|
a |
|
b/.ipynb_checkpoints/lung_segmentation-checkpoint.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# Lung Lobes Segmentation" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"## Imports" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": null, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"%matplotlib inline\n", |
|
|
24 |
"\n", |
|
|
25 |
"import SimpleITK as sitk\n", |
|
|
26 |
"import numpy as np\n", |
|
|
27 |
"import matplotlib.pyplot as plt\n", |
|
|
28 |
"import scipy as sp \n", |
|
|
29 |
"import gui\n", |
|
|
30 |
"import cv2\n", |
|
|
31 |
"import matplotlib.image as mpimg\n", |
|
|
32 |
"\n", |
|
|
33 |
"# from mayavi import mlab\n", |
|
|
34 |
"from scipy import signal\n", |
|
|
35 |
"from myshow import myshow, myshow3d\n", |
|
|
36 |
"from read_data import LoadData\n", |
|
|
37 |
"from lung_segment import LungSegment\n", |
|
|
38 |
"from vessel_segment import VesselSegment\n", |
|
|
39 |
"from mpl_toolkits.mplot3d import Axes3D" |
|
|
40 |
] |
|
|
41 |
}, |
|
|
42 |
{ |
|
|
43 |
"cell_type": "markdown", |
|
|
44 |
"metadata": {}, |
|
|
45 |
"source": [ |
|
|
46 |
"## Read data" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"execution_count": null, |
|
|
52 |
"metadata": { |
|
|
53 |
"collapsed": true |
|
|
54 |
}, |
|
|
55 |
"outputs": [], |
|
|
56 |
"source": [ |
|
|
57 |
"# loading data\n", |
|
|
58 |
"data_path = \"resource/\"\n", |
|
|
59 |
"img_name = \"lola11-01.mhd\"\n", |
|
|
60 |
"data = LoadData(data_path, img_name)\n", |
|
|
61 |
"data.loaddata()" |
|
|
62 |
] |
|
|
63 |
}, |
|
|
64 |
{ |
|
|
65 |
"cell_type": "code", |
|
|
66 |
"execution_count": null, |
|
|
67 |
"metadata": { |
|
|
68 |
"collapsed": true |
|
|
69 |
}, |
|
|
70 |
"outputs": [], |
|
|
71 |
"source": [ |
|
|
72 |
"print \"the shape of image is \", data.image.GetSize()" |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"cell_type": "markdown", |
|
|
77 |
"metadata": {}, |
|
|
78 |
"source": [ |
|
|
79 |
"## Lung Segmentation\n", |
|
|
80 |
"Rescale the intensities and map them to [0,255]" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "code", |
|
|
85 |
"execution_count": null, |
|
|
86 |
"metadata": {}, |
|
|
87 |
"outputs": [], |
|
|
88 |
"source": [ |
|
|
89 |
"% matplotlib notebook\n", |
|
|
90 |
"\n", |
|
|
91 |
"WINDOW_LEVEL = (1050,500)\n", |
|
|
92 |
"ls = LungSegment(data.image)\n", |
|
|
93 |
"\n", |
|
|
94 |
"# Convert image to uint8 for showing \n", |
|
|
95 |
"ls.conv_2_uint8(WINDOW_LEVEL)\n", |
|
|
96 |
"\n", |
|
|
97 |
"# Set the seed point manually...\n", |
|
|
98 |
"seed_pts = [(125,237,200), (369,237,200)]\n", |
|
|
99 |
"\n", |
|
|
100 |
"# Compute region growing\n", |
|
|
101 |
"ls.regiongrowing(seed_pts)\n", |
|
|
102 |
"\n", |
|
|
103 |
"# showimg image\n", |
|
|
104 |
"ls.image_showing(\"Region Growing Result\")" |
|
|
105 |
] |
|
|
106 |
}, |
|
|
107 |
{ |
|
|
108 |
"cell_type": "markdown", |
|
|
109 |
"metadata": {}, |
|
|
110 |
"source": [ |
|
|
111 |
"Write the region growing image" |
|
|
112 |
] |
|
|
113 |
}, |
|
|
114 |
{ |
|
|
115 |
"cell_type": "code", |
|
|
116 |
"execution_count": null, |
|
|
117 |
"metadata": { |
|
|
118 |
"collapsed": true |
|
|
119 |
}, |
|
|
120 |
"outputs": [], |
|
|
121 |
"source": [ |
|
|
122 |
"sitk.WriteImage(ls.temp_img, \"seg_implicit_thresholds.mhd\")" |
|
|
123 |
] |
|
|
124 |
}, |
|
|
125 |
{ |
|
|
126 |
"cell_type": "code", |
|
|
127 |
"execution_count": null, |
|
|
128 |
"metadata": {}, |
|
|
129 |
"outputs": [], |
|
|
130 |
"source": [ |
|
|
131 |
"# Morphological Operatinon (Closing)\n", |
|
|
132 |
"ls.image_closing(7)\n", |
|
|
133 |
"\n", |
|
|
134 |
"# write image\n", |
|
|
135 |
"sitk.WriteImage(ls.temp_img, \"img_closing.mhd\")" |
|
|
136 |
] |
|
|
137 |
}, |
|
|
138 |
{ |
|
|
139 |
"cell_type": "code", |
|
|
140 |
"execution_count": null, |
|
|
141 |
"metadata": {}, |
|
|
142 |
"outputs": [], |
|
|
143 |
"source": [ |
|
|
144 |
"img_closing = sitk.ReadImage(\"img_closing.mhd\") # reading the existed closing image \n", |
|
|
145 |
"\n", |
|
|
146 |
"# get the numpy array of the 3D closing image for future using\n", |
|
|
147 |
"img_closing_ndarray = sitk.GetArrayFromImage(img_closing)" |
|
|
148 |
] |
|
|
149 |
}, |
|
|
150 |
{ |
|
|
151 |
"cell_type": "markdown", |
|
|
152 |
"metadata": {}, |
|
|
153 |
"source": [ |
|
|
154 |
"## Vasculature Segmentation" |
|
|
155 |
] |
|
|
156 |
}, |
|
|
157 |
{ |
|
|
158 |
"cell_type": "code", |
|
|
159 |
"execution_count": null, |
|
|
160 |
"metadata": {}, |
|
|
161 |
"outputs": [], |
|
|
162 |
"source": [ |
|
|
163 |
"# get the result of previous lung segmentation.\n", |
|
|
164 |
"img_closing_ndarray = sitk.GetImageFromArray(img_closing_ndarray)" |
|
|
165 |
] |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"cell_type": "code", |
|
|
169 |
"execution_count": null, |
|
|
170 |
"metadata": {}, |
|
|
171 |
"outputs": [], |
|
|
172 |
"source": [ |
|
|
173 |
"vs = VesselSegment(original=data.image, closing=img_closing_ndarray)" |
|
|
174 |
] |
|
|
175 |
}, |
|
|
176 |
{ |
|
|
177 |
"cell_type": "code", |
|
|
178 |
"execution_count": null, |
|
|
179 |
"metadata": {}, |
|
|
180 |
"outputs": [], |
|
|
181 |
"source": [ |
|
|
182 |
"print \" Pricessing Generate lung mask...\"\n", |
|
|
183 |
"vs.generate_lung_mask(lunglabel=[1,-5000], offset = 0)\n", |
|
|
184 |
"\n", |
|
|
185 |
"# Write image...\n", |
|
|
186 |
"Lung_mask = sitk.GetImageFromArray(vs.img)\n", |
|
|
187 |
"sitk.WriteImage(Lung_mask, \"Lung_mask.mhd\")\n", |
|
|
188 |
"\n", |
|
|
189 |
"print \" Processing Downsampling...\"\n", |
|
|
190 |
"vs.downsampling()\n", |
|
|
191 |
"\n", |
|
|
192 |
"print \" Processing Thresholding...\"\n", |
|
|
193 |
"vs.thresholding(thval=180)\n", |
|
|
194 |
"down = sitk.GetImageFromArray(vs.temp_img)\n", |
|
|
195 |
"sitk.WriteImage(down, \"downsample.mhd\")\n", |
|
|
196 |
"\n", |
|
|
197 |
"print \" Processing Region Growing...\"\n", |
|
|
198 |
"vs.max_filter(filter_size=5)" |
|
|
199 |
] |
|
|
200 |
}, |
|
|
201 |
{ |
|
|
202 |
"cell_type": "code", |
|
|
203 |
"execution_count": null, |
|
|
204 |
"metadata": {}, |
|
|
205 |
"outputs": [], |
|
|
206 |
"source": [ |
|
|
207 |
"# save the vasculature-segmented image\n", |
|
|
208 |
"filtered = sitk.GetImageFromArray(vs.temp_img)\n", |
|
|
209 |
"sitk.WriteImage(filtered, \"filtered.mhd\")" |
|
|
210 |
] |
|
|
211 |
}, |
|
|
212 |
{ |
|
|
213 |
"cell_type": "code", |
|
|
214 |
"execution_count": null, |
|
|
215 |
"metadata": {}, |
|
|
216 |
"outputs": [], |
|
|
217 |
"source": [ |
|
|
218 |
"# convert to binary image\n", |
|
|
219 |
"filtered = sitk.ReadImage(\"filtered.mhd\")\n", |
|
|
220 |
"filtered = sitk.GetArrayFromImage(filtered)\n", |
|
|
221 |
"filtered[filtered > 0] = 1\n", |
|
|
222 |
"binary_filtered = sitk.GetImageFromArray(filtered)\n", |
|
|
223 |
"sitk.WriteImage(binary_filtered, \"binary_filtered.mhd\")" |
|
|
224 |
] |
|
|
225 |
}, |
|
|
226 |
{ |
|
|
227 |
"cell_type": "markdown", |
|
|
228 |
"metadata": { |
|
|
229 |
"collapsed": true |
|
|
230 |
}, |
|
|
231 |
"source": [ |
|
|
232 |
"## Postprocessing for fissure enhancement\n", |
|
|
233 |
"**Note:** the following steps need the result of fissure segmentation obtained by the C++ codes I provide. Since the SimpleITK package didn't provide enough functions for fissure segmentation (like computing 3D Hessian matrix), I used ITK C++ for this part, instead." |
|
|
234 |
] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"cell_type": "code", |
|
|
238 |
"execution_count": null, |
|
|
239 |
"metadata": {}, |
|
|
240 |
"outputs": [], |
|
|
241 |
"source": [ |
|
|
242 |
"import SimpleITK as sitk\n", |
|
|
243 |
"from read_data import LoadData\n", |
|
|
244 |
"import numpy as np\n", |
|
|
245 |
"import collections\n", |
|
|
246 |
"\n", |
|
|
247 |
"# Load the fissure image\n", |
|
|
248 |
"data = LoadData(path=\"fissure_enhancement_cxx/\", name=\"vessel_rg.mhd\")\n", |
|
|
249 |
"data.loaddata()\n", |
|
|
250 |
"image = sitk.GetArrayFromImage(data.image)" |
|
|
251 |
] |
|
|
252 |
}, |
|
|
253 |
{ |
|
|
254 |
"cell_type": "code", |
|
|
255 |
"execution_count": null, |
|
|
256 |
"metadata": {}, |
|
|
257 |
"outputs": [], |
|
|
258 |
"source": [ |
|
|
259 |
"# count the volume for each label and remove the ones less than 5000.\n", |
|
|
260 |
"nonzeros = image[image > 0]\n", |
|
|
261 |
"d = collections.Counter( nonzeros )\n", |
|
|
262 |
"val_key = []\n", |
|
|
263 |
"keys = set([])\n", |
|
|
264 |
"for key, val in d.items():\n", |
|
|
265 |
" if val > 5000:\n", |
|
|
266 |
" keys.add(key)\n", |
|
|
267 |
"\n", |
|
|
268 |
"image[image == 0] = 1\n", |
|
|
269 |
"for key in keys:\n", |
|
|
270 |
" image[image == key] = 0\n", |
|
|
271 |
"\n", |
|
|
272 |
"image[image > 0] = 2\n", |
|
|
273 |
"image[image == 0] = 1 # the regions left are set to 1\n", |
|
|
274 |
"image[image == 2] = 0 # rest is 0\n", |
|
|
275 |
"img = sitk.GetImageFromArray(image.astype(np.uint8))" |
|
|
276 |
] |
|
|
277 |
}, |
|
|
278 |
{ |
|
|
279 |
"cell_type": "code", |
|
|
280 |
"execution_count": null, |
|
|
281 |
"metadata": { |
|
|
282 |
"collapsed": true |
|
|
283 |
}, |
|
|
284 |
"outputs": [], |
|
|
285 |
"source": [ |
|
|
286 |
"# Using closing to fill holes\n", |
|
|
287 |
"size = 7\n", |
|
|
288 |
"closing = sitk.BinaryMorphologicalClosingImageFilter()\n", |
|
|
289 |
"closing.SetForegroundValue(255)\n", |
|
|
290 |
"closing.SetKernelRadius(size)\n", |
|
|
291 |
"img = closing.Execute(img)\n", |
|
|
292 |
"# save results\n", |
|
|
293 |
"sitk.WriteImage(img, \"fissure_enhancement_cxx/voxel_val_region_growing_closing.mhd\")" |
|
|
294 |
] |
|
|
295 |
}, |
|
|
296 |
{ |
|
|
297 |
"cell_type": "markdown", |
|
|
298 |
"metadata": {}, |
|
|
299 |
"source": [ |
|
|
300 |
"## Generate Label map for lung, vasculature and fissure regions" |
|
|
301 |
] |
|
|
302 |
}, |
|
|
303 |
{ |
|
|
304 |
"cell_type": "code", |
|
|
305 |
"execution_count": null, |
|
|
306 |
"metadata": { |
|
|
307 |
"collapsed": true |
|
|
308 |
}, |
|
|
309 |
"outputs": [], |
|
|
310 |
"source": [ |
|
|
311 |
"lung_mask = LoadData(path=\"\", name=\"Lung_mask.mhd\")\n", |
|
|
312 |
"lung_mask.loaddata()\n", |
|
|
313 |
"fissure = LoadData(path=\"fissure_enhancement_cxx/\", name=\"voxel_val_region_growing_closing.mhd\")\n", |
|
|
314 |
"fissure.loaddata()\n", |
|
|
315 |
"vessel = LoadData(path=\"\", name=\"binary_filtered.mhd\")\n", |
|
|
316 |
"vessel.loaddata()" |
|
|
317 |
] |
|
|
318 |
}, |
|
|
319 |
{ |
|
|
320 |
"cell_type": "code", |
|
|
321 |
"execution_count": null, |
|
|
322 |
"metadata": { |
|
|
323 |
"collapsed": true |
|
|
324 |
}, |
|
|
325 |
"outputs": [], |
|
|
326 |
"source": [ |
|
|
327 |
"lung_mask = sitk.GetArrayFromImage(lung_mask.image)\n", |
|
|
328 |
"fissure = sitk.GetArrayFromImage(fissure.image)\n", |
|
|
329 |
"vessel = sitk.GetArrayFromImage(vessel.image)" |
|
|
330 |
] |
|
|
331 |
}, |
|
|
332 |
{ |
|
|
333 |
"cell_type": "code", |
|
|
334 |
"execution_count": null, |
|
|
335 |
"metadata": { |
|
|
336 |
"collapsed": true |
|
|
337 |
}, |
|
|
338 |
"outputs": [], |
|
|
339 |
"source": [ |
|
|
340 |
"lung_mask[lung_mask != 0] = 3\n", |
|
|
341 |
"lung_mask[vessel > 0] = 1\n", |
|
|
342 |
"lung_mask[fissure > 0] = 2" |
|
|
343 |
] |
|
|
344 |
}, |
|
|
345 |
{ |
|
|
346 |
"cell_type": "code", |
|
|
347 |
"execution_count": null, |
|
|
348 |
"metadata": { |
|
|
349 |
"collapsed": true |
|
|
350 |
}, |
|
|
351 |
"outputs": [], |
|
|
352 |
"source": [ |
|
|
353 |
"lung_mask = sitk.GetImageFromArray(lung_mask)\n", |
|
|
354 |
"sitk.WriteImage(lung_mask, \"label_map.mhd\")" |
|
|
355 |
] |
|
|
356 |
} |
|
|
357 |
], |
|
|
358 |
"metadata": { |
|
|
359 |
"kernelspec": { |
|
|
360 |
"display_name": "Python 2", |
|
|
361 |
"language": "python", |
|
|
362 |
"name": "python2" |
|
|
363 |
}, |
|
|
364 |
"language_info": { |
|
|
365 |
"codemirror_mode": { |
|
|
366 |
"name": "ipython", |
|
|
367 |
"version": 2 |
|
|
368 |
}, |
|
|
369 |
"file_extension": ".py", |
|
|
370 |
"mimetype": "text/x-python", |
|
|
371 |
"name": "python", |
|
|
372 |
"nbconvert_exporter": "python", |
|
|
373 |
"pygments_lexer": "ipython2", |
|
|
374 |
"version": "2.7.13" |
|
|
375 |
} |
|
|
376 |
}, |
|
|
377 |
"nbformat": 4, |
|
|
378 |
"nbformat_minor": 1 |
|
|
379 |
} |