Switch to unified view

a/README.md b/README.md
1
# Lung-Lobes-Segmentation-in-CT-Scans
1
# Lung-Lobes-Segmentation-in-CT-Scans
2
2
3
Python and C++ implementation on vessel and fissure segmentation in Lung CT Scans based on [Bianca's work](https://pdfs.semanticscholar.org/ddd9/8a73eab745841ba41a13633be76ab1f9c8b0.pdf)
3
Python and C++ implementation on vessel and fissure segmentation in Lung CT Scans based on [Bianca's work](https://pdfs.semanticscholar.org/ddd9/8a73eab745841ba41a13633be76ab1f9c8b0.pdf)
4
4
5
## Usage
5
## Usage
6
**For lung and pulmonary vessel segmentation**. 
6
**For lung and pulmonary vessel segmentation**. 
7
7
8
I create a ipython notebook for this part (in lung_segmentation.ipynb except the last two parts).
8
I create a ipython notebook for this part (in lung_segmentation.ipynb except the last two parts).
9
9
10
**For pulmonary fissure segmentation**. 
10
**For pulmonary fissure segmentation**. 
11
11
12
Compile the two C++ files for fissure segmentation.
12
Compile the two C++ files for fissure segmentation.
13
1. cmake .
13
1. cmake .
14
2. make
14
2. make
15
3. 
15
3. 
16
    Use vector-based region growing for fissure segmention. 
16
    Use vector-based region growing for fissure segmention. 
17
    ```Python
17
    ```Python
18
    ./vector_region_growing ORIGINAL_CT.mhd FISSURE_EXTRACT.mhd
18
    ./vector_region_growing ORIGINAL_CT.mhd FISSURE_EXTRACT.mhd
19
    ```
19
    ```
20
    Use intensity-based region growing for removing small regions.
20
    Use intensity-based region growing for removing small regions.
21
    ```Python
21
    ```Python
22
    ./region_growing FISSURE_EXTRACT.mhd FISSURE_EXTRACT_REFINED.mhd
22
    ./region_growing FISSURE_EXTRACT.mhd FISSURE_EXTRACT_REFINED.mhd
23
    ```
23
    ```
24
4. Running the last two sections in the ipython notebook to generate fissure mask and final lung-vessel-fissure mask. 
24
4. Running the last two sections in the ipython notebook to generate fissure mask and final lung-vessel-fissure mask. 
25
25
26
## Results
26
## Results
27
The result of lung segmentation:  
27
The result of lung segmentation:  
28
28
29
![ ](images/lung.png)
29
![ ](https://github.com/Connor323/Lung-Lobes-Segmentation-in-CT-Scans/blob/master/images/lung.png?raw=true)
30
----
30
----
31
31
32
The result of vessel segmentaton:  
32
The result of vessel segmentaton:  
33
33
34
![ ](images/vessel.png)
34
![ ](https://github.com/Connor323/Lung-Lobes-Segmentation-in-CT-Scans/blob/master/images/vessel.png?raw=true)
35
35
36
And in 3D view:  
36
And in 3D view:  
37
37
38
![ ](images/vessel3d.png)
38
![ ](https://github.com/Connor323/Lung-Lobes-Segmentation-in-CT-Scans/blob/master/images/vessel3d.png?raw=true)
39
----
39
----
40
40
41
The result of fissure segmentation:   
41
The result of fissure segmentation:   
42
(From left to right: original, after vector-based region growing, after intensity-based region growing)
42
(From left to right: original, after vector-based region growing, after intensity-based region growing)
43
43
44
![ ](images/fissure.png)
44
![ ](https://github.com/Connor323/Lung-Lobes-Segmentation-in-CT-Scans/blob/master/images/fissure.png?raw=true)
45
45
46
The 3D maps of Lung-Vessel-Fissure for 9 cases:  
46
The 3D maps of Lung-Vessel-Fissure for 9 cases:  
47
47
48
![ ](images/maps.png)
48
![ ](https://github.com/Connor323/Lung-Lobes-Segmentation-in-CT-Scans/blob/master/images/maps.png?raw=true)
49
49
50
## Dataset
50
## Dataset
51
The dataset I used is [LOLA11](https://lola11.grand-challenge.org), which contains 55 CT Scans. 
51
The dataset I used is [LOLA11](https://lola11.grand-challenge.org), which contains 55 CT Scans.