|
a |
|
b/read_data.py |
|
|
1 |
""" |
|
|
2 |
This file is to load the input image and convert to numpy array. |
|
|
3 |
""" |
|
|
4 |
import SimpleITK as sitk |
|
|
5 |
import matplotlib.pyplot as plt |
|
|
6 |
|
|
|
7 |
class LoadData: |
|
|
8 |
""" |
|
|
9 |
This class is designed to load "one" input image. |
|
|
10 |
""" |
|
|
11 |
def __init__(self, path, name): |
|
|
12 |
""" |
|
|
13 |
:param path: image derectory |
|
|
14 |
:param name: image name |
|
|
15 |
""" |
|
|
16 |
self.img_path = path + name |
|
|
17 |
self.image = None |
|
|
18 |
self.slices = None |
|
|
19 |
|
|
|
20 |
def loaddata(self): |
|
|
21 |
""" |
|
|
22 |
Load image with given image path. |
|
|
23 |
:return: None |
|
|
24 |
""" |
|
|
25 |
self.image = sitk.ReadImage(self.img_path) |
|
|
26 |
|
|
|
27 |
def tileimage(self, index1, index2): |
|
|
28 |
""" |
|
|
29 |
Tile the 3D image into two selected slices for showing. |
|
|
30 |
:param index1: selected slice 1 |
|
|
31 |
:param index2: selected slice 2 |
|
|
32 |
:return: None |
|
|
33 |
""" |
|
|
34 |
self.slices = sitk.Tile(self.image[:, :, index1], |
|
|
35 |
self.image[:, :, index2], |
|
|
36 |
(2, 1, 0)) |
|
|
37 |
|
|
|
38 |
def sitk_show(self, title=None, margin=0.0, dpi=40): |
|
|
39 |
""" |
|
|
40 |
Show the tiled 2D images. |
|
|
41 |
:param title: Title |
|
|
42 |
:param margin: Margin |
|
|
43 |
:param dpi: ??? |
|
|
44 |
:return: None |
|
|
45 |
""" |
|
|
46 |
nda = sitk.GetArrayFromImage(self.slices) |
|
|
47 |
figsize = (1 + margin) * nda.shape[0] / dpi, (1 + margin) * nda.shape[1] / dpi |
|
|
48 |
extent = (0, nda.shape[1], nda.shape[0], 0) |
|
|
49 |
fig = plt.figure(figsize=figsize, dpi=dpi) |
|
|
50 |
ax = fig.add_axes([margin, margin, 1 - 2 * margin, 1 - 2 * margin]) |
|
|
51 |
|
|
|
52 |
plt.set_cmap("gray") |
|
|
53 |
ax.imshow(nda, extent=extent, interpolation=None) |
|
|
54 |
if title: |
|
|
55 |
plt.title(title) |
|
|
56 |
plt.show() |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def main(): |
|
|
60 |
data_path = "resource/" |
|
|
61 |
img_name = "lola11-01.mhd" |
|
|
62 |
|
|
|
63 |
# Slice index to visualize with 'sitk_show' |
|
|
64 |
idxSlice1 = 26 |
|
|
65 |
idxSlice2 = 50 |
|
|
66 |
|
|
|
67 |
# int label to assign to the segmented gray matter |
|
|
68 |
labelGrayMatter = 1 |
|
|
69 |
|
|
|
70 |
data = LoadData(data_path, img_name) |
|
|
71 |
data.loaddata() |
|
|
72 |
print "after read image..." |
|
|
73 |
data.tileimage(idxSlice1, idxSlice2) |
|
|
74 |
data.sitk_show() |
|
|
75 |
|
|
|
76 |
print "after showing image..." |
|
|
77 |
image_array = sitk.GetArrayFromImage(data.image) |
|
|
78 |
print "the shape of image is ", image_array.shape |
|
|
79 |
|
|
|
80 |
# output = sitk.DiscreteGaussianFilter(input, 1.0, 5) |
|
|
81 |
# sitk.Show(image) |
|
|
82 |
|
|
|
83 |
if __name__ == "__main__": |
|
|
84 |
main() |