[8a73bc]: / UNET / Code / LUNA_unet.py

Download this file

203 lines (157 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from __future__ import print_function
import numpy as np
import keras
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D
from keras.optimizers import Adam
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from keras.layers import Dropout
from sklearn.externals import joblib
import argparse
from keras.callbacks import *
import sys
import theano
import theano.tensor as T
from keras import initializations
from keras.layers import BatchNormalization
import copy
K.set_image_dim_ordering('th') # Theano dimension ordering in this code
'''
DEFAULT CONFIGURATIONS
'''
def get_options():
parser = argparse.ArgumentParser(description='UNET for Lung Nodule Detection')
parser.add_argument('-out_dir', action="store", default='/scratch/cse/dual/cs5130287/Luna2016/output_final/',
dest="out_dir", type=str)
parser.add_argument('-epochs', action="store", default=500, dest="epochs", type=int)
parser.add_argument('-batch_size', action="store", default=2, dest="batch_size", type=int)
parser.add_argument('-lr', action="store", default=0.001, dest="lr", type=float)
parser.add_argument('-load_weights', action="store", default=False, dest="load_weights", type=bool)
parser.add_argument('-filter_width', action="store", default=3, dest="filter_width",type=int)
parser.add_argument('-stride', action="store", default=3, dest="stride",type=int)
parser.add_argument('-model_file', action="store", default="", dest="model_file",type=str) #TODO
parser.add_argument('-save_prefix', action="store", default="model_",
dest="save_prefix",type=str)
opts = parser.parse_args(sys.argv[1:])
return opts
def dice_coef(y_true,y_pred):
y_true = K.flatten(y_true)
y_pred = K.flatten(y_pred)
smooth = 0.
intersection = K.sum(y_true*y_pred)
return (2. * intersection + smooth) / (K.sum(y_true) + K.sum(y_pred) + smooth)
def dice_coef_loss(y_true, y_pred):
return 1. - dice_coef(y_true, y_pred)
def gaussian_init(shape, name=None, dim_ordering=None):
return initializations.normal(shape, scale=0.001, name=name, dim_ordering=dim_ordering)
def get_unet_small(options):
inputs = Input((1, 512, 512))
conv1 = Convolution2D(32, options.filter_width, options.stride, activation='elu',border_mode='same')(inputs)
conv1 = Dropout(0.2)(conv1)
conv1 = Convolution2D(32, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_1')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2), name='pool_1')(conv1)
pool1 = BatchNormalization()(pool1)
conv2 = Convolution2D(64, options.filter_width, options.stride, activation='elu',border_mode='same')(pool1)
conv2 = Dropout(0.2)(conv2)
conv2 = Convolution2D(64, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_2')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2), name='pool_2')(conv2)
pool2 = BatchNormalization()(pool2)
conv3 = Convolution2D(128, options.filter_width, options.stride, activation='elu',border_mode='same')(pool2)
conv3 = Dropout(0.2)(conv3)
conv3 = Convolution2D(128, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_3')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2), name='pool_3')(conv3)
pool3 = BatchNormalization()(pool3)
conv4 = Convolution2D(256, options.filter_width, options.stride, activation='elu',border_mode='same')(pool3)
conv4 = Dropout(0.2)(conv4)
conv4 = Convolution2D(256, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_4')(conv4)
conv4 = BatchNormalization()(conv4)
# pool4 = MaxPooling2D(pool_size=(2, 2), name='pool_4')(conv4)
# conv5 = Convolution2D(512, options.filter_width, options.stride, activation='elu',border_mode='same')(pool4)
# conv5 = Dropout(0.2)(conv5)
# conv5 = Convolution2D(512, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_5')(conv5)
# up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
# conv6 = Convolution2D(256, options.filter_width, options.stride, activation='elu',border_mode='same')(up6)
# conv6 = Dropout(0.2)(conv6)
# conv6 = Convolution2D(256, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_6')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv4), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, options.filter_width, options.stride, activation='elu',border_mode='same')(up7)
conv7 = Dropout(0.2)(conv7)
conv7 = Convolution2D(128, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_7')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, options.filter_width, options.stride, activation='elu',border_mode='same')(up8)
conv8 = Dropout(0.2)(conv8)
conv8 = Convolution2D(64, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_8')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, options.filter_width, options.stride, activation='elu',border_mode='same')(up9)
conv9 = Dropout(0.2)(conv9)
conv9 = Convolution2D(32, options.filter_width, options.stride, activation='elu',border_mode='same', name='conv_9')(conv9)
conv9 = BatchNormalization()(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid', name='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.summary()
model.compile(optimizer=Adam(lr=options.lr, clipvalue=1., clipnorm=1.), loss=dice_coef_loss, metrics=[dice_coef])
return model
class WeightSave(Callback):
def __init__(self, options):
self.options = options
def on_train_begin(self, logs={}):
if self.options.load_weights:
print('LOADING WEIGHTS FROM : ' + self.options.model_file)
weights = joblib.load( self.options.model_file )
self.model.set_weights(weights)
def on_epoch_end(self, epochs, logs = {}):
cur_weights = self.model.get_weights()
joblib.dump(cur_weights, self.options.save_prefix + '_script_on_epoch_' + str(epochs) + '_lr_' + str(self.options.lr) + '_WITH_STRIDES_' + str(self.options.stride) +'_FILTER_WIDTH_' + str(self.options.filter_width) + '.weights')
class Accuracy(Callback):
def __init__(self,test_data_x,test_data_y):
self.test_data_x=test_data_x
self.test_data_y=test_data_y
test = T.tensor4('test')
pred = T.tensor4('pred')
dc = dice_coef(test,pred)
self.dc = theano.function([test,pred],dc)
def on_epoch_end(self,epochs, logs = {}):
predicted = self.model.predict(self.test_data_x)
print ("Validation : %f"%self.dc(self.test_data_y,predicted))
def train(use_existing):
print ("Loading the options ....")
options = get_options()
print ("epochs: %d"%options.epochs)
print ("batch_size: %d"%options.batch_size)
print ("filter_width: %d"%options.filter_width)
print ("stride: %d"%options.stride)
print ("learning rate: %f"%options.lr)
sys.stdout.flush()
print('-'*30)
print('Loading and preprocessing train data...')
print('-'*30)
imgs_train = np.load(options.out_dir+"trainImages.npy").astype(np.float32)
imgs_mask_train = np.load(options.out_dir+"trainMasks.npy").astype(np.float32)
# Renormalizing the masks
imgs_mask_train[imgs_mask_train > 0.] = 1.0
# Now the Test Data
imgs_test = np.load(options.out_dir+"testImages.npy").astype(np.float32)
imgs_mask_test_true = np.load(options.out_dir+"testMasks.npy").astype(np.float32)
# Renormalizing the test masks
imgs_mask_test_true[imgs_mask_test_true > 0] = 1.0
print('-'*30)
print('Creating and compiling model...')
print('-'*30)
model = get_unet_small(options)
weight_save = WeightSave(options)
accuracy = Accuracy(copy.deepcopy(imgs_test),copy.deepcopy(imgs_mask_test_true))
print('-'*30)
print('Fitting model...')
print('-'*30)
model.fit(x=imgs_train, y=imgs_mask_train, batch_size=options.batch_size, nb_epoch=options.epochs, verbose=1, shuffle=True
,callbacks=[weight_save, accuracy])
# callbacks = [accuracy])
# callbacks=[weight_save,accuracy])
return model
if __name__ == '__main__':
# print "epochs"
model = train(False)