNJbkZRIcH5jO7\nL0cf3djDdgPc09f77e4Tva9MmDChQ19AbW0tBw8eZPTo0WzYsKHDMMPeDDsMDw/3PrbZbN5lm82G\n0+ns0H7r1q089thjrFq1CrvdjtvtJiEhwXsGcaKeYpg4caL3TRLg+eefp7y8vN218+joaO/jV155\nhbKyMtavX09oaCjDhw/v9Xh7YwwTJ07kiy++6HT7sWO32+2dHntPFi5cyDXXXHPSzwPrMt+ll17K\nihUrmD17Nu+9916Pz2n7uzvVmFX/53IbMAaMG2MMlY2tHK1ppri2mZKaZiobrD4CEYiLCEUEYo+s\np77FySGTSkVtx/+PzMRIIkLt/j4UL6191Afmz59PY2MjL7/8MmB9yv3Xf/1XbrvtNu+n4w8++IDK\nykqampp45513mD17NrGxsdTV1fVJDNXV1dx44428/PLLpKZaJdPj4uIYMWIEr7/+OmC98W7evBmA\n2bNn89prrwHWm3ln5s2bR3NzM3/4w/FbSBobG7uMoaamhrS0NEJDQ/nkk084cMCq1Hvuuefyzjvv\n0NTURF1dHe+++26H544bN46ysjJvUnA4HGzbtq3bYz6Zn9/q1asZNWoUYJ1BHDvmlStXkpKSQlxc\nXJfr9+7dS25uLg899BAzZsxg586dp/S7mz17Nu+++y7Nzc3U19d7z2LUwGGMoayuhc/3lvOnzwv5\n3UcFLH/zT3z9p4dZ+/JP2PvGozR88N8kr/sNMw++yHUNr3K783Xutb3N7c7Xuc3xOnNSm5k6ZRoL\nL7mM22eP6PD17fxs7LbA3asyIEYf9Xciwttvv83dd9/Nz3/+c9xuN5dccon3GjbAzJkzueaaaygq\nKuKmm27yftqePXs2kyZN4uKLL+aee079xGnZsmUcOHCAf/mXf/Gu27RpE6+88gp33XUXv/jFL3A4\nHNxwww1MmTKF3/72tyxatIgnn3ySK664osvjeuedd/jhD3/IL3/5S1JTU4mOjubJJ5/stP13vvMd\nLr/8cnJzc8nPz2f8+PEATJs2jeuvv54pU6aQlpbGjBkzOjw3LCyMN954g/vvv5+amhqcTic/+MEP\nmDhxYpfHPHfuXJ544gny8vL4yU9+wvXXX99u+7E+BWMM8fHxvPjii8DxjuDJkycTFRXFn/70p27X\n/+Y3v+GTTz7BZrMxceJELr74Ymw2G3a7nSlTpnDbbbcxderULuM8ZsaMGSxcuJDJkyeTnp5Obm4u\n8fHxPT5PBZYxhrL6FgpK6ikoqaOq0UGIu5nxIcVMjQ8jzlmDLSqN+pTJRIXZSYkOJzrc3v2ZeGL/\nLWEi1lWcgSM/P9+cOMnOjh07OOMM397QcTqWLFnSbYeoGjzq6+uJiYmhsbGRc889lxdeeKHTzvz+\n/jcd7I6dEewuqaegtI7qRgcikJ0YxZj0GMa0bCfy4KfHn5AyBnJP7h4jfxOR9caYHsdN65mCUn50\nxx13sH37dpqbm7n11lt7HN2l/McYQ2ldC7tL6igoqaemyYFNhJktX5Ad3kBqbDjh2KAEaKm3njTr\nLrCFQKj/Rwn5iiYFP7jtttu47bbbAh2G6gfa3gWtfMgYaKoC4+50c1OriyaH1fnf4nRTWN7AvvIG\n6pqd2ETITIzgrBExDE+OJnLTYYhMgIjjgyoIiYTUcRARb/UiBxFNCkqp4FNeAFvf7HSTMYZvDlRZ\nI4c8bALTI0NJig4jKTqMkCabVYTnWCGejCkw7Gzfx90PaFJQSgUPtwsOfgE1nuIIYy/ocGmn1eli\nZ90hhqdEk5MUhU2E9LhwwkO6GgYq1h3Hg4QmBaVU8Kgvgf2fgc1uXfJJz4WQMMA6Q9h5tI7Ve8qp\njxrFnLFDGZ7aeSHIwUyTglIqODhbYL01jJhJ10DyKO+mZoeLv28p5mBlI0PiI7hsSgYZ8f6pJTTQ\n6M1rfcRut5OXl8fEiROZMmUKv/rVr3C7O+/kauvBBx9k4sSJPPjgg6e032Mlr08s5XyigoICLrvs\nMkaNGsX06dOZO3cuq1atOqV9HtO2mN33vvc9tm/ffkqvs3LlSj7//PNOty1ZsoTU1FTvz/baa6/t\n9ga6k3Vi+e3ly5fzxBNP9NnrKx9pbbD6DTxfFYVbKdq1jsrGVspdEex1JLC3rJ69ZfXsKa3j9XWH\nKKpqYt74NG6Yka0JoRt6ptBHIiMjveUkSktLWbRoEbW1tT2Wan7hhReorKzEbj+929pPLOXcVnNz\nM5deeilPP/20t+7Q1q1bWbduHeeee267tqdaAvvYjWGnYuXKlcTExHD22Z135F1//fXeezwWLVrE\n0qVLvRVpT9eJ5bcXLlzYaW0m1c/sWwnFW3AZw8GKRo62KRexM/Vsqr+paNc8LMTGVVMzyUkOnqGj\nPmOMGVBf06dPNyfavn17h3X+Fh0d3W557969JikpybjdbuN0Os2PfvQjk5+fb3Jzc83ixYuNMcZc\nfvnlxmazmSlTppjXXnvNLF++3MycOdPk5eWZ+fPnm6NHjxpjjHn00UfNU0895X3tiRMnmv3797fb\n75lnnmni4uLMlClTzK9//et2sbz44ovmlltu6TL2Rx991Nx0003m7LPPNjfccIPZv3+/mTNnjpk6\ndaqZOnWqWbNmjTHGGLfbbe655x4zduxYM3/+fHPxxReb119/3RhjzHnnnWfWrl1rjDHmvffeM7Nm\nzTJTp0411157ramrqzPGGDNs2DDzyCOPmKlTp5pJkyaZHTt2mP3795v09HQzdOhQM2XKFLNq1ap2\nsf3xj38099xzjzHGGIfDYRYuXGjefvttY4wx+/fvN3PnzjW5ublm3rx55sCBA92u/+tf/2omTpxo\nJk+ebM455xzT0tJisrOzTUpKivd30HZ/t956q7nvvvvMWWedZUaMGOE9VpfLZe666y4zbtw4861v\nfavdz6Gv9Ie/6X6r6oAxH/+Xqf34GfPXT742/+dva8znm7aa0sOFprT4kCmpbjQlNU3tvhpbnIGO\nOuCAdaYX77HBd6ZQ8KHV2dSXYtJhzLdO6ikjR47E5XJRWlrKsmXLiI+PZ+3atbS0tDB79mwuuOAC\nli9fTkxMjPcMo6qqii+//BIR4cUXX+SXv/wlv/rVr3q1vxNLObfVmxLY27dvZ/Xq1URGRtLY2MgH\nH3xAREQEBQUF3Hjjjaxbt463336bXbt2sX37dkpKSpgwYQLf/e53271OeXk5v/jFL/jwww+9JTF+\n/etf88gjjwCQkpLChg0b+P3vf8/TTz/Niy++yJ133klMTAw/+tGPOo1t6dKlrF69muLiYsaOHeut\nLnrfffdx6623cuutt/LSSy9x//33884773S5/vHHH+e9994jMzOT6upqwsLCOpTfXrJkSbt9FxcX\ns3r1anbu3MnChQu59tpreeuttygsLGT79u2UlpZyxhlndPg5qNPgdnsnm+mM48gWyqqb+MqVTXVa\nMhfNGqJnAH0o+JJCP/T++++zZcsW7/X3mpoaCgoKGDGi/TC3oqIirr/+eoqLi2ltbe2wva9cddVV\nFBQUMHbsWN566y3AumwSGWldZ3U4HNx7771s2rQJu93O7t3WFICrVq3ixhtvxG63M3ToUObNm9fh\ntb/88ku2b9/O7NmzAWhtbeWss87ybm9bAvvYvnty7PKRMYZ77rmHp556iocffpgvvvjC+xo333wz\nP/7xjwG6XD979mxuu+02vv3tb3vj6MmVV16JzWZjwoQJlJRYHzZWr17Nddddh81mY8iQIcydO7dX\nr6V6actSqCrssNrhcrOvvIHKhlYc9khCp83jpvHpRIYFrqJoMAq+pHCSn+h9Zd++fdjtdtLS0jDG\n8Oyzz3LhhRd2+5z77ruPBx54gIULF7Jy5Uoee+wxAEJCQtp1Wve2HPUxEydObNep/Pbbb7Nu3bp2\nn8zblsB+5plnSE9PZ/PmzbjdbiIiInq9L2MMCxYs4NVXX+10++mUwBYRLr/8cp599lkefvjhk3ou\nwOLFi/nqq6/4+9//zvTp01m/fn2Pz2lbAtsMsDphA05DOVTus870Y9Ot4aQepXXNfLGvgpZwN+OG\nxZKQOpScURm9KkGvTo6OPvKBsrIy7rzzTu69915EhAsvvJA//OEPOBzWBBq7d++moaGhw/NqamrI\nzMwE8FboBBg+fDgbNmwArJnO9u/f3+G53ZVyXrRoEWvWrGk3t3JPJbAzMjKw2Wz8+c9/xuVyAVYJ\n7KVLl+JyuSguLuaTTz7p8NxZs2axZs0a74xzDQ0N3jONrpxqCeyzzz67Xfnvc845p9v1e/fu5cwz\nz+Txxx8nNTWVQ4cOnXIJ7DfffBO3201JSUmHWdfUKdr/Kez5CBxNkDQSsmfgzsznS8dI/nIkncrE\nKZw3/xKmnLWAYaMnakLwkeA7UwiQpqYm8vLycDgchISEcPPNN/PAAw8A1nDNwsJCpk2bhjGG1NRU\n3nnnnQ6v8dhjj3HdddeRmJjIvHnzvG/+11xzDS+//DITJ07kzDPPZOzYsR2eO3ny5HalnH/4wx96\nt0VGRvK3v/2NBx54gB/84Aekp6cTGxvb5dzMd999t3efF110kfcs4qqrruLjjz9mwoQJ5OTktLss\ndExqaipLlizhxhtv9M7y9otf/KLTmI+5/PLLufbaa1m2bBnPPvus9038mGN9Cm63m6ysLO91/2ef\nfZbbb7+dp556itTUVP74xz92u/7BBx+koKAAYwzz589nypQp5OTktCu/3RvXXHMNH330ERMmTCA7\nO5tp06ZpCezTUbEX9n0CTdUQkwp5N0FIOHXNDv659ShFVU2ckRHL3PFp3dx1rPqKls5W6hQcK4Fd\nUVHBzJkzWbNmDUOGDOmz1w/qv+nmGmhtc6Z6eB2UbLPKTyeNgqF57Cur5/3tJThdbuaOT2NCRpye\nGZwmLZ2tlA9ddtllVFdX09rayn/8x3/0aUIIajVFsPGVjtVLQyNg0jU4XW7W7C5jw4EqUmPDuSQ3\ng6TosMDEOkhpUlDqFGg/Qi/UFFlnAG1VHYCwKBh7EdDmk39EPNWNraz45igltc3kZSdwzpgUQuza\n7elvQZMUjDF6eqmCwkC7pNulwxugdDuEtBm9ZrPDmAutS0Vt7Dxay0c7DmIT4fIpQxmdpoXqAiUo\nkkJERAQVFRUkJydrYlADmjGGioqKkxoG3O+U7YId74LbCZGJcOb/brfZGENlfQvFNc0U1zRztKaJ\n8vpWMhMiuSh3CHERoQEKXEGQJIWsrCyKioooKysLdChKnbaIiAiysrICHcapaygHlwOyZ0J8NiW1\nzVQ1tlLV4KC4pomjtc20OKw+hYhQOxnxEUzMjCcvKwGbTT/UBVpQJIXQ0FCf3f2rlDp5xhgKYvLZ\nsL+G4pqDgDVrZUpMOOPSYxkSH0FGfCSJUaF6dt/PBEVSUEr1A821UPA+NRXF7D1UzafOYhKiw5k7\nPo3sxEhiIkL0PoMBQJOCUuq0tDrdtLrcSMVBQkt2UdYSTVH4aC6fksnI1Bi9JDTAaFJQSp0yh8vN\n//1sH61ON0mNRYwtr2LLkHk0p6RwmSaEAUmTglLqpJTUNlNYbtXucroN8dU7GBVvGJpUTwTRJIxJ\nJSo5QxPCAKVJQSnVa02tLt7cUOQdPWR3NTOz8lPGhcWSKGGQFEf68AwIi+7hlVR/pUlBKdUrO4pr\nWbW7jFanm5tmDbPKT7Q2YPs8CRl7AQydCgjY9C7kgUyTglKqS80OFxUNrRhj2F1SR2Ori4smDSE1\nNtwqbFdfao01Ray7ldWA59OkICIXAb8F7MCLxpgnTtgeD/w/IMcTy9PGmD/6MialVNdanC6OVDdT\nVNXIocomSuuaaVt1IyEqlDMy4qyFja9YiQHArnchBwufJQURsQPPAwuAImCtiCw3xmxv0+weYLsx\n5nIRSQV2icgrxpiuJ2hVSvWZVqebI9VNFFU1caiqkdLaFtzGECIuprRsYlqUISEqDLvnBrOo8BDY\n4Sly11pv1TDKnglxmQE8CtWXfHmmMBPYY4zZByAirwFXAG2TggFixbqlMQaoBE5ujkalVK+1Ot0U\n13iSQGUjJZ4kYBMhIz6CGcMTyUqMIsNeTejGQgiNBHebs4BGzxdAWAyknQEJOQE4EuUrvkwKmcCh\nNstFwJkntHkOWA4cAWKB6405sdA6iMgdwB0AOTn6B6jUqahpdPDnLwtxuKwkMCQ+nPzhiYyu/YqU\nqs3Y6wXqaf9fO/4ySBkdqJBVAAS6o/lCYBMwDxgFfCAinxljats2Msa8ALwA1sxrfo9SqQGisqGV\nI9VNnW6raXLgcBnOHZtCbmYCYSGeUUKb6yEyFjLy2j/BHqpnAYOQL5PCYSC7zXKWZ11btwNPGKuA\n/B4R2Q+MB772YVxKBZ2jNc2sLaxkb1k9PU3HkJ0UdTwhHBMeCyPO6fwJalDxZVJYC4wRkRFYyeAG\nYNEJbQ4C84HPRCQdGAfs82FMSgUNYwwHKxtZW1jFocpGwkNtzByexBkZcV3eTRxqF6LCAn2BQPVn\nPvvrMMY4ReRe4D2sIakvGWO2icidnu2LgZ8DS0TkG6y5+R4yxpT7KialgoHbbdhTVs/awkpKa1uI\nCQ/h3LEpTMqM730V0uYacLs8L+jwXbBqwPHpRwZjzApgxQnrFrd5fAS4wJcxKBUsnC43O4/Wsa6w\nkqpGB4lRoSyYkM74IbEnN5dx2W7Y+mb7dQnZnbdVg46eRyrVz7U4XWw9XMOGA9XUtzhJiwvnsskZ\njDrVKqQOz5jSMQuOz58cm9F3AasBTZOCUv1UY6uTTQer2VRUTYvDTXZSFBdMTCcnKapvZitLGQsR\ncaf/OiqoaFJQqp+paXKw4UAV247U4HQbRqXGMGN4EkPiI07/xRsqYNc/Tv91VNDSpKBUP1Fe38K6\nwip2Ha0D4IyMWKYPSyQ5JrxvdmAMHN1sPU4ZYw1DVeoEmhSUCrAj1U2sLaxkX1kDoXYhLyeBqTkJ\nxEX0cZG5+lI4+JX1ePR8T3VTpdrTpKBUABhjOFDRyNeFlRyuaiIi1M6skcnkZScQGeaDEtRuN+z6\nu/V4zAKITOz7faigoElBKT9yuw0FpdY9BmV1LcRGhHDeuFQmDY3veJfx6TIG3J76ko2VUFdiPU4Z\n07f7UUFFk4JSfuB0udleXMu6wipqmhwkRYdxwcR0xg+Jw+6ruYy3vgnlBe3XTbwSIuJ9sz8VFDQp\nKOUjLrehoLSOqgYH3xyupqHFxZD4CM4dm8Ko1Ji+GVbanaYqiE6BIbnWsi0Ekkb5dp9qwNOkoJQP\nHKhoYOWuMiobrPmihiVHcfGkJLISI32fDNqKSoacWf7bnxrwNCko1YdqGh18WlDG3tJ6EqJCWZg3\nlMyESCJC/Th/cfEWOLwemqqtpKDUSdCkoFQfcLjcrN1fyfoDVdhswpwxKUzNTji5mkR9we2GQ19B\nczUkDof0Sf7dvxrwNCkodRqMsUYTrdpdRl2zk/FDYpkzJoXYvr7HoLcKV0FDOcQOgcnXBSYGNaBp\nUlDqJDS2Otl8qIZWlzVrbEltM4ermkiNDefi3AwyEyIDG6Czxfo+4YrAxqEGLE0KSvWCy23YXFTN\nl/sqaHXltA0qAAAcJklEQVS6CfVcFgoPsTH/jDQmDY0/tYqlvhAWBVFJgY5CDVCaFJTqwUc7Sth2\npBaX2zAsOYrzxqb2XT2ik2EMbHsLqg503cbthJAAxKaChiYFpXpQXNOMy21YmDeUkSnR/h1SekxL\nHRzZaE2Qk3YGhMV03TZ2iP/iUkFHk4JSPRCBkanRjErt5o3Y1wo+gLJdEJ9l9RdoMTvlI34eL6fU\nwGKMweF0BzoMaz5lewjkLdKEoHxKzxSU6oLT5eaf245S1eggNyvB9zt0OcHV2vk244KoFLD58SY4\nNShpUlCqE02tLt7dfITD1U2cOzaV6cN8XGra7YIvngNHU9dt4ob6Ngal0KSgFGANOd12pIZWz6Wi\nbUdqqWlycOnkDMam+2GGMpfDSgipYyFhWOdt4jJ9H4ca9DQpKIV1E9pHO0q9y5Fhdq6elklWYpR/\nA4nPhqx8/+5TqTY0KahBpdnhYk9pPbtL6qhvcXrXHztDuHJqJpkJkYTY5PRvRnO7YMtfobW+57am\nH3RmK4UmBRVk6luc1DU7Oqyva3ay62gd+8sbcLkNCVGhpMaGIxx/489JEjLiI05/BrTWRmsuA2cz\nVBVCbHrvpr+MHaLzHaiA06SggsqrXx1sdwbQVnS4nclZ8ZyREUdabLjvbkLbshTqjh5fzppxfKIb\npfo5TQoqqLQ4XYxOi2FSZvspJ8NCbGTERfR9faKmKji0tv3ln6ZKSMixJrcRm/VYqQFCk4IKGgcr\nGnG4DNlJUYxIifbPTssLrAltwqLg2KUoWyikjoNkvRSkBh5NCmpA+aaohs/2lOF0mQ7b3MYQHxnK\npKFx/gmmpgj2fGQ9PvMuCAnzz36V8iFNCmrA+HxPOV/tryQ7KYohcREdtovA+CGx/pvtrKnK+p5z\npiYEFTQ0KagBobbZwVf7Kxk/JJYLJw7pP3MXAAydGugIlOozPv1IJSIXicguEdkjIg930eZ8Edkk\nIttE5FNfxqMGJqfLzfvbSgAYkRod+ITgbIGtb8LBLwMbh1I+4LMzBRGxA88DC4AiYK2ILDfGbG/T\nJgH4PXCRMeagiKT5Kh41cG06VM2hykayEiM7vWzkFy4nOBqsx/Vl1rwG0SlWWYpwP/VhKOUHvrx8\nNBPYY4zZByAirwFXANvbtFkEvGWMOQhgjCnt8Cpq0FtbWMWIlGiunBrA2j8b/9z+3gOA0d+CpBGB\niUcpH/FlUsgEDrVZLgLOPKHNWCBURFYCscBvjTEvn/hCInIHcAdATo6O+Q52FfUtFJQeLw3R7HCR\nFhvgKSZbG6wJbo7dhGYP0/sPVFAKdEdzCDAdmA9EAl+IyJfGmN1tGxljXgBeAMjPz+84FlEFDYfL\nzdsbD1PXfPyuZBFIiOoHo3uikmBoXqCjUMqnfJkUDgPZbZazPOvaKgIqjDENQIOIrAKmALtRg0Z5\nfQt/31KM021wud00tLi4dnoWWYmR3jYBmRdZqUHIl0lhLTBGREZgJYMbsPoQ2loGPCciIUAY1uWl\nZ3wYk+qHKupbqWxoZVRaDGF2G0MTIshO8nPJ6s44W6Cu2Hrs7ryeklLBxmdJwRjjFJF7gfcAO/CS\nMWabiNzp2b7YGLNDRP4JbAHcwIvGmK2+ikn1b3NGp5AU3Q8uEx2z92M4sun4sj3A/RpK+UGPSUFE\nooB/BXKMMf8iImOAccaYv/X0XGPMCmDFCesWn7D8FPDUSUWt1Okq3gLVB7pvU30IwmPgjIVWx0bM\nEP/EplQA9eZM4Y/AeuAsz/Jh4HWgx6SgVL9kDBz8AlpqISym63YikDwOEruYHlOpINSbpDDKGHO9\niNwIYIxpFO31U33AGENRVRNbiqoB8Nsf1a5/QGMlpE+ACVf4a69KDQi9SQqtIhIJGAARGQW0+DQq\nFbRKapspq2uh1eVmR3EtpbUtRIbZmTUymfjI0L7focsBZbvadxRXH7S+55zV+XOUGsR6kxQeA/4J\nZIvIK8Bs4HZfBqWC1z+3HqWyoRWA5JgwvnVGOuMzYgn1VWXTij2w492O69MnQIxWVVHqRD0mBWPM\n+yKyHpiFdYb/fWNMuc8jUwNSs8PFP7YW0+rsfCL62iYHo9NimDs+jegwe9/ff1DwwfFhpACOJuv7\n1O9ARMLx9d31JSg1iPVm9NFHxpj5wN87WacGOafLTW2bu4/L6looLG8kNTacyFB7h/ZDEyKZMDSO\nmPA+Hg3tckBzLRRvgtAoiEyy1oeHQuwQiMsEW8d4lFLtdfmfKSIRQBSQIiKJHO8HjMOqa6QGOZfb\n8OrXBymvb+2w7byxqf69AW3rW1C5z3qcNQlGnue/fSsVRLr7uPa/gR8AQ7GGpB5LCrXAcz6OS/VD\nDS1ONh+qxu2pPlXd1Ep5fStzxqQQG3H8TynUbiMzIbKLV+lGUxUUb7aGjJ6s+hKrjyDnLK1cqtRp\n6DIpGGN+C/xWRO4zxjzrx5hUP7W3rJ6v9ldit4n3E8KEoXHMGJ7UNzs4uhUOfAG2U7y0lDHZ6kBW\nSp2y3nQ0Pysik4AJQESb9R1KXKvg5nBZncffO2cEUWG+qJDiOUM470EfvLZSqjd609H8KHA+VlJY\nAVwMrAY0KQwiTpebTYdqSOmiA/mU1RRZhefAunyklAqo3nzcuxarnPVGY8ztIpIO/D/fhqX6mw0H\nq6ltcnDt9Ky+G0baWAkb/tx+XYgWnVMqkHqTFJqMMW4RcYpIHFBK+3kSVJBraHGytrCSUWkxfTei\nyBir3ATAqLnHZzHT+weUCqjeJIV1IpIA/F+sUUj1wBc+jUoFnNttcLitPoQ1e8pxuQ3njE459Rd0\nnlAZpbXheLmJlLHWrGZKqYDrNil4Ct/9tzGmGljsmfsgzhizxS/RqYB5de1BSmuPv5FPG5ZI4qnO\ndVC4GvZ/1vm28ZdoQlCqH+k2KRhjjIisAHI9y4X+CEoFXm2Tk8yESEalRRNmtzM+I/bkXsDZAiXb\nwLit+kMh4TBsdvs2NjukjOu7oJVSp603l482iMgMY8xan0ej+pXUuHCmDzvFT/HlBbD7vePL8VmQ\nc2bfBKaU8pneJIUzgZtEpBBowLqz2RhjJvsyMBU4xhjcJ3tXsTGw9U1orrGWnc3W9/zvQkScTmWp\n1ADRm6Rwoc+jUP3KjuI6Wp1uMuIjem58TFOVdXYQnQKRiUA8JI2E6FSw+agstlKqz/VUEO9OYDTw\nDfA/xhhnV+1VcGh1uvl8bznpcRGMSz+JfoT1f7S+Z06HzGm+CU4p5XPdnSn8CXAAn2HdxTwB+L4/\nglKBs7awkrpmJxfnZvTuJrWy3VB9AJytVkG6Ibm+D1Ip5TPdJYUJxphcABH5H+Br/4SkAsEYw+d7\nK/h6fyVnZMT1vspp4WfQUA6hkTDsbLD7YEpNpZTfdJcUHMceGGOcfT5DluoXdpfU8dGOUlxuNw6X\nITcznnnjT2aaSgPJoyD3Wp/FqJTyn+6SQp6I1HoeCxDpWT42+ijO59Epn2pxuvhkZykx4XZykuNI\njg5j4tC4vp8iUyk1YHSXFDYbY6b6LRLld2v3V9HY6uKKvEyGnMxII6VU0OouKZzC9FeqPzPGsHJX\nGTVN1pXBQ5WNnJERd2oJobwAjmyEpmqISOjjSJVSgdJdUkgTkQe62miM+bUP4lE+1Oxws+lQNbER\nIUSFhZCdFMWcETFWcbqTVbwZqg5Y9yWkjOn7YJVSAdFdUrADMRyfm1kNcK98dQCA6cMSmZqTCJX7\n4evTmGk1JhXyb++j6JRS/UF3SaHYGPO43yJRPlff4iQq1MYEKYQDO6H+qLVhxDnWkNKTFZvRp/Ep\npQKvu6SgZwhBxi5CbpqN8D3/PL4yJBwy8yFUO5qVUt0nhfl+i0L51Jo95TRt/TuTag6S3hhhXRQc\ndxGk54LYtDaRUsqry6RgjKk83RcXkYuA32L1T7xojHmii3YzsGZzu8EY88bp7ncwMsZQXt+Kw+Vu\nv8HZzOEDBQyr20dsbBTJGcMhOtIqVmfvTT1EpdRg4rN3BRGxA88DC4AiYK2ILDfGbO+k3ZPA+76K\nZTAoq2/hlS8Pdlg/tvwDshv3kxQTxpjcaTBmQQCiU0oNFL78qDgT2GOM2QcgIq8BVwDbT2h3H/Am\nMMOHsQS9Vqd1hnDOmBRSY4/PXRC9MwZbyzCiJl4MydmBCk8pNUD4MilkAofaLBdhTdjjJSKZwFXA\nXLpJCiJyB3AHQE5OTp8HGkzS4yLIToo6viIm3JrkJn104IJSSg0Yge5h/A3wkDHG3V0jY8wLxph8\nY0x+amqqn0Ib4I5shJVPWvciaC0jpVQv+fJM4TDQ9npFlmddW/nAa54CbCnAJSLiNMa848O4gpvL\nASXboWyXlQxyzobE4YGOSik1QPgyKawFxojICKxkcAOwqG0DY8yIY49FZAnwN00Ip8bhskpVhVft\nhsMfWiujkmDkeQGMSik10PgsKXjmYLgXeA9rSOpLxphtInKnZ/tiX+170HE5cX3zJhNKykiM9vQn\nTLvFmh9ZKaVOgk8HqhtjVgArTljXaTIwxtzmy1iCWnM17pKdxNpjCY1Mh/gMqwSF3pSmlDpJevdS\nkGhsddIy4iyYen6gQ1FKDWD6UTIItDrdNDvcJEWFBToUpdQAp0khCNS3ODBAbKSe+CmlTo++iwxA\nNU0OdpfUsbukjuaWViYcfAUAm2iOV0qdHk0K/VhJbTMtjuP39VU1trLraB2Hq5sAyIiPYFh8CGlh\nDiQyhrRsnQFNKXV6NCn0U1UNrfzlq44F7pJjwpg9OoVx6bHER4VCayNUxsCYCyAmPgCRKqWCiSaF\nfsgYw0c7SwGYMyaFoQnWrGgRITaSosMQEWuO5MJCcDsDGKlSKthoUuiH6lqcHKpsBGBMWgwJnY0q\nOvgVtNRCWAxEp0DsED9HqZQKRpoU+rEFE9I7TwjHJI+CiVf5LyClVNDT4SpKKaW8NCkopZTy0stH\n/cS6wkoKSusBcLlN942L1kFjBcRowTulVN/SpNAPOF1uvi6sxCZCepw1lWZcZAxZidaoI4yBpio4\nNhfR0S3W97SJAYhWKRXMNCn0Ax/uKKHF4WZMegyXTR7asUHJVtjxt/brkkdB6lj/BKiUGjQ0KfQD\nzZ67ls8b28XlIEez9X38JWD3jEaKzfBDZEqpwUaTQj8xJD6C2IjQ7huljIPQCP8EpJQalDQpBNi6\nwkr2lzcwJL6TN/vGStj8Kjga/R+YUmpQ0qQQQJUNrazZU0FmQiTThyce31B3FFrqoL4EmmutvoO4\nTD1LUEr5nCaFAPqsoIwQu3Dp5Ayiwz2/CrcLNrxsfT9mxHlWKQullPIxTQoBcrCikX1lDcwZk0J0\nzR5rhNExbhdkTochuRASDlFJgQtUKTWoaFIIALfb8GlBGXGRoUzNiIAdG6GmCKI8l5Bi0yHtDIjT\nEUZKKf/SpBAA247UUl7XwrVpRwj5/DVrZXwmTLslsIEppQY9TQp+1tLSzO6Nq5gcAVnuGrDZYeRc\niM8KdGhKKaVJwd9KD+5iaOmnTMiIQ6pDrQ7k7BmBDksppQBNCn7jcLlZtukIpqycLMAx+UZIzwZ7\nDzesKaWUH2npbD8prm7mUGUj8TSQFhtOQky0dd+BzR7o0JRSykvPFPxg06FqPtlZSmRrJflmI0mp\nMRAaHuiwlFKqA00KPvb53nK+2ldJvm0n45PqSWwKheGz9d4DpVS/pEnBh4prmvhqXyWT0sOZU74V\ncYRCZIJ1U5pIoMNTSqkONCn4wNf7K/l6fwUuN0SH2zlvTApSITDifB1ppJTq1zQp+EBZXQt2m40p\n2XGMS48lLKSH6TWVUqqf8OnoIxG5SER2icgeEXm4k+3fEZEtIvKNiHwuIlN8GY8/RYfbOWdMKmlx\nWtlUKTVw+CwpiIgdeB64GJgA3CgiE05oth84zxiTC/wceMFX8SillOqZL88UZgJ7jDH7jDGtwGvA\nFW0bGGM+N8ZUeRa/BIKv1oPLCa0NgY5CKaV6xZd9CpnAoTbLRcCZ3bT/X8A/OtsgIncAdwDk5OT0\nVXz+seFPUF9qPbbpvYJKqf6tX3Q0i8hcrKQwp7PtxpgX8Fxays/PH1i9tq0NkJBtDUNNHR/oaJRS\nqlu+TAqHgew2y1mede2IyGTgReBiY0yFD+MJnKgUyAiaPnSlVBDzZVJYC4wRkRFYyeAGYFHbBiKS\nA7wF3GyM2e3DWPynZBs5Be+S6nCBJIOjMdARKaVUr/ksKRhjnCJyL/AeYAdeMsZsE5E7PdsXA48A\nycDvxbrD12mMyfdVTD5RXwrO5uOLh7ZSX1NFdPZEiEuAuKEwZFIAA1RKqd7zaZ+CMWYFsOKEdYvb\nPP4e8D1fxuBTTVWw9n/arSqvaMAREs2ocxdBeL/oslFKqV7Td63T4Wy1vg+f45057ci+cvZWh3Ku\nJgSl1ACk71x9ISYNkkYA0FwaRWtDfYADUkqpU6NJ4WTs/DsUb+m4XmwUljewbNMR3MYQHa4T5yil\nBiZNCr3VVGUlhMhEyqNHU9fsBMDY7DQ1JnCwpha3MeQPTyQjPjLAwSql1KnRpNBbez+xvsdn8mbp\nCBpbXce3VVqVOsJCbMwamUyoXe9cVkoNTJoUelJVCIVroKEUwqJg3KU4j+5j4tA4zhyZ3K5peIhN\nE4JSakDTpNCTyn1QcwgSciB5jLd+UViIjfjI0AAHp5RSfUuTQm/Y7JBn3Yzd7HDhchvsNp1OUykV\nfDQpdKelDg59DRxPAF/tr8RtDOOHxAUuLqWU8hG9AN6dku1gDESneFftK6tnREo0qbHhAQxMKaV8\nQ88UTtRSD5v+Aq4WcHnuWJ52i3ez21gdykopFYw0KZyouQYaKyBpJETEQUQC2K0O5cZWJ7VNDiYN\n1UtHSqngpEmhK1n5kDyq3aoDFVYZ7OEp0YGISCmlfE6vg/TS3rJ6/rn1KFFhdtK0P0EpFaT0TAEw\nxuB0GzBucDqwGYPbbcDl9rb5pqgGgGnDEvHM/aCUUkFHkwLw+voijlTWM/XIq4S5rEtEOxoOUhPh\nbtduSHwEM4YnBSJEpZTyC00KQE2jg4zYUEbHQ3PcBFrihpObPAls7X88mQla6E4pFdw0KXgkx4Rb\nb/qjJ0H2zECHo5RSAaEdzR6pRz4KdAhKKRVwgzopOFxuyupacBtDTE2BtTJxRGCDUkqpABrUl4/e\n23aUghJr6kyx22HYWRCTGuColFIqcAZtUjha00xBST1J0WHMHp1M9taoQIeklFIBN2iTwsaD1mxp\nw5KjGJ0WCzo5jlJKDd4+BQMkRoVy/rg02PoWuF09PkcppYLdoE0KAKHOeijbBVX7rRVDJgc2IKWU\nCrBBe/kIIKtsFWyttRZyzoQovVtZKTW4DcqkcKRwF3zzPlGmDGKGwRmXQ1RyoMNSSqmAG5SXjyoK\nviax6QCJiSmQPgli0qx5mJVSapAbfGcKxZuJqd5FfWgUoy+5P9DRKKVUvzKozhSaG+s5vPGfNLQ6\n2Zs6P9DhKKVUv+PTpCAiF4nILhHZIyIPd7JdROR3nu1bRGSaL+NZv+4LDhaXUd1qw5Y43Je7Ukqp\nAclnl49ExA48DywAioC1IrLcGLO9TbOLgTGerzOBP3i+97nSA9uxFbxHZkIkQy76EWdH6jzLSil1\nIl+eKcwE9hhj9hljWoHXgCtOaHMF8LKxfAkkiEiGL4Ix9jDs6ePJmHQOYVFx2Gw6e5pSSp3Ilx3N\nmcChNstFdDwL6KxNJlDc18GkZ40mPWt0X7+sUkoFlQHR0Swid4jIOhFZV1ZWFuhwlFIqaPkyKRwG\nstssZ3nWnWwbjDEvGGPyjTH5qala2loppXzFl0lhLTBGREaISBhwA7D8hDbLgVs8o5BmATXGmD6/\ndKSUUqp3fNanYIxxisi9wHuAHXjJGLNNRO70bF8MrAAuAfYAjcDtvopHKaVUz3x6R7MxZgXWG3/b\ndYvbPDbAPb6MQSmlVO8NiI5mpZRS/qFJQSmllJcmBaWUUl5iXdYfOESkDDhwik9PAcr7MJyBQI95\ncNBjHhxO55iHGWN6HNM/4JLC6RCRdcaY/EDH4U96zIODHvPg4I9j1stHSimlvDQpKKWU8hpsSeGF\nQAcQAHrMg4Me8+Dg82MeVH0KSimlujfYzhSUUkp1Q5OCUkopr6BMCv1tbmh/6MUxf8dzrN+IyOci\nMiUQcfalno65TbsZIuIUkWv9GZ8v9OaYReR8EdkkIttE5FN/x9jXevG3HS8i74rIZs8xD+jCmiLy\nkoiUisjWLrb79v3LGBNUX1gVWfcCI4EwYDMw4YQ2lwD/AASYBXwV6Lj9cMxnA4mexxcPhmNu0+5j\nrMKM1wY6bj/8nhOA7UCOZzkt0HH74Zj/DXjS8zgVqATCAh37aRzzucA0YGsX2336/hWMZwr9am5o\nP+nxmI0xnxtjqjyLX2JNaDSQ9eb3DHAf8CZQ6s/gfKQ3x7wIeMsYcxDAGDPQj7s3x2yAWBERIAYr\nKTj9G2bfMcaswjqGrvj0/SsYk0JX8z6fbJuB5GSP539hfdIYyHo8ZhHJBK4C/uDHuHypN7/nsUCi\niKwUkfUicovfovON3hzzc8AZwBHgG+D7xhi3f8ILCJ++f/l0PgXV/4jIXKykMCfQsfjBb4CHjDFu\n60PkoBACTAfmA5HAFyLypTFmd2DD8qkLgU3APGAU8IGIfGaMqQ1sWANTMCaFPpsbegDp1fGIyGTg\nReBiY0yFn2Lzld4ccz7wmichpACXiIjTGPOOf0Lsc7055iKgwhjTADSIyCpgCjBQk0Jvjvl24Alj\nXXDfIyL7gfHA1/4J0e98+v4VjJePBuPc0D0es4jkAG8BNwfJp8Yej9kYM8IYM9wYMxx4A7h7ACcE\n6N3f9jJgjoiEiEgUcCaww89x9qXeHPNBrDMjRCQdGAfs82uU/uXT96+gO1Mwg3Bu6F4e8yNAMvB7\nzydnpxnAFSZ7ecxBpTfHbIzZISL/BLYAbuBFY0ynQxsHgl7+nn8OLBGRb7BG5DxkjBmwJbVF5FXg\nfCBFRIqAR4FQ8M/7l5a5UEop5RWMl4+UUkqdIk0KSimlvDQpKKWU8tKkoJRSykuTglJKKS9NCkqd\nQERcniqjx76GeyqP1niWd4jIoyf5mgkicrevYlaqr2hSUKqjJmNMXpuvQs/6z4wxeVh3St90Ysli\nEenuvp8EQJOC6vc0KSh1kjwlJNYDo0XkNhFZLiIfAx+JSIyIfCQiGzxzVxyr6PkEMMpzpvEUgIg8\nKCJrPTXxfxagw1GqnaC7o1mpPhApIps8j/cbY65qu1FEkrHq2P8cmIFV+36yMabSc7ZwlTGmVkRS\ngC9FZDnwMDDJc6aBiFwAjMEqDS3AchE511M2WamA0aSgVEdNx968T3COiGzEKh/xhKfcwgzgA2PM\nsfr3AvyXiJzraZcJpHfyWhd4vjZ6lmOwkoQmBRVQmhSU6r3PjDGXdbK+oc3j72DN/jXdGOMQkUIg\nopPnCPDfxpj/0/dhKnXqtE9Bqb4VD5R6EsJcYJhnfR0Q26bde8B3RSQGrAmBRCTNv6Eq1ZGeKSjV\nt14B3vVU7FwH7AQwxlSIyBrPZOz/MMY8KCJnYE2CA1AP3ERwTBuqBjCtkqqUUspLLx8ppZTy0qSg\nlFLKS5OCUkopL00KSimlvDQpKKWU8tKkoJRSykuTglJKKa//D0cjjRJDlsv2AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1634cda0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"featureslist=['Diameter','Spiculation','Eccentricity','MeanHU']\n",
"def fit_model(X, y, clf):\n",
" cv_sets = ShuffleSplit(X.shape[0], n_iter = 5, test_size = 0.20, random_state = 42)\n",
" params = {'loss':['deviance','exponential'],'learning_rate':np.arange(0.01,0.13,0.3),\n",
" 'n_estimators':np.arange(25,200,25),'max_depth':np.arange(2,8,1),\n",
" 'max_leaf_nodes':np.arange(2,10,1)}\n",
" grid = GridSearchCV(clf, params, cv=cv_sets, scoring=\"neg_log_loss\", n_jobs=-1)\n",
" grid = grid.fit(X, y)\n",
" return grid.best_estimator_\n",
"\n",
"optimal_gb=fit_model(inputfeatures[featurelist],malignantlabel,GradientBoostingClassifier())\n",
"\n",
"print(optimal_gb)\n",
"\n",
"name=[\"Optimized Gradient Boosting Classifier\"]\n",
"print(name)\n",
"scores=cross_val_score(optimal_gb,inputfeatures[featurelist], malignantlabel, cv=5, scoring='neg_log_loss')\n",
"#print(classification_report(Ytest,model.predict(Xtest[featurelist])))\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"print(\"---------------------------------------\")\n",
"clf=optimal_gb\n",
"clf.fit(Xtrain[featurelist],Ytrain)\n",
"roc=roc_curve(Ytest,clf.predict_proba(Xtest[featurelist])[:,1])\n",
"#print(clf.feature_importances)\n",
"#ROC curve\n",
"plt.plot(roc[0],roc[1], alpha=0.5)\n",
"#plt.plot(rocrandom[0],rocrandom[1])\n",
"\n",
"scores=cross_val_score(GradientBoostingClassifier(),inputfeatures[featurelist], malignantlabel, cv=5, scoring='neg_log_loss')\n",
"#print(classification_report(Ytest,model.predict(Xtest[featurelist])))\n",
"print(-scores)\n",
"print(\"Cross-validated logloss\",-np.mean(scores))\n",
"print(\"---------------------------------------\")\n",
"clf=GradientBoostingClassifier()\n",
"clf.fit(Xtrain[featurelist],Ytrain)\n",
"roc=roc_curve(Ytest,clf.predict_proba(Xtest[featurelist])[:,1])\n",
"\n",
"#ROC curve\n",
"plt.plot(roc[0],roc[1], alpha=0.5)\n",
"#plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(['Optimized Gradient Boosting', 'Default Gradient Boosting'])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)\n"
]
}
],
"source": [
"featureslist=['Diameter','Spiculation','Eccentricity','MeanHU']\n",
"def fit_model(X, y, clf):\n",
" cv_sets = ShuffleSplit(X.shape[0], n_iter = 5, test_size = 0.20, random_state = 42)\n",
" params = {'alpha':np.arange(0.01,0.2,0.01)}\n",
" grid = GridSearchCV(clf, params, cv=cv_sets, scoring=\"neg_log_loss\", n_jobs=-1)\n",
" grid = grid.fit(X, y)\n",
" return grid.best_estimator_\n",
"\n",
"optimal_mnb=fit_model(roundedfeatures[featurelist],malignantlabel,MultinomialNB())\n",
"\n",
"print(optimal_mnb)\n"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gaussian Naive Bayes\n",
"Average precision score: 0.414522511619\n",
"Area under curve: 0.638017121599\n",
"Cross-validated logloss 0.585022669107\n",
"---------------------------------------\n",
"Multinomial Naive Bayes\n",
"Average precision score: 0.410012824874\n",
"Area under curve: 0.645654609834\n",
"Cross-validated logloss 0.55280005726\n",
"---------------------------------------\n",
"Logistic Regression\n",
"Average precision score: 0.415806776411\n",
"Area under curve: 0.644832145578\n",
"Cross-validated logloss 0.55254268468\n",
"---------------------------------------\n",
"Random Forest\n",
"Average precision score: 0.376921978648\n",
"Area under curve: 0.614972435122\n",
"Cross-validated logloss 0.563315068589\n",
"---------------------------------------\n",
"Gradient Boosting\n",
"Average precision score: 0.377418451084\n",
"Area under curve: 0.617288557214\n",
"Cross-validated logloss 0.557275128346\n",
"---------------------------------------\n",
"SVM with rbf kernel\n",
"Average precision score: 0.271426829941\n",
"Area under curve: 0.501749137197\n",
"Cross-validated logloss 0.579370953538\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX+x/H3yW56D6QREhJaKNJDV6RJiSgoAoIooF6s\niF71Xq8/xV6uYperIF0EISCKEIp0EAiEXhNICCEhAdLrJlvO748JC6ErZDeB83oeHzOzszPfgbCf\nnZlThJQSRVEURQFwsHcBiqIoSvWhQkFRFEWxUqGgKIqiWKlQUBRFUaxUKCiKoihWKhQURVEUKxUK\niqIoipUKBUW5CiFEihCiVAhRJITIFELMFEJ4XPB6FyHEWiFEoRAiXwjxuxCi2UX78BJCfCmESK3Y\nT1LFcm3bn5GiXJ0KBUW5tvuklB5Aa6AN8B8AIURnYBXwG1AHiAD2An8KIepXbOMErAGaA/0AL6Az\nkAV0sO1pKMq1CdWjWVGuTAiRAjwppVxdsfwJ0FxKea8QYhOwX0r57EXvWQ6clVI+JoR4EvgAaCCl\nLLJx+Yryl6krBUW5TkKIukB/4JgQwg3oAsRcZtMFwD0VP/cGVqhAUGoKFQqKcm2/CiEKgZPAGeAt\nwA/t30/GZbbPAM49L6h1hW0UpVpSoaAo1zZISukJdAeaoH3g5wIWIPgy2wejPTMAyL7CNopSLalQ\nUJTrJKXcAMwEJkopi4GtwJDLbDoU7eEywGqgrxDC3SZFKsoNUqGgKH/Nl8A9QohWwGvAKCHEC0II\nTyGErxDifbTWRe9UbP8j2m2nRUKIJkIIByFELSHE60KIaPucgqJcmQoFRfkLpJRngdnABCnlZqAv\n8CDac4MTaE1W75RSHq3YvgztYfMR4A+gANiOdgsqzuYnoCjXoJqkKoqiKFbqSkFRFEWxUqGgKIqi\nWKlQUBRFUaxUKCiKoihWensX8FfVrl1bhoeH27sMRVGUGmXnzp1ZUkr/a21X40IhPDyc+Ph4e5eh\nKIpSowghTlzPdur2kaIoimKlQkFRFEWxUqGgKIqiWKlQUBRFUaxUKCiKoihWVRYKQojpQogzQogD\nV3hdCCG+FkIcE0LsE0K0rapaFEVRlOtTlVcKM9EmKr+S/kCjiv/GAt9VYS2KoijKdaiyfgpSyo1C\niPCrbDIQmC21YVq3CSF8hBDBUko1daGiKAogTUaKVi6jaPXPLMr2osCvjNe/nFWlx7Rn57UQtMlH\nzkmrWHdJKAghxqJdTRAWFmaT4hRFUaqaNBrJ+XEO5ry88ytPH4TSHI4Un6LWlmJK3ALY1mY05WXz\ncT3jWeU11YgezVLKKcAUgKioKDUBhKIoNZY0mcieOpWyxEQKYpeff8FRj5RgxoFi92ASm76MoZsv\nYMJcugWArF53VHl99gyFdCD0guW6FesURVFuSVk//MCZzz7HpHfVVuhd8b7vPrb38GTz3k00Thpf\nafuy/KlgKbAuv3rv41Veoz1DYQnwvBDiZ6AjkK+eJyiKcquQFgvmvDyyM0o5tD2b0/GbcD1xmrTu\nkypvmAv8Ao3RGmAWOeeyr9Z+CtyP0n17ATq9nq4PP0Z4q7b4BAVXed1VFgpCiHlAd6C2ECINeAtw\nBJBSfg/EAtHAMaAEGFNVtSiKotiCxWji2J8pHN+QQGl8PGYHPZnBnQHQG0PJDwzFrDNgdjCR6R9r\nfV8JzmAIxlDrTgo86gB1eNCvKznbv6L/8y8T2fkum51DVbY+Gn6N1yXwXFUdX1EU5WYpzi/DYtYe\nZ55NLSRlXxZCVN7GXFTEibgUDC61AFcc/VthcXBAYsAsNmJ2+oUG7qXc61HAWemF3mwh0zmct/0+\nBSEY2DqE4R1CKcrNRlokpxIOsQxw9/a16bnWiAfNiqIo9rLkq92cPJx7yXo3Tx0A0mTGUlCAtFgQ\nCOqc2kBc+A7iI1N5ypJDr2IXzGYTzpSzzb0nL7oPIkMfysDWIYzoGMb8C/a5Y8kiNv40o9JxdI6O\nVXl6l1ChoCiKchnlBhOpB3OsgRAVkYsx8SBlSSm4l2TgXZBSaXujDib3d6CkYznlwpHhJZJF7gtY\n6KGFx7kQ6HPRcYwGAxvmTKO8tJTTycfQ6fX0euJZAJxcXQls0LCqT7USFQqKoigXyU4v4uf3tluX\n26T+hNd6rVmo0dXCniawvY728RluNFLgCSdDJeUFrfG3DKFDVCdGdAzjiascI2HrJo7GbSFh6ybr\nOp/AYBp26EKLnhdHh+2oUFAURblA8d71/PydBQC/nEPUTVuKtKRQ7AoLHjSzPMwFgCiPekSawknd\n6wUSapla0PburozoeH0dbJd++V8AfIPr4BscQvS4V3F2c6uak/oLVCgoiqKU5GCc/yLLz6aRmvwK\nAhc8ClORTjOZ/nIw0Agc9JwxuuBWXI63uQMlWd34/ngOAB8+0OK6wwAgN0PrkhXcuAkj3ptYFWf0\nt6lQUBTlthOTGENsstYkVJQW0OenA7Q64ECwezAn27sQeHoHro8I7n0onhEV75kbl8rri/cDEB7h\nB0DHCD/rs4LrdWDdH6z8/isAmnTpdvNO6iZRoaAoym3hwiCIPx0PQBQuhBwtpV5qQ47Xi+R4xAAA\nGj7YlVaDu1rfe2Eg/NWrgnMObVzL5vk/Uph1FoBOg4fTolffGzqnqqBCQVGUW8qFH/4XsgZB7VZE\nGS1E5+fS5WQdfjV8za6K2Vz0zjqad61DiwcbICo6ItyMQABYPulzAGrVDaPbyDHUb9P+b+2nqqlQ\nUBTllnAuDKwf/t6Vm3JG6X2ILochO37HaNKxb3tHfgt/ERygVvZBNrRvSY6XI2tzs/hmWpb1fXF/\n87lBaWEBZ1KSAUg9sBcA//D6PPbfr2/oPKuaCgVFUWq0S8Kg1EB0cTFDjqdatynL15O+xRcHveS4\nSwR73B/kVP07AbDIbN6qV5eynCI6evtdsv+/89wg9cBeYt77v0vW93r8mb96ejanQkFRlJqjvARO\n/ElMxp/EZu2GgjTiRTlwQRj43AH3vgiuPvyxJw3DtD/Id2uPpYEei4OOUld/LDoXhMXIPI9y0h3d\naF//r3/wX0lpUSF7Vi0D4I4e99D87l4AuHn74lcn5Ib3X9VUKCiKUjOU5MAnEcR4uvNu7VoARBkM\nRAHRbvUY4uEDLbpB1xesb0l+83VMdYbjYDFikXnk+ASCAAcLHKvrQR1XB565SWFwzvQXn8JQWICb\ntw99nx5/7TdUMyoUFEWp/oyGSwJhQpPRDAntCQHNQe+EITGRRT8eJmtOLCDxKMnH7HI3AM06B3D3\nGNu29Hnsk29serybRYWCoijVUsyhn4jdOQnKi8BYCkEBxLtqvYkndJ7AkMZDAPhp6wmyZvxGg5Mn\nyavXHz3gf3YPAN4FqTi0CuHOR7tXaa2njyeRcyqN/WtWYigsoGXvfrj72HZ005tFhYKiKNWCtSlp\n5j4wlxNf8ekUZTSAe23t59qR1HbozMJ1dVm4dgvdti8lIukkeU3HcKKeNlWldzMH7u83AKF3xCki\n3Nq0tKrkZp5izmuVbxM1vbN7lR6zKqlQUBTFri5pPWQwaP938ifaKZAhw2Yxd28ey+LTqHXSzOGz\nxUA+0UUlOFnacrJhFwD6dysnaEBP3LycbFZ7XmYG08ePBaBJ17vp/NBwPGv74+jkbLMabjYVCoqi\n2EbKZsg+BkBMzj5i8w6DyUB8udYn4FzroTudWvCW7gXyS/xYWAJH3tyFU5GZLlL7xh+J9qEvdU6U\n6aBRc3ea3tOI0CaXNietaku/+gSApnf1oP+zLyEcHGxew82mQkFRlKpzJBaWvQzGYjDkW1fHBgWQ\n4OREZHk5UUBrgy8ty5qwxzmK+1NbMKjYCTeHUoQERzOAIDB7J0GFCbhlHLbuJ+K91/G9v6fNTwu0\nq4TTyUcB6PPUC7dEIIAKBUVRbrZTuyE1Tvv56CooPAXtRoOrL7R5lJi0dcTv+QovcwTOln+wJbWE\nXWZPenp54pttZnShNmx1nQY++AS5YcrOwW/6v3EzaFcUPkOH4tywIb4jH7HLB3HakYPMf+vf1uV2\n9w5Eb+PZ0aqSCgVFUW6e7T9A7CuV13mHwn3aqKAxiTG8u0f7uSC3HbketWkaLumRKjGnlwEQ3MCb\nkCa+REWHU/j7Es589xlmQxYhX36BZ9++Vf7g+EosZjO7Vyxl/ewfAPCoVZtODwyjZe9+dqmnqqhQ\nUBTlxhxbA5nagHGsfkv7/7CfoJ72ADjmxCpiV4wBtEHpdGZHOmaOw8PUgMiT5RgNZsxAnUY+dGue\nC2m74TQcbfMNsrzcehiPbt3sFgh5mRlsmjeLxG2bAW2E065DH7FLLVVNhYKiKH/fxomw9r3K6xr0\ngqYDLm1VFBhF57wHaXX47ooNTRgBB52gde8wWvcMJqVju0sO0WD1ahwDAxA2ukVTkHWG3SuWEv/7\nLwDoHB0xG43W1x/54HOCGja2SS32oEJBUZS/J+f4+UB4YjUENifm2GJmHlhG1ozBlDgkAuBmaYy3\nqQMeu7rQJNXIKZ2Fcn8nWvcKZWjHMHQOkry580jpqrXk8Xv8cfzHPQ+AcHa2yXODvNOZHN68DmmR\nbF0417o+tHlLawDUDq1HZOc70elvnecHl6NCQVGU62exgDSDsQS+bq2taz0SQtszNy6Vrw79QrFM\nxWwIxsu1MYGld9I8ox11z5oA7dt202ENGNktAoCUEY9QumtXpUMEvDge4WS7vgZH47aw5PMPK60L\natCI4e9NxEGns1kd1YUKBUVRrk9ZIXzZEkpzzq9r3I9XXVqyccZgCkqN6FwycBdhvNDmc9rhxJrZ\nh0GaAKjXohZtAtJx3LGYMzugaMMGyhK1q4mAV17G5+HhOLi72fS5QW7mKWsgBDeKZHjFfMn2enZR\nHahQUBTl2o7EwtGVWiA0GQB1WvN56gEWGvIpPP0tOICXa2NquzfikcAh5P2YzBqLBGDo6+3xD/Ok\nLCmJ5HtfBkA4OiIr7tM3XLsGxzp1bH5Ku5YvYd3MKQD0HPMUbfrdZ/MaqiMVCoqiXN2fX8EfE7Sf\nXXyICW/FzNTdpJr3g057ZtCtTh8+6TOWpF1nWfnDAUDSaVB9GrQJwCfQjexp0zjzqfYtPPiD9/EZ\nPNh+51Mh51Q6Djo90eNeIbLznfYup9pQoaAoSmUWC5RkAxBz+Cdi90+CoACo04YzBj2pCT8CYCqO\nYECDe/m071MAzHztT4rztL4G7X0SCdn+J4btkAmU7NgBQP2lv+PcsOGlx7Shozu2krp/D3tXLUOn\n16tAuIgKBUVRNFJCYSYxM+4k1llr8RPv6gKuLkThwhmDnuSsIiCCUKeujG433Do5TfzyFGsgdIp7\nG09nIwUX7d6jdy+7B4LFbGbJxA8AcHJ1o37b9natpzpSoaAoChSeJmZKG2Ld3Yn3cQMgyi2EKKAR\nTdmbM5SDh89PYD+8Qyh/LjrG2sTDmMotHN1xGoD28R/R6OM38Orbx15nclWnErRxk5p0vZt7X3jV\nztVUTyoUFOV2tvlLYo7MI9aUQ/y5KS7d6hLdZCjGkl78tiedKcdzgJxKE9gfjT/N3tUnAXDVG6mV\nnUCzwzPxat2sWgVCcV4uxoqhuAE2zp0BQOu+A+xVUrVXpaEghOgHfAXogKlSyo8vet0bmAOEVdQy\nUUo5oyprUhSlQn46rH5LG7HU2Zko12CiW4xhSNPhAAybvJVDGQWVwuAco8EMwD3B+zDPmwyAz7Bh\nBLz0ou3P4woOrF/Nyu++vOxrdRo3sXE1NUeVhYIQQgdMAu4B0oAdQoglUspDF2z2HHBISnmfEMIf\nSBBC/CSlLL/MLhVFuUliEmOI3TsNggJIcPci0r8lM/qd/z42Ny6VuOPa1cH8pzpXeq/FYGDdnCMA\nlCyahzNQb86PuEVF2fIUrspsMlkD4c7ho/D0q2V9zS8k9Lbuh3AtVXml0AE4JqVMBhBC/AwMBC4M\nBQl4Cu1vyAPIAUxVWJOi3L5St8HWSYAktuwYCaZCIoFIn4ZE14+2bjY3LpXXF2sD3A1sHWJdbzKa\nOb31ILs/+gnq9QXAxaGc+qtW4hQWRnVybiRTn8BgOg4aYudqapaqDIUQ4OQFy2lAx4u2+RZYApwC\nPIFhUkrLxTsSQowFxgKEVbNfPkWpESxmYmIeJNbdHZzcSHCwECl1zGj2FHQ7P9T1hYHw4QMtrLeM\nik5kMOujislt6vXF2VTIwAc9qPXVNhycq8fUk7mZp0jZs5Pje3aSlXoCgMc+/cbOVdU89n7Q3BfY\nA/QEGgB/CCE2SSkrtWaTUk4BpgBERUVJm1epKDVF0jrY/DnoKn9QxxQf591zD5ID2xIJ2tVB4/Pf\noq8UCOWnT7Pmue+gbnc8Ck/SOsqNiMcG4FXL1TbndB22/7aQTXNnWpf9w+vTuFNXHJ1d7FdUDVWV\noZAOhF6wXLdi3YXGAB9LKSVwTAhxHGgCbK/CuhTl1lScDT8O0n72b0KMswOxOq3lTbyLdld2QvOx\nDIkad8lbLxcIlrIyTm3aR9KfKaTV7Y6bOZ/Hfny0Wk47eWL/HgB6jH6KsDtaUju0np0rqrmqMhR2\nAI2EEBFoYfAwMOKibVKBXsAmIUQgEAkkV2FNinJrKC+BxWOhNO/8upRNxHi6ExtQD/ybVJrHIArt\nysCY25Fhk7desru44+f7IIzoGIa0WNjd72G2RY4DtCuMno82qTaBIKVk9dRJ5GacAuBsSjLBjZvQ\ntr8av+hGVVkoSClNQojngZVoTVKnSykPCiGernj9e+A9YKYQYj8ggH9LKbOqqiZFuWXsnAGHfwcg\npl5LYkUJhDckXpSDpYgotDCoLTqRmtISgIUnIO64djXQMcLv/L6kZJj+NEO3/0Ktkz6kCCjdu4/M\nEK2/Qbu2ekIaeBLaralNT/FKDEVFbF00j32rVwAQ0qQ5tSrmOlBunNDu3NQcUVFRMj4+3t5lKIr9\nlBXBRxWtgl7Yw5jt75KQk0CkXySgXREMaTyk0i2hC0NgYOsQhrevS+nOnVhKSyndu4+sSZMAEE5O\nGNr2psDBj/1OWlPUMZ/ciZuX7eY3uJYF7/yHk4e087rVZ0G7mYQQO6WU12w3bO8HzYqiXA9DPpzY\nCkiY9zAAMXUiia0IBF99OCUnxgLaFcHCdVsvvSUkJaXx8ZgLkzja7RHMWZUvyoM//JBk9zZsXazd\nwa0V4k6XwQ2rTSBIKVn21SfWQBj7v5l41qpt56puPSoUFKUmmNIDcpIqrYqtG2kNhMTkhhjzcipd\nEVzYE9lSXs7xQQ9Qnlz5kV3Y9Gk4uLtjcXbj+GlXts7TJr0Z8p8oaod64uBg305eFrOZhC0b2Tx/\nDjpHR3JPpQFw/8uvq0CoIioUFKW6sVggaS2UFUDKJji+8XwgjF1PTNo6ZqZsJ+1MAi4ylIP7HgEq\nNyM9p3T/AY716o0x/XzDv/CYGBAC54YNcHDRmmzGL08h7rdEPHydadc/nIB6XjY51WvZNG8W8b//\nAoCXfwCNOnSh85AR+IeF27ewW5gKBUWpTixm+KYt5KZUXt9kALQbA3XaELvva9JKkrEYgvHWdyD8\nMmMTnZP53nsY09NxueMOHIODqPPppzi4uFCUW8ax/bkgoTivnLjfknF21zPyvc7o9PZvYWQoLuKH\n58ZQXloKwNAJHxLavKWdq7o9qFBQFHszlcGRZdr/174HBRXf6h9fBS7e4O5PTPpaYpN+4szu6aSV\nHMNiCKaZeI35T3a+ZHdlycmkj38RS2kpxjTtdkt4zAJOHMhm3fxk0o7kUlpkxGw8P3iAEHDnkEZ2\nDYTstFQyk46SnX6SHb8ttK5XD5NtS4WCotiToQC+agmluZXXj9tFTPYuZm5bTFZxGSUO2r1+U3EE\nEESoUxcGtgip9BZTbi5F69aT+d57yNJSnJs2xWvAABx79mfOhG0UnC21btu8WwjNugbj5KJ9BLh5\nO1l/tqXju+MpysvBYjKzeuqkSq9FdunGvS+8qgavszEVCopiL2YTfHxBp//nd/Lb/tPMS4CcxQvJ\ncJwDgKk0Ai/XxnibO+Cr63bZW0W5CxaQOeGtSusiFszn4NYzbJibAJTSMCqATgPr4+LhhLOr/f/p\nxy1ewOafZ1da17B9J+5+9EmcXF1x8/K2U2W3N/v/ZijK7aYkB6b1geyj59f9XyY4ujIpaREZbAFH\nrZVQsHFkpWkvzzHn5ZEyfATmnBzQ6zFna3Mq+wx5CKeHnyDpmJEf39pBYY42zEWrXqF0faih3b51\nn0o8wunjxziw9g8Kss7goNNRkq/1xn743U/xrFULB50eD1+/a+xJqWoqFBTF1tZ9qAWCZzBERkPv\nt5m76ywz98/Trg4ctd7I5zqhXU7B8uWUHz+O3t8fj149wSLx6NuXZEMom7/RwsYn0I27hjWicYcg\nXNwdbXiCmrTDBzhzPImNP83AbKo8In6re/oDULfpHYREVo+e0opGhYKiVKUTW+HnEWAygEPFP7ey\nikGAn/6TmPS1zFzyNMlZRejdjwPQL+h5Pu371GV3V5Z8nKL16ymJiwMgdN58UtJgzczD8KMB0AKh\n95hmNG4fiLBTP4PSokLmv/2addnZzZ3+z79McKNIXNw9cNDp7FKXcm0qFBSlKmQnaU1Lz2n+gHZl\nAMSUnCCWYtj0inXQOoggzLUFo1s/cMWrA0NCAscHDsKkc2Z3q/EUdxvE+o+OYDFrQ9UE1fciuIEP\nbfqE4epp317IWxb8BMAdPe6h+2NP4uzmbtd6lOunQkFRbqb8dFgyDpLWaMu1GkG70dD5OWKOLiQ2\nOZb4Qm2YBrd8PabSCEwFrXmnx5OX7WdwzpnpM1m3LIes7trMaSBo0S0YvYsjdRr5ENLYF0dn+3/7\n3rnsV9bPnmpd7vX4M+idqscwGcr1UaGgKDeDxQyzB2o9kM+5/1to+ygAr66czIrMbwGtWampoDXN\nfPuDDgb2uLQ1kZQSJJjNFtY9/RWJjq3BX9umTZ96BNTzomG7ANuc23UqLSywBkKHQUMIbXqHCoQa\nSIWCovxdUoLZqP28Z442n0Foc2K9fcEjAM6shRVrOVNQRmqpdnUQbBypNSu9KAiklJw4kE1mcj4l\nBeUc23kGo8GsvejYGoDWHT3oMqq93Z4TXI2xvIy5b7wMQLNuPblr+Cg7V6T8XSoUFOXvin2FmCPz\ntHmPAYICiNcXQnEhYRZvsorLACgoNQIRDGhw7xUfIO9bl8bmBUcRAhACN3cHQo4sR0gzju7OdJ34\nNG71q89sYqWFBexa/jtmkxaKaQf3k5eZAUD3Uf+wZ2nKDVKhoCh/U8yReefnPXYJBJ0zUR4B1Bad\niFlXF6iYx0BHpQ5nUkrKK64CjAYz+9efZNfKVGrVceOB0XVJ7nOP9Rie9/Qm5KuJ1WbGM4CykhIS\nt/3JtkXz0On1IARmoxFXL29GfvgFrh6e9i5RuQEqFBTlWiwWMFRMe3l8A5zYSkzSr9ZAmNB5grXF\n0OXmOr7Yuh+PcHhLRqV1zoYcwmK/JHluRYc2IajzyX/xvs/+00tKKUnYuolTiYc5tGEtZSXF1tee\n+GYqnn5qCOtbiQoFRbmW+SMhYRmANgeyuzvxXtqQ0/XLHmDhurosXKfNe3zxxDYXMhnNHN+TZQ2E\nhse0Qd+8C1LwLjhOwGv/BkDn7YP3oIHVYsyfwpwsZv7zWcpLSwBwdHZBp9dz14jRuHl5q0C4BalQ\nUJSrSd8FCcu0MAhtQXypNlH8uRZELr79K23e8QrDWKcdyeG3L/cAoDOV0uzwbALLkvEfPx7ogkuz\npri1a2eTU/orknfusAbCqE+/pbaax+CWp0JBUS5HSkiLJ2bNK8QGBRDv6gKlp3CzNCbndHOMeR2v\neHuo8m4ka2YeJiEuEwchCTy1lSYJc/F7ZARBb8630cncCK1j3NOTf8Tdx9fOtSi2oEJBUS4j5o9/\nEpu8VAsDVxcoDsNQ0I5mvv0J971834KLGU+fJmnXWRLizhCcsYXGR+ejs5iI+HUxLk2a2OhMbszR\n7VvtXYJiYyoUFOUCMQkxxB79hfjsA+DqgkeJP56OfS/bt+BKzAUFFKxcyc7/rSIhcjg6Uykh6Rup\n+/67uDRrWmMCITv9JCf27QbAxcPDztUotqJCQVGAmMQYYhMrwgCIKjXQp8iAvHMpIzpduX+AuaAA\nY2amdblwxQpOTp9PqUttElqPx0VvZEA/Hf7fLrHOh1ydlRtKKThzGgn8NvF9AHqM+gc6ve1HWVXs\nQ4WCcnsqOqM9RN4xlRhRxLsmbQrMqFID0cXFxOeMQBf9JEOvEAjGzEzMOTmkPDwcWV6OwdmHtJDu\n5HtFkN/pPet2je6KIHBQ9Z9K0lhmYM+qWDbOmX7Ja406drVDRYq9qFBQbj9mI0xsdL55qav2Df6f\n2eUcyh7Ez5ZgBg96iLtWzODkj5mXvN1SUkLJ9u2UO3pwrMEwjJ7+5HrUR0rw9oKmjX0JaxOCs7ue\nupHV/+HskT83sOzrT63L9du2p/ndvRA6HeEt2+DoXP2vcJSbR4WCcns5mwCr3gQg1i+IBEc9bsZQ\nSnJassKjD7jDsHouRH34AnkJCQC4NGtWaRcmdBQ160ZC6EDyy1zwDXAhvI4nHe6LoFZIzbj3XlKQ\nT17mKeJ+jSF553YAwlu3o8eosfjVCbnGu5VbmQoF5fZxag9MuVu7QggKYL/eEZ2xLiUnxtIs2Iv5\nT3UG4PQnn5KTkABCUH/ZUpzr1wcgefdZDmxK5+QhrYOaMAp6jIyk2Z117HZKf8ef839k2y+Vm8NG\nv/AqTbvebaeKlOpEhYJye/jzK/hjAgA/eoVz0rEcQ2EgpoLmtA32YmDrEMqSkijespWc6dp99cj4\nHThUDHaXsi+LFT8cwNPPmaD6Xji5OnLnkIb4BtWsyWPMJiPbfpmPm7cP9du2J7LzXQQ3aoKzm5u9\nS1OqCRUKym0hb+tsHIQXS41RHDOa8dQ70lj3irWZ6ZkvviR58mTr9r6PPGINhPJSE8v+tw+fQDeG\n/CcKJ5ea+89m9r9eALThre8e+bidq1Gqo5r7260o15J7gj/Xr6DewW+pbcxgraUNM8M7oXOcQ7PA\nKGb0025/Vt5eAAAgAElEQVQXGTMzya4IhMD/+z/cu3ax3jLKOVXMvHe1+ZDrt/GvkYFw9sRxCnOy\nKDh7lpz0kwB0GfqInatSqqsq/Q0XQvQDvgJ0wFQp5ceX2aY78CXgCGRJKdWNTeXGSAnJ6+DHB+iK\nNojd7/61KXLXk2GeA0B0/Wjr5nkLYgAI+Pe/8Xt0JAAWi+TgxnQ2/pwIQO1QD1r2qGvb87gB5YZS\n0g4dIOdUGht+nFbptXvGjsPRydlOlSnVXZWFghBCB0wC7gHSgB1CiCVSykMXbOMD/A/oJ6VMFUJU\nr/kFlZqnJAfiJsMG7fvHDktjfqwTQpY8Q6RfEFEEEV0/2jrUdcHqNSTMW4u5dmtEUDvydp1hz+pU\nivLKKMopwz/Mk8AIL+4eHmnPs/pLSgsL+N+TIyqt6/TgMOq364Czmzt+dWpOuCm2V5VXCh2AY1LK\nZAAhxM/AQODQBduMAH6RUqYCSCnPVGE9yq0udRsxMQ9qM6EFBXBYhiGdfdDJDCL9IpnRb4Z10+Jt\ncRx59X0O1R1IQatxABz47Sxw1rpNnyeb07BdQLUYwvp65GaeYu2MyaTs2WldN/KjL3F298AnMMiO\nlSk1SVWGQghw8oLlNKDjRds0BhyFEOsBT+ArKeXsi3ckhBgLjAUIC7v22DPKbaS8GBJXkvXHF9TO\n30dsUACHnV0oLg3DhI76Hs4Eujelh/F+1s4+TEZSPrK8HGN6OiXNX7Lu5oFX2uLsev6fg0+gGzp9\n9Znt7GqklKTs2ckvH79tXde67wC6jRyjbhMpf5m9n5rpgXZAL8AV2CqE2CalTLxwIynlFGAKQFRU\nlLR5lUr1FfsqMUm/alcHrgHsc/ZETwTNdK8wsHUIXd3d2RxzlLzTJRSQQd0AI+VH9uIM1Apxp0F0\nOxq0DcDFveaM7WMxm5n+4likBOEgKM7JwWQsByC4YSRD3vwAxxowzpJSPVVlKKQDoRcs161Yd6E0\nIFtKWQwUCyE2Aq2ARBTlKubGpZK+bSHhpvPTYkbSiZ6l4bTwb0FUUD12/p7C0iwDAEGk03jTZ+jN\nZQA4eHgQuXiH3er/OwzFRSTFx3Fi/x7yz5wGoOldPQAtKNr0HUBQw8bavMmK8jdV5W/PDqCRECIC\nLQweRnuGcKHfgG+FEHrACe320hdVWJNSw82NS+W3PelEn/yMZ8QuJhdM5LEUd5x0rugN2q9zIbCO\nI9b33Ns+m9JPPwSgweo/AHAMqln32C8enwjg8S8n4xushqRQbq4qCwUppUkI8TywEq1J6nQp5UEh\nxNMVr38vpTwshFgB7AMsaM1WD1RVTUrNNntZImXLDtBb6jGLR5hleRYXwOCRT8vW2rMmv2B36rfx\nB8B05gwZg/pRul674+gz5CGc6ta8ljdxixew+WftUVtk57voNvJxHF1ccPXwtHNlyq2oSq8zpZSx\nQOxF676/aPlToPJXIEWpMDculbV/ptImsbxijQ9Obvs44W3grKWccp2BPoPb0KN55YlrTGfPcnRQ\nXwTg0asXwW+/ha5WLZvXf6OO7463BsKAF18jsvOddq5IudVdMxSEEG7Ay0CYlPIfQohGQKSUcmmV\nV6fctgqyS1n4ayLL92fS3aA9BHbQ5XDSfxO/h68DIYkKjKrU5+Ac09mzHL2rGwDuXToTOulbm9d/\nI4pyc0jYspE/F/yE0VAKQJ+nX1CBoNjE9VwpzAB2Ap0rltOBGECFgnJT5Z8t4djOM8THZ2JKKwGg\nO1ognKm1gV8a/wJwxTAAyP35ZzLffkdb0OsJnTbtkm2qs+z0k8z85zPWZb2jE/e9/B/qt2lvx6qU\n28n1hEIDKeUwIcRwAClliagpvXmUGqO81MScN7dVWrc5fCFHAuJoW1qGxaGMKK87iG4+4rJhAFp7\n/TOffQ6OjgT++9/4jhheYzqemU1Glnz+kXVug/pt23Pv+H/h5OJq58qU2831hEK5EMIVkABCiAZA\nWZVWpdxWLBbJtDfWAw6k+iazovG3SGGhnaGU13OLGVJYDMGt4IHFV9yHlJKiNWuwFBYiXFzwG1kz\nBnyTUiKlhe2/LrQGQv/nX6ZZRVNTRbG16wmFt4EVQKgQ4iegKzCmKotSbg/SIlk59SBJu84ADpgc\nyllVZwVNjZLBhVlaGPR8E+58CcTVexcn9b4HY7rWDSZs2lQbVH/jpJRMf3EseZkZ1nWqmalib9cM\nBSnlKiHETqATIIDxUsqsKq9MuaWVlRjZMDeBpF1nMOqKOBi8DgfPrezOPnx+o2e2QmCzK++kQsmO\nHdZAaLh+XY3og3D6eBJzXhsPgKOzC+0HDqZ+m/YqEBS7u57WR2uklL2AZZdZpyh/2fTvYinde34Y\nhiXNJlNPl4iuoBl7GvehdZgvNH8QfOtdc1+mnBxOPPoYAKFTJteIQLCYzdZA8PIP4OF3P8HTr7ad\nq1IUzRVDQQjhArgBtYUQvmhXCQBeaIPdKcpfNvv3BGsgJNVZRp7/Up4pKWSzy9d0vLsDrTtefcBD\naTJhLiy0Lif1vgeA2s8/j0e3blVX+E20e4XWcM87MIgnv64Zt7qU28fVrhSeAl4E6qA1ST0XCgVA\nzWr4rVQL5QYThcu02zzrGi1lYeE0jmc3YOs9f/DVNcLgnNR//IOSrdsuWV/7uWdvaq03m8ViprSg\nAID1s38AYNArb9izJEW5rCuGgpTyK+ArIcQ4KeU3NqxJqeFiEmOITa7UkR2f9DCCjzbHndoc9t/G\nsOZG2AYRdesQcZ2BkDV5ijUQAt+o+EB1EHjdc0+1aXqanXaSXct/Q1osldbvX7uq0nJAeANqh4Xb\nsDJFuT7X86D5GyHEHUAzwOWC9ZfMe6AoALHJsSTkJBDpF4mu3Imm66NxKdHG6TnhdZyTIUaGbKv4\n9Xng+8vuw5yXh7moCABLQQGnP/mUkm1aIAR//BE+gwZV/YlcJyklaYcPsH/tKg5vWgeAh69fpW3c\nvH1w8fCkbf/7EA4ONOrQxR6lKso1Xc+D5reA7mihEAv0BzYDKhSUSs5dIZwLhC/aTuKnCedv9fzo\nYeDFgL18kjlLW+EbAd7aAHWWsjKyvp2E8XQmloJCitavv+wxwmbNwr1jh6o+lb9k9/IlrJul3RJy\ncfcgqFEkg//zjp2rUpS/53r6KTyENsfBbinlGCFEIDCnastSapqYxBje3fouoA1DcY/HfdZAWONa\njktDL773XU/rxIpA6PoilpaPYExKAiD/99/J/uEHHLy90Xl4oKtdG6/+/XFppjVJdfBwx7NXL4RD\n9ZgNbdfyJZxK1IbnPnviOEI4MPj1d6nXsrWdK1OUG3M9oVAqpbQIIUxCCC/gDJUnz1EU6zOECZ0n\n8FCjh/jfM9ptlD9cDbxydxp3lq6DhIrnDM9tB/9I0p95lqJ16yrtp+Efq9B5edm09r9q1/LfWTdz\nCoC1X0GjDp1VICi3hOsJhXghhA/wA1orpCJga5VWpdRIUf5t8Ejx5O1fFhCAPyanE/zq/SLsqdjA\nrz6y43OcnbuCssRvrIEQ8vlnAOj9/at1IJQWFvDbxA9IP3IQgIGvvEHD9p3sXJWi3FxXDYWKge8+\nklLmAd9XTIjjJaXcZ5PqlJrBYqHozAk8Sk7SP/M39HnjSaQ7Y7w+0F4PbIEc8CUl6WZSR40GQLi4\n4NSwAX4jH8UrOtp+tV8nabGw+odJ1kB48LW3iWgTZeeqFOXmu2ooSCmlECIWaFGxnGKLopQawGLW\nbgdt+46YnD0cqV2LKGCHc2eOmbpRv6EZrwFfQ0AT8KtP6ugx1tZDDp6eNN62FaHT2fccrsJsMnHm\neBJFOdnW5wcWswmAZ6fNU7OeKbes67l9tEsI0V5KWbNmOVeqhsVCzMLBxOacnzU1vrY2o1mRGIxr\n13FY5iZgcvLDgAvmY1mUHd5kDYSwGdNx69Sp2vQrOKcwJ6vSwHRLJn6AobjIuuzq5Y2blzf3jv+X\nCgTllnY9odARGCmESAGK0Xo2Sylly6osTKl+5salsmXnm2xwPwauLjQvEySZAzEVuxLq1JVBrR7m\n8Hrtg7VVSx3HBz1Q6f0h33yNe+fOl9u13RTmZLFk4gdkJh297OuD//MOzh4eBDVoXO2CTFGqwvWE\nQt8qr0Kp1ubGpTJz/zxyjGsoc9c+9JsZ+iF5kPoOMLB1CCM6hpGVVsj8lCRqlZ+k+OnnAKj19FO4\nd+qMPiAA5/oR9jyNy5ry7BiQEhdPL5p360n9tuf7QPjXC8fVs/o++FaUqnCtAfGeBhoC+4FpUkqT\nrQpTqoe5cam8tW4qLsGLwRGiSg1Eu4cz5KlPrduYcnLIXLaWRb9ry2EHF+Jyxx3oAwPxHz++Wn7D\nNpWXE/P+GyAlAM/+8FO1rFNRbO1qVwqzACOwCa0XczNgvC2KUuxrblwqv+1JJ1e3kVPlm3AJPgHA\nhKxshkTcZx2aonT/AU7961/sdexMRp2uAPjkJdL01dH4PjTYbvVfi7RYmPLcGEoL8gEY8f5nKhAU\npcLVQqGZlLIFgBBiGrDdNiUp9jQ3LpXXF+/H0ScOl+DFiHNXByUGhkQMgIGToOIDNGXIEE4FdSaj\nnhYIve/1oWG/J9E5Xs9dSftZ8vlH1kAYP2cxekdHO1ekKNXH1f71Gs/9IKU0qW9St65zVwYAccdz\naCsS8fRbxC4ctKuDwmJ4ORFjoZmSFSsByJ7yAyWuARxpMhKAwf9uR1CEt93O4XqV5OdxbIfW9/Kp\n72apQFCUi1wtFFoLIQoqfhaAa8XyudZH6glcDXRhAJwTdzwHgOgwM5s83mCbaxbvOtciqtTAkAHT\nIaIbOLlxrH1T63vyvSLY2fEtnF0dGPRyFLXretj0PP6OvNOZTHvhSQC6Dh2Jh18tO1ekKNXP1UJh\nr5Syjc0qUWzitz3pHMoooFnw+UzvGOHHBNeFNE+eSoynO+9W9DuI7v4+RPYDIDcmBgCdnx+hs2cz\nfaL2nKHnqOY1IhCklNZAAOgwaEiVH9NoNJKWlobBYKjyYynKOS4uLtStWxfHv3kVfLVQkH+vJKW6\nmhuXStzxHDpG+DH/qc5wbDUcWExMynImSh0EBRDvqk2ZMaHzBIY01j44839fSuabEwAIevsttmwu\ns+4zolXNmFu4JD8PAC//QJ78+gebjLaalpaGp6cn4eHh6kG2YhNSSrKzs0lLSyMi4u81Ab9aKAQI\nIf55lYN//reOqNjNudtGA1uHwOGlxMSOJdbdnXhfdwCifJsQ5eRBdP1oayAAnF65mbQ6d+E7ciTJ\nDuEc2XYMgCc+u6vGfNgt/OBNADoOGmKz4bcNBoMKBMWmhBDUqlWLs2fP/u19XC0UdIAH5+dmVmqw\nC68SRnQMI2byA9bbRFH+bYhueJ81CCwWyeaFRzm4IR2d3oEyUx9oDGw3wfZjeNV2YeCLbXBxr94P\naU8lHiEz6SjrZk62rmvZu59Na1CBoNjajf7OXS0UMqSU797Q3pVqYW5cKqt/m8XnjtswFe1lzBQP\n4l20D/QLbxMBmI0Wlk7aS9qRXADCwnSUbdyAB4V0+eljAJzd9Oj01WOym8uxWMwc3LCGVd9/bV2n\nd3Jm9GeT7FiVotQMVwsF9RXnFjA3LpVf1r+GZ9gOfgfiXX0BiHL0I7rBfZUC4ezJQmL/t4+i3DKc\n3fQ8+nYUyR3aARA2exZuXk72OIW/ZO8fy1k99fyHf4uefbjrkTG35SB2p0+f5qWXXmLbtm34+vri\n5OTEv/71Lx544IFrv/kGxMfHM3v2bL7++utrb3wN3bt3p6ioiPj4eOu+X3nlFdZfYbpWgFOnTvHC\nCy+wcOHCGzp2SkoKTZs2JTIyEikl7u7uzJgxg8jIyBvab3V3tVDodaM7F0L0A75CuxU1VUr58RW2\na482cc/DUsob+5tUrGISY/j24BwKg5IBF6Jc6xDlGUR0gwGVwgC0QFjwgTYQro+fjl7+u0nu8JT1\ndfcO1WteZICCrLMc3rzeOlQFwOaftanD2w98iLb97sPd1++2vIUjpWTQoEGMGjWKuXPnAnDixAmW\nLFlS5ceOiooiKurmzTVx5swZli9fTv/+/a9r+zp16txwIJzToEED9uzRZomaPHkyH374IbNmzbop\n+66urhgKUsqcG9mxEEIHTALuAdKAHUKIJVLKQ5fZ7r/Aqhs5nlLZ0jXrWXrsTaSjjqjScqIjohnS\n96vLbmssM7P8u/0ADHy+OQUP9SC3ovGZW4cOhE39wWZ1X83xPTtJ3rWdQxvXYSwzIC2Wy24Xdkcr\nuo0YbdviruGd3w9y6FTBtTf8C5rV8eKt+5pf9rW1a9fi5OTE008/bV1Xr149xo0bB2jfgh999FGK\ni4sB+Pbbb+nSpQvr169n4sSJLF26FIDnn3+eqKgoRo8ezWuvvcaSJUvQ6/X06dOHiRMnEhMTwzvv\nvINOp8Pb25uNGzdW2sf27dsZP348BoMBV1dX6zftmTNnsmTJEkpKSkhKSuKBBx7gk08+uey5vPrq\nq3zwwQeXhMKVziElJYUBAwZw4MABOnXqxLRp02jeXPtz6t69OxMnTqRp06aMGzeOAwcOYDQaefvt\ntxk4cOBV/7wLCgrw9fW96rEfe+wxHnzwQQYNGgTAI488wtChQxkwYACvvfYa69evp6ysjOeee46n\nnnqKjIwMhg0bRkFBASaTie+++4677rrrqnVUtaocj6ADcExKmQwghPgZGAgcumi7ccAioH0V1nJb\neHXlZDae0rLVzXCGMmcdQWZ3XvK4n5Zdr9iQjIX/jacwx0Cb9m4UPtQdAbh17kTYlCmIatDjV0rJ\njJeeJjdDaz0V0qQZdZu2AMA3uA5NunartL1Ob/+a7e3gwYO0bdv2iq8HBATwxx9/4OLiwtGjRxk+\nfLj1Fs3lZGdns3jxYo4cOYIQgrw8rYnvu+++y8qVKwkJCbGuu1CTJk3YtGkTer2e1atX8/rrr7No\n0SIA9uzZw+7du3F2diYyMpJx48YRGnrp9O+dO3dm8eLFrFu3Dk/P87cBr+cchg0bxoIFC3jnnXfI\nyMggIyODqKgoXn/9dXr27Mn06dPJy8ujQ4cO9O7dG3d390rvT0pKonXr1hQWFlJSUkJcXNxVj/3E\nE0/wxRdfMGjQIPLz89myZQuzZs1i2rRpeHt7s2PHDsrKyujatSt9+vThl19+oW/fvvzf//0fZrOZ\nkpKSK/4d2EpVhkIIcPKC5TS0uRmshBAhwANAD64SCkKIscBYgLCwsJteaE0XkxhDbHIs8afjwQGC\njf6EiEwoh+jO42nZauxl32c2WziyJYOcU9q3HZ9PH9de0OkImzq1WsyMZjaZSNoZR25GOm7ePjzx\n1RScXN3sXdZfdqVv9Lby3HPPsXnzZpycnNixYwdGo5Hnn3+ePXv2oNPpSExMvOr7vb29cXFx4Ykn\nnmDAgAEMGDAAgK5duzJ69GiGDh3Kgw8+eMn78vPzGTVqFEePHkUIgdFoHT2HXr164e2tDY3SrFkz\nTpw4cdlQAHjjjTd4//33+e9//2tddz3nMHToUPr06cM777zDggULeOihhwBYtWoVS5YsYeLEiYDW\nfDg1NZWmTZtWev+Ft4/mz5/P2LFjWbFixRWPfffdd/Pss89y9uxZFi1axODBg9Hr9axatYp9+/ZZ\nb2vl5+dz9OhR2rdvz+OPP47RaGTQoEG0bt36qn8PtmDvkcu+BP4tpbRc7b6vlHIKMAUgKipKdaq7\nQExiDO9u1RqJmYoj6IEf/zuzWHsxrAtcFAjSIjmwMZ0zqYUc3Z6J2STRmcu448APuLVtg/8LL+De\nqePFh7E5i8VMbsYpZr3ynPU2Ua/Hn66RgWAPzZs3t34jB5g0aRJZWVnWe/1ffPEFgYGB7N27F4vF\ngouL1mlRr9djueC23Lne2Hq9nu3bt7NmzRoWLlzIt99+y9q1a/n++++Ji4tj2bJltGvXjp07d1aq\n480336RHjx4sXryYlJQUunfvbn3N2dnZ+rNOp8NkuvLI/D179uSNN95gW8UMflc7hwuFhIRQq1Yt\n9u3bx/z58/n+e22EXyklixYt+ksPje+//37GjBlzzWM/9thjzJkzh59//pkZM2ZYj/fNN9/Qt++l\n09Ns3LiRZcuWMXr0aP75z3/y2GOPXXdNVaEqQyEduDD261asu1AU8HNFINQGooUQJinlr1VY1y3j\nwkAINo6kSVoBXzt9q704bhfUagBo/Q5S9mWRnpjLvrVp1vcH5+7B79ROAs7uovGWP9H7+dn8HC4m\nLRbKSkr45b9vk5F4BIDQZi3o+fjT1A6tZ+fqao6ePXvy+uuv89133/HMM88AVLo1kZ+fT926dXFw\ncGDWrFmYzWZAe+5w6NAhysrKKC0tZc2aNdx5550UFRVRUlJCdHQ0Xbt2pX79+oB2e6Vjx4507NiR\n5cuXc/LkyUp15OfnExISAsDMmTNv6JzeeOMNnn76aeuxr3QOFxs2bBiffPIJ+fn5tGypTRjZt29f\nvvnmG7755huEEOzevZs2ba4+qs/mzZtp0KDBNY89evRoOnToQFBQEM2aNbMe77vvvqNnz544OjqS\nmJhISEgIWVlZ1K1bl3/84x+UlZWxa9euWzoUdgCNhBARaGHwMDDiwg2klNZ+2EKImcBSFQjXVul2\nEVpfg7hVRiY6af/4aTvKGgiGYiPTXt5kfa/e0QE3H2cGPBxI5mBtdrR68+ZWi0AA+P3Ljzkat8W6\n3OuJZ7mje2/0TtW/OWx1IoTg119/5aWXXuKTTz7B398fd3d36+2XZ599lsGDBzN79mz69etnvZce\nGhrK0KFDueOOO4iIiLB+UBYWFjJw4EAMBgNSSj7/XBvQ4NVXX+Xo0aNIKenVqxetWrViw4YN1jr+\n9a9/MWrUKN5//33uvffeGzqn6Oho/P39rctXOoeLPfTQQ4wfP54333zTuu7NN9/kxRdfpGXLllgs\nFiIiIqwP1y907pmClBInJyemTp16zWMHBgbStGlT68NmgCeffJKUlBTatm2LlBJ/f39+/fVX1q9f\nz6effoqjoyMeHh7Mnj37hv6MbgYhZdXdjRFCRKPdItIB06WUHwghngaQUn5/0bYz0ULhqm3JoqKi\n5NUeiN0OxqwYQ0JOApF+kUTX60PYwUw6HnhbezF6InT4BwD716ex8efz91mHvt4e/zBPytPSSerd\nG4Dgjz7C54FBFx/C5qTFwrGdcSyZ+AEAPUb9g4g2UfgGh9i5sr/v8OHDl9yjVm59JSUltGjRgl27\ndlmfmdja5X73hBA7pZTXbCtcpc8UpJSxQOxF676/wrajq7KWW02kXyQz+kyFb9pB7nEAUoKjCa8I\nhCNbM6yBcNewxjTpFISTq/bXXVTR8SfwP6/hPejqzfCqWklBPlsXzmPPyvPf0nqMHkvb/vfbsSpF\n+XtWr17NE088wUsvvWS3QLhR9n7QrPxFMYkxxJ+OJ8q7Mbyr3fIpk468FvA/vnhqqHW73X+kAtBr\ndFOadAq2ri87fpzT778PgNf999u1Y1duRjpz/vMS5aXavW6fwGD6PfdPQiLVt2ulZurduzcnTpyw\ndxk3RIVCDXLhg+XoJG32sJP6MIYWvcq4qE7W7QqySq3NTC8MhOItW0h9/AkAdL6+6DzsMw9CcV4u\nRTnZzPnPiwD4BofwyIef4+x2+XvCiqLYjgqFGuLCQJggAhhSmAptR/FKxnDC/GFER63/xrGdZ1j5\nwwEAOt5fv9I+siZPASBwwpv4Dhtm834IFouZ3yZ+QPLO89N9+wQF8/iXk6/yLkVRbEmFQg0Rm6w9\nmtHmTNZuDS2o9QxxW5LpGHG+5dCOZcfROToQ0tiHqOhwAKTZTMb/vUFJRW9Mn0GDbBoI0mJh94rf\nWTfr/HAZnQYPJ6hBQ+q3UR3ZFaU6UaFQUxSka3MmFxZrndLu/YxFv2rDCgxsHYKUkrTDueScKqZ2\nqAf3jTvfM/LEqFGUxmudikI+/wwHN9t1AJNS8r8nR2AoLgKgdmg9Hn73U5xtWIOiKNev+g6KrwAQ\nkxDDmAV9SCjS+v1taPsNw4wTGPZrPocyCqyT5mz8OZElX2vd8Ru0DbC+X1osGPZrt5Max8fjFR1t\ns9qzUlP43xPDrYEw+vPvGDVxkgoEGxFCMHLkSOuyyWTC39/fOkTF1XhUPG9KSUmxjrIK2tDVL7zw\nws0v9gJLlizh448vO6Cy1cyZM3n++ecvu97BwYF9+/ZZ191xxx2kpKRcdX9PPvkkhw5dPCzbX9e9\ne3f+v73zjqriaOPwMyACAgIiVlSwNxAssQUsiT3RkKiomIgliRF7Ykkxlk+jJiYxscaCxBKxa+y9\nxoqIqIiKShA0igWlw4X9/riwooCCXkBgnnM4h92dnX3nXtjfzs7M761VqxaOjo7UqVOHRYsWvXad\neY3sKbzh7Dg7lyvx96mVmEjnun2Yf7kGgXeeULd8SeqWL6lNrQncv6W98XYb6UjFWlonx5S4OILb\ntUdJSMC0dWv0TXN/IFeTlMTmH7VjH/8GnAOghLkFfafPxsyqYORzLiyYmJhw8eJF4uLiMDY2Zu/e\nverq4uySJgp9+mjXneraFjszunbtSteurz4l2cbGhmnTprFmzZpsn5O2KE0XrFq1isaNG/Pw4UOq\nVauGh4cHxQvQ4kspCm8gaSuWiX+iCoJ75eksvlxRFYQ1nzdXy/934zH/3XhMiZLFsaldCiU5mdiA\nABKCg0m+fx+AcpMn53rciqKwcvwIHoRpxzzKV69FqYo2dBwyKtev/cazczz8d0G3dZazh04vfqLu\n3Lkz27dvp3v37qxevZrevXtz9Kh2hfukSZMwNTXlq6++ArRP1Nu2bcPW1lY9f/z48Vy+fBlHR0f6\n9euHk5OTaos9adIkQkNDuXHjBqGhoYwcOVLtRfzyyy94eXkB2qfwkSNHEhISQseOHWnWrBnHjx+n\nSZMm9O/fn4kTJ3Lv3j1WrVrFW2+9hbe3N76+vsydO5etW7cydepUEhMTsbKyYtWqVZQtW/aFbX7v\nvVUJly8AACAASURBVPc4cuQIV65cyeBt9MUXX3DmzBni4uLo3r07k1P/L9IstX19fbl+/To//fQT\nwDOxrFy5kt9//53ExESaNm3K/Pnz0X/B2Fx0dDQmJiZqmcyufeDAAX7//Xc2b9YaOezdu5f58+ez\nadMm9uzZw8SJE0lISKBatWosW7YMU1PTTC3MdYl8ffQGsiNoLVf+84X/AqiVmIhpSjMGHTHm1M2H\nz/QO0jh/QOs30+wD7WyjELde/Nu7D/9N+B6Ayl5LMShbhtzi2pkTrPx6FH980U8VhBErN9Fn2s9S\nEPKZXr164ePjQ3x8PAEBATRtmjOzwxkzZuDs7Iy/vz+jRmX8LoOCgti9ezenT59m8uTJJCUlcfbs\nWZYtW8apU6c4efIkixcv5tw5ba8xODiYL7/8kqCgIIKCgvjrr784duwYs2bN4ocffshQ/9tvv83J\nkyc5d+4cvXr1yjLnQnr09PQYO3ZspvVNmzYNX19fAgICOHz48DOvmQA++ugjNm3apG6vWbOGXr16\ncfnyZdasWcM///yjOqOuWrUq0+u7u7vj4OBArVq1mDBhgioKmV27TZs2BAUFERERAcCyZcsYMGAA\n9+/fZ+rUqezbtw8/Pz8aN27ML7/8olqYX7p0iYCAAL777ruXfh45RfYU3jDWXV2H76MgGsfH89O9\nFHYlNuA7TS+a2pWim2NFdeopwKP/Yoi8G0uw7z0ALA56c3P2eeIvascQKi1dgr6ZGUb16+s8zn1L\n5nEv5AYIoRrXla1aAzOr0rT7dCjF3oA8DG8UL3mizy0cHBwICQlh9erVdM6F8aQuXbpgaGiIoaEh\nZcqU4e7duxw7dgxXV1fVD+jDDz/k6NGjdO3aFTs7O+zttbkw6tWrxzvvvIMQAnt7+0zf+4eFheHm\n5sadO3dITEzEzs4uQ5nM6NOnD9OmTePmzZvP7F+7di2LFi1Co9Fw584dAgMDVZM8AGtra6pWrcrJ\nkyepUaMGQUFBtGzZknnz5nH27FmaNNHOlouLi6NMmcwftNJeH0VERNCiRQs6duxIlSpVsrz2xx9/\nzMqVK+nfvz8nTpxg+fLl7Nq1i8DAQFq2bAlAYmIizZs3z9LCXJdIUXiDWBe4iilntDePNrHQJmUe\ndSuZ84NjRXo3qkDMqVNEzN1K1J49JBcvwZ7Sn6rnVg7dQ+ShLQCYtGyJ1aeDMGnWLNPrvC5n/t7A\n+b07Aaji4ESleg7Uebs19m3b58r1JK9H165d1bzGDx48UPdnZZOdE3Jif/18eT09PXVbT08v03OH\nDRvG6NGj6dq1K4cOHWLSpEnZiqtYsWJ8+eWXz+RfuHnzJrNmzeLMmTNYWlri4eGRaZt79erF2rVr\nqV27Nq6urgghUBSFfv36MX369GxdH7QC07BhQ06dOkVKSkqW1+7fvz/vv/8+RkZG9OjRg2LFiqEo\nCu3atWP16tUZ6s3MwlyXSFF4Q1h3dZ0qCN/ff4DX/e+oa2uujh3c7N5D7QEA3G6u9XUvq4RTU7lI\nydJ3sfpqPkb162GQxROMLkiMj+PIKq1HfO//zaJCzdq5di2JbhgwYAAWFhbY29s/k/De1tZWdQb1\n8/PL8FQNYGZmRlRUVI6u5+zsrKbvVBSFTZs2sWLFileKPb31dk5zI3t4ePDjjz+q8T958gQTExPM\nzc25e/cuO3fufCa/Qxqurq5MmzaNc+fOqaLyzjvv0K1bN0aNGkWZMmV4+PAhUVFRVKmStZ17bGws\n586dY+zYsS+8doUKFahQoYL6ugigWbNmeHp6EhwcTPXq1YmJiSE8PJwKFSpkamGuS6QovCGkX5z2\nQ8TPPKIkPzhWJPnJEyLXrVMFwdZnNcXKluXQ/4IgReHD+e7o6efN0FBSQjzbZmv/Sd76oIcUhAKC\njY1NptNI06yf69WrR9OmTalZs2aGMg4ODujr69OgQQM8PDxemnMAoGHDhmpOAdAONDs5Ob10Wmhm\nTJo0iR49emBpaUnbtm0zFa6sKF68OMOHD2fEiBEANGjQACcnJ2rXrk2lSpXUVzPPY2lpSZ06dQgM\nDFTbULduXaZOnUr79u1JSUnBwMCAefPmZSoK7u7uGBsbk5CQgIeHB40aNQJ44bXd3d2JiIhQnU2t\nra3x9vamd+/eJCQkADB16lTMzMwytTDXJblqnZ0bFDbr7HVX17Hj+jauPLhErejHTLpvQqvoafzg\nak8POyOCXVqpZSv+9hslO7QnKTGZRcO1nvWeC9vmSZz/XvBn/dSng1r9f/2DUhUKrq11XiCtsyXZ\nZejQoTg5OTFw4ECd1PfGWmdLXs6OS6u48uiadh1CTAzemg9oXsWctyZ8SnBoqFqu2t49FK9UiWtn\n7vLP+mvA09lGuU1iXKwqCOWq1aD7d1OleZ1EoiMaNWqEiYkJP//8c36HAkhRyFfWXV2H75PrNE5M\npGt4DWZrPqJclToMvrGfpFRBsBr8OdaenggDA+KiEzm4Koik+GSqNypDNafcGztIz+oJYwCobO9I\nj++m5sk1JZKiwvN5rfMbKQr5iM9prUFc55gYRiV58oOrPX2aViZ0wFJigFr+59BLTQh+wz+CnQu1\ni58atK3E2z1r5Hp8MZGPOLR8Cfdvaf3hP/om9xfASSSS/EWKQj5iGhNKYyWZ4GLjVEEASExN0pEm\nCKe33uDM9hAA6rtUzBNBANi9YDY3/bVPMT0m/ICeXt5abUskkrxHikI+MXHzRPyMDHCMF3ydOjsC\nICU+nqTwcExcnAG4cvKOKgi9JryFVcXcTYzz5H4EwWdOoklMUAVh+J/rMUgVKIlEUriRopAPrLu6\njo2PNwLgaPrUdkBJSeGKU0MADCpUIDkphX3elwEYMOttjE1z31Rr57yfCQt8uh6iqaubFASJpAgh\nvY/ymL9OhTL7mHYhz6gHSYx2W8Kj1au5v3gxQXXrQeoUYeuhQ0mI067wLF/NPNcFISU5mR1zZqmC\nMGTpaoYuW8vbvT7O1etKcg9THaRbvX37Nt27d8/yeGRkJPPnz892+efx8PDAzs4OR0dHGjRowP79\n+18rXl2zcOFCli9fnt9h5Cmyp5AHqK6nQNDtRwiu0zgukTamb/HQ25t7s9JNRStWjJonT6JvakLi\nk0QAar71YlfI1+Gg9yL8dv79zL4eE6ZhbGqWa9eUFBwqVKjA+vXrszyeJgpDhgzJVvnM+Omnn+je\nvTsHDx7ks88+49q1a68VM2hzRxQr9vq3t8GDB792HQUNKQq5TPrcypWN7amWeAUDNHQuXha7Aau4\nnmpoVeOfY+iZmCAMDRFCkJKiEPjP7VyLKzEuFv89O1RBaNipK4YmJjTq4iqT4OQCM0/PJOhhkE7r\nrF2qNuPeGpejc0JCQlQXTmtra5YtW0blypW5fv067u7uxMTE0K1bN2bPnk10dDQhISG89957XLx4\nkUuXLtG/f38SExNJSUlhw4YNTJgwgevXr+Po6Ei7du3w9PRUyycnJzNu3Dh27dqFnp4en376KcOG\nDcsytubNmxMeHq5unz17ltGjRxMdHU3p0qXx9vamfPnynDlzhoEDB6Knp0e7du3YuXMnFy9exNvb\nm40bNxIdHU1ycjKHDx/mp59+Yu3atSQkJODq6srkyZOJiYmhZ8+ehIWFkZyczIQJE3Bzc8vUkjq9\nvbi/vz+DBw8mNjaWatWq4eXlhaWlJa1bt6Zp06YcPHiQyMhIli5dirOz8yt/r/mNFIVcRrWvaP49\nGw6UZ+V/XVAQaAYfJfSzz0gMvg6AfqlSCCHU8x7ejuHUlhvo6QlKWhvrNCZFUfDdtpkT67UZtdp9\nNhSHdzrq9BqSN5Nhw4bRr18/+vXrh5eXF8OHD2fz5s2MGDGCESNG0Lt3bxYuXJjpuQsXLmTEiBG4\nu7uTmJhIcnIyM2bM4OLFi/j7a7P+pbeyWLRoESEhIfj7+1OsWDEePnz4wth27drFBx98AEBSUhLD\nhg1jy5YtWFtbs2bNGr799lu8vLzo378/ixcvpnnz5owfP/6ZOvz8/AgICKBUqVLs2bOHa9eucfr0\naRRFoWvXrhw5coSIiAgqVKjA9u3bAa2/UpoldVBQEEIIIiMjM8T3ySefMGfOHFq1asX333/P5MmT\nmT17NqDtmZw+fZodO3YwefJk1cOoICJFIQ+obGzP9v2W+NztAsDjBGfutG6jHrfbsvkZQVBSFNZM\nPQ1Ax8/rU7mulU7jWfn1SO7d1IrRF4tXUaKkuU7rl2Qkp0/0ucWJEyfYuFE7yeHjjz9m7Nix6v60\nRC99+vRRE++kp3nz5kybNo2wsDA+/PBDatR48dToffv2MXjwYPU1TqlSpTItN2bMGL755hvCwsI4\nceIEAFeuXOHixYu0a9cOgOTkZMqXL09kZCRRUVE0b95cjTXN1A+gXbt26nX27NnDnj17VL+m6Oho\nrl27hrOzM19++SXjxo3jvffew9nZGY1G80JL6sePHxMZGUmrVlrbmX79+tGjRw/1+IcffghoVye/\nisfTm4QcaM4DYqMe4n33I5QUiEqw4s6mYADKT59OnaDLGKXLDqVJSmbzr9qEJCYWhtjUzvwf6VV5\nEBaqCsKHX0+WgiDJNn369OHvv//G2NiYzp0768yy+aeffuLq1avMnDmTAQMGANrebL169fD398ff\n358LFy6wZ8+el9aVlsMhrY6vv/5arSM4OJiBAwdSs2ZN/Pz8sLe357vvvmPKlCkUK1aM06dP0717\nd7Zt20bHjjnrOadZgGfHPvxNR4pCLrHu6jr67+rPhYjL2CZdJ0UjCFpbgbBN2j8es3bvYuH6wTPn\nRD2MZ8noo9y+pu269vi6MQaGulsw9uT+Pby/1A4Idh4+BjvHRjqrW1IwaNGiBT4+PoA2GUzau+9m\nzZqxYcMGAPX489y4cYOqVasyfPhwunXrRkBAwAuttdu1a8cff/yh3iRf9vpo6NChpKSksHv3bmrV\nqkVERITac0hKSuLSpUtYWFhgZmbGqVOnXhgrQIcOHfDy8iI6Wpu/PDw8nHv37nH79m1KlChB3759\nGTNmDH5+fkRHR/P48WM6d+7Mr7/+yvnz55+py9zcHEtLSzWV6YoVK9ReQ2FDvj7KJXbc2MGFiMsY\nRJvw0b/h3Dyk9SnSMzen7LhxmD8nCABxUYkkJ6VQp2V5nNpVxsTcMEOZV+Xcrq0cWPYHAHWd21Cn\nZeH8g5Y8JTY2FhsbG3V79OjRzJkzh/79+/PTTz+pA80As2fPpm/fvkybNo2OHTtibp6xB7l27VpW\nrFiBgYEB5cqV45tvvqFUqVK0bNmS+vXr06lTJzw9PdXygwYN4urVqzg4OGBgYMCnn37K0KFDs4xX\nCMF3333Hjz/+SIcOHVi/fj3Dhw/n8ePHaDQaRo4cSb169Vi6dCmffvopenp6tGrVKtNYAdq3b8/l\ny5fVV02mpqasXLmS4OBgxowZg56eHgYGBixYsICoqKiXWlL/+eef6kBz1apV1c+usCGts3VI+qmn\nVx5ewSS2BHvDznB1U1mSE/QxsLGhyvI/MahQ4ZnzIu/Fcm73v8THaLjhH0GXIQ7YOpTWWVzJmiRm\nu7uip69PFQcnXMdNfGYMQ5I7FCTr7NjYWIyNjRFC4OPjw+rVq9myZUt+h5Up0dHR6hqMGTNmcOfO\nHX777bd8jurNQlpnvwE8P/W01EMTxh+4TuijUiQnaF8BVd+3N8N5msRkVn1/EgB9Az1KljbCoqxu\np4Su+9+3ADT/qDfNPuql07olhYOzZ88ydOhQFEXBwsICLy+v/A4pS7Zv38706dPRaDRUqVIFb2/v\n/A6pUJGroiCE6Aj8BugDSxRFmfHccXdgHCCAKOALRVHOZ6ioAJDWQyif1JcHvuVZtnc6YEgMoFey\nJBV/zTxD0qWj2rUIVhVN6DWhaaZlXpVkTRJHVi4jPCgQgAbtdZ+4XVI4cHZ2zvAe/U3Fzc0NNze3\n/A6j0JJroiCE0AfmAe2AMOCMEOJvRVEC0xW7CbRSFOWREKITsAjQ7Z0xDymRUpM7YY78eHkBACVr\nCMr7nEHPJPOENCEX7nNsnXb1ZqfBDjqLQ1EU7t28zsqvR6r7uowYi7FZSZ1dQyKRFE5ys6fwFhCs\nKMoNACGED9ANUEVBUZTj6cqfBGwogIzZ/Qe+d30pnlCJecYLsQ67AkCFxhGILAThcUQc2+cFANC0\nW1XMdbhAbd/ieQTs3wWAcUlzPGbNo4S5hc7ql0gkhZfcFIWKwK1022G8uBcwENiZ2QEhxGfAZwCV\nK1fWVXw642j4btCH0TGXcY59SBAVMLQCMTBjc+JjkvDb/S/n9mgzq5Wvbk7jTravHUPk3f+4ee4M\n/17w57qvdrpe1y+/oXqT5nJQWSKRZJs3YqBZCNEGrSi8ndlxRVEWoX21ROPGjd+o6VLrrq4jRv8a\njePi6f3oITH3Utch9BkKNs8O9D/6L4a/Jp1St1v1qUWdFuVzfM3Iu/8RHx1FSrKGE+tX8+R+BA/D\nn+qvlU1l6rV+lxpvtXjFVkkkkqJKbopCOFAp3bZN6r5nEEI4AEuAToqiPMjFeHRO+hlHXSJjuLL+\n6VRTg7IZnU1vXdYu3qlib0XTrlWxrpQzJ9K46Cg2z5zC7auXMxyzKFuehp27UqmeA6UrVclRvZLC\nib6+Pvb29mg0Guzs7FixYgUWFq//GjG9SZ4umTRpEosXL8ba2hqAjh07MmPGjJec9Wr4+/tz+/Zt\nOneWky+eJzdF4QxQQwhhh1YMegF90hcQQlQGNgIfK4pyNRdjyRW8/TcB8Pv+KKwDrAANonhxKnst\nxbjR09XCSorCvdAofHeEAPBuv7oYmRrk6FoRoSEsH/N04U/rTwZhUa4CxQyKY1O3Pvo6sAmWFC6M\njY1Vo7p+/foxb948vv3223yO6sWMGjUqU9+ll5GcnIy+fvZX//v7++Pr6ytFIRNy7U6iKIpGCDEU\n2I12SqqXoiiXhBCDU48vBL4HrID5qe+9NdlZXJHf/HUqFO8Lq7ljcIE+/omUO20MaDBp0ZzyP/yA\nQblyatn4mCS2zjnPvZAn6r7iJXL2se9bMo/ze7XjE6aWpRjw2yIMDGU2tILEfz/8QMJl3VpnG9ap\nTblvvslW2ebNmxMQoJ3YEB0dTbdu3Xj06BFJSUlMnTqVbt26ERISQqdOnXj77bc5fvw4FStWZMuW\nLRgbG3P27FnVl6h9+/ZqvfHx8XzxxRf4+vpSrFgxfvnlF9q0aYO3tzebN28mJiaGa9eu8dVXX5GY\nmMiKFSswNDRkx44dWRrkPc/+/fv56quv0Gg0NGnShAULFmBoaIitrS1ubm7s3buXsWPH0qRJEzw9\nPYmIiKBEiRIsXryY2rVrs27dOiZPnoy+vj7m5ubs27eP77//nri4OI4dO8bXX38tp7imI1cfLxVF\n2QHseG7fwnS/DwIG5WYMumb7vv2sOPsXd8ppXUzbBCUDephO/hnsm/HfQyCdx8veZZeIi0oCoIun\nA9aVzdDTy/7Ab+DRg6ogdPIcTa0WLrJXIMkRycnJ7N+/n4EDBwJgZGTEpk2bKFmyJPfv36dZs2Z0\n7doVgGvXrrF69WoWL15Mz5492bBhA3379qV///7MnTsXFxcXxowZo9Y9b948hBBcuHCBoKAg2rdv\nz9Wr2k7/xYsXOXfuHPHx8VSvXp2ZM2dy7tw5Ro0axfLlyxk5cmSGWH/99VdWrlwJwMyZM2nVqhUe\nHh7s37+fmjVr8sknn7BgwQL1XCsrK/z8/AB45513WLhwITVq1ODUqVMMGTKEAwcOMGXKFHbv3k3F\nihWJjIykePHiTJkyBV9fX+bOnZt7H3wBRd5dssFfp0LZ4h9O3yeLeT9mA+vLlSEMI347FIVluCGJ\nNRz4+6ARHPTP9HzDEsXoNaEpppbZ9zK6HxpC5L277JyrzcrWbcwEqjcusEs4ijzZfaLXJXFxcTg6\nOhIeHk6dOnVUG2pFUfjmm284cuQIenp6hIeHc/fuXQA1NSY8tYGOjIwkMjISFxcXQGu5vXOn9kHl\n2LFjauKc2rVrU6VKFVUU2rRpg5mZGWZmZpibm/P+++8DYG9vr/Zanuf510fnz5/Hzs6OmjVrAk9f\ng6WJQtoTfnR0NMePH3/GzjohIQGAli1b4uHhQc+ePVWLa0nWSFHIBlv8w7G6c4h4s130L1eGS8Zm\nvKupSJWwGEIr1CSwYk8AajQpi32rihnOtyxnku0xhGRNEqEXA9g4faK6z86psRQESY5JG1OIjY2l\nQ4cOzJs3j+HDh7Nq1SoiIiI4e/YsBgYG2NraEh8fDzy1gAbtQHVcXNwrXz99XXp6euq2np6ezuyl\n06yyU1JSsLCwUMdQ0rNw4UJOnTrF9u3badSoEWfPntXJtQsr0jo7GzzSP8KtiluZUtoKX2MjHErZ\n8/GcRxwv3YdAW60gvPW+He/2r0v56hYZfnIyqLxvyXxVEOq83ZqPZ/6O69jvc6VdkqJBiRIl+P33\n3/n555/RaDQ8fvyYMmXKYGBgwMGDB/n3339feL6FhQUWFhYcO3YM0Fpup+Hs7KxuX716ldDQUGql\nyw/yutSqVYuQkBCCg7U5SLKyrC5ZsiR2dnasW7cO0PaG0mw7rl+/TtOmTZkyZQrW1tbcunXrhZbf\nRR0pCtkgSRzkgf5jGsfF8z+bz/CYHs1Zp9E8Ma9KSStDWvWuSZMudjkaK8iMxLhYLh7Umub1nT6b\njp6jKGNbFaEnvybJ6+Hk5ISDgwOrV6/G3d0dX19f7O3tWb58ObVr137p+cuWLcPT0xNHR0fSOysP\nGTKElJQU7O3tcXNzw9vb+5kewutiZGTEsmXL6NGjB/b29ujp6TF48OBMy65atYqlS5fSoEED6tWr\np7q8jhkzBnt7e+rXr0+LFi1o0KABbdq0ITAwEEdHR9asWaOzeAsD0jr7ZSRE0X9ZQwAWJ9uwa1sT\n/q3yNCvT4Dmt0TfQzU3bd9smDq9YStmq1ek7fbZO6pTkHwXJOltSuJDW2bnFnfP4rO6Gr5UZtokl\n2R49g7AqMQC861EH2wbWOhOE2MeR3LmqnbLoNnmmTuqUSCSSnCJF4QWs+6sT00pbIRRBi5jPCAvW\nCsL7TuFUbtZWZ9e5E3yFv779EgAjE1M55VQikeQb8u6TFWFn2WFigk1kLd67PETd3fzk95T7dvVr\nV3/rUgA75v1CikZD7GNtTub6bdrR+pNB6OnpLi+zRCKR5AQpClmwbmMvfEsaMdhfKwh2DUpTed3X\nGJoXo3ilSi85O2vCr1zmht9pTm9ep+6zb9seE8tStOjhLh1NJRJJviJFIRP+OhXKVkMjSsdo0ztU\nqW2G3fy+kJSEyWssfkmIjcHn+6erQdt4fIZTx/elEEgkkjcGKQrP8depUL7ZdIG2lZPofkF7A7c9\n/BskJaFvZYVl796vVO+RVcs48/cGAOq3aU+bfoMobqzbXMwSiUTyusgJ8OlIEwRPy0k0CpgPgLFB\nEvqXtSsga/5zDGP7+jmuN1mTpArCWx/0wKVvfykIklzn7t279OnTh6pVq9KoUSOaN2/Opk2bXqvO\nSZMmMWvWLAC+//579u3b90r1+Pv7s2PHjkyPHTp0CHNzcxwdHXFwcODdd9/l3r17rxzz84SEhPDX\nX3+p276+vgwfPlxn9Rd0pCikY4t/OBYWhzhkWBUAvRIanIO1hlnVDx18pTrjop4wt38vAOq6tMW5\ndz+MTXOWR0EiySmKovDBBx/g4uLCjRs3OHv2LD4+PoSFhWUo+6qWE1OmTOHdd999pXNfJAqgXSnt\n7+9PQEAATZo0Yd68ea90ncx4XhQaN27M77//rrP6Czry9dFzlLPypXFQPwBcTIPQ3AwGA4Nn7LCz\nQ0zkIxZ+/rG6bV3ZFhf3/jqNVVJwOLr2KvdvReu0ztKVTHHuWTPTYwcOHKB48eLPrP6tUqWKal7n\n7e3Nxo0biY6OJjk5me3bt2dqpw0wbdo0/vzzT8qUKUOlSpVolJorxMPDg/fee4/u3btz9uxZRo8e\nTXR0NKVLl8bb25vy5cvTunVrmjZtysGDB4mMjGTp0qU0bdo029bViqIQFRVF9erVAXj48CEDBgzg\nxo0blChRgkWLFuHg4JDl/sOHDzNixAgAhBAcOXKE8ePHc/nyZRwdHenXrx9OTk7MmjWLbdu2MWnS\nJEJDQ7lx4wahoaGMHDlS7UX873//Y+XKlVhbW6ufw6vkfnjTkaKQyrqr6wgx8OHt6x0oE6PNA52y\nYRl6QNXN2e9yp6Qkc/HgPvYumgNAqQo21G31Dk4dushXRpI849KlSzRs2PCFZfz8/AgICKBUqVJo\nNJpM7bT9/Pzw8fHB398fjUZDw4YNVVFIIykpiWHDhrFlyxasra1Zs2YN3377LV5eXoC2J3L69Gl2\n7NjB5MmT2bdv30utq48ePYqjoyMPHjzAxMSEH374AYCJEyfi5OTE5s2bOXDgAJ988gn+/v5Z7p81\naxbz5s2jZcuWREdHY2RkxIwZM1QRAO3rqvQEBQVx8OBBoqKiqFWrFl988QX+/v5s2LCB8+fPk5SU\nlOnnUFiQopCKt/8m4gihXEwHAFyOfknJxg2wHj4Mw2rVslVH7JPHLBk2iKR4rbOkcUlzPH5ZIGcX\nSbJ8os8rPD09OXbsGMWLF+fMmTMAtGvXTk10k5Wd9tGjR3F1daVECe0DTVrehfRcuXKFixcvqtbc\nycnJlC//NPd4ml11mhV3dnB2dlZv2jNnzmTs2LEsXLiQY8eOsWGDdnyubdu2PHjwgCdPnmS5v2XL\nlowePRp3d3c+/PBDbGxsXnrtLl26YGhoiKGhIWXKlOHu3bv8888/dOvWDSMjI4yMjFQb8MJIkReF\ntFwJN5KjaSKiKRFfHbMn/2Lh3IxKCxdku551//uG0Itaj3grm8p0/24qppbZyywlkeiaevXqqTdJ\n0CbDuX//Po0bP7W+SbOdBl5op/0yFEWhXr16nDhxItPjaQZ5+vr6rzR+0bVrVz766KMcnwcwT9TR\n+gAAEN9JREFUfvx4unTpwo4dO2jZsiW7d+9+6TnP24fryua7oFCkB5rTZhv53/yPqgaPKPNAmwvB\nKOERNvOyl5Ep/MplVk8YowpC608+pdeUH6UgSPKVtm3bEh8fz4IFTx9sYmNjsyyflZ22i4sLmzdv\nJi4ujqioKLZu3Zrh3Fq1ahEREaGKQlJSEpcuXXphfDmxrj527BjVUnvr6a26Dx06ROnSpSlZsmSW\n+69fv469vT3jxo2jSZMmBAUFvZJtdsuWLdm6dSvx8fFER0ervZjCSJHuKWzxD6e4xUmaW66l7JW3\nqRztDkDVqgKRjSTgmsTEZxajefw8HyubyrkWr0SSXYQQbN68mVGjRvHjjz9ibW2NiYkJM2dmbrbo\n7u7O+++/j729PY0bN1bttBs2bIibmxsNGjSgTJkyNGnSJMO5xYsXZ/369QwfPpzHjx+j0WgYOXIk\n9erVyzK+Nm3aMGPGDBwdHTMdaE4bU1AUBXNzc5YsWQJop8QOGDAABwcHSpQowZ9//vnC/bNnz+bg\nwYPo6elRr149OnXqhJ6eHvr6+jRo0AAPDw+cnJxe+nk2adKErl274uDgQNmyZbG3t8fc3Pyl5xVE\nirR1dvslM7ljsBLzaH16X/gFgCqlY+kypfMLcxikpCQT8+gRgUcOcMxnOWWr1qDv9F91EpOk8CCt\nswsX0dHRmJqaEhsbi4uLC4sWLXrpYH5+Ia2zX5GEpONMX6nhSZnBPCoFlW7to/OvE7IUhKTEBAL2\n7uLQ8sXP7O8yYkym5SUSSeHhs88+IzAwkPj4ePr16/fGCsLrUmRFYczuP/hx0VVKxsGJytr3/x2W\njEDP2DjT8nFRT5g/qI+6bVnBhsbvuWJRthyW5SrkScwSiST/SL/grTBTJEVhzO4/2PXfXNyTwN/x\nc+JKlKWsXUkMy5fNtHzg0YPsnPszAIYlTOg74zcsyuZsMZtEIpEUBIqkKJwLW4ddZE1ONB9Eir52\n+plLr2fnkaekJLN30VwSY2O5euofQGtx3XbAFxQzMMjzmCUSiSQvKHKiMGb3H8RqNLhe8yRFH4z0\n4uk5tS1mpYyeKbduyreEXb4IQKmKlXDs0AWnDu/lR8gSiUSSZxQ5UQgJWYL7Oe20vMqhe3ln8oeU\neE4QkhLiVUEY5r1W2lNIJJIiQ5FavLZ93z6q/peqg0oK1W9sxjidf4miKNwLucHvn3QHoHbLVlIQ\nJAWWadOmUa9ePRwcHHB0dOTUqVNMnjyZr7/++ply/v7+6vRFW1tbnJ2dnznu6OhI/fo5t4wHaNGi\nBZDRmdTb25uhQ4fmuL7WrVuT2ZT0hIQE3n33XRwdHVmzZk22zsktQkJCXvnzehMoUj2FU5dv4hBo\nT6Ql1L/zNzbz56nTTxPjYvnru694EBaqlu84ZGR+hSqRvBYnTpxg27Zt+Pn5YWhoyP3790lMTKR3\n79507NiR6dOnq2V9fHzonS55VFRUFLdu3aJSpUpcvnz5teI4fvw48FQU+vTp85IzsiY5OTnLY+fO\nnQO0AqdLkpOT0c/GQtbCRJEShTuac5S11OY2qPP7FMxsLQCtIMzx6KmWe3/UeGwbNES/mBxQluiG\ng96LuPfvDZ3WWaZKVdp4fJbpsTt37lC6dGnVx6d06dLqMUtLS06dOkXTpk0BWLt27TOeQD179mTN\nmjV89dVXrF69mt69e7NixYoM1/D09KRDhw507doVV1dXLC0t8fLywsvLi+vXrzNt2jRMTU2Jjo7O\nYFdtaWnJ7du36dixI9evX8fV1ZUff/wxwzVsbW1xc3Nj7969jB07FoAVK1YwaNAgNBoNXl5e2Nra\n0rdvXyIiInB0dGTDhg2qLUZ6UlJSGDBgADY2NkydOpU9e/YwceJEEhISqFatGsuWLcPU1DTDNRcu\nXJjB/tvZ2Znk5GTGjx/PoUOHSEhIwNPTk88//zwH3+CbSZF6fVQmQvtPaaoJpUyqIAAE/XMEACOz\nknh6+VCz2dvytZGkQNO+fXtu3bpFzZo1GTJkCIcPH1aP9e7dGx8fHwBOnjxJqVKlqFGjhnr8o48+\nYuPGjQBs3bo1S0dQZ2dnjh49CkB4eDiBgYGA1qLCxcXlmbIzZsxQE+eMGjUK0D7Vr1mzhgsXLrBm\nzRpu3bqV6XWsrKzw8/OjVy/tA11sbCz+/v7Mnz+fAQMGUKZMGZYsWaLWn5kgaDQa3N3dqVGjBlOn\nTuX+/ftMnTqVffv24efnR+PGjfnll1+yvGaa/ffs2bOZPHkyAEuXLsXc3JwzZ85w5swZFi9ezM2b\nNzNtQ0GiyPQUxu2ci+3ttqQYQdPWWlvfB+G3OLdrG+f3bAfg4+mzMTIxzc8wJYWUrJ7ocwtTU1PO\nnj3L0aNHOXjwIG5ubsyYMQMPDw/c3Nxo0aIFP//8c4ZXR6C9IVpaWuLj40OdOnVU2+zncXZ2Zvbs\n2QQGBlK3bl0ePXrEnTt3OHHiRLYymb3zzjuqf1DdunX5999/qVSpUoZyz/sipcXr4uLCkydPiIyM\nfOm1Pv/8c3r27Mm3334LaMUwMDCQli1bApCYmEjz5s2zvGZm9t979uwhICCA9evXA1pTwWvXrlGz\nZv7apL8uuSoKQoiOwG+APrBEUZQZzx0Xqcc7A7GAh6IofrkRy9Hbe6lspM3AZNO6IU/uR+A9+gv1\nuFPH9zErbZ0bl5ZI8gV9fX1at25N69atsbe3588//8TDw4NKlSphZ2fH4cOH2bBhQ6aW125ubnh6\neuLt7Z1l/RUrViQyMpJdu3bh4uLCw4cPWbt2LaamppiZvTzlbHYtqtNbfAMZ8pNkJ19JixYtOHjw\nIF9++SVGRkYoikK7du1YvXp1tq6Zmf23oijMmTOHDh06PFM2uzkj3lRy7fWREEIfmAd0AuoCvYUQ\ndZ8r1gmokfrzGZD9BAY5pOa9EiiKglnscW6HX2X91O8AqOvchsF/rKBt/89lMhxJoeHKlStcu3ZN\n3fb396dKlSrqdu/evRk1ahRVq1bNNPGMq6srY8eOzXDDe55mzZoxe/ZsXFxccHZ2ZtasWRlmL0HO\nrLJfRtrsomPHjmFubp4tt9KBAwfSuXNnevbsiUajoVmzZvzzzz8EBwcDEBMTw9WrV3MUR4cOHViw\nYAFJSUkAXL16lZiYmBy25s0jN3sKbwHBiqLcABBC+ADdgMB0ZboByxWtVetJIYSFEKK8oih3dB2M\n/S1TEiJnE4HC1l9Oqvs7eo6WYiApdERHRzNs2DAiIyMpVqwY1atXZ9GiRerxHj16MHz4cObMmZPp\n+WZmZowbN+6l13F2dmbPnj1Ur16dKlWq8PDhw0xFwcHB4Rm7aktLy1dum5GREU5OTiQlJakpP7PD\n6NGjefz4MR9//DGrVq3C29ub3r17k5CQAMDUqVNz9Opn0KBBhISE0LBhQxRFwdrams2bN+e4PW8a\nuWadLYToDnRUFGVQ6vbHQFNFUYamK7MNmKEoyrHU7f3AOEVRfJ+r6zO0PQkqV67cKC0BSE64cfQQ\nvls3UczcnLc+7ImhiSkm5haUMLd4+ckSySsgrbMl+UWht85WFGURsAi0+RRepY6qzq2p6txal2FJ\nJBJJoSM3p6SGA+mnEtik7stpGYlEIpHkEbkpCmeAGkIIOyFEcaAX8PdzZf4GPhFamgGPc2M8QSLJ\nLwpaZkNJwed1/+Zy7fWRoigaIcRQYDfaKaleiqJcEkIMTj2+ENiBdjpqMNopqf1zKx6JJK8xMjLi\nwYMHWFlZyckMkjxBURQePHiAkZHRywtnQZHO0SyR5CZJSUmEhYURHx+f36FIihBGRkbY2Nhg8Fze\nl0I10CyRFEQMDAyws7PL7zAkkhxRpLyPJBKJRPJipChIJBKJREWKgkQikUhUCtxAsxAiAsj5kmYt\npYH7OgynICDbXDSQbS4avE6bqyiK8lLXzwInCq+DEMI3O6PvhQnZ5qKBbHPRIC/aLF8fSSQSiURF\nioJEIpFIVIqaKCx6eZFCh2xz0UC2uWiQ620uUmMKEolEInkxRa2nIJFIJJIXIEVBIpFIJCqFUhSE\nEB2FEFeEEMFCiPGZHBdCiN9TjwcIIRrmR5y6JBttdk9t6wUhxHEhRIP8iFOXvKzN6co1EUJoUrMB\nFmiy02YhRGshhL8Q4pIQ4nBex6hrsvG3bS6E2CqEOJ/a5gLttiyE8BJC3BNCXMzieO7evxRFKVQ/\naG26rwNVgeLAeaDuc2U6AzsBATQDTuV33HnQ5haAZervnYpCm9OVO4DWpr17fsedB9+zBdo86JVT\nt8vkd9x50OZvgJmpv1sDD4Hi+R37a7TZBWgIXMzieK7evwpjT+EtIFhRlBuKoiQCPkC358p0A5Yr\nWk4CFkKI8nkdqA55aZsVRTmuKMqj1M2TaLPcFWSy8z0DDAM2APfyMrhcIjtt7gNsVBQlFEBRlILe\n7uy0WQHMhDZphSlaUdDkbZi6Q1GUI2jbkBW5ev8qjKJQEbiVbjssdV9OyxQkctqegWifNAoyL22z\nEKIi4AosyMO4cpPsfM81AUshxCEhxFkhxCd5Fl3ukJ02zwXqALeBC8AIRVFS8ia8fCFX718yn0IR\nQwjRBq0ovJ3fseQBs4FxiqKkFKHMZ8WARsA7gDFwQghxUlGUq/kbVq7SAfAH2gLVgL1CiKOKojzJ\n37AKJoVRFMKBSum2bVL35bRMQSJb7RFCOABLgE6KojzIo9hyi+y0uTHgkyoIpYHOQgiNoiib8yZE\nnZOdNocBDxRFiQFihBBHgAZAQRWF7LS5PzBD0b5wDxZC3ARqA6fzJsQ8J1fvX4Xx9dEZoIYQwk4I\nURzoBfz9XJm/gU9SR/GbAY8VRbmT14HqkJe2WQhRGdgIfFxInhpf2mZFUewURbFVFMUWWA8MKcCC\nANn7294CvC2EKCaEKAE0BS7ncZy6JDttDkXbM0IIURaoBdzI0yjzlly9fxW6noKiKBohxFBgN9qZ\nC16KolwSQgxOPb4Q7UyUzkAwEIv2SaPAks02fw9YAfNTn5w1SgF2mMxmmwsV2WmzoiiXhRC7gAAg\nBViiKEqmUxsLAtn8nv8HeAshLqCdkTNOUZQCa6kthFgNtAZKCyHCgImAAeTN/UvaXEgkEolEpTC+\nPpJIJBLJKyJFQSKRSCQqUhQkEolEoiJFQSKRSCQqUhQkEolEoiJFQSJ5DiFEcqrLaNqPbarz6OPU\n7ctCiIk5rNNCCDEkt2KWSHSFFAWJJCNxiqI4pvsJSd1/VFEUR7Qrpfs+b1kshHjRuh8LQIqC5I1H\nioJEkkNSLSTOAtWFEB5CiL+FEAeA/UIIUyHEfiGEX2ruijRHzxlAtdSexk8AQogxQogzqZ74k/Op\nORLJMxS6Fc0SiQ4wFkL4p/5+U1EU1/QHhRBWaH3s/wc0Qet976AoysPU3oKroihPhBClgZNCiL+B\n8UD91J4GQoj2QA201tAC+FsI4ZJqmyyR5BtSFCSSjMSl3byfw1kIcQ6tfcSMVLuFJsBeRVHS/O8F\n8IMQwiW1XEWgbCZ1tU/9OZe6bYpWJKQoSPIVKQoSSfY5qijKe5nsj0n3uzva7F+NFEVJEkKEAEaZ\nnCOA6Yqi/KH7MCWSV0eOKUgkusUcuJcqCG2AKqn7owCzdOV2AwOEEKagTQgkhCiTt6FKJBmRPQWJ\nRLesAramOnb6AkEAiqI8EEL8k5qMfaeiKGOEEHXQJsEBiAb6UjjShkoKMNIlVSKRSCQq8vWRRCKR\nSFSkKEgkEolERYqCRCKRSFSkKEgkEolERYqCRCKRSFSkKEgkEolERYqCRCKRSFT+D5lwSPh4i9JU\nAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x111cd550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"n_splits=24\n",
"kfold=StratifiedKFold(n_splits=n_splits, shuffle=False)\n",
"\n",
"featurelist=[\"Diameter\",\"MeanHU\",\"Spiculation\",\"Eccentricity\"]\n",
"models=[GaussianNB(), optimal_mnb,\n",
" optimal_lr,\n",
" optimal_rf,\n",
" optimal_gb,\n",
" SVC(C=0.02,kernel='rbf', probability=True),\n",
" SVC(C=0.02, kernel='linear', probability=True)]\n",
"name=[\"Gaussian Naive Bayes\", \"Multinomial Naive Bayes\", \"Logistic Regression\", \"Random Forest\", \"Gradient Boosting\", \"SVM with rbf kernel\", \"SVM with linear kernel\"]\n",
"\n",
"predictedmodels={}\n",
"\n",
"\n",
"\n",
"for nm, clf in zip(name[:-1], models[:-1]):\n",
" print(nm)\n",
" predicted=[]\n",
" mallabelcv=[]\n",
" for train,test in kfold.split(inputfeatures,malignantlabel):\n",
" if nm==name[1]:\n",
" clf.fit(roundedfeatures[featurelist].iloc[train],[malignantlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(roundedfeatures[featurelist].iloc[test])[:,1])\n",
" else:\n",
" clf.fit(inputfeatures[featurelist].iloc[train],[malignantlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(inputfeatures[featurelist].iloc[test])[:,1])\n",
" mallabelcv.append([malignantlabel[i] for i in test])\n",
" if nm==name[1]: \n",
" scores=cross_val_score(clf,roundedfeatures[featurelist], malignantlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" else:\n",
" scores=cross_val_score(clf,inputfeatures[featurelist], malignantlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" predicted=np.concatenate(np.array(predicted),axis=0)\n",
" mallabelcv=np.concatenate(np.array(mallabelcv),axis=0)\n",
" predictedmodels[nm]=predicted\n",
" roc=roc_curve(mallabelcv,predicted)\n",
" print(\"Average precision score:\", average_precision_score(mallabelcv,predicted))\n",
" print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
" plt.plot(roc[0],roc[1])\n",
" #print(-scores)\n",
" print(\"Cross-validated logloss\",-np.mean(scores))\n",
" print(\"---------------------------------------\")\n",
" #plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(name)\n",
"plt.savefig(\"clfroccomparison.png\",dpi=300)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Models averaged: ['Multinomial Naive Bayes', 'Logistic Regression']\n",
"Area under curve: 0.645943704899\n",
"Average precision score: 0.413326782175\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF7xJREFUeJzt3X+w5XV93/HnS5RRiyvirs66sGFDiHqNSvTCirUGQ1Wg\ndbZ2bINobGgsMoq1005G6h9Sa5qQttOq8cdmayi11WAbrSzpKhqdRBJl3SUiyBrtBhB23Q6LWFfR\niW5594/zg8Ph3HvP3b3f8/P5mLnj+X7Pd899f2flvPbz85uqQpIkgMeMuwBJ0uQwFCRJXYaCJKnL\nUJAkdRkKkqQuQ0GS1GUoSJK6DAVpGUnuTvLjJD9M8n+SXJvkpJ73X5zkC0l+kOT7SW5IstD3GeuS\nvCfJPe3P+av28frR35G0PENBWtmrquok4CzgF4F/CZDkXOCzwPXAM4AtwNeAP0/ys+1rTgQ+DzwH\nuABYB5wL3A+cM9rbkFYWVzRLS0tyN/DGqvrj9vG/BZ5TVX8nyU3A7VX15r4/82ngcFW9IckbgX8D\nnFFVPxxx+dKq2VKQhpTkVOBCYH+SJwIvBv7HgEv/O/Dy9uu/DXzGQNC0MBSklX0qyQ+Ae4H7gKuA\nU2j993NowPWHgM54wVOXuEaaSIaCtLK/V1VPAs4DnkXrC/97wEPAxgHXb6Q1ZgDw3SWukSaSoSAN\nqar+FLgW+PdV9SDwZeAfDLj0H9IaXAb4Y+CVSf7GSIqUjpOhIK3Oe4CXJ3k+cCXwj5L80yRPSvKU\nJL9Ja3bRu9rX/1da3U6fSPKsJI9J8tQk70hy0XhuQVqaoSCtQlUdBj4CvLOq/gx4JfD3aY0bfJvW\nlNWXVNX/bl//17QGm/8S+BxwBPgKrS6o3SO/AWkFTkmVJHXZUpAkdRkKkqQuQ0GS1GUoSJK6Hjvu\nAlZr/fr1dfrpp4+7DEmaKrfccsv9VbVhpeumLhROP/109u7dO+4yJGmqJPn2MNfZfSRJ6jIUJEld\nhoIkqctQkCR1GQqSpK7GQiHJNUnuS/L1Jd5Pkvcl2Z/ktiQvaKoWSdJwmmwpXEvrQeVLuRA4s/1z\nGfChBmuRJA2hsVCoqi8CDyxzyTbgI9VyM3ByEp9QJUkDvOuGO3jXDXc0/nvGuXhtE62Hj3QcaJ97\n1PNsk1xGqzXB5s2bR1KcJI3Lx3bfw/W3HnzEud13PcDWLac0/runYkVzVe0AdgAsLi76AAhJM6kT\nBrvvanWy9IbA1i2nsO2sTY3XMM5QOAic1nN8avucJM2l6289yL5DR7oBcMnW0feMjDMUdgJXJLkO\n2Ap8v6oe1XUkSbNoUBfRvkNHWNi4jo+/6dwxVdVgKCT5A+A8YH2SA8BVwOMAqmo7sAu4CNgP/Ai4\ntKlaJGnc+kNgUBfRwsZ1I+kiWk5joVBVr13h/QLe0tTvl6Rx6w2C/hAYZxfRcqZioFmSpsFyrYFJ\nDYF+hoIkDWnQOECvaWkNLMdQkKRlLNcF1G8aQ6CfoSBJfZYKgln40l+JoSBJzHcQ9DIUJM21QauI\n5y0IehkKkmbecgPEvWEwr0HQy1CQNNM+tvse3vE/bwcGDxAbBo9kKEiaOYPGB37r1c/1i38IhoKk\nqTcLi8YmhaEgaaoN6h4yCI6doSBpKiw1WGz30NoyFCRNvOUGi20VrC1DQdLEWWqMwNZA8wwFSRNj\nqcdR2hoYHUNB0tgNCgNDYDwMBUlj1T9eYBiMl6EgaWQGzSByvGCyGAqSRmKpGUS2DiaLoSCpcb2B\nYItgshkKko7bsI+pNBAmn6Eg6ZjM22Mq54WhIGnV+scH/NKfHYaCpKH1ryewO2j2GAqSVuTisvlh\nKEhalovL5ouhIGlZncFku4rmg6Eg6RH6p5fuO3SErVtOMRDmhKEgCVh6h9KFjevYdtamcZamETIU\nJAGtbqJOq8Bxg/llKEhzrLeraN+hIyxsXMfH33TumKvSOD2myQ9PckGSbybZn+TKAe8/OckNSb6W\n5I4klzZZj6SHdWYVdbqL7CYSNNhSSHIC8AHg5cABYE+SnVW1r+eytwD7qupVSTYA30zy0ar6SVN1\nSWpxVpEGabKlcA6wv6rubH/JXwds67umgCclCXAS8ABwtMGaJNFqJey+6wFnFelRmgyFTcC9PccH\n2ud6vR94NvAd4HbgbVX1UP8HJbksyd4kew8fPtxUvdJc6F2MZneR+o17oPmVwK3ALwNnAJ9LclNV\nHem9qKp2ADsAFhcXa+RVSlNu0I6mdhtpkCZD4SBwWs/xqe1zvS4Frq6qAvYnuQt4FvCVBuuSZtpy\nj7x0R1OtpMlQ2AOcmWQLrTC4GLik75p7gPOBm5I8HXgmcGeDNUkzZaUA6DAINKzGQqGqjia5ArgR\nOAG4pqruSHJ5+/3twLuBa5PcDgR4e1Xd31RN0qxYavVx57UBoGPV6JhCVe0CdvWd297z+jvAK5qs\nQZo17lqqJo17oFnSKvQGggPFaoKhIE0Bn3imUTEUpCngZnUaFUNBmnC9q4/drE5NMxSkCdXfZeTq\nY42CoSBNIGcYaVwMBWnCOMNI49To8xQkrY6BoHEzFKQJYSBoEth9JI1J/75FrkHQJDAUpAYN2rCu\no3/fIgeUNQkMBakh/TOI+hkCmkSGgrRG7A7SLDAUpDUwqFVgS0DTyFCQjpOzhjRLDAVplewm0iwz\nFKRV6uxYurBxHWA3kWaLoSANobd10AkEdyzVLDIUpGUMehbywsZ17liqmWUoSEtwp1LNI0NBGsAZ\nRZpXbogn9TEQNM8MBamHgaB5ZyhIbQaC5JiC5lzvVFMXoUmGguZY/+wiZxhJhoLmUP/aA1sG0sMM\nBc2NQQvRbBlIj2QoaC64EE0ajqGgmeUgsrR6jYZCkguA9wInAB+uqqsHXHMe8B7gccD9VfVLTdak\n2Teom8jWgTScxkIhyQnAB4CXAweAPUl2VtW+nmtOBj4IXFBV9yR5WlP1aH50trY2CKTVa7KlcA6w\nv6ruBEhyHbAN2NdzzSXAJ6vqHoCquq/BejRH3NpaOjZNrmjeBNzbc3ygfa7XzwNPSfInSW5J8oYG\n69Ec+Njue7rdRpJWb9wDzY8FXgicDzwB+HKSm6vqW70XJbkMuAxg82a7AjRY7wwjn3cgHZsmWwoH\ngdN6jk9tn+t1ALixqh6sqvuBLwLP7/+gqtpRVYtVtbhhw4bGCtb0ct8iaW002VLYA5yZZAutMLiY\n1hhCr+uB9yd5LHAisBX4jw3WpBnj6mRpbTUWClV1NMkVwI20pqReU1V3JLm8/f72qvpGks8AtwEP\n0Zq2+vWmatLscHWy1IxU1bhrWJXFxcXau3fvuMvQmP3K732ZfYeOdJ+XbBhIy0tyS1UtrnTdii2F\nJE8E/gWwuar+SZIzgWdW1R+tQZ3SUHpXJwPdQHDaqbS2hhlo/s/AXwOd//oOAr/ZWEVSn84gcu9U\n004LQdLaGmZM4Yyq+pUkrwWoqh8lScN1SQ4iS2MwTCj8JMkTgAJIcgatloPUGHc1lcZjmFD4V8Bn\ngNOSfBT4m8ClTRal+eaaA2l8VgyFqvpskluAFwEB3tZeaCY1ojOgbCBIozfM7KPPV9X5wP8acE46\nboNmFm3dcoqBII3BkqGQ5PHAE4H1SZ5Cq5UAsI5Hb2wnrdqgBWjgzCJpnJZrKbwJ+GfAM4BbeDgU\njgDvb7guzaD+FoGrkaXJs2QoVNV7gfcmeWtV/e4Ia9IM6p9N1Plfw0CaLMMMNP9ukl8AFoDH95z/\nSJOFaTa41kCaLsMMNF8FnEcrFHYBFwJ/BhgKWpIb1knTaZh1Cq+h9YyDr1bVpUmeDvy3ZsvSNHPh\nmTS9hgmFH1fVQ0mOJlkH3McjH54jdbnwTJpuw4TC3iQnA/+J1iykHwJfbrQqTR3HDqTZsGwotDe+\n++2q+r/A9vYDcdZV1W0jqU5T4/pbD3YXndldJE2vZUOhqirJLuC57eO7R1GUpsvHdt/D7rseYOuW\nU3y+gTTlhuk++oskZ1fVnsar0dToXYjW6TJyFbI0/YYJha3A65PcDTxIa2VzVdXzmixMk6t/dpFd\nRtLsGCYUXtl4FZpY/VtTAA4mSzNspQ3xLgd+Drgd+P2qOjqqwjReS21W13lty0CaTcu1FP4L8FPg\nJlqrmBeAt42iKI2Xi8+k+bVcKCxU1XMBkvw+8JXRlKRxca2BpOVC4aedF1V1tLVkQbPMtQaSlguF\ns5Icab8O8IT2cWf20brGq9PILWxc51oDaY4tFwpfq6pfHFklGptOt9G+Q0dY2GjWS/NsuVCokVWh\nsRk0qCxpfi0XCk9L8s+XerOq/kMD9WiE3NFUUr/lQuEE4CQefjazZkxnUZqBIKljuVA4VFX/emSV\naKR6N7EzECR1LBcKthBmjJvYSVrJcqFw/vF+eJILgPfS6or6cFVdvcR1Z9N6cM/FVfWHx/t79bBB\nQeAmdpKWsmQoVNUDx/PBSU4APgC8HDgA7Emys6r2Dbjud4DPHs/v06O5m6mk1Rpml9RjdQ6wv6ru\nBEhyHbAN2Nd33VuBTwBnN1jL3HFmkaRj8ZgGP3sTcG/P8YH2ua4km4BXAx9a7oOSXJZkb5K9hw8f\nXvNCZ42BIOlYNRkKw3gP8Paqemi5i6pqR1UtVtXihg0bRlTa9HKqqaRj1WT30UHgtJ7jU9vnei0C\n17U321sPXJTkaFV9qsG6ZlLvgHJnUzsDQdJqNRkKe4Azk2yhFQYXA5f0XlBVWzqvk1wL/JGBsDqD\nHoazsHGdU00lHZPGQqG93fYVwI20pqReU1V3JLm8/f72pn73vPBhOJLWWpMtBapqF7Cr79zAMKiq\nX2uyllnk2IGktdZoKKgZvVtdO3YgaS0ZClPGra4lNclQmCKuP5DUtHGvU9CQDARJo2AoTAkHlSWN\ngqEwRRxUltQ0xxQmXO9Mo4WN68ZdjqQZZyhMoKWegeBMI0lNMxQmUG/LwJXKkkbJUJhQCxvX8fE3\nnTvuMiTNGQeaJUldthQmiIPKksbNlsIE6Q0EB5UljYMthQnxsd33sPuuB9i65RTHEiSNjaEwZv0P\nybGFIGmcDIUx8iE5kiaNoTBG7mckadI40DwmvWMIBoKkSWEojEmnleAYgqRJYiiMga0ESZPKUBgD\nWwmSJpWhMGK2EiRNMkNhhHqnoNpKkDSJDIUR8RnLkqaBoTAirkmQNA0MhRFyHEHSpHNFc4N6H6vp\ndtiSpoEthYZ0xhA6G925HbakaWBLoQEOKkuaVrYUGuCgsqRpZSisMRenSZpmjYZCkguSfDPJ/iRX\nDnj/dUluS3J7ki8leX6T9TTNxWmSpl1joZDkBOADwIXAAvDaJAt9l90F/FJVPRd4N7CjqXqa5jiC\npFnQZEvhHGB/Vd1ZVT8BrgO29V5QVV+qqu+1D28GTm2wnsYYCJJmRZOhsAm4t+f4QPvcUn4d+PSg\nN5JclmRvkr2HDx9ewxLXhgPLkmbFRAw0J3kZrVB4+6D3q2pHVS1W1eKGDRtGW9yQHFiWNAuaXKdw\nEDit5/jU9rlHSPI84MPAhVX13QbrWXOdFcuuVpY0K5oMhT3AmUm20AqDi4FLei9Ishn4JPCrVfWt\nBmtZc73jCFu3nOJsI0kzobFQqKqjSa4AbgROAK6pqjuSXN5+fzvwTuCpwAeTABytqsWmaloLndZB\nZ/sKxxEkzZJGt7moql3Arr5z23tevxF4Y5M1rLVOd1GndWAgSJol7n10DBY2ruPjbzp33GVI0pqb\niNlH06KzhYUkzSpDYRU66xEcVJY0q+w+GkLv1FPXI0iaZYbCCpx6KmmeGAorcAsLSfPEMYVl+GwE\nSfPGUFiCz0aQNI8MhSXYbSRpHhkKA9htJGleGQp97DaSNM8MhR4+QU3SvDMUejiOIGneGQp9HEeQ\nNM8MhTY3u5MkQ6HLze4kyVAAnIIqSR2GArYSJKnDUGizlSBJhoIkqcfch4KzjiTpYXMdCm5pIUmP\nNJcP2ek8XrPTQnAFsyS1zF0oDHq8poEgSS1zFwrubyRJS5vLMQWnn0rSYHMZCpKkweYqFJx+KknL\nm6tQcDsLSVreXIUCOJ4gSctpNBSSXJDkm0n2J7lywPtJ8r72+7cleUFTtdh1JEkraywUkpwAfAC4\nEFgAXptkoe+yC4Ez2z+XAR9qqh67jiRpZU22FM4B9lfVnVX1E+A6YFvfNduAj1TLzcDJSTY2VZBd\nR5K0vCYXr20C7u05PgBsHeKaTcCh3ouSXEarJcHmzcf2pb7wjHXH9OckaZ5MxYrmqtoB7ABYXFys\nY/mMq171nDWtSZJmUZPdRweB03qOT22fW+01kqQRaTIU9gBnJtmS5ETgYmBn3zU7gTe0ZyG9CPh+\nVR3q/yBJ0mg01n1UVUeTXAHcCJwAXFNVdyS5vP3+dmAXcBGwH/gRcGlT9UiSVtbomEJV7aL1xd97\nbnvP6wLe0mQNkqThzd2KZknS0gwFSVKXoSBJ6jIUJEldaY31To8kh4FvH+MfXw/cv4blTAPveT54\nz/PheO75Z6pqw0oXTV0oHI8ke6tqcdx1jJL3PB+85/kwinu2+0iS1GUoSJK65i0Udoy7gDHwnueD\n9zwfGr/nuRpTkCQtb95aCpKkZRgKkqSumQyFJBck+WaS/UmuHPB+kryv/f5tSV4wjjrX0hD3/Lr2\nvd6e5EtJnj+OOtfSSvfcc93ZSY4mec0o62vCMPec5Lwktya5I8mfjrrGtTbE/7efnOSGJF9r3/NU\n77ac5Jok9yX5+hLvN/v9VVUz9UNrm+6/An4WOBH4GrDQd81FwKeBAC8Cdo+77hHc84uBp7RfXzgP\n99xz3Rdo7db7mnHXPYK/55OBfcDm9vHTxl33CO75HcDvtF9vAB4AThx37cdxzy8FXgB8fYn3G/3+\nmsWWwjnA/qq6s6p+AlwHbOu7ZhvwkWq5GTg5ycZRF7qGVrznqvpSVX2vfXgzrafcTbNh/p4B3gp8\nArhvlMU1ZJh7vgT4ZFXdA1BV037fw9xzAU9KEuAkWqFwdLRlrp2q+iKte1hKo99fsxgKm4B7e44P\ntM+t9pppstr7+XVa/9KYZivec5JNwKuBD42wriYN8/f888BTkvxJkluSvGFk1TVjmHt+P/Bs4DvA\n7cDbquqh0ZQ3Fo1+fzX6kB1NniQvoxUKLxl3LSPwHuDtVfVQ6x+Rc+GxwAuB84EnAF9OcnNVfWu8\nZTXqlcCtwC8DZwCfS3JTVR0Zb1nTaRZD4SBwWs/xqe1zq71mmgx1P0meB3wYuLCqvjui2poyzD0v\nAte1A2E9cFGSo1X1qdGUuOaGuecDwHer6kHgwSRfBJ4PTGsoDHPPlwJXV6vDfX+Su4BnAV8ZTYkj\n1+j31yx2H+0BzkyyJcmJwMXAzr5rdgJvaI/ivwj4flUdGnWha2jFe06yGfgk8Ksz8q/GFe+5qrZU\n1elVdTrwh8CbpzgQYLj/b18PvCTJY5M8EdgKfGPEda6lYe75HlotI5I8HXgmcOdIqxytRr+/Zq6l\nUFVHk1wB3Ehr5sI1VXVHksvb72+nNRPlImA/8CNa/9KYWkPe8zuBpwIfbP/L+WhN8Q6TQ97zTBnm\nnqvqG0k+A9wGPAR8uKoGTm2cBkP+Pb8buDbJ7bRm5Ly9qqZ2S+0kfwCcB6xPcgC4CngcjOb7y20u\nJElds9h9JEk6RoaCJKnLUJAkdRkKkqQuQ0GS1GUoSH2S/L/2LqOdn9PbO49+v338jSRXrfIzT07y\n5qZqltaKoSA92o+r6qyen7vb52+qqrNorZR+ff+WxUmWW/dzMmAoaOIZCtIqtbeQuAX4uSS/lmRn\nki8An09yUpLPJ/mL9rMrOjt6Xg2c0W5p/DuAJL+RZE97T/x3jel2pEeYuRXN0hp4QpJb26/vqqpX\n976Z5Km09rF/N3A2rb3vn1dVD7RbC6+uqiNJ1gM3J9kJXAn8QrulQZJXAGfS2ho6wM4kL21vmyyN\njaEgPdqPO1/eff5Wkq/S2j7i6vZ2C2cDn6uqzv73AX4ryUvb120Cnj7gs17R/vlq+/gkWiFhKGis\nDAVpeDdV1d8dcP7Bntevo/X0rxdW1U+T3A08fsCfCfDbVfV7a1+mdOwcU5DW1pOB+9qB8DLgZ9rn\nfwA8qee6G4F/nOQkaD0QKMnTRluq9Gi2FKS19VHghvaOnXuBvwSoqu8m+fP2w9g/XVW/keTZtB6C\nA/BD4PXMxmNDNcXcJVWS1GX3kSSpy1CQJHUZCpKkLkNBktRlKEiSugwFSVKXoSBJ6vr/e/xJ1m5p\n53QAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x119a0f28>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Logistic Regression logloss 0.551825461897\n",
"Ensemble of models logloss 0.551930318918\n"
]
}
],
"source": [
"#Ensemble of multiple models by averaging their prediction outputs\n",
"\n",
"predictedmodels=pd.DataFrame(predictedmodels)\n",
"models=[name[i] for i in [1,2]]\n",
"predictedmean=np.mean(predictedmodels[models],axis=1)\n",
"roc=roc_curve(mallabelcv,predictedmean)\n",
"print(\"Models averaged:\",models)\n",
"print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
"print(\"Average precision score:\", average_precision_score(mallabelcv,predictedmean))\n",
"plt.plot(roc[0],roc[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.show()\n",
"print(\"Logistic Regression logloss\",log_loss(mallabelcv,predictedmodels[name[2]]))\n",
"print(\"Ensemble of models logloss\",log_loss(mallabelcv,predictedmean))"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gaussian Naive Bayes\n",
"Average precision score: 0.292869667393\n",
"Area under curve: 0.505311216148\n",
"Cross-validated logloss 0.603750022224\n",
"---------------------------------------\n",
"Multinomial Naive Bayes\n",
"Average precision score: 0.289291994353\n",
"Area under curve: 0.5050129433\n",
"Cross-validated logloss 0.592039297402\n",
"---------------------------------------\n",
"Logistic Regression\n",
"Average precision score: 0.265452572085\n",
"Area under curve: 0.482313726429\n",
"Cross-validated logloss 0.593946852487\n",
"---------------------------------------\n",
"Random Forest\n",
"Average precision score: 0.272393993431\n",
"Area under curve: 0.468075008001\n",
"Cross-validated logloss 0.603813293483\n",
"---------------------------------------\n",
"Gradient Boosting\n",
"Average precision score: 0.286135769747\n",
"Area under curve: 0.50192788764\n",
"Cross-validated logloss 0.596427710433\n",
"---------------------------------------\n",
"SVM with rbf kernel\n",
"Average precision score: 0.278733456464\n",
"Area under curve: 0.510783543177\n",
"Cross-validated logloss 0.59313741474\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8T9f/x583O5LIjpFEBhFkR4iImVg1Ym8lQtVWWqOq\nii+q+KFFqbaE2qNWzdqjxIhI7QRBSCND9pBxf3985CMhEStCnOfj0Udzzz33nPdJPj6ve9brSLIs\nIxAIBAIBgEppByAQCASC9wchCgKBQCBQIkRBIBAIBEqEKAgEAoFAiRAFgUAgECgRoiAQCAQCJUIU\nBAKBQKBEiIJA8AIkSYqQJCldkqQUSZL+kyQpUJIk3Xz360uSdEiSpGRJkhIlSdopSVKtZ8ooL0nS\nAkmS7j4p5+aTa5N33yKB4MUIURAIiqedLMu6gCvgBnwNIEmSF7Af2A5UBmyAi8BJSZJsn+TRAA4C\nDkAroDzgBcQCdd9tMwSC4pHEjmaBoGgkSYoABsqyfODJ9WzAQZblNpIkHQf+lWV56DPP7AFiZFnu\nK0nSQGAGUFWW5ZR3HL5A8MqInoJA8JJIkmQBfAKES5JUDqgPbCok60ag+ZOfmwF7hSAIPhSEKAgE\nxbNNkqRk4B7wEPgOMELx7yeqkPxRQN58gXEReQSC9xIhCgJB8XSQZVkPaALUQPGF/wjIBSoVkr8S\nijkDgLgi8ggE7yVCFASCl0SW5aNAIDBXluVU4BTQtZCs3VBMLgMcAFpKkqTzToIUCN4QIQoCwaux\nAGguSZILMAHoJ0nSSEmS9CRJMpQkaTqK1UVTn+T/A8Ww0xZJkmpIkqQiSZKxJEkTJUlqXTpNEAiK\nRoiCQPAKyLIcA6wCJsuyfAJoCXRCMW9wB8WS1QayLIc9yZ+JYrL5GvA3kAScQTEEFfTOGyAQFINY\nkioQCAQCJaKnIBAIBAIlQhQEAoFAoESIgkAgEAiUCFEQCAQCgRK10g7gVTExMZGtra1LOwyBQCD4\noDh//nysLMumxeX74ETB2tqac+fOlXYYAoFA8EEhSdKdl8knho8EAoFAoESIgkAgEAiUCFEQCAQC\ngZIPbk6hMLKysoiMjCQjI6O0QxF8ZGhpaWFhYYG6unpphyIQvBXKhChERkaip6eHtbU1kiSVdjiC\njwRZlomLiyMyMhIbG5vSDkcgeCuU2PCRJEnLJUl6KEnSpSLuS5Ik/SRJUrgkSaGSJLm/bl0ZGRkY\nGxsLQRC8UyRJwtjYWPRQBWWKkpxTCERxUHlRfALYPflvELDkTSoTgiAoDcTnTlDWKLHhI1mWj0mS\nZP2CLO2BVbLCpvW0JEkGkiRVkmVZHF0oEAgE+Vg5ZQOJ4ftJNYavf/y9ROsqzdVH5igOH8kj8kna\nc0iSNEiSpHOSJJ2LiYl5J8G9KtHR0fTq1QtbW1tq166Nl5cXW7duLfF6z507x8iRI99KWU2aNMHD\nw6NA2U2aNHnhMw8ePKBLly5vXHdERATa2tq4urri4uJC/fr1uX79+huXKxB8yOTk5LJ48B5ir64h\nKyuacnElf9TBB7EkVZblZbIse8iy7GFqWuwu7XeOLMt06NCBRo0acevWLc6fP8/69euJjIws8bo9\nPDz46aef3lp5Dx8+ZM+ePS+dv3LlymzevPmt1F21alVCQkK4ePEi/fr1Y+bMmW+lXIHgQ0OWZR5d\nP8vyQQPJeLQYyAVZJqTjwxKvuzRF4T5gme/a4knaB8ehQ4fQ0NBg8ODByjQrKytGjBgBKN6CGzZs\niLu7O+7u7vzzzz8AHDlyhLZt2yqfGT58OIGBgQBMmDCBWrVq4ezszFdffQXApk2bcHR0xMXFhUaN\nGj1XxpkzZ/Dy8sLNza3Am3ZgYCCdOnWiVatW2NnZMW7cuCLbMnbsWGbMmPFcelFtiIiIwNHREYB6\n9epx+fJl5TNNmjTh3LlzpKamEhAQQN26dXFzc2P79u3F/k6TkpIwNDR8Yd19+/Zl27Ztymd69+7N\n9u3bycnJYezYsdSpUwdnZ2d++eUXAKKiomjUqBGurq44Ojpy/PjxYuMQCN4l969eYst3o5nXsy3L\nJ08lKUUhArYPEznteJfWTv1KPIbSXJK6AxguSdJ6wBNIfBvzCVN3XubKg6Q3Di4/tSqX57t2DkXe\nv3z5Mu7uRS+eMjMz4++//0ZLS4uwsDB69uz5Qv+muLg4tm7dyrVr15AkiYSEBACmTZvGvn37MDc3\nV6blp0aNGhw/fhw1NTUOHDjAxIkT2bJlCwAhISFcuHABTU1N7O3tGTFiBJaWls+VkTfsdfjwYfT0\n9F6pDd27d2fjxo1MnTqVqKgooqKi8PDwYOLEifj4+LB8+XISEhKoW7cuzZo1Q0en4Fn2N2/exNXV\nleTkZNLS0ggKCnph3QMGDGD+/Pl06NCBxMRE/vnnH1auXMnvv/+Ovr4+Z8+eJTMzE29vb1q0aMGf\nf/5Jy5Yt+eabb8jJySEtLa3Iv4FA8C6Jun6FWyvHcfqm4jpNU0YnywA17Ya4XtvLXy316NZjJF2r\ndy3xWEpMFCRJWgc0AUwkSYoEvgPUAWRZXgrsBloD4UAa0L+kYnnXDBs2jBMnTqChocHZs2fJyspi\n+PDhhISEoKqqyo0bN174vL6+PlpaWgwYMIC2bdsqewLe3t74+/vTrVs3OnXq9NxziYmJ9OvXj7Cw\nMCRJIisrS3nP19cXfX19AGrVqsWdO3cKFQWASZMmMX36dH744Qdl2su0oVu3brRo0YKpU6eyceNG\n5VzD/v372bFjB3PnzgUUS4jv3r1LzZo1CzyfN3wEsGHDBgYNGsTevXuLrLtx48YMHTqUmJgYtmzZ\nQufOnVFTU2P//v2EhoYqh7USExMJCwujTp06BAQEkJWVRYcOHXB1dX3h30EgKGnSH94h8NuvSUt4\n+iKbUi4Ou9Q+PDKqicGjG9Tf8RuNTEzeWUwlufqoZzH3ZWDY2673RW/0JYWDg4PyjRxg8eLFxMbG\nKidt58+fT4UKFbh48SK5ubloaWkBoKamRm5urvK5vPXuampqnDlzhoMHD7J582YWLVrEoUOHWLp0\nKUFBQezatYvatWtz/vz5AnF8++23NG3alK1btxIREVFgklhTU1P5s6qqKtnZ2UW2x8fHh0mTJnH6\n9GllWlFtyI+5uTnGxsaEhoayYcMGli5dCijGR7ds2YK9vX2xv8s8/Pz86N+/f7F19+3bl9WrV7N+\n/XpWrFihrG/hwoW0bNnyuXKPHTvGrl278Pf3Z8yYMfTt2/elYxII3oTsrCxunDpOVmamMu3YqqU8\nfpwDwO1K0fQ7lE5aeScuOdZELTeTrgvao/YOBQHKyI7m0sbHx4eJEyeyZMkShgwZAlBgaCIxMREL\nCwtUVFRYuXIlOTmKD4GVlRVXrlwhMzOT9PR0Dh48SIMGDUhJSSEtLY3WrVvj7e2Nra0toBhe8fT0\nxNPTkz179nDv3r0CcSQmJmJurljAlTc38bpMmjSJwYMHK+suqg3P0r17d2bPnk1iYiLOzs4AtGzZ\nkoULF7Jw4UIkSeLChQu4ubm9sP4TJ05QtWrVYuv29/enbt26VKxYkVq1ainrW7JkCT4+Pqirq3Pj\nxg3Mzc2JjY3FwsKCzz77jMzMTIKDg4UoCEqcpNgYrv9zjFvBZ4m8+vxeXhVyaB56h+yrekRXaEJ4\nVcUogM8gdzQqVXjX4QpReBtIksS2bdsYPXo0s2fPxtTUFB0dHeXwy9ChQ+ncuTOrVq2iVatWyrF0\nS0tLunXrhqOjIzY2NsovyuTkZNq3b09GRgayLDNv3jxAMQkcFhaGLMv4+vri4uLC0aNHlXGMGzeO\nfv36MX36dNq0afNGbWrdujX5V3oV1YZn6dKlC6NGjeLbb79Vpn377bd88cUXODs7k5ubi42NDX/9\n9ddzz+bNKciyjIaGBr/99luxdVeoUIGaNWvSoUMHZdrAgQOJiIjA3d0dWZYxNTVl27ZtHDlyhDlz\n5qCuro6uri6rVq16o9+RQFAUMXcjuHbyKKEH9pKRklzgXh/rYHTUHvOXbjlOqpTj80AV0nQsOOsx\nQZnHrXkV7DzevSAASIpRnA8HDw8P+dkJzqtXrz43Pi34OEhLS8PJyYng4GDlnMm7Rnz+BM+y9Yep\n3Ao+q7iQJD5pVhO7u7+iIsmoSjKfZ47C5s7ftA9WLBgJajWZ1IwK2NWpgM+nNVDTUH3rMUmSdF6W\nZY/i8omeguCD5cCBAwwYMIDRo0eXmiAIBM9y9fhhbgWfRc/ElEGLV0DURfilEahAvF4N+sT2ZeDJ\nddR8qBCEqy2nkpphgrWzCS0GvPs50WcRoiD4YGnWrBl37rzUCYMCwTvjyvHDALQaMhoA+ZfGSMB0\no5msTIumiu5Oaj6MAyD0p0nE/qmYSG7Uo3qpxPssQhQEAoHgLZH48D9SExU9AMtajuzbt4skvXLs\n1tEhM2Yn/W7fpfM/MjJwptW3pP5ZEYBm/jXRM3p+RV9pIERBIBAI3hI7/u97YiJukWlhRr2VXamQ\nGcFtE2OMkmSWrrlDmrYpFx07E2fiCBkKh91OY2tTqer7M/wpREEgEAjegJzsbDZMGU9SzENSExNJ\nNLJlm9VtqsQbYp3uTQ05HYdUH45565Ctrqt8ztrZBJ++NdDW1SjF6J9HiIJAIBC8JqkJj/hjwihS\nH8UjSSqkGDhi+rgGn1/pUCBfCoA6VK2lQ2WnytSsXxl1zbe/wuht8EG4pH4ISJJEnz59lNfZ2dmY\nmpoWMLwrCl1dxdtDREQEa9euVaa/TVvsotixYwezZs16YZ7AwECGDx9eaLqKigqhoaHKNEdHRyIi\nIl5Y3sCBA7ly5cprxZufJk2aYG9vj6urKzVr1mTZsmVvXKZAUBxZmRn8s2ktR1cv59fhAaQ+igfg\nUp1hmNAMFXULkrXiiDY/TZPI72hwchwNTo6jnfYeWo30xLmp5XsrCCB6Cm8NHR0dLl26RHp6Otra\n2vz999/K3cUvS54o9OrVC1DYYuc/36Ak8PPzw8/P77Wft7CwYMaMGWzYsOGln8nblPY2WLNmDR4e\nHsTHx1O1alX8/f3R0Hi/uuOCskF2VhYp8XEcXrmMW+fPKBJVVEjTMWW5aSeGhiu+To/ZbcRY/zIj\n5sYCoAGYfvEFxgMCSinyV0P0FN4irVu3ZteuXQCsW7eOnj2f2j9NmTJFaQgHhb9RT5gwgePHj+Pq\n6sr8+fML2GJPmTKFgIAAmjRpgq2tbYEzFObNm4ejoyOOjo4sWLAAUAhMjRo18Pf3p3r16vTu3ZsD\nBw7g7e2NnZ0dZ84oPtT5ewE7d+7E09MTNzc3mjVrRnR0dLFtbtu2LZcvXy70QJwhQ4bg4eGBg4MD\n3333nTI9z1J76dKljB07VpmeP5bVq1dTt25dXF1d+fzzz4u01cgjJSUFHR0dVFVVi6z70KFDBXY+\n//3333Ts2BFQmPZ5eXnh7u5O165dSUlJUf5NnrUwF3xchAX9w875s/ixT0d+HzlQKQgm/f7HBvPB\n7DTqSnNTQ8rJiolj3epZzDgSDoCkrU21o0cwGfw5krp6qbXhVSh7PYU9E+C/f99umRWd4JMXD7EA\n9OjRg2nTptG2bVtCQ0MJCAh4Jc/+WbNmMXfuXKUFxJEjRwrcv3btGocPHyY5ORl7e3uGDBlCaGgo\nK1asICgoCFmW8fT0pHHjxhgaGhIeHs6mTZtYvnw5derUYe3atZw4cYIdO3Ywc+bMAmcRADRo0IDT\np08jSRK//fYbs2fP5v/+7/9eGLOKigrjxo1j5syZrFy5ssC9GTNmYGRkRE5ODr6+voSGhir9kAA6\nd+6Ml5cXc+bMARTOqN988w1Xr15lw4YNnDx5EnV1dYYOHcqaNWsK9Snq3bs3mpqahIWFsWDBAqUo\nFFZ306ZNla6qpqamrFixgoCAAGJjY5k+fToHDhxQ2pPMmzePYcOGFWphLvh4SEtMYMc8xWFPqkYV\neJSrSUwlF3I0LcndGU8/+cky0vDHAJyusp1uQQf575wBALY7d6BeoXTsKl6XsicKpYizszMRERGs\nW7eO1q1bv/Xy27Rpg6amJpqampiZmREdHc2JEyfo2LGj0g+oU6dOHD9+HD8/P2xsbHBycgIUTq6+\nvr5IkoSTk1Oh4/6RkZF0796dqKgoHj9+jI2NzUvF1atXL2bMmMHt27cLpG/cuJFly5aRnZ1NVFQU\nV65cKSAKpqam2Nracvr0aezs7Lh27Rre3t4sXryY8+fPU6dOHQDS09MxMzMrtO684aOYmBjq169P\nq1atsLKyKrLuTz/9lNWrV9O/f39OnTrFqlWr2Lt3L1euXMHb2xuAx48f4+XlVaSFuaDsk5aUyK4f\nZ3P30kUA1PQceajSDFSgxkMVVJ+YG6tV1kbH9S7rb24jSzWTAY+DqBukQjxg2LMHGhYWpdeI16Ts\nicJLvNGXJH5+fnz11VccOXKEuLg4ZXpRNtmvwqvYXz+bX0VFRXmtoqJS6LMjRoxgzJgx+Pn5ceTI\nEaZMmfJScampqfHll18WOH/h9u3bzJ07l7Nnz2JoaIi/v3+hbe7RowcbN26kRo0adOzYEUmSkGWZ\nfv368f33379U/aAQGHd3d4KCgsjNzS2y7v79+9OuXTu0tLTo2rUrampqyLJM8+bNWbdu3XPlFmZh\nLijb5GTnEvjlSNKT4lBR0wDJGlXVJmRIMo5GMibpN8nKUaGO6QEsdMIJeJDEHSMtJsfG0bXLRq6t\nGgpkYfb116XcktdDzCm8ZQICAvjuu++Ub+h5WFtbExwcDEBwcPBzb9UAenp6JCcnP5f+Iho2bMi2\nbdtIS0sjNTWVrVu30rBhw9eKPb/19rNDQcXh7+/PgQMHiImJARTHaero6KCvr090dHSR5z537NiR\n7du3s27dOnr06AEoDgTavHkzDx8qjiKMj48v1s4iLS2NCxcuULVq1RfWXblyZSpXrsz06dOV5zXU\nq1ePkydPEh6uGAdOTU3lxo0bpKSkkJiYSOvWrZk/fz4XL158pd+J4MNk+/8tJz1J8UKnrjMQDd22\n7NZ5zPcV+6Or78+fVeeys/psJlvcI8BQk+vaOnioG+N5rQ03un+F/DgLFV1dVD7QBQ9lr6dQylhY\nWBS6jDTP+tnBwQFPT0+qV3/e58TZ2RlVVVVcXFzw9/cv9swBAHd3d+WZAqBY7unm5lbsstDCmDJl\nCl27dsXQ0BAfH59ChasoNDQ0GDlyJKNGjQLAxcUFNzc3atSogaWlpXJo5lkMDQ2pWbMmV65cUbah\nVq1aTJ8+nRYtWpCbm4u6ujqLFy/Gysrqued79+6NtrY2mZmZ+Pv7U7t2bYAX1t27d29iYmKUzqam\npqYEBgbSs2dPMp8cgDJ9+nT09PQKtTAXlD1ysrORc3P5+9fl3A5WzOkZ95jMvFOx5JDCaeOv2a6W\nyzQTYwA8KtQGFBPLje6l0O/7S6SiWJhh0LULRh/wOR3COlvw0TF8+HDc3NwYMGDAWylPfP4+XNKS\nEgk/e5q/ly0skK5VpQtzVE3xU/mHnzQWsUlPRykIk70mFzgr+WoNxd9ey9kZ8zmz0Sjk5eV9QFhn\nCwSFULt2bXR0dIpdVSUo+2ydPe3pfgNAq5oX2fdVSTKwYpGqLp+r7qSa0Q7665hxTluxyuhZQXi0\ncaPiWWdnbDa+/F6d9xkhCoKPimfPtRZ8fDxOT+PQiqcb0Mr7dOfqPYmqsZVR04I7lhqcShtIxZwo\n+uuYcV3XAA8TR1rbti4gCGnBF/hvsmIPjHkZGloUoiAQCMo8siwTFXadhP8esGfx0y/w8FodiLhu\nSts0xaSwurUuvzruYPOlJHbrmHFdzwh741qsaLVC+Ux2fDyRQ4aS/mThgU59LzQsXs294H1GiIJA\nICizRIVdJ+Hhf+z+aU6B9IcaJmyt4EcbVVPapmWhoqdO5+EumFmVZ9PvXzydUDauRWvbp3uOMsPC\nuOXXHp7MxVb+YRb67du/uwa9A4QoCASCMknW40zWTvqyQNoN565cSVanhoklo25mQUoWlarq0/TT\nGhiaqLNp30imqSmWhT87fwBwp38AyDLatWtjuXQJqnp676w97wohCgKBoMxx9eRRZe+ghndj6nft\nhUHFykz+5hi1knJQS8gCwNbNlOQm1xgTsggeRXDuscLEbrKJVwFByElJ4YZXfchSPGf1xyoklbK5\nzatstqoUyLO/fhMePHhAly5diryfkJDAzz///NL5n8Xf3x8bGxtcXV1xcXHh4MGDbxTv22bp0qWs\nWrWqtMMQfMAkPozm/7q3VQpCJTt7Wg0djZ5JRZaOO0HF+BzUcsHTz5a+M+vzyedO7Lm9m+vxVyEx\nEo/0DCbXGkjXNk9t2LOiorjhUQeyslApVw6b7dvLrCCA2Kfw1tDV1VU6a5YUERERtG3blkuXLr3W\n8/7+/rRt25YuXbpw+PBhBg0aRFhY2BvHlZ2djZrax9vpfB8+fx87qQmPOLZmBVeOKWxIjC2q0G7M\n1xibW7LmRAR3/7xN+TSZKNVcslrd5qH6P8pnr8dfxz5XYkX4JfAaDi1nAIrJ6Zh584n79VcA1K2q\nUHXPng9WEF52n8KH2boPhIiICHx8fHB2dsbX15e7d+8CcPPmTerVq4eTkxOTJk0qcMiOo6MjAJcv\nX1ZaRzs7OxMWFsaECRO4efMmrq6ujB07tkD+nJwcvvrqKxwdHXF2dmbhwoWFB/UELy8v7t+/r7w+\nf/48jRs3pnbt2rRs2ZKoqCgAzp49i7Ozs7LOvPoCAwPx8/PDx8cHX19fAObMmUOdOnVwdnZW2lWn\npqbSpk0bXFxccHR0VJ67UJgldX578ZCQEOrVq4ezszMdO3bk0aNHgMJ2e/z48dStW5fq1au/kgut\noGzx6L8H7FzwA4sDerD080+VguDZsTv95i5mX6TMuCnHeLDmpkIQjFXJ9LvJ7vifOBf99MXSXq8K\nraOf7N73/Y6cpCQyw8K407uPUhD0O3ak2r59H6wgvApl7vXuhzM/cC3+2lsts4ZRDcbXHf/Kz40Y\nMYJ+/frRr18/li9fzsiRI9m2bRujRo1i1KhR9OzZk6VLlxb67NKlSxk1ahS9e/fm8ePH5OTkMGvW\nLC5dukRISAhAASuLZcuWERERQUhICGpqasTHx78wtr179yrPFsjKymLEiBFs374dU1NTpYX18uXL\n6d+/P7/++iteXl5MmDChQBnBwcGEhoZiZGTE/v37CQsL48yZM8iyjJ+fH8eOHSMmJobKlSsrz5lI\nTEwkLi6uWEvqvn37snDhQho3bszkyZOZOnWq8qyI7Oxszpw5w+7du5k6dSoHDhx4uT+IoEyxfNQg\nALR09dDS0aVRnwDsPOujpaNLRkoWV3bcxiouhxwVCb3W5pjZhzLt1CIg3yTyv5thy5Od7TXbkfDX\nbqImFDSyq34mCNXy5d9p20qTMicK7xOnTp3izz//BODTTz9l3LhxyvS8swx69epV6OEtXl5ezJgx\ng8jISDp16oSdnd0L6zpw4ACDBw9WDuMYGRkVmm/s2LFMnDiRyMhITp06BcD169e5dOkSzZs3BxS9\njkqVKpGQkEBycjJeXl7KWPPOegBo3ry5sp79+/ezf/9+pV9TSkoKYWFhNGzYkC+//JLx48fTtm1b\nGjZsSHZ29gstqRMTE0lISKBx48YA9OvXj65dn076derUCVDsTn4djyfBh0/07ZtIkgqynMuw3593\ntz35ZzgV43K4b6rK1EkNUNdUpf9ehYOyUhAep8GeJy97zaaQZdWVqCf/BvTb+6HbtClaNWp8VIIA\nZVAUXueN/n2kV69eeHp6smvXLlq3bs0vv/yCra3tG5c7Z84cunTpwsKFCwkICOD8+fPIsoyDg4NS\nJPIo7lCZvDMcQDH++vXXX/P5558/ly84OJjdu3czadIkfH19mTx58htZUudZgL+MfbigbCHLMnsW\n/R9XTxwBoH7X3s/lifg3luvBD7mnmkOEhTbqmqpsurGJc9Hn8KjgQZvUaiTu/AuO/gCxqWBYg8TA\nK6SdaweA+fx5lP/kk3fZrPeKsj9AVorUr1+f9evXA4rDYPIsrevVq8eWLVsAlPef5datW9ja2jJy\n5Ejat29PaGjoC621mzdvzi+//KL8kixu+Gj48OHk5uayb98+7O3tiYmJUYpCVlYWly9fxsDAAD09\nPYKCgl4YK0DLli1Zvny5crL9/v37PHz4kAcPHlCuXDn69OnD2LFjCQ4OLtaSWl9fH0NDQ+V8wR9/\n/KHsNQg+XmRZJnDMEKUgtB7xFXU7PO1Brg26y1dTj7FrcShyRg6HtbNo72rOphubmHZqGgBtLFtw\np2cvHowdy4O/Ynlw2pAHe5JIPXECOSMD0y/HfNSCACXcU5AkqRXwI6AK/CbL8qxn7usDq4EqT2KZ\nK8vyiucK+gBIS0vDIt8pS2PGjGHhwoX079+fOXPmKI9/BFiwYAF9+vRhxowZtGrVCn19/efK27hx\nI3/88Qfq6upUrFiRiRMnYmRkhLe3N46OjnzyyScMGzZMmX/gwIHcuHEDZ2dn1NXV+eyzz5TnHReG\nJElMmjSJ2bNn07JlSzZv3szIkSNJTEwkOzubL774AgcHB37//Xc+++wzVFRUaNy4caGxArRo0YKr\nV68qh5p0dXVZvXo14eHhjB07FhUVFdTV1VmyZAnJycnFWlKvXLmSwYMHk5aWhq2trfJ3J/g4eZye\nxsqxw0mKUZyx8dmi5ZQ3NWPN6TuE7LuD+cNscnNkbJ7YWV+00+CLBtVQNwxi2j9TAZhc6zO85qwl\nCdCzTMfUKQl8v4Vairk19UqVUNHSKpX2vU+U2JJUSZJUgRtAcyASOAv0lGX5Sr48EwF9WZbHS5Jk\nClwHKsqy/Lioct/XJamvQlpaGtra2kiSxPr161m3bh3bt28v7bAKJSUlRbk6atasWURFRfHjjz+W\nclTvFx/a5+9D5PLRg+z9eT46hkb0nDYbfbOKrDkZwT/rb1ArS4248iqka0pUNdWlXTs7jmXtY/et\n3TT+OQjPG89/x1VtG42GvRt89n7t1SlJ3gfr7LpAuCzLt54EtB5oD1zJl0cG9CRJkgBdIB4o84PE\n58+fZ/i0wxLFAAAgAElEQVTw4ciyjIGBAcuXLy/tkIpk165dfP/992RnZ2NlZUVgYGBphyT4iJBl\nmeNrAzm7QzHc2mOqQhDWBt1VCoJ2bWO+HeiMJElsurGJCdcXcS76HKo5MuOeCIKJQzJIMpK5Kwbf\n/IaakRGoqJdm095bSlIUzIF7+a4jAc9n8iwCdgAPAD2guyzLuc/kQZKkQcAggCpVqpRIsO+Shg0b\nfjBHO3bv3p3u3buXdhiCMk5KfBxpSYkA5GZnc2b7ZlRUVbkdcp7H6WmAYneyQYWKAOw/fY86WWqo\nV9Eh4DMXgAJzBx4VPGhj0QKYhqlTEiYOKdB7M9g1f/eN+8Ao7dVHLYEQwAeoCvwtSdJxWZaT8meS\nZXkZsAwUw0fvPEqBQFBixD+4z4rRz69aAzCsVBkNLS0+nb2QcuUV81mrj91GPzwNUKVZa8WKvPyC\nMNlrMi3DdYjqO5FcQM6VYPRl0LcotA5BQUpSFO4DlvmuLZ6k5ac/MEtWTGyES5J0G6gBnEEgEHwU\n/DX/ewDsvRpi790IADV1Dao4uqCazz5lbdBdtofcx+ByMs5Zami5G3FO+wj/27tbuUN5stdk2mvU\n4eYYxQoiTf0sDCcuEYLwCpSkKJwF7CRJskEhBj2AXs/kuQv4AsclSaoA2AO3SjAmgUDwnnD7wjku\n7N1JzN0IAFoNG4OaeuHj/GuD7jJx679YZ6nQ8LEmGlX1GDDIlf57f+R6/HU8KnjQurwd3uOmcvNa\nDgAV3BIxGjQcard7V00qE5SYKMiynC1J0nBgH4olqctlWb4sSdLgJ/eXAv8DAiVJ+heQgPGyLMeW\nVEwCgeD9ICU+jj9nTVFe9529sFBByOsdBN+Kp2mGOh6P1TCqrEPnEW5PN6Rlq7DiwkH+O3mQR+GK\nDZWVOtpi0L03uD77HioojhKdU5BleTew+5m0pfl+fgC0KMkY3hWqqqo4OTmRnZ2NjY0Nf/zxBwYG\nBm9c7ps6oxbFlClT+PXXXzE1NQWgVatWzJo1q5inXo+QkBAePHhA69ati88sKPPk5uSwbvJYABp/\nOgAnnxZoltN5Ll9e70AzFwZllqNcpoxDI3O8OtiyPWIL04KmA9A6IYbc1DQehVcCwHrzZrQdHd5d\ng8oYpT3RXGbQ1tZWGtX169ePxYsX880335RyVC9m9OjRhfouFUdOTg6qqqovnT8kJIRz584JUfjI\nyc3NYe/i+codySqqqjg09i1UEAC2h9xHL1diqEp5yMrik2HOWDuZsGXXaObf/Rs9YOqFZBw023L9\nb8Xud9MxY4QgvCHC5qIEyG9LnZKSgq+vL+7u7jg5OSk3qUVERFCzZk0+++wzHBwcaNGiBenp6YBi\nH4OLiwsuLi4sXrxYWW5GRgb9+/fHyckJNzc3Dh8+DChsrDt06EDz5s2xtrZm0aJFzJs3Dzc3N+rV\nq1es5UV+Dh48iJubG05OTgQEBJCZmQmAtbU148ePx93dnU2bNnHz5k1atWpF7dq1adiwIdeuKZxp\nN23ahKOjIy4uLjRq1IjHjx8zefJkNmzYgKurq9I6W/DxsX3OdKUgeHbsxoCffkVbr3CzubVBd7l0\nM55+GdrIaRlc9drP1PtjGbG+F3bj9vL7jzn8/mMOFsfKkfhEEMq3aYNBp47vqjllljLXU/hv5kwy\nr75d62zNmjWoOHHiS+XNycnh4MGDDBigsOPV0tJi69atlC9fntjYWOrVq4efnx8AYWFhrFu3jl9/\n/ZVu3bqxZcsW+vTpQ//+/Vm0aBGNGjVi7NixyrIXL16MJEn8+++/XLt2jRYtWnDjxg0ALl26xIUL\nF8jIyKBatWr88MMPXLhwgdGjR7Nq1Sq++OKL52KdP38+q1evBuCHH36gcePG+Pv7c/DgQapXr07f\nvn1ZsmSJ8lljY2OCg4MB8PX1ZenSpdjZ2REUFMTQoUM5dOgQ06ZNY9++fZibm5OQkICGhgbTpk3j\n3LlzLFq06DX/AoIPndycHG4FnwVg0M+B6BmbAE/nDPJ4pHqMRNUzZCWp0yOzC+o5qmypuYiHuXfw\nyLTH9cgD1HMgvrYBNVsrbFx0GzRAw8rq3TeqjFLmRKG0SE9Px9XVlfv371OzZk2lDbUsy0ycOJFj\nx46hoqLC/fv3iY6OBlAejQlPbaATEhJISEigUSPF0rxPP/2UPXv2AHDixAlGjBgBQI0aNbCyslKK\nQtOmTdHT00NPTw99fX3atVOsuHByciI0NLTQmJ8dPrp48SI2NjZUr14deDoMlicKeZvYUlJS+Oef\nfwrYWef1KLy9vfH396dbt25Ki2uBICdHYVTg7NuKneFpbN+sMF8Muq3oxXraGPFI9RhR6qvRytKh\nU8SX6GXpEe59kCokMTo0AdfgcyTf0wagzucj0WjUs3QaU8Ypc6Lwsm/0b5u8OYW0tDRatmzJ4sWL\nGTlyJGvWrCEmJobz58+jrq6OtbU1GRkZwFMLaFBMVOcNH70O+ctSUVFRXquoqLw1e+k8q+zc3FwM\nDAyUcyj5Wbp0KUFBQezatYvatWtz/vz5t1K34MPiwY1rRFw8z/V/jqOmqakwtAFuZ2oxc+u/gEII\nPG2MaO9qrjCuO7UazaxyDLwzDTlbg7adHmMha5O65Sp3j5iQ5w9cYUgPNBp0K52GfQSUOVEobcqV\nK8dPP/1Ehw4dGDp0KImJiZiZmaGurs7hw4e5c+fOC583MDDAwMCAEydO0KBBA9asWaO817BhQ9as\nWYOPjw83btzg7t272NvbK4d03hR7e3siIiIIDw+nWrVqRVpWly9fHhsbGzZt2kTXrl2RZZnQ0FBc\nXFy4efMmnp6eeHp6smfPHu7du/dCy29B2SHx4X9snzOd9OQkUh49nceqXL0mWrq66JmYsu2xYtho\nZkcn1A2D2H1rN38/gnPXzqGVpcPAe9PIjVejTfnvMD8eQlKkFlFnFAc5VZj8LQbt26OiU/jEtODt\nIEShBHBzc8PZ2Zl169bRu3dv2rVrh5OTEx4eHtSoUaPY51esWEFAQACSJNGixdMVu0OHDmXIkCE4\nOTmhpqZGYGBggR7Cm6KlpcWKFSvo2rUr2dnZ1KlTh8GDBxead82aNQwZMoTp06eTlZVFjx49cHFx\nYezYsYSFhSHLMr6+vri4uFClShVmzZqFq6srX3/9tfBSKoPERd5l1biR5OZkY1jZguo1HKhRvyGV\nqtmja2QMKOYPjmz9F08boyc9gyc+RVqVaBPjR5WIhuRmwycGM6iiGUJGghr3TyoEQUVHB6NeYs/B\nu6DErLNLirJgnS0oW3ysn787oSFEhAZzbuefBdJHrd6q3IiWfyI5b/6ga9NI9v6nWHQw9lZNMh72\nI0vWporGebzLB2KkFoncZyuRczaScvQolb7/nvItW6BSrtw7bF3Z432wzhYIBGUQOTeX5V98TkJ0\nlDKtkp09ddp1pqqHJyr59rBsD7nPlagkalXUo2UVmR5msay7uxFd2ZCB4U1JTmpMhQpZOLe0xc7d\nAzm9L4knzvCg7dMDpPSaNxeC8A4RoiAQCF6JWxfOKQWhz/cLqGBbrdB8a4PuEnQ7Hk9rQzakDyI2\nVpUNoXNx4RtcgAxkPNwSqBPgh4q6GsmHDhE56gvIygJA086OSrO+R1VXzCG8S4QoCASCl0aWZXb9\nOBuAXtP/74WCMHHrv6iTzeqYLmwqB5flwRiq5BCuv5n65l7Ur+aAaQUjUg4eIGHjJlL/+QcAs/Hj\n0alfHy376u+sXYKnCFEQCATFkvU4k/tXLxO8ZwdZmYol1ZXs7J/LlzeHEHQ7DjuDHVjoH+ar5Lro\nRH+CeZId5veP0eLQMeAYaUD+tXiqJiYYdO2CcX//d9EkQREIURAIBMVy9I/lXNy/S3ndb87zu9OV\nvQODIDxtt5OUbodN2HcYp1XmsVYqhvaRVDu2BRUdHcwXLCjwrKqBPtpOTiXeDkHxCFEQCASFkvIo\nnmOrl3Pn3xDSEhMA6Pm/uZQ3MVUuM4V89taP9mBkdYascveRo71oc6sbanqZNPjEGOPLZ0j4ZSUA\nlr+uopy7W6m0SVA8whDvLREdHU2vXr2wtbWldu3aeHl5sXXr1jcqc8qUKcydOxeAyZMnc+DAgdcq\nJyQkhN27dxd678iRI+jr6+Pq6oqzszPNmjXj4cOHrx3zs0RERLB27Vrl9blz5xg5cuRbK19Qcqye\nMIqrJ46QlphADe/GtB7+JZWr1yggCKBYYRQZ9YDaRtvR0rxHmzsNaHyrB9bVtfEzvIzq+B4krFII\ngtlXXwpBeM8RPYW3gCzLdOjQgX79+im/AO/cucOOHTuey5udnY2a2qv/2qdNm/ba8RVnXd2wYUP+\n+usvAL7++msWL17M1KlTX7u+/OSJQq8nG488PDzw8Ch2qbSglMhISSF4zw5ObVZ8jlVU1Ri+Yj3q\nmlrKPHk9g0eqx0hWOY2OHINtpXhuqko0vdOCytHtqOpqjLdHDpF9VgBQaeZM9Fo0R1VXt1TaJXh5\nRE/hLXDo0CE0NDQK7P61srJSmtcFBgbi5+eHj48Pvr6+RdppA8yYMYPq1avToEEDrl+/rkz39/dn\n8+bNgMJau3HjxtSuXZuWLVsSFaVYHtikSRPGjx9P3bp1qV69OsePH38l62pZlklOTsbQ0BCA+Ph4\nOnTogLOzM/Xq1VMa6xWVfvToUVxdXXF1dcXNzY3k5GQmTJjA8ePHcXV1Zf78+Rw5coS2bdsCip5Q\nQEAATZo0wdbWlp9++kkZy//+9z/s7e1p0KABPXv2VPaYBCWHLMscXL5EKQjGFlXoM34M6vvGwV+j\nCfv9M/bP7kXuzi+wTJxElPpqUlTDsSQatdwsfO92VAiCtUyVBT2J7NMbAItFCzHo1FEIwgdCmesp\nHN94g9h7KW+1TBNLXRp2K3p53OXLl3F3d39hGcHBwYSGhmJkZER2dnahdtrBwcGsX7+ekJAQsrOz\ncXd3p3bt2gXKycrKYsSIEWzfvh1TU1M2bNjAN998w/LlywFFT+TMmTPs3r2bqVOncuDAgWKtq/O+\ntOPi4tDR0WHmzJkAfPfdd7i5ubFt2zYOHTpE3759CQkJKTJ97ty5LF68GG9vb1JSUtDS0mLWrFnM\nnTtX2RM5cuRIgbqvXbvG4cOHSU5Oxt7eniFDhhASEsKWLVu4ePEiWVlZhf4eBG+R1FhI/o+9qzdw\n7ewFAEa0M0BDKxO2Ktx206RyGOSq4QbsMdJkn7HCrXRy7CP86n7H4X9rczM6AYuo41Q5sgEJGQ0r\nK0yGD0evWbPSapngNShzovA+MGzYME6cOIGGhgZnzyo85Js3b46RkcLHpSg77ePHj9OxY0fKPdm9\nmXfuQn6uX7/OpUuXlNbcOTk5VKpUSXk/z646z4r7Zcg/fPTDDz8wbtw4li5dyokTJ9iyZQsAPj4+\nxMXFkZSUVGS6t7c3Y8aMoXfv3nTq1AkLC4ti627Tpg2amppoampiZmZGdHQ0J0+epH379mhpaaGl\npaW0ARe8ZXKyYF1PCP+blCwNroR7AtDH+gIa4YoXq+RylpxIrsiQrNF42hhRxTpUaVEx2WsyTbRa\nsXHZvyTHPqLaza1Y3juIBFhv3IC2s3NptUzwBpQ5UXjRG31J4eDgoPySBMVhOLGxsQXGznXyOTu+\nyE67OGRZxsHBgVOnThV6P88gT1VV9bUss/38/OjcufMrPwcwYcIE2rRpw+7du/H29mbfvn3FPvOs\nffjbsvkWFENSFMxTmDM+zNDhj9uKnq5VVQsq9BkEGjqsja3KxG2XAYVfUay8mb3/KXzHvq03mVrR\n9dmy4Twa0mPcgn/EIOkWpqNGYjx4MJIklU67BG+MmFN4C/j4+JCRkcGSJUuUaWlpaUXmL8pOu1Gj\nRmzbto309HSSk5PZuXPnc8/a29sTExOjFIWsrCwuX778wvhexbr6xIkTVK1aFXhq1Q2KYR8TExPK\nly9fZPrNmzdxcnJi/Pjx1KlTh2vXrr2Wbba3tzc7d+4kIyODlJQUZS9G8BY5s0zxf0197jdUHPnq\n2LQFHacthFp+jL0Zzv+CR6Jd5Rcc3New979FnIs+h0cFDybVnozhyVocWXMd8+oGeN36BYOkW1Q7\ndhSTIUOEIHzglLmeQmkgSRLbtm1j9OjRzJ49G1NTU3R0dPjhhx8KzV+Unba7uzvdu3fHxcUFMzMz\n6tSp89yzGhoabN68mZEjR5KYmEh2djZffPEFDg5FH1betGnTF1pX580pyLKMvr4+v/32G/B0ItjZ\n2Zly5cqxcuXKF6YvWLCAw4cPo6KigoODA5988gkqKiqoqqri4uKCv78/bm7FL0esU6cOfn5+ODs7\nU6FCBZycnNDX1y/2OcErEKE41/hGk9XcO3UCgIa9+rHhfBSB/64jSn01ajpQRdsJs/KamJX34BOr\n1jjGe3N+wx3CYqPx9LOldisrIo5ABqBuZlZ67RG8NYR1tuC9JCUlBV1dXdLS0mjUqBHLli0rdjK/\ntPggPn+yDPG34PKfPD4wk9BHlTj60FZ5+7Ea7GyqwaPH2ajp3AagVcXhzGn5OY8zsrl8/AEXD94j\nNSETE0tdGnSxw9zekJzkZG7UqYtu48ZY/rK0tFoneAmEdbbgg2bQoEFcuXKFjIwM+vXr994KwntP\nWjycmAf/LARgk54OoQmOGDxU9LzSNLPZV/chCZijoypRXlsdE20n/F070rlqZ87uus3Fg/fITMvG\n3N4An741sKxppBwiSjl2DAAVPb3SaZ/grSNEQfBekn8XtOA1SI2DzETY8ClEX2KTng5Hcy3JfqCN\nXbRiv8BqL4kMDQ0sNboz1KknvTyrKB/PTM9m1+JQ7l6Jx8bFhNqtrKlgU75AFbIskxOnODjHdPgw\nBGUDIQoCQVkjNQ7+rzrkZrNJT4e9JhXJjTTD8baid5CqpsZpA2+qazegvat5ATEASIxJZ9fPoSRG\np9G0Tw1qNahc4H5uWhpp585xb9DnyjTpLR4LKyhdhCgIBB84m25sYvet3ZCbDQ+vKBLNjECvIuey\nE2h+xgzzWMVms0PGjblcvhYzOzo9JwapiZk8CEvg2PobyLky7Ua5YmGv2N0uyzIZ//5L9KwfSA8O\nLvCc5bJfUM+3V0bwYSNEQSD4gNl0YxPTTil8sTzSFXtd1DJVMbtriXaaLpVyDCifLJGqZ0aYY2d0\ntQ2Y+UzvIDdX5t/DkZzefpPsx7kYVChHm6HOGFR4egRm9P/+x6O165TXuj4+GAf0R7t2bbEEtYwh\nREEg+EDJLwiTY+PompzKTTV3tv2bt1Eyl2jtKqgaqtO7T2dq1G/0XBnxD1I59MdVom8nUcXBGLcW\nVahgXR51TdUC+TIuK3ogFj//jG7jRkiqqs+VJSgbiM1rb4kZM2bg4OCAs7Mzrq6uBAUFMXXqVL7+\n+usC+UJCQpTLF62trWnYsGGB+66urjg6Or5WDPXr1weet6sODAxk+PDhr1xekyZNeHb5L0BmZibN\nmjUr1GCvqGdKioiIiNf+fX3o7L6lsEPPE4SgeBulIOh6tmJZlf7srNiGmv2+fE4QkuMzOLbuOhtm\nnCHxYTrN+tei7XBnLOwNlYKQuPMv4gIDue5Zj/SLF9Hx9kbPp6kQhDJOifYUJElqBfwIqAK/ybI8\nq5A8TYAFgDoQK8ty45KMqSQ4deoUf/31F8HBwWhqahIbG8vjx4/p2bMnrVq14vvvv1fmXb9+PT17\n9lReJycnc+/ePSwtLbl69eobxfHPkzNun7Wrfh1ycnKKvHfhgsI0LSQk5LXLL6pOVfGF81JsurJG\nscM4PYOuyankVq7DiasKe+sGPfsxL9qCTNX45+YOEqLTOL/vDjdO/weAvVdF6rWviurDu8Qu3KTM\nl3zoEJnXrj2tUF0do4D+76ZxglKlxHoKkiSpAouBT4BaQE9Jkmo9k8cA+Bnwk2XZAehaUvGUJFFR\nUZiYmCh9fExMTKhcuTLVq1fH0NCQoKAgZd6NGzcWEIVu3bop37bXrVtX4F5+hg0bpjyfoWPHjgQE\nBACwfPlyvvnmGwB0n1gTP2tXDfDgwQNatWqFnZ0d48aNK7QOa2trxo8fj7u7O5s2Kb4g/vjjD2Xv\n5cyZMzx8+JA+ffpw9uxZXF1duXnzZqFl5ebm4u/vz6RJkwDYv38/Xl5euLu707VrV1JSUgqtszD7\nb1AIxtixY6lTpw7Ozs788ssvRf9ByirpCWwK/Z3+2zoz7azi/ap1lgpRjX5iQ6RiH4dDk2bcrORJ\n0O14PG2MlIIQG5nCvt8usXbKacLORuPQ2Jw+073w+bQmqtF3uNW2HbE//6z8L08QbHZsp/q5s9T8\nNxRdb+/SabfgnVKSPYW6QLgsy7cAJElaD7QHruTL0wv4U5bluwCyLL/xkV+HA5fx8M6tNy2mAGZW\ntjT1H1Tk/RYtWjBt2jSqV69Os2bN6N69O40bKzo8PXv2ZP369Xh6enL69GmMjIyws7NTPtu5c2f6\n9+/PV199xc6dO1mzZg1//PHHc3U0bNiQ48eP4+fnx/3795VnKBw/fpwePXoUyPusXXVgYCAhISFc\nuHABTU1N7O3tGTFiBJaWls/VY2xsTPCT1SVLly4lLS2NkJAQjh07RkBAAJcuXeK3334rUP6zZGdn\n07t3bxwdHfnmm2+IjY1l+vTpHDhwQGn/MW/ePCZPnlxonYXZf//+++/o6+tz9uxZMjMz8fb2pkWL\nFh/PJGfkOfjNl90VzbiuoYHH48e0Tk2l84BzzP9c8dlU0dFnXXpVjm79FwA/x0pEXn/ExYP3iAiN\nRV1TFdfmVXBtVoVy5TUAxRDRg7FjATAaEECFJz8LPl5Kck7BHLiX7zrySVp+qgOGkiQdkSTpvCRJ\nfQsrSJKkQZIknZMk6VxMTEwJhfv66Orqcv78eZYtW4apqSndu3cnMDAQgO7du7N582Zyc3OfGzoC\nxReioaEh69evp2bNmkrb7GfJE4UrV65Qq1YtKlSoQFRUFKdOnVLOJbwIX19f9PX10dLSolatWkoT\nvmd51hcpL95GjRqRlJREQkJCsXV9/vnnSkEAOH36NFeuXMHb2xtXV1dWrlxZoP5n6yzM/nv//v2s\nWrUKV1dXPD09iYuLIywsrNhYPnjOB8K6XvCbr+JarxL2epb87rsUg/ITWTlVMdFsam3Lac/hBCdp\n4GljxMyOThiEJLJ9/gWiwhOo09aGvjPrU79TNaUg5KamKgVB290dsy++KI0WCt4zSnv1kRpQG/AF\ntIFTkiSdlmX5Rv5MsiwvA5aBwvvoRQW+6I2+JFFVVaVJkyY0adIEJycnVq5cib+/P5aWltjY2HD0\n6FG2bNlSqOV19+7dGTZsmFJICsPc3JyEhAT27t1Lo0aNiI+PZ+PGjejq6qL3EhYDL2tRnd/iG3ju\nTfxl3szr16/P4cOH+fLLL9HS0kKWZZo3b866desKzf9snYXZf8uyzMKFC2nZsmWBvC97ZsQHSVo8\n7Byl+LmCI2gZgKEp5R5mce0/FUIP7EXXyJhKdva0GjqGXTvvUqtSeZa0c+bI2mtEhCdiUKEcXb/2\nQEPr6T91WZZJ/HMrUU9Eu3zbtpjPnVMaLRS8h5SkKNwH8o9PWDxJy08kECfLciqQKknSMcAFuMEH\nxPXr11FRUVEOC4WEhGBlZaW837NnT0aPHo2trW2hB8907NiRqKgoWrZsyYMHD4qsp169eixYsIBD\nhw4RFxdHly5d6NKly3P5Xseuuig2bNhA06ZNOXHiBPr6+i/lVjpgwACOHTtGt27d+PPPP6lXrx7D\nhg0jPDycatWqkZqayv3796le/eXPvmjZsiVLlizBx8cHdXV1bty4gbn5sx3PMsbeCWzS02F3BRs0\n1WypGJSC44NYAPbwfwCo1e/I9rQKbN95l7D7STRV02bT92dR11LFu0s1HBuZo6ahmLxPDTpDVuQ9\nor6dDLm5qFeujJaTE5W/n1lqTRS8f5SkKJwF7CRJskEhBj1QzCHkZzuwSJIkNUAD8ATml2BMJUJK\nSgojRowgISEBNTU1qlWrxrJly5T3u3btysiRI1m4cGGhz+vp6TF+/Phi62nYsCH79++nWrVqWFlZ\nER8f/9ySVgBnZ+cCdtV5Zy6/DlpaWri5uZGVlaU88vNlGDNmDImJiXz66aesWbOGwMBAevbsSWZm\nJgDTp09/JVEYOHAgERERuLu7I8sypqambNu27ZXb88EQuglCN7C7ohnhubl02PpIeSvW2ICYKm3J\nUdPg8CU1JOLxK1+eevHqaGRnU6mWEb79aqKj/7R3GLN4MbELnx7HWq5OHaos/x1JXf2dNkvw/lOi\n1tmSJLVGsdxUFVguy/IMSZIGA8iyvPRJnrFAfyAXxbLVBS8qU1hnC9433trnLzsTTi2Cg9OUSf2r\nu6KfUBnLo8kkGVixWr8FOSpqeNoojnY1TMrBJQ5yEx5Tqao+nu1tqWxnoBzmy01LI2HrVhLWrycz\nLBzL339Dw8oaDYsy3ssSPMd7YZ0ty/JuYPczaUufuZ4DiAFNwcdHVCj8ktfTk4CnL2i5Fd1YkeNK\nzqXzWN5UDAUeNGqAh7UZ7aqZUT1dhQv775D9OBddEy3qD3LE1s30uTmfmIWLiF+xAgBdX1+xrFRQ\nLMWKgiRJ5YAvgSqyLH8mSZIdYC/LsjgjUSB4HZIewMmfIOjJ8a3VmkFlxT6DpAw4H2VA1O1bJIRd\nxwXFHE6mlj4WVawYamDMv5vucBYwqFAO12aW1KhXCVX15xcSpgUHE79iBRq2tths2SycTAUvxcv0\nFFYA5wGvJ9f3gU3AeyUKsix/PGvWBe8NrzX8en2PQhA0y5Nj5sQZrS7EX4oE4NrJo4pyJUjTzuH+\nJyb80v0P/H/8//buOz6qKu/j+OdMekIS0gkpEFoo0gMIUkRWpIjILiq6NsRVKS52n91H0VXXxWd3\n7QULRVwBF0VBpClFkJqAdAiEdAgQ0nsyM+f54w5jgBACZBKS/N6vV17OrXOOTOabe+8pm+l5pIx9\nJTAeYN4AACAASURBVOl0vTGcLoNb4h/qddHPfOEvm+3NTYOfexaTh8eVVVA0OTUJhbZa67uUUncD\naK2L1TX27evu7k5WVhYBAQESDKLOaK3JysrC3d295gfFzoYdnwJwqM/7rPj0U+BLAJz9vcn3rKDQ\nw0z2rRFgUgSq63n8H5vokVoOJsXoKd1o3S3wkm+T9vDDAARMfgzvG2+83KqJJqwmoVCulPLAdsNT\nKdUWKHNoqS5TeHg46enpXIsd20Tj5u7uXmUz4wtoDav/F7Z9YCxHj2L/lu0oF2cK/SDtRh+2FRpj\nSo1oMY3i5G44mTVFhwvpUlFBnpcTkaMjaxQI5jNGs1XXVq0Inj79iusmmqaahMLLwCogQin1JXAD\nRmuha4aLiwtRUVH1XQwhqlaYCUsehsQNlLq3ZJvbbRzbmk1hbjyFfrCq/2mivfyI8YohUF3PN+vC\n6VKex1CzK64Vzrj38GPyn7pjcqrZAAQ5i4yxtAIeffQSewpxoUuGgtZ6jVJqJ3A9RhOJ6VrrMw4v\nmRAN3ezhkJMChSftqxaeHEh2xgEAWnXrSVLzBKL9o5k7Yi5fbkthwVeHmFTmTHOrieBW3gy5J5rg\nVj4Xe4dzWIuKyJo9hzMffgiA762ja79OotGrSeujtVrrYcAPVawTQlTlh2cgzRgdN7nFHzhV6Mb+\n1HJyTxkDGe4a+CSrPeLIcNmPZ0YHJr21mRYJJYyyuOIU4MaICdG0uu7ynpEdu3UMZttAiUFPTEe5\nutZ+vUSjd9FQUEq5A55AoFLKD+MqAcCHCwe2E0KcdWw9lh2fUW51hj+t57vX/o0l77exIb8OvZ1I\nV0/ynHbgVuHJoJQ7aJ1ZRoWzCc/BITx4d+cah4G2WrHm52MpLLIHQoe4WJxsw6gLcbmqu1J4FHgC\naInRJPXspzQfeP9iBwnRJKXtgF2fU1wGm37azv68gcb6Z/8KwMFmHSmKuR2tTAyM2keW5VM6HWhF\nj7RJuJo96HZTOH3GROHmUfP+pDmLF3PyxRnnrGvxyt8kEMRVuegnUGv9DvCOUupxrXXVg/YIIQA4\n/O5EjuR4c7QgEGgBQLp7S455RtE6wIshgwdy//Be/PfAYtZ8k0K7rFvwLQvCJbKc39/fh8Dwmn2R\nm3NyKIuPJ2fBQgrWrAHAJSIC//vuw6NXLzyu6+KoKoomoiYPmt9TSl2HMXuae6X18x1ZMCGuebmp\nkJNMSVEJP6Qard9KPP3JtrixJHQs/doEMKFHmH32s6LcMpL+Y6Vnzu9wDjFzy/hul/XcoPTQIZLG\nGXNN4OyMc8tQWrzwIt43DXVI9UTTVJMHzS8BN2KEwgqM6TV/ASQURJOirVZS9++lvKwEtCbuw+ex\naoVFm4BmePkp3mt+lzHJTaUwKCkoJ25lMns3puFm9SGh7wbeeuiV6t/sPNbiYk7bplb1GTOG4Gee\nxiUkpLarKESN+imMx5jj4Fet9USlVAjwH8cWS4hrw6nEBFIP7CV26deUFOSft9UYlyjXww/taeJw\nh9t4/Yau9jAA0FbNF++voyLFlcNBO/g17EemD5xco/e2lpaSs3ARWZ99hiUrCwC3Tp1o+X9vSM99\n4TA1CYUSrbVVKWVWSvkApzl38hwhGqUNX8xm5/Jv7cv+7mX4OxfSOyAdV5MFgBfDP2J1ujOvj+vK\na5XCAIxAmP3uKipS3NgduhZzvxNMbzOZOzrcUe37WktLyVu6jJMvvWRf59axI35/vAffMWMkEIRD\n1SQU4pRSzYFPMVohFQIXzikpRGNhtZJ9PMUeCKOGdaBV6nw8nSug90TQMdD7QRamNmf10sP0i/Ln\nzl5hZKYVkH2iiOyMIvYfPUpBRhluxd7siFjO6PH9uTP675d8a221cvLlv5FXaQKh9r9swjnw0sNb\nCFEbqg0F28B3/9Ba5wKzlFKrAB+t9d46KZ0Qda2iFP1aCHMPG/McjAiNp9OJTcZvStc7YIwxB9SC\n7an8dek+TBpucfJk9tObMJdbjXOYNNluWeR4nsSpQymjh/bnzujqrw4AdEUFR28car9V1H7rFpy8\nvVHO9T2VumhKqv20aa21UmoF0NW2nFwXhRKirmityc88hcVs4Xj8AY7HbuDoEWOUeA93F7o89Dp0\ntc2DrRQLtqeydPdx4hKz6V7uxAi3ZpTEZdG6WyAd+oYQV76ZmfGvYDVZmNF/xiVvFVUux+Gu3QAw\n+fgQ9u9/4XwV06gKcaVq8ifILqVUH611rMNLI0QdKi0sZM6Tj1KSn3fO+mbOFsxOHvzS53F+3uoB\nW7cB4FqhOZOYTwuLiakWD9zM4OPjTP9Ho9nptYHXE98i7lQcmLisQADInj3b/rrtqpU4+/vXTiWF\nuEw1CYV+wL1KqWSgCNu8gVrrbo4smBCOdDLhCF/+71P25RFTnmRbUi7pJ5N5uvQV7in/K1vSS+jX\n2p3mhVZCM80E5llRuIKTIrKjHz1vjmSLWsurSR8bYQDEhMQwqs2oywoEgNP/+jcA7Tasl0AQ9aom\noXCLw0shRB07Gwih7aMZ9/xLfHswly/jV/OBy1wwQacQb25uHolbUhE5J0tx93Kh8y3htIsJYX3R\nKpYkz2dJMlcdBvDb7G2eMTG4tGhRa3UU4kpcakC8x4B2wD5gttbaXFcFE6K2lRUX8/Vr/0txvtHf\nwNnVDcZM58kvNvL3U49xj1sBWsNx73H0sPYhdWsmXpHeDHugE+1ignF2cWLxkcW8ut3oeBYTEnNV\nYQBQcfIk6VOmAuAqc4KIa0B1VwqfAxXAJoxezJ0BmcZJNFjr5s7i5LGjuHp40HnQUHqOGMOrq3cx\nK/MBSrQ3O0vGc9h6O7mnvHD1KCFmdGv63hp1Tr+AFYkrgMt/ZlBZcVwc6U8+CRVmLLm59vXBTz9V\nzVFC1I3qQqGz1rorgFJqNrCjbookRO1J3b+HLYsXcPzwAfu6lhOmEL7rZVr85xXesASwpuAJjpUN\nxKqdaNHGh2F/CKNt72BcXJ2qPGdMSMwVB0J5ejpnPv0US+YZfH//e0zu7rhERuB3552YPD2v6JxC\n1KbqQqHi7AuttVl6UYqGJHnPLo7t3MHu1cvt63qPHktbvxIitt0OQKm1GV9kvY9Vu9F1SARdBrUk\nIKzq0UoXH1nMisQVxGfHE+0ffUVl0lqTfMedWHJyjMHsXpqByc3tis4lhKNUFwo9lFJnB3tRgIdt\n+Wzro5rNEShEHSsrLuab1415Blw9PIm5dRz9x9/Nws1HuG7FHWwtvYcEcz+Kra2xWq2MntKN1t0u\n7DF8NgjgwgfKl8NSWIg5I4Osz2ZjyckBoP26dVdTRSEcprpQ2KO17llnJRHiKmirldPJicRv3UTs\nsm8ACOvYmQl/+z8AFnwdh15/kK8sbwFWnII8ua5rEK27BxIefW4nsbNhUDkIruSBsrW8nNI9e0i5\n7/5z1rdetPAqaiqEY1UXCrrOSiHEVagoK+WDSXdjqbDf8aTjDUO4+ZFpsP1jUjZ+T86xp4BwBvjN\np+MTM/EIubDpZ1VhcKUti0rj40kae7t92aVlS4Kfew6v6/vh1Lz55VdSiDpSXSgEK6Uu2hxCa/2m\nA8ojxGXb8+NKeyCMe/4lglpHsXHDVubN/ITALCdOVTyOooI2gfvo+cI74O57wTkWH1nMK1t/a2p6\nNc1Mi7bvIPWBBwDwGjCAwMmP4dGrF8qp6gfXQlxLqgsFJ6AZv83NLMQ1IefkCVL27qa8pJjDv2wg\nL/M0AP3GDObHZduw5idjLfYDupJhO8b3jlaMGFZ1P8zKgXA1TU211iSOHEV5cjIAHr16ETlndvUH\nCXGNqS4UMrTWlzc9lBB14OvXXiQ/8xQA3s6lBHt4YPFuwcHNnTFrT3ycTtKx2VdY2oYTPWISPhEt\ncXI2XXCe828XXU4gmDMzyVu2jPK0NHIXfYVyd0eXltq3t1mxAtfWrWqhtkLUrepCQa4QxDVj7ZyP\n2L36h3PW3R2VTGr5AHYWTwBA+WSQEODEm48NQzndAl4BFz3f1dwuOmeuZBvPvn1wi4oCFIFTJuPk\ne+EtKiEagupCYdjVnlwpNQJ4B+NW1Gda65kX2a8PxsQ9E7TWX1/t+4rGpbSwkN2rf8DTN4CWwaEU\nnzxBuXN/vs01+gvkeJs43MqVPWcC6ezrg/Kpfu7iK71dpLXGfPIk2Z8b05P73Xcfwc8+gzKZZM4D\n0Whc9JOstc6+mhMrpZyAD4CbgXQgVim1TGt9sIr93gDWXM37icanrLiYHz/9mPgtawEoLQki/cxw\nnJ3LCG3XHEugF28dTKfApOnn4kbnUB/G9gizH1+5n0FlV3K7yFpWRtLv/0D5sWP2dYFTJmNydb2a\nKgpxzXHknzd9gQStdSKAUmoRMBY4eN5+jwPfAH0cWBbRgFjMVo7HZ7Ps389RVmQ8RDa7hdAjspjr\nmcw27z7M8Z7K9sNpYILXx3XlnvPmRwYu2gP5cm4XaauV4u3bSZ34EAAurSIJfPQx3Nq3k0lwRKPk\nyFAIA9IqLadjzM1gp5QKA8YBQ6kmFJRSjwCPAERGXvjLLxqX5e/vIfXAUcptgVDQqj2TfNYSYU4B\n4AvfhwHoF+XP2B5hFwTC+UNSzB0xt0bvezYArCUlAFhLSjjx9DP27c4hIbT5/nu5OhCNWn3fCH0b\neF5rba1ubCWt9SfAJwAxMTHSqa4RK84rJfHXeVhLjds0o1oeppPnJjAD/m1h0NP8p+eN1Z6jciDU\nZEgKXVFBwdp1FP78M3nffnvhDiYTreZ/jkfv3sgYYKKxc2QoHAciKi2H29ZVFgMssv2iBQKjlFJm\nrfV3DiyXuEbN++og2WtWoW2B0CcgjY4+mXD7LIjsB/5tqj3+Sq8QUic9TPEOYxBgn9vG4G/reAZg\ncnfHtU0bCQPRZDgyFGKB9kqpKIwwmADcU3kHrbV9VhGl1DxguQRCE5OXTu6mJaz52YO8zBx0yUYA\nJrWNpXnf8dB3HrS89BBcVTUxvRStNaUHD9oDoc3KFbi2bi0BIJo0h4WCbbjtacBqjCapc7TWB5RS\nj9m2z3LUe4uG4eDmNHYvWMjJnMNoy2n7+iHXR9L8z9+B06U/nlfaAc1aXk58r95gNiYTDJw61dbP\nQIimzaHPFLTWK4AV562rMgy01g86siziGmOpYM1HL2Gp+C0MvG+4jUlTJuLk7HLJw6908DpzVhZ5\n33/P6Zlv2Ne127Be5kYWwqa+HzSLpig/g4rPRmKpCMfLxRO3KF9WhT/EV4/2r9HhV9IbWWttNC19\ncKJ9ndegQYS99SZOzaqeWEeIpkhCQdQprTWJH7zAqkODgCQsfh34W0X/c9sqV6GqCW9qcqvIkpdH\nxgsvUBwbZ58P2WfUKIKeehLX8PCrrY4QjY6EgqgzlsxjfP/WdpLTw7GU7QTgE9fuAOf0RD7f+VcG\nl9P5rCwhgYIffzI6mwUFEThtGt7DbpJhKYS4CPnNEA6XdbyQvf9dS+IRTUFxoj0Qvgu5lTwXz4v2\nSIarG9baWlZG6iSjo1vIX/6C14ABV1kTIRo/CQXhUOWlZha9ugMT7kS6bCC3dB8A37b5I2GtWzO5\nih7JZ13tPAfJ48fbh7N279r1KmohRNMhoSAcKnFdLAA9PL5kywljjMU8vyjCWreu9sHy5QRC0fYd\nFG/fds46rTVlRxMA6LhvL8rl0i2ahBASCsKBVs7aR+LuErQuPycQvg0ZTedqjqsuEAo2bKBo8xb7\nsjZXkLtwkbFwXqczk5cX4e+9K4EgxGWQUBC1Ij+rBHO5FXO5hd0/pkBZIYn7SrCaT1BesMi+X3yP\nu+ms1EUfLFcXCJaCAjLfepuyhARMXl7GSqsV5epK0PTpBEx6yHEVFKKJkFAQV+3wtgzWzjt0zjqt\nLQSZNuNsXUsyvhT4hvPih+9dtGNadT2TreXl5C9bRsYLLwLgffPNhL/3rgNrJETTJaEgrpjWmq3f\nHuPXNakAxIxujb/5IC7b32LfmUKO5AYBvuQ5e9Nx0l8vCISq+h5Ubm5aevAgRVu3cfqf/7Qf4z1i\nBCHPP1c3FRSiCZJQEJdNWzUpB7JYN/8QJQUVBEY0Y8jd0YR4pKI+/iNHywM4UmA8NVgaMpqHR/et\ncs6D8/sejG75O4ZnBKGPVpAwdTgVab9Nx+HRsyct/vYy7h061F1FhWiCJBTEZakos/DjnAMk7Tlj\nX+fcB47+9wFalK4nqdCPZceNQFjY8g6emjC02kCY0X8Gw3aUkz13LhXHX7tgbPWWb8zEo1cvXCMi\nEEI4noSCqDFt1Xz/7m5OJuZxw/h2tGplptmX1+Oypcy+z9LCAUA+Ke2H89SYCwMBsN8ymtF/BuPb\njOPwbV0xNWuG79ixKFdX/B98AJQJ11aRKCenuqqeEAIJBVFDuaeLWf7+HvJOlzBgdDA9tvWFX4xp\nKzO1L0ntHqL7bVOxPGIMOPfua3+u8jyLjyxm9/FYfl/UgSHL00lPmA6Ac1AQLd+YWTeVEUJclISC\nuKSMY3ks+acxNEXPYS3pHDsUTCVk+V7Ha5mDUBZfwpZvZtNyIxBCO3QEQJvNmE+fJmfhIiyFBQCY\n4n9kwS4LcIgsDoGLC27t29Nq4YJ6qZsQ4lwSCqJa2qpZ8i8jECK7BBCdNhE3UzEAA04+Tde8/fTP\n2QzAkPsmYXJypuMNgynZu5fkO+8651xO/v5EleZR4WIicPRtBD//HM5+fnVbISFEtSQUxEVlHS8k\n9ock0NDrllaktICA1Qf5Nbcl35UN44Gir3Ery8fD24fbn3uRlh06Yc7JIe2hhyndvx8wehWHvPgC\n3sOG4eTtzcRVxtXE3BH/qM+qCSEuQkJBVOnE0Vy+/fcu+/KxABNfLFvF7c5OrMtoS4D7KfzDwmkZ\nPYReI26jmZs7ibePo+zwYfsxER/PwmvwYJRSRp+EzSuIz44n2j+6PqokhKgBCQVxgcy0AlZ+bIxm\nOmxCBC32v0DCikTeKsvhgxPG8NOtunZn7DMvULJnD+U7Yjn63PMAKBcXfMeNI3DqFFxCQoCqZ0oT\nQlybJBTEOZZ/sIeUfVm4ujvhOSCITbs+p2viATZntgaML3mlTIyc9jSnZr5B9rx55xwfvXcPqtLA\ndFc7/LUQom5JKAi7suIKUvZl4e3vjmlEKOtXzue5soUsz+wEQNuW19EtIohmHp6cevpZCteuBSDs\nvXdx79AB59BQCQQhGjgJBYG5wsLp5Hy+/fevAOgYf75YvoIxaVtZbjUCoXdSBiF7jlEGlFU6NuLj\nWTQbMuSCc0ogCNEwSSg0cSkHslj+3h77sgYK417nnaLN/GDtRGhOASH5RUS2CCdq89fnHmwyVdnj\nWAJBiIZLQqGJKi81s3ddGtuXJYGC47qQPZxmsMcZblsSy7GgYGgJUZl5tBo+gtBXX6nxZDWVh7GQ\nQBCiYZFQaIIWL93O8dW5uFhd8Cw6Rp+d7+NkLee+SvukBfkC0GXOHHx69qrZeW1DYcdnxxMTEiOB\nIEQDJKHQhKSt3MqeL7eQ49oOF1dv2id8TXj6BtJD2+AbGkBnr5VYtOKnsnYUlRsfDe/uPS553vMn\nyJFmp0I0XBIKTURJUgqr/nuS8mY9aZ4TT64JBr4xCfeub9N56aNwYAkAaaaOpBzww69lODc98CeU\nyVTteavqgyBXCEI0XBIKTcCBTcf5ecFRtJsvpwr28a/Wbfj777vj2TsSzOWk7FjH16mDcHdzorTM\nAsDQ+x+mdY/e1Z5XHigL0fhIKDRi+VklLP5HHKWFFbiW5dLp8AK+GPcgfx/SnXtYCS8/R2apJ1+n\nGl/+fhHtCI5qQ1CrNkT1jKn23BIIQjROEgqN1OmUfLYsOUZpYQU+xSl03/UBLuYiZt3fAfVJL7BW\nYNXwQ1ZfwMLAcbfTb8LDNT6/tDASonFyaCgopUYA7wBOwGda65nnbf8j8DyggAJgstZ6zwUnEjVW\nUljOgU0n2L40EYDg07vofGguZ9x9OPWvBXSa1c/Y0dWbRXm3kZWfCkDXUTX7YpcWRkI0bg4LBaWU\nE/ABcDOQDsQqpZZprQ9W2i0JGKK1zlFKjQQ+Afo5qkyNmbncQtLeM6z57AAAgdYMIvZ+hV/uUf7T\ndzhT+x5lyO7bjZ1Nzpy+ZyMZzxuzo/15/te4uLlf8j1kYDshGj9HXin0BRK01okASqlFwFjAHgpa\n6y2V9t8GhDuwPI1W1olClr+3h8KcMtw8nYkZHobbE1MBeGTks2zyfRLOAC6e0LwVSf3eZP3bbwAw\n/NE/2wPh7FXAxZxtciq3jIRovBwZCmFAWqXldKq/CpgErKxqg1LqEeARgMjICyeCb+pilydRXmph\n+MNdOLhrC25PPArAr+3b82b/TDgIqS3Hs3qPxq1ZMzLffhswps1s17c/cOFVQFWkyakQjd818aBZ\nKTUUIxQGVrVda/0Jxq0lYmJidB0W7Zq3+6dUju3KJNg3FfPkx+hQYPzvUSbNnZ034XzwZyxasXjt\nKQA8ykqJ6hlD+34DOByWx5RfjFtIchUghADHhsJxIKLScrht3TmUUt2Az4CRWussB5an8UjZgj76\nE4fW7GZz/jQAOqz4ACqMQHC9oy1tJr+GcjZuC739+DMAdBo0lFHTnraf5s1VE+0zoclVgBACHBsK\nsUB7pVQURhhMAO6pvINSKhJYAtyntT7iwLI0HnNGYE7ZycH8oWwqMQIh5OQOTLqYjKemM/T++1Hu\nngB8/Nj9FOZk2w8d/uif7a8XH1lM3Kk4YkJimDtibt3WQQhxzXJYKGitzUqpacBqjCapc7TWB5RS\nj9m2zwJmAAHAh7bJWcxa6+p7TTVh5l8+5rtfx3Kq4jkAvAtS6bbvI/7d/TZGzl7JPf2M5y0Ws5kP\nH76b8pISAPqPv4eeI8fg7OJywThF0oJICFGZQ58paK1XACvOWzer0uuHgZr3mGrKju8k6fulnKow\nbgW1S1xCWPpG/jDqZV66I8YeCMl7drFh/mf2QJgyeyEezbwvOmid3C4SQlR2TTxoFhdnrrCQ8e1s\nftnoSrbZCIRev75J87xjFLh42AMhJ+M4hdlZfPP6DABK/ZxIHepzwYNkCQMhRHWU1g2rMU9MTIyO\ni4ur72I4lLZqMhLzSNmZxq71mfb1wafiCD21Hf/sQ3zdZTinu/cmOucn8kpz8ci22Pc7HlhCzpgL\nm+5KGAjRdCmldtbk9rxcKVxDzOUW4refZPdPaeSeKgbAuzgV15I8WqWswbMglbldRuHTPRyXsjyi\nDnxFOeABFAc5k9vGjVJ/Z4Zcfx93dryrXusihGiYJBSuAUV5Zexbn86BX05QWlhBkH8pPdL/g9uJ\nDDyLT6KA6UMe50jzSP4nKJGi2DUA5Ee6ctjrJH+YMF1CQAhRKyQU6pHWmqNxp/hxtjHyR+vAdDqX\nfUrJkjMo2z5fdRtJ4sBb8XPz4PmsTRTFbgSgxbTbmJf4HjEhMRIIQohaI6FQDyrKLJw4msvy940B\nYT09LPRWn9LFuoZjG4NROJES3p7Xe99LaOswPr+vO6eTE1n8qhEICWOaMy/xPUCalAohapeEQh3J\nOlHIvg3HyUwt4HRyvn19RMZ62hz9DiermSOE2tf/59Yp9E/+heAN8/lgw2/n2ds2j12WFGlFJIRw\nCAkFB9NWTewPSez+KY2KMgse3i4oBZHJK/EqPkXIqVicXK2Udvdjrecorov0p9WAaHrOesd+juCo\ntnQZfBOzT/+XXSpFxicSQjiMhIKDWCqsrJ1/iKOxxkB0Xs0UAyOP4vXTHIqTjCsFr5BSfPuV4NWy\nDOd/xNMdKC8t4b0HjC/8vrffwQ133cs3CUt4L/E74l2TiPGXiW2EEI4joeAgaYez7YHgXxRPz1/e\nRptNFANuvhUU+7qT3a85Fe4BrBnyOWe/5g9uXA9AROeuDLr7AQD7TGfR/tHyDEEI4VASCg6y+ydj\nKomBm5/HtaIQjYkzoaGs6tKH9C7DKTV5MrZHGLe2dafzgX189fIXFOXmkJNhDCQ78vGnz5n6Mto/\nWgauE0I4nISCA+SuWMnxeDcAXCoKcfp9R14J+zN7MsvpHOrDV48aE9ucSkzg06lTzjm2Q/9B+LcM\nY9WZ9TL1pRCizkko1BJLYSFpjz5Gyc6d5HtHQu/niUj7icBehfS1PgxpxfSL8mdsjzCK8/P4/Jmp\nFOflAhAY2Zrbn32B1Wc2sCR1NXCYuK0y6Y0Qou5JKNSS7DlzKNm5k3IXb3b2ehKAwT2+oblLPv1C\njTC4u28EO75bzEdvzgfAv2U4g+99iJ1eSTyx6y/nDFonTU6FEPVBQuEqWAoKsGRlkbNwIdmfz8di\ncqZoWB90qSsBzsngVsr3Nyzjq2HG7aL0g/v5ZZERCD5Bwdz7j7f5LvV7Xt36GiAjmAoh6p+EwhXS\nFRUc6dMXgCLPFiR1fojTwb2hFJyczfzhQS9ceiUyvLSMkwnGpHKrPnoLgPEvvMYOt6M8smGyzI0s\nhLimSChcga/WHaDblPEA7G13O2fCbwbAx+kkPhFhxIzrwImyM7B/H8vfnklpUeE5x7+c9jZxmTsB\nuToQQlxbJBQugzknh6xZH9N28Sp29nwKq8mFAm9j3oJo9/UMvMWZn+LTWDTjn+cc5+bpxajHn+Gt\nnW9xUKUSaQqSMBBCXJMkFGoobeo0CteuBSC504Pk+bbFzymNVs5xXOexmtZ/X8X2778jfuvnAPS5\n7Q+kBBex7cQ2Sps7sfP0h8R7JUt/AyHENU1C4RKy5s4j65NPsOTkALCi6x24B/QBYELgE5j8I2Fq\nLDi5EL/5ZwAen/dfXD08mbhqIvEuiUS7RQNIj2QhxDVPQuESSvbuoaysgp09hvFDiwHcWNoCgN+1\nW4PpT/vBK4jC/AJWffQ2manJACxN+0F6IgshGiRTfRegIch1a8a6Dl3sgTCy+Uyi77sPfMMoKzcz\n7+kppOz9FYD7/+89GatICNFgyZVCdeLmUvDTGkLdK3i14r8s50X6Ba+izXNfQrMgAJa/8wZldfJf\nuAAACOFJREFUxUUoNxf2TfDluUOvyBWCEKLBklCowoLtqaRtW8LkzA/I92rHr9dNw5LjAYDbTRM5\nceIMcIbvl35K4W6jD8KCQYmUZVqJCYmRKwQhRIMloXCeBdtTef2bfUwrCucLy8fQ47dtiV1XUfrR\nwQuOSbrFl64tg6SJqRCiwZNQqGT+sniOr0xjsvbAggdoK20Tl7FzqIlYvZNBG30ByG3jRm47dwAG\ndLuZp/s8WI+lFkKI2iOhYLNgeyo5K9LxwYSbUxFuQZ9RmppAqzQrMwJduWttBADRAwYzYvITOLu6\n1nOJhRCi9knrI5uEDRtxRtHGbSsPB93L+uCDDNxipcJksgdCROeu3Dr9OQkEIUSjpbTW9V2GyxIT\nE6Pj4uKu+jwLtqeydPdxnMzlTMz5EE4GcCA/BE+XWCpKcrGWNaPc+bcLKXevZkz+9EtMTk5X/d5C\nCFHXlFI7tdYxl9qvSd4+WrA9lRe+3cOM/Hn0WX+YlIjfccjvGJBKUYkGfLE6KwD6jRqLZ3ALeo64\nFaVUvZZbCCEcrcmFwoLtqbz55UbuLd2Bf5IP626YQXnBAgC0csO1bRFRPYcw6q6/1HNJhRCi7jk0\nFJRSI4B3ACfgM631zPO2K9v2UUAx8KDWepejyrNgeypffvkdf8xYjdWkOOoPFHxh3x725Gju7veQ\no95eCCGueQ4LBaWUE/ABcDOQDsQqpZZprSs39B8JtLf99AM+sv239uUdJ3/LGO6Jb87J5t4AmLx7\ncrpdOkV+Zdxw/Sju6n6vQ95aCCEaCkdeKfQFErTWiQBKqUXAWKByKIwF5mvjafc2pVRzpVSo1jqj\ntgvzxosv4Hq6C0XN8wFw87+PqW8MQfm0qO23EkKIBsuRoRAGpFVaTufCq4Cq9gkDzgkFpdQjwCMA\nkZGRV1SYQk9PApTCxakZoR1HMmzScJSP1xWdSwghGqsG8aBZa/0J8AkYTVKv5ByvzvygVsskhBCN\nkSM7rx0HIioth9vWXe4+Qggh6ogjQyEWaK+UilJKuQITgGXn7bMMuF8ZrgfyHPE8QQghRM047PaR\n1tqslJoGrMZokjpHa31AKfWYbfssYAVGc9QEjCapEx1VHiGEEJfm0GcKWusVGF/8ldfNqvRaA1Md\nWQYhhBA1JwPiCSGEsJNQEEIIYSehIIQQwk5CQQghhF2Dm09BKZUJpFzh4YHAmVosTkMgdW4apM5N\nw9XUuZXWOuhSOzW4ULgaSqm4mkwy0ZhInZsGqXPTUBd1lttHQggh7CQUhBBC2DW1UPikvgtQD6TO\nTYPUuWlweJ2b1DMFIYQQ1WtqVwpCCCGqIaEghBDCrlGGglJqhFIqXimVoJT6nyq2K6XUu7bte5VS\nveqjnLWpBnX+o62u+5RSW5RS3eujnLXpUnWutF8fpZRZKTW+LsvnCDWps1LqRqXUbqXUAaXUz3Vd\nxtpWg8+2r1Lqe6XUHludG/Roy0qpOUqp00qp/RfZ7tjvL611o/rBGKb7GNAGcAX2AJ3P22cUsBJQ\nwPXA9voudx3UeQDgZ3s9sinUudJ+6zBG6x1f3+Wug3/n5hjzoEfaloPru9x1UOe/Am/YXgcB2YBr\nfZf9Kuo8GOgF7L/Idod+fzXGK4W+QILWOlFrXQ4sAsaet89YYL42bAOaK6VC67qgteiSddZab9Fa\n59gWt2HMcteQ1eTfGeBx4BvgdF0WzkFqUud7gCVa61QArXVDr3dN6qwBb6WUApphhIK5botZe7TW\nGzHqcDEO/f5qjKEQBqRVWk63rbvcfRqSy63PJIy/NBqyS9ZZKRUGjAM+qsNyOVJN/p07AH5KqQ1K\nqZ1KqfvrrHSOUZM6vw90Ak4A+4DpWmtr3RSvXjj0+8uhk+yIa49SaihGKAys77LUgbeB57XWVuOP\nyCbBGegNDAM8gK1KqW1a6yP1WyyHugXYDdwEtAV+VEpt0lrn12+xGqbGGArHgYhKy+G2dZe7T0NS\no/oopboBnwEjtdZZdVQ2R6lJnWOARbZACARGKaXMWuvv6qaIta4mdU4HsrTWRUCRUmoj0B1oqKFQ\nkzpPBGZq44Z7glIqCegI7KibItY5h35/NcbbR7FAe6VUlFLKFZgALDtvn2XA/ban+NcDeVrrjLou\naC26ZJ2VUpHAEuC+RvJX4yXrrLWO0lq31lq3Br4GpjTgQICafbaXAgOVUs5KKU+gH3CojstZm2pS\n51SMKyOUUiFANJBYp6WsWw79/mp0Vwpaa7NSahqwGqPlwhyt9QGl1GO27bMwWqKMAhKAYoy/NBqs\nGtZ5BhAAfGj7y9msG/AIkzWsc6NSkzprrQ8ppVYBewEr8JnWusqmjQ1BDf+dXwXmKaX2YbTIeV5r\n3WCH1FZKLQRuBAKVUunAS4AL1M33lwxzIYQQwq4x3j4SQghxhSQUhBBC2EkoCCGEsJNQEEIIYSeh\nIIQQwk5CQYjzKKUstlFGz/60to08mmdbPqSUeukyz9lcKTXFUWUWorZIKAhxoRKtdY9KP8m29Zu0\n1j0wekrfe/6QxUqp6vr9NAckFMQ1T0JBiMtkG0JiJ9BOKfWgUmqZUmodsFYp1UwptVYptcs2d8XZ\nET1nAm1tVxr/BFBKPauUirWNif+3eqqOEOdodD2ahagFHkqp3bbXSVrrcZU3KqUCMMaxfxXogzH2\nfTetdbbtamGc1jpfKRUIbFNKLQP+B7jOdqWBUmo40B5jaGgFLFNKDbYNmyxEvZFQEOJCJWe/vM8z\nSCn1K8bwETNtwy30AX7UWp8d/14BryulBtv2CwNCqjjXcNvPr7blZhghIaEg6pWEghA1t0lrfWsV\n64sqvf4jxuxfvbXWFUqpZMC9imMU8A+t9ce1X0whrpw8UxCidvkCp22BMBRoZVtfAHhX2m818JBS\nqhkYEwIppYLrtqhCXEiuFISoXV8C39tG7IwDDgNorbOUUpttk7Gv1Fo/q5TqhDEJDkAhcC+NY9pQ\n0YDJKKlCCCHs5PaREEIIOwkFIYQQdhIKQggh7CQUhBBC2EkoCCGEsJNQEEIIYSehIIQQwu7/AVPE\nUoc+ekWBAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0xa6a8828>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"n_splits=24\n",
"kfold=StratifiedKFold(n_splits=n_splits, shuffle=False)\n",
"\n",
"featurelist=[\"Diameter\",\"MeanHU\",\"Spiculation\",\"Eccentricity\"]\n",
"models=[GaussianNB(), optimal_mnb,\n",
" optimal_lr,\n",
" optimal_rf,\n",
" optimal_gb,\n",
" SVC(C=0.02,kernel='rbf', probability=True),\n",
" SVC(C=0.02, kernel='linear', probability=True)]\n",
"name=[\"Gaussian Naive Bayes\", \"Multinomial Naive Bayes\", \"Logistic Regression\", \"Random Forest\", \"Gradient Boosting\", \"SVM with rbf kernel\", \"SVM with linear kernel\"]\n",
"\n",
"predictedmodels={}\n",
"\n",
"for nm, clf in zip(name[:-1], models[:-1]):\n",
" print(nm)\n",
" predicted=[]\n",
" mallabelcv=[]\n",
" for train,test in kfold.split(inputfeatures,randomlabel):\n",
" if nm==name[1]:\n",
" clf.fit(roundedfeatures[featurelist].iloc[train],[randomlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(roundedfeatures[featurelist].iloc[test])[:,1])\n",
" else:\n",
" clf.fit(inputfeatures[featurelist].iloc[train],[randomlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(inputfeatures[featurelist].iloc[test])[:,1])\n",
" mallabelcv.append([randomlabel[i] for i in test])\n",
" if nm==name[1]: \n",
" scores=cross_val_score(clf,roundedfeatures[featurelist], randomlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" else:\n",
" scores=cross_val_score(clf,inputfeatures[featurelist], randomlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" predicted=np.concatenate(np.array(predicted),axis=0)\n",
" mallabelcv=np.concatenate(np.array(mallabelcv),axis=0)\n",
" predictedmodels[nm]=predicted\n",
" roc=roc_curve(mallabelcv,predicted)\n",
" print(\"Average precision score:\", average_precision_score(mallabelcv,predicted))\n",
" print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
" plt.plot(roc[0],roc[1])\n",
" #print(-scores)\n",
" print(\"Cross-validated logloss\",-np.mean(scores))\n",
" print(\"---------------------------------------\")\n",
" #plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(name)\n",
"plt.savefig(\"clfroccomparison.png\",dpi=300)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sensitivity Analysis"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gaussian Naive Bayes\n",
"Average precision score: 0.267390179676\n",
"Area under curve: 0.519349199946\n",
"Cross-validated logloss 0.581929959138\n",
"---------------------------------------\n",
"Multinomial Naive Bayes\n",
"Average precision score: 0.410012824874\n",
"Area under curve: 0.645654609834\n",
"Cross-validated logloss 0.552565700265\n",
"---------------------------------------\n",
"Logistic Regression\n",
"Average precision score: 0.277523278995\n",
"Area under curve: 0.53277643315\n",
"Cross-validated logloss 0.552853636955\n",
"---------------------------------------\n",
"Random Forest\n",
"Average precision score: 0.307595764349\n",
"Area under curve: 0.570125722738\n",
"Cross-validated logloss 0.566301162721\n",
"---------------------------------------\n",
"Gradient Boosting\n",
"Average precision score: 0.320184953328\n",
"Area under curve: 0.59362534176\n",
"Cross-validated logloss 0.558803268982\n",
"---------------------------------------\n",
"SVM with rbf kernel\n",
"Average precision score: 0.263748343031\n",
"Area under curve: 0.497165075523\n",
"Cross-validated logloss 0.571000436593\n",
"---------------------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XV81dXjx/HXWXePsTHGYANG12iRbhBFMFBU+AEqJcZX\nRUVExC5SREHAAjHo7paOJRuw7u7dOr8/LgyQMRaMPM/Hw8fu/dxzz+d8eLj73v2cElJKFEVRFAXA\n5E43QFEURbl7qFBQFEVRSqhQUBRFUUqoUFAURVFKqFBQFEVRSqhQUBRFUUqoUFAURVFKqFBQlDII\nIaKEEIVCiDwhRJIQYqkQwu6q1zsJIXYKIXKFENlCiHVCiMb/qcNBCPGtECLmUj3nLz13u/1XpChl\nU6GgKDc3WEppB7QEWgFTAYQQHYGtwBrAC6gLnAYOCCHqXSpjAewAmgD9AAegI5AGtLu9l6EoNyfU\njGZFuTEhRBQwRkq5/dLzz4EmUsqBQoh9wFkp5fj/vGcTkCqlfE4IMQaYBfhJKfNuc/MVpcLUNwVF\nKSchhDfQH4gUQtgAnYBVpRT9A+h96XEvYLMKBOVeoUJBUW5utRAiF4gFUoDpgAvG35/EUsonApf7\nC1xvUEZR7koqFBTl5h6VUtoD3YAAjB/4mYAB8CylvCfGPgOA9BuUUZS7kgoFRSknKeUeYCnwpZQy\nHzgEDC+l6BMYO5cBtgN9hRC2t6WRilJFKhQUpWK+BXoLIVoAbwPPCyEmCyHshRDOQoiPMI4umnGp\n/M8Ybzv9JYQIEEKYCCFchRDvCCEG3JlLUJQbU6GgKBUgpUwFlgPvSyn3A32BoRj7DaIxDll9SEoZ\ncal8McbO5jBgG5ADHMF4C+rf234BinITakiqoiiKUkJ9U1AURVFKqFBQFEVRSqhQUBRFUUqoUFAU\nRVFKmN3pBlSUm5ub9PX1vdPNUBRFuaccP348TUrpfrNy91wo+Pr6cuzYsTvdDEVRlHuKECK6POXU\n7SNFURSlhAoFRVEUpYQKBUVRFKWECgVFURSlhAoFRVEUpUS1hYIQYokQIkUIEXSD14UQYo4QIlII\ncUYI0bq62qIoiqKUT3V+U1iKcaPyG+kP1L/03zjgu2psi6IoilIO1TZPQUq5VwjhW0aRIcByaVym\n9bAQwkkI4SmlVFsXKoqiABj0RGw8wsl/VpGqycHR25lnP/miWk95Jyev1cK4+chlcZeOXRcKQohx\nGL9N4OPjc1sapyiKcifIE7+QvnI9hoxkwnKyOGHRF73mnPHF2LLfeyvcEzOapZSLgEUAgYGBagMI\nRVHuG3mZxQTvi0ev1aOLP0/+7jPoiupSYOpOok0Sek0QmJmQ/nRnJnV7rtrbcydDIR6ofdVz70vH\nFEVR7nt5mUWc2RlHyIEENAVaTAwapBRIl4fQFh9Cp7kIJg7E+/nz8fSPsDI3vS3tupOhsBaYKIRY\nAbQHslV/gqIo9ytNbiHFmblcCMoiLaGA86cz0GrBuSiClqd/w7YwhTQ7K475eaEHQnxzOdkghqWP\nvHXbAgGqMRSEEL8D3QA3IUQcMB0wB5BSLgQ2AgOASKAAGFVdbVEURblTUo4eIGrVQY7mtLnmuGP2\neRqHLsO6KJ2j/iYcaOhOgzgHsm20HGieTqqLhq3DtlLTtuZtbW91jj56+iavS2BCdZ1fURTldjDk\n56PPySFPm0+htgAAmZFK9vdzOVMoKWYIefbGQMgTxykwOUu+yUlwN3DKHTxNm5GfqqV+nJb0hj40\neKw9z9TpQEOXhnfkeu6JjmZFUZS7kaGoiJDOndFKa6Qw3uLJcvQjtnZP8uwmgz0gtVi6/oOldRzu\nAWZQtyvYDSItVUfkH0GQcAZTG1cenjSZdu3blH3C20CFgqIoSnlICZkXwWCgMCiMxHV7iT6aRHjb\nT9CbWl5T1JQcbK2OYdalEW2bN6dh/b4lr2Xka/hm6VpMD6zFU5+PS8e+PPPyWCwsrW73FZVKhYKi\nKEppchKhKBuA/KRkCn+bQGaWOdkXbIm36EGcdz9oDOhzwLSYHrbLEC2fwtq3ET4duiNMxDXVGQyS\nZSs3ELRtI175MRgcazB0yvv4NW58By7uxlQoKIqiXO3CHjRbPyEnNgGAiKKHOZE/FJhjfL3elaKH\nG//K/Ie64WBmBR6zwKP0D/iTkUn8NmcONZPP4G5ug3/vRxn43HOYWVhU88VUnAoFRVEeeLGnogn6\nezdSr4e8ZBI1L1IkHUtet7bUUefUMjJtIfyJNjT0aErLJg2Z4LO4zHqzC7R888tmDHt+o4YuD6eO\n/Xh+wjjMzO++MLhMhYKiKA+01KOH2LgkEwthi7VJNpj54FFDS8PBTRBIci+co/jz97HQpDP3eQ9W\nv/DrTeuUUvLnkSg2L19Ko7TjSDsXHnllFg2bN78NV1Q1KhQURXnwFGaRuXQSUdn1ORrdBiuRx7CA\nn7Ad8xvYuCB1OoqCg4md8zVWB45gBWxuLZg9bNlNqw5NzOGTX3dS6/Q/NNak492hO4+99DIW1jbV\nf123gAoFRVEeCHmZxRz4M4LC7AK0sWdJKTbOl/WwiaNTlwzCOs1i+eEZaHOzeeTHMOpEGDuZV3Yx\nIbdRLT6duBZzixuPEMot0vLNlnBOb1lD+4wjmFvbMGjyNOq3bX9bru9WUaGgKMr9Q0qIPw6avGsO\nFxZIls0zrqXpZnYBc1FEU9utNJz0BstSjjIj9Bfs//6Rh4MkL+0wALD9UR9i/OxwaR7I9HZvI4S4\n7nTGU0rWnk7gm38O0zpqM52KEqnTuh0DXn4FGwfHUt9zN1OhoCjK/SF4NaydBMU5AKRrfcgzuKIx\n2HAw93lMcKKZzSYeahbBZ9Z6/rZ1JHJzN57ZbWBmqqThpeU4zRvUx75jRyZNnXrTU0am5DLtnyAy\nzxykf+YBLM1M6PXyFJp07XnDELnbqVBQFOXeoSmA6ANg0Buf7/8G9MWAgIQTxmO12xNZ4zW2bLgy\nwsfcTovJQ6f4Sl5gnrk9wenBmBbEMf83C1xSCgGw7dQRq8aNqfHGGzdtRn6xjjk7zrFx20Fa554h\nMPcCtQKa0H/CazjW8LjVV31bqVBQFOXeUJABn9ct/TX/3uDfG4NvF3bbBxK2uIgku4sc8l2NRJJh\nk4guWwNAK/eWvHbGm3ZnijFJSaTmjBnY9+6FmYvLTZsgpWRzUBKfrD5B44tbeTT/PCZmZjz07Gja\nDByCicntW820uqhQUBTl7qctgs/ropUWxGpaY+gxw3hcCHCsTZY2j7Xn1pG/0UCdzHyKzPLZ6f8L\nA1v1ZojfEGNZnR67kxFYnggnc8PPmNfxwXHyJJyeGF6uWz0X0/KZvjaY86dPMSBjF9a6Ajo+8QzN\nuvfBzsW1Gi/+9lKhoCjK3UlTYOwjSDwF6ZFIKdiUOZVYTUv4q+CqgmEAeNCKQrM8cmvH0/WxJgyt\n+QN+Tn4UBQWhiY4hb9cucjZsoACwbt0a77lzMHO9+Yd5oUbPgt2R/LA7gg6ZRxiacRInTy8GTZ6J\nRz3/6rn2O0iFgqIodw8pYUlfyEuGzCgACg0OnLL+kNCE+hRqrej0uD8+jY23eor1xXx3+jv2xO2l\nroMvsx/9Aidb44gfbVISMS+MouDff0uqdxo+HNdxY7GoXfu6U5dme0gyH6wLJj85gefz9mCRnUjz\nXv3oNnIM5lZ3xwJ2t5oKBUVR7g6JZ+CPkegz4ojXNCHf8y3S810ITgxAl2rArp7AwbuAi3WOE1UA\nK8JXEJIeYnyvDbzT+bWSQCgMDibu5fHo8/JwmzwJh379EKammPv4lOtWUWxGATPWBbM9JJkeRNIs\nZS+WVlb0eeM9/Nt2qM5/hTtOhYKiKLdH1H5Ij7z2WGY0hsOLuKB7mOICLSnafpwr7o7OYAGZIEwE\nDdrVwLerHY/tHQga4NC1VTzq/yhvtn0Tewt7AHJ37CD+jf9h6uyE7++/Y9WwQbmbWKTVs2jvBebv\nisTWUMgU/kUfFYxPi9b0fXkKds4374y+16lQUBSl+oRthA2vgza/ZBnqq+mkBVuzXuVisfGvb1NT\nSYMOXtRr5Y6Lpy0W1maYW5vw2u7XAHgj8A161+ld8n53G3fMTcwB48igjGXLSPnsc6yaNqX2gvmY\nubuXu6l7zqUyfU0QUekFDPPIpW7wOrRFBXR/YRyt+g5CmJhU5V/inqFCQVGUWyvhJMRcuo8fsRVy\nE6DNC2DtDK1Ggrk1UkqiQvLY+nsCOo3koeH18WtdAwtrUyysrnwsfXT4I1aGryx53sOnB152Xted\nUup0JM2aRdbvK7Dv0wevzz7FxNq6fM3NKmTm+hA2BSXh72LBTI9zpBzegZ2PLwMmzcLdx7cq/xr3\nHBUKiqLcOkd+gI3/mfzlWBsGzyYtLo/T62K4eDYeg06iLTZOQGvU2ZMWPUvv+N0WvQ2AEQEjGNd8\nHK7WxtFCUko0kZHkHzmCLCwkZ/MWioKCcB07BvdXXy3XX/UanYHF+y8yZ0cEUhp41ScD0+MbScnL\npc3AITz01PN35X4H1U2FgqIoVRO5A5LOGh9vn278+eSvUKeT8bGFHae2x3Dgz0jMLE3xb+WOhY0Z\n7j72+DZzw9Km9I+h5zc9T0ZRBoPqDWJqe+OSE7rMTLLXrCHlq69Bqy0pa+7jg9cXX+A4eFC5mnzw\nfBrvrwkmMiWPgb7mdEjYTcqeINwbBPDQkyPxadqiUv8U9wMVCoqiVN7eL2HnzGuP+fWERsYPZ51W\nz4UTqfy75gLW9uaM+KADVrbmN61Wq9dyIuUEzdya8Vzj5ygKDSVvz15yd+2k6PQZAKzbtKHW559h\n4uiIia1tuUYVJecUMWtDKGtPJ+DjbMWnDTJI3rWaLFNTeo+dSLMefR6YvoMbUaGgKErlZFy8Egj/\ntx08mmDQS2IvFBG+OJiLp1LRaY0rjrp42TJoYotyBUKeJo+p+4zfDAI9Amnk2oioCU9TeOoUmJpS\n84MPcBzySLn7DAB0egNLD0bx7fYINHoDk1vZ4X56NfEnIqjXui29xkzA3tWt4v8G9yEVCoqilJ/B\nAFIP2gKY0xIpwdBiJHi1ISUql53LQ8lKNs42dvGypV4rd7z8nKgV4IyJSdl/yesMOjZe3Mi7+98t\nOTa03hBS582n8NQp3CZPwm3sWIT5zYPlakejMpi2OoiwpFy613dhuFk44WtWk2tjw8DJ/6Nhp4fv\n2RVNq4MKBUVRyqc4F75tDoUZJYd2yM8I39oAtu4GwNrenD5jmlCvhTsmZqLcH7afHvmUX0OvbHNp\na27LjqbfkzzqddLCw3EYMADXF16oUCCk5hbz6aYw/joRRy0na77p4Uz21l8IjY2m0UPd6Pb82Hty\nv4PqpkJBUZSbC9sIEVuMgRAwiGyHdpyN8CQ81A0XL1vqB3pg42iBf5sa1wwpLYvOoCMsI4x39r9D\nbPoFrPTwXOPneNxnEPLbxcR8+BRm7u54L5iPfY8e5W6q3iD59d9ovtgSTpFWz/jO3rRO/5czS9Zj\n6+LCY29Np17rtpX9l7jvqVBQFKVsB2aj3/ohEUUPkWp4mYsn+5KbLUFA/bYedBrqh51zxdYBisuN\no//f/QGokSlZvkiPmQHgJ7L5CQC7Hj3w+vQTTB0cyl3vyZhMpq0JIig+h87+rkxsCMGr5nI6OYkW\nvQfQZcQLWNrcG3sl3ykqFBRFuZbBAAXpxse5iRi2fsCSlOVopC3mlqZIKQHJyI864uBa/s7ey6SU\n9P+7P13OGmib4UT7E/kIgx73VyYjLI3hYtuhPVaNG5e7zsx8DZ9vCWPF0Vhq2Fsy9+lW2J1cz8F5\na3H29OLJ6Z/i3bhphdv6IFKhoCiKkZSQmwQL2l+zJMXB3FFopC3123rQe3TjCnfK6nVaUuMjANhy\ncQu7d/7ES2F6epyRmNhpEHb2OI8Zi9vLL1e4yQaDZOWxWD7bHEZukY4xD9VlUnc/gjb8xaFNa6nX\nph2DpryFuYVlhet+UKlQUBQFcpPhq/8sHDfgS86GOHD6sDvNe3jT5YnyLyx3mS49nZ2vPUPtf6MB\naHfpP60pWLRpSd1FP2Jia1upJgfFZ/Pe6iBOxWbRrq4LM4c0xbkolbUz3yL5QiT+bTvSb/yrKhAq\nSIWCojzI9n8Lwf8YN7K5bPAcCBhI1AXY9+8ZfJu70XlY/XJXaSgoQBMXR9KyJRT+tYbaQFg9C+z7\n9UMADT2a4DngMUzt7SvV5OwCLV9tC+eXw9G42Frw9RMtGNy0BkdW/8HG1auwsrNn0JS3adChsxpq\nWgnVGgpCiH7AbMAU+FFK+el/XncEfgF8LrXlSynlT9XZJkVRLsmOv7IshaUDdH0L2o0FM0vS4nLZ\n+uMJXL3t6D268U3nGADo8/LJWL6MjJ+WYsjNRZoIdjcXxNdzpEav/rzS6/0qNVdKyV8n4vlkYyiZ\nBRqe6+jLq70bUBB3gV+nTiE9LoZGXbrT/fmxWNuXv3NauVa1hYIQwhSYD/QG4oCjQoi1UsqQq4pN\nAEKklIOFEO5AuBDiVymlprrapSjKJec2GX8O/Arajik5nJdZzPp5Z7CwNmPg+BblGmJaEB5G9PiX\nIT6Ji83dWe+TT1htQaqTYP1jK6jjUKdKTQ1LymHa6iCORmXSyseJZaPb0dDNkgMrl3Fi41rjUNO3\np1OvlRpqWlXV+U2hHRAppbwAIIRYAQwBrg4FCdgL43c8OyAD0FVjmxTlwRVzGA7NB6SxUzlsvfF4\nnc4lRbJSCtj8fRCaQh1D/9caO+eb34+/uHYFme/NoMgcvnnWlLDamdiZO1DPsR4zW47Hx96n0k3O\nLdLy7fYIlh6MwsHKjM8eb8bwNrWJDz3L8s/mkpWcSIve/ekyYpQaanqLVGco1AJir3oeB7T/T5l5\nwFogAbAHnpRSGv5bkRBiHDAOwMen8v+DKcoDy6A37n0MUKOxMRRc/aHF06QWe3PixyCK87XEhmUi\ngAHjm+PmXfY9f2kwkDx/HkXzvyPeExY97czEPtNxsnSived/f9UrRkrJ2tMJzNoQSmpeMU+38+F/\nfRpiI3TsWDyfM9s34+ThyRPvf0ztJs2rdC7lWne6o7kvcAroAfgB24QQ+6SUOVcXklIuAhYBBAYG\nytveSkW5V5zfBfu/BtP//IWfHWf86Vgbxhv3s9RrDZzaEcORz45hbmmKvYsV9QM9aNXbB3efsgPB\nkJ9PwtR3yN26lT1NBb8NcWTvyIO35BIiU3J5f00wB8+n06yWI4ueC6S5lz0RRw6y++fF5Gdk0GbQ\nY3R+4hnMLSs2aU65ueoMhXjg6p0zvC8du9oo4FNpnA0TKYS4CAQAR6qxXYpyf8pPh58fNT52DwDz\nq26nmFuBT0cY9A0AqTG5bF0cTFZyAX6t3On6TEOs7W68oYwuMxPNhQsAyOJikj/7nOKICPY/5s/8\nhhf55uGZN3xveRVodMzZEcni/RewNjdl5qNNGdHOh+ykBH5//0OSIs/h6u3DIx9NxdO/YZXPp5Su\nOkPhKFBfCFEXYxg8BYz4T5kYoCewTwjhATQELlRjmxTl/qApgH/GQWHWlWNR+4w/mzwGw5fe8K2R\nx1PYsTQEKztzBk1qQZ0mrjc9Xdz4CRSePFny3MTenvB3hjFH/zcgaOTaqJIXYrxVtDkoiZnrQ0jI\nLmJYG2/e7h+Aq60Fp7duZM8vSzAzN6f3uIk0frgnZhVcJVWpmGoLBSmlTggxEdiCcUjqEillsBDi\npUuvLwRmAkuFEGcBAbwlpUyrrjYpyn3j+E8Qus742OfSDmc+HcGtAfT/rNS3SIPkyPqLHNsYRc16\njvR/qRk2DmVvNyn1elLnzKXw5Emcnn4Kh969AdhuFsG00C8B+KHPD9Syq1Wpy7iYls/0tcHsPZdK\nQE175jzdikBfF/Iy0vl7zmyiTp/At0Vr+rw0GXsXtd/B7VCtfQpSyo3Axv8cW3jV4wSgT3W2QVHu\nO8V5sOUd4+PJp8Cl7k3foinSsWNpKBdOpdKokyddn26IqXnZO4zp0tKIf+N/FBw+jOOwx3F583VO\nZgXxzfFvCEk3DiL8vtf3tK9Z8U7lIq2eBbsiWbjnAhZmJrw/qDHPdayDmakJ4Yf2sf3HBeg0GnqO\nfpkWfQaoSWi30Z3uaFYUpTyKsiH6ECDh96eMxzyalSsQctIK2fjdGTIS8nloeH2a9/C+6YdswfHj\nxL/6GvrsbDxnzSKxWyO+Pfohmy5uKikzsvFIOtXqVOFL2R6SzAfrgonLLGRISy/eHdCIGg5WFOXn\nsXXJQkL376amfwP6T3gNFy/vCtevVI0KBUW5FyzqDhnnrz32wvoy32LQG4gJyWDHslCkQTJoUgt8\nGpfdfyClJGPpMlK+/JI8NxsWv1iTZLOfiVwfeaUpvRfRtmZbzEwq9vERm1HAjHXBbA9NoX4NO34f\n24GOfsb2RJ89xebvviU/M4NOw5+h/WNPYGJqWqH6lVtDhYKi3G0MBji/E4pzjJ3HF/deCYRxu40/\n3QPAvPRlqzMS8jm2KYqY4HSKC3Q4edgwcHxznDzKntylz80l8Z13yd22jVONrPimXwGFVoV0s++G\nh60H/Xz70a5mO7zsvCp0OcU6PYv2XGDerkhMTQRT+wcw+qG6mJuaoNUUs/+3ZZzYtBZnL29GzPyS\nmv4VX3hPuXVUKCjK3cSgh7mtITPq2uMBg6DNKPBqVebb0xPy+POTYxikpH4bD3ybu1GnqSvmlmX/\n1V107hxxkyahjYsnY8wjfOy2AYRg9xO7cbW++eikG9lzLpXpa4KISi9gQLOaTBvUGE9HY5glX4hk\n47yvyIiPpVW/wXQZ8byad3AXUKGgKHearhjCNhh/7pwJOZem84zeClaOYOsOtjf/YD74VyQnt8Vg\nbW/OY6+3xrlm2UtSF545Q/GluQdpC77DUFhA7KwxvJ69GBCMbzm+0oGQkFXIzPUhbApKoq6bLctH\nt+PhBu7Gy9Vo+Hf1HxxZvQobRycef3cmvs3LDjvl9lGhoCh3UlEOzG4OhZnXHp90Alz9yl1N/LlM\nTm6LwbWWLd1HNrppIBSFhBD15FPG5S4AzM2Jee9Z3sheDMD8nvN52PvhCl0KgEZnYMmBi8zZEYFB\nSt7o04CxD9fD0sz4TSX6zCm2L55PVlIijbp0p8cLL2JlZ1fh8yjVR4WCotwpeh18etWk/4nHwcQU\nnOqASdnDRS/Lzyom7HAiQXvisXO2ZNhbgZhZlH2rSEpJ8mefY+roSJ1ffkZYWnI6/xxv/DsFgFkP\nzapUIBw8n8b7a4KJTMmjVyMPpg9uTG0XYz9GQXYWu5f/SOj+3TjV9GTYux9Rp3nLCp9DqX4qFBTl\ndivIgMV9ID3iyrF3k27YcfxfRfladv8aRkJEFoV5WpDgUdeBTkP9ywwEQ0EBEQ93BVNTDNnZeLz7\nLpb+/uyI2cGUS4HwVtu3eMTvkQpdTkpOER9tCGXt6QRqu1iz+PlAejbyAIyL5p3dtY19v/6EpqiI\nDo8/RftHn8DMouxJc8qdo0JBUW63XR8bA8HeExoOgF4flDsQUmNy2bzoLHmZxTRo54G5lRkBHWpS\no07Zm8poYmK48MgQZFERpq6uuE+ZgtOTT9D5987kaIzrT9qY2fBs42fLfRk6vYFlh6L5Zts5NHoD\nk3vWZ3w3P6zMjcGUFhvNth/mkxAegnejpvQaMwFX79o3qVW501QoKEp1ij4EK0aArgguj+svvrQI\n8EsHytWBfFnowQT2/H4OaztjR3LNeo5llpdSkrd7N7nbtpO9ejUYDDgOexyvjz5Co9fQ4pc2JWVX\nDV5Ffafyb7l5LCqD91YHEZaUS9cG7sx4pAm+bsZ+DK2mmH//XsnRtX9hYW1D35deoUm3XmpW8j1C\nhYKiVIf088ahpZc1ecz4zeCyul3LHQg6rZ59KyMI2Z+Ad4Azff6vCdb2Zd9+0cTEkDTjQ/IPHADA\ncehQ3F5+CXNv4wzhEyknSsoeePoADhbl274yLa+YTzaG8deJOLwcrVj4bBv6NvEo+cCPOnWc7Uu+\nIzs5iSZde/Lws6OxcSg7vJS7iwoFRbmVsuNh7SQ4v8P43LU+tHkBOk6ASvylnJNWyOZFQaTG5NK6\nXx3aP1KvzP2SpUZD+pIlpH23EGFmhse77+L0+FBM/rMrmd6gB+Dn/j+XKxD0Bslv/0bzxZZwCrV6\nXu7mx6Qe/thYGD9C8rMy2b38R8IO7MHZsxbDp32MT1O1+c29SIWCotwKBj0sH3Jl+WqAR+ZB65GV\nrjI6OJ1tS4KRekn/l5pRr6V7meXzjxwhacaHaM6fx75fPzymvo25h8d15XbE7GBb9LZyt+NUbBbT\nVgdxNj6bTn6ufDikKf41rgwjLS7IZ+nr4ynOz6fjsBG0e3S4Wt76HqZCQVEqS0rQa42PT/1iDATv\nthD4f9D8yXIPKy3N8c1RHF5zAVcvO/q92BSnGqUvUSGlRJ+eTspXX5P9zz+Y16pF7e8XYte1a6nl\njyUdY8ou40gjW3NbPGyuD43LMvM1fL4ljBVHY6lhb8ncp1sxqLnnNX0DiZHhbJr3FUV5uQyY/D8a\ndS79vMq9Q4WColTWxjfg6I/XHhv2EzhVfoSNlJKzu+M5vPoCfq1r0POFRphfGmaqS0sj848/kIWF\nxrIaLTlbt6JLTAQzM1zHjsVt/MuYWJc+kskgDYzaMgqA99q/x5MBT5ZeziD541gsn20OI6dIx/91\nrsuU3g2ws7zycaHXaTn05wqOrFmFrbMLj7/zIb4tWpdan3JvUaGgKJV1ORB6TDP+dPSuUiDodQb2\nrjxHyL4E6jRzpecLjTAzE2SuWEnxuXNkr1+PITcXcdWtGetWrXB+6inse3THsn7Zo4c2XjRubdKt\ndrcbBkJQfDbT1gRxMiaLdr4ufPhoEwJqXtvnkBJ1gc3zvyY1JoomXXvR7fkxWNmqWcn3CxUKinIz\nBgMUXdr28uIe4zDToD+NzwMGwcNvVPkUBTkaNi86S2JkNi27eRDY1ZWc334mZ9Mmik6fAXNzrBo0\nwOuLz7GsV6/C9a+OXM20A8bwmthy4nWvZxdq+XprOD8fjsbF1oKvn2jBY61qXXOryKDXc2T1Kg79\ntQIrOzuHCH7oAAAgAElEQVQefXMafm0qvsGOcndToaAoN7PyWQjfcO0xc1swtYCBX1e5+tSYXDZ+\nd4bCzAKaBC/FZfeJko3KTeztcX72WTzefadS4/zDMsL469xfrAhfAUCXWl1o6HJl03spJX+fiOeT\nTaFk5GsY2aEOr/VpiKP1tR3F6XExbJr/DckXImjY6WF6jn4Ja/vyDWNV7i0qFBSlLPEnrgRC/8+N\nP306guetGW4ZcTSZnctDMCvMpvWpBdQe2AlL//4gBDaBbbAKCKhS/ZN3TiYxPxFHS0feavsWg/0G\nl7wWlpTD+6uDORKVQcvaTiwd1Y6mta6dU2Aw6DmxYQ37V/6MuZU1g6a8TcOOD1WpTcrdTYWCopRG\nSog7BjtmGJ8PWQCtnrll1RsMkn/XXODElmicNQk0Ofs9vtPfxHHw4Ju/uRzSCtM4k3qGxPxEAPY/\ntb/ktdwiLbO3R/DTwSgcrMz47PFmDG9T+7r5D5lJCWxe8C0J4SH4BXag99gJ2Do535L2KXcvFQqK\nUprjS2G9cegmDt7QoN8tq7q4UMe2JcFEn02ndnEI/scX4/PdPOw6d74l9R9LOlYyygjg44c+Boy3\nitadSeSj9SGk5hXzVFsf3uzbEGfba2dHS4OBU9s2svfXnzA1NaP/hNdo1KW7WqbiAaFCQVGuJiVk\nXrwSCCNWQYM+VaxSkhabR1x4JmmxuSRfzCE3vYimmn9xP/IrtWd/e8sCQavXEpYRBhg7lJu6NaVz\nrc5EpuTx/pogDp5Pp2ktBxY9F0jL2k7XvT8zKYGt388hLiQI3xat6fPiZOxd3W5J25R7gwoFRbks\n4wKc+h32Xuo7MLWA+r0rXV1xgZbDqy8QE5JOTloRAHbOlljZmtFBvxOrQ3/h9fln2PfqVaVmSylZ\ndW4VhxMPXzNTuX/d/rhZefHZ5jB+3HcBa3NTZj7alBHtfDD9z62iy30HB/74FRNTU3qPm0SzHn3U\nt4MHkAoF5cGUl2LsRD76I5hZQuy/kJ965fXBc6Dp45Varygvs5iCnGIO/XOeuLBMajVwok1/X+o0\nccVSm0PSrI/J3bOZmjNmVLoPwSANRGRGsODUAvbE7UEvjWsZ1XWsi4OFAy+3eJngaDNmrt9DQnYR\nw9p483b/ANzsLK+rKy02mi0LZ5MUeY56bdrRa8x47F3Ut4MHlQoF5cGj18KXV030snEDOw8wtYTu\nU8HVH3w6lLu6tLhcjm+KRqfRoynSkxCZBRKEiaDn840I6GhcHVUTHU3UqNFoExNxHTsG5yefqFTz\ntXotnx75lD/O/VFyrJZdLeb2mEt95/pcTMvng7XB7Dl3koCa9sx+uhVtfV2u/2fQaTmy+k8O/70S\nSxsbBkz+HwGdHlbfDh5wKhSUB0tqOGy9NAPZuy30ngl1Ola4Gq1Gz8G/IslOLST+XCYWlmbYu1oh\nBLTpV4cadRxwrGGNq5cdUqslfelS0ubNR1hY4LNkMbYdK35OnUFHcHowz268shHOt92/pUutLliY\nWlCk1fP11nAW7rmAhZkJ7w9qzHMd62Bmev0aTEnnI9iycDZpMVE07PQwPUa9qJa4VgAVCsqDJOEU\nLLpqwbbn1oBF2Rvcl0ZTpGPjgjMkRGTh7mNP/UAPOg/zx9ru+j0OCoOCSZw2jeLQUOx798bjvfcw\n96hR4XMW6Yro/3d/0grTSo6tGryKABfjPIYdocl8sC6Y2IxChrT04t0BjajhYHVdPVpNMYdW/cax\ndf9g4+TEkP9Nwz9QzUpWrlChoDwYDsyGbe8bH3ecCG1GVToQ1s87TdL5bHqNakyDdjVLLWcoLCR1\n7jwyli7FzNWVWnNm49Cn4qOYpJRsuLiBqfumlhxb3GcxrTxaYW5iTmxGATPWhbA9NBn/Gnb8NrY9\nnfxK7w+ICw1i6/dzyExMoGn3PnQdOVqtWaRcR4WC8mA49TtYu0DjR4y3jCqxrHVxoY51c06REp1L\nnzFN8W9T+l/8eQcOkDT9A7RxcTg98QQ13ngdU4fKLQkxZdcUdsbuBKC5W3Pm9pyLi5ULxTo9c3dF\nMG9XJKYmgrf7BzC6c10szK6/rrzMDA7/9Tunt23CsYYHw977iDrNWlaqPcr9T4WCcv/KjIa4o7Dn\nc8iKhvp9YPDsSlVVlK9l3ZxTpMXl0W9sU+q1un7DG6nVkjRrFlkrVmLh60udn5dj07ZtpZuv1WtL\nAmFJ3yW0rWmsa++5VKavDeZiWj4DmtXkvYGN8XIqfbnswtwcfnv3dXLTU2nd/xEeeuo5zK2uv62k\nKJdVaygIIfoBswFT4Ecp5aellOkGfAuYA2lSSrVLh1I1UsKFXfDzY1eOWTtDs+GVqq4oT8ua2SfJ\nSMyn/4vN8G1+/e0ZQ0EBcVOmkL93Hy6jR+P+ymRMLK8f/lkRWoNxA5//a/p/tK3ZlsTsQmauD2Hj\n2STqutmybHQ7ujYofTc2KSUhe3ey5+fFFOXn0XHYCDoNH1Gl9igPhmoLBSGEKTAf6A3EAUeFEGul\nlCFXlXECFgD9pJQxQoiK98ApytUKMuDf72HPpb8/aneAQd9AjUblnnMgpSThXBbJUTlkJuYTfy6L\nghwNA15uTp0mrteV12VkEPvSyxQFBVFzxoxKDzW9WmpBKqO3jAbA3MSShXvOM2dHBHqD5PXeDRjX\ntR6WZqalvjcjIY7tPy4gNvgMnvUb0nvsRNzr1K1ym5QHQ3V+U2gHREopLwAIIVYAQ4CQq8qMAP6W\nUsYASClTqrE9yv0u5jAs6Xvl+ch/oF73Ck1A02n0bF0czMXTxlE+to4WOHva0vP5RtRqeP1icJrY\nWGLHjEWblIT3vLnY9+hR5cv47vR3LDi1oOT537v8OZ8SRq9GHkwf3JjaLqVvzanTajmyehVHVv+B\nmYUlvcZMoHnPvogqbAuqPHiqMxRqAbFXPY8D/jv2rQFgLoTYDdgDs6WUy/9bkRBiHDAOwMfHp1oa\nq9yjNPlwbgscmg/xx4zH3BvBqI1gc/2ErbJoi/VsWHCG+HOZdBrqT+MuXlha3/hXpCgkhJhxLyK1\nWnx++gmb1q2qciUA5GnySgLBx3QgwSFtcHQ0ZfHzgfRsdOP9lGODz7Dth/lkJsbTsNPDdH9+rFrR\nVKmUO93RbAa0AXoC1sAhIcRhKeW5qwtJKRcBiwACAwPlbW+lcvfa+D849euV58OXQpPHblj8RjRF\nOjbMP0NiZBa9XmhMw/alDzW9LP/gQeImTsLEyZE6y5Zi6edX4XOW5sn1xm0yZWYPIlK7MrlbPcZ3\n98fKvPRbRQU52ez9ZQnBe3bgWMODx6fOwLdlm1vSFuXBVJ2hEA9cvWGt96VjV4sD0qWU+UC+EGIv\n0AI4h6LcTNiGK4Hw0gFwawBm108guxlNoY51c0+THJVD7/9rQv3AG/9FXnDyJEkfzKD4/Hks69Wj\n9g+LMPe4cfmKWHh0NTG5MQC0dniSD59tga9b6XMppJQE797Onl+WoCksoN2jw+kw9EnMLdXIIqVq\nqjMUjgL1hRB1MYbBUxj7EK62BpgnhDADLDDeXvqmGtuk3C82vAFHfzA+HrUJajatVDXFBVrWzjlN\nWkwufcc0wa916WMdslavJm3OXLSpqZh7eOAyciRuL79U6fkHV1t6dgVzT8xDQzYAkwPmMaZdxxuu\nQZQeH8v2H+cTFxKEV8PG9B47AbfadarcDkWBagwFKaVOCDER2IJxSOoSKWWwEOKlS68vlFKGCiE2\nA2cAA8Zhq0HV1SblPvBDT0iPhKIs4/N+n0GdTpWqqihfy9rZp0iPz6Pfi02p2+L64Z0GjYaMZctI\n/XY2lv7+uPTpg+vYMZi5Xj8Kqbwuz1LOLsph/4VY9qf/AoC/VU961G/AmFalL0pXkJPNrqWLCDu4\nF0sbG3qPm0iz7n1UR7JySwkp761b9IGBgfLYsWN3uhnKnbB8CFzYbXzcZhS0HAG121WqquzUAjZ+\nd5bslEL6vdgU32bXzz0oOHGC6BHGLTgt6tShzorfMXOueuftX+f+4oNDH1xzrL/P43ze/YNSywNE\nHD3E9h/mU5yfR7Oe/egw9EnVkaxUiBDiuJQy8GblbvpNQQhhA7wO+Egpxwoh6gMNpZTrb0E7FaV8\nQtddCYTXQsHBq9JVRQels21JMAADJzandsD1o5Sy128gcepUzOv4YN+rFzVeeQVhUfH+iv/KzNcw\n58gKACyT3+D1nu0Y1NQbe0v7UssX5eWxc+n3hO7bRQ1fP4a99xHuPr5Vboei3Eh5bh/9BBwHLq/1\nGw+sAlQoKLdH5HZYeWm56Gf+qnQgSIPk2KYojqy/iJu3Hf1fbIaD27XLQ0gpSV+4kNTZc7AJDKTW\n3Dm35NuBwSD541gsn+xfisHVuF3mtolP4GxT+vIUABdPHWfrwtnkZ2fRcdjTtH/sSUzN7vSAQeV+\nV57/w/yklE8KIZ4GkFIWCLULh3I75CYZRxft+ND4fOQ/4Fe5yWHFBVq2Lw0l6kwaDdvXpOszDTG3\nuHaYp9RoSHx/OtmrV+PwyGA8P/oIk1vw7SAoPptpa4I4GZOFfaNVAPzQ54cbBkJxQQF7fv6Rszu3\n4urtw6Nvvo9HPf8qt0NRyqM8oaARQlgDEkAI4QcUV2urFOXqpa4BPFtUOhDS4/PYtPAsuelFdHmy\nAc261bquI1eflUXc5FcoOHIEt0kTcRs/vso7kGUXavl6azg/H47G2daM5oG/czEfWtdoTQfP0nd2\niwk6w5aF35KblkbbRx6n0/BnMLsFwaQo5VWeUPgA2AzUFkL8CnQGRlVno5QHjJSg11x5vnSgcXVT\ngB7T4KFXQVR8hI2UkvB/k9jzWzgWVmYMea0VXv5O15XRXIwibsIEtHFxeH3xeaX3Tb66zr9PxPPJ\nplAy8jU81d6DddmjuJhvfP3jLh9f9x5tURH7fl/Gyc3rcPb04qkPP8OrQaMqtUNRKuOmoSCl3CqE\nOA50AATwipQy7SZvU5Ty+6oh5CVff/zlQ+DRuMLVxQSnExeWSdLFbBIjs/H0c6Tv2KbYOl27aqmh\nsJCYMWMpPH4cU0dHfH5agk3gTQdnlCk8KZdpq4M4EpVBy9pOLB3Vjgx5mnU7jK8feeYI1mbX3jaK\nDw9l84KvyUpKpFX/wXR5+nk1CU25Y8oz+miHlLInsKGUY4pSedGHYMvUK4HQ89LtImECTYaCc8Un\nZEWdSWPjwrMIAdZ25nR7piGNOnthYnLtrSApJYnvvkfhiRM4P/ssLs+NxKIK62rlFev4dts5fjoY\nhb2VGZ8ObcYTgbUxMREsPG1cA3LFwBXXBEJOWgqH/vydoN3bcXBzZ/i0j/Fp2rzSbVCUW+GGoSCE\nsAJsADchhDPGbwkADhgXu1OUqjkwGxJOGh9POgGuVVs/KOliNlt+CMK9th1DXm2FhdWN/+ZJX/QD\nORs34v7aa7iNG1vpc0opWXcmkVkbQkjJLeaptrV5s28ATjbmZBdnk6vNZf6p+QB42BqXwzAY9Jza\nvJ79K35Gp9HQvEdfuo4cjYV16aufKsrtVNY3hReBKYAXxiGpl0MhB5hXze1S7neaAji3CWo2h5f2\nVbm6rOQCNsw/g42TJQMntCgzEHJ37iL1229xGDgQ17FjKn3OyJQ8pq8N4kBkOk1rObDw2TbU8zAh\nLi+CHn8/i86gKyk7xG8IbtZupMZEsfX7OSRFnqNuyzb0GjMBB3e1jYhy97jhb46UcjYwWwgxSUo5\n9za2SXkQnLi0QrqVY5WrKsjRsG7uKYSAwZNaYONw49E6xZGRJPzvf1g1boznrI8qNcKoQKNj7s5I\nftx3AStzU2YOacKI9nV4e9+bbN61uaSciTDhrbZvYWFqQe9aPdm/YjlH1/6Fpa0dAya9QUDnrlUe\n4aQot1p5OprnCiGaAo0Bq6uOX7fvgaKUS346bH7L+PixhVWqSlOkY/280xTkaHj01dY41bjxLRh9\nVhax4ycgrK3xnj8PkwruVSylZEtwMjPXhxCfVcjjrb2ZOiAANztLtkRtYXOUMRBeaf0Kfo5+dPfp\nDkBsyFn+evctMhMTaNK1J11H/h/W9lVfSE9RqkN5OpqnA90whsJGoD+wH1ChoFTc3i9g50fGx851\nwdG70lXp9QY2LwoiLS6PAS83w6PujT9opU5H/GuvoUtMxGf5Msxrlr1fwn9FpeXzwbpgdoenElDT\nnlUvdaStr3F5DCklHx4yTrD7c/CfNHRpCBiXqNj76xLO7tyKo0dNHn93Jr7Nq74Rj6JUp/LMUxiG\ncY+Dk1LKUUIID+CX6m2Wcl/a99WVQOg8BQIrP91FSsmun8OIDcmgx3MBpS5od1lRWBiJ06dTdPoM\nnrNmYdOq/B/MRVo9C3afZ+Ge81iYmvDewEa80MkXM9Mr8yYm7JhAjiYHAD8nP6SURPx7gB1LFlKY\nm0Pg4KF0Gj5CDTNV7gnlCYVCKaVBCKETQjgAKVy7eY6i3JheB6Fr4ewqCN9oPDbhCLg3rHSVxYU6\ndv0cyvkTqbR/pC6NOt14LaT8Q4eImzgJqdfjPuUVnB4fWu7z7AxLZvraYGIzCnmkhRfvDmyEh8OV\nD/YiXRHROdHsizd2lO9/aj+FmVnsWPId54/9S426fgydOgOPurdmVzZFuR3KEwrHhBBOwA8YRyHl\nAYeqtVXKvak4F9LPX3keue3KNwMAl3rQcWKVAiE1JpfNPwSRm15Ex6F+tOp947kF2Rs2kPD2VCx9\nfY07pJXzllFsRgEfrg9hW0gyfu62/DamPZ38r3wT0eg1RGZFlmydCdCzxsOcXPkHZ3ZsRRoMdH12\nNK0HDMHEtPRtNBXlblVmKFxa+O4TKWUWsPDShjgOUsozt6V1yr3BYIDDC2Dru6W/7tEMBs8G78rv\nHSylJHhvPPtWRWBtZ8Fjr7XC8z9LVlwtfelSUj79DJvAQLwXzC/XDmnFOj0/7L3AvF2RCARv9Qvg\n/x6qi4XZlVtF4RnhDFs37KqGwQcOL5L890FO5K7DL7AdXUeOwcmjYn0WinK3KDMUpJRSCLERaHbp\nedTtaJRyDzDojbeDDn8H0QeuHG84EFo9e+V5jQDjN4QqyMss5sCfEUQeT8GniQu9RjXG2q70YafS\nYCDliy/J+Okn7Pv0weuLzzGxtCy17NX2RaQyfU0wF9Ly6d+0JtMGNcbL6fpVTP889ycATV2b8kLN\n4aSvPURU+GY8GwTQ693x1PCt2rUqyp1WnttHJ4QQbaWUR6u9Ncrdz2CAtRONS1pf5lDLON9g+DJw\nb3DLTiWlJPRgIvtWnkOvNdDh0Xq07lMH8Z8lK/R5eeQfOkT2mjVoExIoDgnF+Zln8HhnKuImt28S\nswv5aH0oG84m4utqw7LR7eja4PptOQHSCtNYEb4CM51gXGZPTv22DAtrG3qPm0Sz7r3VtpjKfaE8\nodAeeFYIEQXkY5zZLKWUapGWB9Hp368EgmdLGPh1lW4L3UhRvpbdv4Zx/kQqtRo68dDwBrh5211T\nxlBYSO6OnaR88QW65GSEjQ1WAQF4vDMV55Ejy5wYptUbWLL/IrN3RKA3SF7r3YBxD9fDyrz0ENEZ\ndEzd+zY+SdZ0i/DmRO5qmnbvQ5cRz2PjUPUJeIpytyhPKPSt9lYo94aEU7BmvPHxywfBo0n1nCYi\nk21LQijI1tDxMT9a9va5bkE7bXIKsePGURwejoWvL97z52HdunW5dkk7dD6d99cEEZGSR69GNZg+\nuAm1XUqf9BaSHsJHhz/iYkwo7YOd6ZFaA5faHvR5YxK1Aiq+gqui3O1utiDeS4A/cBZYLKXU3ai8\ncp8rzoNFXY2P6/etlkDQ6w0cXX+R45ujcXSzZuibbfDwvb6DuCgkhLiJk9BlZeE5axYOAweUa3Zy\nSk4RH28MZfWpBLydrfnxuUB6Nfa4cfmCFJ5e8yRNLzryaKQnwsSEFk8Mo8ejI9WoIuW+VdY3hWWA\nFtiHcRZzY+CV29Eo5S5SnAsrnoGLe4zPmz9V5aUpSpOdWsC2JSEkX8yhUSdPHnqiPhZWZkiDgfyD\nh5BFhQBoYmJJ/fZbTJ2dqbN8OdZNbx5OOr2B5Yei+WbbOYp1Bib18Gd8N3+sL23HuTduL18f+xoL\n02s7r7POXWRIsBeO+ebUb9+J7s+Pw971xpPkFOV+UFYoNJZSNgMQQiwGjtyeJil3jeiD8M+LkBUD\nJmbQ9HEYMh9u4SJuUkrO/ZvEnt/PIUwEfcY0oX7glb/eU2fPIf377695j03HDtT68kvMXF1vWv/x\n6AzeWx1MaGIODzdwZ8YjTajrZgtARlEGx5KO8fqe1wFoX7M9VmZWmOVocT6Sid0FD7QO5jz69jv4\ntWp7y65ZUe5mZYWC9vIDKaVOreb4AIk9An88B7mJV469GgL2N77VUhkFORr2/BbOhVOpePo70nt0\nE+xdrtwG0uflk7FsGbZdulDjtVeNB01NsfT3v+lIn7S8Yj7bFMaq43F4Olrx3TOt6de05jWdzwtO\nLWBl+EoAAlwCmNPxKw7/tYLT2zZiYmZG22EjaDdkmNojWXmglBUKLYUQOZceC8D60vPLo4/UMo/3\nm+w4+GUYpIZeOfb0Sqj7MFjc2g1g8jKLWTnrCNoiPR2H+tGy17WdyYbCQuLGj0dqtbiOegGrRuXb\nr1hvkPx2JIYvNodRoNHzYtd6TO5RH1tLs6vK6Jm0cxLHk4/jZu3Ggq7zSNt3ksWTx6AtLqZZjz50\nHDYCO2eXW3rNinIvKCsUTksp1ZKOD4rtM2D/11eeP/krNOwPJtXToRoTkk5Rnpahb7S+bmayQaMh\nbuIkCo4exeuLL7Dt1KlcdZ6OzWLamiDOxGXTsZ4rMx9tgn8Ne8B4q+ib499wIP4AqYWpAAgJLzKY\nvdM/Iy8zA7/ADnR5+nlcvW/N0l5arZa4uDiKiopuSX2KUh5WVlZ4e3tjbm5eqfeXFQqyck1S7hmR\n2yHoHwhZA5pc47Hu78FDr4JpeUYrV86FU6nsW3kOG0cLPOpdO8ZfarXET3mV/AMH8Jw1C8dBA29a\nX2a+hi+2hvP7kRjc7SyZ/VRLHmnhdc2touXBy1kduRqA/nX6YRVbQJ2TejLjD+NZvyEDp7yFd8Ct\nHVEVFxeHvb09vr6+ajMd5baQUpKenk5cXBx169atVB1l/ebXEEK8VsbJv77Ra8o9IHQ9rHzmyvPG\nQ6DL6+DZolpPGx2czpYfg3Dztqfv2CbX3DKSOh3x/3uTvJ078Xh/2k1XNDUYJKuOx/LppjByinSM\n6lSXV3vXx97q+r+QNAYN1mbW/N5mEcdWriAuJBpqejL4tanUb9epWj60i4qKVCAot5UQAldXV1JT\nUytdR1mhYArYcWVvZuV+snOm8ecTy8GvB1jaV/sp48Iz2bTwLC6etgye1AIr2ysf3trkFJI++IC8\nXbuo8eabuIwYUWZdwQnZTFsdxImYLNr6OvPhkKY08rzSzXU48TDns4wrtq6OXE1S3EU6RTizeu17\nWDs40mP0SzTv2Q9Ts+r7RgSoQFBuu6r+P1fWb0SilPLDKtWu3D3CN0Pw33D2TzCzAm2+8XjjIbfl\n9ImRWWxYcAZHd2seeaVlSSBIrZaM5T+TNn8+hsJC3Ke8guvoG2++k12o5Ztt51h+KApnGwu+HN6C\nx1vXKvlFiM2NZcDfA655j0eGJYP/9cDU1JQOjz9B28FDsbC+tR3ninK/KGtcn/oT535x5g/4/Uk4\nsxKkHgIGQLsXYcyO23L6lOgc1s87ja2jBY+80rJkhdP8w4e58OhjpHzxBTbt2lFvwwbcXnqp1Dqk\nlPx9Io6eX+1h2aEonmlfh52vd2NYG+/r+g4AatnVYkmfJfzo8SGDTvhgbmLGqC8W0PmJZx+YQEhO\nTmbEiBHUq1ePNm3a0LFjR/75559qP++xY8eYPHnyLamrW7duBAYGXlN3t27dynxPQkICw4YNK7NM\neURFRWFtbU3Lli1p0aIFnTp1Ijw8vMr13u3K+qbQs6qVCyH6AbMx3or6UUr56Q3KtcW4cc9TUso/\nq3pe5SoFGfD3WOPjvp9A4Ggwr75tIYsLdYQeSECnNQAgDZLTO2KxtDVnyJRW2Dpaok1KIvmzz8jd\ntBnz2rXx/m4B9t2737DO8KRcpq0J4sjFDFrUduL/2TvrsKqyLg6/h5YQUMBAsMUCATEZ7A5sscHu\nnDHGGMVPZxyHmXHsRKxRHDuwUOwEREQMBMFCBZHOeznfHxevooCoYJ73eXjuiR1rX+Css+u31rvU\nwbLMqwnq5IxkdtzZQZo8TaFiqqLGvw3WcWz1Eh4GB2FW3ZIWQ8dQrLRpobX7S0MURTp37oyzszP/\n/vsvABEREezbt6/Q67azs8v2IP9Ynj17xqFDh2jbtm2+0pcuXZodOwrmMVKxYkUCAgIAWLVqFb/+\n+isbNmwokLK/VHJ1CqIoxnxMwYIgqALLgJbAQ+CKIAj7RFEMziHd78DRj6lP4g2ibsPaFpCeqDhv\n5wZ1hxZqlfKMTHw23SLU/1m260WNi9BpvDW6uipEr1lD9IqVIJdjNHYMxYcMyTXeQWKajH+87+B+\nLhw9LTV+62qJk51ZtsnpuRfm8t+d/5TnKpnQ6qkFG6eMQU1Dg1bDx1GzacvPPrbvuv8GwY/j353w\nPaheuiizO+a8YurEiRNoaGgw4rWeV9myZRk7diygeAvu378/SUmKYcSlS5fSsGFDTp48iZubGwcO\nHABgzJgx2NnZ4eLiwrRp09i3bx9qamq0atUKNzc3/vvvP1xdXVFVVUVfX5/Tp09nK+Py5cuMHz+e\n1NRUihQpwvr167GwsMDDw4N9+/aRnJxMaGgoXbp0YeHChTm2ZfLkycyfP/8tp5BbG8LDw+nQoQNB\nQUHUr1+fdevWUaOG4ntq0qQJbm5uVKtWjbFjxxIUFERGRgZz5syhU6e8h1Lj4+MxzBJczK3uAQMG\n0LVrVzp37gxA37596dmzJx06dGDatGmcPHmStLQ0Ro8ezfDhw4mMjMTJyYn4+HhkMhkrVqzAwcEh\nT06Z3ZwAACAASURBVDsKm8KcZasL3BVFMQxAEIRtQCcg+I10Y4GdgKQjUJCEnYK0eKjVBwzLQfXO\nhVZVZqZCquLy/nskxKRSp305LKsLxB30IjXoOsk7zvDov0xlet3mzSnx8zQ0ypTJsTxRFDkQGMm8\ng8E8jU+jVx0zprSpSjGdVzuL5ZlyWu9szdPkpwCMsR5DG62G+KxZyfMHEVSs/wPNBg5Hx+Ddqqnf\nIjdu3MDW1jbX+yYmJhw7dgwtLS1CQkLo3bs3vr6+uaZ//vw5u3fv5tatWwiCQGxsLABz587lyJEj\nmJqaKq+9TtWqVTlz5gxqamp4e3szffp0du7cCUBAQABXr15FU1MTCwsLxo4di5nZ23tEXg57+fj4\noKf3akFEftrg5OTE9u3bcXV1JTIyksjISOzs7Jg+fTrNmjXD3d2d2NhY6tatS4sWLdDR0cmWPzQ0\nFGtraxISEkhOTubSpUt51j148GD+/vtvOnfuTFxcHOfPn2fDhg2sW7cOfX19rly5QlpaGvb29rRq\n1Ypdu3bRunVrZsyYgVwuJzk5OdffwaeiMJ2CKfDgtfOHKGIzKBEEwRToAjQlD6cgCMIwYBiAuXnu\nMXklsgjcDocmK46bzQD9nB++H4soity7Fs2lfWHEPE7C2FyPulXiKHp2NeGT9yoSCQI6deqgXUfx\n6y1iY4PuD/a5lnn3WSJz9t3g7N1oapQuyop+tbE1z/5gX3t9Lf/4/6M8399uD2EHvdlxeDq6xYrT\necosKtau92bRn5Xc3ug/FaNHj+bs2bNoaGhw5coVMjIyGDNmDAEBAaiqqnLnzp088+vr66OlpcXg\nwYPp0KEDHTp0AMDe3h4XFxd69uxJ165vLyGOi4vD2dmZkJAQBEEgI0OpnkPz5s3R11cMA1avXp2I\niIgcnQLAzJkzmTdvHr///rvyWn7a0LNnT1q1aoWrqyvbt29XzjUcPXqUffv24ebmBiiWD9+/f59q\nb+ycf334yNPTk2HDhnH48OFc627cuDGjRo0iKiqKnTt30q1bN9TU1Dh69CiBgYHKYa24uDhCQkKo\nU6cOgwYNIiMjg86dO2NtbZ3n7+FTULjr8d7NImCqKIqZeXXvRVFcDawGsLOzkzbV5cW1bQoROwDz\nhoXmEB7decGF3aE8vRePQQltWg+tibmpSGiTAcQB+t27YTRiJBpl8jeOn5wuY8mJu6w9E4aWuipz\nO9Wgb72yiMhZE7iG+HTF0ItXmBfPUhTDU23LtaWfZluOzp5HQkw01q3a8UMvZzS1v4+J5LyoUaOG\n8o0cYNmyZURHRyvH+v/++29KlCjBtWvXyMzMRCtLelxNTY3MzFe9upe7sdXU1Lh8+TLHjx9nx44d\nLF26lBMnTrBy5UouXbrEwYMHqV27Nn5+ftnsmDVrFk2bNmX37t2Eh4dnmyTWfG3YUFVVFZksd2X+\nZs2aMXPmTC5evKi8llsbXsfU1JTixYsTGBiIp6cnK1cqFH5FUWTnzp1YWFi887t8iaOjIwMHDnxn\n3QMGDGDz5s1s27aN9evXK+tbsmQJrVu/HZ7m9OnTHDx4EBcXFyZNmsSAAQPybVNhUJhO4RHwutsv\nk3XtdeyAbVkOwQhoJwiCTBTFPYVo17fL9R2vHMJYfyhescCriAyNw9frHvdvxKBjoEnTflWxqGNM\nwoH9RExeioq2NmW3bUWrSv7CcoqiyJEbT/nfgWAexabQ1daUaW2qsj10LW6+SWy+uVmZtohaETLk\nijfNA612cX37bo6d/5PiZczp5boQU4v86SN9DzRr1ozp06ezYsUKRo4cCZBtaCIuLo4yZcqgoqLC\nhg0bkMvlgGLeITg4mLS0NFJSUjh+/Dg//PADiYmJJCcn065dO+zt7alQQRGLOjQ0lHr16lGvXj0O\nHTrEgwcPstkRFxeHqanixcDDw+Oj2jRz5kxGjBihrDu3NryJk5MTCxcuJC4uDisrRcDI1q1bs2TJ\nEpYsWYIgCFy9ehUbm7xVfc6ePUvFihXfWbeLiwt169alZMmSVK9eXVnfihUraNasGerq6ty5cwdT\nU1Oio6MpU6YMQ4cOJS0tDX9//2/aKVwBKguCUB6FM+gFZNuRJIqich+2IAgewAHJIXwgT2/AzsGK\nY1vnAncIoihybsfdrJVEajTsWomajUqR4uNNeOclpN+7h1bNmpRw+zPfDiHieRKz993g5O0oLEro\nsX14A+qWL0arHa2ITFIotGqoaFC9eHWWt1iOnoZiPDnU7zIHZswiIy2Vhj36Urdzd1TVPkzn5VtF\nEAT27NnDxIkTWbhwIcbGxujo6CiHX0aNGkW3bt3YuHEjbdq0UY6lm5mZ0bNnT2rWrEn58uWVD8qE\nhAQ6depEamoqoijy118KQYPJkycTEhKCKIo0b96cWrVqcerUKaUdU6ZMwdnZmXnz5tG+/bslS/Ki\nXbt2GBu/ip+dWxvepHv37owfP55Zs2Ypr82aNYsJEyZgZWVFZmYm5cuXV06uv87LOQVRFNHQ0GDt\n2rXvrLtEiRJUq1ZNOdkMMGTIEMLDw7G1tUUURYyNjdmzZw8nT57kjz/+QF1dHV1dXTZu3PhR31FB\nIIhi4Y3GCILQDsUQkSrgLorifEEQRgCIorjyjbQeKJxCnmvJ7OzsxLwmxL47ZGmKIaP9WevCC2GV\nkSiKXNwThv+RCGo2NqVBl4qkXTxL1KJ/SLt1C83KlTAaNw69Fi3ytconNUPO8pOhrDwVirqKwLgW\nFahrkcLe0N2oCCrK1UQX+1xERz37P3rsk0jWjVe0z+XPFQUmXlcY3Lx5860xaolvn+TkZCwtLfH3\n91fOmXxqcvrbEwTBTxTFd64VLtQ5BVEUvQCvN67lGLZLFEWXwrTlmyRTDsvqwYt7inPLHoWy7NTX\nKxz/IxHUcChN7XIveOzSn5SAANTNzCj9x0KKtmuHkM/wlCduPWXOvmDuxyTTsVZpxrc0ZdbF8Sw9\nHAQohoiKaRVjSp0p2RxCZqYcf699nPNUDCfZO/X/oh2CxPeJt7c3gwcPZuLEiZ/NIXwsn3uiWeJD\nibgA69sojlU1YcRZMM7fsM37cPXofS7vv4eZ+mPKHVrPA19f1EqUoKSrKwZduyDkU573QUwycw8E\ncyz4KRWNdZjeTcAvdiVdDp5XplnabCmNzRq/lTf6QQRHVy4m8u5tKtSuS4sho9ArJoXFlPjyaNGi\nBREREZ/bjI9CcgpfI3EPXzkE46rQb2ehrDK6fvIh53fdxeSZH1Ui9yI31KfEz9Mw6NUr1w1nb5Im\nk7PmdBhLz1xBtbgXtnYGJBLCkuDHAOhr6tOxQkd6V+2NedHsy43lMhmX9/7HxZ2eaGpr037cZCwa\nNvrsG9EkJL5lJKfwtSFLg/3jFce2zuC4uMCryMwUCTzxgHM77mIUHUhdk3uYbT2eb0cAinmDU3ei\n+P3QLcKikzCvdpAXBPI4XQcDTQP0NPRwa+RGQ9OcA+g8DbvLkRWLiLofTlX7xjR1GYZ20a+zOy4h\n8TUhOYWviXOL4dirFRS0nl/gVbx4ksSRNTd4/iiR4vG3sU07idmfW97LIYRHJ9HE7SQAZYtr81cf\nc2ZfDQQUk8d5kZGexoUdW/HdvwsdfQM6TZ5FJbsvayOahMS3jOQUvhYuLHvlEMwbQvs/CzwGwpOw\nOA4su4aKIGAVfxyjEG/K/ueJSi5L/d4kMi6F6IR0Oi49C0CFEiJuvYvjfESxErl2idp55n946wZH\nVy7mReQjLJu1olG/QWjp6H5coyQkJN6LvKSzJb4ERFHhEI5MV5z33gaDDkGJ6gVazb1rUez9+ypa\n2uo4CD4Y+e+izO8L0ChXLl/5k9JkNPjtBB2XnkXD+DDFK24kqtjPOB9RRHdrUKoBa1utzTFvekoy\nx91X4jlnGplyGd1nzqPV8HGSQ/hIBEGgX79+ynOZTIaxsbFSoiIvdHUV3314eLhSZRUKVhY7N/bt\n28eCBTkKKivx8PBgzJgxOV5XUVEhMDBQea1mzZqEh4fnWd6QIUMIDn5Tlu39adKkCRYWFlhbW1Ot\nWjVWr1790WV+aqSewpfOkelwcbniuNdWsMiffPD7cOPMI079extjcz3sS4USt2ArRqNGodcsdznr\nl4iiyI/br7HrqmKzunWVZ4SqniQdqFasGjWNatLErAl1StZBTSX7n1v0gwgu7NjK45BbJMY8x7ZN\nR37oNQD1HOQKJN4fHR0dgoKCSElJoUiRIhw7dky5uzi/vHQKfbIi4RW0LHZOODo64ujo+MH5y5Qp\nw/z58/H09Mx3npeb0gqCLVu2YGdnR0xMDBUrVsTFxQUNDY13Z/xCkJzCl0zE+VcOwXk/lG9UoMWL\nooivVziX99/DvEZxHGxTiRzsik7jRhiNGf3O/Nsu3+fPY3eISkgDwL6yPrc1ZoMcljdfjkOZnCWA\nMzPl+O7fzfntm1HXKkKJCpXoMH7qty1TcWgaPLlesGWWtIS2eb9Rt2vXjoMHD9K9e3e2bt1K7969\nOXPmDABz5sxBV1eXn376CVC8UR84cIByr/UOp02bxs2bN7G2tsbZ2RkbGxulLPacOXO4f/8+YWFh\n3L9/nwkTJih7EX/99Rfu7u6A4i18woQJhIeH06ZNG+rXr8/58+epU6cOAwcOZPbs2Tx79owtW7ZQ\nt25dPDw88PX1ZenSpezfv5958+aRnp5O8eLF2bJlCyVKlMizzR06dOD06dPcvn37LW2jkSNHcuXK\nFVJSUujevTuurq7AK0ltX19fQkND+eOPPwCy2bJ582YWL15Meno69erVY/ny5ajmsT8nMTERHR0d\nZZqc6j5x4gSLFy9mzx6FkMOxY8dYvnw5u3fv5ujRo8yePZu0tDQqVqzI+vXr0dXVzVHCvCCRho++\nRB5fhZUOsD6rV9BxcYE7hEx5Jif/vc3l/feo2qAk7UZZErNgHgCl5sxBUMn5T0OeKXIlPIapOwKZ\ntus6UQlpWJgl8oPDDgLVRpImT6O4VvFcHULM40dsmz2VM/96UMG2LgP/WkH3Gf/7th3CZ6RXr15s\n27aN1NRUAgMDqVfv/SbtFyxYgIODAwEBAUycOPGt+7du3eLIkSNcvnwZV1dXMjIy8PPzY/369Vy6\ndImLFy+yZs0arl69CsDdu3f58ccfuXXrFrdu3eLff//l7NmzuLm58euvv75V/g8//MDFixe5evUq\nvXr1yjXmwuuoqKgwZcqUHMubP38+vr6+BAYGcurUqWzDTADdunXLFp3O09OTXr16cfPmTTw9PTl3\n7pxSGXXLli051t+3b1+srKywsLBg1qxZSqeQU91Nmzbl1q1bREVFAbB+/XoGDRpEdHQ08+bNw9vb\nG39/f+zs7Pjrr7+UEuY3btwgMDCQmTNnvvP7eF+knsKXyOomis+iplClNdR2LtDi5RmZHFkbxL1r\n0dRuUxZrK4FYj/WkhYah370b6qVK5Zr3N6+brD17T3n+v0412PBwCNein1JRvyJGRYz4zeG3t/KJ\nmZlcPXKAM/9uQE1dnXZjf6KqfePvZ8/BO97oCwsrKyvCw8PZunUr7dq1e3eG96R9+/ZoamqiqamJ\niYkJT58+5ezZs3Tp0kWpB9S1a1fOnDmDo6Mj5cuXx9LSElAouTZv3hxBELC0tMxx3P/hw4c4OTkR\nGRlJeno65cuXfytNTvTp04f58+dz7969bNe3b9/O6tWrkclkREZGEhwcrBTJAzA2NqZChQpcvHiR\nypUrc+vWLezt7Vm2bBl+fn7UyZKAT0lJwcTEJMe6Xw4fRUVF0bBhQ9q0aUPZsmVzrbt///5s3ryZ\ngQMHcuHCBTZu3Mjhw4cJDg7G3l4hM5+enk6DBg1ylTAvSCSn8CWRnvwqdKaOCUy8AQX80JRlyDm0\nMoj7N57zQ7cKGB1bzr3pByEzkyI2NpiMH59n/sBHcQBsGVKPaqWKsvjar8pAN7s67UJFeLuHEffs\nKUdWLOJB8HXK29jRathYdIsVL9B2SeSOo6MjP/30EydPnuT58+fK67nJZL8P7yN//WZ6FRUV5bmK\nikqOeceOHcukSZNwdHTk5MmTzJkzJ192qamp8eOPP2aLv3Dv3j3c3Ny4cuUKhoaGuLi45NjmXr16\nsX37dqpWrUqXLl0QBAFRFHF2dua3395+4ckNY2NjbG1tuXTpEpmZmbnWPXDgQDp27IiWlhY9evRA\nTU0NURRp2bIlW7dufavcnCTMCxJp+OhLwmc+3MpSauy/q8AdQka6HK/lgdwPfk6TXpUwOrac+H37\nMejWlYpHDlNu67+ovaZCmROX78WgoaZCldIiftGn2Bmi0Ow/0OXAWw5BFEUCvQ+zYfIYnt67S6sR\n4+gydbbkED4xgwYNYvbs2co39JeUK1cOf39/APz9/d96qwbQ09MjISHhvepzcHBgz549JCcnk5SU\nxO7duz84xOTr0tvvGxvZxcUFb29v5dBMfHw8Ojo66Ovr8/TpUw4dOpRjvi5durB37162bt1Kr169\nAEVAoB07dvDsmSKWR0xMzDvlLJKTk7l69SoVK1bMs+7SpUtTunRp5s2bp4zXUL9+fc6dO8fdu3cB\nSEpK4s6dOyQmJhIXF0e7du34+++/uXbt2nt9J/lB6il8KYgiXFiqOJ4cBjoF++DMSJNzcPk1Ht2J\npVn/quhunk/8iRMY9u1LyVnvHpeUZ4pM36WYKLU1N2C493BCXoQA0KFCB8oWLZstfcLzaI6uWkz4\nNX/Ma9ai9YjxFDXOubstUbiUKVMmx2WkL6Wfa9SoQb169aiSg+S5lZUVqqqq1KpVCxcXl3fGHACw\ntbVVxhQAxUSzjY3NO5eF5sScOXPo0aMHhoaGNGvWLEfHlRsaGhqMGzeO8Vm931q1amFjY0PVqlUx\nMzNTDs28iaGhIdWqVSM4OFjZhurVqzNv3jxatWpFZmYm6urqLFu2jLJly76Vv2/fvhQpUoS0tDRc\nXFyoXVuxPyevuvv27UtUVJRS2dTY2BgPDw969+5NWppiIce8efPQ09PLUcK8IClU6ezC4JuUzs5I\ngdtesGMQlKgJI88VaPHpqTIOLL3Gk9A4GrUoitbqGWRE3MdozBiMRo/K17j+8pN3WXj4NgCtmx7h\n/BMfAPZ02kMF/QrKMkRRJPj0CXw8ViOXy2jcdxC1WrbNdeL6W0aSzpbIL2PGjMHGxobBgwcXSHlf\nrHS2RD64exw2vxbbts6QAi0+LUXGgSUBPA1PoGlHY1T/NxxRQ4PiQ4diNGJ4vid6/SMUQdn/GKDG\n3CsKh+DRxoOKBq+C+STFvuDYmmWE+l7EtGp1Wo+cgGHJ0gXaHgmJb43atWujo6PDn3/++blNASSn\n8Pk59ovi07InNJkGxSoUWNGydDn7FwcQFZFAi26lEf43AlFVlbIbN6CRQ7c3L46H3Ea7/HrmXlFM\nKq9vvV4pWyGKIrfOneLE+lVkpKXSuP9gbNs5oqKSvxgLEhLfM2/Gtf7cSE7hcxKwFZ4qgsvQbU2B\nFi2KIj6bb/H0Xjwte5dF9bcxyJKSKLtp43s5hLC4MP4+cxiNYoGoaj3F3tQe+9L22JVU9EITX8Tg\nvXY5ob4XKVXZgtYjJ1DcVAp+IyHxtSI5hc+J12TFZ5//CrzogGMPuHP5KXVam6L2z2TSnzzB3H0d\nWlWr5ruMKaemcihcEThPozgIqDC1zlTK65dHFEVunvHBx2M1svR0qXcgIfGNIDmFz8Xjq5CeANpG\nUKVVgRYdceM5F3bfpaJ1cYx3/o/UkLuYLV+Gtq1tvvJv9L3AqtsziZcplt+lRnZlsWMf7CuVoqhG\nURJiovFes4ww/yuUtqhO6xHjKVb6/TR1JCQkvkwkp/C58MnaBPPDhAIt9sWTJI6uvUGx0jpYXF1N\nqp8/pn+6oZvPdeL34x/xx41hyvPEkKn4TOhCOSMdRFEkyOcYJzeuRS6T0WTAUGzadpB6BxIS3xDf\n3zrBL4H4SAg5Agbm0HBsgRWbliLDa8V1VFQFasceJPXUCUrOnk3RfMgbRCVHMe7EONrvVoT5NNO0\nw6fbJYJ/6U05Ix3io6PYtWAOR1b+g5F5OQb8sYTa7TtJDuEL5qX89cfw+PFjunfvnuv92NhYli9f\nnu/0b+Li4kL58uWxtramVq1aHD9+/KPsLWhWrlzJxo0bP7cZnxSpp/CpSYmFv7LG9c0bFFix9wKj\nuXLgHvFRKTQ2v4fM4z+MJ07EsJdTnvleJKUz88QqTse80n1PfdKBYa1GY6SrrdiVfPwIpzatIzNT\nTrOBw7Fu1f673HfwPVK6dGl27NiR6/2XTmHUqFH5Sp8Tf/zxB927d8fHx4dhw4YREhLyUTaDInaE\nmtrHP95GjBjx0WV8bUhO4VOzTLFDErN60LVgAnDcv/Ecr+UKtcf6NnKEv/9Av0sXig8bmmP6zEyR\njRfCiU3JYJF3CNrl96OiqUrak45kxNahpqkhnW3KEPfsKcfWLCUi8Cpm1S1pNWI8BiVKFojN3xu/\nX/6dWzG3CrTMqsWqMrXu1PfKEx4erlThNDY2Zv369ZibmxMaGkrfvn1JSkqiU6dOLFq0iMTERMLD\nw+nQoQNBQUHcuHGDgQMHkp6eTmZmJjt37mTWrFmEhoZibW1Ny5YtGT16tDK9XC5n6tSpHD58GBUV\nFYYOHcrYsbn3jBs0aMCjR4+U535+fkyaNInExESMjIzw8PCgVKlSXLlyhcGDB6OiokLLli05dOgQ\nQUFBeHh4sGvXLhITE5HL5Zw6dYo//viD7du3k5aWRpcuXXB1dSUpKYmePXvy8OFD5HI5s2bNwsnJ\nKUdJ6tflxQMCAhgxYgTJyclUrFgRd3d3DA0NadKkCfXq1cPHx4fY2FjWrVv3wbIeXwKSU/iUZMoh\n8SkgwMDDBVJkalIGxzfexLCkNh27FuWRcz+0rK0p6Ton141pdeZ78zwpPetMRFUrEoDgyQpt+aTo\nKP773wzuB11DXVOL5oNGfre7kr81xo4di7OzM87Ozri7uzNu3Dj27NnD+PHjGT9+PL1792blypU5\n5l25ciXjx4+nb9++pKenI5fLWbBgAUFBQQQEBABkk7JYvXo14eHhBAQEoKamRkxMTJ62HT58mM6d\nOwOQkZHB2LFj2bt3L8bGxnh6ejJjxgzc3d0ZOHAga9asoUGDBkybNi1bGf7+/gQGBlKsWDGOHj1K\nSEgIly9fRhRFHB0dOX36NFFRUZQuXZqDBw8CCn2ll5LUt27dQhAEYmNj37JvwIABLFmyhMaNG/PL\nL7/g6urKokWLAEXP5PLly3h5eeHq6oq3t3f+fiFfIJJT+FSkxsECc8WxZQ8ooAfs5X1hpCRk0LZ/\nOZ6Oc0a1aFHKLFmMSg6RnuKSM/hlXxDPk9LRUFXBd1YLolMf0GkvNDdvjpqKQPDpE5xYvwoQqdup\nO1Yt2qBvIvUOPpb3faMvLC5cuMCuXbsA6N+/P1OmTFFefxnopU+fPsrAO6/ToEED5s+fz8OHD+na\ntSuVK1fOsy5vb29GjBihHMYpVqxYjukmT57M9OnTefjwIRcuXADg9u3bBAUF0bJlSwDkcjmlSpUi\nNjaWhIQEGjRooLT1wIEDyrJatmyprOfo0aMcPXpUqdeUmJhISEgIDg4O/Pjjj0ydOpUOHTrg4OCA\nTCbLU5I6Li6O2NhYGjduDICzszM9evRQ3u/aVaFKULt27Q/SePqSkJzCpyD8HHhkTfZqG0GHghGx\nunctiuunHmHZqBRpC35G9vw5ZTdvzlXp9J/jIewNeAzApsF1GX1iEAFRije8ZkYO7P/rN0Iun6dM\ntZq0GTURfZO8I1xJfF/06dOHevXqcfDgQdq1a8eqVauoUOHjd+C/nFNYsmQJgwYNws/PD1EUqVGj\nhtJJvCSnN/jXeRnDARQbOH/++WeGDx/+Vjp/f3+8vLyYOXMmzZs355dffvkoSeqXEuD5kQ//0pHG\nAwqbTPkrh9BwLEy6CZp6H13siydJHFsfjElZPSrc3k6yry+l5s2jiGXNt9ImpGbQ4q9TuJ9TKExe\nm90KFe0wpUOYoN+fh0t2EeZ/mUb9BtHjl/mSQ/hGadiwIdu2bQMUwWBejn3Xr1+fnTsVMugv779J\nWFgYFSpUYNy4cXTq1InAwMA8pbVbtmzJqlWrlA/Jdw0fjRkzhszMTI4cOYKFhQVRUVFKp5CRkcGN\nGzcwMDBAT0+PS5cu5WkrQOvWrXF3dycxMRGAR48e8ezZMx4/foy2tjb9+vVj8uTJ+Pv7v1OSWl9f\nH0NDQ2Uo002bNil7Dd8aUk+hsAlViMehoQct/1cgMRLSU2QcWnkdNXUVGpQMI+H3bRQfOgT9jtm7\nvKkZcs6ERDN04ytV2S1D6qFfRJ0T10+gJhP4KbEzT7xOY2xejrYz52NsXu6j7ZP4MkhOTqZMmTLK\n80mTJrFkyRIGDhzIH3/8oZxoBli0aBH9+vVj/vz5tGnTBn19/bfK2759O5s2bUJdXZ2SJUsyffp0\nihUrhr29PTVr1qRt27aMHv0qtveQIUO4c+cOVlZWqKurM3ToUMaMGZOrvYIgMHPmTBYuXEjr1q3Z\nsWMH48aNIy4uDplMxoQJE6hRowbr1q1j6NChqKio0Lhx4xxtBWjVqhU3b95UDjXp6uqyefNm7t69\ny+TJk1FRUUFdXZ0VK1aQkJDwTknqDRs2KCeaK1SooPzuvjUk6ezC5MYe+C8rlObgY2BW96OLFDNF\nDq26Tvj1aJpUjkRY+xu6P/xAmeXLEF4LIi6KIvV+Pc6zhDRAxKqsCiv72aCqosKa62s4cXEPDteK\nUzRFgzqO3WjYoy9q6uofbZ/EK74m6ezk5GSKFCmCIAhs27aNrVu3snfv3s9tVo4kJiYq92AsWLCA\nyMhI/vnnn89s1ZeFJJ39JRJx4ZVDKFMHSudPYuJd+B0O5961aGrI/RBWuaPXqhWlfp2fzSGAImbP\ns4Q0mlY1JqLITO6lRtJ6F6hkgnWIAW1DS6BuoEv3KbMoU+3tISeJ7ws/Pz/GjBmDKIoYGBjgbpHp\nFQAAIABJREFU7u7+uU3KlYMHD/Lbb78hk8koW7YsHh4en9ukb4pCdQqCILQB/gFUgbWiKC54435f\nYCogAAnASFEUCz6+3OfAL6tr2Wo+NMy9y/w+hF+P5tK+e5SKvUaJm1so6eqKQc8eOS49jYhJBsDM\nJBbfKMWS058rjCN6xxkynsRQuVFj2gwajUYR7QKxTeLrxsHBoVBCOxYGTk5OODnlvSlT4sMpNKcg\nCIIqsAxoCTwErgiCsE8UxeDXkt0DGoui+EIQhLbAaqBeYdn0Sbm+I0vGomAcQvzTBI6u8Ec34TGW\nyacx+287WjmETwTFxHJTt5MA3E7dj0aGCmOTOvBslRcaRbRpN3kWley+ja9ZQkKiYCnMnkJd4K4o\nimEAgiBsAzoBSqcgiuL519JfBMrwNRN7H07Mg5gwEOWQ8KRAio2+HobXP35kqBXHoWwUFWf9i0qR\nIrmmv/rwMRrGhyhVPIm4sCA6BZbieXogVer/QPOBw9HWNygQuyQkJL49CtMpmAIPXjt/SN69gMHA\noZxuCIIwDBgGYG5uXlD2FRzyDIi6BevbQ1qcYqVR0TLQc8NHFSuLT+TS0iME3tNBEHSoZy2n2ojJ\nuaaPT48nLDaM0ef6o2MgYBFkiMWDEqgY6dJ70v8oWTHvzUYSEhISX8REsyAITVE4hR9yui+K4moU\nQ0vY2dl9eculDv8MV16LnDYlFNQ0P6rIyKBHeP99hnh1E0rwgOaTGmNYrVyu6RNS07D3tAeg5HNN\n7K+ZoJemSh3HroqVRTnscJaQkJB4k8LcvPYIeD0uY5msa9kQBMEKWAt0EkXxeSHaUzg8D33lEHr9\nC1MjPsohZKTLObMliN1LbpIqatG4IXRbPSBXhyCKIsGP46n16xZU5QJ1g4xoc6kkuurG9HJdSKO+\nAyWH8J2iqqqKtbU1NWvWpGPHju/cDZxfwsPDqVmz4FeszZkzB1NTU6ytrbG2tn5L16ggCQgIwMvL\nq9DK/5opzJ7CFaCyIAjlUTiDXkCf1xMIgmAO7AL6i6J4pxBtKTzCFTscqTMEqrb/qKIeBMfgsymY\nhBfplH52iUZjG1O8WY6dJwBO3Yli6AZf0uWZVCixgh/OlEI/WR2bth1x6O2MuqbWR9kj8XVTpEgR\npVCds7Mzy5YtY8aMGZ/ZqryZOHFijrpL70Iul6Oqmv/YHgEBAfj6+tIuH7FGvjcKzSmIoigTBGEM\ncATFklR3URRvCIIwIuv+SuAXoDiwPGtZpSw/myu+GETxVZxlhx/fO/vtS0+4ef4xiCDLyOTpvXh0\nZC+wvf0vVr//iE7Dhrnm9Q2Pwdn9MqqZ6bRM96HKRROSi8jpOvN/lLe0+dAWSRQST379lbSbBSud\nrVmtKiWnT89X2gYNGhAYqJBXT0xMpFOnTrx48YKMjAzmzZtHp06dCA8Pp23btvzwww+cP38eU1NT\n9u7dS5EiRfDz82PQoEGAYqfwS1JTUxk5ciS+vr6oqanx119/0bRpUzw8PNizZw9JSUmEhITw008/\nkZ6ezqZNm9DU1MTLyytXgbw3OX78OD/99BMymYw6deqwYsUKNDU1KVeuHE5OThw7dowpU6ZQp04d\nRo8eTVRUFNra2qxZs4aqVavy33//4erqiqqqKvr6+nh7e/PLL7+QkpLC2bNn+fnnn6Ulrq9RqNpH\noih6iaJYRRTFiqIozs+6tjLLISCK4hBRFA1FUbTO+vnyHcLTYAg9ofhZ0xTkWRLUOibvVcydy0/w\n9ggmKTYdUQQVUU6l+AvU8f0tT4cQ/Die3qsv0n3VaUoK/gyIcadqZBghZomYj+0mOQSJt5DL5Rw/\nfhxHR0cAtLS02L17N/7+/vj4+PDjjz/yUtkgJCSE0aNHK3WGXuohDRw4kCVLlry1l2HZsmUIgsD1\n69fZunUrzs7OpKamAhAUFMSuXbu4cuUKM2bMQFtbm6tXr9KgQYNco5n9/fffyuGjI0eOkJqaiouL\nC56enly/fh2ZTMaKFSuU6YsXL46/vz+9evVi2LBhLFmyBD8/P9zc3JSBf+bOncuRI0e4du0a+/bt\nQ0NDg7lz5+Lk5ERAQIDkEN7gi5ho/mo4MgMuLH37+oTroJr/r/LetSi8PW5iWtmADmNqIb6I5v6g\nwWQ8eoTZiuXoNMg5Ipsoiizzuculh4E4qGzEKlSfFE05x+o8Z16/FdQuUftDWyZRyOT3jb4gSUlJ\nwdramkePHlGtWjWlDLUoikyfPp3Tp0+joqLCo0ePePr0KYAyNCa8koGOjY0lNjaWRo0aAQrJ7UOH\nFAsFz549qwycU7VqVcqWLcudO4qR4KZNm6Knp4eenh76+vp07NgRAEtLS2Wv5U3eHD66du0a5cuX\np0rWnpyXw2ATJihim798oCcmJnL+/PlsctZpaWkA2Nvb4+LiQs+ePZUS1xK5IzmF/HLnyCuH0P4v\nKFFDcWxcFYrkf93/g1sxHFlzA2NzPdqNsiLz6WPuDxyE/MULzFavQqduzvpIGfJMVp0KxTtqMQ4Z\noViFGfDCVBXHcTMYYVIJE+3366lIfPu8nFNITk6mdevWLFu2jHHjxrFlyxaioqLw8/NDXV2dcuXK\nKd/uX0pAg2KiOiUl5YPrf70sFRUV5bmKikqByUu/lMrOzMzEwMBAOYfyOitXruTSpUscPHiQ2rVr\n4+fnVyB1f6tI0tn5JSJrn13/3VBnMJjXV/y8h0N4EhaH14rr6JsUoePYWogPw4no05fMhATMPTxy\ndAh+ES9o8dcpKs84gMfxrXS8/RCrMH1E06K4LtxJ3XINJYcgkSfa2tosXryYP//8E5lMRlxcHCYm\nJqirq+Pj40NERESe+Q0MDDAwMODs2bOAQnL7JQ4ODsrzO3fucP/+fSwsLArMdgsLC8LDw7l79y6Q\nu2R10aJFKV++PP/99x+g6A29HOoKDQ2lXr16zJ07F2NjYx48eJCn5Pf3juQU8kPEBTinCLuHWf0P\nKiL6YQIHll5Dp6gGjuOtEe/dIaJff0REzDdtzDEOwoRtV+m24jzhT17QmD9xCr1EsQR1tNvb8qPb\nZlQLIDC5xPeBjY0NVlZWbN26lb59++Lr64ulpSUbN26katWq78y/fv16Ro8ejbW1tXL+AWDUqFFk\nZmZiaWmJk5MTHh4e2XoIH4uWlhbr16+nR48eWFpaoqKiwogRI3JMu2XLFtatW0etWrWoUaOGUuV1\n8uTJWFpaUrNmTRo2bEitWrVo2rQpwcHBWFtb4+npWWD2fgtI0tnvIi0BfjMDRChlDcNPvXcRsU+T\n2eXmh6qaCl1+skUtPJgHw0egqq+P+Xp3NHLYpe0XEUO/tZcpGXuXTqkXkMfHEVImkZHj3KhpZoOq\nSv6X30l8Hr4m6WyJbwtJOruwiLwG69sBomLJ6QcsO01NymD/UkU31nG8NZrxTwgfMRI1Y2PM17uj\nXvLt+MfpskxcFh+hWcxZKiRHkF68CEfqP+HHTnOpVfbLX6AlISHx9SI5hbxYpVhtgZEF2PQHDZ28\n079BpjyTo2uDSIxJpfMkW4rqZBI+aAyCmhrma9e85RBEUcTr2kMu7t1J30cnUVURMGpbnz9FT0QV\nsC1RMDEZJCQkJHJDcgq58TBrhUKxijDm8gcVcWF3KA9uvqBp/6qULK/Hw1GjSb9/H3P3daibmmZL\nO8/rOkfPbqBx5E0MkgXumaRzpcYzkoW7IMB42/GU1Hm7VyEhISFRkEhOITe2dFd8tpr3QdlvX4wk\nwPsBlo1NqW5fmmeLFpF48iQlfpmVbZWRPFPO/MO/8OzoeTpF6hCvLeOYXQw29drQVk0VNRU1hlgO\noYR2iYJolYSEhESeSE4hN/RKQWocVH1/bZSn4fH4bL5N6coG2PesTPyhQzxfuQqDHt0x7N07W9rd\nx/9FZ8M1yqNDWJWiTJ34KzP1TVFXleIlS0hIfHokp5Abz25A1Q7vnS0+OoVDKwLRzEym0vbZ3P03\nicyUFIrY2FBi1ixl6Ezfu2F4rB5F+Qg1EovIuFCsNjMGTMC8mHFBt0RCQkIi30j7FHJiXWvFZ8r7\nSQ0nxaWxd9FV0uOSqHnpT4o51MWge3eKDxtKmaVLUNHQIDE1g5Ueu/H6ZQplI1QJLKPKvpq12fmb\nKw6VJYcgUXA8ffqUPn36UKFCBWrXrk2DBg3YvXv3R5U5Z84c3NzcAPjll1/w9vb+oHLykq4+efIk\n+vr6WFtbY2VlRYsWLXj27NkH2/wm4eHh/Pvvv8pzX19fxo0bV2Dlf+1IPYU3SYyCBxcVxz3W5ztb\nSmI6e/++SlJ0Itb+iyg/zAmj4cOypUmIiWbr34tIuhNAatE0TljGMLb1bNZV6oCaquSfJQoOURTp\n3Lkzzs7OygdgREQE+/bteyutTCZD7QM2Qs6dO/eD7XuXdLWDgwMHDhwA4Oeff2bZsmW4urp+cH2v\n89Ip9OmjUPK3s7PDzk5a6v0SySm8yU3FLkiazwbd/MlHpKXI2P9PAHFPEqgVsJRKQ7piNGyo8r6Y\nmck178Oc2LSGDFkaV6vGEVwunpG2o2hRrrHkEL4Dzmy/Q/SDxAIt08hMF4eeVXK8d+LECTQ0NLLt\n/i1btqxSvM7Dw4Ndu3aRmJiIXC7n4MGDOcppA8yfP58NGzZgYmKCmZkZtWsrhBddXFzo0KED3bt3\nx8/Pj0mTJpGYmIiRkREeHh6UKlWKJk2aUK9ePXx8fIiNjWXdunXUq1cv39LVoiiSkJBApUqVAIiJ\niWHQoEGEhYWhra3N6tWrsbKyyvX6qVOnGD9+PACCIHD69GmmTZvGzZs3sba2xtnZGRsbG9zc3Dhw\n4ABz5szh/v37hIWFcf/+fSZMmKDsRfzvf/9j8+bNGBsbK7+HD4n98KUjOYXXEUU4mLVBrVKLfGVJ\nT5FxcGkA0Q/isQxcRZVBHbM5hP/Oe/Bghzfio1geF0/hQs0Y0jWqsKn9DGqZWBVGKyQkuHHjBra2\nee9r8ff3JzAwkGLFiiGTydi9ezdFixYlOjqa+vXr4+joiL+/P9u2bSMgIACZTIatra3SKbwkIyOD\nsWPHsnfvXoyNjfH09GTGjBm4u7sDip7I5cuX8fLywtXVFW9vb+bOnYuvry9Ll+agOgycOXMGa2tr\nnj9/jo6ODr/++isAs2fPxsbGhj179nDixAkGDBhAQEBArtfd3NxYtmwZ9vb2JCYmoqWlxYIFC5RO\nABTDVa9z69YtfHx8SEhIwMLCgpEjRxIQEMDOnTu5du0aGRkZOX4P3wqSU3idqKwgKBbtoFTeD2y5\nLBO/wxFcOXAPEKlxYz3VBrbGaOhQtt3axqO4h8SeCkDP/wUZaplcsXpBqGkSzuV/56fGUrSn743c\n3ug/FaNHj+bs2bNoaGhw5coVAFq2bKkMdJObnPaZM2fo0qUL2traAMqYDK9z+/ZtgoKClNLccrmc\nUqVKKe+/lKt+KcWdH14fPvr999+ZMmUKK1eu5OzZs8oYD82aNeP58+fEx8fnet3e3p5JkybRt29f\nunbtSpkyZd5Zd/v27dHU1ERTUxMTExOePn3KuXPn6NSpE1paWmhpaSllwL9FJKfwOmuzege1euWZ\n7FlEPCc23uT5oyRKig8oeW03VYd3ppiLMyOOjSAkyJeGQcUwSNQgtHQyp3QdSUqowko7W9rULJVn\n2RISBUGNGjWUD0lQBMOJjo7ONnb+UnYayFNO+12IokiNGjW4cOFCjvdfCuSpqqp+kGS2o6Mj3bp1\ne+98ANOmTaN9+/Z4eXlhb2/PkSNH3pnnTfnwgpL5/lqQBrMBMlLh9B+Qngg6xlC9U47JZBlyLuwJ\nZcfvfqQkpGOXcozqp3+n1Oh2rK3xFLv1NsiOBdPuYklKaZSCVkMIMJmJvrYVC7tZ0bqGtCNZ4tPQ\nrFkzUlNTs0UpS05OzjV9bnLajRo1Ys+ePaSkpJCQkMD+/fvfymthYUFUVJTSKWRkZHDjxo087Xsf\n6eqzZ89SsWJFILtU98mTJzEyMqJo0aK5Xg8NDcXS0pKpU6dSp04dbt269UGy2fb29uzfv5/U1FQS\nExOVvZhvEamnkCmH38uBLCuYSIs5OSZ7EhbH8Y03iX2STHlrHcwOL0Ql5CZ/OwpcyFxC6dNaOF4v\niU6qKkHFKnNWrzEZIepAKgPty9GzjtknapCEhGJSdc+ePUycOJGFCxdibGyMjo4Ov//+e47p+/bt\nS8eOHbG0tMTOzk4pp21ra4uTkxO1atXCxMSEOnXqvJVXQ0ODHTt2MG7cOOLi4pDJZEyYMIEaNWrk\nal/Tpk1ZsGAB1tbWOU40v5xTEEURfX191q5dCyiWxA4aNAgrKyu0tbXZsGFDntcXLVqEj48PKioq\n1KhRg7Zt26KiooKqqiq1atXCxcUFG5t3h7CtU6cOjo6OWFlZUaJECSwtLdHX139nvq8RSTr71ELw\nmQ+G5WGgFxQtne12RrqcS3vDuHbiAehkcLL4GoYduIFJHPzZRYUb5mo43CmF2X01ErSKcdiwMU+0\nFD2CX7tY0rFWKfS0pN3J3yOSdPa3RWJiIrq6uiQnJ9OoUSNWr179zsn8z4Uknf2hZGYqHALA0BOg\nXUx5KzUpg0v7wrgfHEN8VAql1UN5fH85486kYZiuSYRrH7gVRyefEIrIU7iib8MVg9oIaurMbl+N\nztamGOpofKaGSUhIFDTDhg0jODiY1NRUnJ2dv1iH8LF8304hcJviU9som0MACD73mKBTjyiqlYbN\n3Q0YPryGUVEQ9PQwnvs3B3YfoNaD60RpGFGu93i6lTJnVfWS6GtLvQIJiW+R13dBf8t8v04h6TnE\nPlAcDz6a7Vbii1Sued/HMDMKm8NzeG6qy+RBqrRsPhTbZxasWfoXGpkZnDesx6yfR2Jd1ugzNEBC\nQkKi4Pk+ncLN/eDZ79W5loHyMDUpg71/XiEtNpEagR7s6GbC9ioxmMgMiFx9i8uxx3ihWZITRk3Y\n9GNHapp+m5NNEhIS3yffp1N46RDqDlMsP9UpDigmlfctOEfcs3RswzZR5Z9ZDLsxgqrhetQLKYFM\nFsmpYvb0HdiHXyxLo19EGiqSkJD4tvj+nMK2vopPoyrQ7g/lZbk8kwNzjhL1XB2bF4ew9VjINK+f\n6XquNDqpajzQMuJEiSbsntaRisa6n8l4CQkJicLl+9q89vQG3MradOK4RHk5Mz0Dr5+28zhGEyv8\nqeY2nr2bV2N6/AVp6pnsL9GaY+admdnrB8khSHw1zJ8/nxo1amBlZYW1tTWXLl3C1dWVn3/+OVu6\ngIAA5fLFcuXK4eDgkO2+tbU1NWvW/CAbGjZsCLwtV+3h4cGYMWPeu7wmTZqQ05L0tLQ0WrRogbW1\nNZ6envnKU1iEh4d/8Pf1JfB99RRS4xWfTlvAvD4AKU9j2D/LiyiV0lgUDeeppSoXpo8hU8wkoGoc\ngcbGJD+swK1fWqGlrvoZjZeQyD8XLlzgwIED+Pv7o6mpSXR0NOnp6fTu3Zs2bdrw22+/KdNu27aN\n3q9FBExISODBgweYmZlx8+bNj7Lj/PnzwNty1R+CXC7P9d7Vq1cBhYMrSORyOaqq39f//fflFF6i\nodB8SYmOY9f0w8Sql0ZHz5eTL3wwPKDKY+NkLlaPIxUbyoldWDWlqeQQJD4KH4/VPIsIK9AyTcpW\noKnLsBzvRUZGYmRkpNTxMTJ6tULO0NCQS5cuUa9ePQC2b9+eTROoZ8+eeHp68tNPP7F161Z69+7N\npk2b3qpj9OjRtG7dGkdHR7p06YKhoSHu7u64u7sTGhrK/Pnz0dXVJTEx8S25akNDQx4/fkybNm0I\nDQ2lS5cuLFy48K06ypUrh5OTE8eOHWPKlCkAbNq0iSFDhiCTyXB3d6dcuXL069ePqKgorK2t2blz\np1IW43UyMzMZNGgQZcqUYd68eRw9epTZs2eTlpZGxYoVWb9+Pbq6um/VuXLlyrfkvx0cHJDL5Uyb\nNo2TJ0+SlpbG6NGjGT58+Hv8Br9Mvq/hI+85ysPUuGR2Tz9MrEpRojKWEH3/FBqpKhw2r8458z7Y\nFF3J5WGr8RrdHrNi2p/PZgmJD6BVq1Y8ePCAKlWqMGrUKE6dOqW817t3b7ZtU+zRuXjxIsWKFaNy\n5crK+926dWPXrl0A7N+/P1dFUAcHB86cOQPAo0ePCA4OBhQSFY0aNcqWdsGCBTg4OBAQEMDEiRMB\nxVu9p6cn169fx9PTkwcPHuRYT/HixfH396dXL4VQZXJyMgEBASxfvpxBgwZhYmLC2rVrleXn5BBk\nMhl9+/alcuXKzJs3j+joaObNm4e3tzf+/v7Y2dnx119/5VrnS/nvRYsWKYP9rFu3Dn19fa5cucKV\nK1dYs2YN9+7dy7ENXxPfT08hI0UZUS1Vryo7px4kJuM5Kamb0c0UuW5YlqINe/JPC1uqldJTxlKW\nkCgIcnujLyx0dXXx8/PjzJkz+Pj44OTkxIIFC3BxccHJyYmGDRvy559/vjV0BIoHoqGhIdu2baNa\ntWpK2ew3cXBwYNGiRQQHB1O9enVevHhBZGQkFy5cYPHixe+0sXnz5kr9oOrVqxMREYGZ2dsaYW/q\nIr20t1GjRsTHxxMb++6wucOHD6dnz57MmDEDUDjD4OBg7O3tAUhPT6dBgwa51pmT/PfRo0cJDAxk\nx44dgEJUMCQkhCpVPq9M+sdSqE5BEIQ2wD+AKrBWFMUFb9wXsu63A5IBF1EU/QvFmAyF4F1M7ans\nmHGYpGQ/MmXhvNBW44RBB37s25qedpJoncS3g6qqKk2aNKFJkyZYWlqyYcMGXFxcMDMzo3z58pw6\ndYqdO3fmKHnt5OTE6NGj8fDwyLV8U1NTYmNjOXz4MI0aNSImJobt27ejq6uLnp7eO+3Lr0T16xLf\nwFsvbPl5gWvYsCE+Pj78+OOPaGlpIYoiLVu2ZOvWrfmqMyf5b1EUWbJkCa1bt86WNr8xI75UCm34\nSBAEVWAZ0BaoDvQWBKH6G8naApWzfoYBKygsws8SKivFxv/iSYjfi1wWzrnSZdlmMogtP/eSHILE\nN8Xt27cJCQlRngcEBFC2bFnlee/evZk4cSIVKlTIMfBMly5dmDJlylsPvDepX78+ixYtolGjRjg4\nOODm5vbW6iV4P6nsd/FyddHZs2fR19fPl1rp4MGDadeuHT179kQmk1G/fn3OnTvH3bt3AUhKSuLO\nnTvvZUfr1q1ZsWIFGRkZANy5c4ekpKT3bM2XR2H2FOoCd0VRDAMQBGEb0AkIfi1NJ2CjqJBqvSgI\ngoEgCKVEUYwsaGM2eJwgOqISEISqqIntz3NpV6IcVUroSjGSJb45EhMTGTt2LLGxsaipqVGpUiVW\nr16tvN+jRw/GjRvHkiVLcsyvp6fH1KlT31mPg4MDR48epVKlSpQtW5aYmJgcnYKVlVU2uWpDQ8MP\nbpuWlhY2NjZkZGQoQ37mh0mTJhEXF0f//v3ZsmULHh4e9O7dm7S0NADmzZv3XkM/Q4YMITw8HFtb\nW0RRxNjYmD179rx3e740Ck06WxCE7kAbURSHZJ33B+qJojjmtTQHgAWiKJ7NOj8OTBVF0feNsoah\n6Elgbm5e+2UAkPdh1z//cP/idYqopzFo9VrUtTTfnUlC4iOQpLMlPhffvHS2KIqrgdWgiKfwIWV0\nHT8exheoWRISEhLfHIU5bvIIeH2gvkzWtfdNIyEhISHxiShMp3AFqCwIQnlBEDSAXsC+N9LsAwYI\nCuoDcYUxnyAh8bn42iIbSnz9fOzfXKENH4miKBMEYQxwBMWSVHdRFG8IgjAi6/5KwAvFctS7KJak\nDiwseyQkPjVaWlo8f/6c4sWLS/teJD4Joijy/PlztLS0PrgMKUazhEQhkZGRwcOHD0lNTf3cpkh8\nR2hpaVGmTBnU1bNL+39TE80SEl8j6urqlC9f/nObISHxXkgL9CUkJCQklEhOQUJCQkJCieQUJCQk\nJCSUfHUTzYIgRAHvv6VZgREQXYDmfA1Ibf4+kNr8ffAxbS4riqLxuxJ9dU7hYxAEwTc/s+/fElKb\nvw+kNn8ffIo2S8NHEhISEhJKJKcgISEhIaHke3MKq9+d5JtDavP3gdTm74NCb/N3NacgISEhIZE3\n31tPQUJCQkIiDySnICEhISGh5Jt0CoIgtBEE4bYgCHcFQZiWw31BEITFWfcDBUGw/Rx2FiT5aHPf\nrLZeFwThvCAItT6HnQXJu9r8Wro6giDIsqIBftXkp82CIDQRBCFAEIQbgiCc+tQ2FjT5+NvWFwRh\nvyAI17La/FWrLQuC4C4IwjNBEIJyuV+4zy9RFL+pHxQy3aFABUADuAZUfyNNO+AQIAD1gUuf2+5P\n0OaGgGHWcdvvoc2vpTuBQqa9++e2+xP8ng1QxEE3zzo3+dx2f4I2Twd+zzo2BmIAjc9t+0e0uRFg\nCwT9v737C5GqDOM4/v2BRcZKhpKE/VHMSggTzOrCJAuMJBDvokz6cxNSdCV2lYRQQjddRH9AIoLI\ni5LaLkrECKVaMlOSMERUzAoECy0TavPXxXl32Na1PSszZ5vx94GBOWfODs/DLO9z3jNnnvc8r3d0\n/OrFmcLtwEHbh2z/CWwGVow4ZgXwtisDwFRJVzcdaBuNmbPtL2z/WjYHqFa562Z1PmeAp4H3geNN\nBtchdXJ+CNhi+yiA7W7Pu07OBqaoWrSij6ooDDYbZvvY3kGVw/l0dPzqxaIwE/hh2Paxsm+8x3ST\n8ebzBNWZRjcbM2dJM4GVwGsNxtVJdT7nG4ErJX0mabek1Y1F1xl1cn4FmAf8BOwDnrF9tpnwJkRH\nx6+sp3CRkbSUqigsnuhYGvAysM722Yto5bNJwELgXmAy8KWkAdsHJjasjroP2AvcA8wBtknaafvU\nxIbVnXqxKPwIXDts+5qyb7zHdJNa+UiaD2wC7rd9oqHYOqVOzrcBm0tBmA4slzRo+4NmQmy7Ojkf\nA07YPg2clrQDuBXo1qJQJ+fHgI2uLrgflHQYuBn4qpkQG9fR8asXLx/tAuZKmi3pUuBq7+SvAAAC\nf0lEQVRBoH/EMf3A6vIt/p3ASds/Nx1oG42Zs6TrgC3AIz1y1jhmzrZn255lexbwHrCmiwsC1Pvf\n/hBYLGmSpMuBO4D9DcfZTnVyPko1M0LSDOAm4FCjUTaro+NXz80UbA9KegrYSnXnwpu2v5P0ZHn9\ndao7UZYDB4E/qM40ulbNnJ8DpgGvljPnQXdxh8maOfeUOjnb3i/pE+Bb4CywyfaotzZ2g5qf8wbg\nLUn7qO7IWWe7a1tqS3oXuBuYLukYsB64BJoZv9LmIiIiWnrx8lFERFygFIWIiGhJUYiIiJYUhYiI\naElRiIiIlhSFiBEk/V26jA49ZpXOoyfL9n5J68f5nlMlrelUzBHtkqIQca4zthcMexwp+3faXkD1\nS+lVI1sWS/qv3/1MBVIU4n8vRSFinEoLid3ADZIeldQv6VNgu6Q+SdslfVPWrhjq6LkRmFNmGi8B\nSForaVfpif/8BKUT8S8994vmiDaYLGlveX7Y9srhL0qaRtXHfgOwiKr3/Xzbv5TZwkrbpyRNBwYk\n9QPPAreUmQaSlgFzqVpDC+iXtKS0TY6YMCkKEec6MzR4j3CXpD1U7SM2lnYLi4Bttof63wt4QdKS\nctxMYMYo77WsPPaU7T6qIpGiEBMqRSGivp22Hxhl/+lhzx+mWv1roe2/JB0BLhvlbwS8aPuN9ocZ\nceHynUJEe10BHC8FYSlwfdn/GzBl2HFbgccl9UG1IJCkq5oNNeJcmSlEtNc7wEelY+fXwPcAtk9I\n+rwsxv6x7bWS5lEtggPwO7CK3lg2NLpYuqRGRERLLh9FRERLikJERLSkKEREREuKQkREtKQoRERE\nS4pCRES0pChERETLP9ZVzRFdlWH4AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118a66a0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"n_splits=24\n",
"kfold=StratifiedKFold(n_splits=n_splits, shuffle=False)\n",
"\n",
"featurelist=[\"Diameter\",\"MeanHU\",\"Spiculation\",\"Eccentricity\"]\n",
"models=[GaussianNB(), optimal_mnb,\n",
" optimal_lr,\n",
" optimal_rf,\n",
" optimal_gb,\n",
" SVC(C=0.02,kernel='rbf', probability=True),\n",
" SVC(C=0.02, kernel='linear', probability=True)]\n",
"name=[\"Gaussian Naive Bayes\", \"Multinomial Naive Bayes\", \"Logistic Regression\", \"Random Forest\", \"Gradient Boosting\", \"SVM with rbf kernel\", \"SVM with linear kernel\"]\n",
"\n",
"predictedmodels={}\n",
"\n",
"\n",
"\n",
"for nm, clf in zip(name[:-1], models[:-1]):\n",
" print(nm)\n",
" predicted=[]\n",
" mallabelcv=[]\n",
" for train,test in kfold.split(inputfeatures,malignantlabel):\n",
" if nm==name[1]:\n",
" clf.fit(roundedfeatures[featurelist].iloc[train],[malignantlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(roundedfeatures[featurelist].iloc[test])[:,1])\n",
" else:\n",
" clf.fit(roundedfeatures[featurelist].iloc[train],[malignantlabel[i] for i in train])\n",
" predicted.append(clf.predict_proba(inputfeatures[featurelist].iloc[test])[:,1])\n",
" mallabelcv.append([malignantlabel[i] for i in test])\n",
" if nm==name[1]: \n",
" scores=cross_val_score(clf,roundedfeatures[featurelist], malignantlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" else:\n",
" scores=cross_val_score(clf,roundedfeatures[featurelist], malignantlabel, cv=StratifiedKFold(n_splits=n_splits, shuffle=True), n_jobs=-1, scoring='neg_log_loss')\n",
" predicted=np.concatenate(np.array(predicted),axis=0)\n",
" mallabelcv=np.concatenate(np.array(mallabelcv),axis=0)\n",
" predictedmodels[nm]=predicted\n",
" roc=roc_curve(mallabelcv,predicted)\n",
" print(\"Average precision score:\", average_precision_score(mallabelcv,predicted))\n",
" print(\"Area under curve:\", auc(roc[0],roc[1]))\n",
" plt.plot(roc[0],roc[1])\n",
" #print(-scores)\n",
" print(\"Cross-validated logloss\",-np.mean(scores))\n",
" print(\"---------------------------------------\")\n",
" #plt.plot(rocrandom[0],rocrandom[1])\n",
"plt.title('ROC')\n",
"plt.ylabel('TPrate')\n",
"plt.xlabel('FPrate')\n",
"plt.legend(name)\n",
"plt.savefig(\"clfroccomparison.png\",dpi=300)\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}