
	
	
	
	

Lung	Vessel	and	Fissure	Segmentation	for	CT	Scans	
	
	
	
	
	
	
	
	 	 	 	 	
	
	
	
	
	
	
	
	
	

Hanxiang	Hao	(hh595)	

Advisor:	Prof.	Anthony	P.	Reeves	

	
	
	

	 2	

Contents	
LUNG	VESSEL	AND	FISSURE	SEGMENTATION	FOR	CT	SCANS	...	1	
ABSTRACT	..	3	
1.	INTRODUCTION	...	3	
1.1	BACKGROUND	...	3	
1.2	PREVIOUS	WORK	..	4	
1.3	REPORT	OUTLINE	..	4	

2.	METHODS	...	4	
2.1	LUNG	VESSEL	AND	LUNG	FISSURE	SEGMENTATION	..	4	
2.1.1	Lung	segmentation	...	5	
2.1.2	Pulmonary	Vessel	Enhancement	...	5	
2.1.3	Pulmonary	Fissure	Segmentation	..	6	

2.2	EXPERIMENT	...	9	
2.2.1	Hypothesis	and	evaluation	function	..	9	
2.2.2	Documented	Data	Set	..	9	
2.2.3	Experiment	procedure	..	10	

3.	RESULTS	..	10	
4.	DISCUSSION	..	12	
4.1	DISCUSSION	OF	THE	LUNG	SEGMENTATION	...	13	
4.2	DISCUSSION	OF	THE	VESSEL	SEGMENTATION	...	13	
4.3	DISCUSSION	OF	THE	FISSURE	SEGMENTATION	..	13	

CONCLUSION	...	14	
REFERENCES	...	14	
APPENDIX 	..	15	
A.	PROGRAM	DOCUMENTATION	..	15	
B.	PROGRAM	CODE	...	18	
1.	read_data.py	..	18	
2.	lung_segment.py	..	18	
3.	vessel_segment.py	...	19	
4.	region_growing.cxx	..	20	
5.	vector_region_growing.cxx	...	22	

	 	

	 3	

Abstract	
Segmentation	 of	 lung	 vessel	 and	 fissure	 is	 essential	 and	 significant	 for	 clinical	 practice,	

especially	for	lung	lobes	segmentation,	which	is	also	challenging	for	the	cases	with	pulmonary	

diseases.	In	this	project,	I	implement	the	algorithm	based	on	Lassen	et	al.	[1]	to	segment	the	

lung	 vessel	 and	 fissure	 for	 computed	 tomography	 (CT)	 scans.	 The	 vessel	 segmentation	 is	

based	on	3D	 connected	 component	 analysis	 and	morphological	 operation,	while	 the	 fissure	

segmentation	 is	 based	 on	 Hessian	 matrix	 analysis	 and	 vector-based	 region	 growing.	 The	

dataset	 I	 used	 is	 the	 LOLA11	 which	 contains	 55	 cases	 and	 LR	 SIMBA	 LIDC	 Image	 Dataset	

which	contains	1000	cases.	The	final	accuracy	for	the	fissure	segmentation	is	6.23mm	for	the	

average	distance	between	each	voxel	in	the	manually	marked	reference	and	the	closest	voxel	

in	the	fissure	segmentation	for	LOLA11	dataset.		

Key	words:	CT	scans,	segmentation,	lung	vessel,	lung	fissure.	

1.	Introduction	
Lung	lobe	segmentation	is	relevant	in	clinical	applications	particularly	for	treatment	planning,	

since	 the	 location	and	distribution	of	pulmonary	diseases	are	 important	parameters	 for	 the	

selection	of	a	suitable	treatment	[1].		Furthermore,	lung	vessel	and	lung	fissure	are	important	

features	 for	 lung	 lobes	 segmentation.	 Since	 there	 are	 usually	 no	major	 vessels	 at	 the	 lobar	

boundaries,	 the	 distance	 to	 the	 pulmonary	 vasculature	 is	 a	 suitable	 feature	 to	 detect	 lobar	

boundary.	Moreover,	fissures	can	locally	be	modeled	as	a	sheet;	therefore,	we	can	use	Hessian	

matrix	to	extract	the	feature	for	fissure.		

1.1	Background		
The	human	 lungs	are	subdivided	 into	 five	 lobes	 that	are	separated	by	visceral	pleura	called	

pulmonary	fissure.	There	are	three	lobes	in	the	right	 lung,	namely	upper,	middle,	and	lower	

lobe.	The	right	upper	and	right	middle	lobe	are	divided	by	the	right	minor	fissure	whereas	the	

right	major	fissure	delimits	the	lower	lobe	from	the	rest	of	the	lung.	In	the	left	lung	there	are	

only	two	lobes,	 the	upper	and	the	 lower	 lobe,	 that	are	divided	by	the	 left	major	 fissure.	The	

lobar	 fissures	 are	 low	 contrast	 surfaces	 with	 blurred	 boundaries	 when	 viewed	 on	 cross-

sectional	CT	images.	Computer	based	detection	of	the	fissures	is	complicated	by	surrounding	

vessels	and	other	 structures,	 and	noise	and	artifacts	 in	 the	 images.	The	example	of	 lung	CT	

scans	is	shown	in	the	figure	1.		

	 4	

	

Figure	1	The	original	CT	scans	with	lung	mask

1.2	Previous	Work		
Table	1	Comparison	of	Previous	Works	

		 Methods	 Dataset	CT	Scans	 Segmentation	 Accuracy	
1	 Rikxoort	et	al.	

2009	[4]	
	

100	low-dose •	Region	growing	for	lung	segmentation	
			Superivsed	filter	for	fissure	segmentation	
			Voxel	classification	for	lobes	segmentation	

77%	

2	 Pu	et	al.	2009	[5]	 65	 •	Detecting	plane	patches	in	sub-volumes	in	the	lungs	
			Using	Radial	Basis	Functions	represent	fissures	

50.8%	(rates	as	“excellent”	or	
“good”	by	two	radiologists)	

3	 Lassen	et	al.	2013	
[1]	

75	 •	Vessel	segementation	with	region	growing	
			Fissure	enhancement	by	Hessian	Matrix	
			Bronchi	segmentation	by	enhancement	filter	
			Watersheld	based	on	vessel,	fissure	and	bronchi	

88%	

4	 Li	et	al.	2006	[2]	 38	 •	Fuzzy	resoning	system	to	search	fissure	based	on	the	
following	three	sources:	image	intensities,	an	
anatomic	smoothness	constraint,	and	the	atlas-based	
search	initialization		

99.8%	

5	 Wiemker	et	al.	
2014	[3]	2005	

-	 • This	paper	suggests	two	possible	3D	filter	approaches:			
			1.	Filter	is	based	on	first	derivatives	of	the	image	gray	
values	and	utilizes	the	eigenvalues	of	the	local	
structure	tensor;		

			2.	Filter	is	based	on	second	derivatives	and	utilizes	the	
eigenvalues	of	the	local	Hesse	matrix. 	

-	

“-”	means	the	data	is	not	provided.		

1.3	Report	Outline	
We	are	going	to	discuss	the	main	algorithm	of	our	project,	the	database	and	the	performance	

metrics	we	used	to	test	our	method	in	part	2,	and	the	results	will	be	 included	in	part	3	and	

discussions	will	be	stated	in	part	4.	

2.	Methods	
In	this	section,	we	will	discuss	the	main	algorithm	of	our	project,	the	performance	metrics	we	

use	to	test	our	method,	and	the	database	we	plan	to	use.		

2.1	Lung	Vessel	and	Lung	Fissure	Segmentation	
This	project	mainly	contains	two	parts:	lung	vessel	segmentation	and	lung	fissure	extraction.	

The	 vessel	 segmentation	 is	 based	 on	 3D	 connected	 component	 analysis	 and	morphological	

operation,	 while	 the	 fissure	 segmentation	 is	 based	 on	 Hessian	matrix	 analysis	 and	 vector-

	 5	

based	region	growing.	In	the	first	step,	lungs	are	segmented	since	all	other	segmentations	are	

only	performed	inside	the	lung	regions.			

2.1.1	Lung	segmentation	

A	 good	 lung	 segmentation	 is	 significant	 for	 the	 lobes	 segmentation,	 since	 each	 sub-step	 is	

based	 of	 the	 original	 image	with	 the	 lung	mask.	 Generally,	 the	method	 includes	 two	 steps:	

region	growing	and	morphological	operation.	First,	 the	algorithm	starts	with	 the	 threshold-

based	3D	region	growing	for	pulmonary	airspace	segmentation	and	the	two	seed	points	from	

left	and	right	lung	region	are	chosen	manually.	By	implementing	the	region	growing,	a	rough	

area	of	lung	area	is	obtained.	Furthermore,	a	morphological	closing	step	is	performed	to	close	

major	interior	holes	resulting	in	the	previous	step.	The	example	of	the	original	image	and	the	

lung	mask	is	shown	in	the	figure	2.		

	

Figure	2	The	original	image	(left)	and	the	lung	mask	(right)	

2.1.2	Pulmonary	Vessel	Enhancement	

According	to	Lassen	et	al.	[1]	there	is	no	major	vessel	at	the	lobes	boundaries;	therefore,	it	is	

reasonable	 and	 useful	 to	 use	 the	 distance	 to	 the	 vasculature	 as	 a	 feature	 to	 detect	 the	

boundaries	of	lobes.		

	

The	first	step	of	the	vessel	enhancement	is	a	downscaling	of	the	original	 image	for	reducing	

the	memory	 requirement,	 since	 the	 intensity	difference	between	vessels	 and	background	 is	

significant.	The	downscaling	procedure	is	defined	as	a	following	equation:	

𝑣"# =
max 0,min 254,

𝑣/0121345 + 1024
4 , 𝑣 ∈ 𝐿

255, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

where	the	vds	and	voriginal	are	the	voxel	value	of	downscaling	and	original	image	and	L	is	the	set	

of	 voxel	 in	 the	 foreground	 of	 lung	mask	 image.	 Since	 the	 range	 of	 the	 voxel	 in	 the	 original	

image	is	from	[-1024,	1024],	the	downscaling	image	ranges	from	[0,	255].		

	

	 6	

After	 downscaling,	 a	 fixed-value	 thresholding	 operation	 is	 implement	 to	 the	 downscaling	

image.	 A	 fixed	 threshold	 of	 130	 was	 empirically	 set	 with	 a	 consideration	 of	 the	 tradeoff	

between	 sensitivity	 and	 specificity.	 Furthermore,	 the	 connected	 component	 analysis	 is	

implemented	 and	 afterwards,	 we	 remove	 the	 region	 with	 the	 volume	 less	 than	 2ml	 (668	

voxels	 for	 the	 LOLA	 dataset).	 Finally,	 we	 use	 morphological	 closing	 with	 a	 3-voxel-radius	

sphere	kernel	to	fill	the	gaps	between	each	vessel.	The	result	of	vessel	enhancement	is	shown	

in	the	figure	3	and	figure	4.		

	

Figure	3	The	lung	mask	(left)	and	vessel	enhancement	(right)	

	
Figure	4	Lung	Vessel	in	3D	view	

2.1.3	Pulmonary	Fissure	Segmentation	

The	method	of	fissure	extraction	is	based	on	the	eigenvalues	of	the	Hessian	matrix	that	gives	a	

fissure	probability	 for	each	voxel	 in	 lung	mask.	The	 lung	mask	 image	 is	generated	based	on	

the	 lung	 region	 obtained	 in	 the	 first	 step	 and	 the	 original	 16-bit	 image	 rather	 than	 8-bit	

downscaling	image.	Furthermore,	the	definition	of	Hessian	matrix	shows	below:	

	 7	

𝐻 =
𝑔DD 𝑔DE 𝑔DF
𝑔ED 𝑔EE 𝑔EF
𝑔FD 𝑔FE 𝑔FF

	

where	g∗∗	is	 the	 second	derivative	of	Gaussian.	This	approach	uses	 the	 fact	 that,	 at	 a	planar	

structure	like	a	fissure,	there	exists	a	strong	curvature	of	the	gray	value	profile	perpendicular	

to	the	fissure	and	two	vanishing	curvatures	parallel	to	the	fissure.	From	the	matrix	above,	the	

three	eigenvalues	l0,	l1,	l2，where	 |l0|	³	 |l1|	³	 |l2|	 can	be	obtained.	Fissures	can	 locally	be	

modeled	 as	 a	 sheet	 where	 the	 eigenvalue	 orthogonal	 to	 the	 fissure	 plane	 is	 large,	 and	 the	

other	 two	 eigenvalues	 are	 small.	 [1]	 Thus,	 on	 the	 bright	 fissures,	 the	 ideal	 relationship	 is	

defined	as		

|l1|	=	|l2|	=	0	and l0	<<0	

According	to	Lassen	et	al.	 [1],	we	then	define	two	features	to	measure	the	characteristics	of	

fissure.		

𝐹#J0KLJK0M = Θ(−𝜆R)𝑒T(UVTW)
X/ZX 	

𝐹#[MMJ = 𝑒TU\
X/]X 	

F_`abc`bad	rates	 the	 strength	 of	 image	 structure.	 To	 estimate	 suitable	 values	 for	a	 and	b,	we	

analyzed	 |l0|	 values	 of	 from	 the	 datasets	with	 given	 fissure	 and	 vessel	mask.	 The	 analysis	

revealed	that	fissure	voxels	show	|l0|	values	between	100	and	250.	Vessels	show	much	higher	

|l0|	 values	 but	 the	 |l0|	 values	 of	 small	 vessels	 can	 go	 down	 to	 around	 60.	 Since	we	 prefer	

sensitivity	 over	 specificity	 we	 choose	 a=160	 and	 b=120  for	 the	 distribution	 function	 of	

F_`abc`bad.	The	term	Θ −λR 	describes	a	Heaviside	function	that	sets	to	0	for	voxels	with	l0	>	0,	

i.e.,	a	dark	structure	on	a	bright	background	is	not	a	fissure.	The	figure	5	shows	the	graph	of	

the	two	features.		

		

Figure	5	The	graph	for	Fstructure	and	Fsheet	given	different	|l0|	and	|l1|	

	 8	

The	F_fdd`	feature	 discriminates	 between	 a	 sheet	 structure	 and	 other	 structures	 such	 as	

nodules	or	vessels,	as	these	latter	structures	have	larger	|l1|	values.	g	is	empirically	set	to	100	

by	 investigating	 typical	 values	 for	 fissures.	F_`abc`bad	and  are	 in	 the	 range	 [0,	 1].	 The	 two	

features	are	combined	to	the	overall	fissure	similarity	measure	Shi__bad	

𝑆k1##K0M = 𝐹#J0KLJK0M𝐹#[MMJ

The	result	of	 the	 fissure	enhancement	 is	 for	each	voxel	a	 fissure	similarity	value	between	0	

and	1.		

	

Furthermore,	 a	 mask	 C	 is	 constructed	 which	 describes	 all	 candidate	 fissure	 voxels	 that	 is	

obtained	by	thresholding	of	the	voxel	with	too	small	Shi__bad	value.	We	empirically	set	it	to	0.8.		

𝐶 = 𝑆k1##K0M > 0.8	 ∩ 𝐼 < 	𝜇uM##M5 − 2𝜎uM##M5

where	I	is	the	intensity	of	voxel	and	µxd__dy	and	σxd__dy	are	the	mean	and	standard	deviation	of	

vessel	we	get	in	the	previous	step,	since	the	fissure	has	less	intensity	than	the	vessel.		

	

The	 final	 step	 of	 fissure	 enhancement	 is	 using	 vector	 based	 region	 growing	 to	 remove	 the	

noise	 in	 the	previous	 step.	 Since	 the	direction	of	 the	eigenvector	 corresponding	with	 |l0|	 is	

perpendicular	with	the	direction	of	the	fissure	surface,	we	can	use	the	vector	to	implement	a	

vector-based	 region	 growing	 to	 extract	 these	 voxels	 by	 comparing	 the	 inner	product	 of	 the	

eigenvector	 of	 the	 voxel	with	 its	 6	 neighbors.	We	 empirically	 set	 the	 thresholding	 value	 of	

region	 growing	 to	 0.9	 since	 the	 inner	 product	 can	 be	 less	 than	 1	 due	 to	 noise.	 All	 3D	

components	with	a	volume	of	at	least	0.1	ml	are	kept	to	obtain	all	significant	fissure	parts	and	

remove	most	of	 the	noise.	Afterwards,	a	morphological	closing	with	a	cubic	kernel	of	7*7*7	

voxels	is	applied	to	close	minor	gaps.		This	result	of	final	fissure	extraction	is	shown	in	figure	

6	and	figure	7.	

	

Figure	6	Axial	view	of	the	fissure	segmentation	for	LOLA11	case	1	

	 9	

	
Figure	7	The	result	of	vessel	and	fissure	segmentation	

	(vessel	is	labeled	as	blue	and	fissure	is	labeled	as	green)	

2.2	Experiment	
This	section	discusses	the	selection	of	parameters	of	the	proposed	algorithms	and	the	result	

of	vessel	and	fissure	extraction.		

2.2.1	Hypothesis	and	evaluation	function	
Per	Lassen	et	al.	[1],	they	applied	a	watershed-based	algorithm	to	segment	lung	lobes,	and	the	

validation	results	showed	that	the	mean	distance	for	the	segmentation	at	0.86mm.	Therefore,	

in	 our	 project,	 we	 expect	 that	 we	 can	 get	 a	 relatively	 high	 accuracy.	 But	 since	we	 did	 not	

consider	the	bronchi	and	vessel	when	we	segment	the	fissure,	we	can	only	extract	the	visible	

fissures	 rather	 than	 the	whole	 fissure	 structure	 (there	are	 some	parts	of	 fissure	 is	 invisible	

due	to	the	lack	of	thickness),	we	cut	down	our	hypothetic	accuracy	from	5.0mm	to	10.0mm.	

	

In	 this	 project,	 we	 use	 the	 mean	 distance	 from	 the	 manually	 drawn	 reference	 as	 the	

performance	metrics	 for	each	 lobar	border	 in	3-D	by	 computing	 the	distance	between	each	

voxel	in	the	reference	standard	and	the	closest	voxel	in	the	lobar	segmentation.		

2.2.2	Documented	Data	Set	
In	this	project,	we	use	the	LOLA11	dataset	which	consists	of	55	cases	including	both	normal	

and	 abnormal	 cases	 and	 LR	 SIMBA	 LIDC	 Image	 Dataset	 which	 contains	 1000	 cases.	 The	

organizers	of	LOLA11	have	available	a	manual	segmentation	of	the	lung	lobes	on	nine	coronal	

slices	 for	each	case	by	two	human	observers.	Both	observers	were	 instructed	not	 to	draw	a	

lobar	border	when	they	felt	it	was	not	possible.	The	scans	come	from	a	variety	of	sources	and	

represent	 a	 variety	 of	 clinically	 common	 scanners	 and	 protocols.	 The	 scans	 have	 been	

selected	 such	 that	 in	 approximately	 half	 of	 the	 scans	 lung	 and/or	 lobe	 segmentation	 is	

deemed	 'easy'	 and	 in	 the	 other	 half	 'hard.	 The	 maximum	 slice	 spacing	 present	 is	 1.5mm,	

where	most	scans	are	(near)	isotropic.		

	 10	

2.2.3	Experiment	procedure	
In	 this	 project,	 we	 use	 one	 image	 CT	 scans	 for	 training.	 The	 reference	 standard	 fissure	

segmentation	 is	 manually	 segmented	 by	 myself.	 For	 the	 vessel	 segmentation,	 there	 are	 3	

parameters	that	are	critical	for	the	accuracy	of	segmentation,	the	fixed	threshold	value	(Tfixed),	

the	 threshold	 value	 for	 3D	 connected	 component	 analysis	 (Tc)	 and	 the	 kernel	 size	 for	

morphological	closing	(Kclosing).	For	fissure	extraction,	there	are	6	parameters	that	we	need	to	

explore,	the	4	parameters	for	feature	representation	(a,	b,	g,	s),	the	threshold	value	for	mask	

C	generation	(Tmask)	and	the	threshold	value	for	3D	vector-based	region	growing	(Trg).		

3.	Results	
The	parameters	we	got	from	the	experiment	are	shown	as	the	form	below.	

Table	2	Parameters	for	Vessel	Segmentation	for	both	LOLA11	and	LR	dataset	

Tfixed	 Tc	 Kclosing	

160	 0.5	 7	
Tfixed:	The	fixed	threshold	value;	
Tc:	The	threshold	value	for	3D	connected	component	analysis;	
Kclosing:	Kernel	size	for	morphological	closing.	

Table	3	Parameters	for	Fissure	Segmentation	for	LOLA11	dataset	

a	 b	 g	 s	 Tmask	 Trg	

60	 120	 100	 0.5	 0.8	 0.9	
a,	b,	g:		The	parameters	for	fissure	structure	representation;		
s:	The	standard	deviation	for	2ed-Derivative	of	Gaussian	function	in	Hessian	matrix;	
Tmask:The	threshold	value	for	mask	generation;	
Trg:	The	threshold	value	for	3D	region	growing.	

Table	4	Parameters	for	Fissure	Segmentation	for	LR	dataset	

a	 b	 g	 s	 Tmask	 Trg	

90	 150	 120	 0.5	 0.8	 0.9	
a,	b,	g:		The	parameters	for	fissure	structure	representation;		
s:	The	standard	deviation	for	2ed-Derivative	of	Gaussian	function	in	Hessian	matrix;	
Tmask:The	threshold	value	for	mask	generation;	
Trg:	The	threshold	value	for	3D	region	growing.	

To	evaluate	the	segmentation	result	of	 fissure,	 I	manually	marked	a	reference	ground	truth,	

which	is	shown	in	figure	8.	

	 11	

	
Figure	8	Ground	Truth	for	Fissure	Segmentation	for	the	case	1	in	LOLA11	

	(axial,	sagittal	and	coronal	view	from	left	to	right)	

Table	3	shows	the	results	of	the	fissure	segmentation	with	a	direct	comparison	to	the	results	

of	the	methods	by	van	Rikxoort	et	al.	[6]	and	Kuhnigk	et	al.	[7]	and	the	preliminary	approach	

of	the	proposed	algorithm	presented	by	Lassen	et	al.	[1].	
Table	5	Fissure	Segmentation	Accuracies	

Fissure	Segmentation	 Average	distance	from	reference	(mm)	

The	proposed	algorithm	 6.23		

Lassen	[1]	 0.86	

Rikxoort	[6]	 1.00	

Kuhinigk	[7]	 2.78	

The	3D	view	of	the	vessel	and	fissure	results	are	shown	in	figure	9	and	10.	

	
Figure	9	The	results	of	vessel	(left),	fissure	(middle)	and	combination	with	lung	mask	(right)	for	the	case	1	in	LOLA	11	

	 12	

	
Figure	10	Results	for	LR	Dataset	(red	region	is	fissure;	blue	region	is	vessel	and	green	region	is	lung)	

The	first	row	is	the	results	of	the	cases:	LC0002,	LC0009,	LC0015,	LC0026;	
The	Second	row	is	the	results	of	the	cases:	LC0034,	LC0036,	LC0039,	LC0057.		

The	 LR	 dataset	 is	 challenging	 for	 the	 proposed	 algorithm,	 because	 the	 sizes	 of	 voxel	 for	

different	 images	 are	 different.	 Since	 the	 voxel	 size	 determines	 the	width	 of	 the	 fissure	 and	

vessel,	we	need	to	adjust	the	parameters	in	the	fissure	structure	representation	as	mention	in	

the	section	2.1.3	to	differentiate	these	two	structures,	which	means	if	the	difference	of	voxel	

size	 between	 images	 is	 overlarge,	 we	 need	 to	 manually	 tune	 the	 parameters	 for	 different	

images;	 therefore,	 the	 proposed	 algorithm	 can	 automatically	 segment	 fissures	 only	 if	 the	

difference	of	voxel	size	within	the	dataset	is	small.		

4.	Discussion	
This	section	discusses	the	main	findings	in	our	project,	and	furthermore,	we	also	give	special	

case	that	our	algorithm	cannot	deal	with.		

	 13	

4.1	Discussion	of	the	Lung	Segmentation	

The	identification	of	the	lungs	in	thoracic	computed	tomography	data	is	a	prerequisite	for	the	

proposed	 algorithm.	 Due	 to	 the	 high-density	 difference	 between	 the	 air-filled	 lung	 regions	

and	soft	tissue	in	CT	images,	the	pulmonary	airspace	can	be	identified	without	greater	efforts.	

However,	despite	the	high	contrast	of	the	air-filled	lung	parenchyma	in	CT	data,	there	is	still	a	

challenge	 for	 our	 lung	 segmentation	 algorithm.	 For	 use	 in	 a	 clinical	 environment,	 lung	

segmentation	 must	 be	 robust	 against	 pathological	 alterations	 and	 be	 fully	 automated.	

According	 to	 the	 section	2.1.1,	we	manually	 choose	 the	 two	 seed	points	 from	 left	 and	 right	

lung	region	in	order	to	implement	region	growing;	therefore,	the	proposed	lung	segmentation	

algorithm	 is	 not	 fully	 automated.	 In	 future	work,	 according	 to	 Kuhnigk	 [8],	 since	 the	 lungs	

usually	occupy	plenty	of	space	and	substantial	variations	in	their	position	within	the	chest	are	

unlikely,	 a	heuristic	 search	 for	 air-dense	areas	 is	used.	For	 the	extraction	of	 the	pulmonary	

airspace	regions,	one	seed	point	is	usually	enough,	since	the	airway	systems	of	both	lungs	are	

interconnected	 at	 the	 carina,	 i.e.,	 the	 juncture	 of	 left	 and	 right	main	 bronchi.	 However,	 the	

segmentation	of	both	 lungs	 from	one	seed	point	can	be	hindered	by	pathological	conditions	

such	as	an	obstructed	 left	or	right	main	bronchus,	and/or	a	complete	collapse	of	one	of	 the	

lungs.	We	therefore	always	look	for	low	density	areas	on	both	sides,	restricting	our	search	to	

the	central	third	(in	x-direction)	of	the	data.	For	each	lung,	one	seed	point	is	determined	that	

matches	the	condition	of	being	below	600	HU	[8].		

4.2	Discussion	of	the	Vessel	Segmentation	

The	proposed	algorithm	can	successfully	segment	the	vasculature,	while	remove	the	isolated	

high-density	structures	such	as	thickened	parts	of	the	fissures	and	part	of	bronchi.	The	most	

difficult	 part	 of	 vessel	 segmentation	 is	 extracting	 vessel	 while	 remove	 the	 bronchi	 voxels.	

Since	the	method	we	used	did	not	take	the	bronchi	into	account,	the	proposed	method	cannot	

differentiate	 the	vasculature	structure	and	bronchi	structure,	as	showing	 in	 the	 figure	4.	To	

obtain	an	accurate	pulmonary	vasculature,	we	can	first	segment	the	bronchi	by	the	method	of	

Lassen	et	al.	[1]	and	then	remove	the	bronchi	voxel	from	the	result	of	vessel	segmentation.		

4.3	Discussion	of	the	Fissure	Segmentation	

The	 fissure	 segmentation	 is	 the	 hardest	 part	 of	 this	 project,	 since	 the	 intensity	 difference	

between	fissure	with	the	lung	parenchyma	is	subtle	and	the	width	of	fissure	is	only	about	4-5	

voxels.	The	proposed	algorithm	can	successfully	extract	the	most	part	of	the	fissure	structure	

and	get	rid	of	the	bronchi	and	vasculature	etc.	as	showing	in	the	figure	7.	Comparing	with	the	

	 14	

ground	truth,	the	proposed	algorithm	can	obtain	a	relatively	better	result	of	left	fissure	than	

the	two	right	 fissures,	since	the	right	 fissures	are	close	 from	each	other	and	there	are	more	

vasculature	and	bronchi	in	the	right	lung.	Furthermore,	for	lobe	segmentation	as	future	work,	

according	to	Lassen	et	al.	[1],	we	need	to	combine	information	from	automatic	segmentations	

of	 the	 lungs,	 fissures,	 vessels,	 and	 bronchi	 to	 segment	 the	 lobes,	 since	 this	 approach	 is	

anatomically	 inspired	and	similar	to	the	way	humans	determine	the	 lobar	boundary.	Visible	

fissures	are	used	for	segmentation	because	they	are	the	most	precise	feature,	but	in	absence	

of	a	fissure,	the	vessels	and	airways	become	more	important.	Vessels	are	distributed	all	over	

the	 lung	 and	 due	 to	 the	 high	 contrast	 to	 the	 lung	 parenchyma	 a	 good	 segmentation	 of	 the	

vessels	is	feasible.	But	in	some	cases	vessels	cross	the	lobar	boundaries.	Thus,	the	assumption	

that	 there	 are	 no	 vessels	 at	 the	 lobar	 boundary	 is	 not	 always	 correct.	 In	 contrast	 a	 deep	

segmentation	of	the	bronchi	is	challenging	but	there	are	definitely	no	bronchi	at	the	boundary	

between	 the	 lobes.	 By	 combining	 the	 information	 of	 different	 anatomical	 structures,	 we	

expect	to	get	as	much	as	possible	information	to	perform	an	accurate	lobe	segmentation	[1].		

Conclusion	
In	this	project,	I	implement	the	algorithm	to	segment	the	lung	vessel	and	fissure	for	CT	scans.	

The	 vessel	 segmentation	 is	 based	 on	 3D	 connected	 component	 analysis	 and	morphological	

operation,	 while	 the	 fissure	 segmentation	 is	 based	 on	 Hessian	matrix	 analysis	 and	 vector-

based	 region	 growing.	The	dataset	 I	 used	 is	 the	LOLA11	which	 contains	55	 cases	 including	

both	normal	and	abnormal	cases	and	the	performance	metrics	is	the	average	mean	distance	

between	the	voxel	in	the	reference	and	the	closest	voxel	in	the	lobar	segmentation.	The	final	

accuracy	for	the	fissure	segmentation	is	6.23mm.		

References	
[1]	Bianca	Lassen,	Eva	M.	van	Rikxoort,	Michael	Schmidt,	Sjoerd	Kerkstra,	Bram	van	Ginneken,	

and	 Jan-Martin	 Kuhnigk	 “Automatic	 Segmentation	 of	 the	 Pulmonary	 Lobes	 From	 Chest	 CT	

Scans	Based	on	Fissures,	Vessels,	and	Bronchi”,	IEEE	Transactions	on	Medical	Imaging,	Vol.	32,	

No.	2,	Feb.	2013	

[2]	Li	Zhang,	Eric	A.	Hoffman,	and	Joseph	M.	Reinhardt,	“Atlas-Driven	Lung	Lobe	Segmentation	

in	Volumetric	 X-Ray	CT	 Images”,	 IEEE	Transactions	 on	Medical	 Imaging,	Vol.	 25,	No.	 1,	 Jan.	

2006	

	 15	

[3]	Rafael	WiemkerT,	Thomas	Bu	̈low,	and	Thomas	Blaffert,	 “Unsupervised	extraction	of	 the	

pulmonary	interlobar	fissures	from	high	resolution	thoracic	CT	data”,	International	Congress	

Series	1281	(2005)	1121–1126	

[4]	E.	M.	van	Rikxoort,	B.	de	Hoop,	S.	van	de	Vorst,	M.	Prokop,	and	B.	van	Ginneken,	“Automatic	

segmentation	 of	 pulmonary	 segments	 from	 volumetric	 chest	 CT	 scans,”	 IEEE	 Trans.	 Med.	

Imag.,	vol.	28,	no.	4,	pp.	621–630,	Apr.	2009.		

[5]	J.	Pu,	B.	Zheng,	J.	Leader,	C.	Fuhrman,	F.	Knollmann,	A.	Klym,	and	D.	Gur,	“Pulmonary	lobe	

segmentation	in	CT	examinations	using	im-	plicit	surface	fitting,”	IEEE	Trans.	Med.	Imag.,	vol.	

28,	no.	12,	pp.	1986–1996,	Dec.	2009.		

[6]	 E.	 van	 Rikxoort,	 M.	 Prokop,	 B.	 de	 Hoop,	 M.	 Viergever,	 J.	 Pluim,	 and	 B.	 van	 Ginneken,	

“Automatic	segmentation	of	pulmonary	lobes	robust	against	incomplete	fissures,”	IEEE	Trans.	

Med.	Imag.,	vol.	29,	no.	6,	pp.	1286–1296,	Jun.	2010.		

[7]	 J.-M.	 Kuhnigk,	 V.	 Dicken,	 S.	 Zidowitz,	 L.	 Bornemann,	 B.	 Kuem-	 merlen,	 S.	 Krass,	 H.-O.	

Peitgen,	S.	Yuval,	H.-H.	Jend,	W.	S.	Rau,	and	T.	Achenbach,	“New	tools	for	computer	assistance	

in	 thoracic	 CT—Part	 I:	 Functional	 analysis	 of	 lungs,	 lung	 lobes,	 and	 bronchopul-	 monary	

segments,”	Radio	Graphics,	vol.	25,	no.	2,	pp.	525–536,	2005.		

[8]	 Jan-Martin	 Kuhnigk,	 “Quantitative	 Analysis	 of	 Lung	 Morphology	 and	 Function	 in	

Computed	Tomographic	 Images”,	Doctoral	 dissertation,	MeVis	Research,	 Center	 for	Medical	

Image	Computing,	2008.		

Appendix  	

A.	Program	Documentation	

NAME		

<	read_data.py	>-<	this	program	is	the	class-LoadData-	to	read	CT	scans,	including	the	

functions	to	load	data	and	showing	image	slice	>	

DISCRIPTION		

LoadData(image	directory,	image	name)	

This	class	is	to	read	3D	image	data.	 	

LoadData.loaddata():	Load	image	with	given	image	path.	

LoadData.tileimage(index1,	 index2):	 Tile	 the	 3D	 image	 into	 two	 selected	 slices	 for	

showing.	

LoadData.sitk_show(title=None,	margin=0.0,	dpi=40):	Show	the	tiled	2D	images.	

CONSTRIANTS		

	 16	

The	type	of	input	images	can	be:	*.mhd,	*.mha.		

	

NAME		

<	 lung_segment.py	 >-<	 This	 script	 is	 to	 segment	 the	 lung	 out	 of	 background	 as	 a	

preprocessing	for	lobes	segmentation.>	

DISCRIPTION		

LungSegment(image)	

This	class	is	designed	for	3D	segmentation	of	lung.	 	

LungSegment.conv_2_uint8(WINDOW_LEVEL=(1050,500)):	 Convert	 image	 to	 8-bit	

image.	

LungSegment.regiongrowing(seed_pts):	 Implement	 ConfidenceConnected	 by	

SimpleITK	tools	with	given	seed	points		

LoadData.image_showing	(title=None):	Show	images.	

LoadData.image_closing(size=7):	 Implement	 morphological	 closing	 to	 fix	 the	 "holes"	

inside	the	image.	

CONSTRIANTS		

The	type	of	input	images	can	be:	*.mhd,	*.mha.		

	

NAME		

<	vessel_segment.py	>-<	This	script	is	for	pulmonary	vessel	enhancement.>	

DISCRIPTION		

VesselSegment	(Original	image,	Closing	image)	

This	class	is	designed	for	lung	vasculature	enhancement.	 	

VesselSegment.generate_lung_mask():Generate	lung	mask	by	setting	the	outside	rigion	

as	0.	

VesselSegment.downsampling():	Downsample	 the	 input	 image	 from	 [-1024,	 0]	 to	 [0,	

255]	for	reducing	memory	requirement.	

VesselSegment.thresholding(thval=130):	Threshold	 the	 image	with	given	 thresholding	

value.	

VesselSegment.max_filter(filter_size=5):	Implement	maximum	filter.	

CONSTRIANTS		

The	type	of	input	images	can	be:	*.mhd,	*.mha.		

	

	 17	

NAME		

<	region_growing	>-<	This	program	is	for	computing	3D	region	growing	>	

SYNOPSIS		

region_growing	input_file_name	outout_file_name	threshold_value	

DISCRIPTION		

This	 program	 is	 for	 computing	 3D	 region	 growing	 with	 given	 threshold	 value.	 The	

default	value	is	set	as	0.1.	This	program	uses	6	neighbors	for	each	voxel.		

CONSTRIANTS		

The	type	of	input	images	can	be:	*.mhd,	*.mha.		

	

NAME		

<	region_growing_26	>-<	This	program	is	for	computing	3D	region	growing	>	

SYNOPSIS		

region_growing	input_file_name	outout_file_name	threshold_value	

DISCRIPTION		

This	 program	 is	 for	 computing	 3D	 region	 growing	 with	 given	 threshold	 value.	 The	

default	value	is	set	as	0.1.	This	program	uses	26	neighbors	for	each	voxel.		

CONSTRIANTS		

The	type	of	input	images	can	be:	*.mhd,	*.mha.		

	

NAME		

<	 vector_region_growing	 >-<	 This	 program	 is	 for	 computing	 vector-based	 region	

growing	>	

SYNOPSIS		

vector_region_growing	<input_file	>	<outout_file	>	<threshold_value>	

DISCRIPTION		

This	 program	 is	 for	 computing	 vector-based	 region	 growing	 with	 given	 threshold	

value.	The	default	value	 is	 set	as	0.9.	This	program	uses	6	neighbors	 for	each	voxel.	

The	 program	 first	 compute	 the	 Hessian	 matrix	 for	 each	 voxel	 and	 calculate	 the	

eigenvalues	 for	 the	 matrix.	 Furthermore,	 it	 uses	 the	 eigenvector	 of	 the	 maximum	

absolute	 value	 of	 the	 corresponding	 eigenvalue	 to	 compute	 the	 vector-based	 region	

growing.	 The	 inner	 product	 of	 the	 eigenvectors	 is	 calculated	 for	 connecting	

component.			

	 18	

CONSTRIANTS		

The	type	of	input	images	can	be:	*.mhd,	*.mha.		

B.	Program	Code	

1.	read_data.py	
"""
This file is to load the input image and convert to numpy array.
"""
import SimpleITK as sitk
import matplotlib.pyplot as plt

class LoadData:
 """
 This class is designed to load "one" input image.
 """
 def __init__(self, path, name):
 """
 :param path: image derectory
 :param name: image name
 """
 self.img_path = path + name
 self.image = None
 self.slices = None

 def loaddata(self):
 """
 Load image with given image path.
 :return: None
 """
 self.image = sitk.ReadImage(self.img_path)

 def tileimage(self, index1, index2):
 """
 Tile the 3D image into two selected slices for showing.
 :param index1: selected slice 1
 :param index2: selected slice 2
 :return: None
 """
 self.slices = sitk.Tile(self.image[:, :, index1],
 self.image[:, :, index2],
 (2, 1, 0))

 def sitk_show(self, title=None, margin=0.0, dpi=40):
 """
 Show the tiled 2D images.
 :param title: Title
 :param margin: Margin
 :param dpi: ???
 :return: None
 """
 nda = sitk.GetArrayFromImage(self.slices)
 figsize = (1 + margin) * nda.shape[0] / dpi, (1 + margin) * nda.shape[1] / dpi
 extent = (0, nda.shape[1], nda.shape[0], 0)
 fig = plt.figure(figsize=figsize, dpi=dpi)
 ax = fig.add_axes([margin, margin, 1 - 2 * margin, 1 - 2 * margin])

 plt.set_cmap("gray")
 ax.imshow(nda, extent=extent, interpolation=None)
 if title:
 plt.title(title)
 plt.show()

2.	lung_segment.py	
"""
This script is to segment the lung out of background as a prepocessing for lobes segementation.
"""
import SimpleITK as sitk
import gui

class LungSegment:
 """

	 19	

 This class is designed for 3D segmentation of lung, including the methods:
 ...
 """
 def __init__(self, img):
 self.img = img
 self.temp_img = None
 self.img_uint8 = None

 def conv_2_uint8(self, WINDOW_LEVEL=(1050,500)):
 """
 Convert original image to 8-bit image
 :param WINDOW_LEVEL: Using an external viewer (ITK-SNAP or 3DSlicer)
 we identified a visually appealing window-level setting
 :return: None
 """
 # self.img_uint8 = sitk.Cast(self.img,
 # sitk.sitkUInt8)
 self.img_uint8 = sitk.Cast(sitk.IntensityWindowing(self.img,
 windowMinimum=WINDOW_LEVEL[1] - WINDOW_LEVEL[0] / 2.0,
 windowMaximum=WINDOW_LEVEL[1] + WINDOW_LEVEL[0] / 2.0),
 sitk.sitkUInt8)

 def regiongrowing(self, seed_pts):
 """
 Implement ConfidenceConnected by SimpleITK tools with given seed points
 :param seed_pts: seed points for region growing [(z,y,x), ...]
 :return: None
 """
 self.temp_img = sitk.ConfidenceConnected(self.img, seedList=seed_pts,
 numberOfIterations=0,
 multiplier=2,
 initialNeighborhoodRadius=1,
 replaceValue=1)

 def image_showing(self, title=''):
 """
 Showing image.
 :return: None
 """
 gui.MultiImageDisplay(image_list=[sitk.LabelOverlay(self.img_uint8, self.temp_img)],
 title_list=[title])

 def image_closing(self, size=7):
 """
 Implement morphological closing to fix the "holes" inside the image.
 :param size: the size the closing kernel
 :return: None
 """
 closing = sitk.BinaryMorphologicalClosingImageFilter()
 closing.SetForegroundValue(1)
 closing.SetKernelRadius(size)
 self.temp_img = closing.Execute(self.temp_img)

3.	vessel_segment.py	
"""
This file is for plumonary vessels enhancement.
"""
import numpy as np
import SimpleITK as sitk
import scipy as sp
import cv2

from itertools import izip_longest

class VesselSegment:
 """
 This class is desigened for lung vasculature enhancement, including the methods of:
 1. downsampling
 2. thresholding
 3. 3D region growing
 4. filtering small struture
 """

 def __init__(self, original, closing):
 """
 :param original: the orignal image in ITK formate
 :param closing: the Closing result image

	 20	

 :param thval: threshold value (default: 130HU)
 :param filter_vol: filter value for removing small struture after region growing (default: 2ml)
 """
 self.original_img = original
 self.closing_img = closing
 self.img = None
 self.thval = None
 self.filter_vol = None
 self.temp_img = None

 def generate_lung_mask(self):
 """
 Generate lung mask
 :return: None
 """
 self.img = sitk.GetArrayFromImage(self.original_img).copy()
 self.img[self.closing_img == 0] = 0

 def downsampling(self):
 """
 Downsample the input image from [-1024, 0] to [0, 255] for reducing memory requirement.
 / max(0, min(254, (Vorig+1024)/4), v belongs to Lung region
 Vds =
 \ 255, otherwise
 :return: None
 """
 temp = (self.img + 1024) / 4
 temp[temp > 254] = 254
 temp[temp < 0] = 0
 self.temp_img = temp

 def thresholding(self, thval=130):
 """
 Threshold the image with given thresholding value.
 :return: None
 """
 self.thval = thval
 self.temp_img[self.temp_img < thval] = thval

 def max_filter(self, filter_size=5):
 """
 Implement maximum filter.
 :param filter_size: filter size
 :return: None
 """
 temp = self.temp_img.copy()
 temp[temp >= 254] = 0
 temp[temp <= self.thval] = 0
 self.temp_img = sp.ndimage.filters.maximum_filter(temp, size=filter_size)

4.	region_growing.cxx	
#include <iostream>
#include <string>
#include "stdlib.h"

#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImportImageFilter.h"

const unsigned short dimension = 3;

typedef float floatVoxelType;
typedef itk::Image<floatVoxelType, dimension> ImageType;
typedef itk::Point< float, ImageType::ImageDimension > PointType;
typedef itk::ImageRegionIterator<ImageType> OutputIterType;

class Regiongrowing {
public:
 ImageType::Pointer OutputImage;

 unsigned int xs;
 unsigned int ys;
 unsigned int zs;

	 21	

 Regiongrowing(const ImageType::Pointer& image, float thresh_val) {
 // This method is to compute the 3D region growing
 // :params image: the 3D lung mask image
 // :params thresh_val: the threshold value for region growing
 OutputImage = ImageType::New();
 OutputImage->SetRegions(image->GetLargestPossibleRegion());
 OutputImage->Allocate(true); // initialize buffer to zero

 OutputIterType OutputIter(OutputImage,image->GetLargestPossibleRegion());

 int shape[3];
 xs = image->GetLargestPossibleRegion().GetSize()[0];
 ys = image->GetLargestPossibleRegion().GetSize()[1];
 zs = image->GetLargestPossibleRegion().GetSize()[2];

 // compute region growing
 float label = 1;
 for (int z = 0; z < zs; z++){
 for (int y = 0; y < ys; y++){
 for (int x = 0; x < xs; x++){
 PointType point;
 point[0] = x;
 point[1] = y;
 point[2] = z;
 ImageType::IndexType out_index;

 image->TransformPhysicalPointToIndex(point, out_index);
 ImageType::PixelType p_vec = image->GetPixel(out_index);
 if (OutputImage->GetPixel(out_index) == 0 && p_vec != 0){
 int volume = 1;
 int *vol_point = &volume;
 this->region_growing(image, point, label, thresh_val, vol_point);
 label = label + 1;
 }
 }
 }
 }
 }
 void region_growing(const ImageType::Pointer& , PointType, float, float, int *);
};
void Regiongrowing::region_growing(const ImageType::Pointer& image, PointType point, float label, float thresh_val,
int *vol_point){
 //This function is to compute region growing.
 // :params image: the image for region growing
 // :params point: the point for region growing
 // :params label: point label
 // :params thresh_val: the threshold value
 // :params vol_point: the volume for given label to limit the number of recursive.
 float x = point[0]; float y = point[1]; float z = point[2];

 PointType neighbors[6];
 neighbors[0][0] = x+1; neighbors[1][0] = x-1; neighbors[2][0] = x; neighbors[3][0] = x; neighbors[4][0] = x;
neighbors[5][0] = x;
 neighbors[0][1] = y; neighbors[1][1] = y; neighbors[2][1] = y+1; neighbors[3][1] = y-1; neighbors[4][1] = y;
neighbors[5][1] = y;
 neighbors[0][2] = z; neighbors[1][2] = z; neighbors[2][2] = z; neighbors[3][2] = z; neighbors[4][2] = z+1;
neighbors[5][2] = z-1;

 ImageType::IndexType p_index;
 image->TransformPhysicalPointToIndex(point, p_index);
 ImageType::PixelType p = image->GetPixel(p_index);

 for (int i = 0; i < 6; i++){
 if (neighbors[i][0] >= 0 && neighbors[i][0] < xs &&
 neighbors[i][1] >= 0 && neighbors[i][1] < ys &&
 neighbors[i][2] >= 0 && neighbors[i][2] < zs){
 ImageType::IndexType out_index;
 image->TransformPhysicalPointToIndex(neighbors[i], out_index);
 if (OutputImage->GetPixel(out_index) == 0){
 ImageType::PixelType np = image->GetPixel(out_index);
 float diff = std::abs(np - p);
 if (np > 0 && *vol_point < 20000){
 OutputImage->SetPixel(out_index, label);
 *vol_point = *vol_point + 1;
 this->region_growing(image, neighbors[i], label, thresh_val, vol_point);

 }
 }

	 22	

 }
 }
}

int main(int argc, char * argv[])
{
 time_t tStart = clock();

 if(argc < 2) {
 std::cerr << "Usage: " << std::endl;
 std::cerr << argv[0] << " inputImageFile outputImageFile" << std::endl;
 return EXIT_FAILURE;
 }

 typedef itk::ImageFileReader< ImageType > readerType;

 float thresh = 0.1;

 // Read Image
 readerType::Pointer reader = readerType::New();
 reader->SetFileName(argv[1]);
 reader->Update();

 // Compute eigenvalues
 std::cout << " Region Growing " << std::endl;
 Regiongrowing rg = Regiongrowing::Regiongrowing(reader->GetOutput(), thresh);

 std::cout << " Saving Image..." << std::endl;
 typedef itk::ImageFileWriter < ImageType > WriterType;
 WriterType::Pointer writer = WriterType::New();
 writer->SetFileName(argv[2]);
 writer->SetInput(rg.OutputImage);

 writer->Update();
 printf("Time taken: %.2fs\n", (float)(clock() - tStart)/CLOCKS_PER_SEC);

 return EXIT_SUCCESS;
}

5.	vector_region_growing.cxx	
#include <iostream>
#include <string>
#include "stdlib.h"
#include <math.h>
#include <unordered_set>

#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkHessianRecursiveGaussianImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImportImageFilter.h"
#include "itkMedianImageFilter.h"

const unsigned short dimension = 3;
typedef int VoxelType;
typedef float outVoxelType;
typedef itk::Image<VoxelType, dimension> InputImageType;
typedef itk::Image<outVoxelType, dimension> OutputImageType;
typedef itk::Point< float, InputImageType::ImageDimension > PointType;

typedef float HessianVoxelType;
typedef itk::Image<HessianVoxelType, dimension> HessianInnerImageType;
typedef itk::CastImageFilter<InputImageType, HessianInnerImageType> CastFilterType;

typedef itk::HessianRecursiveGaussianImageFilter<HessianInnerImageType> HFilterType;
typedef itk::Vector<HessianVoxelType, dimension> VecVoxType;
typedef itk::Matrix<HessianVoxelType, dimension, dimension> MatVoxType;
typedef itk::Image<VecVoxType, dimension> VecEigHImageType;
typedef itk::Image<MatVoxType, dimension> MatEigHImageType;

typedef itk::MedianImageFilter<OutputImageType, OutputImageType > MedianImageFilterType;
typedef itk::ImportImageFilter< outVoxelType, dimension > ImportFilterType;
typedef itk::ImageRegionIterator<OutputImageType> OutputImageIterType;
typedef itk::ImageRegionIterator<VecEigHImageType> OutputIterType;

	 23	

typedef itk::ImageRegionIterator<InputImageType> InputImageIterType;
typedef itk::SymmetricEigenAnalysis<MatVoxType, VecVoxType, MatVoxType> EigValAnalysisType;
typedef MatEigHImageType::Pointer MatEigHImagePointerType;
typedef MatEigHImageType::RegionType MatRegionType;
typedef MatEigHImageType::PointType MatPointType;
typedef MatEigHImageType::SpacingType MatSpacingType;

typedef VecEigHImageType::Pointer VecEigHImagePointerType;
typedef itk::ImageRegionIteratorWithIndex<HFilterType::OutputImageType> HIterType;

class cmp
{
public:
 bool operator() (HessianVoxelType a, HessianVoxelType b)
 {
 return std::abs(a) < std::abs(b) ;
 }
};

class EigValHessian {
public:
 MatRegionType region;
 MatSpacingType spacing;
 MatPointType origin;

 CastFilterType::Pointer CastFilter;
 HFilterType::Pointer HFilter;

 EigValAnalysisType EigValAnalysis;

 VecEigHImagePointerType VecEigHImagePointer;

 OutputImageType::Pointer OutputImage;

 ImportFilterType::Pointer importFilter;

 std::unordered_set<outVoxelType> label_set;

 MedianImageFilterType::Pointer medianFilter;

 EigValHessian(const InputImageType::Pointer& image, float sigma, float alpha, float beta, float gama) {
 // This method is to compute the Hessian matrix by ITK filter: HessianRecursiveGaussianImageFilter
 // Furthermore, calculte the fissure structure measurement with given parameters and then using vector
 // based region growing method to segment fissures.
 // :params image: the 3D lung mask image
 // :params sigma: the standard deviation for Gaussian function in Hessian matrix
 // :params alpha, beta, gama: parameters for fissure representation
 VecVoxType EigVal;
 MatVoxType EigMat,tmpMat;
 for(int i=0;i<3;i++)
 for(int j=0;j<3;j++)
 EigMat[i][j]=0;

 region=image->GetLargestPossibleRegion();
 spacing=image->GetSpacing();
 origin=image->GetOrigin();

 // initialize the Hassian filter
 CastFilter = CastFilterType::New();
 HFilter = HFilterType::New();
 HFilter->SetSigma(sigma);

 EigValAnalysis.SetDimension(3);
 CastFilter->SetInput(image);
 HFilter->SetInput(CastFilter->GetOutput());

 printf("Processing HFilter\n");
 HFilter->Update();

 VecEigHImagePointer=VecEigHImageType::New();
 VecEigHImagePointer->SetRegions(region);
 VecEigHImagePointer->SetOrigin(origin);
 VecEigHImagePointer->SetSpacing(spacing);
 VecEigHImagePointer->Allocate();

 EigVal[0]=EigVal[1]=EigVal[2]=0;
 VecEigHImagePointer->FillBuffer(EigMat[0]);

 OutputImage = OutputImageType::New();

	 24	

 OutputImage->SetRegions(region);
 OutputImage->Allocate(true); // initialize buffer to zero

 HIterType HIter(HFilter->GetOutput(),region);

 OutputIterType OutputIter(VecEigHImagePointer,region);

 itk::SymmetricSecondRankTensor<float,3> Tensor;

 bool fissure_cond = true;

 InputImageIterType InputImageIter(image, region);

 // this is the mean and std value for vessel which is compute according to
 // histogram analysis in previous result.
 outVoxelType mean = 198.275350;
 outVoxelType std = 42.571917;

 outVoxelType vessel_thesh = mean - 3 * std;

 for(HIter.GoToBegin(),OutputIter.GoToBegin(),InputImageIter.GoToBegin();
 !HIter.IsAtEnd()&&!OutputIter.IsAtEnd()&&!InputImageIter.IsAtEnd();
 ++HIter,++OutputIter,++InputImageIter){
 Tensor=HIter.Get();
 tmpMat[0][0]=Tensor[0];
 tmpMat[0][1]=Tensor[1];
 tmpMat[1][0]=Tensor[1];
 tmpMat[0][2]=Tensor[2];
 tmpMat[2][0]=Tensor[2];
 tmpMat[1][1]=Tensor[3];
 tmpMat[2][1]=Tensor[4];
 tmpMat[1][2]=Tensor[4];
 tmpMat[2][2]=Tensor[5];

 // compute the eigenvalues given a 3*3 Hessian matrix.
 EigValAnalysis.ComputeEigenValuesAndVectors(tmpMat,EigVal,EigMat);

 // obtain the maximum absolute value for eigenvalues
 HessianVoxelType sortedEigVal[3] = {EigVal[0],EigVal[1],EigVal[2]};

 std::sort(sortedEigVal, sortedEigVal+3, cmp());

 // Compute Structure
 HessianVoxelType theta;
 if (sortedEigVal[2] >= 0){
 theta = 0;
 }else{
 theta = 1;
 }
 HessianVoxelType Fstructure, Fsheet, Sfissure;
 Fstructure = theta * exp(-1*(pow((std::abs(sortedEigVal[2])-alpha)/beta,6)));
 Fsheet = exp(-1*(pow(sortedEigVal[1]/gama,6)));

 Sfissure = Fstructure * Fsheet;

 // Convert to uint8 value
 VoxelType pixel_val = (InputImageIter.Get() + 1024) / 4;

 // Thresholding the result fissure structure measurement
 fissure_cond = Sfissure > 0.8 && pixel_val < vessel_thesh ? true : false;

 // Save the corresponding eigenvector for the maximum eigenvalue
 for (int i = 0; i < 3; i++){
 if (EigVal[i] == sortedEigVal[2] && fissure_cond){
 OutputIter.Set(EigMat[i]);
 break;
 }
 }

 }

 printf("Processing computing eigenvalues and eigenvectors\n");
 VecEigHImagePointer->Update();
 printf("Finish computing eigenvalues and eigenvectors\n");

 // Compute the vector based region growing with given eigenvector.
 const OutputImageType::RegionType region = VecEigHImagePointer->GetBufferedRegion();
 const OutputImageType::SizeType size = region.GetSize();
 const unsigned int xs = size[0];

	 25	

 const unsigned int ys = size[1];
 const unsigned int zs = size[2];
 float label = 1;
 for (int z = 0; z < zs; z++){
 for (int y = 0; y < ys; y++){
 for (int x = 0; x < xs; x++){
 PointType point;
 point[0] = x;
 point[1] = y;
 point[2] = z;
 OutputImageType::IndexType out_index;
 VecEigHImageType::IndexType vec_index;

 OutputImage->TransformPhysicalPointToIndex(point, out_index);
 VecEigHImagePointer->TransformPhysicalPointToIndex(point, vec_index);
 VecEigHImageType::PixelType p_vec = VecEigHImagePointer->GetPixel(vec_index);

 if (OutputImage->GetPixel(out_index) == 0 && p_vec[0]+p_vec[1]+p_vec[2] != 0){
 int volume = 1;
 int *vol_point = &volume;
 this->region_growing(point, label, vol_point);
 label = label + 1;
 }
 }
 }
 }
 }
 void region_growing(PointType, float, int *);
};
void EigValHessian::region_growing(PointType point, float label, int *vol_point){
 // This function is to compute the vector based region growing.
 // :params point: the point for region growing
 // :params label: point label
 // :params vol_point: the volume for given label to limit the number of recursive.
 int x = point[0]; int y = point[1]; int z = point[2];
 const OutputImageType::RegionType region = VecEigHImagePointer->GetBufferedRegion();
 const OutputImageType::SizeType size = region.GetSize();
 const unsigned int xs = size[0];
 const unsigned int ys = size[1];
 const unsigned int zs = size[2];

 PointType neighbors[6];
 neighbors[0][0] = x+1; neighbors[1][0] = x-1; neighbors[2][0] = x; neighbors[3][0] = x; neighbors[4][0] = x;
neighbors[5][0] = x;
 neighbors[0][1] = y; neighbors[1][1] = y; neighbors[2][1] = y+1; neighbors[3][1] = y-1; neighbors[4][1] = y;
neighbors[5][1] = y;
 neighbors[0][2] = z; neighbors[1][2] = z; neighbors[2][2] = z; neighbors[3][2] = z; neighbors[4][2] = z+1;
neighbors[5][2] = z-1;

 VecEigHImageType::IndexType p_index;
 VecEigHImagePointer->TransformPhysicalPointToIndex(point, p_index);
 VecEigHImageType::PixelType p = VecEigHImagePointer->GetPixel(p_index);

 for (int i = 0; i < 6; i++){
 if (neighbors[i][0] >= 0 && neighbors[i][0] < xs &&
 neighbors[i][1] >= 0 && neighbors[i][1] < ys &&
 neighbors[i][2] >= 0 && neighbors[i][2] < zs){
 OutputImageType::IndexType out_index;
 OutputImage->TransformPhysicalPointToIndex(neighbors[i], out_index);
 if (OutputImage->GetPixel(out_index) == 0){
 VecEigHImageType::IndexType vec_index;
 VecEigHImagePointer->TransformPhysicalPointToIndex(neighbors[i], vec_index);
 VecEigHImageType::PixelType np = VecEigHImagePointer->GetPixel(vec_index);
 float product = np[0] * p[0] + np[1] * p[1] + np[2] * p[2];
 if (product > 0.9){
 *vol_point = *vol_point + 1;
 OutputImage->SetPixel(out_index, label);
 this->region_growing(neighbors[i], label, vol_point);
 }
 }
 }
 }
}

int main(int argc, char * argv[])
{
 time_t tStart = clock();

 if(argc < 2) {

	 26	

 std::cerr << "Usage: " << std::endl;
 std::cerr << argv[0] << " inputImageFile outputImageFile" << std::endl;
 return EXIT_FAILURE;
 }

 typedef itk::ImageFileReader< InputImageType > readerType;

 float sigma = 0.5;
 float alpha = 90;
 float beta = 120;
 float gama = 100;

 // Read Image
 readerType::Pointer reader = readerType::New();
 reader->SetFileName(argv[1]);
 reader->Update();

 // Compute eigenvalues
 std::cout << " Compute Eigenvalues " << std::endl;
 EigValHessian eigenvalues = EigValHessian::EigValHessian(reader->GetOutput(), sigma, alpha, beta, gama);

 std::cout << " Saving Image..." << std::endl;
 typedef itk::ImageFileWriter < OutputImageType > WriterType;
 WriterType::Pointer writer = WriterType::New();
 writer->SetFileName(argv[2]);
 writer->SetInput(eigenvalues.OutputImage);

 writer->Update();
 printf("Time taken: %.2fs\n", (float)(clock() - tStart)/CLOCKS_PER_SEC);

 return EXIT_SUCCESS;
}

	

