[ec6ff6]: / tumor_CNN_final.ipynb

Download this file

1403 lines (1402 with data), 446.2 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os, glob\n",
    "import sys\n",
    "import copy \n",
    "import pydicom\n",
    "import random\n",
    "import re\n",
    "import scipy\n",
    "import scipy.misc\n",
    "import numpy as np\n",
    "import cv2\n",
    "import imageio\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "from PIL import Image, ImageEnhance\n",
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "from scipy.ndimage import rotate\n",
    "from skimage import exposure\n",
    "from sklearn.metrics import confusion_matrix\n",
    "from operator import add \n",
    "plt.set_cmap('gray')\n",
    "%matplotlib inline\n",
    "## Seeding \n",
    "seed = 2019\n",
    "random.seed = seed\n",
    "np.random.seed = seed\n",
    "tf.seed = seed\n",
    "\n",
    "\n",
    "IMG_DTYPE = np.float\n",
    "SEG_DTYPE = np.uint8\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Default GPU Device: /device:GPU:0\n"
     ]
    }
   ],
   "source": [
    "if tf.test.gpu_device_name():\n",
    "    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))\n",
    "else:\n",
    "    print(\"Please install GPU version of TF\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "masks_path = os.path.join('train','masks')\n",
    "training_path = os.path.join('train','patients')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "- Author IBBM\n",
    "- Date 1/3/2019 (DD/MM/YYYY)\n",
    "- Link https://github.com/IBBM/Cascaded-FCN\n",
    "\"\"\"\n",
    "def imshow(*args,**kwargs):\n",
    "    cmap = kwargs.get('cmap', 'gray')\n",
    "    title= kwargs.get('title','')\n",
    "    if len(args)==0:\n",
    "        raise ValueError(\"No images given to imshow\")\n",
    "    elif len(args)==1:\n",
    "        plt.title(title)\n",
    "        plt.imshow(args[0], interpolation='none')\n",
    "    else:\n",
    "        n=len(args)\n",
    "        if type(cmap)==str:\n",
    "            cmap = [cmap]*n\n",
    "        if type(title)==str:\n",
    "            title= [title]*n\n",
    "        plt.figure(figsize=(n*5,10))\n",
    "        for i in range(n):\n",
    "            plt.subplot(1,n,i+1)\n",
    "            plt.title(title[i])\n",
    "            plt.imshow(args[i], cmap[i])\n",
    "    plt.show()\n",
    "    \n",
    "def normalize_image(img):\n",
    "    \"\"\" Normalize image values to [0,1] \"\"\"\n",
    "    min_, max_ = float(np.min(img)), float(np.max(img))\n",
    "    return (img - min_) / (max_ - min_)\n",
    "\n",
    "def dice(im1, im2):\n",
    "\n",
    "    im1 = np.asarray(im1).astype(np.bool)\n",
    "    im2 = np.asarray(im2).astype(np.bool)\n",
    "\n",
    "    if im1.shape != im2.shape:\n",
    "        raise ValueError(\"Shape mismatch: im1 and im2 must have the same shape.\")\n",
    "\n",
    "    intersection = np.logical_and(im1, im2)\n",
    "\n",
    "    return 2. * intersection.sum() / (im1.sum() + im2.sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "class DataGen(keras.utils.Sequence):\n",
    "    def __init__(self, ids, path, batch_size=8, image_size=128):\n",
    "        self.ids = ids\n",
    "        self.path = path\n",
    "        self.batch_size = batch_size\n",
    "        self.image_size = image_size\n",
    "        self.on_epoch_end()\n",
    "        \n",
    "    def __load__(self, id_name):\n",
    "\n",
    "        tumor_volume = None\n",
    "        \n",
    "        image_path = os.path.join(self.path,\"patients\", id_name)\n",
    "        mask_path = os.path.join(self.path,\"masks\")\n",
    "        all_masks = os.listdir(mask_path)\n",
    "        dicom_image = pydicom.dcmread(image_path)\n",
    "        \n",
    "        image = step1_preprocess_img_slice(dicom_image.pixel_array)\n",
    "       \n",
    "        liver_mask_id = id_name.split('_')\n",
    "        liver_mask = pydicom.dcmread(os.path.join(mask_path, liver_mask_id[0]+'_liver', id_name)).pixel_array\n",
    "        \n",
    "        image = np.multiply(image,np.clip(liver_mask,0,1))\n",
    "        \n",
    "        image = np.array(Image.fromarray(image).resize([image_size, image_size])).astype(IMG_DTYPE)\n",
    "        mask = cv2.imread(os.path.join(masks_path,'merged_livertumors', id_name+'.jpg'))\n",
    "        \n",
    "        mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)\n",
    "        retval, mask = cv2.threshold(mask, 100, 255, cv2.THRESH_BINARY)\n",
    "        mask = np.array(Image.fromarray(mask).resize([image_size, image_size])).astype(IMG_DTYPE)\n",
    "        mask = mask // 255\n",
    "        \n",
    "        mask = mask[:, :, np.newaxis]\n",
    "        \n",
    "        return image, mask\n",
    "    \n",
    "    def __getitem__(self, index):\n",
    "        if(index+1)*self.batch_size > len(self.ids):\n",
    "            self.batch_size = len(self.ids) - index*self.batch_size\n",
    "        \n",
    "        files_batch = self.ids[index*self.batch_size : (index+1)*self.batch_size]\n",
    "#         print(files_batch)\n",
    "        image = []\n",
    "        mask  = []\n",
    "        for id_name in files_batch:\n",
    "\n",
    "            _img, _mask = self.__load__(id_name)\n",
    "            _img = np.stack((_img,)*3, axis=-1)\n",
    "            image.append(_img)\n",
    "            mask.append(_mask)\n",
    "        \n",
    "        image = np.array(image)\n",
    "        mask  = np.array(mask)\n",
    "\n",
    "        return image, mask\n",
    "    \n",
    "    def on_epoch_end(self):\n",
    "        pass\n",
    "    \n",
    "    def __len__(self):\n",
    "        return int(np.ceil(len(self.ids)/float(self.batch_size)))\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "16220\n"
     ]
    }
   ],
   "source": [
    "image_size =  256\n",
    "train_path = \"train\"\n",
    "batch_size = 8\n",
    "epochs = 50\n",
    "## Training Ids\n",
    "images = []\n",
    "for file in os.listdir(os.path.join(train_path, \"patients\")):\n",
    "\n",
    "    images.append(file)\n",
    "\n",
    "\n",
    "## Validation Data Size\n",
    "val_data_size = len(images)//5 # 20% validation Data\n",
    "# factor = 0\n",
    "valid_ids = images[:val_data_size]\n",
    "train_ids = images[val_data_size:]\n",
    "print(len(train_ids))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "- Author IBBM\n",
    "- Date 1/3/2019 (DD/MM/YYYY)\n",
    "- Link https://github.com/IBBM/Cascaded-FCN\n",
    "\"\"\"\n",
    "def step1_preprocess_img_slice(img_slc):\n",
    "    \"\"\"\n",
    "    Preprocesses the image 3d volumes by performing the following :\n",
    "    1- Set pixels with hounsfield value great than 1200, to zero.\n",
    "    2- Clip all hounsfield values to the range [-100, 400]\n",
    "    3- Apply Histogram Equalization\n",
    "    \"\"\"    \n",
    "    img_slc[img_slc>1200] = 0\n",
    "    img_slc   = np.clip(img_slc, -100, 400)\n",
    "    img_slc = normalize_image(img_slc)\n",
    "\n",
    "    \n",
    "    img_slc = img_slc * 255\n",
    "    img_slc = img_slc.astype('uint8')\n",
    "    img_slc = cv2.equalizeHist(img_slc)\n",
    "    img_slc = normalize_image(img_slc)\n",
    "    return img_slc\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(8, 256, 256, 3) (8, 256, 256, 1)\n"
     ]
    }
   ],
   "source": [
    "gen = DataGen(train_ids, train_path, batch_size=batch_size, image_size=image_size)\n",
    "x, y = gen.__getitem__(0)\n",
    "print(x.shape,y.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7fbc6c1cc668>"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAELCAYAAAABYSglAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmQXHd97/336dPL6X2Znu7ZR7NoHVmWvAgcyiwFeWyepMhCSJEQCMGFXYDLhIRUQYIrEFMsFx5IXBQXcJECQj03D4RcLiHXXLBDuJQxtixb1mJtMxrNTM/SMz29L6f7dPd5/pD6dw0YW7bVmhnp+6pSjabd0/07atfRR7/l+9Vs20YIIYQQQlx+jo0egBBCCCHE1UqClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnRJ14KWpmm3a5p2WtO0aU3TPtSt9xFCiK1A7olCXJu0btTR0jRNB84AvwmkgEPAH9m2/cxlfzMhhNjk5J4oxLWrWzNaB4Fp27bP2bbdAP4Z+J0uvZcQQmx2ck8U4hrl7NLrDgILz/o+Bbzi1z1Z0zQpTy/E5paxbbt3owexhb2oeyLIfVGIzc62be1SntetoPVcb/4LNw1N0+4E7uzS+wshLq+5jR7AFveC90SQ+6IQV6NuBa0UMPys74eApWc/wbbtrwBfAfmXmxDiqveC90SQ+6IQV6Nu7dE6BGzXNG1M0zQ38Fbge116LyGE2OzknijENaorM1q2bTc1Tbsb+F+ADvyjbdsnuvFeQgix2ck9UYhrV1fKO7zoQcgUuRCb3WHbtm/a6EFcS+S+KMTmdqmb4aUyvBBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJ8+X8sKZp54ES0AKatm3fpGlaDPj/gG3AeeAPbdvOvbxhCiHE1iD3RSHEs12OGa3X2ba937btmy5+/yHgYdu2twMPX/xeCCGuJXJfFEIA3Vk6/B3g6xd//3Xgd7vwHkIIsZXIfVGIa9TLDVo28ENN0w5rmnbnxceStm0vA1z8mniuH9Q07U5N057QNO2JlzkGIYTYTOS+KIRQXtYeLeBVtm0vaZqWAH6kadqpS/1B27a/AnwFQNM0+2WOQwghNgu5LwohlJc1o2Xb9tLFr6vAfwcOAmlN0/oBLn5dfbmDFEKIrULui0KIZ3vJQUvTNL+macHO74H/CzgOfA/404tP+1Pgf7zcQQohxFYg90UhxC97OUuHSeC/a5rWeZ3/17btH2iadgj4lqZpdwDzwFte/jCFEGJLkPuiEOIXaLa98dsAZC+CEJve4WeVKhBXgNwXhdjcbNvWLuV5UhleCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaQgghhBBdIkFLCCGEEKJLJGgJIYQQQnSJBC0hhBBCiC6RoCWEEEII0SUStIQQQgghukSClhBCCCFEl0jQEkIIIYToEglaW8ydd9650UMQQgghxCWSoLWF3H333ezevZs77rhDfS+EEEKIzUuC1hYxMDCA1+ulWCxy++23Mzw8zBe+8IWNHpYQQgghnocErS0gHA6jaRr1ep1Go4HX6+Wv/uqviEQivPOd79zo4QkhhBDi15CgtQVUq1UajQYAbrcbl8tFIBDgwx/+MMFgcINHJ4QQQohfx7nRAxAvzLIs1tbWaLVaBINBcrkcgUAAuBC8hBBCCLE5yYzWFtJoNDBNk2QyiaZp+Hw+otGo7NUSQgghNikJWluMZVlkMhlcLhf9/f34fD68Xu9GD0sIIYQQz0GC1hYxNDSEw+HANE0cDgeVSoVMJkO73cbv93Pfffdt9BCFEEII8UskaG0RqVSKn/3sZ/T19dFqtYjFYui6TjgcxjRNenp6+Iu/+IuNHqYQQgghnkU2w28RO3bs4NZbb8WyLHw+H6VSCcMwqNfrWJbFjh070HV9o4cphBBCiGfRbNve6DGgadrGD2KL+NznPse+ffuwLItCoUAgEEDXder1OoFAgOnpabLZLH6/n/e///0bPVxx9Ths2/ZNGz2Ia4ncF4XY3Gzb1i7lebJ0uIXs2rWLdrtNMBhkZGSEcDhMvV6nXq/jdDrRdZ1IJEJfXx+5XE5OIwohhBAb7AWDlqZp/6hp2qqmacef9VhM07QfaZp29uLX6MXHNU3T7tc0bVrTtKOapt3QzcFfa06dOsUHP/hBZmZmmJ2dxTAMAoEA/f39tNttfD4fzWYTp9PJ+Pg4tVqN3t7ejR62EFcduS8KIS7VpcxofQ24/Zce+xDwsG3b24GHL34P8EZg+8VfdwL/9fIMU3R84AMfIJFI4HK58Pl81Go1hoeHVdhyOByEQiFs2yaZTPKxj32M733vexs9bCGuNl9D7otCiEvwgkHLtu3/DWR/6eHfAb5+8fdfB373WY9/w77g50BE07T+yzVYAZ///OcB8Pv9mKZJOBym2WxSLpdZWlrC6XSSzWbRdZ3e3l4Mw6BarW7wqIW4ush9UQhxqV7qHq2kbdvLABe/Ji4+PggsPOt5qYuPicuoUCiQTqcpFApUKhVyuRwul4twOIxhGBw4cICJiQlcLhfXX3+9+rlvfvObGzhqIa56cl8UQvyKy70Z/rl24D/nyRlN0+7UNO0JTdOeuMxjuOrFYjG2bdtGvV4nmUximqYqYFqtVvH7/eTzeVqtFqurq4TDYb761a9Sr9f5xje+sdHDF+JaI/dFIa5hLzVopTtT3xe/rl58PAUMP+t5Q8DSc72AbdtfsW37Jjky/uK1Wi3OnTtHq9WiXq9jGAYAPp+PeDzOkSNH8Pl8DAwMEIlEVPiq1+u84x3v2ODRC3HVkvuiEOJXvNSg9T3gTy/+/k+B//Gsx99x8ZTNK4FCZypdXD7hcJhEIqFms06cOAFcmOkCuOmmmzAMA9M0AajVahiGgWVZvPvd7+buu+/m3nvv3bDxC3GVkvuiEOJXvGBleE3T/hvwWiCuaVoK+FvgU8C3NE27A5gH3nLx6f8T+L+BaaAK/FkXxnzNy2QyDAwMsLa2Rm9vL6Zp0tfXpzbBP/HEE7TbbcLhMK1Wi+HhC/+YLhaL3HTTTXzqU5/CsqwNvgohti65LwohLpVUht+CfvzjH9NoNNTJwna7TSQSodlskslkSKVSjIyMUK1W6e/vp1AoMDMzQ6PRwOl00mg0+MxnPoNlWXzkIx/hne9850Zfktj8pDL8FSb3RSE2N6kMfxUzTZNarUar1VLByel04na7cbvdxONxVdKhVCpx6tQpAJLJJE6nE6fTye23304ul+PTn/70Rl6KEEIIcVWToLXFhMNhLMui0Wjg9/s5duwY09PTlMtl6vU6jUZDnUJstVq02236+vqoVqu4XC5M02Tnzp3s2bOHP/zDP+TkyZMbfUlCCCHEVUuC1hZTKBRwOBwMDw+TSqUYGhpC13U0TePpp58mnU4Tj8fRdZ1Wq4VlWczPzxOPx8lkMrjdbpaXlzEMg+3bt/O+972PPXv2bPRlCSGEEFelF9wMLzafYrFIu93GMAx0XWdiYoJCoYDH4yEYDNJsNlldXWVkZASv18vu3bsBqFQqGIZBKpVSxU2np6cpFosbfEVCCCHE1UlmtLagRqOBw+HA4/HgcDhoNpuk02lisRgLCwvE43Fe+9rX0mq1iMfjnDp1ikwmg2EYqoo8gNfrZXx8nEqlssFXJIQQQlydZEZrC9J1nWazia7rTE9Ps2fPHnp7e+nr6yOZTJJOp7EsC5fLRTabJRAI4PV6qVartFotGo0GPp+Per3O0NAQkUgEl8vF6urqC7+5EEIIIS6ZzGhtQaVSiampKQCCwSCVSoUTJ07g8/mIRqPMz89jmibtdpvTp08TDoeJx+MAWJZFb2+vei2fz4ff71fV5YUQQghx+UjQ2oL8fj+pVIpWq4VpmmQyGRKJBJlMhpmZGZxOJz6fj0qlQrFYJB6Ps7y8TL1eV/0P/X4/sViMfD7PW97yFhqNxkZflhBCCHHVkaC1xei6jmVZFAoFdF0nmUyyc+dOfD4fpmmSz+cBSKVS6LrO6OgomUyGdrtNuVwmFosRDAaJxWKUSiXa7TbJZJLbb7+d3t5eksnkBl+hEEIIcfWQoLXFtFot1tfXcTqdDAwMADAzM6Na6qTTaXp7e5mcnCQYDNJut7Esi2AwqJYMw+EwpmmqZtMDAwPs27ePN73pTaTTaYaGhjbs+oQQQoiriQStLcbn8xEIBAgGg+TzedxuNy6Xi3K5TKPR4MCBAywtLTE7O4vf78flcjE4OEg6naZQKDAyMsLy8oV+tp1aWw6HA7fbTSQSYc+ePbJfSwghhLhMJGhtMZ3WOp0aWgsLC9RqNVwuF6lUimazicvlIh6P4/f7GRoaYnl5mbGxMcLhMDMzMyQSCfL5PKFQCF3X1T6ukZERDh48qMo/CCGEEOLlkfIOW5Db7aZUKhEMBtWeqkKhQL1ep1KpEAwGKZfL6mtPTw/VapW1tTU0TcPhcFCv1ymXy3g8Hnw+H4VCAb/fT19fn7TlEUIIIS4TmdHaYhKJBLquMzg4SLVaxTAMQqEQLpeLvr4+8vk8sVgMuDD75fV66enpodFo4PV62b9/P81mk3K5TCKRYPfu3YTDYfr6+gCwbZt77rmHvXv3buRlCiGEEFcFCVpbTKeo6Pnz53G5XJRKJTWLZZomtVoNy7JwOBz4/X5CoRDLy8vkcjkAZmdnKZfLalbr5MmTLC4uUiwWGR4exuPxoGkax48f38jLFEIIIa4KsnS4BXXqZMGFDe2VSgW3283o6CjHjh1TLXUcDgfVapVCoYDL5cLj8aDrOpFIhN7eXk6fPs3OnTvJZrOsra2xd+9ebrvtto28NCGEEOKqIjNaW5Bt2+i6Tj6fp1QqAeByuZiZmSEQCKDrOtlsFoBarUYwGKRQKDA6OkqhUKC3t5e5uTna7TbLy8tks1na7TaHDh3iy1/+8kZemhBCCHFVkaC1hbjdbrxeLzt27MCyLPx+v1oirFQqhMNh9fju3bup1+tomkYmk+FNb3oTAwMD6LrO3NycKuFgmqbaUB+LxXA6ndx9990beZlCCCHEVUOC1hbSaDRwOp2k02kajQbxeJxcLoeu69TrddVAem1tjVQqhdN5YWW4U7LB4XDQarVUVfipqSmi0SjpdBqXy0U6nSabzRIMBjf4SoUQQoirg+zR2mJKpRLRaJRcLke73cbn89Fqtejv71f1sRYWFhgZGcHlcmEYBoVCgXQ6TavVAi70SgyHw5w8eZLR0VFV9LRWq9Hf30+73X7BcXzpS18iEokwPT3NRz7ykW5fthBCCLElSdDagtrtNg6Hg2PHjjE1NcXi4iKGYTA+Po5hGKytrVEoFNSG+VarxX/+539y6623MjY2xszMjCrv0GlIPT8/D8Cf/MmfXNIYZmZmCIfD6hSkEEIIIX6VBK0tRNd1JiYmVJjavn07Z8+eZXh4GJ/PR7lcZmFhgVarRaFQoFqt4vF4ePLJJxkfH+eZZ57B5XLh8/kYGRlhfn4e27ZVf8OFhYXnff9Ofa43v/nNmKZJuVym1WoxNjbG7OzslfgjEEIIIbYU2aO1hbRaLW6//XbgQmNoh8PB1NQU4+PjzM3NUSwWmZ+fp1wuMzo6SrlcplKpYFkWQ0NDBAIBHA4H+/fvVxXhO8FraWmJUCj0vO+fzWbp7+/H4/GQTCbZv38/rVZLQpYQQgjxa0jQ2mL27t3LwsIC9XqdM2fOkMvlePTRRwkGgyo0uVwu8vk8s7Oz1Go1otEoZ86cYX19nVqtxtraGtVqVe3H6u3tBS7U5/rOd77zvO//u7/7uySTSVqtFqZpMjIywujoKIlE4kpcvhBCCLGlyNLhFuBwOBgcHOSNb3wjXq+XZDKJaZoAeL1edZrw8ccfZ2BgAMuy0HUd0zT52c9+xsDAAIDaID87O0symSSfz9NsNpmZmUHTNFZXV1XZh+fy7ne/G4fDQTKZxLIsbNtmdXWVubm5K/LnIIQQQmw1MqO1BXROF4ZCIeLxOKVSiXa7jcfjwTAMPB4Py8vLqudhq9VSYcgwDAKBAMFgkP7+fkqlEj6fj/7+fizLYnh4mHa7zfnz51lZWVEnE3/ZXXfdhWEYRKNR2u02gUCApaUlvvvd77Jt2za++c1vXuE/FSGEEGLzk6C1RZw+fZrrr78ey7KIRCJYlkW5XKZcLpPJZNixYwcej4dcLkdPTw8nT57E5/MRj8cpl8uUSiXm5+fp7e3FMAwOHTpEMBjk/PnzwIX9V7lcjre//e3P+f5f/vKXGR8fx+l0qsC1srLC4uIi58+fv+TTikIIIcS1RILWFtKpidVqtejt7cU0TWZmZkgmk2SzWer1OuFwmFQqpZYLq9WqOi3YKUZaLpfZsWMHpmmSSCQ4fPgwn/3sZ/nMZz7zvO+/traGw+EgFouRzWY5dOgQu3fv7vp1CyGEEFuVBK0tYHx8HIBKpcLevXuJxWLMzc2h6zqJRIKlpSVarRatVotEIkGj0VDV3Xft2kW73VZLjHNzc4TDYarVKmtra5TL5efdl/Vso6OjBAIBqtUqbreb2267jZMnT3btuoUQQoitToLWFnDu3Dm+8Y1vMDk5SbFY5OjRo0SjUVwuF4VCgWQyyeDgIB6Ph2q1it/vZ2lpie3bt+Pz+VhcXKTRaFCtVmk0Gvh8PnRdV2ErkUjwyU9+8nnHcP78ebxeL5lMhna7jWma5HK5K/QnIIQQQmxNcupwk7v33nvZvn07yWRS9SSMx+O0221cLheWZVEsFlW5h9/+7d8G4MEHH2RhYYF8Pk8+n+fAgQMqJJ04cYIDBw6QTqd54IEHVFX457Nt2zY++9nP0mg0aDabxONx+vr6un35QgghxJYmM1qb3H333UcsFiMWixEOhxkeHiYUChGLxWi324TDYQCKxaIKPnfffTdvfOMbWV5exjAMBgcHeeyxx1QT6nA4zL/8y79w//33Y1nWJY/lgx/8IG63G9u2yWazlMtl/vIv/7Ir1y2EEEJcDWRGa5PauXMnv//7v09vby+6rtNut0kmkxQKBdUsulOKIZFIMDw8zE9/+lPe+9738oUvfAGAt7zlLXzuc58jGAwyNjaGYRhkMhkymQxf//rXWVtbe9HjsiyLer2O1+ul2WxSq9Uu63UPDg6yuLh4WV9TCCGE2Cgyo7VJnT59mk9+8pN4PB4GBgZwOp1Uq1Wy2Sz5fJ7Dhw8TDocJh8OUSiWWlpZwuVx88YtfBFBh6+TJk/T29tJqtZieniYYDKLrutrj9WLMzMyQSqWoVCpkMhlarRa6rvP973+fp5566iVd52OPPQbAl770Je677z7e8Y538P73vx+AP/uzP/uV509NTb2k9xFCCCE2gmbb9kaPAU3TNn4Qm8ydd97J3r178Xq97N69G8uyiMViLC0tUSqVCIfDJBIJTp8+jWEYxONxZmZm+OlPf4phGPj9fnRd5z3veQ8ul4vTp08Ti8U4evQotm3TbDZ55zvf+aLGlM1muffeexkcHKSnpwePx8PJkyf59Kc/zdmzZ9m+ffuLvs6ZmRkmJiY4fPgwTqcTr9cLwI4dO3jsscd4xStewUMPPcQb3vAGvv71r2NZFkePHuX+++9/0e8lXpbDtm3ftNGDuJbIfVGIzc22be1SniczWptU54RfJ0Q5HA6OHz9OLpdjYGCA+fl5Dh06hGEY9Pf3s7S0pPZweb1eAoEABw8eVK1yRkdHSaVS7Nq1i+HhYXw+H/fcc48KNpciFoupXoq2bTM1NaXC1b/9279d8uusrq6q3xeLRU6dOoXf7yefz9Nut1X/xna7zUMPPUS5XOZb3/oWmqYxMTHB2972No4dO8b9998ve8SEuMbZtv0rv4TYTF5wRkvTtH8EfhtYtW1778XHPgq8G+hs8vlr27b/58X/9mHgDqAF3GPb9v96wUHIv9x+wejoKHNzc9x///3s3LkTQJ0qjMfjLCwsEAgE8Hq9+P1+LMsiEAgwNjZGJpOhWq3SbrdVo+ehoSGq1SqBQIAnnniCyclJ8vk8p0+f5sMf/vCLKtPw1FNP8dWvfpW3ve1tFItF3G43CwsL/PznP1fLlpdqamqKD3zgA7jdbmq1GtVqFZ/Ph9/vZ2VlRRVaDQQCNJtNTNPENE3C4TC5XI5iscjIyAiPP/44//Ef/8Hx48df1PuLF0VmtJ5F7oubx6/7O0zTLmmyQYiX7FJntC5lM/zXgC8A3/ilxz9v2/Znn/2Apml7gLcCU8AA8JCmaTts237uBnriOTkcDv7mb/4GwzDQdZ1kMqla5qTTabLZrCoyura2hsfjwbIsfD4fo6OjlMtlABqNBqZpMj8/j8vlUj0Kjx8/ztDQED09PfzBH/wBDzzwwCWP7cCBA3zxi19kYWFB7Q/TdZ23v/3tvOc97yGdTvOGN7wBgG9/+9tcd911FAoFXvGKV3Ds2DF+8pOf4HA4CIfD1Go1fD4fiUSCQqHAtm3bWFxcZGxsDE3TmJycZH5+nlarhWVZjI2NUSgUCAQCuFwuPB4Ppmni8/kkZIkr7WvIfXHDPd9EQee/SeASG+0Flw5t2/7fQPYSX+93gH+2bbtu2/YsMA0cfBnjuya5XC6i0Si2bRMMBikUCjgcDprNpgodCwsLLCwssLq6qvoNulwujh49isPhYH19HV3XKRaLBAIBzpw5w8rKCgMDA+zbt490Ok1/fz+33norIyMjlzSuarWqljNrtRqTk5N4PB727NlDOp2m0WiokAUQjUY5ceIEs7Oz/PM//7Pqvzg2NkatViMej6tN+ePj45w+fZp2u43D4UDTNPL5PADbt2/H6/VSqVQYHBykWq1imiaxWIxbbrmF/fv38+1vf5tPfvKTDA4OduUzEeLZ5L648WSJUGwVL2eP1t2aph3VNO0fNU2LXnxsEFh41nNSFx8TL8Jv/MZv4Ha71fedUOT3+ymVSqoFDlwIP7VaDb/fz4kTJxgfH2dmZoaxsTEqlQrR6IWPxjAM+vr6KJVKnDhxgt27d2OaJpFIBLfbzczMzAuOq9Ok+l3vehc9PT089thj6LrOiRMnGB4exuFw8OMf/5jvfve7PPjgg1iWRbVaxTAMbr75ZorFIvF4nEwmg8fjYWxsDIB2u825c+e47rrr2L9/P41GA4fDQSKRIBQKUSwW1Vgdjv/zv2w4HCaTyTA0NEQgEOC6667jrW99K5FI5JLbCglxmcl9cZORQCY22ksNWv8VmAD2A8vA/3Px8eeao33O/8s1TbtT07QnNE174iWO4ar1ta99jXvuuQefz0c0GmVkZIRMJsPy8jLVapVoNIppmui6rpbQVldXWV5eZm5ujomJCUKhEIlEgmg0qvY+LSws4PF4ANTmeZfLxR//8R8zMTHxosaYTqcJhUL09/erzfWRSESFob1792JZFi6Xi127dvHjH/8Yh8PB6uoq/f39tFotzpw5QzAYxDRNXvOa1+BwODhy5AiNRoOpqSkWFhbUtff29pJOp2m322QyGW655RYMw1Ab610uF7lcjle+8pU88MADqmG2EFeQ3BevoBezJChhS2yklxS0bNtO27bdsm27DTzA/5kGTwHDz3rqELD0a17jK7Zt3yQbbH/Vxz/+cT7/+c9TKpVotVqEw2EGBgZwuVz09vbidrtpNBpYloXb7cYwDJrNJslkEsMwyOfzBAIBKpUKtVqNubk5otEoPT09OJ1OotEoY2Nj9PX1kcvl1KzX97///UsaXzabpVarkU6naTabJBIJms0m58+fx+FwEIvFKBaLqgxFZ5mwVCqxvLzMI488Qr1eJxQKoes6e/fupVgsUiwW8Xg86mRjpzfj2toasVhMFW6dmJhgenqaTCZDf38/pVKJ3t5eotEo27ZtY3Jykn/6p3/6hdONQnSb3Bc3t80atuS05NXvJQUtTdP6n/Xt7wGdncjfA96qaZpH07QxYDvw+Msb4rUpl8sxMTGBYRjql8/nIxgM4nQ6SSaTOBwOCoUC//qv/0p/fz+GYVCtVjlw4AC2bePxeKhUKtxyyy1kMhngQjmFSCTCk08+yeOPP04+n6dcLvOBD3zgkqu8x2Ix7r77bhXu+vr6GBoaIpPJkM/nsSyLXC7H5OQk5XKZxcVF1tfXyeVy5HI50uk0i4uL6LpOKBRiaWmJpaUl+vv76evrw+Fw4HA41GnJeDwOXKhKn0wmsSwLh8NBNBoln88zMjJCo9GgUChQrVbJ5/MMDQ3x8Y9/vGufjxC/TO6LV96LmdXajJvifzlcSdi6Or1g0NI07b8BjwI7NU1LaZp2B/BfNE07pmnaUeB1wAcAbNs+AXwLeAb4AfA+OVnz4n3kIx/h7/7u7zAMA03TWF9fJx6PE4/HCYfDvzCr5fV6+aM/+iN1E+lsbG+1WjidTtrtNsVikXa7jWEYaiO9z+fDNE2mpqa4/vrr+eEPf8hb3vKWSx5jOp3mrrvuwrZtXC4XDoeD8fFxSqUSe/fuZWBgALfbzfj4OOvr69TrddUIu9VqMTo6immaVKtV0uk0Ho8Hl8tFs9nEMAzq9Tq6rpNOp9WG/kajQavVUo8lEgm1+T2bzeJ2u4nFYpRKJSKRCDfffDP33HPP5f+AxDUvucRmAAAgAElEQVRP7ovi5ZJQde2QyvCb0Be+8AXcbjevf/3r1f4qy7LU5vITJ06wtrZGq9WiVCoxMTHB2toa/f39jI6O0t/fj9fr5ezZs8CFjfCVSgWAsbExnnjiCaLRqNo0vrq6ypEjRygWi9xxxx2Mj49f8liLxSK6rqu+h4FAAF3Xqdfr6kRkKpWiXq/TarVYWVnBNE2uv/56wuEw+/btU8uOAwMDwIXyFpZlceLECVWWotVqEY/HsSwL0zQZGxsjEolw/PhxLMtS+9UymQxTU1OcOXOG6667jh/96Ee8733vu/wf0rVH6mhdYXJfvHSXUA/yCo3k0jzfeDfbWMWvJ5Xht6j777+fWq2G0+mkWCwSjUbRNA3DMAgGgwQCAW688UYmJyfp6enB5/MBkEwmufXWW2k0GszOzqoG0p3w0dnfNDs7y0033cT6+jqGYTA3N8f6+jpwoSjqiw1ZTqcT27bRdR2/349t27RaLZaXl6nX62QyGVZWVvB6vbRaLQYHB1WQGhkZYX5+ntXVVRWsyuUy2WyW5eVldF1nbGyMaDSKx+NR13Pw4EESiQQrKytqWXVtbY2hoSGSySTpdJo9e/Zw5swZXvva13LHHXfIxnghrgHPFVI2W3DZDJMb4sqSoLXJdJa63G43/f39WJaFpmk4HA4OHz6sThneeuutvO51r+OWW25h27ZtTE1NkclkWF1dZffu3TSbTbUxPR6P09vbS6FQYGBggFKpRE9PD9PT0+zatYtKpcLQ0BDr6+t84hOf4F3vetcLjnN9fZ1Wq4Vt22rTvWmaVCoVFhYWWFxc5PDhw0xPT1OpVEilUrjdbrV53uPx0Gw2yefzzM7OMjU1RavVotlsks1m1Z6yQqGg6nZVq1WGh4ep1+uqrtjy8jI9PT1EIhHm5uYIBAIEg0F1utIwDPbu3Ssb44W4immapgLVs79KyBKbgSwdblLf/va32bNnDz6fD6fTSaPRQNM06vU6APF4nHw+T6vVIpVKqWVFj8fDjTfeyIkTJ1Ql+cHBQU6dOsWePXvU6x89epRXv/rVHDp0SC3N/ehHP+LBBx9UP7O4uAhcmLmyLIuenp5fGOPs7Czz8/PAhc37pmnSaDRIp9OUSiXq9TpOpxOHw4Hb7SYUCjE/P8/g4CDJZFL1TlxeXmb//v3Mzc1RKBSIxWJUq1XC4TA+n490Oq2WOCcmJjBNE8MwWF5exul0EgwG0XWdUqmEz+dD13WCwSArKyuMjIzw5JNP8sQTT/Cd73xHjVe8aLJ0eIXJfXHrejl/r262cCh+PVk63OJCoRCAmt3pzAY1m038fj+1Wg2Xy0WpVCIajRKLxXC5XGqzeW9vLz6fj3q9zsLCAnv27GFxcZF8Po/T6WTbtm088sgj1Go1+vv7SSaTBAIBent7AfD7/QB84hOfwLIsvF4vhUJBje+hhx7CNE1VlX56epq5uTkMw1BjrtVqlEolcrkcfr+f8+fPEwqFSKVSVCoVyuUye/fu5TWveQ2lUokdO3YAFzb0V6tVLMsinU7T29tLtVrF6XSqk5Wd0409PT3E43E8Ho9qWdRZJg2FQkQiEcLhMFNTUxKyhBBd93InLzbD5Ie4vCRobUKf+9znCIVCNBoNent7icVizM3NYVmWmjGanZ2lVquRyWQIhULMzc0RDAaJRCJqn1OnL2AymWRxcRGXy4XP52NmZoZIJMKtt97Ktm3bKBQKtFotxsfH+fCHP8wDDzzAn//5nwPw13/916rKervdBi4sGwaDQf793/+dXC6nwlaxWOSpp56iXq/jcrloNBq4XC5isRhra2vU63V6enqwLIvZ2VnOnj2LpmkEAgHq9TqLi4uqTMPU1BQrKysAHD9+nO3bt6uwaVkWsViMUCjE2toaLpeL8+fPq9mxRqPBysoKPp+PdrtNPp/n+uuv35gPUwhxzZCQJJ6LBK1N5stf/jKVSoXp6Wni8bhaNhwZGSEYDBKNRhkcHGRiYkIVKz106BCjo6OMjIzgdruZm5tjeXmZyclJDh48yMjICAcOHGB0dJS1tTXVWPonP/mJWqpLp9PcdttttNttduzYwcDAAF/72tfUaUFN01S5hR/84Af84Ac/IJvN8swzz7CwsEA0GqVQKOD3+9E0jYcffhjbtlWtq07tq85JyGKxiKZpHDt2jKeffppWq8X58+fZtm0by8vLOBwOBgcHVZHWlZUVKpUKmUyG0dFRZmZmGBkZwTRNXC4X9XqdQCCAaZqqbIVpmvz85z9Xja1fTPNsIYR4MSRkiV9HgtYmc9ddd3HvvfeiaRoul4tyuYxpmrTbbQqFgloOXF9f59ixYwwODvK6172OdDrN8vIyKysrqs1NZ+O8z+fj+PHj1Go1NSM0OjpKMpmk3W6TzWbZuXOn6iM4NDREqVTijW98I5VKRdXsarVamKbJ8vIyALVaDYfDgdfrJZfL0Wq1WF1dJZfL8Vu/9Vu4XC7y+bxayrMsi3g8TqVSYWRkhFKpRDweVxvlHQ4H8XicarWKrusquI2OjpJOp39hFmtiYoJms4nb7WZ1dRXbtvF6vRiGwY4dOzh58iTVahVAvV5nWVQIIS6nyx2yJLRdXSRobTIf/ehHed/73kej0VDLaMlkkkajQSgUYn19nWq1ytzcHPv27aPVavHYY4+xe/duotEoBw4cUOGqVqtRqVQ4evSoWoqMRqMMDQ1hWRblcpmdO3ficrlYW1tTAW1+fp43vOENBINB3G437XYbTdMwTZMf/vCHNBoNstkscOF0pGma2LaNw+HANE11IjAUCqkxeDwe2u02TqeTQCBAKpXC5/PxzDPPsH37dpaWlkgkEszOznLDDTeQyWQYGxtTxVDj8biaXWu1Wpw4cYJqtYppmgB4PB4ajQbj4+MsLi6q900mkwAqEAohxOW0GULRs9v4/Lp2PpthnNcqCVqbzEc/+lG1ibzZbBKPx9Ueqs4MzdmzZxkeHqZWq7G6usrBgwfp6elRweRVr3oVlmVRKBR46KGHMAwDp9OpGlGfOXOGRqOBruuqXU2nHU65XMYwDGzbVs/vnHTM5/Pk83ncbjdwIWS53W40TcPpdKrHOhXp8/k8Pp+PcDhMtVolEAgwMzNDLBaj1WpRqVSoVCqsrq4yOTmJ3+9XS4Wjo6NEIhHW1tbIZDLs3LmTaDTKoUOHeOSRR1heXubhhx+mWq0yMzPDxMQEHo+HJ598kkOHDnHu3Dl0XSccDuN0OtVpxE9/+tMMDQ1tzIcrhBCX2a8LUM9+vPN7CVsbQ4LWJvToo4/y/ve/H6fTqSqeO51OVXtq//79GIZBsVhkfHwcwzBUiQYAr9fL4OAgTz75JOPj4zidTur1OpZlkc1mVWmFaDSKaZocO3YMn8+ngt3IyAi2bauWPbquA7CyskKpVCKbzeJ0OtWska7rmKaJx+PB4XDg9/tVy53OLFRnNsvhcJDL5Wg2mwDs3LmTUqlEPp9naWmJyclJLMvC6XRy7tw5ent7CQQCeL1e2u22mukrl8uk02mOHz/OwsIChmHw5JNPUq/X8Xq96lrL5bIq6mqa5i8UeRVCiK3shYKTzGxtDhK0NqGTJ08CF5oodwKL1+tV+6WcTiczMzP4fD6KxaKaeeqEmc6+qz179rC0tARc6H1oWRYTExPs3LmTyclJ1Yja5XJhGAbhcJhUKsXJkydxu92q3U1nj9bg4CCNRoNarUaj0VB1smzbVs956KGHqFar2LZNOBzG4/FQKBTUczRNo9FoEAwGaTQa6jqTySS6rtNoNFhbW1PFWQOBACdPnmRmZobFxUXOnTuHw+FQoVLTNGq1GqdOnWJqaoqbb74Zn89Hb2+vKsKq67o6FRmNRtWMnBBCXGukTteVJ0FrEysWi2p5rlwuq9pW6XSaSCSCz+dTPQpzuZwqWjo7O0uxWMTv99Nqtejp6VGb0XVdVwFK13XW19fZtm2b2rTe2Thu27Z6vmmaNJtNfvCDH1AsFolEIrTbbQKBAIFAgGazqZY1X//616tTipqmqV6IDoeDQqFAKBTC7/djmib9/f2cO3eO8fFxtVG+Xq+TSqUoFApqPOPj4ywvLzM7O0soFKJer6tfnWKq1WoVv99PIBDg+uuvxzAMBgYGiEQiFAoFhoaGCAQC+Hw+Xv3qV2/kxyqEEM/rcoehX66aL64sCVqb2MmTJ7Ftm1qthm3blEol/H4/AwMD9Pf3k8/nufnmm5mdnWVpaQnTNPnpT38KoBpRJ5NJfvazn+FwOEgmk0xPT/PMM8+QyWTUzNf58+cxDIMjR47Q399PJBLBsiw1Q1av1/F4PPj9fnbt2kU+n8cwDFWvKxQK4fP5VE0st9utxt3ZpO52uwkEAmpmbWRkRNXYcjqdqvVOtVolEokwOjqqQlVnibNardJqtTAMQ51SjMVieL1egsEgpmlSLpdxOBwkEgkajQaWZdHb20soFCIcDquTlUIIcS2RkLVx5G+dTazTRNnhcKDrumrIXC6XmZ6epl6vU6lU2LZtm6q8PjU1xfLysjpVaFkWY2Nj+Hw+SqUSuq6zurpKu93mqaeeYnx8nHg8js/nU0Gos+m9s0zY6TPYqVYfCARwuVzYtk0gEKBSqQCoJcVAIKDaBVmWhc/nUycTPR4Ptm0Ti8XUdXYCkMPhUJXfdV0nlUoRDAZxOByMjo6qPWudENfT00Or1WLv3r2MjY1h2zbT09P4fD7Gx8fVyUZN0/D7/aRSKUZGRn6llZAQQrwUm32/k4SrzUGC1iZ26tQpSqWSmuXplDJwu93EYjF0XcfpdFIsFtXP5HI5RkdHAVS1+E7trU5bm+3bt6tGzn6/n1AohNPpJJfL0W63SaVSBAIBtdxoGAbz8/Ps37+f3/zN32T79u0YhkFfX5+qpdVpYu1wONA0Tb1mJBJRZSK8Xi+hUEgFw1e+8pVqHxXA5OQkpVKJ8fFxHA4HkUiEpaUlNE1j27ZtDA0NkUgk1PU7nU727NnD/v378Xq9aJrG0NAQ8/PzlEolyuWyOumYy+XUwYFoNHrlP0whxFWnG0Hmxbzm8z1XQtbm4dzoAYhf74tf/CI33HADt912G5ZlqaW4TCZDLBZjenqaSCSilhSj0Sgul4t2u00ymVQ1pE6fPs3Y2Bjz8/OMjY3hdDopFAoUi0Xy+TzlcplCocDNN9/MkSNHGBwcVLNRgUAAy7Lo7++n0WiwuLjIjTfeyMDAgGqZs7i4SLvdxrZtGo0GuVyOQCBAMBgkGAwyNDSkTjBqmsbY2BjxeFxtbO+0+KlUKuTzeRKJBOl0mnK5zPbt2wFoNBrs27cP0zRVL8e5uTnq9TqnT5/GMAx8Ph8DAwNMT0+ztrYGoGp7RSIRzp8/z+LiomyGF0JcNp1As1GNpCVQbX4StDa5v//7v+e2226jVCoRDAapVqskEglVJ6parbJjxw6OHj2KYRikUin6+vpYW1tjdnaW4eFhJiYmOHbsGGNjY8zOzuJyuRgZGSESiahlQMMw8Hq9JBIJxsbGVMgql8sUi0W1j2pwcJCVlRXC4TD9/f2srq4CFwqGzs7OqlkugEQigd/vZ3x8nHA4zKOPPko0GlXlGTr7wDo///TTTzMwMIDb7aZQKHDTTTeRz+fxeDyqpETntGGpVMLj8TA2NsbS0hK6rtNsNlXtLtM0CQQCNBoNenp6VJmJQqGgTjsKIcTl8lICl4Ska4MErU2u2WwyPDzM4uIimUyGYDBINpslkUhQLpfp6elhfn6ecrlMKBSiUqmoxtOdGS1d1xkeHsbpdBIKhTAMg3g8Tj6fp1KpcNNNN6nSCzfccAPlchm32021WuXUqVOEw2FcLhdDQ0OkUikMw+D8+fNq1uqVr3wl6XSaqakpcrkchmEwOjqKw+Fgfn4er9dLvV7H7/czNTWFpmlkMhn27dtHs9nk7NmzxONxVbm9VqthGIZaUtQ0jZ6eHpaXl4lGo0QiEc6cOUMkEsHpdKoZqqGhIZaWltReMp/Pp0JXLpdT19EJa0IIcblpmvYrYavz2LO/imuHBK1N7tSpUwCqfY5t21SrVZrNJoZhUCqVcLlc7Ny5E9M0KZVKmKaJ3+9XfQRDoRDDw8OcPXuWarVKb2+var7cOcnXqW+VyWQol8sMDAzgdDqJx+Pouq420eu6TiAQYM+ePWQyGTweDy6Xi3A4zOjoKKOjo2rvWKvVUo2xA4EA0WhUzTJlMhnm5+exLIuhoSGeeuopddpwbm6OyclJtSTp9/tZWVlRJwir1SqTk5NMT0+Tz+fVDJzb7Safz6uyDnNzc6q6/PDwMHNzc6oMhBBCdMtzBSkpsXDtks3wW8TY2BjNZpOFhQWSyaSqR+VwOKhWqxiGwczMDADBYBCXy6UqvrfbbY4dO0Y8HsftdjM7O0sikcAwDMbGxnj44YfJ5/McOXKEcrlMX18fhmH8QjmHs2fPqlN/2WyWXC6nNqbX63VGRkZU2YXOv+Y6Tajhws3F4XCovVwDAwOk02kKhYKayWq326pkRD6fx+/3U61WWVlZoa+vD4fDoTa3d3oe7ty5k0AggGmaPProoxQKBU6dOqVCZCaToaenB9M0mZiYoN1uEw6HN+ZDFEKIDbDZT0de7SRobSGdfVpwYUmx2WySy+WIx+OUy2U8Hg+JRIJQKEQ6naa/v59ms8lTTz2llv0qlQo7d+5kdXWVdDpNOp2m2WxSKBSACycVO6HI6XQSDAa58cYb8Xq9ZDIZAoGAaubs9XrVXiiAer2uTh82m021hNlut9Xrdfoi1ut1xsfHKRQKVCoV9RqdmlgjIyOqcXVfXx9+v5+enh5SqZSaZWu329RqNc6ePcv3vvc9Dh06xDPPPMPCwgLHjh1D13XV5zGdTuNwOPD5fLztbW/bgE9PCCGunF9uMC1ha+NI0NoiPvShDzE7O4vX61WnDzv1oQzDoF6v09fXx8LCAs1mU5VncDgcHDx4kNnZWdbX19m3bx/FYlHNJIXDYa6//nqefPJJcrkcyWSSmZkZXC6Xeg+n08mrX/1qdu3aRbVaxeVyEY1GWV9fJ5vN4nA4WFpaUjNRpmkyPz9PKpVSxUY77YM6IW1mZgan00lfXx8A0WhUNX7ubOqPxWKqAGpnadPn86kiqLFYjMOHD3P48GEsy8LhcFAqlVhYWGBubk6Fx045iHK5TKvV4qtf/epGfpRCCNFVz9doWgLXlSdBa4v41Kc+xeHDh9Xpunq9ztLSEm63m3Q6jd/vZ21tTS0xdqq65/N5HnnkEWKxmNqnFIlEVEsfn8/HzMwMU1NTaobK5XJRKpWwLAtA7dGqVqvEYjEKhQJ+v59cLqdmsTozZM1mk6effpqlpSWq1Sqrq6vkcjkef/xx9d9PnTqlWuqUy2XK5TKmaZJMJtV7h0IhlpeX0XWdXC7H4cOHGRoaIpfLqQC1tLTE3NycajTdCWQej4d2u00ul1Otijq1s9785jdzxx13bNjnKIQQ4toiQWsLue+++3jooYdoNBo4nU4GBgYIBAL09PTQbDZVE2ev18vY2BgOh4NarUYymSSbzapSCgDxeByA1dVVwuEwa2tr6rSfy+WiWq1SqVSoVCrouk6lUiGTyZDJZGi1WqqEQzQa5ejRoyQSCXRd5+mnnwYgEokQj8epVqtks1nV/ufQoUOYpsnIyAjtdpuRkRFM0ySRSJDJZDhy5Ajtdpt2u83ExAQAfr9ftQvqbLaHC8uc+XyeQqGAy+ViaWlJVbHvbPZfXV1VBV/T6fSV/LiEEOKKu5QZK5nVurIkaG0xd911F4ODg6q9zMrKipq9KhQKzM3NYVkWmUyGs2fPqpY9yWQSn8/H4OAgbrebVCpFNptleXlZ9TZ0OByEQiGmp6fJZrM0Gg21h6rVatFut+nv7+fgwYOsr6+rXoo+n0+FtUajQV9fH61Wi1wuh8/nY/v27aokhdN54aCr3++n0WioIOZ0OimVSgQCAbxeL8ViUS1TNhoNFcwqlQrpdFo127YsS81m+f1+gsEgXq8X27Zxu9309vaysLDA7OwskUiEf/iHf9jgT1AIITaWnHy8siRobUEPPvgg/f39LC0tAahSD7t27WL79u14PB5M02RoaIjR0VGq1Sp9fX243W7m5ubU6+zYsYOJiQlOnjxJPB7H5XKRz+e58cYbAZiZmWF+fp5z587xzDPPMDg4SDqd5vTp08CFquuFQoGxsTF+/vOfEwwG2bVrF0eOHMHlclGpVAgGg6ysrOByuZienqa/vx/LslhfX1elHMbHx/H5fMCFFkJut5t4PE6j0aC3t5dUKkU4HFaPR6NRyuUyU1NTXHfddQwMDNBsNrFtG13XGR0dZffu3fze7/0ebrdbFWM9evSoqi0mhBBCXAlSR2sL6uwxeuihh5icnCSVSuFyufD5fDidTo4fP87u3btVIJqYmCCfzwMX2tw0m81faNqcTCZVWAuFQszNzVGr1ZiYmKBQKODxeNRSoc/nI5FIYFkWZ86cwTAMCoWCminLZDIkEgnVq7BaraqZq04l+WazSTQaZXV1lVgsxvr6On6/n3q9zq5du1TZh76+PtWkulqtqvphcGHJc3x8HF3XOXPmjGpNNDAwwOjoKNu2bWN+fp5gMEgmkyGVSvHe9753Az4tIYTYPGQ268qToLVFfexjH2NlZQW/38/g4CAul0v1LOwsLeq6jt/vV8uJe/fuxTAMyuUy0WgUXddVn8RisUhfX59qJD08PMzhw4d51ateRblc5rrrruPpp59maGiIdDpNLpcjFArRbrfVacJKpaKCVzqdJhgM0mg0qNfruFwuVS+r02S6Wq0yMDCAYRgsLy8DkMlkKBQKGIbB2toahmHQbreZn58nGo3SbDYZGBjg5MmTqiWQw+Egl8vR09PD+Pg4iUSCbDZLNBql3W7z1re+dSM/KiGEuGKeqzJ953GxMWTpcIv627/9W2q1GktLS5TLZdbW1rAsSy0RRiIRYrEYcGEW64YbbuD8+fMMDAyo04mdjfTr6+uqLpXb7Vahrb+/XxUJNQwDh8NBq9ViZGRE1ex65plnVONm0zQZHx9XhUl9Ph9jY2OUSiUAVfC01WoxOztLIBAgEomwvr6OYRgEAgECgQDbtm1T12lZFvF4nEQiQavVYmhoiGazSTAYVGUkJicnicfj3HDDDbRaLcrlMtVqlVqtxuLi4kZ8PEIIsWE0TfuVX2LjSNDawt797ndTqVR49NFHAVTV9U4oSqfTzM3NqRN/1WqVdDqtlhjr9bra7zQ0NEQ+n6fx/7d3d7Ftn9cdx7+HpEiKEkWJkiXRsuQqSmynzkUaBEGADkOLFsscoEhysaADuqRra/uiKRJkLdZtKNzebcMWoEGGAgkSoCuKBQPaIb1YgW1thxUF1jUtktiJ7dqSLJqSLJp64YtoihT57ELUP3LqFzk1RVL+fQCC1F9/0kcPyYPj5/+8lMv09PSwf/9+HnzwQcLhMOvr61SrVQ4cOEBfXx/VapV4PO5t9dPf38/4+DjZbJZSqUQ4HCaRSLC0tMTk5CTxeJxIJEI+n6e3t5dMJuPtfVgqlejv76dWqxGNRpmfnyccDnvju8LhsDeQvlarcenSJU6dOuUVWpurvm/ORISNy5sDAwOEQiEef/xxDYAXEZGmUaHV5hYWFjh27Bhvv/22tzXOzMwM+Xye/fv309fXR6VS8fYULJfL+P1+Lly44C35EIlE6OjowOfzsXfvXiYmJohGo94ioevr6/zqV7+iUCiQy+VIp9OUSiUuX77sbRg9MzNz1WD76elpwuGwt1VOX18fqVTKG2MFGyvdLy4usrKyQiQSYXV1lT179pBOpxkYGGBpaYnV1VVqtRoXLlwgEomwvr7OoUOHWFpaYmZmhosXL3pb/ZgZo6OjFItFlpeXOX36NADPPvtsU94bEZEPQ8sv7C4qtNrc1772NWBj+5tPfvKTnD592iu2+vr6CAaD3urr+XyePXv2MDg4SKlUIpFIkM1mefjhhwmFQhw8eJBAIMD6+jpTU1PMz8+zsrLijZPq7u5mYWGBnp4e9uzZQzQaZe/evd7SCWNjY+zZs4fx8XHGx8ep1Wr09/d7Y7VisRiFQoGOjg4qlQr5fJ7p6Wmq1SorKyusra0BG7MZJycnGRgY8DaA9vl8BINB5ubm8Pl8xGIxEonEVQuc+nw+/H4/KysrZDIZnnrqqea8KSIiH5KKrN1HhdYucfz4cQBvLax9+/axuLhIIBAgnU4TDofJZDIkEgn8fr9XLPX09JDNZpmdneXUqVOsrq7y5ptvEo1GyeVylMtlpqamuPfee1lYWGBlZcXr0SqXy96m0aVSiZ6eHubm5qjVakxOTnrrY2WzWW/7nLm5Oe+yX7FYpFarXXXZLxwOUywWGR0dZXp6mmAw6C2QutlDFo1G8fv9pNNpent7mZ+fJx6PY2asra0xOztLoVBoyvsgIvJhqcjanVRo7TJHjhzhkUce4f777+fdd98lk8kwPDzs7SFYqVS4cuUKY2NjrK6uUi6XKRQK1Go1hoaGmJ2dZWRkhEqlQqlU8laT3yyoPvGJT7Bv3z6vsMpmsxQKBSKRCOl0mmg0inOOWCxGLBYjk8nQ0dHB0NAQPT09hEIh798ol8sMDQ2Rz+eJx+P4fD7K5bJ3KfDee+9lamqKrq4uhoaGKJVKTExMeHs9bq5uv9njthlvLpfjc5/7XNPeAxERkU0qtHaZYDAIbAwI/9SnPkU0GmVlZYXLly8zOjrK5OQkwWCQ1dVVkskkpVLJm004OTlJJBIhHo9TLBa9mX6bA95hY0xYOp3G7/cTCAS8XqZYLEalUiEajXLmzBl8Ph8jIyMA3vIL5XKZcDjsXcrs6upiYGCAWq3mFVM+n4/9+/d7lwi7u7u9gfebexqePHmSQCBAd3e3N4Myk8lQKBSYm5ujXC7z2muvNecNEBH5kDZnB2qW4O5irdBVaWbND2KXcs5RLpd54403iMfjRKNR8vk8sYZDeRsAAA9kSURBVFiMQCBAMBj0Nm/u7e31nufz+Th16hQPPfSQt8Do+fPnSaVSTExMMDs7SyAQYHx8nOnpaQDuu+8+7/JdMpmkWCx6i52Ojo56vWv5fJ5qtUokEqFQKDA8PEwymeTQoUOcOXOG3t5e+vr6OHPmDIlEgoWFBfr7+1lZWWF4eJhcLkdvb6/Xi5XL5YjH45w8edLbTHpz7JrcNr92zj3Y7CDuJMqLIq3NObetilg9WrtcpVIhGAzy5JNPkk6niUQiRKNR1tbWCAaD1Go1b+xWLBYjHA4TDocpl8scOHCAqakpzIxKpUIoFGJiYsJb7+rgwYOUy2VvzFQ2m+XKlStEo1EKhQLj4+MAjIyMkE6nuXLlCqVSiYGBARKJhLf5czKZZHh4mHPnzjE+Pk4wGCQQCJBIJLhw4QJ79uyhWq3i8/mu+psuXbrkFVrT09Osr6/zpS99SUWWiIi0jJsWWmY2amY/M7PTZvaumT1bPx43s/80s3P1+776cTOzF83svJm9Y2YPNPqPkOsLBoOUy2WcczzxxBOcPHmSVCrF2NgY6+vrBAIBJiYmCAaD+Hw+FhcXSSaTwMYSDfv37ycUCnld2bVajcXFRQqFAplMhpmZGZaXl+no6KBWq3lLS3R3d3PmzBn27t1LMpkkHA4zNDREIpEgk8l4i6QeOHDA22B6aGiI5eVlALLZLD6fj7vvvptkMsnQ0BCXL19mdXWVWCzGpUuXvO19Ll68yJNPPkk2m21aO8udRXlRRLZrOz1a68BfOOfuBR4GvmxmHwW+DvzEOXcP8JP6zwBHgHvqt2PAd2571HJLNgulzs5OHnnkEVKpFMVi0esR6u/vxzlHqVSiUqng9/u9pRs6OjrI5XLk83nm5+cpFovEYjF8Ph8XL17k8OHDHDx4kLGxMVZWVujp6fFWj+/u7iYUClGtVr1tgZLJpDd2y+/3e+PEYrEYoVDI2wR6amqKnp4eYrGYt/XO1jFfm8s6zM/P8/zzz/PCCy+QTqeb2cxyZ1FeFJFtueleh865eWC+/jhvZqeBEeAx4BP1074L/Dfwl/Xj/+w2Bn/9r5n1mlmi/jrSZNFolMOHD/Pzn/+czs5O7rnnHq5cueLte1gqlRgeHiaTyXhrUgUCAaLRKKFQCIClpSWGhoaYmZlhfX2dS5cueSu4HzhwgFwuR7FYZGxsjFqtxuHDh1lbW6Ozs5PBwUEuXboEbMxkrFarhMNh/H4/hUKBrq4urly5QrVa9ZZ/2NwmqFQqkc1mqVQqrKysUCwWvb/r+eefb0p7yp1JeVFEtuuWxmiZ2UeAjwG/BIY2k0T9frB+2ghwccvTUvVjH3ytY2b2ppm9eethy4cVDAb59Kc/zdGjRymVSvz0pz9lfn6etbU1BgYG6O3tJRwOe8snFAoFotEoy8vL7N27F3h/qYdIJAJsFF7Dw8Osra1RKBS85Ro2N5pOpVJkMhmi0SjJZJJAIOAVc5uzGSuVCvF4nOXlZZaWlojH46yvr3Px4sZHaWVlheXlZQqFAu+99x5Hjx6ls7PTW+JBpFmUF0XkRm7ao7XJzLqBHwDPOedyN5h+eq1f/M7sGefcy8DL9dfW7Jod9tJLL3nb46RSKW+weX9/P5VKhUgkQiaTIR6Ps7q6yszMDL29vXR0dHi9V5tjq2KxmNfztbmdTigU4vLly+zbt49IJEKtViOZTBKNRr31tQYGBrxFT0OhkDeLsKenh9nZWe/cdDpNLpfj3LlzRKNRTpw4AcCxY8ea3Ipyp1NeFJGb2VaPlpl1sJFMvu+c+2H98IKZJeq/TwCbA2RSwOiWp+8D5m5PuHK7PPPMMwAsLi7y+c9/ngsXLvCLX/yC9957j2KxSLFYpFqteoPc9+/fTzQaZXBwEJ/Px759+xgYGODs2bPEYjGmpqYYHR31eqpCoRDhcJh8Pk8ul2N5eZnh4WHvEmSxWKS3t5eRkRFvNfhCoXBVb1kymfRmRS4sLHDixAm+8pWvaPVkaQnKiyKyHduZdWjAq8Bp59wLW371I+Dp+uOngTe2HH+qPsvmYSCrcQit6fjx43zjG9/wfvb5fDz++ONMTk5y9uxZqtUq+XyemZkZUqkU+Xye5eVl8vk8HR0dTE9Ps3fvXgKBAIcOHSIYDBIMBrn77rvx+/0sLS0Ri8W4fPkyg4OD5HI5gsEg6XSa7u5uSqUS6+vrdHV14fP5qNVqhMNhgsEgpVKJubk5UqkUAM899xwAHR0dWsxPmk55UUS2azuXDj8O/Blw0szeqh/7a+BvgX81sy8CSeBP6r/7d+BR4DxQBP78tkYsDXH8+HFeeeUVAKrVKmbmXepbWFggFAp561iNjY2RzWaJx+N0dnayuLhIV1cX1WrVW7F9dXWV++67j3K5zNraGn6/n3g8Trlc9mY5plIpzIxwOMz6+jpnzpzBOcfs7CzLy8t85jOf4a677lIPlrQi5UUR2RatDC/b8uMf/5gjR47w6quvsry8jN/vxzlHOBwmEAjQ1dXlDaLv6OhgcHDQK5429z0Mh8NEIhHeeecd4vE4S0tLXu/W0aNH+d73vscTTzxBd3d3s/9c+V1aGX6HKS+KtLbtrgyvQktuydbPy9ZLeC+++CLZbJbOzk5v3avOzk6mp6fp7e2lq6vLG7dVLBZ5+umnefnll5mZmSGRSHhjxqRlqdDaYcqLIq1NhZY0TKVSoaOj46pjxWKR119/nS984Qu89NJLXuH0rW99ixMnTvDtb3+bcrlMKBSiXC7z1a9+tRmhy4enQmuHKS+KtDYVWrLjisWit7aW7DoqtHaY8qJIa9Om0rLjVGSJiIhcTYWWiIiISIOo0BIRERFpEBVaIiIiIg2iQktERESkQVRoiYiIiDSICi0RERGRBlGhJSIiItIgKrREREREGkSFloiIiEiDqNASERERaRAVWiIiIiINokJLREREpEFUaImIiIg0iAotERERkQZRoSUiIiLSICq0RERERBpEhZaIiIhIg6jQEhEREWkQFVoiIiIiDaJCS0RERKRBVGiJiIiINIgKLREREZEGUaElIiIi0iAqtEREREQaRIWWiIiISIOo0BIRERFpEBVaIiIiIg2iQktERESkQVRoiYiIiDSICi0RERGRBlGhJSIiItIgKrREREREGuSmhZaZjZrZz8zstJm9a2bP1o9/08xmzeyt+u3RLc/5KzM7b2ZnzeyRRv4BIiI7STlRRG6FOedufIJZAkg4535jZlHg18DjwJNAwTn3Dx84/6PAvwAPAXuB/wIOOOeqN/g3bhyEiDTbr51zDzY7iFawEzmx/jzlRZEW5pyz7Zx30x4t59y8c+439cd54DQwcoOnPAa87pxbc85NA+fZSDAiIm1POVFEbsUtjdEys48AHwN+WT/0jJm9Y2avmVlf/dgIcHHL01LcOAmJiLQl5UQRuZltF1pm1g38AHjOOZcDvgNMAPcD88A/bp56jaf/The4mR0zszfN7M1bjlpEpMlud06sv6byosgus61Cy8w62Ego33fO/RDAObfgnKs652rAK7zfFZ4CRrc8fR8w98HXdM697Jx7UOM+RKTdNCIn1l9DeVFkl9nOrEMDXgVOO+de2HI8seW0J4BT9cc/Aj5rZiEzGwfuAf7v9oUsItI8yokicisC2zjn48CfASfN7K36sb8G/tTM7mejC/wCcBzAOfeumf0r8B6wDnz5ZrNrRETaiHKiiGzbTZd32JEgNI1ZpNVpeYcdprwo0tq2u7zDdnq0dkIGWK3ft5MBFPNOace42zFmuHbc+5sRyB2uAJxtdhAfQjt+7hXzzmnHuH+vnNgSPVoAZvZmu/2PWTHvnHaMux1jhvaNe7dp1/ehHeNWzDunHeP+fWPWXociIiIiDaJCS0RERKRBWqnQernZAXwIinnntGPc7RgztG/cu027vg/tGLdi3jntGPfvFXPLjNESERER2W1aqUdLREREZFdpeqFlZn9sZmfN7LyZfb3Z8dyImV0ws5Nm9tbmXmRmFjez/zSzc/X7vpu9ToNjfM3M0mZ2asuxa8ZoG16st/07ZvZAi8X9TTObrbf3W2b26Jbf/VU97rNm9kiTYh41s5+Z2Wkze9fMnq0fb9n2vkHMLd3Wd5p2yYvtkBPrMbVdXlRObHrMt6+tnXNNuwF+YBK4CwgCbwMfbWZMN4n3AjDwgWN/D3y9/vjrwN81OcY/BB4ATt0sRuBR4MdsbHr7MPDLFov7m8BXr3HuR+uflRAwXv8M+ZsQcwJ4oP44Cvy2HlvLtvcNYm7ptr6Tbu2UF9shJ9bjaLu8qJzY9JhvW1s3u0frIeC8c27KOVcGXgcea3JMt+ox4Lv1x98FHm9iLDjn/gdY+sDh68X4GPDPbsP/Ar129X5tO+Y6cV/PY8Drzrk159w0cJ73N/DdMc65eefcb+qP88BpYIQWbu8bxHw9LdHWd5h2z4stlROhPfOicmLTY76eW27rZhdaI8DFLT+nuPEf2GwO+A8z+7WZHasfG3LOzcPGGwYMNi2667tejO3Q/s/Uu5Rf23IJouXiNrOPAB8DfkmbtPcHYoY2aes7QDu1ebvmRGiT7+k1tMX3VDnxfc0utK61T1ArT4P8uHPuAeAI8GUz+8NmB/R7avX2/w4wAdwPzAP/WD/eUnGbWTfwA+A551zuRqde41hT4r5GzG3R1neIdmrz3ZYTobXbvy2+p8qJV2t2oZUCRrf8vA+Ya1IsN+Wcm6vfp4F/Y6O7cGGzq7N+n25ehNd1vRhbuv2dcwvOuapzrga8wvvdsy0Tt5l1sPHl/L5z7of1wy3d3teKuR3a+g7SNm3exjkRWvx7ei3t8D1VTvxdzS60fgXcY2bjZhYEPgv8qMkxXZOZdZlZdPMx8EfAKTbifbp+2tPAG82J8IauF+OPgKfqMz8eBrKb3but4APX6p9go71hI+7PmlnIzMaBe4D/a0J8BrwKnHbOvbDlVy3b3teLudXb+g7TFnmxzXMitPD39Hpa/XuqnHgdjRrJv90bG7MOfsvGyP2/aXY8N4jzLjZmGrwNvLsZK9AP/AQ4V7+PNznOf2Gjm7PCRuX9xevFyEYX6D/V2/4k8GCLxf29elzv1D/ciS3n/0097rPAkSbF/AdsdBm/A7xVvz3ayu19g5hbuq3vtFs75MV2yYn1mNouLyonNj3m29bWWhleREREpEGafelQREREZNdSoSUiIiLSICq0RERERBpEhZaIiIhIg6jQEhEREWkQFVoiIiIiDaJCS0RERKRBVGiJiIiINMj/A7FQm/b30IINAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x720 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "r = random.randint(0, len(x)-1)\n",
    "r = 0\n",
    "fig = plt.figure(figsize=(10, 10))\n",
    "fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
    "ax = fig.add_subplot(1, 2, 1)\n",
    "ax.imshow(x[r])\n",
    "print(r)\n",
    "ax = fig.add_subplot(1, 2, 2)\n",
    "ax.imshow(np.reshape(y[r], (image_size, image_size)), cmap=\"gray\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "- Author nikhilroxtomar\n",
    "- Date 10/4/2019 (DD/MM/YYYY)\n",
    "- Link https://github.com/IBBM/Cascaded-FCN\n",
    "\"\"\"\n",
    "def bn_act(x, act=True):\n",
    "    x = keras.layers.BatchNormalization()(x)\n",
    "    if act == True:\n",
    "        x = keras.layers.Activation(\"relu\")(x)\n",
    "    return x\n",
    "\n",
    "def conv_block(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n",
    "    conv = bn_act(x)\n",
    "    conv = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides)(conv)\n",
    "    return conv\n",
    "\n",
    "def stem(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n",
    "    conv = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides)(x)\n",
    "    conv = conv_block(conv, filters, kernel_size=kernel_size, padding=padding, strides=strides)\n",
    "    \n",
    "    shortcut = keras.layers.Conv2D(filters, kernel_size=(1, 1), padding=padding, strides=strides)(x)\n",
    "    shortcut = bn_act(shortcut, act=False)\n",
    "    \n",
    "    output = keras.layers.Add()([conv, shortcut])\n",
    "    return output\n",
    "\n",
    "def residual_block(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n",
    "    res = conv_block(x, filters, kernel_size=kernel_size, padding=padding, strides=strides)\n",
    "    res = conv_block(res, filters, kernel_size=kernel_size, padding=padding, strides=1)\n",
    "    \n",
    "    shortcut = keras.layers.Conv2D(filters, kernel_size=(1, 1), padding=padding, strides=strides)(x)\n",
    "    shortcut = bn_act(shortcut, act=False)\n",
    "    \n",
    "    output = keras.layers.Add()([shortcut, res])\n",
    "    return output\n",
    "\n",
    "def upsample_concat_block(x, xskip):\n",
    "    u = keras.layers.UpSampling2D((2, 2))(x)\n",
    "    c = keras.layers.Concatenate()([u, xskip])\n",
    "    return c"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def ResUNet():\n",
    "    f = [16, 32, 64, 128, 256]\n",
    "    inputs = keras.layers.Input((image_size, image_size, 3))\n",
    "    \n",
    "    ## Encoder\n",
    "    e0 = inputs\n",
    "    e1 = stem(e0, f[0])\n",
    "    e2 = residual_block(e1, f[1], strides=2)\n",
    "    e3 = residual_block(e2, f[2], strides=2)\n",
    "    e4 = residual_block(e3, f[3], strides=2)\n",
    "    e5 = residual_block(e4, f[4], strides=2)\n",
    "    \n",
    "    ## Bridge\n",
    "    b0 = conv_block(e5, f[4], strides=1)\n",
    "    b1 = conv_block(b0, f[4], strides=1)\n",
    "    \n",
    "    ## Decoder\n",
    "    u1 = upsample_concat_block(b1, e4)\n",
    "    d1 = residual_block(u1, f[4])\n",
    "    \n",
    "    u2 = upsample_concat_block(d1, e3)\n",
    "    d2 = residual_block(u2, f[3])\n",
    "    \n",
    "    u3 = upsample_concat_block(d2, e2)\n",
    "    d3 = residual_block(u3, f[2])\n",
    "    \n",
    "    u4 = upsample_concat_block(d3, e1)\n",
    "    d4 = residual_block(u4, f[1])\n",
    "    \n",
    "    outputs = keras.layers.Conv2D(1, (1, 1), padding=\"same\", activation=\"sigmoid\")(d4)\n",
    "    model = keras.models.Model(inputs, outputs)\n",
    "    return model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "smooth = 1.\n",
    "\n",
    "def dice_coef(y_true, y_pred):\n",
    "    y_true_f = tf.layers.flatten(y_true)\n",
    "    y_pred_f = tf.layers.flatten(y_pred)\n",
    "    intersection = tf.reduce_sum(y_true_f * y_pred_f)\n",
    "    return (2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)\n",
    "\n",
    "\n",
    "def dice_coef_loss(y_true, y_pred):\n",
    "    return 1.0 - dice_coef(y_true, y_pred)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From /home/amir/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
      "Instructions for updating:\n",
      "Colocations handled automatically by placer.\n",
      "WARNING:tensorflow:From <ipython-input-12-b68f55637a1f>:4: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.\n",
      "Instructions for updating:\n",
      "Use keras.layers.flatten instead.\n",
      "__________________________________________________________________________________________________\n",
      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
      "==================================================================================================\n",
      "input_1 (InputLayer)            (None, 256, 256, 3)  0                                            \n",
      "__________________________________________________________________________________________________\n",
      "conv2d (Conv2D)                 (None, 256, 256, 16) 448         input_1[0][0]                    \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1 (BatchNo (None, 256, 256, 16) 64          conv2d[0][0]                     \n",
      "__________________________________________________________________________________________________\n",
      "activation (Activation)         (None, 256, 256, 16) 0           batch_normalization_v1[0][0]     \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_2 (Conv2D)               (None, 256, 256, 16) 64          input_1[0][0]                    \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_1 (Conv2D)               (None, 256, 256, 16) 2320        activation[0][0]                 \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_1 (Batch (None, 256, 256, 16) 64          conv2d_2[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "add (Add)                       (None, 256, 256, 16) 0           conv2d_1[0][0]                   \n",
      "                                                                 batch_normalization_v1_1[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_2 (Batch (None, 256, 256, 16) 64          add[0][0]                        \n",
      "__________________________________________________________________________________________________\n",
      "activation_1 (Activation)       (None, 256, 256, 16) 0           batch_normalization_v1_2[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_3 (Conv2D)               (None, 128, 128, 32) 4640        activation_1[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_3 (Batch (None, 128, 128, 32) 128         conv2d_3[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_5 (Conv2D)               (None, 128, 128, 32) 544         add[0][0]                        \n",
      "__________________________________________________________________________________________________\n",
      "activation_2 (Activation)       (None, 128, 128, 32) 0           batch_normalization_v1_3[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_4 (Batch (None, 128, 128, 32) 128         conv2d_5[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_4 (Conv2D)               (None, 128, 128, 32) 9248        activation_2[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "add_1 (Add)                     (None, 128, 128, 32) 0           batch_normalization_v1_4[0][0]   \n",
      "                                                                 conv2d_4[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_5 (Batch (None, 128, 128, 32) 128         add_1[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_3 (Activation)       (None, 128, 128, 32) 0           batch_normalization_v1_5[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_6 (Conv2D)               (None, 64, 64, 64)   18496       activation_3[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_6 (Batch (None, 64, 64, 64)   256         conv2d_6[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_8 (Conv2D)               (None, 64, 64, 64)   2112        add_1[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_4 (Activation)       (None, 64, 64, 64)   0           batch_normalization_v1_6[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_7 (Batch (None, 64, 64, 64)   256         conv2d_8[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_7 (Conv2D)               (None, 64, 64, 64)   36928       activation_4[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "add_2 (Add)                     (None, 64, 64, 64)   0           batch_normalization_v1_7[0][0]   \n",
      "                                                                 conv2d_7[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_8 (Batch (None, 64, 64, 64)   256         add_2[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_5 (Activation)       (None, 64, 64, 64)   0           batch_normalization_v1_8[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_9 (Conv2D)               (None, 32, 32, 128)  73856       activation_5[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_9 (Batch (None, 32, 32, 128)  512         conv2d_9[0][0]                   \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_11 (Conv2D)              (None, 32, 32, 128)  8320        add_2[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_6 (Activation)       (None, 32, 32, 128)  0           batch_normalization_v1_9[0][0]   \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_10 (Batc (None, 32, 32, 128)  512         conv2d_11[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_10 (Conv2D)              (None, 32, 32, 128)  147584      activation_6[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "add_3 (Add)                     (None, 32, 32, 128)  0           batch_normalization_v1_10[0][0]  \n",
      "                                                                 conv2d_10[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_11 (Batc (None, 32, 32, 128)  512         add_3[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_7 (Activation)       (None, 32, 32, 128)  0           batch_normalization_v1_11[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_12 (Conv2D)              (None, 16, 16, 256)  295168      activation_7[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_12 (Batc (None, 16, 16, 256)  1024        conv2d_12[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_14 (Conv2D)              (None, 16, 16, 256)  33024       add_3[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_8 (Activation)       (None, 16, 16, 256)  0           batch_normalization_v1_12[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_13 (Batc (None, 16, 16, 256)  1024        conv2d_14[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_13 (Conv2D)              (None, 16, 16, 256)  590080      activation_8[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "add_4 (Add)                     (None, 16, 16, 256)  0           batch_normalization_v1_13[0][0]  \n",
      "                                                                 conv2d_13[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_14 (Batc (None, 16, 16, 256)  1024        add_4[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "activation_9 (Activation)       (None, 16, 16, 256)  0           batch_normalization_v1_14[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_15 (Conv2D)              (None, 16, 16, 256)  590080      activation_9[0][0]               \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_15 (Batc (None, 16, 16, 256)  1024        conv2d_15[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "activation_10 (Activation)      (None, 16, 16, 256)  0           batch_normalization_v1_15[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_16 (Conv2D)              (None, 16, 16, 256)  590080      activation_10[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "up_sampling2d (UpSampling2D)    (None, 32, 32, 256)  0           conv2d_16[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "concatenate (Concatenate)       (None, 32, 32, 384)  0           up_sampling2d[0][0]              \n",
      "                                                                 add_3[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_16 (Batc (None, 32, 32, 384)  1536        concatenate[0][0]                \n",
      "__________________________________________________________________________________________________\n",
      "activation_11 (Activation)      (None, 32, 32, 384)  0           batch_normalization_v1_16[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_17 (Conv2D)              (None, 32, 32, 256)  884992      activation_11[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_17 (Batc (None, 32, 32, 256)  1024        conv2d_17[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_19 (Conv2D)              (None, 32, 32, 256)  98560       concatenate[0][0]                \n",
      "__________________________________________________________________________________________________\n",
      "activation_12 (Activation)      (None, 32, 32, 256)  0           batch_normalization_v1_17[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_18 (Batc (None, 32, 32, 256)  1024        conv2d_19[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_18 (Conv2D)              (None, 32, 32, 256)  590080      activation_12[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "add_5 (Add)                     (None, 32, 32, 256)  0           batch_normalization_v1_18[0][0]  \n",
      "                                                                 conv2d_18[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "up_sampling2d_1 (UpSampling2D)  (None, 64, 64, 256)  0           add_5[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "concatenate_1 (Concatenate)     (None, 64, 64, 320)  0           up_sampling2d_1[0][0]            \n",
      "                                                                 add_2[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_19 (Batc (None, 64, 64, 320)  1280        concatenate_1[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "activation_13 (Activation)      (None, 64, 64, 320)  0           batch_normalization_v1_19[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_20 (Conv2D)              (None, 64, 64, 128)  368768      activation_13[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_20 (Batc (None, 64, 64, 128)  512         conv2d_20[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_22 (Conv2D)              (None, 64, 64, 128)  41088       concatenate_1[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "activation_14 (Activation)      (None, 64, 64, 128)  0           batch_normalization_v1_20[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_21 (Batc (None, 64, 64, 128)  512         conv2d_22[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_21 (Conv2D)              (None, 64, 64, 128)  147584      activation_14[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "add_6 (Add)                     (None, 64, 64, 128)  0           batch_normalization_v1_21[0][0]  \n",
      "                                                                 conv2d_21[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "up_sampling2d_2 (UpSampling2D)  (None, 128, 128, 128 0           add_6[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "concatenate_2 (Concatenate)     (None, 128, 128, 160 0           up_sampling2d_2[0][0]            \n",
      "                                                                 add_1[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_22 (Batc (None, 128, 128, 160 640         concatenate_2[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "activation_15 (Activation)      (None, 128, 128, 160 0           batch_normalization_v1_22[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_23 (Conv2D)              (None, 128, 128, 64) 92224       activation_15[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_23 (Batc (None, 128, 128, 64) 256         conv2d_23[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_25 (Conv2D)              (None, 128, 128, 64) 10304       concatenate_2[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "activation_16 (Activation)      (None, 128, 128, 64) 0           batch_normalization_v1_23[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_24 (Batc (None, 128, 128, 64) 256         conv2d_25[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_24 (Conv2D)              (None, 128, 128, 64) 36928       activation_16[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "add_7 (Add)                     (None, 128, 128, 64) 0           batch_normalization_v1_24[0][0]  \n",
      "                                                                 conv2d_24[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "up_sampling2d_3 (UpSampling2D)  (None, 256, 256, 64) 0           add_7[0][0]                      \n",
      "__________________________________________________________________________________________________\n",
      "concatenate_3 (Concatenate)     (None, 256, 256, 80) 0           up_sampling2d_3[0][0]            \n",
      "                                                                 add[0][0]                        \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_25 (Batc (None, 256, 256, 80) 320         concatenate_3[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "activation_17 (Activation)      (None, 256, 256, 80) 0           batch_normalization_v1_25[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_26 (Conv2D)              (None, 256, 256, 32) 23072       activation_17[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_26 (Batc (None, 256, 256, 32) 128         conv2d_26[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_28 (Conv2D)              (None, 256, 256, 32) 2592        concatenate_3[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "activation_18 (Activation)      (None, 256, 256, 32) 0           batch_normalization_v1_26[0][0]  \n",
      "__________________________________________________________________________________________________\n",
      "batch_normalization_v1_27 (Batc (None, 256, 256, 32) 128         conv2d_28[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_27 (Conv2D)              (None, 256, 256, 32) 9248        activation_18[0][0]              \n",
      "__________________________________________________________________________________________________\n",
      "add_8 (Add)                     (None, 256, 256, 32) 0           batch_normalization_v1_27[0][0]  \n",
      "                                                                 conv2d_27[0][0]                  \n",
      "__________________________________________________________________________________________________\n",
      "conv2d_29 (Conv2D)              (None, 256, 256, 1)  33          add_8[0][0]                      \n",
      "==================================================================================================\n",
      "Total params: 4,723,057\n",
      "Trainable params: 4,715,761\n",
      "Non-trainable params: 7,296\n",
      "__________________________________________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "model = ResUNet()\n",
    "adam = keras.optimizers.Adam()\n",
    "model.compile(optimizer=adam, loss=dice_coef_loss, metrics=[\"acc\", dice_coef])\n",
    "model.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 849s 419ms/step - loss: 0.3623 - acc: 0.9933 - dice_coef: 0.6377 - val_loss: 0.7880 - val_acc: 0.9922 - val_dice_coef: 0.2120\n",
      "\n",
      "Epoch 2/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 741s 365ms/step - loss: 0.2845 - acc: 0.9965 - dice_coef: 0.7155 - val_loss: 0.2720 - val_acc: 0.9959 - val_dice_coef: 0.7280\n",
      "\n",
      "Epoch 3/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 739s 365ms/step - loss: 0.2535 - acc: 0.9969 - dice_coef: 0.7465 - val_loss: 0.4048 - val_acc: 0.9956 - val_dice_coef: 0.5952\n",
      "\n",
      "Epoch 4/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 739s 365ms/step - loss: 0.2428 - acc: 0.9971 - dice_coef: 0.7572 - val_loss: 0.2370 - val_acc: 0.9968 - val_dice_coef: 0.7630\n",
      "\n",
      "Epoch 5/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 733s 361ms/step - loss: 0.2381 - acc: 0.9972 - dice_coef: 0.7619 - val_loss: 0.2115 - val_acc: 0.9971 - val_dice_coef: 0.7885\n",
      "\n",
      "Epoch 6/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 730s 360ms/step - loss: 0.2251 - acc: 0.9973 - dice_coef: 0.7749 - val_loss: 0.4259 - val_acc: 0.9909 - val_dice_coef: 0.5741\n",
      "\n",
      "Epoch 7/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 730s 360ms/step - loss: 0.2210 - acc: 0.9973 - dice_coef: 0.7790 - val_loss: 0.2892 - val_acc: 0.9956 - val_dice_coef: 0.7108\n",
      "\n",
      "Epoch 8/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.2114 - acc: 0.9974 - dice_coef: 0.7886 - val_loss: 0.1772 - val_acc: 0.9976 - val_dice_coef: 0.8228\n",
      "\n",
      "Epoch 9/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 730s 360ms/step - loss: 0.2076 - acc: 0.9975 - dice_coef: 0.7924 - val_loss: 0.2570 - val_acc: 0.9969 - val_dice_coef: 0.7430\n",
      "\n",
      "Epoch 10/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 728s 359ms/step - loss: 0.2103 - acc: 0.9975 - dice_coef: 0.7897 - val_loss: 0.2635 - val_acc: 0.9964 - val_dice_coef: 0.7365\n",
      "\n",
      "Epoch 11/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 728s 359ms/step - loss: 0.2001 - acc: 0.9976 - dice_coef: 0.7999 - val_loss: 0.1785 - val_acc: 0.9975 - val_dice_coef: 0.8215\n",
      "\n",
      "Epoch 12/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 728s 359ms/step - loss: 0.1959 - acc: 0.9976 - dice_coef: 0.8041 - val_loss: 0.6279 - val_acc: 0.9939 - val_dice_coef: 0.3721\n",
      "\n",
      "Epoch 13/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 729s 359ms/step - loss: 0.1920 - acc: 0.9977 - dice_coef: 0.8080 - val_loss: 0.1700 - val_acc: 0.9977 - val_dice_coef: 0.8300\n",
      "\n",
      "Epoch 14/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 728s 359ms/step - loss: 0.1826 - acc: 0.9978 - dice_coef: 0.8174 - val_loss: 0.1889 - val_acc: 0.9975 - val_dice_coef: 0.8111\n",
      "\n",
      "Epoch 15/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 728s 359ms/step - loss: 0.1869 - acc: 0.9978 - dice_coef: 0.8131 - val_loss: 0.1809 - val_acc: 0.9977 - val_dice_coef: 0.8191\n",
      "\n",
      "Epoch 16/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1827 - acc: 0.9978 - dice_coef: 0.8173 - val_loss: 0.1948 - val_acc: 0.9971 - val_dice_coef: 0.8052\n",
      "\n",
      "Epoch 17/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 722s 356ms/step - loss: 0.1795 - acc: 0.9978 - dice_coef: 0.8205 - val_loss: 0.1634 - val_acc: 0.9978 - val_dice_coef: 0.8366\n",
      "\n",
      "Epoch 18/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1852 - acc: 0.9978 - dice_coef: 0.8148 - val_loss: 0.2330 - val_acc: 0.9966 - val_dice_coef: 0.7670\n",
      "\n",
      "Epoch 19/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 726s 358ms/step - loss: 0.1724 - acc: 0.9979 - dice_coef: 0.8276 - val_loss: 0.1640 - val_acc: 0.9978 - val_dice_coef: 0.8360\n",
      "\n",
      "Epoch 20/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 726s 358ms/step - loss: 0.1732 - acc: 0.9979 - dice_coef: 0.8268 - val_loss: 0.1685 - val_acc: 0.9978 - val_dice_coef: 0.8315\n",
      "\n",
      "Epoch 21/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 726s 358ms/step - loss: 0.1682 - acc: 0.9980 - dice_coef: 0.8318 - val_loss: 0.1567 - val_acc: 0.9978 - val_dice_coef: 0.8433\n",
      "\n",
      "Epoch 22/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 726s 358ms/step - loss: 0.1653 - acc: 0.9980 - dice_coef: 0.8347 - val_loss: 0.1579 - val_acc: 0.9979 - val_dice_coef: 0.8421\n",
      "\n",
      "Epoch 23/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1722 - acc: 0.9979 - dice_coef: 0.8278 - val_loss: 0.3536 - val_acc: 0.9960 - val_dice_coef: 0.6464\n",
      "\n",
      "Epoch 24/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1630 - acc: 0.9980 - dice_coef: 0.8370 - val_loss: 0.1598 - val_acc: 0.9979 - val_dice_coef: 0.8402\n",
      "\n",
      "Epoch 25/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1563 - acc: 0.9981 - dice_coef: 0.8437 - val_loss: 0.1500 - val_acc: 0.9979 - val_dice_coef: 0.8500\n",
      "\n",
      "Epoch 26/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 358ms/step - loss: 0.1580 - acc: 0.9981 - dice_coef: 0.8420 - val_loss: 0.1561 - val_acc: 0.9979 - val_dice_coef: 0.8439\n",
      "\n",
      "Epoch 27/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1571 - acc: 0.9981 - dice_coef: 0.8429 - val_loss: 0.1717 - val_acc: 0.9978 - val_dice_coef: 0.8283\n",
      "\n",
      "Epoch 28/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1506 - acc: 0.9982 - dice_coef: 0.8494 - val_loss: 0.1507 - val_acc: 0.9980 - val_dice_coef: 0.8493\n",
      "\n",
      "Epoch 29/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1497 - acc: 0.9982 - dice_coef: 0.8503 - val_loss: 0.1570 - val_acc: 0.9978 - val_dice_coef: 0.8430\n",
      "\n",
      "Epoch 30/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 358ms/step - loss: 0.1477 - acc: 0.9982 - dice_coef: 0.8523 - val_loss: 0.1477 - val_acc: 0.9980 - val_dice_coef: 0.8523\n",
      "\n",
      "Epoch 31/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1478 - acc: 0.9982 - dice_coef: 0.8522 - val_loss: 0.2773 - val_acc: 0.9965 - val_dice_coef: 0.7227\n",
      "\n",
      "Epoch 32/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1456 - acc: 0.9982 - dice_coef: 0.8544 - val_loss: 0.1512 - val_acc: 0.9980 - val_dice_coef: 0.8488\n",
      "\n",
      "Epoch 33/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 358ms/step - loss: 0.1455 - acc: 0.9982 - dice_coef: 0.8545 - val_loss: 0.2388 - val_acc: 0.9966 - val_dice_coef: 0.7612\n",
      "\n",
      "Epoch 34/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1428 - acc: 0.9983 - dice_coef: 0.8572 - val_loss: 0.1377 - val_acc: 0.9981 - val_dice_coef: 0.8623\n",
      "\n",
      "Epoch 35/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 726s 358ms/step - loss: 0.1393 - acc: 0.9983 - dice_coef: 0.8607 - val_loss: 0.2255 - val_acc: 0.9970 - val_dice_coef: 0.7745\n",
      "\n",
      "Epoch 36/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 358ms/step - loss: 0.1371 - acc: 0.9983 - dice_coef: 0.8629 - val_loss: 0.1780 - val_acc: 0.9977 - val_dice_coef: 0.8220\n",
      "\n",
      "Epoch 37/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 728s 359ms/step - loss: 0.1400 - acc: 0.9983 - dice_coef: 0.8600 - val_loss: 0.1500 - val_acc: 0.9979 - val_dice_coef: 0.8500\n",
      "\n",
      "Epoch 38/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1364 - acc: 0.9984 - dice_coef: 0.8636 - val_loss: 0.1927 - val_acc: 0.9974 - val_dice_coef: 0.8073\n",
      "\n",
      "Epoch 39/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1305 - acc: 0.9984 - dice_coef: 0.8695 - val_loss: 0.1332 - val_acc: 0.9982 - val_dice_coef: 0.8668\n",
      "\n",
      "Epoch 40/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1317 - acc: 0.9984 - dice_coef: 0.8683 - val_loss: 0.2249 - val_acc: 0.9970 - val_dice_coef: 0.7751\n",
      "\n",
      "Epoch 41/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1316 - acc: 0.9984 - dice_coef: 0.8684 - val_loss: 0.2441 - val_acc: 0.9966 - val_dice_coef: 0.7559\n",
      "\n",
      "Epoch 42/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1238 - acc: 0.9985 - dice_coef: 0.8762 - val_loss: 0.1293 - val_acc: 0.9983 - val_dice_coef: 0.8707\n",
      "\n",
      "Epoch 43/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1267 - acc: 0.9985 - dice_coef: 0.8733 - val_loss: 0.1293 - val_acc: 0.9983 - val_dice_coef: 0.8707\n",
      "\n",
      "Epoch 44/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1263 - acc: 0.9985 - dice_coef: 0.8737 - val_loss: 0.1250 - val_acc: 0.9983 - val_dice_coef: 0.8750\n",
      "\n",
      "Epoch 45/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1216 - acc: 0.9985 - dice_coef: 0.8784 - val_loss: 0.1171 - val_acc: 0.9984 - val_dice_coef: 0.8829\n",
      "\n",
      "Epoch 46/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1248 - acc: 0.9985 - dice_coef: 0.8752 - val_loss: 0.1144 - val_acc: 0.9984 - val_dice_coef: 0.8856\n",
      "\n",
      "Epoch 47/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1252 - acc: 0.9985 - dice_coef: 0.8748 - val_loss: 0.1699 - val_acc: 0.9979 - val_dice_coef: 0.8301\n",
      "\n",
      "Epoch 48/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1227 - acc: 0.9985 - dice_coef: 0.8773 - val_loss: 0.1450 - val_acc: 0.9980 - val_dice_coef: 0.8550\n",
      "\n",
      "Epoch 49/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1180 - acc: 0.9986 - dice_coef: 0.8820 - val_loss: 0.1664 - val_acc: 0.9979 - val_dice_coef: 0.8336\n",
      "\n",
      "Epoch 50/50\n",
      "2027/2027 [==============================]2027/2027 [==============================] - 727s 359ms/step - loss: 0.1162 - acc: 0.9986 - dice_coef: 0.8838 - val_loss: 0.1185 - val_acc: 0.9983 - val_dice_coef: 0.8815\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<tensorflow.python.keras._impl.keras.callbacks.History at 0x6b39ab3cc860>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train_gen = DataGen(train_ids, train_path, image_size=image_size, batch_size=batch_size)\n",
    "valid_gen = DataGen(valid_ids, train_path, image_size=image_size, batch_size=batch_size)\n",
    "# test_gen  = DataGenTest(train_ids, train_path, image_size=image_size, batch_size=batch_size)\n",
    "\n",
    "train_steps = len(train_ids)//batch_size\n",
    "valid_steps = len(valid_ids)//batch_size\n",
    "\n",
    "model.fit_generator(train_gen, validation_data=valid_gen, steps_per_epoch=train_steps, validation_steps=valid_steps, \n",
    "                    epochs=epochs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# model.save('tumor_model_50epochs.h5')  # creates a HDF5 file 'my_model.h5'\n",
    "# model.save_weights(\"tumor_weights_final_50epochs.h5\")\n",
    "model = keras.models.load_model(os.path.join('models','tumor_model_50epochs.h5'),compile=False)\n",
    "valid_gen = DataGen(valid_ids, train_path, image_size=image_size, batch_size=batch_size)\n",
    "# model.summary()\n",
    "\n",
    "# del model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt0nFd96P3vnvtdMxqNLiNLlmVbju3EuMFOAikUAqQQFg3Nol2lLJqWpM5aCWk43F56aCG0FDjvavtCeCkreTlZDacUmnLoglICSQPECU2CL8R3S5YlWdfRba6a+2W/f0izj5NxYpNYHjn5fdaaNaNHz4y2n/H85nn2/u3fVlprhBDibJZmN0AIsfZIYBBCNJDAIIRoIIFBCNFAAoMQooEEBiFEg1ULDEqpdyqlBpVSw0qpT63W3xFCXHxqNfIYlFJWYAh4BzAJ7APer7U+ftH/mBDiolutM4ZrgGGt9YjWugR8B7h5lf6WEOIis63S63YDE2f9PAlc+2I7K6Uk/VKI1begtY5cyI6rFRjUObY978OvlNoD7Fmlvy+EaHTmQndcrcAwCfSc9fM6YPrsHbTWDwAPgJwxCLHWrFYfwz5gs1Jqg1LKAfwB8INV+ltCiItsVc4YtNYVpdSHgZ8AVuBBrfWx1fhbQoiLb1WGK3/tRsilhBCXwgGt9a4L2VEyH4UQDSQwCCEaSGAQQjSQwCCEaCCBQQjRQAKDEKKBBAYhRAMJDEKIBhIYhBANJDAIIRpIYBBCNJDAIIRoIIFBCNFAAoMQooEEBiFEAwkMQogGEhiEEA0kMAghGkhgEEI0kMAghGgggUEI0UACgxCigQQGIUQDCQxCiAYSGIQQDSQwCCEaSGAQQjSQwCCEaCCBQQjRQAKDEKKBBAYhRAMJDEKIBhIYhBANJDAIIRrYXsmTlVJjQAaoAhWt9S6lVCvwL0AfMAb8vtY68cqaKYS4lC7GGcNbtdY7tda7Vn7+FPC41noz8PjKz0KIy8hqXErcDDy08vgh4L2r8DeEEKvolQYGDTyqlDqglNqzsq1Daz0DsHLffq4nKqX2KKX2K6X2v8I2CCEuslfUxwBcr7WeVkq1A48ppU5e6BO11g8ADwAopfQrbIcQ4iJ6RWcMWuvplfs54N+Aa4BZpVQXwMr93CttpBDi0nrZgUEp5VVK+euPgRuBo8APgFtXdrsV+P4rbaQQ4tJ6JZcSHcC/KaXqr/PPWusfK6X2AQ8rpW4DxoHfe+XNFEJcSkrr5l/eSx+DEJfEgbPSCl6SZD4KIRpIYBBCNJDAIIRoIIFBCNFAAoMQooEEBiFEAwkMQogGEhiEEA0kMAghGkhgEEI0kMAghGgggUEI0UACgxCigQQGIUQDCQxCiAYSGIQQDSQwCCEaSGAQQjSQwCCEaCCBQQjRQAKDEKKBBAYhRAMJDEKIBhIYhBANJDAIIRpIYBBCNJDAIIRoIIFBCNFAAoMQooEEBiFEAwkMQogGEhiEEA0kMAghGpw3MCilHlRKzSmljp61rVUp9ZhS6tTKfWhlu1JK3aeUGlZKHVZKXb2ajRdCrI4LOWP4R+CdL9j2KeBxrfVm4PGVnwHeBWxeue0Bvn5xmimEuJTOGxi01nuB+As23ww8tPL4IeC9Z23/pl72DBBUSnVdrMYKIS6Nl9vH0KG1ngFYuW9f2d4NTJy13+TKNiHEZcR2kV9PnWObPueOSu1h+XJDCLHGvNwzhtn6JcLK/dzK9kmg56z91gHT53oBrfUDWutdWutdL7MNQohV8nIDww+AW1ce3wp8/6ztf7QyOnEdkKpfcgghLiNa65e8Ad8GZoAyy2cEtwFhlkcjTq3ct67sq4CvAaeBI8Cu873+yvO03OQmt1W/7b+Qz6PWGrXywWwqpVTzGyHEq9+BC710l8xHIUQDCQxCiAYSGIQQDSQwCCEaSGAQQjSQwCCEaCCBQQjRQAKDEKKBBAYhRAMJDEKIBhIYhBANJDAIIRpIYBBCNJDAIIRoIIFBCNFAAoMQooEEBiFEAwkMQogGEhiEEA0kMAghGkhgEEI0kMAghGgggUEI0UACgxCigQQGIUQDCQxCiAYSGIQQDSQwCCEaSGAQQjSQwCCEaCCBQQjRQAKDEKKBBAYhRAMJDEKIBucNDEqpB5VSc0qpo2dtu1cpNaWUem7ldtNZv/tzpdSwUmpQKfXbq9VwcWG+9a1vNbsJ4nKktX7JG/Bm4Grg6Fnb7gU+fo59twGHACewATgNWC/gb2i5rd7tN3/zNzWgr7322qa3RW5Nve0/32exfrNxHlrrvUqpvvPtt+Jm4Dta6yIwqpQaBq4Bnr7A54sL9O1vf5v3v//9L/r7gwcPkkgk8Pl8DAwMMDIyQi6X401vehNXXXUVExMTJJPJS9hicTk5b2B4CR9WSv0RsB/4mNY6AXQDz5y1z+TKtgZKqT3Anlfw91/T6kHhxIkT5PN5stksXV1dRCIRhoeHSSaTBAIBent7SSaTKKWw2Ww8+eSTvOlNb2py68Va93I7H78ObAR2AjPA361sV+fYV5/rBbTWD2itd2mtd73MNqwpb3zjG1/W844dOwbAN77xDd7xjnfw05/+1PzuiSeeAODHP/4xExMTPPvss/zsZz/j0KFDPPfcc5w8eRKLxUIoFCIUCjE0NMTo6Cjj4+NYrVYmJyexWq3kcjkcDgdOpxOv18vb3/72V/4PFq9qauUa/6V3Wr6U+KHW+sqX+p1S6s8BtNZfXPndT4B7tdYveSmhlDp/I9agN7zhDTz9dOM/7T/+4z/46le/yoc+9CHcbjfvec97nvf773znO5TLZbxeL/39/fT09BAOh8/5N55++mlaWlro7u6mWq1y+vRp8vk8HR0d+P1+isUi8Xgcp9NJsVhk/fr1HD9+nNe97nXMzc1RKBTo7u5mcXGRarVKZ2cnw8PD7Nr1qojH4tdz4EK/iF9WYFBKdWmtZ1Ye/zfgWq31HyiltgP/zHK/QhR4HNista6e5/Uvq8Bw00038aMf/Yht27Zx/PhxAJ599lmOHDnCjh07UEqhtaalpYVqtcrS0hJaa5xOJ6lUikqlwtVXX83evXuJRqMkEglCoRDT09Ns3LiRlpYWfvGLXwDwzW9+k0984hMMDAywuLjI/Pw8Ho8Hr9eLw+EAYGpqimg0SigUIh6PU6vVaGlpwWKxsLS0RCaTYWBggHg8jsfjYXR0lFgsxs0339y0Yyia4oIDw3n7GJRS3wbeArQppSaBzwJvUUrtZPkyYQy4A0BrfUwp9TBwHKgAd50vKKwFTz75JDabjTe84Q1m21vf+lZ+9rOfPW+/f/zHf+T+++/nJz/5CQ899BDBYJD+/n5isRgdHR0Eg0FaW1tRSlEsFslms7jdbhwOB4VCgWg0ysmTJ9m+fTsjIyPY7XaOHz/OFVdcQblcJhqNEo/HsdvtbNy4kYmJCY4cOUIymWRhYYGFhQU2bdpEuVymVqsRCoVIJpOsX7/eBAmLxYLdbqdaXT7s09PTrFu3junpacrlMi6Xi5aWFgqFwqU7wOKyc0FnDKveiCaeMdx///1s2LABm82G1Wqls7OToaEhyuUyt9xyy/P2/elPf4pSy90okUgEp9OJx+NBa43f70drTS6Xw2KxmFssFqOtrQ2Px0M8HiebzWK32/H5fMzNzTE0NER/fz+dnZ2Uy2UqlQper5dCoUAul+OjH/0o//AP/4DH46FYLBKLxejq6iKZTNLa2srk5CSbN29mdHTUnBVkMhnC4bB5vVqthtaaVCplOie3bdvGjTfeaM54xGvCxb2UWG3NvpQ4evQoFouFZDKJx+Ohp6eHRx99lEqlwle+8hUefvhh82GamZmho6ODZDLJ/Pw8r3/9680HL5/P09LSQrlcJp1OY7PZWFpawmazEQwGOXbsGNu2bWNhYQGlFF1dXQCkUikAHA4HLpeLTCZjRhGeeuop+vv7KZfLBINB/H4/Pp+PeDxu7pVSOJ1OcrkcTqeTQqFAIpGgs7MTj8dDpVLh0KFDDAwMYLVacTqdPPnkkwQCAW666aaXOjTi1UUCw4X67ne/y+7du3E6nTgcDkqlEgDlcpn5+XlaW1sZHx+nUCjQ39+PzWYz3+iZTIaenh6mpqbwer2kUimy2SyBQIBQKITb7SaTyVAul/H7/UxPT9Pa2orb7cblcjE9PU1XVxfZbJZqtYrWGp/Ph9aaTCZDPB6nu7ubQ4cO0dPTg8/no1gsopQy/Ratra2m36K1tZVMJmPOYubm5nC73cRiMa666ioAkskk1WoVp9NJOBwmFAo169CLS08Cw/ns3buXarVKJBKhp6eHeDyO1hqr1YrX68XpdJLNZrFarbjdbqrVqhn2q1Qq2Gw2UqmU+TBaLBZOnz5NV1cXXq+XSqVCNpsll8vh9XppaWnB5/NRKpVwuVzMz8/j8/lIJpMEg0FyuRx+v5/JyUl6e3spl8um49Dv9+NwOMjlcqRSKcLhMKVSCY/HQ6lUIp1O09HRQbFYxOVysbCwgMPhoLW1Fa21ea2FhQWCwSAnT55ky5YtBAIB9uzZwyOPPEIkEmF+fv5Svw3i0rrgwPCankR18uRJlFIkk0kWFxeJRCL4fD7K5TIAs7Oz1Go1stks2WwWj8eDy+Uy3+iBQICpqSnS6TQLCwv09fWhlGJhYYHh4WE6OjrYvHkzfr8fl8tFsVhkfn4epRQdHR0sLCzgdrtJp9PE43GWlpaIRqPMzMxgsVjQWuNwOPB4PLjdborFIps3bzbbMpkMpVLJ9E+0tbWRyWTo6OjAbrdTqVSIx+MkEgkqlQrpdBqtNbt376a1tZXp6Wk+97nPSVAQDV6zgeHkyZOEw2GKxSJ2u52+vj6sVivFYpGlpSWKxSIDAwNUKhXTb+BwOMypfK1WY2FhAYvFQl9fH319fdRqNWw2G263G7/fz8mTJ0kmk9RqNRYXF81rp9NpKpUKAIFAAJvNRltbG1prFhcXaWlpYXh42AQou91OIpHA7XazsLCA1ppEIsHCwgJer9f8zZmZGcLhMLlcjmKxyNNPP8309DQej4exsTHcbjcAsViMubk5rFYrfX19bNu2jU2bNjXtvRBrz2v2UuLhhx9m69atptOus7OTarXKwsICpVKJgYEBarUa+XwepRTZbBatNaVSiUgkglKKsbExwuEw1WrVfIhLpRLxeJz+/n58Pp/paKxWq+abXymF1+ulWCxSKpXMJcbk5CQdHR2USiUqlQoOh8MMP46Pj5uRD5fLhd/vJ5fLEY/H6ejoYH5+nmq1SrFYJBKJUKvVmJqaMgGhXC7T3d1NLBbD6XQSCoWIRqMmQFx77bWX+i0Ql55cSpyPzWYjkUhQq9VobW3F6/UC4HQ66enpYXZ2FovFglKKcrlsRgWi0SipVIp4PM7GjRsplUqMj4/jdrvRWtPb28v27duJx+Ok02k8Hg8ej8f0PWSzWZRSDA4OApDJZFhaWsJqtbJ+/XpsNhsWi4VIJILL5TJnGB6Ph87OTrq7u7HZbJw6dYpKpUJXVxfpdJpcLofdbsdut1Or1Th58iRjY2MEg0GsVqsZHk0mk0xPT3Ps2DGSySSJRAKbzca73vWuZr4dYo15zQaGW265hb/7u78jHo9TqVSYmZkhnU7T2tpKIBCgra2NWq2GxWKhUCjQ19eHzWZjYmKCYDDI6dOnTWdeT08PXV1dZsiyfoofCASoVqsEg0Hy+Ty1Wo1AIEC5XGb79u1YrVZztlGpVJifnzeXDfWOzlAohM/nY2ZmhsnJSWq1Gh6Ph23btuHz+bDb7cTjccrlMhMTE2QyGfbv3286UOfn50mlUiY4dXR04PP52L17N7lcjv7+ftrb2/nKV74imZDCeM1eSsDyxKXdu3fT09NDrVbD4XDgcDhYWlrC4/EwOztrvrXracgAuVwOl8uFUopMJoPD4WBubo7W1lZGRkbo7+/H4/GwsLCAz+djaWmJcrmM2+02Zyi5XA6r1YrH42FiYoJqtWqGMhcXF1m/fj3z8/PYbDbK5bLZ12q1YrFYTDuWlpZMh+nk5CQjIyMmUav+3tbPEgYGBsx+TqeTcrmMx+PhXe96F7FYjPHxcd7xjnc0460Ql4ZcSpzPjTfeyO23387Y2BgzMzOm4/H48eNUKhW01tjtdiwWi/mQ7du3j0QiQTabJZlMMjMzg9/vJ5/Ps3HjRiwWCzt27DDZj8FgEIvFQnt7O6FQiFwuZ67/nU4nVquVQqGA0+mku7vb9CFEo1Gy2SwtLS3k83lsNhvVapVarUalUiEWi1EqlXA6nbS1tZHNZllcXOTzn/88//zP/0w4HMblcuFwOPjwhz8MwKZNm5ibm6NcLrN161a6u7spl8u0t7eTy+WoVCps3LiR/v7+Jr8zYi14TZ8xwPKEqH/6p3/CYrEwMzOD1tpcxxeLRdMBmc1msdlsZpjR6/VSLpdZXFzkyJEjvPe97+XMmTMEg0E8Ho9JfT5x4gQtLS10dHSYfoh8Po/VaiWdTuN0OgkGgyZhCSAUClGr1SgUCuTzeZPOXJ9VabPZKJVKaK1pa2tjdnaWSCTC4OAgoVCIkZERvva1r5HJZLjzzjvZunUrBw8eNKnS9fkdbreblpYWduzYwS9/+UuKxSL33XcfP/zhD5v1dojVJQlOv47FxUVqtRo+n49sNsvMzAw+nw+Hw2GGIAuFAsFgkNHRUTo6OswHvFwuEwgEzIzKRCJhhiDrk5a01iYolEolLBaLOQOA5YlPbrfbpDm7XC7TzxAMBpmamsLv95viK8FgkGKxCECxWKS9vZ3BwUH27duH3+8nGo1y6tQpenp66OnpYWJiApfLxalTp9i+fTvFYpHR0VF++MMf8vnPf562tjaTN/HEE09w6623mgxQ8aoilxK/jpGREdNfUK1WTaeez+czw5XVahWr1Wp6+e12O36/n2AwyMTEBD6fj1qtZiZXlctlM7RYLBaZnZ01HYrxeJzFxUUmJydxuVykUinGx8fp7OzE7/ezb98+k71YLBbp6uqitbWV7du309bWhtfrNZc+kUjE/Dt27NhBR0cHsViMrVu3mtGU6elpvF4vb3vb20wnaHt7O3/7t3+L3W43IytKKd7+9rfT19fXvDdDrAmvpLTbq0alUqFSqZgPtNVqxe/3Uy6XTV9AuVymVCpRLpcpFApmKDOfz9Pd3c2ZM2doaWnBbrezsLBAKBQy6crFYpFAIEA2m2VsbIze3l5aW1uB5WnR4XDYTIOemZlhx44dnDlzxmQxlstlisUip0+fZvv27UxNTbG0tMS6desoFArYbDZ6enpYWlqiUCiwc+dOjh8/jt/vZ35+nre97W2Mjo6SzWbp7Ow0VZ/q6d0WiwWPx2PaUm+beO2SMwbgrrvu4ic/+Qk2m410Ok0gEDCXCvVv/UQigdPpNJcCTqfTXCLUOyjD4TCZTIbJyUmq1Sr5fJ5qtYrL5cLpdOLz+YhEIrS2tmKxWEgkEhSLRQYHB8lms6ZfoVKp0NHRwaZNm0yOQn2Kd32SVn2quFIKpZTJdXA4HJTLZfr6+ti0aRN2u92c6YRCIQKBAB6Ph0AgQKFQIJVKMTc3R39/v5kXctdddzX7LRFNJoEB+NCHPsRDDz3Ev/7rvxIIBKhUKhQKBTP56eTJk0SjUYaGhnC5XOb62+l0MjIyYmoeLC4uopTida97HZlMhkKhYIY169Ov/X4/U1NTVCoVwuEwnZ2dXHnllTgcDtLpNJFIxHyLHzp0CLvdTjQaxe1209bWRiwWo1wum+HO+s/1kYt6h2JHRwctLS1s3ryZVCpFR0cHW7dupaOjg1wuRy6Xo1arMT4+jtPpJJ1O09/fz9zcHB0dHU1+R0SzSWAAPvzhD+Nyudi8eTOzs7MATExMMDk5yejoKHa7HafTSSAQwOVymQ5Fp9PJtddei9/vx2Zbviqrp0Z3dHSYy4n62UY6nWZsbIxAIIDVajVFX/L5vJlMVZ967fP56O/vp1KpcPjwYRKJhPmAezye5w2lFotFLBYLmUwGp9PJU089RbFYZGpqilAoZDpL5+fnmZiYoLu72/zderCw2+0m4OzYsYPu7m65pHgNk8CwYnp6mje96U1m/kBnZycdHR20t7ebD3F7ezter9dMk64PJ46OjgKYgquxWIxMJoPP5yMcDtPT02M6NdevX086naZQKJhRi5GRETMRanZ2lpmZGcrlMvF4nNbWVrZt20ahUMDn85lMyXw+byZW3X333bS1tWGz2bDb7ezatYtCoUBvby/FYhGPx0OtVqNYLJoyc4FAAK/Xi1KKRCIBLAe19evXUygU+MxnPkM8Hm/mWyKaSIYrz+GBBx7gPe95D36/n1gsZqoe+f1+ZmdnKRQK+P1+PB4PuVwOwAxZ2mw2zpw5Q3t7O4VCwYxg1L/Va7UaqVQKq9VKJBIxox31SVmJRMLkKgSDQWA5c7Gtrc1Uj6pWq1QqFQKBAGfOnDGFX4LBILVajXQ6jdvt5tSpU1x11VUmJbpeSr4+MatUKnHs2DFTk6Ke6en3+0mlUrz73e+mVCoxPDzczLdDXDwyXPly7dixgz179pgPTmtrK6FQCIvFwtTUFNPT06YjsVarmUuHTCZjMhIjkYjJnIzH48RiMWw2G7VaDbfbTWdnp+nIzOfz5nrf6XSydetW2trazOxKh8OB1tokTNU7NfP5PKlUinXr1tHW1sbS0hKwHERaWloA6OnpMZO/FhcXGRkZAZYnkI2Pj1MsFtm5cyfhcJharWYuJ8bHxzlx4gTt7e0SFF6jJDC8wOHDhwFYWFgweQ31nIJMJsNVV13F6OioqZZUL6bi8/lMjkMqlWJ+fp4zZ85gs9mIRCKm/FoqlWJ0dNQUVamvL2G32+nt7aVWq+H3++np6aFUKlGr1UzNhfrlh81mIxAIkMlkGB8fJ51O4/P5OHjwIEtLS8RiMdLpNC6Xi9nZWVNgtlarmc5Qp9PJ8PAwv/jFL3A4HPzqV7+io6ODWq3Gli1b2Lx5M3feeWeT3w3RLBIYXsSpU6dIJBIUCgU8Hg/5fJ6BgQFSqZRJSR4fHzd1HqempnA6nWaUoJ58FA6HmZ+fx2q1mpGIaDRqyrFVKhUWFxeJx+P84he/MEOP9aSoszMl6xWk6kOQ9ezHxcVF00la7xepT78Oh8NmxqfP56NQKJhZodu2bWNgYACAXbt2sX//ftra2hgfH6dSqeDz+bjuuuua+TaIJpHAcA4PPvgg73nPe1BKEQwGicfjpFIppqamANiwYQNDQ0O0trZyxRVXmOKrjz32GEtLS9jtdgYGBkx9x0gkgt/vp62tjYMHD+LxeBgfHycejz+vvyIcDpvKTvUkpBcWn61PqlJKmYlaqVSKkZERPB4PMzMz5PN5FhcXyefzeDweDh8+bOZ/aK1NH0Z9fkalUiGfz5sJYN3d3fh8PjZs2EA2m+Wtb31rM98O0QTS+fgirr/+eqxWK1/60pfYvn07i4uLOBwOM3lKKUWpVDLf8E6nE7vdbsq+/ehHP+IP//APmZqaIhgMmmxJrTVTU1P09vZis9k4ffo0fX19WCwWFhcXcblcJhDUr/nruRP1TsG2tjamp6c5fvw4mzZtIhaLmfyHs2dpLi0tMTY2Rl9fHx6Ph8XFRbLZLMFgEJ/Ph81mM5caLS0tKKVM+bfjx48zNzfHgw8+yPe///0mvxviIpHOx1fq7//+79m7dy9vfOMbzWzIelZivWCL0+lkcXHRzIp0u91YrVYSiQQ33HCD6RCsd0h6vV58Ph+hUAi73Y7NZmPbtm3YbDYWFhbMZCaHw0F7ezt+v990OM7NzZmOz/pZxZYtW5iZmTHDp88884wpJ2e1Wsnn80SjUcbGxkwnpNVqNWcc2WyWfD6P3+83hWJSqRSTk5MMDAzwG7/xG5w5cwbgeXMyxKufBIYXUa+BuGXLFt797nezsLAAwNzcnJnvUD/tXlpaMmcD9SG/aDTK/Py8Wa/i+PHjnDlzhmKxSDQaZXx8nMXFRaanp9FaE4lEWFpawuv14nK5TNp1ff3LaDRqqj/Nzs6a6drt7e24XC7S6bRZYq+1tZUjR44QCoWoVqts2LDBjLJ4PB4zrOnz+Uxeht1uJxwO09LSYta6yGQydHV1sW3bNjPSIV4bJDCcx+DgIAcOHOBP//RPSafTtLS0cObMGUZGRkilUmbtyFqtxvT0NO3t7bS2tnL48GEzd6JWq9HW1mYmOi0tLdHX14fX6zXVmOojBtVq1fQF1B/XP7inTp1Ca22GO8vlMhaLhZ6eHnbv3o3P5+P48eMmPTufzxMOh3E4HCa70ul0mrYqpXC5XFQqFTKZDIlEwrym3+/HYrHwpS99ie7ubhm2fI2RwHCBDh48yP79+1FKsXPnTgYGBlBKmd7/+tJx9Y68gYEBUwV6YWEBp9Npzibqk6vqNRtsNptZJ6JSqZhMxHq16PrwZz1pamlpidnZWdxuN+vWrSMWi5m2XHHFFSil2L17N5lMBrvdztGjR7FarcTjcZxOJ+Pj47S0tFCr1cjlckxOTpoFdOojIlar1aymlU6nm3z0xaUmnY+/prGxMQDTKVir1ajVahw+fJirr76afD6Pw+Ew6zysW7cOwKxiHQqFzGjByZMn2bZtG5lMhjNnzrB+/XpTXr5eIMZms5k5D2NjY7S2tjI7O8umTZsolUomSNRTr+ttU0phtVrRWj+vLH2pVDJnDvV+DVhOespmsybPoZ52nc/nOXr0KB/84AfJZrNNOebiopHOx9Xye7/3e1QqFdxuN4lEwiw3X+/N9/v9pmxbV1cXdrudfD5PIBAgkUgwPz/PoUOHmJqaMvUW6wlS9QVq0+k0Tz75JEePHuVXv/oVPp+PdDrNunXrTFCpF4AJBoNEIhF6e3tZWloy5enn5+fJZrMkEgkWFxfNmhYWi8WcAdQ7HNPpNEopk5NRLpdNNeqOjg76+vq44oormnbMxaUngeHXdMcdd/Doo48Si8Xw+XwopfD7/bzhDW8gl8uZb9X63Ih61mGxWOSKK64gFouxe/duQqEQfr+fYrHI/v37CQaDVCoVDhw4YKZAd3Z2Eo/HeeaZZyiVSoyMjJhkqhMnTpgCM/UzjPqkKFheQbvekRmJRCgUCoyMjBAOh0mn06YOLs41AAAURElEQVQvoV6/wWazmRW36gGk3tHZ19fH3Xff3czDLi4xuZR4Gb73ve9htVrZvn27KQmfyWTwer1kMhnWr1/PwsICnZ2dnDlzht7eXrMATUtLixkd8Hg8/PKXvzQf3vp7Uf/W9nq95HI5ent7zbJ29VWtU6mUqbzkdDrJ5/MUCgVCoRDFYhG/38/c3JypP1kfmqwXe4HliV/1yV+JRMKUyC8UCqYADIDD4eDHP/4xt9xyi1k0R1yWpBjspfD973+ft7zlLWYKdCgUwmq1Mjo6Sn9/P6dOnSIajZrAUQ8GdfVakvU8gsnJSSwWC8PDw7S1tTE2NsbWrVvJ5XIcPnyYG2+8kRMnTph5FdlslkgkQiAQIJfL0dLSYkrJ16tL1VOp/X4/hULBzLeo15coFotUq1UWFxdNgZZEImFK5tfrSNTL4NcXyRGXpYvXx6CU6lFK/UwpdUIpdUwpdc/K9lal1GNKqVMr96GV7UopdZ9SalgpdVgpdfUr+7esTU8++SRf/OIXefrpp4nH42aGYy6XY8OGDVQqFfr7+01l6EAgQDgcNs/3er14PB6zbmU+n2dubo5YLEYqleKLX/wiwWAQrTVer5ctW7YwMTGBx+MxHZgnTpzg2LFjDA4O4nA4zAfc7/ebBKl6HkX9kqFcLptLC1juZ6ivmK21ZmJiwtSZrC+cWy9Ku3PnTlwuV7MOubiELqSPoQJ8TGu9FbgOuEsptQ34FPC41noz8PjKzwDvAjav3PYAX7/orV4DPB4PX/3qV3nnO99pOvrC4bDpZCwWi5TLZbLZLO3t7ZTLZebm5shms89Lj87lchw/fpyJiQlaW1v57Gc/y44dO3j/+99vchAKhQJf+MIXiMViaK3NuptOp5MHHniAQCBAqVRicXGRrq4uAoEAo6OjpFIpsy7m2eXkbDabyb5MpVIEg0FOnjxpltOrD4VGIhEcDgcLCwtMTk5y5513ymXEa8R5A4PWekZrfXDlcQY4AXQDNwMPrez2EPDelcc3A9/Uy54Bgkqprove8iZ7/etfz+7duwH467/+a3PNXyqViEajtLS0mOHAepn41tZWUyZuYWGBWCxmZj2OjY3xF3/xF3zxi18kk8mY/ITTp0+TSqX4/d//fV73uteZyVn33XcfpVKJT3ziE6TTaYaHh3G73djtdrLZLNFoFL/fj9vtZnx83AQPl8tFMpk0ZynDw8OkUilCoRCVSoVoNEokEiGZTJLNZrFarbS2tpr1M7Zu3drkIy8uhV+rj0Ep1QfsBa4ExrXWwbN+l9Bah5RSPwS+pLV+amX748D/pbXe/xKve1n2MZytXp4NlleSqicTuVwuMpkMbrebXC5nJjfVi7xEIhFuu+023ve+99HV1cX8/DzRaJREImEWsenv7zf1FerVnOoL8dbTom02m5mHUc9hmJ2dNZcW9crU9eX3XC4Xw8PDhEIhUwW7v7/fdDomk0kz5Xx8fNysvv3444/zuc99jqGhoSYfcfEyXPw8BqWUD/jfwEe01i+VCqfOsa3hg6+U2qOU2q+UetGAcTn58Y9/bIqxnj59GrvdDsDU1BR2u53BwUGq1SpaawKBAD6fj0QiwfDwMPfcc4+Zeh2JRLBYLGSzWbq6usyalxaLhZGREbq7u4nFYgwODtLT00M6nTYFZ7PZLBMTEywuLgJw7NgxkzBVn0mplDL5C/XCLKVSyUzWqp/FeDweUqkUSimi0ajJ2Lz22mtxOBzNPNTiErigwKCUsrMcFL6ltf7eyubZ+iXCyv3cyvZJoOesp68Dpl/4mlrrB7TWuy40gq11NpuN7du3E4vF2Lhxo8ljcDqduN1uNm7cyPj4uFmw5qmnnqK7uxuXy0Vvby9Op5P77rvPVFa6/vrraWlpoVgsMjQ0xOLiIgMDAwwNDeH1emltbWVhYYFIJIJSCofDgcViYX5+npaWFjOiceTIET7ykY+YAKW1NqMhiUTC5DLUp13XRx3qw5vwf2ZWdnV1kcvluPvuu3nzm9/czMMtVtmFjEoo4H8CJ7TWf3/Wr34A3Lry+Fbg+2dt/6OV0YnrgJTWeuYitnlN2rNnDwCnT582y9rPz8+bRKFisciWLVvMkOU111zD/Pw8gFna7o//+I+ZnJykv7+fe+65h1/+8pcEAgH+5V/+ha9//es4HA78fj9KKTZu3EggEKCrq4tPfvKTfOELX2BychKr1cqBAwfIZrMcOXKEcDjMxz/+cTZs2GDK1dXLzfn9frq7u0mn06aKtNVqNanUPp/PLKzj8/lIJpOsW7cOn8/H3r17m3m4xSo7bx+DUuo3gSeBI0BtZfN/B54FHgZ6gXHg97TW8ZVA8v8C7wRywJ+8VP/Cyt+47PsYzvbwww/zW7/1W8RiMbZs2cLs7Cw2m818Gz/yyCNcd911JBIJ0yHY0tLCz3/+c97+9rezd+9eUweynnZdX0vC7Xab5fP8fj9+v/95U7frox2Tk5MAVKtVU7y2p6cHl8tl6kVWq1XsdjuFQoHW1lYSiYSZEJZIJHjuuee44YYbGB0dZePGjVSrVXK5HAcPHuR3f/d3m3yUxcsgCU5rwb59+2hpacFisZgKS0NDQ3R2djIzM4PL5SKbzeL1ellaWjIFZhcWFsjlcoRCIdrb25mbmzMVoeu1GHw+H21tbYTDYebm5kgkEnR3d6O1ZmFhgYWFBbZt20YsFsPhcJBIJNi0aZMpXd/b20u1WiWVSplakPW1K+qJTfVU6XqeRv1sIpVK8Tu/8zs899xzzT7E4tcjk6iabWBggHw+bwq0zs7Oks/nCQaDZrq1xWLhb/7mb/B6vSQSCYLBoMmHiEQilMtlBgcH8fl8fPOb32Rqaoq5ueWunPqU7n379pFIJEynZj6fNzUhOjs7OXLkiOnUrC9ft3HjRlOzof6cUqmEzWYz62wqpcxCvFar1SQ25fN5M/9DvHpJYFglQ0NDvPnNb+axxx5jdHSUzs5OkskkbrebgwcPmhmPd911F/F4nK6uLjOakMlkSCaT5PN5fD4f9957L3/yJ39CIBCgra2NtrY2M4szkUiYYivFYpH29nZOnz7Nhg0bOHLkCOvXrzdDnKVSCa01FouFoaEhwuEwLpfLrHBdPyuA5cCztLT0vEV34vE4S0tLuN1uPvCBDzTz8IpVJoFhle3Zs4cPfehDnDx5klAoRLlcpquri66uLjP5af369QwODjI/P8/OnTtN0dlEIkEul+Mv//Iv+cY3vsH8/LyZWHXvvfeSTqf58pe/TCAQoK+vj6WlJU6fPv28JKSuri5cLhe5XI5yuUw4HDbzOmKxGJVKhWw2i8ViMfMoJicnTfZjNpulr6+PWCxmZl3OzMzw0EMPvcS/WlzuJDBcAkNDQ1xzzTX8/Oc/N0vRRSIRnnrqKd72trdx22230dvbS2dnJ0NDQzgcDux2uynf/ld/9Vd8+tOfBjDrWn7mM58hGo3S09PD8PAwk5OT7N27l/b2djKZDOl02pSWb2trM6XdksmkyYjs7Owkl8tRKpUYGxszfR0bNmxg48aNpnBLoVAw6dk2m41kMmnyNMSrkwSGSyCdTvONb3yDD3zgA9x2220Eg0EmJia4/vrrqVar3HPPPVQqFdMpWCwW+fKXv0w4HObf//3fueOOOzh+/DhdXV1YLBZGR0fRWnPw4EE++9nPYrFYzPL18Xicnp4esx5mNBqlUqmYlGmAWCxGKBTi1KlTlEolADNbMxaLkc/nSafT5kyio6PDlM93Op10dXWZCtji1UlGJZrke9/7nqnUXM9PiEaj/Od//qdZHWppaYn169fz1FNPEY1GaWtro7Ozk9HRUQYHBxkYGDBzMqLRqJmT0d/fz/Hjx03iVH1R20KhQFdXF7Vazbx+fe6Gw+FgcnLSpE7XOxfrdSaKxSKDg4Ps2LGD3/7t3+aZZ55p2rETL5uMSqx1t9xyC7fffjsWi4WxsTHcbjdnzpyhv78ft9vNr371K7NuRWdnJ5FIhFqtRiKRIBKJcMMNN1AsFonH4zgcDubm5kz5+kOHDtHT02NKwhWLRVKplEm7XlpaMmth1lfUricxuVwuM+cjl8ths9koFoum8Oz8/DyhUIhAINDMwydWmQSGJnn00UdJJpN86lOf4qMf/SjPPPOM+WBnMhmuueYaFhYWKJfL+Hw+7HY7LpeLWCzGyMgIJ0+eJBAIsLS0hNPpxGazYbfb8fl89PX1meIqHo+HZDKJw+HA5XLx7LPPmrUv6wViSqUSp06dwufzcejQITKZDNls1iRAVatVyuUy6XSau+++m0ceeUQqR7/KSWBoktnZWQDa2tpIJpN897vf5cSJE2zevJl0Os3IyAihUMjUbYzFYkxMTBCLxUw9SIvFwsDAAKFQiImJCSqVCg6Hw+Qg1PMPtm7dSjgcplAocNVVV5kMzPpcCJvNhtPpxGq1mmBTq9WIx+Om2lO9avUjjzzSzMMmLhEJDE3ywQ9+EFg+cwBwOp3cfvvtfPrTnyaZTHLllVdis9kIh8O43W6TzhwOh/nEJz5hJj/F43GKxSJaazwej1lTM51Om7yJTCZjqjgVi0Vz9tDW1ka1WsXhcNDX14fNZqO7u5t169aZFapisRgej4d0Os0dd9whiU2vEdL5uEZt2rSJ4eFhBgYG+MhHPsLWrVvJ5/NcffXVnDhxAp/PR0tLC//1X//FlVdeCcDw8DC9vb1YrVaKxaKpL9nX10epVCKXy5nn1de5yOfzeL1e5ufnTWHZarVqFrApFosmmemJJ55o2vEQF4V0Pl7u7r//fgBaWlq48847+bM/+zPm5uZ43/vexyc/+Unm5+cZHh42BVQAU0k6kUiYyVfhcJjZ2VnK5TJ2ux2/38++fftMx+TZJeGsViuxWMysczk1NcXtt9/OE088IUHhNUbOGC4jO3bs4PDhwwDcfPPNFItF3ve+9wHLeQjDw8PccMMNJBIJJiYmuPrqq82amPV+h6GhIVOYtlarkc1mTSr10aNHCYVCHDhwgG9961skEgn2739V1NERy2R25avZtddey7PPPgtAf38/yWSSXbt2kclkCIfDlEolPv/5z1OtVuno6ODYsWNs2bKFUCiEzWZjenraTOOuz6PIZDI8+eSTfO1rX+PAgQOyfsSrkwSG16otW7YwODhIIBBg8+bNOBwO2tra0FrzsY99jNnZWb7+9a/z8Y9/nHQ6zQc+8AHe8Y538Nhjj7FhwwZGR0eb/U8Qq+eCAwNa66bfWK4JKbeXcTt8+LC+//77X/T31157rd65c6cGtMPh0Fu3bjW/u+6665refrld0tv+C/1MyhmDEK8dMiohhHj5JDAIIRpIYBBCNJDAIIRoIIFBCNFAAoMQooEEBiFEAwkMQogGEhiEEA0kMAghGkhgEEI0kMAghGgggUEI0UACgxCigQQGIUQDCQxCiAYSGIQQDc4bGJRSPUqpnymlTiiljiml7lnZfq9Sakop9dzK7aaznvPnSqlhpdSgUuq3V/MfIIS4+GwXsE8F+JjW+qBSyg8cUEo9tvK7/0dr/bdn76yU2gb8AbAdiAL/qZQa0FpXL2bDhRCr57xnDFrrGa31wZXHGeAE0P0ST7kZ+I7Wuqi1HgWGgWsuRmOFEJfGr9XHoJTqA34DeHZl04eVUoeVUg8qpUIr27qBibOeNsk5AolSao9Sar9SSlY0EWKNueDAoJTyAf8b+IjWOg18HdgI7ARmgL+r73qOpzdUgdZaP6C13nXBde6FEJfMBQUGpZSd5aDwLa319wC01rNa66rWugb8f/yfy4VJoOesp68Dpi9ek4UQq+1CRiUU8D+BE1rrvz9re9dZu/0ucHTl8Q+AP1BKOZVSG4DNwC8vXpOFEKvtQkYlrgc+CBxRSj23su2/A+9XSu1k+TJhDLgDQGt9TCn1MHCc5RGNu2REQojLy1pZiWoeyAILzW7LBWjj8mgnXD5tlXZefOdq63qtdeRCnrwmAgOAUmr/5dARebm0Ey6ftko7L75X2lZJiRZCNJDAIIRosJYCwwPNbsAFulzaCZdPW6WdF98rauua6WMQQqwda+mMQQixRjQ9MCil3rkyPXtYKfWpZrfnhZRSY0qpIytTy/evbGtVSj2mlDq1ch863+usQrseVErNKaWOnrXtnO1Sy+5bOcaHlVJXr4G2rrlp+y9RYmBNHddLUgpBa920G2AFTgP9gAM4BGxrZpvO0cYxoO0F2/5v4FMrjz8F/I8mtOvNwNXA0fO1C7gJeITleSzXAc+ugbbeC3z8HPtuW/l/4AQ2rPz/sF6idnYBV6889gNDK+1ZU8f1Jdp50Y5ps88YrgGGtdYjWusS8B2Wp22vdTcDD608fgh476VugNZ6LxB/weYXa9fNwDf1smeA4AtS2lfVi7T1xTRt2r5+8RIDa+q4vkQ7X8yvfUybHRguaIp2k2ngUaXUAaXUnpVtHVrrGVh+k4D2prXu+V6sXWv1OL/safur7QUlBtbscb2YpRDO1uzAcEFTtJvseq311cC7gLuUUm9udoNehrV4nF/RtP3VdI4SAy+66zm2XbK2XuxSCGdrdmBY81O0tdbTK/dzwL+xfAo2Wz9lXLmfa14Ln+fF2rXmjrNeo9P2z1VigDV4XFe7FEKzA8M+YLNSaoNSysFyrcgfNLlNhlLKu1LnEqWUF7iR5enlPwBuXdntVuD7zWlhgxdr1w+AP1rpRb8OSNVPjZtlLU7bf7ESA6yx4/pi7byox/RS9KKep4f1JpZ7VU8Dn252e17Qtn6We3MPAcfq7QPCwOPAqZX71ia07dssny6WWf5GuO3F2sXyqeTXVo7xEWDXGmjr/1ppy+GV/7hdZ+3/6ZW2DgLvuoTt/E2WT7EPA8+t3G5aa8f1Jdp50Y6pZD4KIRo0+1JCCLEGSWAQQjSQwCCEaCCBQQjRQAKDEKKBBAYhRAMJDEKIBhIYhBAN/n9F0cGXCIKLbgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "x, y = valid_gen.__getitem__(2)\n",
    "result = model.predict(x)\n",
    "\n",
    "# result = result > 0.5\n",
    "\n",
    "imshow(x[1])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7fbbadeb6be0>"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAACuCAYAAAA4eMYdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADWxJREFUeJzt3U+sXOV9xvHvUxNYNEjgpCDLuIVGXpRuHGQBUqIqXbQhbEwWqciiWBWSswApkdqFky7KtpWSSqgpkqMgjJRCQUmEF/2HrEh0A8FEFAwu4CQ0OLZsRVQEVCkJ8OtizpUHc+2Zufeee8689/uRjmbue8/MvO/4/T0+59wzZ1JVSJLa9VtDd0CS1C+DXpIaZ9BLUuMMeklqnEEvSY0z6CWpcb0FfZLbkryS5GSSg329jjR21oKGlj7Oo0+yDXgV+BPgFPAs8MWqennDX0waMWtBY9DXFv3NwMmq+klV/Rp4FNjX02tJY2YtaHCX9fS8O4E3pn4+BdxysZWT+PFcLeIXVfU7Q3diTgvVAlgPWkxVZdY6fQX9ai/8gcmb5ABwoKfXV9v+Z+gOLGBmLYD1oH71FfSngF1TP18HnJ5eoaoOAYfALRg1bWYtgPWgfvV1jP5ZYHeSG5JcDtwJHOnptaQxsxY0uF626Kvq3ST3Av8ObAMerKqX+ngtacysBY1BL6dXLtwJd1W1mOeqau/QneiL9aBFzPPHWD8ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcev6ztgkrwNvA+8B71bV3iTbgX8GrgdeB/6sqv53fd2Uxs960FhtxBb9H1fVnqnv8DwIHK2q3cDR7mdpq7AeNDp9HLrZBxzu7h8G7ujhNaRlYT1ocOsN+gL+I8lzSQ50bddW1RmA7vaadb6GtCysB43Suo7RA5+qqtNJrgGeTPLf8z6wK4QDM1eUlof1oFFa1xZ9VZ3ubs8B3wduBs4m2QHQ3Z67yGMPVdXeqWOZ0lKzHjRWaw76JL+d5MqV+8CfAseBI8D+brX9wBPr7aQ0dtaDxmw9h26uBb6fZOV5/qmq/i3Js8BjSe4GfgZ8Yf3dlEbPetBopaqG7gNJhu+ElslzLR/isB60iKrKrHX8ZKwkNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuJlBn+TBJOeSHJ9q257kySSvdbdXd+1Jcn+Sk0leSHJTn52XNpv1oGU0zxb9Q8BtF7QdBI5W1W7gaPczwOeA3d1yAHhgY7opjcZDWA9aMjODvqqeAt68oHkfcLi7fxi4Y6r94Zp4GrgqyY6N6qw0NOtBy2itx+ivraozAN3tNV37TuCNqfVOdW0fkuRAkmNJjq2xD9JYWA8atcs2+PmySluttmJVHQIOASRZdR1pyVkPGoW1btGfXdkF7W7Pde2ngF1T610HnF5796SlYD1o1NYa9EeA/d39/cATU+13dWcb3Aq8tbJLKzXMetC4VdUlF+AR4AzwGyZbKHcDH2NydsFr3e32bt0A3wR+DLwI7J31/N3jysVlgeXYPPOqjwXrwWVkyzxzKt3EGpTHJLWg56pq79Cd6Iv1oEVU1Wp/C/oAPxkrSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxM4M+yYNJziU5PtV2X5KfJ3m+W26f+t1Xk5xM8kqSz/bVcWkI1oOW0Txb9A8Bt63S/vdVtadb/gUgyY3AncAfdo/5xyTbNqqz0gg8hPWgJTMz6KvqKeDNOZ9vH/BoVf2qqn4KnARuXkf/pFGxHrSM1nOM/t4kL3S7sld3bTuBN6bWOdW1fUiSA0mOJTm2jj5IY2E9aLTWGvQPAJ8A9gBngK937Vll3VrtCarqUFXtraq9a+yDNBbWg0ZtTUFfVWer6r2qeh/4Fud3R08Bu6ZWvQ44vb4uSuNmPWjs1hT0SXZM/fh5YOUMhCPAnUmuSHIDsBv44fq6KI2b9aCxu2zWCkkeAT4DfDzJKeBvgM8k2cNkN/R14EsAVfVSkseAl4F3gXuq6r1+ui5tPutByyhVqx4y3NxOJMN3oiervb/JaodutYDnWj6WvdXqAayJ9aiqmW+en4yV1LuqumjIr/xe/Zl56EaLmWfCVpVbMNoSDPBxcIt+IBaA9EHWRH8MeklqnEE/ILdgJG0Gg16SGmfQD8g/yErnWQ/9Meg32LyT1UmtrcB6GAdPr+zByqT1w1LSB+f8hTVhPWwOg75HTmLpg6yJYRj0G2h6a8UJra3Orffx8Bh9Tzx1UtJYGPQbYNZ1PKStZrV6sEaG46GbdXDiSvN7/PHHh+7CluVlitfpUu+fxyR742WKl4DH6DfHPJcpdot+Hby2tnTeasG+0mZNDMugX9CsPSAntLaSWdeYtx7GwT/GLmAMh7mksbAelsfMoE+yK8kPkpxI8lKSL3ft25M8meS17vbqrj1J7k9yMskLSW7qexCbYd5J7eRvl7UwschZZtbDOMyzRf8u8JdV9QfArcA9SW4EDgJHq2o3cLT7GeBzTL7tfjdwAHhgw3u9idZy6qSTu1lbuhbWynoY3sygr6ozVfWj7v7bwAlgJ7APONytdhi4o7u/D3i4Jp4GrkqyY8N7PnJO7vZYC2uf19bDsBY6Rp/keuCTwDPAtVV1BiYFAFzTrbYTeGPqYae6tqWz3sm5sjfgB6ras9VqYdu2bdbDEpv7rJskHwW+C3ylqn55ib+mr/aLD/2rJjnAZHd2y/AshDZsdC10zznaeugrlK2HzTPXFn2SjzCZ2N+pqu91zWdXdkO723Nd+ylg19TDrwNOX/icVXWoqvaO9YMvbnFoNX3UAoy/HrTc5jnrJsC3gRNV9Y2pXx0B9nf39wNPTLXf1Z1xcCvw1spurbTMtmIt9L3B4wbV5ph5CYQknwb+E3gReL9r/hqTY5OPAb8L/Az4QlW92RXDPwC3Af8H/EVVHZvxGqP71+5rArqruiEGuQTCZtRC9zqjqYfNCGJrYn3muQSC17q5CIN+1LzWzSbrMyesifWZJ+j9ZOxFOPmk86yH5WbQX4KTWzqvj3p45513Nvw59WEG/QyGvXTeRtfDlVdeuaHPp9UZ9HNIYuBLHeth+Rj0C1iZ4GuZ5BaHWrOeOX3LLbdYD5vIs242wDzvoZN6Q3nWzYhZD5vLb5jaJNOTdgz/cUpDWi3ErYthGfQbzC0V6cOsi2F5jF6SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4+b5cvBdSX6Q5ESSl5J8uWu/L8nPkzzfLbdPPearSU4meSXJZ/scgLRZrAUtraq65ALsAG7q7l8JvArcCNwH/NUq698I/BdwBXAD8GNg24zXKBeXBZZjs+ZtHwubUAvWg8uiyzxzd+YWfVWdqaofdfffBk4AOy/xkH3Ao1X1q6r6KXASuHnW60hjZy1oWS10jD7J9cAngWe6pnuTvJDkwSRXd207gTemHnaKSxeDtHSsBS2TuYM+yUeB7wJfqapfAg8AnwD2AGeAr6+susrDa5XnO5DkWJJjC/daGtBG10L3nNaDejNX0Cf5CJOJ/Z2q+h5AVZ2tqveq6n3gW5zfJT0F7Jp6+HXA6Qufs6oOVdXelr8pSO3poxa657Ae1Jt5zroJ8G3gRFV9Y6p9x9RqnweOd/ePAHcmuSLJDcBu4Icb12VpGNaCltU83zD1KeDPgReTPN+1fQ34YpI9THZFXwe+BFBVLyV5DHgZeBe4p6rem/Ea7wCvLN79pfBx4BdDd6IHQ47r9wZ63c2oBWi3HlqtBRhubHPVwli+HPxYq7usrY6t1XGNQavvbavjgvGPzU/GSlLjDHpJatxYgv7Q0B3oUatja3VcY9Dqe9vquGDkYxvFMXpJUn/GskUvSerJ4EGf5Lbuyn4nkxwcuj+L6j7yfi7J8am27UmeTPJad3t1154k93djfSHJTcP1/NIucaXGpR/bWFkL49RELQxxFcCpq/RtY3JFv98HLmdypb8bh+zTGsbwR8BNwPGptr8DDnb3DwJ/292/HfhXJh+NvxV4Zuj+X2JcF7tS49KPbYyLtTDe+dJCLQy9RX8zcLKqflJVvwYeZXLFv6VRVU8Bb17QvA843N0/DNwx1f5wTTwNXHXBpypHoy5+pcalH9tIWQsjnS8t1MLQQd/q1f2uraozMJkkwDVd+1KO94IrNTY1thFp9f1rar4say0MHfRzX92vEUs33lWu1HjRVVdpG/XYRmarvX9LN95lroWhg37uq/stmbMru2rd7bmufanGu9qVGmlkbCPU6vvXxHxZ9loYOuifBXYnuSHJ5cCdTK74t+yOAPu7+/uBJ6ba7+r+Kn8r8NbKrt/YXOxKjTQwtpGyFkY6X5qohaH/GszkL9SvMjnj4K+H7s8a+v8Iky+b+A2T/8nvBj4GHAVe6263d+sG+GY31heBvUP3/xLj+jST3c0XgOe75fYWxjbWxVoYfgwXGdfS14KfjJWkxg196EaS1DODXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxv0/zoCqdsBXHPwAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure()\n",
    "fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
    "\n",
    "ax = fig.add_subplot(1, 2, 1)\n",
    "ax.imshow(np.reshape(y[1]*255, (image_size, image_size)), cmap=\"gray\")\n",
    "\n",
    "ax = fig.add_subplot(1, 2, 2)\n",
    "ax.imshow(np.reshape(result[1]*255, (image_size, image_size)), cmap=\"gray\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/lib/python3.6/site-packages/matplotlib/pyplot.py:528: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
      "  max_open_warning, RuntimeWarning)\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGzxJREFUeJzt3U+Ibned5/HPd7y2i1ZQcQyZJDOK\n3IG2N1EuIjgM6cW00c3VhU1ctEGE6yKCQm+iG132orVBZjoQMSSCbSagYhbS3U4QnI1/biRoYsb2\n0mbMNSGhcVCnBYfE7yzq3LaS1P1Xt55/9X29oKiqU09V/XI4uc+Xd51znuruAAAAADDTv9n0AgAA\nAADYHHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgsJXFoaq6tap+XFXn\nqurOVf0eAAB2j1kRALZHdffR/9CqlyX5xyT/Jcn5JN9L8v7u/tGR/zIAAHaKWREAtsuJFf3ctyU5\n193/lCRVdX+S00kOfMKvqqMvVAAwwz9397/d9CLgKpkVAWBNursu95hVXVZ2Q5In931+ftn2r6rq\nTFWdraqzK1oDAEzwvze9ADgEsyIAbJFVnTl0UJV6wV98uvvuJHcn/hoEADCMWREAtsiqzhw6n+Sm\nfZ/fmOSpFf0uAAB2i1kRALbIquLQ95KcrKo3VtUfJLktyYMr+l0AAOwWsyIAbJGVXFbW3c9V1UeS\n/H2SlyW5p7sfW8XvAgBgt5gVAWC7rOSl7K96Ea4jB4DDeri7T216EbBKZkUAOLxNvloZAAAAADtA\nHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwc\nAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIA\nAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAA\nABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAA\nGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAY\nTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhM\nHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwc\nAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGOzEtXxzVT2R5NdJ\nnk/yXHefqqrXJvnvSd6Q5Ikkf9bd/+falgmwvbo7SVJVG14JwHYxKwLAbjiKM4f+pLtv7u5Ty+d3\nJnmou08meWj5HACAmcyKALDlVnFZ2ekk9y0f35fkPSv4HQAb0d0vebuSrwHwr8yKALBlrjUOdZJ/\nqKqHq+rMsu267n46SZb3r7/G3wEAwG4yKwLADrimew4leUd3P1VVr0/yjar6X1f6jcuAcOayDwTY\nAoc9C+jF3+e+RMAwZkVgpCuZHc2FbJNrOnOou59a3j+b5KtJ3pbkmaq6PkmW989e5Hvv7u5T+64/\nBwDgGDErAsBuOHQcqqo/rKpXXfg4yZ8meTTJg0luXx52e5KvXesiAdZtVfcOci8iYAqzIjDN1c6O\n7lXJNrmWy8quS/LV5VS4E0n+trv/rqq+l+SBqvpQkp8led+1LxPgeLkwADidGDjGzIrACEcVdtyO\ngE2qbSiUVbX5RQDss65/Gz3pcwQedtkNx51ZEdhmq5obzYkcle6+7MF0rTekBjhW1h3MnUEEALCb\nVj03drcZkbW51peyBwAAAGCHiUMAi01eZrsNl/gCAHB567yBtJtVsy7iEAAAAMBg7jkEjOevMQAA\nXI6ZkePMmUMAAAAAgzlzCGBLeOUyAIDtsw1nDJkTWTVnDgEAAAAMJg4BbBmvSgEAwEHMiayKy8qA\nsTyxAgCwi1xmxlFz5hAAAADAYOIQwJZy2jAAwGaZxZhCHAIAAAAYTBwCAACAHeTMJo6KOAQAAAAw\nmDgEAAAAMJg4BAAAADDYiU0vAIBLu3AteVVteCUAADPs0r18zIocBXEIGGeXnuwBAABWzWVlAAAA\nAIOJQwA7whlPAABcTHebFzk0cQgAAABgMHEIGKeq3LAPAABgIQ4BAAAADCYOAewQ15IDAKzeLp9p\nbl7kMMQhAAAAgMHEIQAAAIDBxCEAAACAwU5segEAm3LhOvJ1XpN9Ndeuu1YcAGCzqmrtM9mVzIvm\nRI6aOASMt8pItKs3MgQAYM+q/6BoXmQbuKwMAAAAYDBnDgEs9v/V5mJ/Gdr/lyN/5QEAmONaziA6\n6rnxUmsxo3IYzhwCAAAAGMyZQwAHuNxfXPxFBgBgpm2aA/ffMHub1sXuceYQAAAAwGDOHALYMpe6\njt1fhAAA2M98yFFw5hAAAADAYOIQAAAAwGDiEAAAAMBg4hDAjnA9OQAAsApuSA2wZUQgAABgnZw5\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\n2GXjUFXdU1XPVtWj+7a9tqq+UVU/Wd6/ZtleVfXZqjpXVT+oqreucvEAAGyWWREAdt+VnDl0b5Jb\nX7TtziQPdffJJA8tnyfJu5KcXN7OJLnraJYJAMCWujdmRQDYaZeNQ939rSS/eNHm00nuWz6+L8l7\n9m3/Qu/5dpJXV9X1R7VYAAC2i1kRAHbfYe85dF13P50ky/vXL9tvSPLkvsedX7a9RFWdqaqzVXX2\nkGsAAGA7mRUBYIecOOKfVwds64Me2N13J7k7SarqwMcAAHCsmBUBYAsd9syhZy6cAry8f3bZfj7J\nTfsed2OSpw6/PAAAdpBZEQB2yGHj0INJbl8+vj3J1/Zt/8DyShRvT/LLC6cUAwAwhlkRAHbIZS8r\nq6ovJbklyeuq6nySTyb5yyQPVNWHkvwsyfuWh389ybuTnEvymyQfXMGaAQDYEmZFANh91b35S7hd\nRw4Ah/Zwd5/a9CJglcyKAHB43X3QPf9e4LCXlQEAAABwDIhDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg102DlXVPVX1bFU9um/bp6rq51X1yPL27n1f\n+3hVnauqH1fVO1e1cAAANs+sCAC770rOHLo3ya0HbP/r7r55eft6klTVm5PcluSPl+/5m6p62VEt\nFgCArXNvzIoAsNMuG4e6+1tJfnGFP+90kvu7+7fd/dMk55K87RrWBwDAFjMrAsDuu5Z7Dn2kqn6w\nnEr8mmXbDUme3PeY88u2l6iqM1V1tqrOXsMaAADYTmZFANgRh41DdyV5U5Kbkzyd5NPL9jrgsX3Q\nD+juu7v7VHefOuQaAADYTmZFANghh4pD3f1Mdz/f3b9L8rn8/nTg80lu2vfQG5M8dW1LBABgl5gV\nAWC3HCoOVdX1+z59b5ILr07xYJLbquoVVfXGJCeTfPfalggAwC4xKwLAbjlxuQdU1ZeS3JLkdVV1\nPsknk9xSVTdn7zTgJ5J8OEm6+7GqeiDJj5I8l+SO7n5+NUsHAGDTzIoAsPuq+8DLvNe7iKrNLwIA\ndtPD7snCcWdWBIDD6+6D7vn3AtfyamUAAAAA7DhxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYLDLxqGquqmqvllVj1fVY1X10WX7a6vqG1X1k+X9a5bt\nVVWfrapzVfWDqnrrqv8jAADYDLMiAOy+Kzlz6Lkkf9Hdf5Tk7UnuqKo3J7kzyUPdfTLJQ8vnSfKu\nJCeXtzNJ7jryVQMAsC3MigCw4y4bh7r76e7+/vLxr5M8nuSGJKeT3Lc87L4k71k+Pp3kC73n20le\nXVXXH/nKAQDYOLMiAOy+q7rnUFW9IclbknwnyXXd/XSyNxQkef3ysBuSPLnv284v2178s85U1dmq\nOnv1ywYAYNuYFQFgN5240gdW1SuTfDnJx7r7V1V10YcesK1fsqH77iR3Lz/7JV8HAGB3mBUBYHdd\n0ZlDVfXy7D3Zf7G7v7JsfubCKcDL+2eX7eeT3LTv229M8tTRLBcAgG1jVgSA3XYlr1ZWST6f5PHu\n/sy+Lz2Y5Pbl49uTfG3f9g8sr0Tx9iS/vHBKMQAAx4tZEQB2X3Vf+izdqvpPSf5nkh8m+d2y+RPZ\nu5b8gST/PsnPkryvu3+xDAj/NcmtSX6T5IPdfclrxZ0qDACH9nB3n9r0IpjLrAgA2627L3qt9wWX\njUPr4AkfAA5NHOLYMysCwOFdSRy6qlcrAwAAAOB4EYcAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGu2wcqqqbquqbVfV4VT1WVR9dtn+qqn5eVY8sb+/e\n9z0fr6pzVfXjqnrnKv8DAADYHLMiAOy+6u5LP6Dq+iTXd/f3q+pVSR5O8p4kf5bk/3b3X73o8W9O\n8qUkb0vy75L8jyT/sbufv8TvuPQiAICLebi7T216EcxlVgSA7dbddbnHXPbMoe5+uru/v3z86ySP\nJ7nhEt9yOsn93f3b7v5pknPZe/IHAOCYMSsCwO67qnsOVdUbkrwlyXeWTR+pqh9U1T1V9Zpl2w1J\nntz3bedzwIBQVWeq6mxVnb3qVQMAsHXMigCwm644DlXVK5N8OcnHuvtXSe5K8qYkNyd5OsmnLzz0\ngG9/yanA3X13d59yKjwAwO4zKwLA7rqiOFRVL8/ek/0Xu/srSdLdz3T38939uySfy+9PBz6f5KZ9\n335jkqeObskAAGwTsyIA7LYrebWySvL5JI9392f2bb9+38Pem+TR5eMHk9xWVa+oqjcmOZnku0e3\nZAAAtoVZEQB234kreMw7kvx5kh9W1SPLtk8keX9V3Zy904CfSPLhJOnux6rqgSQ/SvJckjsu9eoT\nAADsNLMiAOy4y76U/VoW4eVJAeCwvJQ9x55ZEQAO70heyh4AAACA40scAgAAABhMHAIAAAAYTBwC\nAAAAGOxKXq1sHf45yb8s71m918W+Xhf7en3s6/Wwn9fnSvf1f1j1QmALmBXXy7/162Nfr499vR72\n8/oc6ay4Fa9WliRVddarrayHfb0+9vX62NfrYT+vj30NL+T/ifWxr9fHvl4f+3o97Of1Oep97bIy\nAAAAgMHEIQAAAIDBtikO3b3pBQxiX6+Pfb0+9vV62M/rY1/DC/l/Yn3s6/Wxr9fHvl4P+3l9jnRf\nb809hwAAAABYv206cwgAAACANROHAAAAAAbbijhUVbdW1Y+r6lxV3bnp9RwnVfVEVf2wqh6pqrPL\nttdW1Teq6ifL+9dsep27qKruqapnq+rRfdsO3Le157PLMf6Dqnrr5la+ey6yrz9VVT9fju1Hqurd\n+7728WVf/7iq3rmZVe+mqrqpqr5ZVY9X1WNV9dFlu2P7CF1iPzuu4QBmxdUxK66OWXF9zIrrY1Zc\nj03MihuPQ1X1siT/Lcm7krw5yfur6s2bXdWx8yfdfXN3n1o+vzPJQ919MslDy+dcvXuT3PqibRfb\nt+9KcnJ5O5PkrjWt8bi4Ny/d10ny18uxfXN3fz1Jln8/bkvyx8v3/M3y7wxX5rkkf9Hdf5Tk7Unu\nWPapY/toXWw/J45reAGz4lqYFVfj3pgV1+XemBXXxay4HmufFTceh5K8Lcm57v6n7v5/Se5PcnrD\nazruTie5b/n4viTv2eBadlZ3fyvJL160+WL79nSSL/Sebyd5dVVdv56V7r6L7OuLOZ3k/u7+bXf/\nNMm57P07wxXo7qe7+/vLx79O8niSG+LYPlKX2M8X47hmMrPi+pkVj4BZcX3MiutjVlyPTcyK2xCH\nbkjy5L7Pz+fS/9FcnU7yD1X1cFWdWbZd191PJ3sHXZLXb2x1x8/F9q3jfDU+spyees++U97t6yNS\nVW9I8pYk34lje2VetJ8TxzW8mON/tcyK6+X5dL08p66QWXE91jUrbkMcqgO29dpXcXy9o7vfmr3T\n+e6oqv+86QUN5Tg/encleVOSm5M8neTTy3b7+ghU1SuTfDnJx7r7V5d66AHb7O8rdMB+dlzDSzn+\nV8usuB0c50fPc+oKmRXXY52z4jbEofNJbtr3+Y1JntrQWo6d7n5qef9skq9m79SyZy6cyre8f3Zz\nKzx2LrZvHedHrLuf6e7nu/t3ST6X3582aV9fo6p6efaehL7Y3V9ZNju2j9hB+9lxDQdy/K+QWXHt\nPJ+uiefU1TErrse6Z8VtiEPfS3Kyqt5YVX+QvZsoPbjhNR0LVfWHVfWqCx8n+dMkj2Zv/96+POz2\nJF/bzAqPpYvt2weTfGC5W//bk/zywmmXHM6LrlV+b/aO7WRvX99WVa+oqjdm7+Z33133+nZVVVWS\nzyd5vLs/s+9Lju0jdLH97LiGA5kVV8SsuBGeT9fEc+pqmBXXYxOz4olrW/K16+7nquojSf4+ycuS\n3NPdj214WcfFdUm+undc5USSv+3uv6uq7yV5oKo+lORnSd63wTXurKr6UpJbkryuqs4n+WSSv8zB\n+/brSd6dvRuD/SbJB9e+4B12kX19S1XdnL3TJZ9I8uEk6e7HquqBJD/K3l3+7+ju5zex7h31jiR/\nnuSHVfXIsu0TcWwftYvt5/c7ruGFzIorZVZcIbPi+pgV18qsuB5rnxWr2+V+AAAAAFNtw2VlAAAA\nAGyIOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADDY/wd+I/EEA8is4wAA\nAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39f0193c50>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGlNJREFUeJzt3U+o5XeZ5/HPM4ntohWMOAmZJDMG\nqYFOb6IUIeAwpBfTRjelC5u4aIMI5SIBhd5EN7rsxWiDzHQgYkgE20xAxSyku50gOBv/VCRoYiZj\n0WZMmZDQOKgzgkPiM4v7q/EmuVV1c+uec+65z+sFxb33V+fc+60vv6rz5J3fOae6OwAAAADM9C82\nvQAAAAAANkccAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGGxlcaiqbq+q\np6vqbFXds6qfAwDA9jErAsDRUd19+N+06ook/yPJf0hyLskPknyou39y6D8MAICtYlYEgKPlyhV9\n31uSnO3uf0qSqnooyakkez7gV9XhFyoAmOGfu/tfbnoR8DqZFQFgTbq7LnWbVT2t7Lokz+76+txy\n7P+rqtNVdaaqzqxoDQAwwf/c9ALgAMyKAHCErOrKob2q1Cv+j09335fkvsT/DQIAGMasCABHyKqu\nHDqX5IZdX1+f5LkV/SwAALaLWREAjpBVxaEfJDlRVTdW1R8luSPJIyv6WQAAbBezIgAcISt5Wll3\nv1RVdyf5hyRXJLm/u59cxc8CAGC7mBUB4GhZyVvZv+5FeB45ABzUY919ctOLgFUyKwLAwW3y3coA\nAAAA2ALiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYFdezp2r\n6pkkv0nycpKXuvtkVb01yX9J8vYkzyT5i+7+X5e3TAAAto1ZEQC2w2FcOfRn3X1zd59cvr4nyaPd\nfSLJo8vXAADMZFYEgCNuFU8rO5XkweXzB5O8fwU/AwCA7WRWBIAj5nLjUCf5x6p6rKpOL8eu6e7n\nk2T5ePVl/gwAALaTWREAtsBlveZQknd393NVdXWSb1XVf9/vHZcB4fQlbwgAwLYyKwLAFrisK4e6\n+7nl44tJvp7kliQvVNW1SbJ8fPEC972vu0/uev45AADHiFkRALbDgeNQVf1xVb35/OdJ/jzJE0ke\nSXLncrM7k3zjchcJAMB2MSsCwPa4nKeVXZPk61V1/vv8XXf/fVX9IMnDVfXRJD9P8sHLXyYAAFvG\nrAgAW6K6e9NrSFVtfhEAsJ0e87QbjjuzIgAcXHfXpW6zireyBwAAAGBLiEMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg1256QUA+9PdB7pfVR3ySgAAADhOXDkEAAAAMJg4BMdcdx/4qiMAAACOP3EIhhCJAAAA2Is4\nBAAAADDYJeNQVd1fVS9W1RO7jr21qr5VVT9dPl61HK+q+nxVna2qH1XVu1a5eAAANsusCADbbz9X\nDj2Q5PZXHbsnyaPdfSLJo8vXSfLeJCeWX6eT3Hs4ywQA4Ih6IGZFANhql4xD3f2dJL981eFTSR5c\nPn8wyft3Hf9S7/hukrdU1bWHtVgAAI4WsyIAbL+DvubQNd39fJIsH69ejl+X5Nldtzu3HHuNqjpd\nVWeq6swB1wAAwNFkVgSALXLlIX+/2uPYnm+P1N33JbkvSarKWygBABx/ZkUAOIIOeuXQC+cvAV4+\nvrgcP5fkhl23uz7JcwdfHgAAW8isCABb5KBx6JEkdy6f35nkG7uOf3h5J4pbk/zq/CXFAACMYVYE\ngC1yyaeVVdVXktyW5G1VdS7Jp5P8dZKHq+qjSX6e5IPLzb+Z5H1Jzib5bZKPrGDNMFJVpdtV9QAc\nLWZFANh+dRT+Y9PzyGF/DuPva9VeL/cAbLHHuvvkphcBq2RWBICD6+5L/kfgQZ9WBgAAAMAxIA4B\nAAAADCYOwRapKk8LAwAA4FCJQwAAAACDXfLdyoCj5/zVQ6/nBapdcQQAAMBeXDkEAAAAMJgrh2CL\nXehqoN1XFLliCAAAgItx5RAAAADAYK4cgmPI1UIAAADslyuHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAa7ZByqqvur6sWqemLXsc9U1S+q6vHl1/t2\n/d4nq+psVT1dVe9Z1cIBANg8syIAbL/9XDn0QJLb9zj+N9198/Lrm0lSVTcluSPJny73+duquuKw\nFgsAwJHzQMyKALDVLhmHuvs7SX65z+93KslD3f277v5ZkrNJbrmM9QEAcISZFQFg+13Oaw7dXVU/\nWi4lvmo5dl2SZ3fd5txy7DWq6nRVnamqM5exBgAAjiazIgBsiYPGoXuTvCPJzUmeT/LZ5Xjtcdve\n6xt0933dfbK7Tx5wDQAAHE1mRQDYIgeKQ939Qne/3N2/T/KF/OFy4HNJbth10+uTPHd5SwQAYJuY\nFQFguxwoDlXVtbu+/ECS8+9O8UiSO6rqjVV1Y5ITSb5/eUsEAGCbmBUBYLtceakbVNVXktyW5G1V\ndS7Jp5PcVlU3Z+cy4GeSfCxJuvvJqno4yU+SvJTkru5+eTVLBwBg08yKALD9qnvPp3mvdxFVm18E\nAGynx7wmC8edWREADq6793rNv1e4nHcrAwAAAGDLiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDXTIOVdUNVfXtqnqqqp6sqo8vx99aVd+qqp8uH69a\njldVfb6qzlbVj6rqXav+QwAAsBlmRQDYfvu5cuilJH/V3X+S5NYkd1XVTUnuSfJod59I8ujydZK8\nN8mJ5dfpJPce+qoBADgqzIoAsOUuGYe6+/nu/uHy+W+SPJXkuiSnkjy43OzBJO9fPj+V5Eu947tJ\n3lJV1x76ygEA2DizIgBsv9f1mkNV9fYk70zyvSTXdPfzyc5QkOTq5WbXJXl2193OLcde/b1OV9WZ\nqjrz+pcNAMBRY1YEgO105X5vWFVvSvLVJJ/o7l9X1QVvusexfs2B7vuS3Ld879f8PgAA28OsCADb\na19XDlXVG7LzYP/l7v7acviF85cALx9fXI6fS3LDrrtfn+S5w1kuAABHjVkRALbbft6trJJ8MclT\n3f25Xb/1SJI7l8/vTPKNXcc/vLwTxa1JfnX+kmIAAI4XsyIAbL/qvvhVulX175L8tyQ/TvL75fCn\nsvNc8oeT/OskP0/ywe7+5TIg/Kcktyf5bZKPdPdFnyvuUmEAOLDHuvvkphfBXGZFADjauvuCz/U+\n75JxaB084APAgYlDHHtmRQA4uP3Eodf1bmUAAAAAHC/iEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGCXjENVdUNVfbuqnqqqJ6vq48vxz1TVL6rq8eXX\n+3bd55NVdbaqnq6q96zyDwAAwOaYFQFg+1V3X/wGVdcmuba7f1hVb07yWJL3J/mLJP+7u//jq25/\nU5KvJLklyb9K8l+T/NvufvkiP+PiiwAALuSx7j656UUwl1kRAI627q5L3eaSVw519/Pd/cPl898k\neSrJdRe5y6kkD3X377r7Z0nOZufBHwCAY8asCADb73W95lBVvT3JO5N8bzl0d1X9qKrur6qrlmPX\nJXl2193OZY8BoapOV9WZqjrzulcNAMCRY1YEgO207zhUVW9K8tUkn+juXye5N8k7ktyc5Pkknz1/\n0z3u/ppLgbv7vu4+6VJ4AIDtZ1YEgO21rzhUVW/IzoP9l7v7a0nS3S9098vd/fskX8gfLgc+l+SG\nXXe/Pslzh7dkAACOErMiAGy3/bxbWSX5YpKnuvtzu45fu+tmH0jyxPL5I0nuqKo3VtWNSU4k+f7h\nLRkAgKPCrAgA2+/Kfdzm3Un+MsmPq+rx5dinknyoqm7OzmXAzyT5WJJ095NV9XCSnyR5KcldF3v3\nCQAAtppZEQC23CXfyn4ti/D2pABwUN7KnmPPrAgAB3cob2UPAAAAwPElDgEAAAAMJg4BAAAADCYO\nAQAAAAy2n3crW4d/TvJ/lo+s3ttir9fFXq+PvV4P+7w++93rf7PqhcARYFZcL//Wr4+9Xh97vR72\neX0OdVY8Eu9WliRVdca7rayHvV4fe70+9no97PP62Gt4JX8n1sder4+9Xh97vR72eX0Oe689rQwA\nAABgMHEIAAAAYLCjFIfu2/QCBrHX62Ov18der4d9Xh97Da/k78T62Ov1sdfrY6/Xwz6vz6Hu9ZF5\nzSEAAAAA1u8oXTkEAAAAwJqJQwAAAACDHYk4VFW3V9XTVXW2qu7Z9HqOk6p6pqp+XFWPV9WZ5dhb\nq+pbVfXT5eNVm17nNqqq+6vqxap6YtexPfe2dnx+Ocd/VFXv2tzKt88F9vozVfWL5dx+vKret+v3\nPrns9dNV9Z7NrHo7VdUNVfXtqnqqqp6sqo8vx53bh+gi++y8hj2YFVfHrLg6ZsX1MSuuj1lxPTYx\nK248DlXVFUn+c5L3JrkpyYeq6qbNrurY+bPuvrm7Ty5f35Pk0e4+keTR5WtevweS3P6qYxfa2/cm\nObH8Op3k3jWt8bh4IK/d6yT5m+Xcvrm7v5kky78fdyT50+U+f7v8O8P+vJTkr7r7T5LcmuSuZU+d\n24frQvucOK/hFcyKa2FWXI0HYlZclwdiVlwXs+J6rH1W3HgcSnJLkrPd/U/d/X+TPJTk1IbXdNyd\nSvLg8vmDSd6/wbVsre7+TpJfvurwhfb2VJIv9Y7vJnlLVV27npVuvwvs9YWcSvJQd/+uu3+W5Gx2\n/p1hH7r7+e7+4fL5b5I8leS6OLcP1UX2+UKc10xmVlw/s+IhMCuuj1lxfcyK67GJWfEoxKHrkjy7\n6+tzufgfmtenk/xjVT1WVaeXY9d09/PJzkmX5OqNre74udDeOs9X4+7l8tT7d13ybq8PSVW9Pck7\nk3wvzu2VedU+J85reDXn/2qZFdfL4+l6eUxdIbPieqxrVjwKcaj2ONZrX8Xx9e7ufld2Lue7q6r+\n/aYXNJTz/PDdm+QdSW5O8nySzy7H7fUhqKo3Jflqkk90968vdtM9jtnvfdpjn53X8FrO/9UyKx4N\nzvPD5zF1hcyK67HOWfEoxKFzSW7Y9fX1SZ7b0FqOne5+bvn4YpKvZ+fSshfOX8q3fHxxcys8di60\nt87zQ9bdL3T3y939+yRfyB8um7TXl6mq3pCdB6Evd/fXlsPO7UO21z47r2FPzv8VMiuuncfTNfGY\nujpmxfVY96x4FOLQD5KcqKobq+qPsvMiSo9seE3HQlX9cVW9+fznSf48yRPZ2d87l5vdmeQbm1nh\nsXShvX0kyYeXV+u/Ncmvzl92ycG86rnKH8jOuZ3s7PUdVfXGqroxOy9+9/11r29bVVUl+WKSp7r7\nc7t+y7l9iC60z85r2JNZcUXMihvh8XRNPKauhllxPTYxK155eUu+fN39UlXdneQfklyR5P7ufnLD\nyzourkny9Z3zKlcm+bvu/vuq+kGSh6vqo0l+nuSDG1zj1qqqryS5Lcnbqupckk8n+evsvbffTPK+\n7Lww2G+TfGTtC95iF9jr26rq5uxcLvlMko8lSXc/WVUPJ/lJdl7l/67ufnkT695S707yl0l+XFWP\nL8c+Fef2YbvQPn/IeQ2vZFZcKbPiCpkV18esuFZmxfVY+6xY3Z7uBwAAADDVUXhaGQAAAAAbIg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM9v8AJF0cafJ6N2sAAAAASUVO\nRK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39d047a860>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHSNJREFUeJzt3U2obWeZJ/D/08ZyUAoqtiGdpFuR\n21DWJMpFBJsmNegyOrk6sIiDMohwHURQqEl0osMatBZIdwUihkSwTAdUzECqyg6CPfHjRoImpi0v\nZdpcExIKG7VbsEl8e3DW1ZOb87nP/lr7+f3gcPZeZ+2z3/Nm5e6H//ustWqMEQAAAAB6+lebHgAA\nAAAAmyMcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI2tLByqqtuq6sdV\ndbmq7lrV+wAAMD9qRQDYHjXGWP4vrXpZkn9K8p+SXEnyvSTvH2P8aOlvBgDArKgVAWC7XLei3/u2\nJJfHGP+cJFX1QJILSQ78wK+q5SdUANDDv4wx/vWmBwGnpFYEgDUZY9Rx+6zqtLIbkzy17/mVadvv\nVdXFqrpUVZdWNAYA6OB/bXoAsAC1IgBskVV1Dh2USr1oxWeMcU+SexKrQQAAzagVAWCLrKpz6EqS\nm/c9vynJ0yt6LwAA5kWtCABbZFXh0PeSnKuqN1bVHyW5PclDK3ovAADmRa0IAFtkJaeVjTGer6qP\nJPmHJC9Lcu8Y4/FVvBcAAPOiVgSA7bKSW9mfehDOIweART0yxji/6UHAKqkVAWBxm7xbGQAAAAAz\nIBwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\ndt1ZXlxVTyb5dZIXkjw/xjhfVa9N8t+SvCHJk0n+Yozxv882TAAA5katCADzsIzOoT8bY9wyxjg/\nPb8rycNjjHNJHp6eAwDQk1oRALbcKk4ru5Dk/unx/Unes4L3AABgntSKALBlzhoOjST/WFWPVNXF\nadv1Y4xnkmT6/vozvgcAAPOkVgSAGTjTNYeSvGOM8XRVvT7JN6rqf570hVOBcPHYHQEAmCu1IgDM\nwJk6h8YYT0/fn0vy1SRvS/JsVd2QJNP35w557T1jjPP7zj8HAGCHqBUBYB4WDoeq6o+r6lVXHyf5\n8ySPJXkoyR3Tbnck+dpZBwkAwLyoFQFgPs5yWtn1Sb5aVVd/z9+NMf6+qr6X5MGq+lCSnyV539mH\nCQDAzKgVAWAmaoyx6TGkqjY/CACYp0ecdsOuUysCwOLGGHXcPqu4lT0AAAAAMyEcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGjs2HCo\nqu6tqueq6rF9215bVd+oqp9M318zba+q+mxVXa6qH1TVW1c5eAAANkutCADzd5LOofuS3HbNtruS\nPDzGOJfk4el5krwrybnp62KSu5czTAAAttR9USsCwKwdGw6NMb6V5BfXbL6Q5P7p8f1J3rNv+xfG\nnm8neXVV3bCswQIAsF3UigAwf4tec+j6McYzSTJ9f/20/cYkT+3b78q07SWq6mJVXaqqSwuOAQCA\n7aRWBIAZuW7Jv68O2DYO2nGMcU+Se5Kkqg7cBwCAnaJWBIAttGjn0LNXW4Cn789N268kuXnffjcl\neXrx4QEAMENqRQCYkUXDoYeS3DE9viPJ1/Zt/8B0J4q3J/nl1ZZiAADaUCsCwIwce1pZVX0pya1J\nXldVV5J8MslfJ3mwqj6U5GdJ3jft/vUk705yOclvknxwBWMGAGBLqBUBYP5qjM2fwu08cgBY2CNj\njPObHgSskloRABY3xjjomn8vsuhpZQAAAADsAOEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjV236QEAsDvG\nGCfet6pWOBIAALbZUXWjOnH9hEMALOQ0QdBRr/fhDwCw+05TO167r3px9ZxWBgAAANCYcAiAjRpj\nnLkLCQCA7bWMjnP14moJhwAAAAAac80hAE5lVas2rkEEALBbll03qhdXR+cQAAAAQGM6hwDYKvtX\nmKwKAQDMx7quCzTGUCcumc4hAAAAgMZ0DgFwIpu4Q4TzygEAtt8m68Sr1Itno3MIAAAAoDGdQwAc\naRMrQScdgxUiAIDN2YY68SqdRGejcwiAQ23TB/5Bxhi//wIAgKvUh6cjHAIAAABo7NhwqKrurarn\nquqxfds+VVU/r6pHp6937/vZx6vqclX9uKreuaqBA8B+OohgM9SKAD3Noe5SH57cSTqH7kty2wHb\n/2aMccv09fUkqao3J7k9yZ9Or/nbqnrZsgYLAMDWuS9qRQCYtWPDoTHGt5L84oS/70KSB8YYvx1j\n/DTJ5SRvO8P4AADYYmpFALadDqLjneWaQx+pqh9MrcSvmbbdmOSpfftcmba9RFVdrKpLVXXpDGMA\nAGA7qRUBYCYWDYfuTvKmJLckeSbJp6ftB90r7sB4boxxzxjj/Bjj/IJjAGBF5ry6Muexww5RKwLs\nqDnXWnMe+6otFA6NMZ4dY7wwxvhdks/lD+3AV5LcvG/Xm5I8fbYhAgAwJ2pFAJiXhcKhqrph39P3\nJrl6d4qHktxeVa+oqjcmOZfku2cbIgCcXFWl6qDmBGBd1IoAMC/XHbdDVX0pya1JXldVV5J8Msmt\nVXVL9tqAn0zy4SQZYzxeVQ8m+VGS55PcOcZ4YTVDBwBg09SKADB/tQ3n21XV5gcBwEtsw2fEaTXs\nGnrENVnYdWpFgJNbpH47Tf00x/rwWt3qxTHGsX/wsZ1DAPRVVTtRAAAAzMX+2uskIcYyarXTvie7\n5yy3sgcAAABg5nQOAWzA1dWZda0GnfS9AABYr6NqvU10cJ+mTp2bXfyblkXnEAAAAEBjOocA1uCw\nVZ+DVmZWtUK0yCrQnK43ZCUIAJiTba+zdrmDiJfSOQQAAADQmM4hgBU66YrQOleOjloF2vYVLACA\nuVNvsY10DgEAAAA0JhwCWJFtXxXa9vEBAOwa9RfbymllAEuyCx/2155qNoe/yUUSAQBWx4Wpe9A5\nBAAAANCYziGApqz+AACsxxy6sY8z579B3Xs8nUMAAAAAjekcAjijOa+iAACwOupE5kLnEAAAAEBj\nOocAFjT3laAxxu/Pv5773wIAACxO5xAAAABAYzqHABqbe8eQO08AANto7jUW/egcAgAAAGhM5xDA\nKVgFAgCAedBlfnLCIYAjCIO2kw96AKAzNxVh2ZxWBgAAANCYziGALbPIStBJOmmsLAEAzNu1Nd/+\n52q9F9Npfjo6hwAAAAAa0zkEcIR1ns992ErQUe99mhUR56YDAOyua+vC7jXfGEP30CnoHAIAAABo\nTOcQwBY4alXjoI6fRVZBuq8eAQDM1SK136JdM7tSM+oaOh2dQwAAAACN6RwCOIFVXa9nkWsGnfW9\ndmU1CABgW6m7mBvhEAAAAKzAWUIip0WxTk4rAwAAAGhM5xDAKSyrRXiTK0FzbnO2ggYAzNH+Gua4\nGmzT9c6ca0UWp3MIAAAAoDGdQwBNVZUVIQCANdt0Z9BJzbWDaC7zu210DgEAAAA0pnMIYAGLdt1s\n20rGXFaEtm3eAAC6mEu9yNnoHAIAAABoTDgEQKpKdw4AAIdSL+424RAAAABAY645BLCgk5x/PbfV\nFeeUAwBwlG2tF+dWd28b4RDAGe3iB9H+v2nbPvgBANg89eJucVoZAAAAQGPCIQCO5OKDAAAcRb04\nf8IhAAAAgMZccwiAE7l2Nci55QAA7KdenC+dQwAAAACN6RwCYCHruI2pc9cBAObroFpu2bWjenE5\ndA4BAAAANKZzCIAz2b9a47xyAACO4rpE20k4BMDSLPNUMy3CAAC7b9GFRrXicjmtDAAAAKAxnUMA\nLN06LlYNAMBuOawb6NqaUtfQ8ukcAgAAAGhM5xCwU47qVLHCsH6L3L7UfycAAPZTH66eziEAAACA\nxnQOAW04V3k7mHcAYJNOck1E9Qrd6BwCAAAAaEw4BLQ1xnA3LQAAXkKdSDfCIQAAAIDGhENAe1aG\nAAB23yI1nxqRLoRDAAAA7LyqcqFpOIRwCAAAAKAx4RAAAAAcwiUI6EA4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjV236QEAbFpVbXoIAABsKbUiHQiHgJ1y9cP7JLcb9UEPAADgtDIA\nAACA1nQOATvpoA4inUIAAJyG+pEudA4BAAAANKZzCNhpVnsAANjvJNeoVEPSjc4hAAAAgMZ0DgEA\nAEB0DNGXziEAAACAxnQOAQAA0JqOIbrTOQQAAADQmM4hAAAA2tEtBH+gcwgAAACgMeEQAAAAQGPH\nhkNVdXNVfbOqnqiqx6vqo9P211bVN6rqJ9P310zbq6o+W1WXq+oHVfXWVf8RAABshloRAObvJJ1D\nzyf5qzHGnyR5e5I7q+rNSe5K8vAY41ySh6fnSfKuJOemr4tJ7l76qAEA2BZqRQCYuWPDoTHGM2OM\n70+Pf53kiSQ3JrmQ5P5pt/uTvGd6fCHJF8aebyd5dVXdsPSRAwCwcWpFAJi/U11zqKrekOQtSb6T\n5PoxxjPJXlGQ5PXTbjcmeWrfy65M2679XRer6lJVXTr9sAEA2DZqRQCYpxPfyr6qXpnky0k+Nsb4\n1RG3/TvoB+MlG8a4J8k90+9+yc8BAJgPtSIAzNeJOoeq6uXZ+7D/4hjjK9PmZ6+2AE/fn5u2X0ly\n876X35Tk6eUMFwCAbaNWBIB5O8ndyirJ55M8Mcb4zL4fPZTkjunxHUm+tm/7B6Y7Ubw9yS+vthQD\nALBb1IoAMH81xtFdulX1H5L8jyQ/TPK7afMnsncu+YNJ/m2SnyV53xjjF1OB8F+S3JbkN0k+OMY4\n8lxxrcIAsLBHxhjnNz0I+lIrAsB2G2Mceq73VceGQ+vgAx8AFiYcYuepFQFgcScJh051tzIAAAAA\ndotwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKCxY8Ohqrq5qr5ZVU9U1eNV9dFp+6eq6udV9ej09e59r/l4VV2uqh9X1TtX+QcAALA5\nakUAmL8aYxy9Q9UNSW4YY3y/ql6V5JEk70nyF0n+zxjjP1+z/5uTfCnJ25L8myT/Pcm/H2O8cMR7\nHD0IAOAwj4wxzm96EPSlVgSA7TbGqOP2ObZzaIzxzBjj+9PjXyd5IsmNR7zkQpIHxhi/HWP8NMnl\n7H34AwCwY9SKADB/p7rmUFW9Iclbknxn2vSRqvpBVd1bVa+Ztt2Y5Kl9L7uSAwqEqrpYVZeq6tKp\nRw0AwNZRKwLAPJ04HKqqVyb5cpKPjTF+leTuJG9KckuSZ5J8+uquB7z8Ja3AY4x7xhjntcIDAMyf\nWhEA5utE4VBVvTx7H/ZfHGN8JUnGGM+OMV4YY/wuyefyh3bgK0lu3vfym5I8vbwhAwCwTdSKADBv\nJ7lbWSX5fJInxhif2bf9hn27vTfJY9Pjh5LcXlWvqKo3JjmX5LvLGzIAANtCrQgA83fdCfZ5R5K/\nTPLDqnp02vaJJO+vqluy1wb8ZJIPJ8kY4/GqejDJj5I8n+TOo+4+AQDArKkVAWDmjr2V/VoG4fak\nALAot7Jn56kVAWBxS7mVPQAAAAC7SzgEAAAA0JhwCAAAAKAx4RAAAABAYye5W9k6/EuS/zt9Z/Ve\nF3O9LuZ6fcz1epjn9TnpXP+7VQ8EtoBacb38W78+5np9zPV6mOf1WWqtuBV3K0uSqrrkbivrYa7X\nx1yvj7leD/O8PuYaXsz/E+tjrtfHXK+PuV4P87w+y55rp5UBAAAANCYcAgAAAGhsm8KhezY9gEbM\n9fqY6/Ux1+thntfHXMOL+X9ifcz1+pjr9THX62Ge12epc7011xwCAAAAYP22qXMIAAAAgDUTDgEA\nAAA0thXhUFXdVlU/rqrLVXXXpsezS6rqyar6YVU9WlWXpm2vrapvVNVPpu+v2fQ456iq7q2q56rq\nsX3bDpzb2vPZ6Rj/QVW9dXMjn59D5vpTVfXz6dh+tKreve9nH5/m+sdV9c7NjHqequrmqvpmVT1R\nVY9X1Uen7Y7tJTpinh3XcAC14uqoFVdHrbg+asX1USuuxyZqxY2HQ1X1siT/Ncm7krw5yfur6s2b\nHdXO+bMxxi1jjPPT87uSPDzGOJfk4ek5p3dfktuu2XbY3L4rybnp62KSu9c0xl1xX14610nyN9Ox\nfcsY4+tJMv37cXuSP51e87fTvzOczPNJ/mqM8SdJ3p7kzmlOHdvLddg8J45reBG14lqoFVfjvqgV\n1+W+qBXXRa24HmuvFTceDiV5W5LLY4x/HmP8vyQPJLmw4THtugtJ7p8e35/kPRscy2yNMb6V5BfX\nbD5sbi8k+cLY8+0kr66qG9Yz0vk7ZK4PcyHJA2OM344xfprkcvb+neEExhjPjDG+Pz3+dZInktwY\nx/ZSHTHPh3Fc05lacf3UikugVlwfteL6qBXXYxO14jaEQzcmeWrf8ys5+o/mdEaSf6yqR6rq4rTt\n+jHGM8neQZfk9Rsb3e45bG4d56vxkak99d59Le/mekmq6g1J3pLkO3Fsr8w185w4ruFajv/VUiuu\nl8/T9fKZukJqxfVYV624DeFQHbBtrH0Uu+sdY4y3Zq+d786q+o+bHlBTjvPluzvJm5LckuSZJJ+e\ntpvrJaiqVyb5cpKPjTF+ddSuB2wz3yd0wDw7ruGlHP+rpVbcDo7z5fOZukJqxfVYZ624DeHQlSQ3\n73t+U5KnNzSWnTPGeHr6/lySr2avtezZq6180/fnNjfCnXPY3DrOl2yM8ewY44Uxxu+SfC5/aJs0\n12dUVS/P3ofQF8cYX5k2O7aX7KB5dlzDgRz/K6RWXDufp2viM3V11Irrse5acRvCoe8lOVdVb6yq\nP8reRZQe2vCYdkJV/XFVverq4yR/nuSx7M3vHdNudyT52mZGuJMOm9uHknxgulr/25P88mrbJYu5\n5lzl92bv2E725vr2qnpFVb0xexe/++66xzdXVVVJPp/kiTHGZ/b9yLG9RIfNs+MaDqRWXBG14kb4\nPF0Tn6mroVZcj03UitedbchnN8Z4vqo+kuQfkrwsyb1jjMc3PKxdcX2Sr+4dV7kuyd+NMf6+qr6X\n5MGq+lCSnyV53wbHOFtV9aUktyZ5XVVdSfLJJH+dg+f260nenb0Lg/0myQfXPuAZO2Sub62qW7LX\nLvlkkg8nyRjj8ap6MMmPsneV/zvHGC9sYtwz9Y4kf5nkh1X16LTtE3FsL9th8/x+xzW8mFpxpdSK\nK6RWXB+14lqpFddj7bVijeF0PwAAAICutuG0MgAAAAA2RDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGvv/Mxm0m49lbfsAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39d03c7160>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHLFJREFUeJzt3U+obWeZJ+Df24nloBSM2AnpJN0G\nuQ2VmlzlEgI2TWrQZczkxoFFHJRBhOsgAYWaRCc6rEFrgXRXIGJIBMt0QMUMpKrsINgTNTcSYmI6\n7aVMm2tCQmGjdgs2iV8Pzrrtyb3n/zn7z9rv88Bh7/2dtc/5zse6d7/81rvWqjFGAAAAAOjpX6x6\nAgAAAACsjnAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANLawcKiq7qiq\nF6rqQlXdv6jfAwDA/KgVAWB91Bjj5H9o1VVJ/keS/5DkYpInk3xkjPGTE/9lAADMiloRANbL1Qv6\nubcmuTDG+KckqapHk5xNsuMHflWdfEIFAD388xjjX656EnBIakUAWJIxRu23zaJOK7shyUvbXl+c\nxv6/qjpXVeer6vyC5gAAHfzPVU8AjkCtCABrZFGdQzulUm864jPGeDDJg4mjQQAAzagVAWCNLKpz\n6GKSm7a9vjHJywv6XQAAzItaEQDWyKLCoSeTnKqqm6vqj5LcneTxBf0uAADmRa0IAGtkIaeVjTFe\nr6r7kvxDkquSPDTGeG4RvwsAgHlRKwLAelnIrewPPQnnkQPAUT01xjiz6knAIqkVAeDoVnm3MgAA\nAABmQDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIA\nAABo7OrjvLmqXkzymyRvJHl9jHGmqt6Z5L8keXeSF5P8xRjjfx1vmgAAzI1aEQDm4SQ6h/5sjHF6\njHFmen1/kifGGKeSPDG9BgCgJ7UiAKy5RZxWdjbJI9PzR5LctYDfAQDAPKkVAWDNHDccGkn+saqe\nqqpz09h1Y4xXkmR6vPaYvwMAgHlSKwLADBzrmkNJ3j/GeLmqrk3ynar67wd941QgnNt3QwAA5kqt\nCAAzcKzOoTHGy9Pja0m+meTWJK9W1fVJMj2+tst7HxxjnNl2/jkAABtErQgA83DkcKiq/riq3n7p\neZI/T/JskseT3DNtdk+Sbx13kgAAzItaEQDm4zinlV2X5JtVdenn/N0Y4++r6skkj1XVx5P8PMmH\njz9NAABmRq0IADNRY4xVzyFVtfpJAMA8PeW0GzadWhEAjm6MUftts4hb2QMAAAAwE8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGrt61ROAORhjXDFWVSuYCQAA6+rymlG9CMyFcAiO6NKHvw99AIDedjqQePm4\nmhFYZ04rAwAAAGhM5xDsYbejQDtt42gQAEAvB6kVAeZA5xAAAABAYzqHYAeOAgEAsJfD1ou6zYF1\npnMIAAAAoDHhEAAAAEBjwiEAAACAxlxzCLY5yrWGnDcOANDHUa9NqWYE1pnOIQAAAIDGhEMAAAAA\njTmtDCaHbRHWGgwAAMAm0DkEAAAA0JjOIQAAgAVaRce5rnjgMHQOAQAAADSmcwgmVXXgIyzrcmTl\nMEeELs350nvW5W8AAJiTy2uqg2y7TIftGNrvfWpG6EHnEAAAAEBjOodgm7l01xzliNDl79n+el3/\nzpPU7e8FABZrXeqJo3YKHfbnr8vfe9KO0okPm0jnEAAAAEBjOodgB+t4VGDRR4U2zV7r5Zx6AIDD\n2aQOouNel2kT1gAuJxwCNuqD7jgh2hhjI9YAANh8qzpwOOd66aTW7PKfM9f1gO2cVgYAAADQmM4h\nWHNOJ1uuTeqiAgA2k/oQOGk6hwAAAAAa0zkEbISTPoKmgwgAYDMsutNK3cgm0DkEAAAA0JhwCGAP\nYwzn9QMAABtNOAQAAADQmGsOAc6PBgBgY12qdXWDw+50DgEAAAA0JhwCAACYkVV2fes4353OJObM\naWXQmA/3/VkjAAAOQt3InOkcAgAAAGhM5xA0tWlHNlxoEADoZNm1zybUjupF2J3OIQAAAIDGdA7B\nmjvpIxybcNRnL44IAQCcnE2sHdXXcCWdQwAAAACN6RyCmaiqYx3dcETjcKwXADAHi+qa7lALqa/h\nD3QOAQAAADSmcwhm5DBHhtbpSMb2+S5rXpf/noMeFVqndQMAOKij1j67vb+Lo3RedV0rNptwCGZo\n3T+Q9vpwvfS9Zf8NB2kbXvd1BQA4KHXN4RwkJLKmbDKnlQEAAAA0pnMIODHrfvt4R3sAANiLepGu\ndA4BAAAANCYcAgAAAGhMOAQAAADQmGsOAUvlPG4AAID1onMIAAAAoDHhELA0uoYAAADWj3AIAAAA\noDHXHAIWRqcQAADA+hMOASdGGAQAADA/TisDAAAAaGzfcKiqHqqq16rq2W1j76yq71TVT6fHa6bx\nqqovVtWFqnqmqt63yMkDALBaakUAmL+DdA49nOSOy8buT/LEGONUkiem10nywSSnpq9zSR44mWkC\nALCmHo5aEQBmbd9waIzxvSS/vGz4bJJHpuePJLlr2/hXxpbvJ3lHVV1/UpMFAGC9qBUBYP6Oes2h\n68YYryTJ9HjtNH5Dkpe2bXdxGrtCVZ2rqvNVdf6IcwAAYD2pFQFgRk76bmU73apo7LThGOPBJA8m\nSVXtuA0AABtFrQgAa+ionUOvXmoBnh5fm8YvJrlp23Y3Jnn56NMDAGCG1IoAMCNHDYceT3LP9Pye\nJN/aNv7R6U4UtyX51aWWYgAA2lArAsCM7HtaWVV9LcntSd5VVReTfDbJXyd5rKo+nuTnST48bf7t\nJHcmuZDkt0k+toA5AwCwJtSKADB/NcbqT+F2HjkAHNlTY4wzq54ELJJaEQCOboyx0zX/3uSop5UB\nAAAAsAGEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo7OpVTwAAAABWaYzxptdVtaKZwGroHAIA\nAABoTOcQ0ML2o0GOBAEAkFzZMXT5uLqRLnQOAQAAADQmHAI22hjjiiNCO40BANDLQepBNSNdCIcA\nAAAAGnPNIWAjHeZIkHPJAQCAznQOAQAAADQmHAIAAABoTDgEbKSqcroYAADAAQiHAAAAABoTDgFt\n6S4CAOjrIHWgWpEuhEMAAAAAjbmVPbDRth/tcet6AAC2UxfCFp1DAAAAAI3pHALacGQIAADgSjqH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgsX3Doap6qKpeq6pnt419rqp+UVVPT193\nbvvep6vqQlW9UFUfWNTEAQBYPbUiAMzfQTqHHk5yxw7jfzPGOD19fTtJquqWJHcn+dPpPX9bVVed\n1GQBAFg7D0etCACztm84NMb4XpJfHvDnnU3y6Bjjd2OMnyW5kOTWY8wPAIA1plYEgPk7zjWH7quq\nZ6ZW4mumsRuSvLRtm4vT2BWq6lxVna+q88eYAwAA60mtCAAzcdRw6IEk70lyOskrST4/jdcO246d\nfsAY48ExxpkxxpkjzgEAgPWkVgSAGTlSODTGeHWM8cYY4/dJvpQ/tANfTHLTtk1vTPLy8aYIAMCc\nqBUBYF6OFA5V1fXbXn4oyaW7Uzye5O6qemtV3ZzkVJIfHm+KAADMiVoRAObl6v02qKqvJbk9ybuq\n6mKSzya5vapOZ6sN+MUkn0iSMcZzVfVYkp8keT3JvWOMNxYzdQAAVk2tCADzV2PseJr3cidRtfpJ\nAMA8PeWaLGw6tSIAHN0YY6dr/r3Jvp1DAKuwU3Bdte//aQAAbKCDNjWoF+FojnMrewAAAABmTjgE\nrJUxxq5Hhvb6HgAAm+kw9Z9aEY5GOAQAAADQmGsOAWvhKEeEnFMOAMDl1IpweDqHAAAAABoTDgEA\nAAA0JhwCAAAAaMw1h4BD2e3aQMs8p9v54wAA6+cg15BcRh2nVoTD0zkEHMh+t5E/7m1Dq2rfD/KD\nbAMAwPrar6bcifoPFk84BAAAANCY08qAPS37FvOODAEAcLlLNeJ+talaEo5G5xAAAABAYzqHgD0d\n9CgNAAAsms4gWAydQwAAAACN6RwCAADg2A7Sca7zB9aTziEAAACAxnQOAQfiSBAAAEelToT1pnMI\nAAAAoDGdQ8ChOOoDAMBe1IswPzqHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGP7hkNVdVNVfbeqnq+q56rqk9P4O6vqO1X10+nxmmm8quqLVXWhqp6pqvct+o8AAGA11IoA\nMH8H6Rx6PclfjTH+JMltSe6tqluS3J/kiTHGqSRPTK+T5INJTk1f55I8cOKzBgBgXagVAWDm9g2H\nxhivjDF+ND3/TZLnk9yQ5GySR6bNHkly1/T8bJKvjC3fT/KOqrr+xGcOAMDKqRUBYP4Odc2hqnp3\nkvcm+UGS68YYryRbRUGSa6fNbkjy0ra3XZzGLv9Z56rqfFWdP/y0AQBYN2pFAJinqw+6YVW9LcnX\nk3xqjPHrqtp10x3GxhUDYzyY5MHpZ1/xfQAA5kOtCADzdaDOoap6S7Y+7L86xvjGNPzqpRbg6fG1\nafxikpu2vf3GJC+fzHQBAFg3akUAmLeD3K2sknw5yfNjjC9s+9bjSe6Znt+T5Fvbxj863YnitiS/\nutRSDADAZlErAsD81Rh7d+lW1b9L8t+S/DjJ76fhz2TrXPLHkvzrJD9P8uExxi+nAuE/JbkjyW+T\nfGyMsee54lqFAeDInhpjnFn1JOhLrQgA622Mseu53pfsGw4tgw98ADgy4RAbT60IAEd3kHDoUHcr\nAwAAAGCzCIcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGts3HKqqm6rqu1X1fFU9V1WfnMY/V1W/qKqnp687t73n01V1oapeqKoPLPIP\nAABgddSKADB/NcbYe4Oq65NcP8b4UVW9PclTSe5K8hdJ/vcY4z9etv0tSb6W5NYk/yrJf03yb8cY\nb+zxO/aeBACwm6fGGGdWPQn6UisCwHobY9R+2+zbOTTGeGWM8aPp+W+SPJ/khj3ecjbJo2OM340x\nfpbkQrY+/AEA2DBqRQCYv0Ndc6iq3p3kvUl+MA3dV1XPVNVDVXXNNHZDkpe2ve1idigQqupcVZ2v\nqvOHnjUAAGtHrQgA83TgcKiq3pbk60k+Ncb4dZIHkrwnyekkryT5/KVNd3j7Fa3AY4wHxxhntMID\nAMyfWhEA5utA4VBVvSVbH/ZfHWN8I0nGGK+OMd4YY/w+yZfyh3bgi0lu2vb2G5O8fHJTBgBgnagV\nAWDeDnK3skry5STPjzG+sG38+m2bfSjJs9Pzx5PcXVVvraqbk5xK8sOTmzIAAOtCrQgA83f1AbZ5\nf5K/TPLjqnp6GvtMko9U1elstQG/mOQTSTLGeK6qHkvykySvJ7l3r7tPAAAwa2pFAJi5fW9lv5RJ\nuD0pAByVW9mz8dSKAHB0J3IrewAAAAA2l3AIAAAAoDHhEAAAAEBjwiEAAACAxg5yt7Jl+Ock/2d6\nZPHeFWu9LNZ6eaz1cljn5TnoWv+bRU8E1oBacbn8X7881np5rPVyWOflOdFacS3uVpYkVXXe3VaW\nw1ovj7VeHmu9HNZ5eaw1vJl/E8tjrZfHWi+PtV4O67w8J73WTisDAAAAaEw4BAAAANDYOoVDD656\nAo1Y6+Wx1stjrZfDOi+PtYY3829ieaz18ljr5bHWy2Gdl+dE13ptrjkEAAAAwPKtU+cQAAAAAEsm\nHAIAAABobC3Coaq6o6peqKoLVXX/quezSarqxar6cVU9XVXnp7F3VtV3quqn0+M1q57nHFXVQ1X1\nWlU9u21sx7WtLV+c9vFnqup9q5v5/Oyy1p+rql9M+/bTVXXntu99elrrF6rqA6uZ9TxV1U1V9d2q\ner6qnquqT07j9u0TtMc6269hB2rFxVErLo5acXnUisujVlyOVdSKKw+HquqqJP85yQeT3JLkI1V1\ny2pntXH+bIxxeoxxZnp9f5InxhinkjwxvebwHk5yx2Vju63tB5Ocmr7OJXlgSXPcFA/nyrVOkr+Z\n9u3TY4xvJ8n0/8fdSf50es/fTv/PcDCvJ/mrMcafJLktyb3Tmtq3T9Zu65zYr+FN1IpLoVZcjIej\nVlyWh6NWXBa14nIsvVZceTiU5NYkF8YY/zTG+L9JHk1ydsVz2nRnkzwyPX8kyV0rnMtsjTG+l+SX\nlw3vtrZnk3xlbPl+kndU1fXLmen87bLWuzmb5NExxu/GGD9LciFb/89wAGOMV8YYP5qe/ybJ80lu\niH37RO2xzruxX9OZWnH51IonQK24PGrF5VErLscqasV1CIduSPLSttcXs/cfzeGMJP9YVU9V1blp\n7LoxxivJ1k6X5NqVzW7z7La29vPFuG9qT31oW8u7tT4hVfXuJO9N8oPYtxfmsnVO7NdwOfv/YqkV\nl8vn6XL5TF0gteJyLKtWXIdwqHYYG0ufxeZ6/xjjfdlq57u3qv79qifUlP385D2Q5D1JTid5Jcnn\np3FrfQKq6m1Jvp7kU2OMX++16Q5j1vuAdlhn+zVcyf6/WGrF9WA/P3k+UxdIrbgcy6wV1yEcupjk\npm2vb0zy8ormsnHGGC9Pj68l+Wa2WstevdTKNz2+troZbpzd1tZ+fsLGGK+OMd4YY/w+yZfyh7ZJ\na31MVfWWbH0IfXWM8Y1p2L59wnZaZ/s17Mj+v0BqxaXzebokPlMXR624HMuuFdchHHoyyamqurmq\n/ihbF1F6fMVz2ghV9cdV9fZLz5P8eZJns7W+90yb3ZPkW6uZ4UbabW0fT/LR6Wr9tyX51aW2S47m\nsnOVP5StfTvZWuu7q+qtVXVzti5+98Nlz2+uqqqSfDnJ82OML2z7ln37BO22zvZr2JFacUHUiivh\n83RJfKYuhlpxOVZRK159vCkf3xjj9aq6L8k/JLkqyUNjjOdWPK1NcV2Sb27tV7k6yd+NMf6+qp5M\n8lhVfTzJz5N8eIVznK2q+lqS25O8q6ouJvlskr/Ozmv77SR3ZuvCYL9N8rGlT3jGdlnr26vqdLba\nJV9M8okkGWM8V1WPJflJtq7yf+8Y441VzHum3p/kL5P8uKqensY+E/v2SdttnT9iv4Y3UysulFpx\ngdSKy6NWXCq14nIsvVasMZzuBwAAANDVOpxWBgAAAMCKCIcAAAAAGhMOAQAAADQmHAIAAABoTDgE\nAAAA0JhwCAAAAKAx4RAAAABAY/8PE3lI4RVJqJwAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39d035ed30>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGgZJREFUeJzt3U+I7XeZ5/HPM4ntohWMOAmZJDMG\nuQOd3kS5hIDDkF5MG7O5cWETF20Q4bpIQKE30Y0uezHaIDMdiBgSwTYTUDEL6W4nCM5GzY2EmJjJ\neGkz5pqQ0DioM4JD4jOL+t2xktT9k7p1zqlTz+sFRZ363VNV3/vll3se3vmdc6q7AwAAAMBM/2LT\nCwAAAABgc8QhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwVYWh6rq1qp6\ntqpOV9U9q/o9AABsH7MiABwe1d0H/0OrLkvyP5L8hyRnkjyW5CPd/ZMD/2UAAGwVsyIAHC6Xr+jn\n3pTkdHf/U5JU1UNJTiTZ8wG/qg6+UAHADP/c3f9y04uAN8msCABr0t11ofus6mll1yR5ftfXZ5Zj\n/19VnayqU1V1akVrAIAJ/uemFwD7YFYEgENkVVcO7VWlXvN/fLr7viT3Jf5vEADAMGZFADhEVnXl\n0Jkk1+36+tokL6zodwEAsF3MigBwiKwqDj2W5FhVXV9Vf5TkjiSPrOh3AQCwXcyKAHCIrORpZd39\nSlXdneQfklyW5P7ufnoVvwsAgO1iVgSAw2Ulb2X/phfheeQAsF+Pd/fxTS8CVsmsCAD7t8l3KwMA\nAABgC4hDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDXX4p31xV\nzyX5TZJXk7zS3cer6p1J/kuSdyd5LslfdPf/urRlAgCwbcyKALAdDuLKoT/r7hu7+/jy9T1JHu3u\nY0keXb4GAGAmsyIAHHKreFrZiSQPLrcfTHL7Cn4HAADbyawIAIfMpcahTvKPVfV4VZ1cjl3V3S8m\nyfL5ykv8HQAAbCezIgBsgUt6zaEk7+/uF6rqyiTfqar/frHfuAwIJy94RwAAtpVZEQC2wCVdOdTd\nLyyfX07yzSQ3JXmpqq5OkuXzy+f43vu6+/iu558DAHCEmBUBYDvsOw5V1R9X1dvP3k7y50meSvJI\nkjuXu92Z5FuXukgAALaLWREAtselPK3sqiTfrKqzP+fvuvvvq+qxJA9X1ceT/DzJhy99mQAAbBmz\nIgBsieruTa8hVbX5RQDAdnrc02446syKALB/3V0Xus8q3soeAAAAgC0hDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAx2wThUVfdX1ctV9dSuY++squ9U\n1U+Xz1csx6uqvlhVp6vqyap63yoXDwDAZpkVAWD7XcyVQw8kufV1x+5J8mh3H0vy6PJ1knwwybHl\n42SSew9mmQAAHFIPxKwIAFvtgnGou7+X5JevO3wiyYPL7QeT3L7r+Fd6x/eTvKOqrj6oxQIAcLiY\nFQFg++33NYeu6u4Xk2T5fOVy/Jokz++635nl2BtU1cmqOlVVp/a5BgAADiezIgBskcsP+OfVHsd6\nrzt2931J7kuSqtrzPgAAHClmRQA4hPZ75dBLZy8BXj6/vBw/k+S6Xfe7NskL+18eAABbyKwIAFtk\nv3HokSR3LrfvTPKtXcc/urwTxc1JfnX2kmIAAMYwKwLAFrng08qq6mtJbknyrqo6k+SzSf46ycNV\n9fEkP0/y4eXu305yW5LTSX6b5GMrWDMAAIeEWREAtl91b/4p3J5HDgD79nh3H9/0ImCVzIoAsH/d\nvddr/r3Gfp9WBgAAAMARIA4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMdsE4VFX3V9XLVfXUrmOfq6pfVNUTy8dtu/7s01V1uqqeraoPrGrhAABsnlkR\nALbfxVw59ECSW/c4/jfdfePy8e0kqaobktyR5E+X7/nbqrrsoBYLAMCh80DMigCw1S4Yh7r7e0l+\neZE/70SSh7r7d939sySnk9x0CesDAOAQMysCwPa7lNccuruqnlwuJb5iOXZNkud33efMcuwNqupk\nVZ2qqlOXsAYAAA4nsyIAbIn9xqF7k7wnyY1JXkzy+eV47XHf3usHdPd93X28u4/vcw0AABxOZkUA\n2CL7ikPd/VJ3v9rdv0/ypfzhcuAzSa7bdddrk7xwaUsEAGCbmBUBYLvsKw5V1dW7vvxQkrPvTvFI\nkjuq6q1VdX2SY0l+eGlLBABgm5gVAWC7XH6hO1TV15LckuRdVXUmyWeT3FJVN2bnMuDnknwiSbr7\n6ap6OMlPkryS5K7ufnU1SwcAYNPMigCw/ap7z6d5r3cRVZtfBABsp8e9JgtHnVkRAPavu/d6zb/X\nuJR3KwMAAABgy4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg10wDlXVdVX13ap6pqqerqpPLsffWVXfqaqfLp+vWI5XVX2xqk5X1ZNV9b5V/yUAANgM\nsyIAbL+LuXLolSR/1d1/kuTmJHdV1Q1J7knyaHcfS/Lo8nWSfDDJseXjZJJ7D3zVAAAcFmZFANhy\nF4xD3f1id/9ouf2bJM8kuSbJiSQPLnd7MMnty+0TSb7SO76f5B1VdfWBrxwAgI0zKwLA9ntTrzlU\nVe9O8t4kP0hyVXe/mOwMBUmuXO52TZLnd33bmeXY63/Wyao6VVWn3vyyAQA4bMyKALCdLr/YO1bV\n25J8PcmnuvvXVXXOu+5xrN9woPu+JPctP/sNfw4AwPYwKwLA9rqoK4eq6i3ZebD/and/Yzn80tlL\ngJfPLy/HzyS5bte3X5vkhYNZLgAAh41ZEQC228W8W1kl+XKSZ7r7C7v+6JEkdy6370zyrV3HP7q8\nE8XNSX519pJiAACOFrMiAGy/6j7/VbpV9e+S/LckP07y++XwZ7LzXPKHk/zrJD9P8uHu/uUyIPyn\nJLcm+W2Sj3X3eZ8r7lJhANi3x7v7+KYXwVxmRQA43Lr7nM/1PuuCcWgdPOADwL6JQxx5ZkUA2L+L\niUNv6t3KAAAAADhaxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBLhiHquq6qvpuVT1TVU9X1SeX45+rql9U1RPLx227vufTVXW6qp6tqg+s8i8AAMDm\nmBUBYPtVd5//DlVXJ7m6u39UVW9P8niS25P8RZL/3d3/8XX3vyHJ15LclORfJfmvSf5td796nt9x\n/kUAAOfyeHcf3/QimMusCACHW3fXhe5zwSuHuvvF7v7Rcvs3SZ5Jcs15vuVEkoe6+3fd/bMkp7Pz\n4A8AwBFjVgSA7femXnOoqt6d5L1JfrAcuruqnqyq+6vqiuXYNUme3/VtZ7LHgFBVJ6vqVFWdetOr\nBgDg0DErAsB2uug4VFVvS/L1JJ/q7l8nuTfJe5LcmOTFJJ8/e9c9vv0NlwJ3933dfdyl8AAA28+s\nCADb66LiUFW9JTsP9l/t7m8kSXe/1N2vdvfvk3wpf7gc+EyS63Z9+7VJXji4JQMAcJiYFQFgu13M\nu5VVki8neaa7v7Dr+NW77vahJE8ttx9JckdVvbWqrk9yLMkPD27JAAAcFmZFANh+l1/Efd6f5C+T\n/LiqnliOfSbJR6rqxuxcBvxckk8kSXc/XVUPJ/lJkleS3HW+d58AAGCrmRUBYMtd8K3s17IIb08K\nAPvlrew58syKALB/B/JW9gAAAAAcXeIQAAAAwGDiEAAAAMBg4hAAAADAYBfzbmXr8M9J/s/ymdV7\nV+z1utjr9bHX62Gf1+di9/rfrHohcAiYFdfLv/XrY6/Xx16vh31enwOdFQ/Fu5UlSVWd8m4r62Gv\n18der4+9Xg/7vD72Gl7LfxPrY6/Xx16vj71eD/u8Pge9155WBgAAADCYOAQAAAAw2GGKQ/dtegGD\n2Ov1sdfrY6/Xwz6vj72G1/LfxPrY6/Wx1+tjr9fDPq/Pge71oXnNIQAAAADW7zBdOQQAAADAmolD\nAAAAAIMdijhUVbdW1bNVdbqq7tn0eo6Sqnquqn5cVU9U1anl2Dur6jtV9dPl8xWbXuc2qqr7q+rl\nqnpq17E997Z2fHE5x5+sqvdtbuXb5xx7/bmq+sVybj9RVbft+rNPL3v9bFV9YDOr3k5VdV1Vfbeq\nnqmqp6vqk8tx5/YBOs8+O69hD2bF1TErro5ZcX3MiutjVlyPTcyKG49DVXVZkv+c5INJbkjykaq6\nYbOrOnL+rLtv7O7jy9f3JHm0u48leXT5mjfvgSS3vu7Yufb2g0mOLR8nk9y7pjUeFQ/kjXudJH+z\nnNs3dve3k2T59+OOJH+6fM/fLv/OcHFeSfJX3f0nSW5Octeyp87tg3WufU6c1/AaZsW1MCuuxgMx\nK67LAzErrotZcT3WPituPA4luSnJ6e7+p+7+v0keSnJiw2s66k4keXC5/WCS2ze4lq3V3d9L8svX\nHT7X3p5I8pXe8f0k76iqq9ez0u13jr0+lxNJHuru33X3z5Kczs6/M1yE7n6xu3+03P5NkmeSXBPn\n9oE6zz6fi/OaycyK62dWPABmxfUxK66PWXE9NjErHoY4dE2S53d9fSbn/0vz5nSSf6yqx6vq5HLs\nqu5+Mdk56ZJcubHVHT3n2lvn+WrcvVyeev+uS97t9QGpqncneW+SH8S5vTKv2+fEeQ2v5/xfLbPi\nenk8XS+PqStkVlyPdc2KhyEO1R7Heu2rOLre393vy87lfHdV1b/f9IKGcp4fvHuTvCfJjUleTPL5\n5bi9PgBV9bYkX0/yqe7+9fnuuscx+32R9thn5zW8kfN/tcyKh4Pz/OB5TF0hs+J6rHNWPAxx6EyS\n63Z9fW2SFza0liOnu19YPr+c5JvZubTspbOX8i2fX97cCo+cc+2t8/yAdfdL3f1qd/8+yZfyh8sm\n7fUlqqq3ZOdB6Kvd/Y3lsHP7gO21z85r2JPzf4XMimvn8XRNPKaujllxPdY9Kx6GOPRYkmNVdX1V\n/VF2XkTpkQ2v6Uioqj+uqrefvZ3kz5M8lZ39vXO5251JvrWZFR5J59rbR5J8dHm1/puT/OrsZZfs\nz+ueq/yh7Jzbyc5e31FVb62q67Pz4nc/XPf6tlVVVZIvJ3mmu7+w64+c2wfoXPvsvIY9mRVXxKy4\nER5P18Rj6mqYFddjE7Pi5Ze25EvX3a9U1d1J/iHJZUnu7+6nN7yso+KqJN/cOa9yeZK/6+6/r6rH\nkjxcVR9P8vMkH97gGrdWVX0tyS1J3lVVZ5J8NslfZ++9/XaS27LzwmC/TfKxtS94i51jr2+pqhuz\nc7nkc0k+kSTd/XRVPZzkJ9l5lf+7uvvVTax7S70/yV8m+XFVPbEc+0yc2wftXPv8Eec1vJZZcaXM\niitkVlwfs+JamRXXY+2zYnV7uh8AAADAVIfhaWUAAAAAbIg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMNj/A/uGAV5bTX1oAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39d02d7dd8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAG1hJREFUeJzt3U+I7XeZ5/HPM8Z20QoqjiGTZEaR\nO9D2JspFBIchvZg2urm6sImLNohwXURQ6E10o8tejDbITAcihkSwzQRUzEK62wmCs/HPjQRNzGS8\ntBlzTUhoHNQZwSHxmUWdO1Zuqm7Vrarzr57XCy5V9bunqr73xy85D+/zPedUdwcAAACAmf7FuhcA\nAAAAwPqIQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIMtLQ5V1W1V9WRV\nXayqu5b1ewAA2D5mRQDYHNXdJ/9Dq16R5H8k+Q9JLiX5QZIPdvdPTvyXAQCwVcyKALBZrlvSz31H\nkovd/U9JUlUPJDmXZM87/Ko6+UIFADP8c3f/y3UvAq6RWREAVqS766DbLOtpZTcmeXrX15cWx/6/\nqjpfVReq6sKS1gAAE/zPdS8AjsCsCAAbZFk7h/aqUi95xKe770lyT+LRIACAYcyKALBBlrVz6FKS\nm3d9fVOSZ5b0uwAA2C5mRQDYIMuKQz9Icqaq3lxVf5Tk9iQPLel3AQCwXcyKALBBlvK0su5+oao+\nluQfkrwiyb3d/fgyfhcAANvFrAgAm2Upb2V/zYvwPHIAOKpHuvvsuhcBy2RWBICjW+e7lQEAAACw\nBcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBrjvON1fVU0l+\nk+TFJC9099mqen2S/5LkTUmeSvIX3f2/jrdMAAC2jVkRALbDSewc+rPuvqW7zy6+vivJw919JsnD\ni68BAJjJrAgAG24ZTys7l+T+xef3J3nfEn4HAADbyawIABvmuHGok/xjVT1SVecXx67v7meTZPHx\njcf8HQAAbCezIgBsgWO95lCSd3X3M1X1xiTfqqr/fthvXAwI5w+8IQAA28qsCABb4Fg7h7r7mcXH\n55N8Pck7kjxXVTckyeLj8/t87z3dfXbX888BADhFzIoAsB2OHIeq6o+r6jWXP0/y50keS/JQkjsW\nN7sjyTeOu0gAALaLWREAtsdxnlZ2fZKvV9Xln/N33f33VfWDJA9W1UeS/DzJB46/TAAAtoxZEQC2\nRHX3uteQqlr/IgBgOz3iaTecdmZFADi67q6DbrOMt7IHAAAAYEuIQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDXbfuBQCnV3df8/dU1RJW\nAgDApjIzwvrZOQQAAAAwmJ1DwIk7yqM/V36vR4MAAE6/o86NZkY4WeIQcCKOE4QO+nnu9AEATodl\nzoyJuRGOytPKAAAAAAazcwg4lpN+9Odqv8MjQQAA22kVM+Pl32NmhGtn5xAAAADAYHYOAUeyqkd/\n9vqdHg0CANgOZkbYDnYOAQAAAAxm5xBwKOt41Gc/Hg0CAOAgZkY4PDuHAAAAAAazcwi4qk3aMQQA\nwHbYpBnSDiI4mJ1DAAAAAIOJQwAAAJyYTdo1BByOp5UB+9r0O/butj0YAGDNNn1mBA5m5xAAAADA\nYHYOAS/j0R8AAIA57BwCAAAAGMzOIYANsHu3ltdRAgC2gd3mcHrYOQQAAAAwmJ1DwMtc3rni0aDl\ncW4BAIBNYecQAAAAwGDiEMCG6W47iwAAgJXxtDKAFbqW6HP5tl6gGgDg6MxScDA7hwAAAAAGs3MI\n2Fqn/VGg0/7vAwAANoOdQwAAAACDiUPAvuxcAQBgP1W10fPipq8PNok4BAAAADCY1xwC2DAe4QIA\nAFbJziEAAACAwewcAq7q8i6W7l7zSv5gm3fWXO18bvO/CwCYa9PmRTMVXDs7hwAAAAAGs3MIOJRN\ne0Ro23lECwAA2BR2DgHXxFuCAgCwF3MibC9xCAAAAGAwcQg4knU8MuTRKACAzbfOec2sCEcjDgEA\nAAAM5gWpgWPZ/ejMsl6s2iNAAADbZdVvZmJehOOxcwgAAABgMDuHgBNz5SM23vYeAGC2/Xb0HHdO\ntFMITpadQwAAAACD2TkELM1xnmvu0SAAgNPrWudEsyEslzgELN213Pm74wcAmMPsB5vB08oAAAAA\nBrNzCFgZjwwBAABsHjuHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAY7MA5V1b1V9XxVPbbr2Our6ltV9dPFx9ctjldVfb6q\nLlbVj6rq7ctcPAAA62VWBIDtd5idQ/clue2KY3clebi7zyR5ePF1krwnyZnFn/NJ7j6ZZQIAsKHu\ni1kRALbagXGou7+T5JdXHD6X5P7F5/cned+u41/qHd9N8tqquuGkFgsAwGYxKwLA9jvqaw5d393P\nJsni4xsXx29M8vSu211aHHuZqjpfVReq6sIR1wAAwGYyKwLAFrnuhH9e7XGs97phd9+T5J4kqao9\nbwMAwKliVgSADXTUnUPPXd4CvPj4/OL4pSQ377rdTUmeOfryAADYQmZFANgiR41DDyW5Y/H5HUm+\nsev4hxbvRPHOJL+6vKUYAIAxzIoAsEUOfFpZVX0lya1J3lBVl5J8OslfJ3mwqj6S5OdJPrC4+TeT\nvDfJxSS/TfLhJawZAIANYVYEgO1X3et/CrfnkQPAkT3S3WfXvQhYJrMiABxdd+/1mn8vcdSnlQEA\nAABwCohDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ngx0Yh6rq3qp6vqoe23XsM1X1i6p6dPHnvbv+7pNVdbGqnqyqdy9r4QAArJ9ZEQC232F2Dt2X5LY9\njv9Nd9+y+PPNJKmqtya5PcmfLr7nb6vqFSe1WAAANs59MSsCwFY7MA5193eS/PKQP+9ckge6+3fd\n/bMkF5O84xjrAwBgg5kVAWD7Hec1hz5WVT9abCV+3eLYjUme3nWbS4tjL1NV56vqQlVdOMYaAADY\nTGZFANgSR41Ddyd5S5Jbkjyb5LOL47XHbXuvH9Dd93T32e4+e8Q1AACwmcyKALBFjhSHuvu57n6x\nu3+f5Av5w3bgS0lu3nXTm5I8c7wlAgCwTcyKALBdjhSHquqGXV++P8nld6d4KMntVfWqqnpzkjNJ\nvn+8JQIAsE3MigCwXa476AZV9ZUktyZ5Q1VdSvLpJLdW1S3Z2Qb8VJKPJkl3P15VDyb5SZIXktzZ\n3S8uZ+kAAKybWREAtl917/k079Uuomr9iwCA7fSI12ThtDMrAsDRdfder/n3Esd5tzIAAAAAtpw4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMNiBcaiq\nbq6qb1fVE1X1eFV9fHH89VX1rar66eLj6xbHq6o+X1UXq+pHVfX2Zf8jAABYD7MiAGy/w+wceiHJ\nX3X3nyR5Z5I7q+qtSe5K8nB3n0ny8OLrJHlPkjOLP+eT3H3iqwYAYFOYFQFgyx0Yh7r72e7+4eLz\n3yR5IsmNSc4luX9xs/uTvG/x+bkkX+od303y2qq64cRXDgDA2pkVAWD7XdNrDlXVm5K8Lcn3klzf\n3c8mO0NBkjcubnZjkqd3fdulxbErf9b5qrpQVReufdkAAGwasyIAbKfrDnvDqnp1kq8m+UR3/7qq\n9r3pHsf6ZQe670lyz+Jnv+zvAQDYHmZFANheh9o5VFWvzM6d/Ze7+2uLw89d3gK8+Pj84vilJDfv\n+vabkjxzMssFAGDTmBUBYLsd5t3KKskXkzzR3Z/b9VcPJblj8fkdSb6x6/iHFu9E8c4kv7q8pRgA\ngNPFrAgA26+6r75Lt6r+XZL/luTHSX6/OPyp7DyX/MEk/zrJz5N8oLt/uRgQ/lOS25L8NsmHu/uq\nzxW3VRgAjuyR7j677kUwl1kRADZbd+/7XO/LDoxDq+AOHwCOTBzi1DMrAsDRHSYOXdO7lQEAAABw\nuohDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAgx0Y\nh6rq5qr6dlU9UVWPV9XHF8c/U1W/qKpHF3/eu+t7PllVF6vqyap69zL/AQAArI9ZEQC2X3X31W9Q\ndUOSG7r7h1X1miSPJHlfkr9I8r+7+z9ecfu3JvlKknck+VdJ/muSf9vdL17ld1x9EQDAfh7p7rPr\nXgRzmRUBYLN1dx10mwN3DnX3s939w8Xnv0nyRJIbr/It55I80N2/6+6fJbmYnTt/AABOGbMiAGy/\na3rNoap6U5K3Jfne4tDHqupHVXVvVb1ucezGJE/v+rZL2WNAqKrzVXWhqi5c86oBANg4ZkUA2E6H\njkNV9eokX03yie7+dZK7k7wlyS1Jnk3y2cs33ePbX7YVuLvv6e6ztsIDAGw/syIAbK9DxaGqemV2\n7uy/3N1fS5Lufq67X+zu3yf5Qv6wHfhSkpt3fftNSZ45uSUDALBJzIoAsN0O825lleSLSZ7o7s/t\nOn7Drpu9P8lji88fSnJ7Vb2qqt6c5EyS75/ckgEA2BRmRQDYftcd4jbvSvKXSX5cVY8ujn0qyQer\n6pbsbAN+KslHk6S7H6+qB5P8JMkLSe682rtPAACw1cyKALDlDnwr+5UswtuTAsBReSt7Tj2zIgAc\n3Ym8lT0AAAAAp5c4BAAAADCYOAQAAAAwmDgEAAAAMNhh3q1sFf45yf9ZfGT53hDnelWc69VxrlfD\neV6dw57rf7PshcAGMCuulv/Xr45zvTrO9Wo4z6tzorPiRrxbWZJU1QXvtrIazvXqONer41yvhvO8\nOs41vJT/JlbHuV4d53p1nOvVcJ5X56TPtaeVAQAAAAwmDgEAAAAMtklx6J51L2AQ53p1nOvVca5X\nw3leHecaXsp/E6vjXK+Oc706zvVqOM+rc6LnemNecwgAAACA1duknUMAAAAArJg4BAAAADDYRsSh\nqrqtqp6sqotVdde613OaVNVTVfXjqnq0qi4sjr2+qr5VVT9dfHzdute5jarq3qp6vqoe23Vsz3Nb\nOz6/uMZ/VFVvX9/Kt88+5/ozVfWLxbX9aFW9d9fffXJxrp+sqnevZ9XbqapurqpvV9UTVfV4VX18\ncdy1fYKucp5d17AHs+LymBWXx6y4OmbF1TErrsY6ZsW1x6GqekWS/5zkPUnemuSDVfXW9a7q1Pmz\n7r6lu88uvr4rycPdfSbJw4uvuXb3JbntimP7ndv3JDmz+HM+yd0rWuNpcV9efq6T5G8W1/Yt3f3N\nJFn8/+P2JH+6+J6/Xfx/hsN5IclfdfefJHlnkjsX59S1fbL2O8+J6xpewqy4EmbF5bgvZsVVuS9m\nxVUxK67GymfFtcehJO9IcrG7/6m7/2+SB5KcW/OaTrtzSe5ffH5/kvetcS1bq7u/k+SXVxze79ye\nS/Kl3vHdJK+tqhtWs9Ltt8+53s+5JA909++6+2dJLmbn/zMcQnc/290/XHz+myRPJLkxru0TdZXz\nvB/XNZOZFVfPrHgCzIqrY1ZcHbPiaqxjVtyEOHRjkqd3fX0pV/9Hc206yT9W1SNVdX5x7PrufjbZ\nueiSvHFtqzt99ju3rvPl+Nhie+q9u7a8O9cnpKrelORtSb4X1/bSXHGeE9c1XMn1v1xmxdVyf7pa\n7lOXyKy4GquaFTchDtUex3rlqzi93tXdb8/Odr47q+rfr3tBQ7nOT97dSd6S5JYkzyb57OK4c30C\nqurVSb6a5BPd/eur3XSPY873Ie1xnl3X8HKu/+UyK24G1/nJc5+6RGbF1VjlrLgJcehSkpt3fX1T\nkmfWtJZTp7ufWXx8PsnXs7O17LnLW/kWH59f3wpPnf3Orev8hHX3c939Ynf/PskX8odtk871MVXV\nK7NzJ/Tl7v7a4rBr+4TtdZ5d17An1/8SmRVXzv3pirhPXR6z4mqselbchDj0gyRnqurNVfVH2XkR\npYfWvKZToar+uKpec/nzJH+e5LHsnN87Fje7I8k31rPCU2m/c/tQkg8tXq3/nUl+dXnbJUdzxXOV\n35+dazvZOde3V9WrqurN2Xnxu++ven3bqqoqyReTPNHdn9v1V67tE7TfeXZdw57MiktiVlwL96cr\n4j51OcyKq7GOWfG64y35+Lr7har6WJJ/SPKKJPd29+NrXtZpcX2Sr+9cV7kuyd91999X1Q+SPFhV\nH0ny8yQfWOMat1ZVfSXJrUneUFWXknw6yV9n73P7zSTvzc4Lg/02yYdXvuAtts+5vrWqbsnOdsmn\nknw0Sbr78ap6MMlPsvMq/3d294vrWPeWeleSv0zy46p6dHHsU3Ftn7T9zvMHXdfwUmbFpTIrLpFZ\ncXXMiitlVlyNlc+K1e3pfgAAAABTbcLTygAAAABYE3EIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgsP8HGmKRqWMKwSgAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39d024ea20>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGmZJREFUeJzt3U+I53ed5/HXe43jYRRUXEM2ya4i\nvTDOJUojgsviHHaMXloPDvEwBhHaQwSFuUQvepzD6oDsTiBiSARHN6BiDjIzbhDci386EjQxm7UZ\ns6ZNSBhc1F3BJfG9h/r2Wkmqu6ur6/ev3o8HNFX17W9VffLhm643z/r+fr/q7gAAAAAw07/Y9AIA\nAAAA2BxxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYLCVxaGqurWqHq+q\n81V156q+DwAAu8esCADbo7r7+L9o1cuS/I8k/yHJhSQ/SPKB7v7JsX8zAAB2ilkRALbLdSv6um9L\ncr67/ylJquorSc4kOfAHflUdf6ECgBn+ubv/5aYXAVfJrAgAa9LddaVzVvWwshuTPLnv4wvLsf+v\nqs5W1bmqOreiNQDABP9z0wuAIzArAsAWWdWdQwdVqRf8xqe7705yd+K3QQAAw5gVAWCLrOrOoQtJ\nbt738U1JnlrR9wIAYLeYFQFgi6wqDv0gyamqemNV/VGS25I8sKLvBQDAbjErAsAWWcnDyrr7uar6\naJJ/SPKyJPd096Or+F4AAOwWsyIAbJeVvJT9VS/C48gB4Kge6u7Tm14ErJJZEQCObpOvVgYAAADA\nDhCHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGu+5aPrmqnkjy\nmyTPJ3muu09X1WuT/Jckb0jyRJK/6O7/dW3LBABg15gVAWA3HMedQ3/W3bd09+nl4zuTPNjdp5I8\nuHwMAMBMZkUA2HKreFjZmST3Le/fl+S9K/geAADsJrMiAGyZa41DneQfq+qhqjq7HLu+u59OkuXt\n66/xewAAsJvMigCwA67pOYeSvKO7n6qq1yf5VlX998N+4jIgnL3iiQAA7CqzIgDsgGu6c6i7n1re\nPpvk60neluSZqrohSZa3z17ic+/u7tP7Hn8OAMAJYlYEgN1w5DhUVX9cVa+6+H6SP0/ySJIHkty+\nnHZ7km9c6yIBANgtZkUA2B3X8rCy65N8vaoufp2/6+6/r6ofJLm/qj6c5OdJ3n/tywQAYMeYFQFg\nR1R3b3oNqarNLwIAdtNDHnbDSWdWBICj6+660jmreCl7AAAAAHaEOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADDYFeNQVd1TVc9W1SP7jr22qr5VVT9d\n3r5mOV5V9bmqOl9VP6qqt65y8QAAbJZZEQB232HuHLo3ya0vOnZnkge7+1SSB5ePk+TdSU4tf84m\nuet4lgkAwJa6N2ZFANhpV4xD3f2dJL980eEzSe5b3r8vyXv3Hf9i7/lukldX1Q3HtVgAALaLWREA\ndt9Rn3Po+u5+OkmWt69fjt+Y5Ml9511Yjr1EVZ2tqnNVde6IawAAYDuZFQFgh1x3zF+vDjjWB53Y\n3XcnuTtJqurAcwAAOFHMigCwhY5659AzF28BXt4+uxy/kOTmfefdlOSpoy8PAIAdZFYEgB1y1Dj0\nQJLbl/dvT/KNfcc/uLwSxduT/OriLcUAAIxhVgSAHXLFh5VV1ZeTvDPJ66rqQpJPJfnrJPdX1YeT\n/DzJ+5fTv5nkPUnOJ/ltkg+tYM0AAGwJsyIA7L7q3vxDuD2OHACO7KHuPr3pRcAqmRUB4Oi6+6Dn\n/HuBoz6sDAAAAIATQBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIA\nAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAA\nABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAA\nGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAY\nTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhM\nHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwc\nAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIA\nAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAA\nABhMHAIAAAAY7IpxqKruqapnq+qRfcc+XVW/qKqHlz/v2fd3n6iq81X1eFW9a1ULBwBg88yKALD7\nDnPn0L1Jbj3g+N909y3Ln28mSVW9OcltSf50+Zy/raqXHddiAQDYOvfGrAgAO+2Kcai7v5Pkl4f8\nemeSfKW7f9fdP0tyPsnbrmF9AABsMbMiAOy+a3nOoY9W1Y+WW4lfsxy7McmT+865sBx7iao6W1Xn\nqurcNawBAIDtZFYEgB1x1Dh0V5I3JbklydNJPrMcrwPO7YO+QHff3d2nu/v0EdcAAMB2MisCwA45\nUhzq7me6+/nu/n2Sz+cPtwNfSHLzvlNvSvLUtS0RAIBdYlYEgN1ypDhUVTfs+/B9SS6+OsUDSW6r\nqldU1RuTnEry/WtbIgAAu8SsCAC75bornVBVX07yziSvq6oLST6V5J1VdUv2bgN+IslHkqS7H62q\n+5P8JMlzSe7o7udXs3QAADbNrAgAu6+6D3yY93oXUbX5RQDAbnrIc7Jw0pkVAeDouvug5/x7gWt5\ntTIAAAAAdpw4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAw2HWbXgDASdbdhzqvqla8EgAAttFh58XEzMjquHMIAAAAYDB3DgGsyNX8Fmj/uX4jBAAArJM7\nhwAAAAAGE4cAAABgB3T3Vd2dDoclDgEAAAAM5jmHAFakqvxmBwCAAx1lTvTclKyKOASwJfywBwAA\nNsHDygAAAAAGc+cQwBZw1xAAwCwX57/DPLzMrMiquXMIAAAAYDB3DgFsgN/+AABwJWZG1sWdQwAA\nAACDuXMIYIX8tgcAgMu51HMPmSNZJ3cOAQAAAAzmziEAAADYMHcKsUnuHAIAAAAYTBwCAAAAGEwc\nAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIA\nAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAA\nABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABjsinGoqm6uqm9X1WNV\n9WhVfWw5/tqq+lZV/XR5+5rleFXV56rqfFX9qKreuur/CAAANsOsCAC77zB3Dj2X5K+6+0+SvD3J\nHVX15iR3Jnmwu08leXD5OEneneTU8udskruOfdUAAGwLsyIA7LgrxqHufrq7f7i8/5skjyW5McmZ\nJPctp92X5L3L+2eSfLH3fDfJq6vqhmNfOQAAG2dWBIDdd1XPOVRVb0jyliTfS3J9dz+d7A0FSV6/\nnHZjkif3fdqF5diLv9bZqjpXVeeuftkAAGwbsyIA7KbrDntiVb0yyVeTfLy7f11Vlzz1gGP9kgPd\ndye5e/naL/l7AAB2h1kRAHbXoe4cqqqXZ++H/Ze6+2vL4Wcu3gK8vH12OX4hyc37Pv2mJE8dz3IB\nANg2ZkUA2G2HebWySvKFJI9192f3/dUDSW5f3r89yTf2Hf/g8koUb0/yq4u3FAMAcLKYFQFg91X3\n5e/Srap/l+S/Jflxkt8vhz+ZvceS35/kXyf5eZL3d/cvlwHhPyW5Nclvk3youy/7WHG3CgPAkT3U\n3ac3vQjmMisCwHbr7ks+1vuiK8ahdfADHwCOTBzixDMrAsDRHSYOXdWrlQEAAABwsohDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg10xDlXVzVX17ap6\nrKoeraqPLcc/XVW/qKqHlz/v2fc5n6iq81X1eFW9a5X/AQAAbI5ZEQB2X3X35U+ouiHJDd39w6p6\nVZKHkrw3yV8k+d/d/R9fdP6bk3w5yduS/Ksk/zXJv+3u5y/zPS6/CADgUh7q7tObXgRzmRUBYLt1\nd13pnCveOdTdT3f3D5f3f5PksSQ3XuZTziT5Snf/rrt/luR89n74AwBwwpgVAWD3XdVzDlXVG5K8\nJcn3lkMfraofVdU9VfWa5diNSZ7c92kXcsCAUFVnq+pcVZ276lUDALB1zIoAsJsOHYeq6pVJvprk\n49396yR3JXlTkluSPJ3kMxdPPeDTX3IrcHff3d2n3QoPALD7zIoAsLsOFYeq6uXZ+2H/pe7+WpJ0\n9zPd/Xx3/z7J5/OH24EvJLl536fflOSp41syAADbxKwIALvtMK9WVkm+kOSx7v7svuM37DvtfUke\nWd5/IMltVfWKqnpjklNJvn98SwYAYFuYFQFg9113iHPekeQvk/y4qh5ejn0yyQeq6pbs3Qb8RJKP\nJEl3P1pV9yf5SZLnktxxuVefAABgp5kVAWDHXfGl7NeyCC9PCgBH5aXsOfHMigBwdMfyUvYAAAAA\nnFziEAAAAMBg4hAAAADAYOIQAAAAwGCHebWydfjnJP9necvqvS72el3s9frY6/Wwz+tz2L3+N6te\nCGwBs+J6+bd+fez1+tjr9bDP63Oss+JWvFpZklTVOa+2sh72en3s9frY6/Wwz+tjr+GF/D+xPvZ6\nfez1+tjr9bDP63Pce+1hZQAAAACDiUMAAAAAg21THLp70wsYxF6vj71eH3u9HvZ5few1vJD/J9bH\nXq+PvV4fe70e9nl9jnWvt+Y5hwAAAABYv226cwgAAACANROHAAAAAAbbijhUVbdW1eNVdb6q7tz0\nek6Sqnqiqn5cVQ9X1bnl2Gur6ltV9dPl7Ws2vc5dVFX3VNWzVfXIvmMH7m3t+dxyjf+oqt66uZXv\nnkvs9aer6hfLtf1wVb1n3999Ytnrx6vqXZtZ9W6qqpur6ttV9VhVPVpVH1uOu7aP0WX22XUNBzAr\nro5ZcXXMiutjVlwfs+J6bGJW3HgcqqqXJfnPSd6d5M1JPlBVb97sqk6cP+vuW7r79PLxnUke7O5T\nSR5cPubq3Zvk1hcdu9TevjvJqeXP2SR3rWmNJ8W9eeleJ8nfLNf2Ld39zSRZ/v24LcmfLp/zt8u/\nMxzOc0n+qrv/JMnbk9yx7Klr+3hdap8T1zW8gFlxLcyKq3FvzIrrcm/MiutiVlyPtc+KG49DSd6W\n5Hx3/1N3/98kX0lyZsNrOunOJLlvef++JO/d4Fp2Vnd/J8kvX3T4Unt7JskXe893k7y6qm5Yz0p3\n3yX2+lLOJPlKd/+uu3+W5Hz2/p3hELr76e7+4fL+b5I8luTGuLaP1WX2+VJc10xmVlw/s+IxMCuu\nj1lxfcyK67GJWXEb4tCNSZ7c9/GFXP4/mqvTSf6xqh6qqrPLseu7++lk76JL8vqNre7kudTeus5X\n46PL7an37Lvl3V4fk6p6Q5K3JPleXNsr86J9TlzX8GKu/9UyK66Xn6fr5WfqCpkV12Nds+I2xKE6\n4FivfRUn1zu6+63Zu53vjqr695te0FCu8+N3V5I3JbklydNJPrMct9fHoKpemeSrST7e3b++3KkH\nHLPfh3TAPruu4aVc/6tlVtwOrvPj52fqCpkV12Ods+I2xKELSW7e9/FNSZ7a0FpOnO5+ann7bJKv\nZ+/Wsmcu3sq3vH12cys8cS61t67zY9bdz3T38939+ySfzx9um7TX16iqXp69H0Jf6u6vLYdd28fs\noH12XcOBXP8rZFZcOz9P18TP1NUxK67HumfFbYhDP0hyqqreWFV/lL0nUXpgw2s6Earqj6vqVRff\nT/LnSR7J3v7evpx2e5JvbGaFJ9Kl9vaBJB9cnq3/7Ul+dfG2S47mRY9Vfl/2ru1kb69vq6pXVNUb\ns/fkd99f9/p2VVVVki8keay7P7vvr1zbx+hS++y6hgOZFVfErLgRfp6uiZ+pq2FWXI9NzIrXXduS\nr113P1dVH03yD0leluSe7n50w8s6Ka5P8vW96yrXJfm77v77qvpBkvur6sNJfp7k/Rtc486qqi8n\neWeS11XVhSSfSvLXOXhvv5nkPdl7YrDfJvnQ2he8wy6x1++sqluyd7vkE0k+kiTd/WhV3Z/kJ9l7\nlv87uvv5Tax7R70jyV8m+XFVPbwc+2Rc28ftUvv8Adc1vJBZcaXMiitkVlwfs+JamRXXY+2zYnV7\nuB8AAADAVNvwsDIAAAAANkQcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAA\nGOz/AbC0H30SoiJQAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b39d01cacc0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHIJJREFUeJzt3U+obWeZJ+Df217LQSmo2IZ0km5F\nbkNZkygXEWwaa9BldHJ1YBEHZRDhOoigUJPoRIc1aC2Q7gpEDIlgaQdUzECqyg6CPfHPjQRNTKe9\nlGlzTUgobNRuwSbx68FZtz25Oeeec8/Ze+299vs8cNh7f2ftvb/7sXL2m99619o1xggAAAAAPf2L\nTU8AAAAAgM0RDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG1hYOVdVt\nVfVEVV2qqrvW9T4AACyPWhEAtkeNMVb/olUvS/I/kvyHJJeT/CDJB8YYP1n5mwEAsChqRQDYLmfW\n9LpvS3JpjPFPSVJVX0lyPsmBH/hVtfqECgB6+Ocxxr/c9CTgOqkVAWAmY4w6apt1nVZ2U5Kn9j2+\nPI39f1V1oaouVtXFNc0BADr4n5ueAJyAWhEAtsi6OocOSqVedMRnjHFPknsSR4MAAJpRKwLAFllX\n59DlJLfse3xzkqfX9F4AACyLWhEAtsi6wqEfJDlbVW+sqj9KcnuSB9f0XgAALItaEQC2yFpOKxtj\nPF9VH03yD0leluTeMcZj63gvAACWRa0IANtlLV9lf92TcB45AJzUw2OMc5ueBKyTWhEATm6T31YG\nAAAAwAIIhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI2dOc2Tq+rJJL9J8kKS58cY56rqtUn+S5I3JHkyyV+MMf7X6aYJAMDSqBUBYBlW0Tn0Z2OM\nW8cY56bHdyV5aIxxNslD02MAAHpSKwLAllvHaWXnk9w/3b8/yXvX8B4AACyTWhEAtsxpw6GR5B+r\n6uGqujCN3TDGeCZJptvXn/I9AABYJrUiACzAqa45lOQdY4ynq+r1Sb5VVf/9uE+cCoQLR24IAMBS\nqRUBYAFO1Tk0xnh6un0uydeTvC3Js1V1Y5JMt88d8tx7xhjn9p1/DgDADlErAsAynDgcqqo/rqpX\nXbmf5M+TPJrkwSR3TJvdkeQbp50kAADLolYEgOU4zWllNyT5elVdeZ2/G2P8fVX9IMkDVfXhJD9P\n8v7TTxMAgIVRKwLAQtQYY9NzSFVtfhIAsEwPO+2GXadWBICTG2PUUdus46vsAQAAAFgI4RAAAABA\nY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABA\nY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABA\nY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABA\nY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABA\nY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABA\nY8IhAAAAgMaEQwAAAACNndn0BKCTMcaR21TVDDMBAGCbHKdOPIjaEVgFnUMAAAAAjekcgjU6yRGg\nK89xFAgAYHedtFPosNdROwKnoXMIAAAAoDGdQ7BijgIBAHCYVdWKh72u2hE4CeEQrIgPegAADrOu\nWhFgFZxWBgAAANCYcAgAAGBHjDF0KQHXTTgEAAAA0JhwCE5prqMzjgABACyTOg7YdsIhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo7MymJwAAAMBqVNWmpwAskM4hAAAAgMaEQwAAAACN\nOa0MFkKLMAAAh1ErAqehcwgAAACgMeEQnFJVrfVIzbpfHwCA9VLLAdtOOAQAAADQmGsOwYpcfURo\njLHS1wMAgKupGYFV0DkEAAAA0JjOIdgSjvoAAOyuK7XeabvLr349gFUQDsGa+MAGAOBqq7gUgToT\nWDWnlQEAAAA0pnMIAABgQ3QBAdtA5xAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQm\nHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaODIeq6t6qeq6qHt039tqq+lZV/XS6\nfc00XlX1uaq6VFU/qqq3rnPyAABslloRAJbvOJ1D9yW57aqxu5I8NMY4m+Sh6XGSvDvJ2ennQpK7\nVzNNAAC21H1RKwLAoh0ZDo0xvpPkl1cNn09y/3T//iTv3Tf+xbHnu0leXVU3rmqyAABsF7UiACzf\nSa85dMMY45kkmW5fP43flOSpfdtdnsZeoqouVNXFqrp4wjkAALCd1IoAsCBnVvx6dcDYOGjDMcY9\nSe5Jkqo6cBsAAHaKWhEAttBJO4eevdICPN0+N41fTnLLvu1uTvL0yacHAMACqRUBYEFOGg49mOSO\n6f4dSb6xb/yD0zdRvD3Jr660FAMA0IZaEQAW5MjTyqrqy0nemeR1VXU5yaeS/HWSB6rqw0l+nuT9\n0+bfTPKeJJeS/DbJh9YwZwAAtoRaEQCWr8bY/CncziMHgBN7eIxxbtOTgHVSKwLAyY0xDrrm34uc\n9LQyAAAAAHaAcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAA\naEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAA\naEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAA\naOzMpicAcxtjHDheVTPPBAAAADZP5xAAAABAYzqHaOOwjqGDfq+LCACgn6PqxUSdCOwmnUMAAAAA\njekcooXjHAW61vaOEAEA7K7rqRV1mwO7SDjETrveUOio11EAAADsjtPWig4oArvCaWUAAAAAjekc\nYietqmPosNd1VAgAgKupFYGl0jkEAAAA0JjOIXbKujqGDnofR4QAAJZp3TWjDiJgaXQOAQAAADSm\nc4idcuXozBwdRI4IAQAsy1xd5le/n3oR2HY6hwAAAAAa0znETpn7aBAAAAAsnc4hAAAAgMaEQ3BK\nYwwdSwAAHEqtCGw7p5XBKbnAIAAAAEumcwgAAACgMeEQO6WqZu/kcVoZAAAASyYcAgAAAGhMOAQA\nALSwiS5zgCUQDgEAAAA0JhxiJzkqBAAAAMcjHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACNndn0BGAdxhizvVdVzfZeAAAAsGo6hwAAAAAaEw4BAACskU5zYNsJhwAAAAAa\nc80hdtKVozPrvPaQI0AAAMs0R60IsCQ6hwAAAAAaEw4BAAAANOa0MnbaulqGnVIGALB86z69TM0I\nLIXOIQAAAIDGdA7RQlWt5IiQoz8AALvn6hrvtHWjmhFYGp1DAAAAAI3pHKKNw47gXOvIkKM+AAD9\nHFQDqhmBXaZzCAAAAKAxnUO050gPAABHUTMCu0znEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQ2JHhUFXdW1XPVdWj+8Y+XVW/qKpHpp/37PvdJ6rqUlU9UVXv\nWtfEAQDYPLUiACzfcTqH7kty2wHjfzPGuHX6+WaSVNWbk9ye5E+n5/xtVb1sVZMFAGDr3Be1IgAs\n2pHh0BjjO0l+eczXO5/kK2OM340xfpbkUpK3nWJ+AABsMbUiACzfaa459NGq+tHUSvyaaeymJE/t\n2+byNPYSVXWhqi5W1cVTzAEAgO2kVgSAhThpOHR3kjcluTXJM0k+M43XAduOg15gjHHPGOPcGOPc\nCecAAMB2UisCwIKcKBwaYzw7xnhhjPH7JJ/PH9qBLye5Zd+mNyd5+nRTBABgSdSKALAsJwqHqurG\nfQ/fl+TKt1M8mOT2qnpFVb0xydkk3z/dFGG1xhgv+gEAVkutyNJcXR8e9AOwy84ctUFVfTnJO5O8\nrqouJ/lUkndW1a3ZawN+MslHkmSM8VhVPZDkJ0meT3LnGOOF9UwdAIBNUysCwPLVNqTgVbX5SbDz\njrOvVx10KQSArfawa7Kw69SKrNv1/D+RehFYmjHGkX+4juwcgl2wDSEoAADbRY0IsOc0X2UPAAAA\nwMIJhwAAAI7JBaqBXSQcAgAAAGjMNYfYqLkuEl1VjvAAACzcYfXcSevFK89TJwLd6RwCAAAAaEzn\nEFvvypGcdX9tqK8lBQDYLsft6BljzFbLqRmBXaRzCAAAAKAxnUNsxEnO6z5tB5GjPAAAu+s0teJx\nrj2klgR2mXCIxZnrNDMAADbnpBeJXkVIdD3vc9rXAdgGTisDAAAAaEznEBzD1UeGHA0CANhu6+o2\nP05Hk053YGl0DgEAAAA0pnMIDnDSc9wBAABgaXQOAQAAADQmHIIT0FkEAADArhAOAQAAADQmHAIA\nALaOb/oCmI9wCAAAAKAx31bG4mziKJIjVwAAy7Ku+u3K617rGpRqR2BphENsxNUfmNv24eoDHQBg\n844TxBz2nHWrqpfMSw0JLJXTygAAAAAa0znEVjjoqJAjLwAAJNt7Kpd6FdgVOocAAAAAGtM5xFZx\n9AUAgMOoFQHWQ+cQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGNHhkNVdUtVfbuqHq+qx6rqY9P4a6vqW1X10+n2NdN4VdXnqupSVf2o\nqt667n8EAACboVYEgOU7TufQ80n+aozxJ0nenuTOqnpzkruSPDTGOJvkoelxkrw7ydnp50KSu1c+\nawAAtoVaEQAW7shwaIzxzBjjh9P93yR5PMlNSc4nuX/a7P4k753un0/yxbHnu0leXVU3rnzmAABs\nnFoRAJbvuq45VFVvSPKWJN9LcsMY45lkryhI8vpps5uSPLXvaZensatf60JVXayqi9c/bQAAto1a\nEQCW6cxxN6yqVyb5apKPjzF+XVWHbnrA2HjJwBj3JLlneu2X/B4AgOVQKwLAch2rc6iqXp69D/sv\njTG+Ng0/e6UFeLp9bhq/nOSWfU+/OcnTq5kuAADbRq0IAMt2nG8rqyRfSPL4GOOz+371YJI7pvt3\nJPnGvvEPTt9E8fYkv7rSUgwAwG5RKwLA8tUY1+7Srap/l+S/Jflxkt9Pw5/M3rnkDyT510l+nuT9\nY4xfTgXCf0pyW5LfJvnQGOOa54prFQaAE3t4jHFu05OgL7UiAGy3Mcah53pfcWQ4NAcf+ABwYsIh\ndp5aEQBO7jjh0HV9WxkAAAAAu0U4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANDYkeFQVd1SVd+uqser6rGq+tg0/umq+kVVPTL9vGff\ncz5RVZeq6omqetc6/wEAAGyOWhEAlq/GGNfeoOrGJDeOMX5YVa9K8nCS9yb5iyT/e4zxH6/a/s1J\nvpzkbUn+VZL/muTfjjFeuMZ7XHsSAMBhHh5jnNv0JOhLrQgA222MUUdtc2Tn0BjjmTHGD6f7v0ny\neJKbrvGU80m+Msb43RjjZ0kuZe/DHwCAHaNWBIDlu65rDlXVG5K8Jcn3pqGPVtWPqureqnrNNHZT\nkqf2Pe1yDigQqupCVV2sqovXPWsAALaOWhEAlunY4VBVvTLJV5N8fIzx6yR3J3lTkluTPJPkM1c2\nPeDpL2kFHmPcM8Y4pxUeAGD51IoAsFzHCoeq6uXZ+7D/0hjja0kyxnh2jPHCGOP3ST6fP7QDX05y\ny76n35zk6dVNGQCAbaJWBIBlO863lVWSLyR5fIzx2X3jN+7b7H1JHp3uP5jk9qp6RVW9McnZJN9f\n3ZQBANgWakUAWL4zx9jmHUn+MsmPq+qRaeyTST5QVbdmrw34ySQfSZIxxmNV9UCSnyR5Psmd1/r2\nCQAAFk2tCAALd+RX2c8yCV9PCgAn5avs2XlqRQA4uZV8lT0AAAAAu0s4BAAAANCYcAgAAACgMeEQ\nAAAAQGPH+bayOfxzkv8z3bJ+r4u1nou1no+1nod1ns9x1/rfrHsisAXUivPyt34+1no+1noe1nk+\nK60Vt+LbypKkqi76tpV5WOv5WOv5WOt5WOf5WGt4Mf9NzMdaz8daz8daz8M6z2fVa+20MgAAAIDG\nhEMAAAAAjW1TOHTPpifQiLWej7Wej7Weh3Wej7WGF/PfxHys9Xys9Xys9Tys83xWutZbc80hAAAA\nAOa3TZ1DAAAAAMxMOAQAAADQ2FaEQ1V1W1U9UVWXququTc9nl1TVk1X146p6pKouTmOvrapvVdVP\np9vXbHqeS1RV91bVc1X16L6xA9e29nxu2sd/VFVv3dzMl+eQtf50Vf1i2rcfqar37PvdJ6a1fqKq\n3rWZWS9TVd1SVd+uqser6rGq+tg0bt9eoWuss/0aDqBWXB+14vqoFeejVpyPWnEem6gVNx4OVdXL\nkvznJO9O8uYkH6iqN292Vjvnz8YYt44xzk2P70ry0BjjbJKHpsdcv/uS3HbV2GFr++4kZ6efC0nu\nnmmOu+K+vHStk+Rvpn371jHGN5Nk+vtxe5I/nZ7zt9PfGY7n+SR/Ncb4kyRvT3LntKb27dU6bJ0T\n+zW8iFpxFmrF9bgvasW53Be14lzUivOYvVbceDiU5G1JLo0x/mmM8X+TfCXJ+Q3PadedT3L/dP/+\nJO/d4FwWa4zxnSS/vGr4sLU9n+SLY893k7y6qm6cZ6bLd8haH+Z8kq+MMX43xvhZkkvZ+zvDMYwx\nnhlj/HC6/5skjye5KfbtlbrGOh/Gfk1nasX5qRVXQK04H7XifNSK89hErbgN4dBNSZ7a9/hyrv2P\n5vqMJP9YVQ9X1YVp7IYxxjPJ3k6X5PUbm93uOWxt7efr8dGpPfXefS3v1npFquoNSd6S5Huxb6/N\nVeuc2K/havb/9VIrzsvn6bx8pq6RWnEec9WK2xAO1QFjY/ZZ7K53jDHemr12vjur6t9vekJN2c9X\n7+4kb0pya5JnknxmGrfWK1BVr0zy1SQfH2P8+lqbHjBmvY/pgHW2X8NL2f/XS624Heznq+czdY3U\nivOYs1bchnDocpJb9j2+OcnTG5rLzhljPD3dPpfk69lrLXv2SivfdPvc5ma4cw5bW/v5io0xnh1j\nvDDG+H2Sz+cPbZPW+pSq6uXZ+xD60hjja9OwfXvFDlpn+zUcyP6/RmrF2fk8nYnP1PVRK85j7lpx\nG8KhHyQ5W1VvrKo/yt5FlB7c8Jx2QlX9cVW96sr9JH+e5NHsre8d02Z3JPnGZma4kw5b2weTfHC6\nWv/bk/zqStslJ3PVucrvy96+neyt9e1V9YqqemP2Ln73/bnnt1RVVUm+kOTxMcZn9/3Kvr1Ch62z\n/RoOpFZcE7XiRvg8nYnP1PVQK85jE7XimdNN+fTGGM9X1UeT/EOSlyW5d4zx2IantStuSPL1vf0q\nZ5L83Rjj76vqB0keqKoPJ/l5kvdvcI6LVVVfTvLOJK+rqstJPpXkr3Pw2n4zyXuyd2Gw3yb50OwT\nXrBD1vqdVXVr9toln0zykSQZYzxWVQ8k+Un2rvJ/5xjjhU3Me6HekeQvk/y4qh6Zxj4Z+/aqHbbO\nH7Bfw4upFddKrbhGasX5qBVnpVacx+y1Yo3hdD8AAACArrbhtDIAAAAANkQ4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABr7fw3yP7hWuaulAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c67f4be0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHZVJREFUeJzt3U+obWeZJ+Df28ZyUAoqtiGdpFuR\n21DWJMpFBJvGGnQZnVwdWMRBGUS4DiIo1CQ60WENWgukuwIRQyJY2gEVM5CqsoNgT/xzI0ET02kv\nZdpcExIKG7VbsEn8enD2aU/uPeeev3vttfb7PHA4+6y79tnf+c7KWW9+37vWrjFGAAAAAOjpX2x6\nAAAAAABsjnAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANLa2cKiqbq+q\nJ6vqclXdva7XAQBgedSKADAfNcY4+29a9bIk/yPJf0hyJckPknxgjPGTM38xAAAWRa0IAPNyw5q+\n79uSXB5j/FOSVNVXklxIsu8Jv6rOPqECgB7+eYzxLzc9CDgmtSIATGSMUYfts67Lym5O8vSer6+s\ntv1/VXWxqi5V1aU1jQEAOvifmx4AnIBaEQBmZF2dQ/ulUi9Z8Rlj3Jvk3sRqEABAM2pFAJiRdXUO\nXUly656vb0nyzJpeCwCAZVErAsCMrCsc+kGSc1X1xqr6oyR3JHloTa8FAMCyqBUBYEbWclnZGOOF\nqvpokn9I8rIk940xHl/HawEAsCxqRQCYl7W8lf2xB+E6cgA4qUfGGOc3PQhYJ7UiAJzcJt+tDAAA\nAIAFEA4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAau+E0T66qp5L8JsmLSV4YY5yvqtcm+S9J3pDkqSR/Mcb4X6cbJgAAS6NWBIBlOIvOoT8bY9w2\nxji/+vruJA+PMc4leXj1NQAAPakVAWDm1nFZ2YUkD6weP5DkvWt4DQAAlkmtCAAzc9pwaCT5x6p6\npKourrbdOMZ4NklWn19/ytcAAGCZ1IoAsACnuudQkneMMZ6pqtcn+VZV/fejPnFVIFw8dEcAAJZK\nrQgAC3CqzqExxjOrz88n+XqStyV5rqpuSpLV5+cPeO69Y4zze64/BwBgi6gVAWAZThwOVdUfV9Wr\ndh8n+fMkjyV5KMmdq93uTPKN0w4SAIBlUSsCwHKc5rKyG5N8vap2v8/fjTH+vqp+kOTBqvpwkp8n\nef/phwkAwMKoFQFgIWqMsekxpKo2PwgAWKZHXHbDtlMrAsDJjTHqsH3W8Vb2AAAAACyEcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nsUPDoaq6r6qer6rH9mx7bVV9q6p+uvr8mtX2qqrPVdXlqvpRVb11nYMHAGCz1IoAsHxH6Ry6P8nt\nV227O8nDY4xzSR5efZ0k705ybvVxMck9ZzNMAABm6v6oFQFg0Q4Nh8YY30nyy6s2X0jywOrxA0ne\nu2f7F8eO7yZ5dVXddFaDBQBgXtSKALB8J73n0I1jjGeTZPX59avtNyd5es9+V1bbrlFVF6vqUlVd\nOuEYAACYJ7UiACzIDWf8/WqfbWO/HccY9ya5N0mqat99AADYKmpFAJihk3YOPbfbArz6/Pxq+5Uk\nt+7Z75Ykz5x8eAAALJBaEQAW5KTh0ENJ7lw9vjPJN/Zs/+DqnSjenuRXuy3FAAC0oVYEgAU59LKy\nqvpykncmeV1VXUnyqSR/neTBqvpwkp8nef9q928meU+Sy0l+m+RDaxgzAAAzoVYEgOWrMTZ/Cbfr\nyAHgxB4ZY5zf9CBgndSKAHByY4z97vn3Eie9rAwAAACALSAcAgAAAGhMOAQAAADQmHAIAAAAoDHh\nEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHh\nEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHh\nEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAau2HTAwBgM8YYB/5bVU04EgAAYJN0DgEAAAA0pnMI\noInrdQpdb19dRAAA6DrfbjqHAAAAABrTOQSw5Y7TMXS951sRAgDo46Rd54m6cYmEQwBb6rSh0EHf\nz8keAGA7nVX9qG5cHpeVAQAAADSmcwhgi5x1t9D1XsNKEADAsq27dlQ3LofOIQAAAIDGdA4BbIEp\nOoYOek0rQQAAy7CJmnH3ddWM86ZzCAAAAKAxnUMAC7ap1Z/9xmA1CABgvjZdN6oZ503nEAAAAEBj\nwiGABRpjbHz152pzGw8AAPMzxzoW4RAAAABAa+45BLAgc19lcS05AMC8zL1+ZB6EQwALsaQTu5AI\nAGCz5l47qhfnxWVlAAAAAI3pHAKYubmv+lyPFSEAgGkstWZUL86DziEAAACAxnQOAczUUld/AACY\nxjbVi2MM3UMbpHMIAAAAoDGdQwAzs00rQLtcSw4AcHrbWCcyDzqHAAAAABrTOQQwEx1WglxLDgBw\ndB3qw710m2+OcAhgg7qd8AEAgPlxWRkAAABAY8IhAAAAmJnOHeZjjNY//yYIhwAAAAAac88hgA3o\nvBLiRoMAAAfrXCeyOTqHAAAAABrTOQQwAStAAADAXOkcAgAAAGhM5xAAAABsmE7za7lX5XR0DgEA\nAAA0pnMIYI2sAAEAAHMnHAJgI7QJAwBYTGQeXFYGAAAA0JhwCGCNqkpnDAAAMGvCIQAAAIDG3HMI\nYI1cQw4AAMydziEAAACAxoRDAGvknkMAAMDcCYcAAAAAGhMOAQAAwIboNGcOhEMAE3DSP9gYw427\nAQBgg4RDAAAAAI15K3sANkpHFQDAH2oiHdVsgs4hAAAAgMaEQwBslHsOAQDAZgmHAAAAABpzzyGA\nCbmW/FruOQQA8AfqRTZB5xAAAABAY8IhAAAAmBnd1UxJOAQAAADQmHAIYAOqymoQAADXpWZkKsIh\ngA1ywgcA4DBqRtZNOAQAAADQ2KHhUFXdV1XPV9Vje7Z9uqp+UVWPrj7es+ffPlFVl6vqyap617oG\nDrBNrAQBS6VWBJiODiLW5SidQ/cnuX2f7X8zxrht9fHNJKmqNye5I8mfrp7zt1X1srMaLAAAs3N/\n1IoAsGiHhkNjjO8k+eURv9+FJF8ZY/xujPGzJJeTvO0U4wNow0oQsERqRYDpdasbxxgZY2x6GFvt\nNPcc+mhV/WjVSvya1babkzy9Z58rq23XqKqLVXWpqi6dYgwAAMyTWhEAFuKk4dA9Sd6U5LYkzyb5\nzGr7ftHlvvHeGOPeMcb5Mcb5E44BAIB5UisCL7Hb+XH1BxxFt06pTThRODTGeG6M8eIY4/dJPp8/\ntANfSXLrnl1vSfLM6YYIAMCSqBUBYFlOFA5V1U17vnxfkt13p3goyR1V9YqqemOSc0m+f7ohAvRi\nZQRYOrUi9HacDiFdRKejZuSs3HDYDlX15STvTPK6qrqS5FNJ3llVt2WnDfipJB9JkjHG41X1YJKf\nJHkhyV1jjBfXM3QAADZNrQgAy1dzSGiravODANZm9++MlY3TmcPf63VwXJzaI+7JwrZTK8K8nXWN\nojY4mW2tFRPHxGmNMQ6dwEM7hwD2Os1JZ7/n+kPfl989ACzbusKIq7+vmuFodudpm0Iiv/vpnOat\n7AEAAABYOJ1DwIGmWHWwMnR0VbVVK0EAwDJNXY+MMdSIx7CNHUSsn84hAAAAgMZ0DgHX2OQqw97X\ntkJ0LStBAMAmbLr20G1+fEuuG/1+p6dzCAAAAKAxnUPQ2NxXEXbHZ+XgWlfPydx/l3v5fQLAcsy1\nxlAnHt3eOZrr75PN0zkEAAAA0JjOIWhqSasGVoYON9dryv3OAGCZ5lZTHESdeDxzrRl3+T1ujnAI\nmpnrieAonPwPd5S5Wdcx4PcCAGyKOvF4DpqnJf+/AqfjsjIAAACAxnQOQRPbtApgZeh0zBsAcJCl\n14xjDLXOKew3d2d1TPi9zJvOIQAAAIDGdA7Bllr6qs9RWBkCAOBquszPlnnsQecQAAAAQGM6hwAA\nAJrbxq5zHURwdDqHAAAAABoTDsEW2saVHwAAOIkxhvoYDiEcAgAAAGjMPYdgi3RcEXEtOQDA6XSp\nIdWNcDDhEGyBLid0AADOjhoS2OWyMgAAAIDGdA7BglntAQDgqNSOO1xeBtfSOQQAAADQmM4hWCCr\nPteyAgQAAHAyOocAAAAAGtM5BAuiYwgAgONSQwKH0TkEAAAA0JhwCAAAAKAx4RAshHZgAAAA1kE4\nBAAAANCYG1LDzOkYOh5vaQ8AAHA8OocAAAAAGtM5BDOlYwgAAIAp6BwCAAAAaEw4BAAAANCYcAgA\nAACgMfccgplxryEAAM7S7ru4qjOBg+gcAgAAAGhM5xCwVXZXxgAAeCkdRMBBhEMAAAC0YTERruWy\nMgAAAIDGdA7BTGjvBQBgCi4vA66mcwgAAACgMZ1DMANWbU7PteMAAMejgwjYpXMIAAAAoDHhEMyA\nrhcAADalSy1aVW1+Vjgu4RAAAABAY+45BDPgOu+TsfIDAHA2tvn+Q2pGOJxwCAAAgCTbFRIJheDo\nXFYGAAAA0JjOIZiBqtqK1ZmpWAUCAFivJXcQqRXh+HQOAQAAADSmcwhmYIkrMlOy+gMAsBlL6SBS\nL8Lp6BwCAAAAaEznEMyAew5dy+oPAMB8zK2DSK0IZ0vnEAAAAEBjOodgJua2GrNuV/+8Vn8AAOZv\nUx3vakVYL51DAAAAAI3pHAKu28Vz1JWhvatIx1nZsQoEALAsB9VvZ9VRpD6E6QmHYGaudzK8+oR7\n1ifO/b6foAcAgKNQC8JyuawMAAAAoDGdQ7AgVmMAAAA4azqHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaOzQ\ncKiqbq2qb1fVE1X1eFV9bLX9tVX1rar66erza1bbq6o+V1WXq+pHVfXWdf8QAABshloRAJbvKJ1D\nLyT5qzHGnyR5e5K7qurNSe5O8vAY41ySh1dfJ8m7k5xbfVxMcs+ZjxoAgLlQKwLAwh0aDo0xnh1j\n/HD1+DdJnkhyc5ILSR5Y7fZAkveuHl9I8sWx47tJXl1VN535yAEA2Di1IgAs37HuOVRVb0jyliTf\nS3LjGOPZZKcoSPL61W43J3l6z9OurLZd/b0uVtWlqrp0/GEDADA3akUAWKYbjrpjVb0yyVeTfHyM\n8euqOnDXfbaNazaMcW+Se1ff+5p/BwBgOdSKALBcR+ocqqqXZ+dk/6UxxtdWm5/bbQFefX5+tf1K\nklv3PP2WJM+czXABAJgbtSIALNtR3q2sknwhyRNjjM/u+aeHkty5enxnkm/s2f7B1TtRvD3Jr3Zb\nigEA2C5qRQBYvhrj+l26VfXvkvy3JD9O8vvV5k9m51ryB5P86yQ/T/L+McYvVwXCf0pye5LfJvnQ\nGOO614prFQaAE3tkjHF+04OgL7UiAMzbGOPAa713HRoOTcEJHwBOTDjE1lMrAsDJHSUcOta7lQEA\nAACwXYRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEA\nAACAxoRDAAAAAI0dGg5V1a1V9e2qeqKqHq+qj622f7qqflFVj64+3rPnOZ+oqstV9WRVvWudPwAA\nAJujVgSA5asxxvV3qLopyU1jjB9W1auSPJLkvUn+Isn/HmP8x6v2f3OSLyd5W5J/leS/Jvm3Y4wX\nr/Ma1x8EAHCQR8YY5zc9CPpSKwLAvI0x6rB9Du0cGmM8O8b44erxb5I8keTm6zzlQpKvjDF+N8b4\nWZLL2Tn5AwCwZdSKALB8x7rnUFW9IclbknxvtemjVfWjqrqvql6z2nZzkqf3PO1K9ikQqupiVV2q\nqkvHHjUAALOjVgSAZTpyOFRVr0zy1SQfH2P8Osk9Sd6U5LYkzyb5zO6u+zz9mlbgMca9Y4zzWuEB\nAJZPrQgAy3WkcKiqXp6dk/2XxhhfS5IxxnNjjBfHGL9P8vn8oR34SpJb9zz9liTPnN2QAQCYE7Ui\nACzbUd6trJJ8IckTY4zP7tl+057d3pfksdXjh5LcUVWvqKo3JjmX5PtnN2QAAOZCrQgAy3fDEfZ5\nR5K/TPLjqnp0te2TST5QVbdlpw34qSQfSZIxxuNV9WCSnyR5Icld13v3CQAAFk2tCAALd+hb2U8y\nCG9PCgAn5a3s2XpqRQA4uTN5K3sAAAAAtpdwCAAAAKAx4RAAAABAY8IhAAAAgMaO8m5lU/jnJP9n\n9Zn1e13M9VTM9XTM9TTM83SOOtf/Zt0DgRlQK07L3/rpmOvpmOtpmOfpnGmtOIt3K0uSqrrk3Vam\nYa6nY66nY66nYZ6nY67hpfw3MR1zPR1zPR1zPQ3zPJ2znmuXlQEAAAA0JhwCAAAAaGxO4dC9mx5A\nI+Z6OuZ6OuZ6GuZ5OuYaXsp/E9Mx19Mx19Mx19Mwz9M507mezT2HAAAAAJjenDqHAAAAAJiYcAgA\nAACgsVmEQ1V1e1U9WVWXq+ruTY9nm1TVU1X146p6tKourba9tqq+VVU/XX1+zabHuURVdV9VPV9V\nj+3Ztu/c1o7PrY7xH1XVWzc38uU5YK4/XVW/WB3bj1bVe/b82ydWc/1kVb1rM6Nepqq6taq+XVVP\nVNXjVfWx1XbH9hm6zjw7rmEfasX1USuuj1pxOmrF6agVp7GJWnHj4VBVvSzJf07y7iRvTvKBqnrz\nZke1df5sjHHbGOP86uu7kzw8xjiX5OHV1xzf/Uluv2rbQXP77iTnVh8Xk9wz0Ri3xf25dq6T5G9W\nx/ZtY4xvJsnq78cdSf509Zy/Xf2d4WheSPJXY4w/SfL2JHet5tSxfbYOmufEcQ0voVachFpxPe6P\nWnEq90etOBW14jQmrxU3Hg4leVuSy2OMfxpj/N8kX0lyYcNj2nYXkjywevxAkvducCyLNcb4TpJf\nXrX5oLm9kOSLY8d3k7y6qm6aZqTLd8BcH+RCkq+MMX43xvhZksvZ+TvDEYwxnh1j/HD1+DdJnkhy\ncxzbZ+o683wQxzWdqRWnp1Y8A2rF6agVp6NWnMYmasU5hEM3J3l6z9dXcv0fmuMZSf6xqh6pqour\nbTeOMZ5Ndg66JK/f2Oi2z0Fz6zhfj4+u2lPv29Pybq7PSFW9Iclbknwvju21uWqeE8c1XM3xv15q\nxWk5n07LOXWN1IrTmKpWnEM4VPtsG5OPYnu9Y4zx1uy0891VVf9+0wNqynF+9u5J8qYktyV5Nsln\nVtvN9Rmoqlcm+WqSj48xfn29XffZZr6PaJ95dlzDtRz/66VWnAfH+dlzTl0jteI0pqwV5xAOXUly\n656vb0nyzIbGsnXGGM+sPj+f5OvZaS17breVb/X5+c2NcOscNLeO8zM2xnhujPHiGOP3ST6fP7RN\nmutTqqqXZ+ck9KUxxtdWmx3bZ2y/eXZcw74c/2ukVpyc8+lEnFPXR604jalrxTmEQz9Icq6q3lhV\nf5Sdmyg9tOExbYWq+uOqetXu4yR/nuSx7Mzvnavd7kzyjc2McCsdNLcPJfng6m79b0/yq922S07m\nqmuV35edYzvZmes7quoVVfXG7Nz87vtTj2+pqqqSfCHJE2OMz+75J8f2GTponh3XsC+14pqoFTfC\n+XQizqnroVacxiZqxRtON+TTG2O8UFUfTfIPSV6W5L4xxuMbHta2uDHJ13eOq9yQ5O/GGH9fVT9I\n8mBVfTjJz5O8f4NjXKyq+nKSdyZ5XVVdSfKpJH+d/ef2m0nek50bg/02yYcmH/CCHTDX76yq27LT\nLvlUko8kyRjj8ap6MMlPsnOX/7vGGC9uYtwL9Y4kf5nkx1X16GrbJ+PYPmsHzfMHHNfwUmrFtVIr\nrpFacTpqxUmpFacxea1YY7jcDwAAAKCrOVxWBgAAAMCGCIcAAAAAGhMOAQAAADQmHAIAAABoTDgE\nAAAA0JhwCAAAAKAx4RAAAABAY/8PN7galn2yKqIAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c6776390>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHTxJREFUeJzt3U+oZneZJ/DvM4ntohWMOAmZJDMG\nqYFOb0opQsBhSC+mjdlUXNjERRtEKBcJKPQmutFlL0YbZKYDJYZEsM0EVMxCutsJgrNRU5EQEzMZ\nizZjyhQJjYM6Izgk/mZxzx1vqu7/+/5/Ph+4vO976rz3/u6vTtV5+P6ec94aYwQAAACAnv7FsgcA\nAAAAwPIIhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjcwuHququqnqx\nqi5W1YPz+jkAAKwftSIArI4aY8z+m1Zdk+R/JPkPSS4leSrJR8YYP5n5DwMAYK2oFQFgtVw7p+97\ne5KLY4x/SpKqeizJ2SS7nvCravYJFQD08M9jjH+57EHAEakVAWBBxhh10D7zuqzspiQv73h9adr2\n/1XVuaq6UFUX5jQGAOjgfy57AHAMakUAWCHz6hzaLZV604rPGON8kvOJ1SAAgGbUigCwQubVOXQp\nyS07Xt+c5JU5/SwAANaLWhEAVsi8wqGnkpyqqlur6o+S3JvkiTn9LAAA1otaEQBWyFwuKxtjvF5V\nDyT5hyTXJHl4jPH8PH4WAADrRa0IAKtlLh9lf+RBuI4cAI7r6THGmWUPAuZJrQgAx7fMTysDAAAA\nYA0IhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI1de5I3V9VLSX6T5I0kr48xzlTVO5P8lyTvTvJSkr8YY/yvkw0TAIB1o1YEgPUwi86hPxtjnB5j\nnJleP5jkyTHGqSRPTq8BAOhJrQgAK24el5WdTfLo9PzRJPfM4WcAALCe1IoAsGJOGg6NJP9YVU9X\n1blp2w1jjMtJMj1ef8KfAQDAelIrAsAaONE9h5K8f4zxSlVdn+Q7VfXfD/vGqUA4d+COAACsK7Ui\nAKyBE3UOjTFemR5fS/LNJLcnebWqbkyS6fG1Pd57foxxZsf15wAAbBC1IgCsh2OHQ1X1x1X19u3n\nSf48yXNJnkhy37TbfUm+ddJBAgCwXtSKALA+TnJZ2Q1JvllV29/n78YYf19VTyV5vKo+nuTnST58\n8mECALBm1IoAsCZqjLHsMaSqlj8IAFhPT7vshk2nVgSA4xtj1EH7zOOj7AEAAABYE8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMYO\nDIeq6uGqeq2qntux7Z1V9Z2q+un0eN20varqi1V1saqerar3zXPwAAAsl1oRANbfYTqHHkly1xXb\nHkzy5BjjVJInp9dJ8sEkp6avc0kems0wAQBYUY9ErQgAa+3AcGiM8b0kv7xi89kkj07PH01yz47t\nXxlbvp/kHVV146wGCwDAalErAsD6O+49h24YY1xOkunx+mn7TUle3rHfpWnbVarqXFVdqKoLxxwD\nAACrSa0IAGvk2hl/v9pl29htxzHG+STnk6Sqdt0HAICNolYEgBV03M6hV7dbgKfH16btl5LcsmO/\nm5O8cvzhAQCwhtSKALBGjhsOPZHkvun5fUm+tWP7R6dPorgjya+2W4oBAGhDrQgAa+TAy8qq6mtJ\n7kzyrqq6lOSzSf46yeNV9fEkP0/y4Wn3bye5O8nFJL9N8rE5jBkAgBWhVgSA9VdjLP8SbteRA8Cx\nPT3GOLPsQcA8qRUB4PjGGLvd8+9NjntZGQAAAAAbQDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo7NplDwAAAGDTjTGO/d6qmuFIAK6mcwgAAACg\nMZ1DAAAAc3SSrqGD3q+rCJgFnUMAAAAAjekcgmM66QrQTlZ8AAA2zyzrxYN+hnoSOAmdQwAAAACN\n6RyCQ5j3qo/ryAEA1t8iOoUO+tlqR+A4hEOwi2We2K+0cyxO9gAAq2dVa8dE/QgcjsvKAAAAABo7\nMByqqoer6rWqem7Hts9V1S+q6pnp6+4df/bpqrpYVS9W1QfmNXCYlTHGVV+rarexrvJ4Adh8akU6\nW4daTM0IHMZhOoceSXLXLtv/Zoxxevr6dpJU1W1J7k3yp9N7/raqrpnVYAEAWDmPRK0IAGvtwHBo\njPG9JL885Pc7m+SxMcbvxhg/S3Ixye0nGB/M3CZ23Wzi7wTAelAr0tU61lxqRWAvJ7nn0ANV9ezU\nSnzdtO2mJC/v2OfStO0qVXWuqi5U1YUTjAEAgNWkVgSANXHccOihJO9JcjrJ5SSfn7bvdiv8XaPp\nMcb5McaZMcaZY44BDq1bV02X3xOAlaVWZONsUqf2JvwOwGwdKxwaY7w6xnhjjPH7JF/KH9qBLyW5\nZceuNyd55WRDBABgnagVAWC9HCscqqobd7z8UJLtT6d4Ism9VfXWqro1yakkPzzZEOH4Oq+KdP7d\nAVgutSKraq9Pfj3M1yba5N8NOJprD9qhqr6W5M4k76qqS0k+m+TOqjqdrTbgl5J8IknGGM9X1eNJ\nfpLk9ST3jzHemM/QAQBYNrUiAKy/WoWkuKqWPwg2wiocz6uqarfbPAAb4Gn3ZGHTqRWZBXXi/tSK\nsLnGGAf+Az+wcwjWgZP9wbbnyIkfAOhAfXg0akXo7SQfZQ8AAADAmtM5xFqzInR0VoUAgE2mPgQ4\nOp1DAAAAAI3pHGJtWRUCAGCb2nA2dJlDTzqHAAAAABrTOcTasBo0W2MMK0IAwEZQJwKcjM4hAAAA\ngMaEQwAAAACNCYegsTGGNmwAAK6iToRehEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAADWWlUtewgb\ny72HoAfhEAAAAEBj1y57AADLdpTVMCuTALCats/RulwAjk7nEAAAAEBjOodYG1aDmJWTHEOzPv50\nIgHAbF15blU7AhxM5xAAAABAYzqHWDs6iDiOVT1ejjsuHUcAcDg7z5mrWg/Ace12TKsTOQ7hEGvL\niZ7OrjzmFQEAcDCXnDFLq3r87DUu9SL7cVkZAAAAQGM6h9gILjVjL12OiZ2/p1UhADgcNSTHsa7H\nyxhDnciedA4BAAAANKZziI1i9edorBxspu3j398vAByOGpLD2ITjQ53IXnQOAQAAADSmc4iNZPXn\ncKwcbDZ/vwBwNGpIruRYoAudQwAAAACN6Rxio+3smJD6X01HCQDA1apK7dhUl793HeZcSThEG9qE\ne/H3DACchNpxi/BgswmJ2OayMgAAAIDGhEO0U1WScQAADkXtCHQgHAIAAABozD2HaOvKFaBu15Nb\nAQMAACDROQQAAADQmnAIJjppAADYS7d7D3X7faE74RAAAABAY+45BDtsr45s8v2HrAABABzfpteL\nakXoSecQAAAAQGPCIdiFa6wBANiPWhHYJC4rg31sUtuwAgYAYLbUisCm0DkEAAAA0JjOITiEK1dS\n1ml1yCpQX/7uAWAxNqmDCOhJ5xAAAABAYzqH4Bh2dmSs6gqRrhG2j03HAgAsxrp2m6sVAJ1DAAAA\nAI3pHIITWsUVIqs/rv1PHAcAsGyrXo+oFYBtOocAAAAAGtM5BDO2zBUiqz/s5J5DALAaqmqluofU\nBsCVhEMwJ7uddGddFDixsx/HBwCsjlW4xExtwJUcE2xzWRkAAABAYzqHYIH2unn1YVqNpfoAAOvv\nJDXdUbqO1I7AUegcAgAAAGhM5xAs0c4VHas7AADsR70IzIvOIQAAAIDGhEMAAACQre4sHVp0JBwC\nAAAAaMw9h4CNtr3yc5RP91h3VrsAANiPepEr6RwCAAAAaEw4BAAAADu49xDdCIeAFrqc3Lv8ngAA\ni6C2ogvhEAAAAEBjbkgNAAAADeiEYi86hwAAAAAa0zkEtLHJH2tvFQgAYD42pYZUL7IfnUMAAAAA\njekcAtrZlNWfxAoQAABwcjqHAAAAABrTOQQAAAAbSqc5h6FzCGirqpwsAQCA9oRDAAAAAI25rAxo\nbx1vUK3jCQBgsdatZlQvchQ6hwAAAAAa0zkEMKmqlV8JsgIEALBcq95BpF7kOHQOAQAAADQmHAJY\nE1aBAACAeRAOAQAAADTmnkMAO6z6NeQAAKyGVasbdZlzEjqHAAAAABrTOQSwiytXXpaxImT1BwCA\ng6gZmQXhEMAhLLJt2AkeAGB9LPPyMnUjs+KyMgAAAIDGDgyHquqWqvpuVb1QVc9X1Sen7e+squ9U\n1U+nx+um7VVVX6yqi1X1bFW9b96/BMCiVNXcVmjm+b0B5kWtCLBlkXWcupFZO0zn0OtJ/mqM8SdJ\n7khyf1XdluTBJE+OMU4leXJ6nSQfTHJq+jqX5KGZjxoAgFWhVgSANXdgODTGuDzG+NH0/DdJXkhy\nU5KzSR6ddns0yT3T87NJvjK2fD/JO6rqxpmPHGCJtldrjrtis/P9Vn6AdaZWBPiD3Wq8WdR56kbm\n7Uj3HKqqdyd5b5IfJLlhjHE52SoKklw/7XZTkpd3vO3StO3K73Wuqi5U1YWjDxsAgFWjVgSA9XTo\nTyurqrcl+XqST40xfr1PWrnbH1x12/Yxxvkk56fvvfjbugPMiNUbALUiwH4OUy/u9mln6kwW5VCd\nQ1X1lmyd7L86xvjGtPnV7Rbg6fG1afulJLfsePvNSV6ZzXABAFg1akUAWG+H+bSySvLlJC+MMb6w\n44+eSHLf9Py+JN/asf2j0ydR3JHkV9stxQAAbBa1IsBsuCcly1S7ta69aYeqf5fkvyX5cZLfT5s/\nk61ryR9P8q+T/DzJh8cYv5wKhP+U5K4kv03ysTHGvteKaxUGgGN7eoxxZtmDoC+1IgCstjHGgUnj\ngeHQIjjhA8CxCYfYeGpFADi+w4RDR/q0MgAAAAA2i3AIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoLEDw6GquqWqvltVL1TV81X1yWn7\n56rqF1X1zPR19473fLqqLlbVi1X1gXn+AgAALI9aEQDWX40x9t+h6sYkN44xflRVb0/ydJJ7kvxF\nkv89xviPV+x/W5KvJbk9yb9K8l+T/Nsxxhv7/Iz9BwEA7OXpMcaZZQ+CvtSKALDaxhh10D4Hdg6N\nMS6PMX40Pf9NkheS3LTPW84meWyM8bsxxs+SXMzWyR8AgA2jVgSA9Xekew5V1buTvDfJD6ZND1TV\ns1X1cFVdN227KcnLO952KbsUCFV1rqouVNWFI48aAICVo1YEgPV06HCoqt6W5OtJPjXG+HWSh5K8\nJ8npJJeTfH57113eflUr8Bjj/BjjjFZ4AID1p1YEgPV1qHCoqt6SrZP9V8cY30iSMcarY4w3xhi/\nT/Kl/KEd+FKSW3a8/eYkr8xuyAAArBK1IgCst8N8Wlkl+XKSF8YYX9ix/cYdu30oyXPT8yeS3FtV\nb62qW5OcSvLD2Q0ZAIBVoVYEgPV37SH2eX+Sv0zy46p6Ztr2mSQfqarT2WoDfinJJ5JkjPF8VT2e\n5CdJXk9y/36fPgEAwFpTKwLAmjvwo+wXMggfTwoAx+Wj7Nl4akUAOL6ZfJQ9AAAAAJtLOAQAAADQ\nmHAIAAAAoDHhEAAAAEBjh/m0skX45yT/Z3pk/t4Vc70o5npxzPVimOfFOexc/5t5DwRWgFpxsfxf\nvzjmenHM9WKY58WZaa24Ep9WliRVdcGnrSyGuV4cc7045noxzPPimGt4M/8mFsdcL465XhxzvRjm\neXFmPdcuKwMAAABoTDgEAAAA0NgqhUPnlz2ARsz14pjrxTHXi2GeF8dcw5v5N7E45npxzPXimOvF\nMM+LM9O5Xpl7DgEAAACweKvUOQQAAADAggmHAAAAABpbiXCoqu6qqher6mJVPbjs8WySqnqpqn5c\nVc9U1YVp2zur6jtV9dPp8bplj3MdVdXDVfVaVT23Y9uuc1tbvjgd489W1fuWN/L1s8dcf66qfjEd\n289U1d07/uzT01y/WFUfWM6o11NV3VJV362qF6rq+ar65LTdsT1D+8yz4xp2oVacH7Xi/KgVF0et\nuDhqxcVYRq249HCoqq5J8p+TfDDJbUk+UlW3LXdUG+fPxhinxxhnptcPJnlyjHEqyZPTa47ukSR3\nXbFtr7n9YJJT09e5JA8taIyb4pFcPddJ8jfTsX16jPHtJJn+/7g3yZ9O7/nb6f8ZDuf1JH81xviT\nJHckuX+aU8f2bO01z4njGt5ErbgQasX5eCRqxUV5JGrFRVErLsbCa8Wlh0NJbk9ycYzxT2OM/5vk\nsSRnlzymTXc2yaPT80eT3LPEsaytMcb3kvzyis17ze3ZJF8ZW76f5B1VdeNiRrr+9pjrvZxN8tgY\n43djjJ8luZit/2c4hDHG5THGj6bnv0nyQpKb4tieqX3meS+OazpTKy6eWnEG1IqLo1ZcHLXiYiyj\nVlyFcOimJC/veH0p+//SHM1I8o9V9XRVnZu23TDGuJxsHXRJrl/a6DbPXnPrOJ+PB6b21Id3tLyb\n6xmpqncneW+SH8SxPTdXzHPiuIYrOf7nS624WM6ni+WcOkdqxcVYVK24CuFQ7bJtLHwUm+v9Y4z3\nZaud7/6q+vfLHlBTjvPZeyjJe5KcTnI5yeen7eZ6BqrqbUm+nuRTY4xf77frLtvM9yHtMs+Oa7ia\n43++1IqrwXE+e86pc6RWXIxF1oqrEA5dSnLLjtc3J3llSWPZOGOMV6bH15J8M1utZa9ut/JNj68t\nb4QbZ6+5dZzP2Bjj1THGG2OM3yf5Uv7QNmmuT6iq3pKtk9BXxxjfmDY7tmdst3l2XMOuHP9zpFZc\nOOfTBXFOnR+14mIsulZchXDoqSSnqurWqvqjbN1E6Yklj2kjVNUfV9Xbt58n+fMkz2Vrfu+bdrsv\nybeWM8KNtNfcPpHko9Pd+u9I8qvttkuO54prlT+UrWM72Zrre6vqrVV1a7ZufvfDRY9vXVVVJfly\nkhfGGF/Y8UeO7Rnaa54d17ArteKcqBWXwvl0QZxT50OtuBjLqBWvPdmQT26M8XpVPZDkH5Jck+Th\nMcbzSx7WprghyTe3jqtcm+Tvxhh/X1VPJXm8qj6e5OdJPrzEMa6tqvpakjuTvKuqLiX5bJK/zu5z\n++0kd2frxmC/TfKxhQ94je0x13dW1elstUu+lOQTSTLGeL6qHk/yk2zd5f/+McYbyxj3mnp/kr9M\n8uOqemba9pk4tmdtr3n+iOMa3kytOFdqxTlSKy6OWnGh1IqLsfBascZwuR8AAABAV6twWRkAAAAA\nSyIcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI39P4hR+deQebiFAAAA\nAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c66e5320>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHgpJREFUeJzt3U2obWeZJ/D/017LQSkYsQ3pJN0G\nuQ2VmkS5SMCmSQ26jE6uDizioAwiXAcJKNQkOtFhDUoLpLsCEUMiWNoBFTOQqrKDYE/8uJGgiemU\nlzJtrgkJhY3aJdgkvj04+1RObs6552t/rLWf3w8OZ5911t77va8rZz/+32etVWOMAAAAANDTv9n0\nAAAAAADYHOEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaGxl4VBV3V5V\nT1XVpaq6Z1XvAwDA/KgVAWA6aoyx/Betek2Sf0zyX5JcTvKDJB8cY/xk6W8GAMCsqBUBYFrOrOh1\n35nk0hjjn5Kkqr6S5HySfT/wq2r5CRUA9PDPY4x/u+lBwDGpFQFgTcYYddg+qzqt7Pokz+z5+fJi\n27+qqgtVdbGqLq5oDADQwf/e9ADgBNSKADAhq+oc2i+VesWKzxjjviT3JVaDAACaUSsCwISsqnPo\ncpIb9/x8Q5JnV/ReAADMi1oRACZkVeHQD5KcraqbquoPktyR5OEVvRcAAPOiVgSACVnJaWVjjBer\n6u4kf5/kNUnuH2M8sYr3AgBgXtSKADAtK7mV/bEH4TxyADipR8cY5zY9CFgltSIAnNwm71YGAAAA\nwAwIhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAA\nAI2dOc2Tq+rpJL9J8lKSF8cY56rqTUn+e5K3Jnk6yZ+NMf7P6YYJAMDcqBUBYB6W0Tn0J2OMW8YY\n5xY/35PkkTHG2SSPLH4GAKAntSIATNwqTis7n+TBxeMHk7xvBe8BAMA8qRUBYGJOGw6NJP9QVY9W\n1YXFtmvHGM8lyeL7W075HgAAzJNaEQBm4FTXHEryrjHGs1X1liTfqqr/ddQnLgqEC4fuCADAXKkV\nAWAGTtU5NMZ4dvH9hSRfT/LOJM9X1XVJsvj+wgHPvW+McW7P+ecAAGwRtSIAzMOJw6Gq+sOqesPu\n4yR/muTxJA8nuXOx251JvnHaQQIAMC9qRQCYj9OcVnZtkq9X1e7r/O0Y4++q6gdJHqqqjyT5eZIP\nnH6YAADMjFoRAGaixhibHkOqavODAIB5etRpN2w7tSIAnNwYow7bZxW3sgcAAABgJoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0d\nGg5V1f1V9UJVPb5n25uq6ltV9dPF92sW26uqPldVl6rqR1X1jlUOHgCAzVIrAsD8HaVz6IEkt1+x\n7Z4kj4wxziZ5ZPFzkrwnydnF14Uk9y5nmAAATNQDUSsCwKwdGg6NMb6T5JdXbD6f5MHF4weTvG/P\n9i+OHd9N8saqum5ZgwUAYFrUigAwfye95tC1Y4znkmTx/S2L7dcneWbPfpcX216lqi5U1cWqunjC\nMQAAME1qRQCYkTNLfr3aZ9vYb8cxxn1J7kuSqtp3HwAAtopaEQAm6KSdQ8/vtgAvvr+w2H45yY17\n9rshybMnHx4AADOkVgSAGTlpOPRwkjsXj+9M8o092z+0uBPFrUl+tdtSDABAG2pFAJiRQ08rq6ov\nJ7ktyZur6nKSTyX5yyQPVdVHkvw8yQcWu38zyXuTXEry2yQfXsGYAQCYCLUiAMxfjbH5U7idRw4A\nJ/boGOPcpgcBq6RWBICTG2Psd82/VzjpaWUAAAAAbAHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaO7PpAcAqjTH+9XFVbXAkAABMxd4acT/qRqAbnUMAAAAAjekcYisctvqz3z5WhAAA+jhKvbh3\nX7Ui0InOIQAAAIDGdA7R1u7qkVUhAIDtdZyOof2ep1YEOtA5BAAAANCYcAgAAACgMaeVMWsnbRPe\n7zW0DAMAbI9l1Il7X0etCGwznUMAAAAAjekcYmkOWp2xygIAAADTpXMIAAAAoDGdQ6zclR1Fy+wk\n2n2tZZ1TDgDAdKn5AFZD5xAAAABAYzqHWLu9Kz5XdhHtdzcId4gAAOhHlxDA+ugcAgAAAGhM5xBL\nc5Lr/xy0737br3btItceAgCYJ/UbwOYJh5itMcZSTjVzuhoAwPrMLQxSKwIdOK0MAAAAoDGdQ5zI\nVFd8DrrA9d7fucA1AMBmTLWGvJI6EehG5xAAAABAYzqHOJa5rPbs2m/Vx0oQAMB6TLV2VA8CvJLO\nIQAAAIDGdA4BAABLMdVOIQCuTucQAAAAQGPCIQAAAIDGhEMAAAAAjQmHOJaqmtTdHcYYzm0HAACA\nUxAOcSJXhkRTCowAANiMqS0kAnA0wiEAAACAxg4Nh6rq/qp6oaoe37Pt01X1i6p6bPH13j2/+0RV\nXaqqp6rq3asaONOwd3Vo9/FBXwDA9lErMkcuTQDwSkfpHHogye37bP/rMcYti69vJklV3ZzkjiR/\nvHjO31TVa5Y1WAAAJueBqBUBYNYODYfGGN9J8ssjvt75JF8ZY/xujPGzJJeSvPMU42OLrLKDyOoP\nAGyGWhEA5u801xy6u6p+tGglvmax7fokz+zZ5/Ji26tU1YWqulhVF08xBgAApkmtCAAzcdJw6N4k\nb0tyS5LnknxmsX2/tpB92znGGPeNMc6NMc6dcAzM1Cq6h1zXCAAmRa0IADNyonBojPH8GOOlMcbv\nk3w+L7cDX05y455db0jy7OmGCADAnKgVAWBeThQOVdV1e358f5Ldu1M8nOSOqnpdVd2U5GyS759u\niGyjZXf6uOYQAEyHWpGjcKdbgOk4c9gOVfXlJLcleXNVXU7yqSS3VdUt2WkDfjrJR5NkjPFEVT2U\n5CdJXkxy1xjjpdUMHQCATVMrAsD81RS6Lapq84NgEk57PFplAhp61DVZ2HZqxfk4Ti13nLpt2f+f\nRc0IdDLGOPSP3qGdQ7BOux/UUwgtAQCYhivDHLUiwHKd5lb2AAAAAMycziEmae/qkJUhAIB5WFcX\n+Enfx+lkAPvTOQQAAADQmM4hJu8oK0NWgQAApuOgawQtu2Y7Tre5ehHgYDqHAAAAABrTOcRsWO0B\nAJinddRxakWAk9M5BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGzmx6AAAAAGzOGONY+1fVikYC\nbIpwCLbUUT7kfbADAPRz3DDooOerJWF7OK0MAAAAoDGdQ7AFTrr6c+XzrP4AAGyf03YKHfa6akiY\nP51DAAAAAI3pHIIZsvoDAMBRrKpu3O891JAwXzqHAAAAABrTOQQzso6VnyvfxwoQAMB8rKtevNp7\nqx9hfnQOAQAAADQmHIKZ2NQq0BhjoytQAAAcbko121TGARydcAg4kikVHAAAACyPcAgAAACgMeEQ\nAAAAS6XrHOZFOAQAAADQmFvZw8RZcQEAAGCVdA4BAAAANKZzCAAAYKZ0mQPLoHMIAAAAoDHhEExc\nVaWqNj0MAAAAtpRwCAAAAKAx1xwC2jno3HwdWgAA7LW3blQrss2EQ8CRbMOH4WEXbNzv99vw7wYA\nttdurTK1C1PPvYbabz4tMLLNnFYGAAAA0JjOIaCFk66m7T7PihAAwPY6TeeVepFtoHMIAAAAoDHh\nEMzEplYiqsoqSHZWhKZ2Lj8AAKezzBpPrcicCYcAAAAAGnPNIWCrLXsFx+1MAYApmtJdy+ZSI61i\nrtzRjLnSOQQAAADQmM4hmJF1rQhtw8rGOlbNrnyPbZg3AGDeptRBxMv2+99D7ciUCIdghnzoT5Ow\nCADobC61z1Rq6N1xzGXe2G5OKwMAAABoTOcQzNiyO4isWizXGMOcAgAbscpOc/XNcukgYgp0DgEA\nAAA0pnMItsBpV4a2aZViKueQAwBMQVWdqj7apjoROJjOIQAAAIDGdA7BFtlvZcc5zAAAvR1UB3a7\nvboOcziYziEAAACAxnQOwZbb5tWfqTHXAMCcqF2AXTqHAAAAABoTDgEAAAA05rQygCVx8W8AAI5L\n7cgU6BwCAAAAaEznELAVpnRrUh1EAADAnOgcAgAAAGhM5xAAAABba0od5nvpMmdKdA4BAAAANCYc\nAliRqa5SAQCweWMM9SKTIRwCAAAAaEw4BLBCVoQAAICpEw4BAACwtapq0hd/tpjIFAiHAAAAABoT\nDgFbYeorQgAAAFMlHAIAAABoTDgEAADA1tNpDgcTDgEAAAA0JhwCtooVIQAArka9CK8mHAIAAABo\n7MymBwCwCleuBo0xJjEOAACmoao2ViPC1OgcAgAAAGhM5xDQwt4OHitEAAAkL9eI6kO6Ew4Bs3OU\nD++rnc616iLAqWQAAPOyyZBI7cgUOK0MAAAAoLFDw6GqurGqvl1VT1bVE1X1scX2N1XVt6rqp4vv\n1yy2V1V9rqouVdWPquodq/5HAD2MMY68mnOUfXdvY7qs25m6LSrQkVoRmJrdOvAoX1dadn14NWpH\npuQonUMvJvmLMcYfJbk1yV1VdXOSe5I8MsY4m+SRxc9J8p4kZxdfF5Lcu/RRAwAwFWpFAJi5Q8Oh\nMcZzY4wfLh7/JsmTSa5Pcj7Jg4vdHkzyvsXj80m+OHZ8N8kbq+q6pY8c4AiO02105UrRfis5++1j\n1QfoTK0ITMlxrxl03E6ik9Z+akem7ljXHKqqtyZ5e5LvJbl2jPFcslMUJHnLYrfrkzyz52mXF9uu\nfK0LVXWxqi4ef9gAAEyNWhEA5unIdyurqtcn+WqSj48xfn2VpHO/X7wqgh1j3JfkvsVru28gsFJj\njBOt0FjVATgatSKwScu6y9ju6xylBlQnsk2O1DlUVa/Nzof9l8YYX1tsfn63BXjx/YXF9stJbtzz\n9BuSPLuc4QIAMDVqRQCYt6PcraySfCHJk2OMz+751cNJ7lw8vjPJN/Zs/9DiThS3JvnVbksxwEkc\n57pB63gdAF6mVgS2kbqRbuoIt3r+T0n+Z5IfJ/n9YvMns3Mu+UNJ/n2Snyf5wBjjl4sC4b8muT3J\nb5N8eIxx1XPFtQoDV7PsD2YtwGyZR8cY5zY9CPpSKwJTsKogR93INhhjHHogHxoOrYMPfOAolvX3\nyoc8W0Y4xNZTKwKHEQ7BwY4SDh3rbmUA20CbMAAAR6FmpAvhEAAAAEBjwiFgNqpqqa29OogAALbD\nsutE6EY4BAAAANCYcAgAAAAOoNucDoRDAAAAAI0Jh4DZce0hAAD247pDcDLCIQAAAIDGzmx6AAAn\ntXdlSOcPAADJyzWi+hCOTucQAAAAQGPCIQAAAIDGhEMAAABsnWXfxAS2mXAIAAAAoDEXpAa2wmku\nPGhFCQBge532AtVqRTrQOQQAAADQmM4hYKscZ2XIKhAAQB9qPziYziEAAACAxnQOAVtpv5Wh3W4i\nq0YAAAAv0zkEAAAA0JjOIaANHUMAAACvpnMIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAA\nAAAaEw4BAAAANHZoOFRVN1bVt6vqyap6oqo+ttj+6ar6RVU9tvh6757nfKKqLlXVU1X17lX+AwAA\n2By1IgDMX40xrr5D1XVJrhtj/LCq3pDk0STvS/JnSf7vGOOvrtj/5iRfTvLOJP8uyf9I8h/HGC9d\n5T2uPggA4CCPjjHObXoQ9KVWBIBpG2PUYfsc2jk0xnhujPHDxePfJHkyyfVXecr5JF8ZY/xujPGz\nJJey8+EPAMCWUSsCwPwd65pDVfXWJG9P8r3Fprur6kdVdX9VXbPYdn2SZ/Y87XL2KRCq6kJVXayq\ni8ceNQAAk6NWBIB5OnI4VFWvT/LVJB8fY/w6yb1J3pbkliTPJfnM7q77PP1VrcBjjPvGGOe0wgMA\nzJ9aEQDm60jhUFW9Njsf9l8aY3wtScYYz48xXhpj/D7J5/NyO/DlJDfuefoNSZ5d3pABAJgStSIA\nzNtR7lZWSb6Q5Mkxxmf3bL9uz27vT/L44vHDSe6oqtdV1U1Jzib5/vKGDADAVKgVAWD+zhxhn3cl\n+fMkP66qxxbbPpnkg1V1S3bagJ9O8tEkGWM8UVUPJflJkheT3HW1u08AADBrakUAmLlDb2W/lkG4\nPSkAnJRb2bP11IoAcHJLuZU9AAAAANtLOAQAAADQmHAIAAAAoDHhEAAAAEBjR7lb2Tr8c5J/WXxn\n9d4cc70u5np9zPV6mOf1Oepc/4dVDwQmQK24Xv7Wr4+5Xh9zvR7meX2WWitO4m5lSVJVF91tZT3M\n9fqY6/Ux1+thntfHXMMr+W9ifcz1+pjr9THX62Ge12fZc+20MgAAAIDGhEMAAAAAjU0pHLpv0wNo\nxFyvj7leH3O9HuZ5fcw1vJL/JtbHXK+PuV4fc70e5nl9ljrXk7nmEAAAAADrN6XOIQAAAADWTDgE\nAAAA0NgkwqGqur2qnqqqS1V1z6bHs02q6umq+nFVPVZVFxfb3lRV36qqny6+X7Ppcc5RVd1fVS9U\n1eN7tu07t7Xjc4tj/EdV9Y7NjXx+DpjrT1fVLxbH9mNV9d49v/vEYq6fqqp3b2bU81RVN1bVt6vq\nyap6oqo+ttju2F6iq8yz4xr2oVZcHbXi6qgV10etuD5qxfXYRK248XCoql6T5L8leU+Sm5N8sKpu\n3uyots6fjDFuGWOcW/x8T5JHxhhnkzyy+JnjeyDJ7VdsO2hu35Pk7OLrQpJ71zTGbfFAXj3XSfLX\ni2P7ljHGN5Nk8ffjjiR/vHjO3yz+znA0Lyb5izHGHyW5Ncldizl1bC/XQfOcOK7hFdSKa6FWXI0H\nolZclweiVlwXteJ6rL1W3Hg4lOSdSS6NMf5pjPH/knwlyfkNj2nbnU/y4OLxg0net8GxzNYY4ztJ\nfnnF5oPm9nySL44d303yxqq6bj0jnb8D5vog55N8ZYzxuzHGz5Jcys7fGY5gjPHcGOOHi8e/SfJk\nkuvj2F6qq8zzQRzXdKZWXD+14hKoFddHrbg+asX12EStOIVw6Pokz+z5+XKu/o/meEaSf6iqR6vq\nwmLbtWOM55Kdgy7JWzY2uu1z0Nw6zlfj7kV76v17Wt7N9ZJU1VuTvD3J9+LYXpkr5jlxXMOVHP+r\npVZcL5+n6+UzdYXUiuuxrlpxCuFQ7bNtrH0U2+tdY4x3ZKed766q+s+bHlBTjvPluzfJ25LckuS5\nJJ9ZbDfXS1BVr0/y1SQfH2P8+mq77rPNfB/RPvPsuIZXc/yvllpxGhzny+czdYXUiuuxzlpxCuHQ\n5SQ37vn5hiTPbmgsW2eM8ezi+wtJvp6d1rLnd1v5Ft9f2NwIt85Bc+s4X7IxxvNjjJfGGL9P8vm8\n3DZprk+pql6bnQ+hL40xvrbY7Nhesv3m2XEN+3L8r5Bace18nq6Jz9TVUSuux7prxSmEQz9Icraq\nbqqqP8jORZQe3vCYtkJV/WFVvWH3cZI/TfJ4dub3zsVudyb5xmZGuJUOmtuHk3xocbX+W5P8arft\nkpO54lzl92fn2E525vqOqnpdVd2UnYvffX/d45urqqokX0jy5Bjjs3t+5dheooPm2XEN+1Irroha\ncSN8nq6Jz9TVUCuuxyZqxTOnG/LpjTFerKq7k/x9ktckuX+M8cSGh7Utrk3y9Z3jKmeS/O0Y4++q\n6gdJHqqqjyT5eZIPbHCMs1VVX05yW5I3V9XlJJ9K8pfZf26/meS92bkw2G+TfHjtA56xA+b6tqq6\nJTvtkk8n+WiSjDGeqKqHkvwkO1f5v2uM8dImxj1T70ry50l+XFWPLbZ9Mo7tZTtonj/ouIZXUiuu\nlFpxhdSK66NWXCu14nqsvVasMZzuBwAAANDVFE4rAwAAAGBDhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgsf8PJwY/KBvN8FcAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c665aef0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHX5JREFUeJzt3U+opWedJ/Dvb4ztohVUHEMmyYxB\naqDtTZQiCA5DejFtdFNxYRMXbRChXERQ6E10o8tejDbITAdKDIlgmwmomIV0txMEZ+OfigRNzGQs\n2owpUyQ0DuqM4JD4zOKeO7mp3Fv33znvOe/5fT5wOee+dc69Tz28qfPL9/m9z1tjjAAAAADQ079Y\n9wAAAAAAWB/hEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhsZeFQVd1R\nVU9X1aWqundVvwcAgPlRKwLA5qgxxvJ/aNVrkvyPJP8hyeUkP0zyoTHGT5f+ywAAmBW1IgBslutW\n9HNvS3JpjPFPSVJVDyU5l2TfD/yqWn5CBQA9/PMY41+uexBwTGpFAJjIGKMOe82qLiu7Mcmze76/\nvDj2/1XV+aq6WFUXVzQGAOjgf657AHACakUA2CCr6hzaL5V6xYrPGONCkguJ1SAAgGbUigCwQVbV\nOXQ5yc17vr8pyXMr+l0AAMyLWhEANsiqwqEfJjlTVbdU1R8luSvJIyv6XQAAzItaEQA2yEouKxtj\nvFhVH0/yD0lek+T+McaTq/hdAADMi1oRADbLSm5lf+xBuI4cAE7qsTHG2XUPAlZJrQgAJ7fOu5UB\nAAAAMAPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPXnebNVfVMkt8meSnJi2OMs1X15iT/JcnbkjyT5C/GGP/rdMMEAGBu1IoAMA/L6Bz6szHG\nrWOMs4vv703y6BjjTJJHF98DANCTWhEANtwqLis7l+TBxfMHk9y5gt8BAMA8qRUBYMOcNhwaSf6x\nqh6rqvOLY9ePMa4kyeLxraf8HQAAzJNaEQBm4FR7DiV5zxjjuap6a5JvV9V/P+obFwXC+UNfCADA\nXKkVAWAGTtU5NMZ4bvH4QpJvJLktyfNVdUOSLB5fOOC9F8YYZ/dcfw4AwBZRKwLAPJw4HKqqP66q\nN+w+T/LnSZ5I8kiSuxcvuzvJN087SAAA5kWtCADzcZrLyq5P8o2q2v05fzfG+Puq+mGSh6vqo0l+\nkeSDpx8mAAAzo1YEgJmoMca6x5CqWv8gAGCeHnPZDdtOrQgAJzfGqMNes4pb2QMAAAAwE8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAA\ngMaEQwAAAACNCYcAAAAAGhMOAQAAADR23boHAAAA0MUY49jvqaoVjATgZTqHAAAAABrTOQQAALAC\nJ+kSOsrP0UkELJvOIQAAAIDGdA4BAACcwrI6hADWRecQAAAAQGM6h+AEjrs65LpwAIDtss5uoTGG\n+hJYKp1DAAAAAI3pHIIjcB05AACJuhDYTjqHAAAAABrTOQTXsKyVod2f49pwAIB50jEEbDPhEOzD\nhz8AAABduKwMAAAAoDHhEAAAwMyMMXS7A0sjHAIAAABozJ5DsIfVFwAA9rN7YxH1IrCNdA4BAAAA\nNKZzCAAAYGZ2O5kAlkHnEAAAAEBjOodgj1VdS25lBwAAgE0lHII9bDAIAABANy4rAwAAAGhM5xAA\nAMAhdJgD20znEAAAAEBjOodob5WrQDaiBgCYJ51CQCc6hwAAAAAa0zlEW1OsBu3+Dh1EAADzseld\nQ2pLYNl0DgEAAAA0pnOIdjZ9JQgAgPVQJwJd6RwCAAAAaEznEC1YBQIA4CBzqRXtNQSsinCIrbYp\nH/Q2pgYAAGBTuawMAAAAoDGdQwAAQEub0mV+GN3nwKrpHAIAAABoTOcQW2kuq0AAAACwbjqHAAAA\nABrTOcRW2fSOIXctAwBYv02vGQGmpnMIAAAAoDGdQ2wFqz8AAABwMsIhZm2uoZDLywAApjfX2hFg\n1VxWBgAAANCYcIjZsvIDAMBRqR0BDiYcAgAAAGjMnkOwRvYeAgBYLR1DAIfTOQQAAADQmM4hAABg\n6+gYAjg6nUMAAAAAjekcYnasAgEAAMDy6BwCAAAAaEznELOhYwgAgMNsY83oDrfAqukcgg2wjUUM\nAMCUxhhqKoATEg4BAAAANHZoOFRV91fVC1X1xJ5jb66qb1fVzxaPb1ocr6r6QlVdqqofV9W7Vjl4\nerAKBACbS60IAPN3lM6hB5LccdWxe5M8OsY4k+TRxfdJ8r4kZxZf55Pct5xhAgCwoR6IWhEAZu3Q\ncGiM8d0kv7rq8LkkDy6eP5jkzj3Hvzx2fC/JG6vqhmUNFgCAzaJWBID5O+meQ9ePMa4kyeLxrYvj\nNyZ5ds/rLi+OvUpVna+qi1V18YRjAABgM6kVAWBGln0r+/3urbjvZjFjjAtJLiRJVdlQhlexzxAA\nbB21IiuhbgQ4nZN2Dj2/2wK8eHxhcfxykpv3vO6mJM+dfHgAAMyQWhEAZuSk4dAjSe5ePL87yTf3\nHP/w4k4U707y692WYgAA2lArwgq4iy+wKodeVlZVX01ye5K3VNXlJJ9J8tdJHq6qjyb5RZIPLl7+\nrSTvT3Ipye+SfGQFY6YBH3oAMA9qRQCYv9qE/wl3HTlX24TzcmpV+23DAHCox8YYZ9c9CFgltSKH\n6VY7qhuB4xhjHPqPxrI3pAYAAJhEt1AIYFVOuucQAAAAAFtA5xAbpfPqz+7fXZswAAAAU9I5BAAA\nANCYziE2ym7XTMcOIh1DAAAArIPOIQAAAIDGdA6xUTp2DO2y5xAAwNF0rRnVicCq6BwCAAAAaEzn\nEGwIK0EAAACsg84hNkpVCUkAAABgQsIhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAzMAYI2OMdQ8D\n2ELCIQAAAIDGhEOwAdyhDQAAgHURDgEAAAA0dt26BwAAAHAcu13X3fbf0W0OrIrOIQAAAIDGdA7B\nGln9AQAAYN10DrGRhCYAABymqtSNAEsgHAIAAABoTDjExrISBADAUWx7zaguBlZNOAQAAADQmA2p\n2XjbeKtSKz8AAMulZgQ4OZ1DAAAAAI3pHIIJWf0BAFitbeggUjMCU9M5BAAAANCYziFm4+oVlDmt\nBln9AQCY1hw7iNSMwLoIh5itvR+em/qh7wMeAGC95hISqRuBdXJZGQAAAEBjwiG2QlVt3GrLpo0H\nAKCzTa3NNrGOBfoRDgEAAAA0Zs8htsombFpt5QcAYDNtwv5DakVgE+kcAgAAAGhM5xBbbZV3NLPq\nAwAwT1N1m6sXgbnQOQQAAADQmM4h2jjOys3Vq0dWfQAAtpdaD+hO5xAAAABAYzqHYB9WjwAAAOhC\n5xAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx\n4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx\n4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx\n4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx\n4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx\n4RAAAABAY8IhAAAAgMYODYeq6v6qeqGqnthz7LNV9cuqenzx9f49f/apqrpUVU9X1XtXNXAAANZP\nrQgA83eUzqEHktyxz/G/GWPcuvj6VpJU1TuS3JXkTxfv+duqes2yBgsAwMZ5IGpFAJi1Q8OhMcZ3\nk/zqiD/vXJKHxhi/H2P8PMmlJLedYnwAAGwwtSIAzN9p9hz6eFX9eNFK/KbFsRuTPLvnNZcXx16l\nqs5X1cWquniKMQAAsJnUigAwEycNh+5L8vYktya5kuRzi+O1z2vHfj9gjHFhjHF2jHH2hGMAAGAz\nqRUBYEZOFA6NMZ4fY7w0xvhDki/m5Xbgy0lu3vPSm5I8d7ohAgAwJ2pFAJiXE4VDVXXDnm8/kGT3\n7hSPJLmrql5XVbckOZPkB6cbIgAAc6JWBIB5ue6wF1TVV5PcnuQtVXU5yWeS3F5Vt2anDfiZJB9L\nkjHGk1X1cJKfJnkxyT1jjJdWM3QAANZNrQgA81dj7HuZ97SDqFr/IABgnh6zJwvbTq0IACc3xthv\nz79XOLRzCObo6tCz6tD/FgAAAKCl09zKHgAAAICZ0znExlrmJY/7/SzdRAAAAKBzCAAAAKA1nUOs\nxSZshK6bCAAAAHQOAQAAALSmc4jJbEK30GF2x6iDCABgno5Tc6r5AHboHAIAAABoTOcQKzOHTqGD\n6CACAFiPKWvIa/0udSDQiXCIpZtzKAQAwGqpFQE2j8vKAAAAABrTOcRSbOsKkMvLAABOb461ojoQ\n6ETnEAAAAEBjOoc4lTmuAgEAAAAv0zkEAAAA0JjOIU5ExxAAAB3YewjoQOcQAAAAQGM6hziWrh1D\nVowAAADYVjqHAAAAABrTOcSRdO0Y2qVjCADg+LaphtRJDmwznUMcaps+1AEAAIBXEg4BAAAANOay\nMgAAYKm2sfPc5WTANtM5BAAAANCYziEOtI0rPgAAAMAr6RwCAAAAaEznEFyDa8sBAPanyxxge+gc\nAgAAAGhM5xCvYhUIAAB26CQHOhAOAQAAR2YhEWD7uKwMAAAAoDHhEAAAAEBjwiEAAACAxuw5BAAA\nHMpeQwDbS+cQAAAAQGM6h2AfblkKAABAFzqHAAAAABrTOQQAABzIXkMA20/nEAAAAEBjwiEAAOBA\nVWU/RoAtJxwCAAAAaEw4BAAAANCYcIhX0ToMAAA7xhg25Qa2nnAIAAAAoDHhEAAAcCjd5QDbSzgE\nAAAA0Nh16x4AbBKrYQAA17ZbL3Xbh2f376teBLaRziEAAACAxnQOcaC9qyJdVoasCAEAHE3XDiKA\nbSQc4ki6fPgLhQAAjkedCDB/LisDAAAAaEznEMfSZWUIAIDj2dYtCXQMAR3oHAIAAABoTOcQJ7KN\nHURWhQAAlmMbakW1IdCJziEAAACAxnQOcSrbem05AACnN9cOIl1DQDc6hwAAAAAa0znE0lgZAgBg\nP3PpNlcXAl3pHAIAAABoTOcQSzeXDiIrQwAA05tLrQjQiXCIlTkofFl3ISAUAgBYv02tFQE6clkZ\nAAAAQGM6h5jcfqtEU6wQ6RgCANh8c9m8GmCb6BwCAAAAaEznEBthXd1EAABsLvsSAUxD5xAAAABA\nYzqH2FhH2SNod9XooFui2mcIAGD7HKfGO0qXkZoR6E7nEAAAAEBjOoeYtatXeaz6AACwl/oQ4HA6\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoLFDw6GqurmqvlNVT1XVk1X1icXxN1fV\nt6vqZ4vHNy2OV1V9oaouVdWPq+pdq/5LAACwHmpFAJi/o3QOvZjkr8YYf5Lk3Unuqap3JLk3yaNj\njDNJHl18nyTvS3Jm8XU+yX1LHzUAAJtCrQgAM3doODTGuDLG+NHi+W+TPJXkxiTnkjy4eNmDSe5c\nPD+X5Mtjx/eSvLGqblj6yAEAWDu1IgDM37H2HKqqtyV5Z5LvJ7l+jHEl2SkKkrx18bIbkzy7522X\nF8eu/lnnq+piVV08/rABANg0akUAmKfrjvrCqnp9kq8l+eQY4zdVdeBL9zk2XnVgjAtJLix+9qv+\nHACA+VArAsB8HalzqKpem50P+6+MMb6+OPz8bgvw4vGFxfHLSW7e8/abkjy3nOECALBp1IoAMG9H\nuVtZJflSkqfGGJ/f80ePJLl78fzuJN/cc/zDiztRvDvJr3dbigEA2C5qRQCYvxrj2l26VfXvkvy3\nJD9J8ofF4U9n51ryh5P86yS/SPLBMcavFgXCf0pyR5LfJfnIGOOa14prFQaAE3tsjHF23YOgL7Ui\nAGy2McaB13rvOjQcmoIPfAA4MeEQW0+tCAAnd5Rw6Fh3KwMAAABguwiHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABo7NByqqpur6jtV\n9VRVPVlVn1gc/2xV/bKqHl98vX/Pez5VVZeq6umqeu8q/wIAAKyPWhEA5q/GGNd+QdUNSW4YY/yo\nqt6Q5LEkdyb5iyT/e4zxH696/TuSfDXJbUn+VZL/muTfjjFeusbvuPYgAICDPDbGOLvuQdCXWhEA\nNtsYow57zaGdQ2OMK2OMHy2e/zbJU0luvMZbziV5aIzx+zHGz5Ncys6HPwAAW0atCADzd6w9h6rq\nbUnemeT7i0Mfr6ofV9X9VfWmxbEbkzy7522Xs0+BUFXnq+piVV089qgBANg4akUAmKcjh0NV9fok\nX0vyyTHGb5Lcl+TtSW5NciXJ53Zfus/bX9UKPMa4MMY4qxUeAGD+1IoAMF9HCoeq6rXZ+bD/yhjj\n60kyxnh+jPHSGOMPSb6Yl9uBLye5ec/bb0ry3PKGDADAJlErAsC8HeVuZZXkS0meGmN8fs/xG/a8\n7ANJnlg8fyTJXVX1uqq6JcmZJD9Y3pABANgUakUAmL/rjvCa9yT5yyQ/qarHF8c+neRDVXVrdtqA\nn0nysSQZYzxZVQ8n+WmSF5Pcc627TwAAMGtqRQCYuUNvZT/JINyeFABOyq3s2XpqRQA4uaXcyh4A\nAACA7SUcAgAAAGhMOAQAAADQmHAIAAAAoLGj3K1sCv+c5P8sHlm9t8RcT8VcT8dcT8M8T+eoc/1v\nVj0Q2ABqxWn5t3465no65noa5nk6S60VN+JuZUlSVRfdbWUa5no65no65noa5nk65hpeyX8T0zHX\n0zHX0zHX0zDP01n2XLusDAAAAKAx4RAAAABAY5sUDl1Y9wAaMdfTMdfTMdfTMM/TMdfwSv6bmI65\nno65no65noZ5ns5S53pj9hwCAAAAYHqb1DkEAAAAwMSEQwAAAACNbUQ4VFV3VNXTVXWpqu5d93i2\nSVU9U1U/qarHq+ri4tibq+rbVfWzxeOb1j3OOaqq+6vqhap6Ys+xfee2dnxhcY7/uKretb6Rz88B\nc/3Zqvrl4tx+vKrev+fPPrWY66er6r3rGfU8VdXNVfWdqnqqqp6sqk8sjju3l+ga8+y8hn2oFVdH\nrbg6asXpqBWno1acxjpqxbWHQ1X1miT/Ocn7krwjyYeq6h3rHdXW+bMxxq1jjLOL7+9N8ugY40yS\nRxffc3wPJLnjqmMHze37kpxZfJ1Pct9EY9wWD+TVc50kf7M4t28dY3wrSRb/ftyV5E8X7/nbxb8z\nHM2LSf5qjPEnSd6d5J7FnDq3l+ugeU6c1/AKasVJqBVX44GoFafyQNSKU1ErTmPyWnHt4VCS25Jc\nGmP80xjj/yZ5KMm5NY9p251L8uDi+YNJ7lzjWGZrjPHdJL+66vBBc3suyZfHju8leWNV3TDNSOfv\ngLk+yLkkD40xfj/G+HmSS9n5d4YjGGNcGWP8aPH8t0meSnJjnNtLdY15Pojzms7UitNTKy6BWnE6\nasXpqBWnsY5acRPCoRuTPLvn+8u59l+a4xlJ/rGqHquq84tj148xriQ7J12St65tdNvnoLl1nq/G\nxxftqffvaXk310tSVW9L8s4k349ze2WumufEeQ1Xc/6vllpxWj5Pp+UzdYXUitOYqlbchHCo9jk2\nJh/F9nrPGONd2Wnnu6eq/v26B9SU83z57kvy9iS3JrmS5HOL4+Z6Carq9Um+luSTY4zfXOul+xwz\n30e0zzw7r+HVnP+rpVbcDM7z5fOZukJqxWlMWStuQjh0OcnNe76/KclzaxrL1hljPLd4fCHJN7LT\nWvb8bivf4vGF9Y1w6xw0t87zJRtjPD/GeGmM8YckX8zLbZPm+pSq6rXZ+RD6yhjj64vDzu0l22+e\nndewL+f/CqkVJ+fzdCI+U1dHrTiNqWvFTQiHfpjkTFXdUlV/lJ1NlB5Z85i2QlX9cVW9Yfd5kj9P\n8kR25vfuxcvuTvLN9YxwKx00t48k+fBit/53J/n1btslJ3PVtcofyM65nezM9V1V9bqquiU7m9/9\nYOrxzVVVVZIvJXlqjPH5PX/k3F6ig+bZeQ37UiuuiFpxLXyeTsRn6mqoFaexjlrxutMN+fTGGC9W\n1ceT/EOS1yS5f4zx5JqHtS2uT/KNnfMq1yX5uzHG31fVD5M8XFUfTfKLJB9c4xhnq6q+muT2JG+p\nqstJPpPkr7P/3H4ryfuzszHY75J8ZPIBz9gBc317Vd2anXbJZ5J8LEnGGE9W1cNJfpqdXf7vGWO8\ntI5xz9R7kvxlkp9U1eOLY5+Oc3vZDprnDzmv4ZXUiiulVlwhteJ01IqTUitOY/JascZwuR8AAABA\nV5twWRkAAAAAayIcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI39P67v\ntPCzU/B2AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5d98630>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHIpJREFUeJzt3U+oZneZJ/DvMynbRSuoOIZMkhlF\naqDTmyhFEBwGezFtdFO6sImLNohQLhJQ6E10o8tejDbITAcihkSwdQIqZiHd7QTB2finIkETMxmL\nNmPKhITGQZ0RHBJ/s7jnjjeVe+veuve+533P+3w+cHnf99zzvu+vfjlV58n3POecGmMEAAAAgJ7+\nxboHAAAAAMD6CIcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAYysLh6rq\n9qp6qqouVdU9q/oeAACWR60IAJujxhin/6FV1yX5H0n+Q5LLSX6Q5INjjJ+c+pcBALAoakUA2Cxn\nVvS5tyW5NMb4pySpqq8kOZ9k3x1+VZ1+QgUAPfzzGONfrnsQcI3UigAwkzFGHbbOqk4ruzHJM3te\nX56W/X9VdaGqLlbVxRWNAQA6+J/rHgAcg1oRADbIqjqH9kulXnbEZ4xxX5L7EkeDAACaUSsCwAZZ\nVefQ5SQ373l9U5JnV/RdAAAsi1oRADbIqsKhHyQ5W1Vvqao/SnJHkodX9F0AACyLWhEANshKTisb\nY7xYVXcn+Yck1yW5f4zxxCq+CwCAZVErAsBmWcmt7K95EM4jB4DjenSMcW7dg4BVUisCwPGt825l\nAAAAACyAcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4\nBAAAANDYmZO8uaqeTvKbJC8leXGMca6q3pDkvyR5c5Knk/zFGON/nWyYAAAsjVoRAJbhNDqH/myM\ncesY49z0+p4kj4wxziZ5ZHoNAEBPakUA2HCrOK3sfJIHp+cPJnnfCr4DAIBlUisCwIY5aTg0kvxj\nVT1aVRemZdePMZ5LkunxTSf8DgAAlkmtCAALcKJrDiV55xjj2ap6U5JvVdV/P+obpwLhwqErAgCw\nVGpFAFiAE3UOjTGenR5fSPL1JLcleb6qbkiS6fGFA9573xjj3J7zzwEA2CJqRQBYhmOHQ1X1x1X1\n2t3nSf48yeNJHk5y57TanUm+cdJBAgCwLGpFAFiOk5xWdn2Sr1fV7uf83Rjj76vqB0keqqqPJPl5\nkg+cfJgAACyMWhEAFqLGGOseQ6pq/YMAgGV61Gk3bDu1IgAc3xijDltnFbeyBwAAAGAhhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njZ1Z9wAA1mWM8YplVbWGkQAAAKyPziEAAACAxnQOAW3s1yl00Do6iAAA+jlKvahOZBsJh4AWjrKj\n3299O38AgO11rTXifu9RL7INnFYGAAAA0JjOIWArHeco0NU+xxEhAIDtol6EP9A5BAAAANCYziFg\nq5zWEaCDPtcRIQCAZVtlvahWZKl0DgEAAAA0JhwCAAAAaEw4BAAAANCYaw4BW2FV544f9D3OJwcA\nWJY56kW1IkulcwgAAACgMZ1DAAAAbK25OsxhyYRDwKLZ2QMAsGmcXsbSOK0MAAAAoDHhELBY6+wa\n0rEEAABsC+EQAAAAQGOuOQQAAMDW0ekNR6dzCAAAAKAx4RAAAACswBhDBxOLIBwCAAAAaEw4BAAA\nANCYC1IDi6M1FwCAJaiqdQ8BjkTnEAAAAEBjwiFgcarKURgAAIBTIhwCAAAAaEw4BAAAwNbRbQ5H\nJxwCAAAAaEw4BCzWOo8EOQoFAMBBdC2xNMIhAAAAgMaEQwAAAGwtXTxwOOEQAAAAQGNn1j0AgJPY\nPQo0xpj1+wAAWJY56ka1IkslHAK2wqp39nb0AADbYVV1o3qRJXNaGQAAAEBjOoeArXLlEZuTHhFy\nBAgAYDvtrfNOUjOqF9kGOocAAAAAGtM5BGy1azki5KgPAEBP6kC60zkEAAAA0JjOIaANR4QAAABe\nSecQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANDYoeFQVd1f\nVS9U1eN7lr2hqr5VVT+dHl8/La+q+lxVXaqqH1XV21c5eAAA1kutCADLd5TOoQeS3H7FsnuSPDLG\nOJvkkel1krwnydnp50KSe09nmAAAbKgHolYEgEU7NBwaY3wnyS+vWHw+yYPT8weTvG/P8i+OHd9N\n8rqquuG0BgsAwGZRKwLA8h33mkPXjzGeS5Lp8U3T8huTPLNnvcvTsleoqgtVdbGqLh5zDAAAbCa1\nIgAsyJlT/rzaZ9nYb8Uxxn1J7kuSqtp3HQAAtopaEQA20HE7h57fbQGeHl+Yll9OcvOe9W5K8uzx\nhwcAwAKpFQFgQY4bDj2c5M7p+Z1JvrFn+YemO1G8I8mvdluKAQBoQ60IAAty6GllVfXlJO9K8saq\nupzkU0n+OslDVfWRJD9P8oFp9W8meW+SS0l+m+TDKxgzAAAbQq0IAMtXY6z/FG7nkQPAsT06xji3\n7kHAKqkVAeD4xhj7XfPvZY57WhkAAAAAW0A4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANDYmXUPAAAAgOUaY7zsdVWtaSTAcekcAgAA\nAGhM5xAAAABHdmWn0NV+r4sIlkHnEAAAAEdyWDAELJNwCAAAAKAxp5UBAABwVTqGYLvpHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADR2Zt0DAAAA\nYDONMU71/VV1os8DVkPnEAAAAEBjh4ZDVXV/Vb1QVY/vWfbpqvpFVT02/bx3z+8+UVWXquqpqnr3\nqgYOAMD6qRUBYPmO0jn0QJLb91n+N2OMW6efbyZJVd2S5I4kfzq952+r6rrTGiwAABvngagVAWDR\nDg2HxhjfSfLLI37e+SRfGWP8bozxsySXktx2gvEBALDB1Iqw3arKdYKggZNcc+juqvrR1Er8+mnZ\njUme2bPO5WnZK1TVhaq6WFUXTzAGAAA2k1oRABbiuOHQvUnemuTWJM8l+cy0fL9Ied/L248x7htj\nnBtjnDvmGAAA2ExqRdgyOohgux0rHBpjPD/GeGmM8fskn88f2oEvJ7l5z6o3JXn2ZEMEAGBJ1IoA\nsCzHCoeq6oY9L9+fZPfuFA8nuaOqXl1Vb0lyNsn3TzZEAACWRK0IAMty5rAVqurLSd6V5I1VdTnJ\np5K8q6puzU4b8NNJPpokY4wnquqhJD9J8mKSu8YYL61m6AAArJtaEQCWr8bY9zTveQdRtf5BAMAy\nPeqaLGw7tSJstmv5f0rXLYL5jTEO/Yt3kruVAQAA0JyLVcPyCYcAAAAAGjv0mkMAAABwmN3uof1O\nM9NZtBpXO6XPnHMtdA4BAAAANKZzCGDDHOWijo4EAQBLoGY5Xddy8e8r1/XfgqvROQQAAADQmM4h\ngA1xkiNBuxwRAgDWTT1y+q6lTrzaZ/hvw0F0DgEAAAA0JhwC2ACncTToND8HAIDtM8ZQL7Ivp5UB\nrNEqds4uPggAsB1WFeTsfq46kV06hwAAAAAa0zkEsAZztvPqJAIAWJ456kV1Irt0DgEAAAA0JhwC\naMaFCAEANtc6azU1Yl/CIQAAAIDGXHMIYEaOxgAAsB91IuukcwgAAACgMeEQwIyqyl0gAADYWK5P\n2ZNwCAAAAKAx1xwCmJGjMAAAwKYRDgE047Q2AABgL6eVAQAAADQmHAIAAABexoWpexEOAQAAADQm\nHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY2fWPQCADtzpAQCAJdqtY6tqzSNhlXQOAQAAADQm\nHAIAAABozGllAAAAsGa7p21t2uUInE7Wg84hAAAAgMaEQwDNjDE27ogUAACwPsIhAAAAgMZccwgA\nAAB4Gdca6kXnEAAAAEBjwiGAGVSVoy8AABxK3cg6CIcAAAAAGhMOAQAAwIbRPcScXJAaYEa7O/l1\n3kpeoQEAsAxX1m2rriHViX3pHAIAAABoTOcQwIqMMQ48+nLaR2WOchTJkSAAgGVTz7EqOocAAAAA\nGtM5BLBCV3b0rOpoj6NIAADAcekcAgAAAGhM5xDAKbva9X92f6fTBwAA2BQ6hwAAAAAa0zkEcEqO\ncsewK9fVQQQA0NNc16aEoxAOAZyS3R36tYREAAD0clCt6OAh6+S0MgAAAIDGhEMAAAAAjQmHAAAA\nABoTDgGs0RjDNYoAAIC1Eg4BAAAANCYcAgAAgJlUlTuSsXGEQwAAAACNnVn3AAC2ze6RINcSAgDg\nILqH2CQ6hwAAAAAa0zkEsEaOGAEAAOsmHAJYkb3Bz5WnmAmFAACATeG0MgAAAIDGdA4BzECnEAAA\nsKl0DgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAA\nABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAA\nABoTDgEAAAA0JhwCAAAAaEw4BAAAANDYoeFQVd1cVd+uqier6omq+ti0/A1V9a2q+un0+PppeVXV\n56rqUlX9qKrevuo/BAAA66FWBIDlO0rn0ItJ/mqM8SdJ3pHkrqq6Jck9SR4ZY5xN8sj0Oknek+Ts\n9HMhyb2nPmoAADaFWhEAFu7QcGiM8dwY44fT898keTLJjUnOJ3lwWu3BJO+bnp9P8sWx47tJXldV\nN5z6yAEAWDu1IgAs3zVdc6iq3pzkbUm+l+T6McZzyU5RkORN02o3Jnlmz9suT8uu/KwLVXWxqi5e\n+7ABANg0akUAWKYzR12xql6T5KtJPj7G+HVVHbjqPsvGKxaMcV+S+6bPfsXvAQBYDrUiACzXkTqH\nqupV2dnZf2mM8bVp8fO7LcDT4wvT8stJbt7z9puSPHs6wwUAYNOoFQFg2Y5yt7JK8oUkT44xPrvn\nVw8nuXN6fmeSb+xZ/qHpThTvSPKr3ZZiAAC2i1oRAJavxrh6l25V/bsk/y3Jj5P8flr8yeycS/5Q\nkn+d5OdJPjDG+OVUIPynJLcn+W2SD48xrnquuFZhADi2R8cY59Y9CPpSKwLAZhtjHHiu965Dw6E5\n2OEDwLEJh9h6akUAOL6jhEPXdLcyAAAAALaLcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmH\nAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgsUPDoaq6uaq+XVVPVtUTVfWxafmnq+oX\nVfXY9PPePe/5RFVdqqqnqurdq/wDAACwPmpFAFi+GmNcfYWqG5LcMMb4YVW9NsmjSd6X5C+S/O8x\nxn+8Yv1bknw5yW1J/lWS/5rk344xXrrKd1x9EADAQR4dY5xb9yDoS60IAJttjFGHrXNo59AY47kx\nxg+n579J8mSSG6/ylvNJvjLG+N0Y42dJLmVn5w8AwJZRKwLA8l3TNYeq6s1J3pbke9Oiu6vqR1V1\nf1W9flp2Y5Jn9rztcvYpEKrqQlVdrKqL1zxqAAA2jloRAJbpyOFQVb0myVeTfHyM8esk9yZ5a5Jb\nkzyX5DO7q+7z9le0Ao8x7htjnNMKDwCwfGpFAFiuI4VDVfWq7OzsvzTG+FqSjDGeH2O8NMb4fZLP\n5w/twJeT3Lzn7Tclefb0hgwAwCZRKwLAsh3lbmWV5AtJnhxjfHbP8hv2rPb+JI9Pzx9OckdVvbqq\n3pLkbJLvn96QAQDYFGpFAFi+M0dY551J/jLJj6vqsWnZJ5N8sKpuzU4b8NNJPpokY4wnquqhJD9J\n8mKSu6529wkAABZNrQgAC3forexnGYTbkwLAcbmVPVtPrQgAx3cqt7IHAAAAYHsJhwAAAAAaEw4B\nAAAANCYcAgAAAGjsKHcrm8M/J/k/0yOr98aY67mY6/mY63mY5/kcda7/zaoHAhtArTgv/9bPx1zP\nx1zPwzzP51RrxY24W1mSVNVFd1uZh7mej7mej7meh3mej7mGl/N3Yj7mej7mej7meh7meT6nPddO\nKwMAAABoTDgEAAAA0NgmhUP3rXsAjZjr+Zjr+ZjreZjn+ZhreDl/J+ZjrudjrudjrudhnudzqnO9\nMdccAgAAAGB+m9Q5BAAAAMDMhEMAAAAAjW1EOFRVt1fVU1V1qaruWfd4tklVPV1VP66qx6rq4rTs\nDVX1rar66fT4+nWPc4mq6v6qeqGqHt+zbN+5rR2fm7bxH1XV29c38uU5YK4/XVW/mLbtx6rqvXt+\n94lprp+qqnevZ9TLVFU3V9W3q+rJqnqiqj42Lbdtn6KrzLPtGvahVlwdteLqqBXno1acj1pxHuuo\nFdceDlXVdUn+c5L3JLklyQer6pb1jmrr/NkY49Yxxrnp9T1JHhljnE3yyPSaa/dAktuvWHbQ3L4n\nydnp50KSe2ca47Z4IK+c6yT5m2nbvnWM8c0kmf79uCPJn07v+dvp3xmO5sUkfzXG+JMk70hy1zSn\ntu3TddA8J7ZreBm14izUiqvxQNSKc3kgasW5qBXnMXutuPZwKMltSS6NMf5pjPF/k3wlyfk1j2nb\nnU/y4PT8wSTvW+NYFmuM8Z0kv7xi8UFzez7JF8eO7yZ5XVXdMM9Il++AuT7I+SRfGWP8bozxsySX\nsvPvDEcwxnhujPHD6flvkjyZ5MbYtk/VVeb5ILZrOlMrzk+teArUivNRK85HrTiPddSKmxAO3Zjk\nmT2vL+fqf2iuzUjyj1X1aFVdmJZdP8Z4LtnZ6JK8aW2j2z4Hza3tfDXuntpT79/T8m6uT0lVvTnJ\n25J8L7btlblinhPbNVzJ9r9aasV52Z/Oyz51hdSK85irVtyEcKj2WTZmH8X2eucY4+3Zaee7q6r+\n/boH1JTt/PTdm+StSW5N8lySz0zLzfUpqKrXJPlqko+PMX59tVX3WWa+j2ifebZdwyvZ/ldLrbgZ\nbOenzz51hdSK85izVtyEcOhykpv3vL4pybNrGsvWGWM8Oz2+kOTr2Wkte363lW96fGF9I9w6B82t\n7fyUjTGeH2O8NMb4fZLP5w9tk+b6hKrqVdnZCX1pjPG1abFt+5TtN8+2a9iX7X+F1Iqzsz+diX3q\n6qgV5zF3rbgJ4dAPkpytqrdU1R9l5yJKD695TFuhqv64ql67+zzJnyd5PDvze+e02p1JvrGeEW6l\ng+b24SQfmq7W/44kv9ptu+R4rjhX+f3Z2baTnbm+o6peXVVvyc7F774/9/iWqqoqyReSPDnG+Oye\nX9m2T9FB82y7hn2pFVdErbgW9qczsU9dDbXiPNZRK5452ZBPbozxYlXdneQfklyX5P4xxhNrHta2\nuD7J13e2q5xJ8ndjjL+vqh8keaiqPpLk50k+sMYxLlZVfTnJu5K8saouJ/lUkr/O/nP7zSTvzc6F\nwX6b5MOzD3jBDpjrd1XVrdlpl3w6yUeTZIzxRFU9lOQn2bnK/11jjJfWMe6FemeSv0zy46p6bFr2\nydi2T9tB8/xB2zW8nFpxpdSKK6RWnI9acVZqxXnMXivWGE73AwAAAOhqE04rAwAAAGBNhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgsf8H6Loqty5EC5IAAAAASUVORK5C\nYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5d12a90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAG7NJREFUeJzt3U+o5XeZ5/HPM5btohVUHEMmyYwi\nNdD2JkohgsNgL6aNbkoXNnHRBhHKRQSF3kQ3uuzFaIPMdCBiSARbJ6BiFtLdThCcjX8qEjQxk7Fo\nM6ZMSGgc1BnBIfGZxT013lRu1b11656/z+sFxb33V+fe+82Pn3Ue3+d7zqnuDgAAAAAz/Yt1LwAA\nAACA9RGHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABltaHKqq26rqiaq6\nUFV3Lev3AACwfcyKALA5qrtP/odWvSzJ/0jyH5JcTPKDJB/o7p+c+C8DAGCrmBUBYLOcWtLPfVuS\nC939T0lSVV9JcjbJgXf4VXXyhQoAZvjn7v6X614EXCOzIgCsSHfXYbdZ1tPKbkry1L6vLy6O/X9V\nda6qzlfV+SWtAQAm+J/rXgAcg1kRADbIsnYOHVSlXvSIT3ffk+SexKNBAADDmBUBYIMsa+fQxSS3\n7Pv65iRPL+l3AQCwXcyKALBBlhWHfpDkdFW9sar+KMntSR5c0u8CAGC7mBUBYIMs5Wll3f18VX00\nyT8keVmSe7v7sWX8LgAAtotZEQA2y1Leyv6aF+F55ABwXA9395l1LwKWyawIAMe3zncrAwAAAGAL\niEMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOdup5vrqonk/wm\nyQtJnu/uM1X12iT/JckbkjyZ5C+6+39d3zIBANg2ZkUA2A4nsXPoz7r71u4+s/j6riQPdffpJA8t\nvgYAYCazIgBsuGU8rexskvsXn9+f5L1L+B0AAGwnsyIAbJjrjUOd5B+r6uGqOrc4dkN3P5Mki4+v\nv87fAQDAdjIrAsAWuK7XHEryju5+uqpen+RbVfXfj/qNiwHh3KE3BABgW5kVAWALXNfOoe5+evHx\nuSRfT/K2JM9W1Y1Jsvj43BW+957uPrPv+ecAAOwQsyIAbIdjx6Gq+uOqetWlz5P8eZJHkzyY5I7F\nze5I8o3rXSQAANvFrAgA2+N6nlZ2Q5KvV9Wln/N33f33VfWDJA9U1YeT/DzJ+69/mQAAbBmzIgBs\nieruda8hVbX+RQDAdnrY027YdWZFADi+7q7DbrOMt7IHAAAAYEuIQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIMdGoeq6t6qeq6qHt137LVV9a2q+uni\n42sWx6uqPldVF6rqR1X11mUuHgCA9TIrAsD2O8rOofuS3HbZsbuSPNTdp5M8tPg6Sd6d5PTiz7kk\nd5/MMgEA2FD3xawIAFvt0DjU3d9J8svLDp9Ncv/i8/uTvHff8S/2nu8meXVV3XhSiwUAYLOYFQFg\n+x33NYdu6O5nkmTx8fWL4zcleWrf7S4ujr1EVZ2rqvNVdf6YawAAYDOZFQFgi5w64Z9XBxzrg27Y\n3fckuSdJqurA2wAAsFPMigCwgY67c+jZS1uAFx+fWxy/mOSWfbe7OcnTx18eAABbyKwIAFvkuHHo\nwSR3LD6/I8k39h3/4OKdKN6e5FeXthQDADCGWREAtsihTyurqi8neWeS11XVxSSfSvLXSR6oqg8n\n+XmS9y9u/s0k70lyIclvk3xoCWsGAGBDmBUBYPtV9/qfwu155ABwbA9395l1LwKWyawIAMfX3Qe9\n5t+LHPdpZQAAAADsAHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgYobvXvQQAAICNJA4BAAAADHZq3QsAOK5r3Q10pdtX1UksBwCADXQtM6O5\nkKnsHAIAAAAYzM4hYLz9jyZ5tAgAYLtdz2tN2mXEVHYOAQAAAAxm5xCwNVbxjmOX/w6PCAEAbI9V\nvkOtuZFdYucQAAAAwGB2DgEbb5WPAF3pd3skCABgc61zXoRdYOcQAAAAwGDiEMARdLdHpAAANswm\nzWibsg44Dk8rAzaWO1gAAIDls3MIAAAAYDA7hwAAANgqm7rD3JuZsK3sHAIAAAAYTBwCNtImPxq0\nqWsDAAA4DnEIAAAAYDBxCAAAAE6Q3eZsG3EIAAAAYDBxCOAYPBIEAADsCnEIAAAAYDBxCAAAAGAw\ncQjgGKpq3UsAAAA4EeIQAAAAwGCn1r0AgP280DMAAMBq2TkEAAAAMJg4BAAAADCYOAQAAAAwmNcc\nArgG3qUMAGD9Ls1km/p6lWZGto2dQwAAAACD2TkEbJRNfxQIAIDNsWmzox1DbCtxCNhIV7tjXced\nvzt6AIDNtQmRyLzINvO0MgAAAIDB7BwCts5Bj8psylZiAADWp6pWPhfaMcQusHMIAAAAYDA7hwCu\nwiNBAADb5fL5bVk7icyJ7BI7hwAAAAAGs3MI4AAeCQIA2A0nvZPInMgusnMIAAAAYDA7h4CdcOkR\nHI8EAQBwNcedG82J7DJxCNgp17Nt2B0+AMAc+2e/K82M5kOm8LQyAAAAgMHsHAJ2mkd7AAA4jJmR\n6ewcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAY\nTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhM\nHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwc\nAgAAABhMHAIAAAAYTBwCAAAAGOzUuhcAAAAAu6S7D71NVa1gJXA04hDAMR3lTv8Sd/4AALvvWubD\ny29rXmSdPK0MAAAAYLBD41BV3VtVz1XVo/uOfbqqflFVjyz+vGff332iqi5U1RNV9a5lLRxgna7l\nUSGAXWZWBNhzvfNhd5sxWZuj7By6L8ltBxz/m+6+dfHnm0lSVW9OcnuSP118z99W1ctOarEAAGyc\n+2JWBICtdmgc6u7vJPnlEX/e2SRf6e7fdffPklxI8rbrWB/ARjnuIzoeCQJ2lVkRALbf9bzm0Eer\n6keLrcSvWRy7KclT+25zcXHsJarqXFWdr6rz17EGAAA2k1kRALbEcePQ3UnelOTWJM8k+czi+EEv\nr37gQ+XdfU93n+nuM8dcA8DK2PkDcE3MisAYJz0nmjtZh2PFoe5+trtf6O7fJ/l8/rAd+GKSW/bd\n9OYkT1/fEgEA2CZmRQDYLseKQ1V1474v35fk0rtTPJjk9qp6RVW9McnpJN+/viUCrI9HbgCunVkR\nmMCcyC45ddgNqurLSd6Z5HVVdTHJp5K8s6puzd424CeTfCRJuvuxqnogyU+SPJ/kzu5+YTlLBwBg\n3cyKALD9ahNKZ1WtfxEAB1jWv5FVB73sBhzLw16ThV1nVgQ2yar+P7R5kZPS3YdeTNfzbmUAAAAA\nbDlxCAAAAGCwQ19zCGCiTXjKLQAAm8N8yC6zcwgAAABgMHEIAAAAYDBxCAAAAGAwrzkEsI/nkgMA\nANPYOQQAAAAwmJ1DACtUVeteAgAAG8y8yDrYOQQAAAAwmDgEAAAAMJinlQGsgO3BAABcjXmRdbJz\nCAAAAGAwO4cAAADgEJd29nT3Un4urJOdQwAAAACD2TkEsEQeCQIA4CDmRDaJnUMAAAAAg9k5BLDP\nsp5LDgDAbrh8x8+1zI12C7Gp7BwCAAAAGMzOIYADHOVRncsfJfJIEADAPGZAdoE4BHBMBgEAAGAX\neFoZAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGCHxqGquqWqvl1Vj1fVY1X1scXx11bVt6rqp4uP\nr1kcr6r6XFVdqKofVdVbl/0fAQDAepgVAWD7HWXn0PNJ/qq7/yTJ25PcWVVvTnJXkoe6+3SShxZf\nJ8m7k5xe/DmX5O4TXzUAAJvCrAgAW+7QONTdz3T3Dxef/ybJ40luSnI2yf2Lm92f5L2Lz88m+WLv\n+W6SV1fVjSe+cgAA1s6sCADb75pec6iq3pDkLUm+l+SG7n4m2RsKkrx+cbObkjy179suLo5d/rPO\nVdX5qjp/7csGAGDTmBUBYDudOuoNq+qVSb6a5OPd/euquuJNDzjWLznQfU+SexY/+yV/DwDA9jAr\nAsD2OtLOoap6efbu7L/U3V9bHH720hbgxcfnFscvJrll37ffnOTpk1kuAACbxqwIANvtKO9WVkm+\nkOTx7v7svr96MMkdi8/vSPKNfcc/uHgnircn+dWlLcUAAOwWsyIAbL/qvvou3ar6d0n+W5IfJ/n9\n4vAns/dc8geS/OskP0/y/u7+5WJA+E9Jbkvy2yQf6u6rPlfcVmEAOLaHu/vMuhfBXGZFANhs3X3F\n53pfcmgcWgV3+ABwbOIQO8+sCADHd5Q4dE3vVgYAAADAbhGHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABjs0DlXVLVX17ap6vKoeq6qPLY5/uqp+UVWP\nLP68Z9/3fKKqLlTVE1X1rmX+BwAAsD5mRQDYftXdV79B1Y1JbuzuH1bVq5I8nOS9Sf4iyf/u7v94\n2e3fnOTLSd6W5F8l+a9J/m13v3CV33H1RQAAV/Jwd59Z9yKYy6wIAJutu+uw2xy6c6i7n+nuHy4+\n/02Sx5PcdJVvOZvkK939u+7+WZIL2bvzBwBgx5gVAWD7XdNrDlXVG5K8Jcn3Foc+WlU/qqp7q+o1\ni2M3JXlq37ddzAEDQlWdq6rzVXX+mlcNAMDGMSsCwHY6chyqqlcm+WqSj3f3r5PcneRNSW5N8kyS\nz1y66QHf/pKtwN19T3efsRUeAGD7mRUBYHsdKQ5V1cuzd2f/pe7+WpJ097Pd/UJ3/z7J5/OH7cAX\nk9yy79tvTvL0yS0ZAIBNYlYEgO12lHcrqyRfSPJ4d3923/Eb993sfUkeXXz+YJLbq+oVVfXGJKeT\nfP/klgwAwKYwKwLA9jt1hNu8I8lfJvlxVT2yOPbJJB+oqluztw34ySQfSZLufqyqHkjykyTPJ7nz\nau8+AQDAVjMrAsCWO/St7FeyCG9PCgDH5a3s2XlmRQA4vhN5K3sAAAAAdpc4BAAAADCYOAQAAAAw\nmDgEAAAAMNhR3q1sFf45yf9ZfGT5XhfnelWc69VxrlfDeV6do57rf7PshcAGMCuuln/rV8e5Xh3n\nejWc59U50VlxI96tLEmq6rx3W1kN53p1nOvVca5Xw3leHecaXsz/JlbHuV4d53p1nOvVcJ5X56TP\ntaeVAQAAAAwmDgEAAAAMtklx6J51L2AQ53p1nOvVca5Xw3leHecaXsz/JlbHuV4d53p1nOvVcJ5X\n50TP9ca85hAAAAAAq7dJO4cAAAAAWDFxCAAAAGCwjYhDVXVbVT1RVReq6q51r2eXVNWTVfXjqnqk\nqs4vjr22qr5VVT9dfHzNute5jarq3qp6rqoe3XfswHNbez63uMZ/VFVvXd/Kt88VzvWnq+oXi2v7\nkap6z76/+8TiXD9RVe9az6q3U1XdUlXfrqrHq+qxqvrY4rhr+wRd5Ty7ruEAZsXlMSsuj1lxdcyK\nq2NWXI11zIprj0NV9bIk/znJu5O8OckHqurN613Vzvmz7r61u88svr4ryUPdfTrJQ4uvuXb3Jbnt\nsmNXOrfvTnJ68edckrtXtMZdcV9eeq6T5G8W1/at3f3NJFn8+3F7kj9dfM/fLv6d4WieT/JX3f0n\nSd6e5M7FOXVtn6wrnefEdQ0vYlZcCbPictwXs+Kq3Bez4qqYFVdj5bPi2uNQkrcludDd/9Td/zfJ\nV5KcXfOadt3ZJPcvPr8/yXvXuJat1d3fSfLLyw5f6dyeTfLF3vPdJK+uqhtXs9Ltd4VzfSVnk3yl\nu3/X3T9LciF7/85wBN39THf/cPH5b5I8nuSmuLZP1FXO85W4rpnMrLh6ZsUTYFZcHbPi6pgVV2Md\ns+ImxKGbkjy17+uLufp/NNemk/xjVT1cVecWx27o7meSvYsuyevXtrrdc6Vz6zpfjo8utqfeu2/L\nu3N9QqrqDUnekuR7cW0vzWXnOXFdw+Vc/8tlVlwt96er5T51icyKq7GqWXET4lAdcKxXvord9Y7u\nfmv2tvPdWVX/ft0LGsp1fvLuTvKmJLcmeSbJZxbHnesTUFWvTPLVJB/v7l9f7aYHHHO+j+iA8+y6\nhpdy/S+XWXEzuM5PnvvUJTIrrsYqZ8VNiEMXk9yy7+ubkzy9prXsnO5+evHxuSRfz97WsmcvbeVb\nfHxufSvcOVc6t67zE9bdz3b3C939+ySfzx+2TTrX16mqXp69O6EvdffXFodd2yfsoPPsuoYDuf6X\nyKy4cu5PV8R96vKYFVdj1bPiJsShHyQ5XVVvrKo/yt6LKD245jXthKr646p61aXPk/x5kkezd37v\nWNzsjiTfWM8Kd9KVzu2DST64eLX+tyf51aVtlxzPZc9Vfl/2ru1k71zfXlWvqKo3Zu/F776/6vVt\nq6qqJF9I8nh3f3bfX7m2T9CVzrPrGg5kVlwSs+JauD9dEfepy2FWXI11zIqnrm/J16+7n6+qjyb5\nhyQvS3Jvdz+25mXtihuSfH3vusqpJH/X3X9fVT9I8kBVfTjJz5O8f41r3FpV9eUk70zyuqq6mORT\nSf46B5/bbyZ5T/ZeGOy3ST608gVvsSuc63dW1a3Z2y75ZJKPJEl3P1ZVDyT5SfZe5f/O7n5hHeve\nUu9I8pdJflxVjyyOfTKu7ZN2pfP8Adc1vJhZcanMiktkVlwds+JKmRVXY+WzYnV7uh8AAADAVJvw\ntDIAAAAA1kQcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGOz/AfYq3GcA\nvB1nAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5c82e10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGm9JREFUeJzt3U+IrXed5/HPd4ztohVUnIRMkhlF\n7kCnN1EuEnAY0otpo5urC5u4aIMI10UCCr2JbnTZi9EGmelAxJAItpmAillIdztBcDb+uZGgiZmM\nlzZjrgkJjYM6IzgkfmdRzx0rN3X/VdU5p059Xy8oquq5T1X98uPJrS/v+5xzqrsDAAAAwEz/YtML\nAAAAAGBzxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBVhaHqur2qnq6\nqs5W1T2r+jkAAGwfsyIAHB3V3Yf/Tatek+R/JPkPSc4l+UGSD3X3Tw79hwEAsFXMigBwtFyzou/7\nriRnu/ufkqSqHkpyKsmev/Cr6vALFQDM8M/d/S83vQi4SmZFAFiT7q7LnbOqh5XdkOTZXZ+fW479\nf1V1uqrOVNWZFa0BACb4n5teAOyDWREAjpBV3Tm0V5V6xb/4dPd9Se5L/GsQAMAwZkUAOEJWdefQ\nuSQ37fr8xiTPrehnAQCwXcyKAHCErCoO/SDJiap6W1X9UZI7kjyyop8FAMB2MSsCwBGykoeVdfdL\nVXV3kn9I8pok93f3k6v4WQAAbBezIgAcLSt5KfurXoTHkQPAfj3W3Sc3vQhYJbMiAOzfJl+tDAAA\nAIAtIA4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAx2zUG+uKqe\nSfKbJC8neam7T1bVm5P8lyRvTfJMkr/o7v91sGUCALBtzIoAsB0O486hP+vuW7r75PL5PUke7e4T\nSR5dPgcAYCazIgAccat4WNmpJA8uHz+Y5P0r+BkAAGwnsyIAHDEHjUOd5B+r6rGqOr0cu667n0+S\n5f21B/wZAABsJ7MiAGyBAz3nUJJ3d/dzVXVtkm9V1X+/0i9cBoTTlz0RAIBtZVYEgC1woDuHuvu5\n5f2LSb6e5F1JXqiq65Nkef/iRb72vu4+uevx5wAAHCNmRQDYDvuOQ1X1x1X1hvMfJ/nzJE8keSTJ\nnctpdyb5xkEXCQDAdjErAsD2OMjDyq5L8vWqOv99/q67/76qfpDk4ar6aJKfJ/ngwZcJAMCWMSsC\nwJao7t70GlJVm18EAGynxzzshuPOrAgA+9fddblzVvFS9gAAAABsCXEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGCwaza9AAAAgOOgu1/xeVVtaCUAV8edQwAAAACDuXMIrsKF\n/xq0m38ZAgCY6WIz4u7jZkXgKBOH4ApcKgoBADCTGRE4LjysDAAAAGAwdw7BJfjXIAAAAI47dw4B\nAAAADCYOwSVUlScPBAAA4FgThwAAAAAG85xDcAXO3z2013MQubMIAGCmS82Ie50HcFS5cwgAAABg\nMHcOwVXwrz4AAFzIjAhsO3cOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDrHV\nujvdvellAAAAwNYShwAAAAAGE4fYWu4YAgAAgIMThwAAAAAGE4fYWlW16SUAAADA1hOHAAAAAAYT\nhwAAAAAGu2bTC4CD8NAyAAAAOBh3DgEAAAAMdtk4VFX3V9WLVfXErmNvrqpvVdVPl/dvWo5XVX2+\nqs5W1Y+q6p2rXDwAAJtlVgSA7Xcldw49kOT2C47dk+TR7j6R5NHl8yR5b5ITy9vpJPcezjIBADii\nHohZEQC22mXjUHd/J8kvLzh8KsmDy8cPJnn/ruNf6h3fTfLGqrr+sBYLAMDRYlYEgO233+ccuq67\nn0+S5f21y/Ebkjy767xzy7FXqarTVXWmqs7scw0AABxNZkUA2CKH/Wple710VO91Ynffl+S+JKmq\nPc8BAOBYMSsCwBG03zuHXjh/C/Dy/sXl+LkkN+0678Ykz+1/eQAAbCGzIgBskf3GoUeS3Ll8fGeS\nb+w6/uHllShuTfKr87cUAwAwhlkRALbIZR9WVlVfSXJbkrdU1bkkn07y10kerqqPJvl5kg8up38z\nyfuSnE3y2yQfWcGaAQA4IsyKALD9qnvzD+H2OHIA2LfHuvvkphcBq2RWBID96+69nvPvFfb7sDIA\nAAAAjgFxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYLDLxqGqur+qXqyqJ3Yd+0xV/aKqHl/e3rfrzz5ZVWer6umqes+qFg4AwOaZFQFg+13JnUMPJLl9\nj+N/0923LG/fTJKqujnJHUn+dPmav62q1xzWYgEAOHIeiFkRALbaZeNQd38nyS+v8PudSvJQd/+u\nu3+W5GySdx1gfQAAHGFmRQDYfgd5zqG7q+pHy63Eb1qO3ZDk2V3nnFuOvUpVna6qM1V15gBrAADg\naDIrAsCW2G8cujfJ25PckuT5JJ9djtce5/Ze36C77+vuk919cp9rAADgaDIrAsAW2Vcc6u4Xuvvl\n7v59ki/kD7cDn0ty065Tb0zy3MGWCADANjErAsB22Vccqqrrd336gSTnX53ikSR3VNXrquptSU4k\n+f7BlggAwDYxKwLAdrnmcidU1VeS3JbkLVV1Lsmnk9xWVbdk5zbgZ5J8LEm6+8mqejjJT5K8lOSu\n7n55NUsHAGDTzIoAsP2qe8+Hea93EVWbXwQAbKfHPCcLx51ZEQD2r7v3es6/VzjIq5UBAAAAsOXE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMEuG4eq\n6qaq+nZVPVVVT1bVx5fjb66qb1XVT5f3b1qOV1V9vqrOVtWPquqdq/6PAABgM8yKALD9ruTOoZeS\n/FV3/0mSW5PcVVU3J7knyaPdfSLJo8vnSfLeJCeWt9NJ7j30VQMAcFSYFQFgy102DnX38939w+Xj\n3yR5KskNSU4leXA57cEk718+PpXkS73ju0neWFXXH/rKAQDYOLMiAGy/q3rOoap6a5J3JPlekuu6\n+/lkZyhIcu1y2g1Jnt31ZeeWYxd+r9NVdaaqzlz9sgEAOGrMigCwna650hOr6vVJvprkE93966q6\n6Kl7HOtXHei+L8l9y/d+1Z8DALA9zIoAsL2u6M6hqnptdn7Zf7m7v7YcfuH8LcDL+xeX4+eS3LTr\ny29M8tzhLBcAgKPGrAgA2+1KXq2sknwxyVPd/bldf/RIkjuXj+9M8o1dxz+8vBLFrUl+df6WYgAA\njhezIgBsv+q+9F26VfXvkvy3JD9O8vvl8Key81jyh5P86yQ/T/LB7v7lMiD8pyS3J/ltko909yUf\nK+5WYQDYt8e6++SmF8FcZkUAONq6+6KP9T7vsnFoHfzCB4B9E4c49syKALB/VxKHrurVygAAAAA4\nXsQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwS4b\nh6rqpqr6dlU9VVVPVtXHl+OfqapfVNXjy9v7dn3NJ6vqbFU9XVXvWeV/AAAAm2NWBIDtV9196ROq\nrk9yfXf/sKrekOSxJO9P8hdJ/nd3/8cLzr85yVeSvCvJv0ryX5P82+5++RI/49KLAAAu5rHuPrnp\nRTCXWREAjrbursudc9k7h7r7+e7+4fLxb5I8leSGS3zJqSQPdffvuvtnSc5m55c/AADHjFkRALbf\nVT3nUFW9Nck7knxvOXR3Vf2oqu6vqjctx25I8uyuLzuXPQaEqjpdVWeq6sxVrxoAgCPHrAgA2+mK\n41BVvT7JV5N8ort/neTeJG9PckuS55N89vype3z5q24F7u77uvukW+EBALafWREAttcVxaGqem12\nftl/ubu/liTd/UJ3v9zdv0/yhfzhduBzSW7a9eU3Jnnu8JYMAMBRYlYEgO12Ja9WVkm+mOSp7v7c\nruPX7zrtA0meWD5+JMkdVfW6qnpbkhNJvn94SwYA4KgwKwLA9rvmCs55d5K/TPLjqnp8OfapJB+q\nqluycxvwM0k+liTd/WRVPZzkJ0leSnLXpV59AgCArWZWBIAtd9mXsl/LIrw8KQDsl5ey59gzKwLA\n/h3KS9kDAAAAcHyJQwAAAACDiUMAAAAAg4lDAAAAAINdyauVrcM/J/k/y3tW7y2x1+tir9fHXq+H\nfV6fK93rf7PqhcARYFZcL3/Xr4+9Xh97vR72eX0OdVY8Eq9WliRVdcarrayHvV4fe70+9no97PP6\n2Gt4Jf9PrI+9Xh97vT72ej3s8/oc9l57WBkAAADAYOIQAAAAwGBHKQ7dt+kFDGKv18der4+9Xg/7\nvD72Gl7J/xPrY6/Xx16vj71eD/u8Poe610fmOYcAAAAAWL+jdOcQAAAAAGsmDgEAAAAMdiTiUFXd\nXlVPV9XZqrpn0+s5Tqrqmar6cVU9XlVnlmNvrqpvVdVPl/dv2vQ6t1FV3V9VL1bVE7uO7bm3tePz\nyzX+o6p65+ZWvn0ustefqapfLNf241X1vl1/9sllr5+uqvdsZtXbqapuqqpvV9VTVfVkVX18Oe7a\nPkSX2GfXNezBrLg6ZsXVMSuuj1lxfcyK67GJWXHjcaiqXpPkPyd5b5Kbk3yoqm7e7KqOnT/r7lu6\n++Ty+T1JHu3uE0keXT7n6j2Q5PYLjl1sb9+b5MTydjrJvWta43HxQF6910nyN8u1fUt3fzNJlr8/\n7kjyp8vX/O3y9wxX5qUkf9Xdf5Lk1iR3LXvq2j5cF9vnxHUNr2BWXAuz4mo8ELPiujwQs+K6mBXX\nY+2z4sbjUJJ3JTnb3f/U3f83yUNJTm14TcfdqSQPLh8/mOT9G1zL1uru7yT55QWHL7a3p5J8qXd8\nN8kbq+r69ax0+11kry/mVJKHuvt33f2zJGez8/cMV6C7n+/uHy4f/ybJU0luiGv7UF1iny/Gdc1k\nZsX1MyseArPi+pgV18esuB6bmBWPQhy6Icmzuz4/l0v/R3N1Osk/VtVjVXV6OXZddz+f7Fx0Sa7d\n2OqOn4vtret8Ne5ebk+9f9ct7/b6kFTVW5O8I8n34tpemQv2OXFdw4Vc/6tlVlwvv0/Xy+/UFTIr\nrse6ZsWjEIdqj2O99lUcX+/u7ndm53a+u6rq3296QUO5zg/fvUnenuSWJM8n+exy3F4fgqp6fZKv\nJvlEd//6Uqfuccx+X6E99tl1Da/m+l8ts+LR4Do/fH6nrpBZcT3WOSsehTh0LslNuz6/MclzG1rL\nsdPdzy3vX0zy9ezcWvbC+Vv5lvcvbm6Fx87F9tZ1fsi6+4Xufrm7f5/kC/nDbZP2+oCq6rXZ+SX0\n5e7+2nLYtX3I9tpn1zXsyfW/QmbFtfP7dE38Tl0ds+J6rHtWPApx6AdJTlTV26rqj7LzJEqPbHhN\nx0JV/XFVveH8x0n+PMkT2dnfO5fT7kzyjc2s8Fi62N4+kuTDy7P135rkV+dvu2R/Lnis8geyc20n\nO3t9R1W9rqrelp0nv/v+ute3raqqknwxyVPd/bldf+TaPkQX22fXNezJrLgiZsWN8Pt0TfxOXQ2z\n4npsYla85mBLPrjufqmq7k7yD0lek+T+7n5yw8s6Lq5L8vWd6yrXJPm77v77qvpBkoer6qNJfp7k\ngxtc49aqqq8kuS3JW6rqXJJPJ/nr7L2330zyvuw8Mdhvk3xk7QveYhfZ69uq6pbs3C75TJKPJUl3\nP1lVDyf5SXae5f+u7n55E+veUu9O8pdJflxVjy/HPhXX9mG72D5/yHUNr2RWXCmz4gqZFdfHrLhW\nZsX1WPusWN0e7gcAAAAw1VF4WBkAAAAAGyIOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADPb/AOXbJW+S2ry8AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5c7ea90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3U+IfWeZJ/DvM8Z20QoqjiGTZEaR\nDLS9iRJEcBjsxbTRTXRhExdtECEuIij0JrrRZS9GG2SmAxFDItg6ARWzkO52guBs/JOIqDFjG1pH\nfyYkNA7qjOCQ+M6ibmmlfvW/7j33nPt8PlBU1alzq977evI7j9/3OefUGCMAAAAA9PSvtj0AAAAA\nALZHOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa21g4VFW3VtUPq+qJ\nqrp7U38HAIDlUSsCwHzUGGP9v7TqBUn+Kcl/SnIlybeSvGuM8YO1/zEAABZFrQgA83LNhn7vG5I8\nMcb45ySpqs8luS3JkSf8qlp/QgUAPfzLGONfb3sQcE5qRQCYyBijTttnU5eVXZ/kZwe+v7La9ntV\ndWdVPVJVj2xoDADQwf/a9gDgAtSKADAjm+ocOiqVet6Kzxjj3iT3JlaDAACaUSsCwIxsqnPoSpIb\nD3x/Q5InN/S3AABYFrUiAMzIpsKhbyW5qapeXVV/lOT2JA9t6G8BALAsakUAmJGNXFY2xni2qt6f\n5B+SvCDJfWOMxzbxtwAAWBa1IgDMy0YeZX/uQbiOHAAu6tExxi3bHgRskloRAC5um08rAwAAAGAB\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDG\nrrnMi6vqJ0l+neS5JM+OMW6pqpcn+W9JXpXkJ0n+Yozxvy83TAAAlkatCADLsI7OoT8bY9w8xrhl\n9f3dSR4eY9yU5OHV9wAA9KRWBICZ28RlZbcleWD19QNJ3r6BvwEAwDKpFQFgZi4bDo0k/1hVj1bV\nnatt144xnkqS1edXXvJvAACwTGpFAFiAS91zKMmbxhhPVtUrk3ylqv7nWV+4KhDuPHVHAACWSq0I\nAAtwqc6hMcaTq8/PJPlikjckebqqrkuS1ednjnntvWOMWw5cfw4AwA5RKwLAMlw4HKqqP66ql+x/\nneTPk3w/yUNJ7ljtdkeSL112kAAALItaEQCW4zKXlV2b5ItVtf97/m6M8fdV9a0kD1bVe5P8NMk7\nLz9MAAAWRq0IAAtRY4xtjyFVtf1BAMAyPeqyG3adWhEALm6MUafts4lH2QMAAACwEMIhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaE\nQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEsEVjjIwxtj0MAACgMeEQAAAAQGPXbHsAAJ0c\n1yU0xkhVTTwaAAAAnUMAAAAArekcAtgg9xMCAOCgs9aHusqZks4hAAAAgMZ0DgGsiS4hAABOol5k\nroRDAJe0jpO8tmEAgN0lFGLuXFYGAAAA0JjOIYALsgIEAADsAp1DAAAAAI3pHALYIvcaAgDgIPUh\n26BzCAAAAKAxnUMAW2BFCACgj/3a76R7VqoP2SadQwAAAACN6RwCuKDDqztHrQRZAQIAYJ/akLnS\nOQQAAADQmM4hgDWxEgQAACyRziEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBj12x7AABLMsZIklTV77/eV1XbGBIAAMCl6BwCAAAAaEznEMABh7uB\nzrPfUdt0EwEA7Jaz1ounUScyJzqHAAAAABrTOQSwsq5VoJN+pxUiAIBlWnetqE5kToRDQHubCIUA\nANgNU9WKBx98AlNzWRkAAABAY8IhAAAAgMaEQwAAAACNuecQ0NY27jXkWnIAgOVQL9KFziEAAACA\nxnQOAbB2J62yWQUDAIB50TkEAAAA0JhwCIC1GGP8/gMAYBdss+O5Y02lltwe4RAAAABAY+45BMCF\nXHRVxxM4AADYp1NoHoRDQFv74YRHlJ6PEzgAABd1llry8D5LrJmXxmVlAAAAAI2dGg5V1X1V9UxV\nff/AtpdX1Veq6kerzy9bba+q+kRVPVFV362q129y8ABLVVWLWwFZ9w0C3XAQdoNaEdh1S6zb5saD\nS+bvLJ1D9ye59dC2u5M8PMa4KcnDq++T5K1Jblp93JnknvUMEwCAmbo/akUAWLRTw6ExxteS/OLQ\n5tuSPLD6+oEkbz+w/dNjz9eTvLSqrlvXYAEAmBe1IgDHWVe3kK6jzbvoPYeuHWM8lSSrz69cbb8+\nyc8O7Hdlte0qVXVnVT1SVY9ccAwAAMyTWhEAFmTdTys76kLMI+O9Mca9Se5NkqoSAQJbM+VTy5Z2\nvboVGmDN1IoADWyqhlzyE3/n7qKdQ0/vtwCvPj+z2n4lyY0H9rshyZMXHx4AAAukVgSABbloOPRQ\nkjtWX9+R5EsHtr979SSKNyb55X5LMQAcxTXksJPUigCXtMTuGHXdcp16WVlVfTbJm5O8oqquJPlI\nkr9O8mBVvTfJT5O8c7X7l5O8LckTSX6T5D0bGDPA4izt5L6Nk7o2YVgmtSLQxZS3Ilgac7J8NYf/\nEV1HDszBJv89XFrgsc1zw9LmagYeHWPcsu1BwCapFYE5mapOWlJNNHXtuKS5mYMxxqkTtu4bUgMs\n1sGTzLpOcE5c56eDCACYs013EC2pBtrWguIYY1HztAQXvecQAAAAADtA5xDAES6yImT1AgCgj3V1\nEC21htz2LWp0m6+XziEAAACAxnQOAZxgrisRm+po2vYKEADA0sy1XoTz0DkEAAAA0JjOIYAFuUhn\nz0mvmfNKl6dQAACs13F14ZI7zd17aD10DgEAAAA0pnMIYOY2uTozt5UfAAAuZ12d5oc7cdSNu004\nBAAAAAu37vBGGNSLy8oAAAAAGtM5BDBTVmvcYBAA4CTqRdZF5xAAAABAY8IhAAAAgMaEQwAAAACN\nuecQwMy4dvxq7j0EAPAH6sWrqRcvR+cQAAAAQGPCIQAAAIDGhEMAAAAAjbnnEAAAACyAew2xKcIh\ngJlwsgcAALbBZWUAAAAAjQmHAAAAABoTDgEAAAA0JhwCYDHGGO7NBAAAayYcAgAAAGjM08oAOJeq\net73U3byHP7bAADA5ekcAgAAAGhM5xDADCz5Pjr73TybeA86hQAAlmuTdeJxf4uLEQ4BzEBVzT4g\nOu2Ee9TPL/OenOABAJbpcB138Pt117xqxvVwWRkAAABAYzqHANgYKzkAABy0joebqDHXT+cQAAAA\nQGM6hwAAAIBLu0hHjy6gedA5BAAAANCYziGACzrL9dG7sBKyC+8BAGAbTqoXd6nG2qX30pXOIQAA\nAIDGdA4BnMFFnqJw8HVWUwAAdtt568WL1In7+160NoXj6BwCAAAAaEznEMAR1r0ao4MIAGA3XbZu\nXHKduMQxczThEMDKFO25h//GwRPqHNuEnfABAI62qcXEfXOvw+Y+Ps7HZWUAAAAAjQmHALZojDGr\nTiEAAE42Vf120t+oKp07rJVwCAAAAKAx9xwC2ppTx84Y4/erP3O495CVKACA59tGbTbHm1XPaSys\nj84hAAAAgMZ0DgHtzKljaG6sBAEAPN8casfjOoiqarLxXaZOPNglzzzpHAIAAABoTOcQ0MYcVn1O\nss1ryq3kAABcbe71Y7L5+1VepE48aiyHt6k/50U4BDBTU9yY2kkZAOBqcw2FTlpMXFfteNnLx1gm\nl5UBAAAANKZzCGhhyasYB1dvLvM+dAkBAJxsyTXjPjUfF6FzCAAAAKAxnUMAC3LcStA2b2YNAADJ\nNPfMZDN0DgEAAAA0pnMI2GldVi10DAEAXFyXmnEqR3UQqVfnTecQAAAAQGM6hwBmxv2DAAA4yVLq\nxbmPjz/QOQQAAADQmM4hYCe5bhwAgNOoGWGPcAhgZrTfAgAAU3JZGQAAAEBjOoeAnbILrcFLucEg\nAMCS7ULdCOuicwgAAACgMZ1DwE7YpZUfHUMAAJuzS3XjGEPtyFroHAIAAABoTOcQsGi7tPKzzz2H\nAADWbxfrRlgXnUMAAAAAjekcAhbHqg8AAGeldoTT6RwCWAiFDQDA2Y0xdr5+chsC1kU4BAAAANCY\ny8oAZu7gitdxq19WjQAA9ux6txBsgs4hAAAAgMZ0DgHM1HlWvfb31UEEAACcl84hAAAAgMZ0DgGL\nsevXjx/u+tn19wsAwMXoFmfddA4BAAAANKZzCGAGjlr90UkEAABMQecQAAAAQGPCIWAxqmpnr68+\nS1fQFO99jKFDCQBgpna5Hma7XFYGMANnPcnv73c4wLlIkXBUCKTYAACW7rh6ifU7bY7VlsuhcwgA\nAACgsVPDoaq6r6qeqarvH9j20ar6eVV9Z/XxtgM/+1BVPVFVP6yqt2xq4EBf++20nVciDs7BcfOw\nf4nYcR8XtYnfCSyXWhGYq7PUS0sx1Xs4rX48b+2nXlyOs3QO3Z/k1iO2/80Y4+bVx5eTpKpem+T2\nJH+6es3fVtUL1jVYAABm5/6oFQFg0U4Nh8YYX0vyizP+vtuSfG6M8dsxxo+TPJHkDZcYH8CJlr4i\nNJdxHzeO8672WBGCftSKwFLMpe6aIzUcl7nn0Pur6rurVuKXrbZdn+RnB/a5stp2laq6s6oeqapH\nLjEGAADmSa0IAAtx0XDoniSvSXJzkqeSfGy1/agY9sj4cYxx7xjjljHGLRccA8BVDq8IHe4sOupj\nDuNcp7Ou/Bw1B64JB9ZErQjM1pI6iDY91m3UfOrMebpQODTGeHqM8dwY43dJPpk/tANfSXLjgV1v\nSPLk5YYIAMCSqBUBYFkuFA5V1XUHvn1Hkv2nUzyU5PaqelFVvTrJTUm+ebkhApzfklaE1u0s3VKH\n58YKDrBOakVgCebWWQ7bdM1pO1TVZ5O8OckrqupKko8keXNV3Zy9NuCfJHlfkowxHquqB5P8IMmz\nSe4aYzy3maEDALBtakUAWL6aw0pxVW1/EEB7U/x7ONeVqHW/97m+zx31qHuysOvUisC2bPP/L09R\nT+36+2PPGOPUyT61cwiAy3PyAwBYnqqaPEDpUjfuz2uX9zt3l3mUPQAAAAALp3MIYGVdK0NzWf04\n7b3MZZwAAExbm83h9jLMi84hAAAAgMZ0DgGsydI6ccYYvx/z/merSAAAz7epOmlptSO7TecQAAAA\nQGM6hwAuYFdWeg6vgOkgAgA42uH676L10q7UkZdlHuZF5xAAAABAYzqHAC7gpJWiba+CrPOJa+f9\nXdt+7wAAU9FxzS7ROQSwsq4T+xhjsUXC4bGfJ+wRDAEAcJqqUjfOkHAIAAAAoDGXlQEtnNQNs6ku\nn4OPil+as3QP7e+z1PcIAHAe6+wyT9RQzIvOIQAAAIDGdA4BO+2oFZ4p7wc09crQJt7bcY+7P/xz\nq18AwK7ZZN2ohmJOdA4BAAAANCYcAtghU6w8Hfc0tqU+oQ0A4LApnz67jSfdbvOJYUt+su8uEw4B\nAAAANOaeQwATmPKa8v2/sY0VmdPuTwQAMGfb7GjZxj2Itlk3Mi86hwAAAAAaEw4BTMg11gAAzM02\n7kGkLp4Xl5UB7KjjHjk/JY9oBQA4n23WT1U1ec2oXpwHnUMAAAAAjQmHgJ22zcd0zo25AADgJC7z\n6ks4BAAAANCYew4BO22uqx/drq3u9n4BAGBJdA4BAAAANKZzCNhp+50qc+0gmpI5AADgKHOoE8cY\nusy3SOcQAAAAQGM6hwC2wKoIAAAwF8IhgAltIxSaQ5swAMASzOGWBFPWi+pE9rmsDAAAAKAx4RDQ\ngsu4AACYs6pSs7I1wiEAAACAxtxzCGACVoEAAJZjinsPqQ+ZE51DAAAAAI3pHALa2MbTJ6wI7TEP\nAMASVdVaa0c10fHMzXbpHAIAAABoTOcQ0M6mOoisdlzNnAAAS7fL9cw2OuuZJ51DAAAAAI3pHALa\nusxKyS6vIK2D+QEA4CzUjfMgHALa2/UTknZhAABO4sEtuKwMAAAAoDGdQwCshdUfAIBlO1jPeXhL\nLzqHAAAAABrTOQTQxKauJbcKBACwe9ZZO6oX50/nEAAAAEBjOocAmrnsteRWfgAA+jiu9juqjlQn\nLpfOIQAAAIDGdA4BNGZ1BwCAi1BH7hadQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNnRoOVdWNVfXVqnq8qh6rqg+str+8qr5SVT9a\nfX7ZantV1Seq6omq+m5VvX7TbwIAgO1QKwLA8p2lc+jZJH81xviTJG9McldVvTbJ3UkeHmPclOTh\n1fdJ8tYkN60+7kxyz9pHDQDAXKgVAWDhTg2HxhhPjTG+vfr610keT3J9ktuSPLDa7YEkb199fVuS\nT489X0/y0qq6bu0jBwBg69SKALB857rnUFW9KsnrknwjybVjjKeSvaIgyStXu12f5GcHXnZlte3w\n77qzqh6pqkfOP2wAAOZGrQgAy3TNWXesqhcn+XySD44xflVVx+56xLZx1YYx7k1y7+p3X/VzAACW\nQ60IAMt1ps6hqnph9k72nxljfGG1+en9FuDV52dW268kufHAy29I8uR6hgsAwNyoFQFg2c7ytLJK\n8qkkj48xPn7gRw8luWP19R1JvnRg+7tXT6J4Y5Jf7rcUAwCwW9SKALB8NcbJXbpV9R+S/I8k30vy\nu9XmD2fvWvIHk/zbJD9N8s4xxi9WBcJ/SXJrkt8kec8Y48RrxbUKA8CFPTrGuGXbg6AvtSIAzNsY\n49hrvfedGg5NwQkfAC5MOMTOUysCwMWdJRw619PKAAAAANgtwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxk4Nh6rqxqr6alU9XlWP\nVdUHVts/WlU/r6rvrD7eduA1H6qqJ6rqh1X1lk2+AQAAtketCADLV2OMk3eoui7JdWOMb1fVS5I8\nmuTtSf4iyf8ZY/znQ/u/Nslnk7whyb9J8t+T/PsxxnMn/I2TBwEAHOfRMcYt2x4EfakVAWDexhh1\n2j6ndg6NMZ4aY3x79fWvkzye5PoTXnJbks+NMX47xvhxkieyd/IHAGDHqBUBYPnOdc+hqnpVktcl\n+cZq0/ur6rtVdV9VvWy17fokPzvwsis5okCoqjur6pGqeuTcowYAYHbUigCwTGcOh6rqxUk+n+SD\nY4xfJbknyWuS3JzkqSQf29/1iJdf1Qo8xrh3jHGLVngAgOVTKwLAcp0pHKqqF2bvZP+ZMcYXkmSM\n8fQY47kxxu+SfDJ/aAe+kuTGAy+/IcmT6xsyAABzolYEgGU7y9PKKsmnkjw+xvj4ge3XHdjtHUm+\nv/r6oSS3V9WLqurVSW5K8s31DRkAgLlQKwLA8l1zhn3elOQvk3yvqr6z2vbhJO+qqpuz1wb8kyTv\nS5IxxmNV9WCSHyR5NsldJz19AgCARVMrAsDCnfoo+0kG4fGkAHBRHmXPzlMrAsDFreVR9gAAAADs\nLuEQAAAAQGPCIQAAAIDGhEMAAAAAjZ3laWVT+Jck/3f1mc17Rcz1VMz1dMz1NMzzdM461/9u0wOB\nGVArTsu/9dMx19Mx19Mwz9NZa604i6eVJUlVPeJpK9Mw19Mx19Mx19Mwz9Mx1/B8/puYjrmejrme\njrmehnmezrrn2mVlAAAAAI0JhwAAAAAam1M4dO+2B9CIuZ6OuZ6OuZ6GeZ6OuYbn89/EdMz1dMz1\ndMz1NMzzdNY617O55xAAAAAA05tT5xAAAAAAExMOAQAAADQ2i3Coqm6tqh9W1RNVdfe2x7NLquon\nVfW9qvpOVT2y2vbyqvpKVf1o9fll2x7nElXVfVX1TFV9/8C2I+e29nxidYx/t6pev72RL88xc/3R\nqvr56tj+TlW97cDPPrSa6x9W1Vu2M+plqqobq+qrVfV4VT1WVR9YbXdsr9EJ8+y4hiOoFTdHrbg5\nasXpqBWno1acxjZqxa2HQ1X1giT/Nclbk7w2ybuq6rXbHdXO+bMxxs1jjFtW39+d5OExxk1JHl59\nz/ndn+TWQ9uOm9u3Jrlp9XFnknsmGuOuuD9Xz3WS/M3q2L55jPHlJFn9+3F7kj9dveZvV//OcDbP\nJvmrMcafJHljkrtWc+rYXq/j5jlxXMPzqBUnoVbcjPujVpzK/VErTkWtOI3Ja8Wth0NJ3pDkiTHG\nP48x/l+SzyW5bctj2nW3JXlg9fUDSd6+xbEs1hjja0l+cWjzcXN7W5JPjz1fT/LSqrpumpEu3zFz\nfZzbknxujPHbMcaPkzyRvX9nOIMxxlNjjG+vvv51kseTXB/H9lqdMM/HcVzTmVpxemrFNVArTket\nOB214jS2USvOIRy6PsnPDnx/JSe/ac5nJPnHqnq0qu5cbbt2jPFUsnfQJXnl1ka3e46bW8f5Zrx/\n1Z5634GWd3O9JlX1qiSvS/KNOLY35tA8J45rOMzxv1lqxWk5n07LOXWD1IrTmKpWnEM4VEdsG5OP\nYne9aYzx+uy1891VVf9x2wNqynG+fvckeU2Sm5M8leRjq+3meg2q6sVJPp/kg2OMX5206xHbzPcZ\nHTHPjmu4muN/s9SK8+A4Xz/n1A1SK05jylpxDuHQlSQ3Hvj+hiRPbmksO2eM8eTq8zNJvpi91rKn\n91v5Vp+f2d4Id85xc+s4X7MxxtNjjOfGGL9L8sn8oW3SXF9SVb0weyehz4wxvrDa7Nhes6Pm2XEN\nR3L8b5BacXLOpxNxTt0cteI0pq4V5xAOfSvJTVX16qr6o+zdROmhLY9pJ1TVH1fVS/a/TvLnSb6f\nvfm9Y7XbHUm+tJ0R7qTj5vahJO9e3a3/jUl+ud92ycUculb5Hdk7tpO9ub69ql5UVa/O3s3vvjn1\n+JaqqirJp5I8Psb4+IEfObbX6Lh5dlzDkdSKG6JW3Arn04k4p26GWnEa26gVr7nckC9vjPFsVb0/\nyT8keUGS+8YYj215WLvi2iRf3Duuck2Svxtj/H1VfSvJg1X13iQ/TfLOLY5xsarqs0nenOQVVXUl\nyUeS/HWOntsvJ3lb9m4M9psk75l8wAt2zFy/uapuzl675E+SvC9JxhiPVdWDSX6Qvbv83zXGeG4b\n416oNyX5yyTfq6rvrLZ9OI5SVgZsAAAAYUlEQVTtdTtunt/luIbnUytulFpxg9SK01ErTkqtOI3J\na8Uaw+V+AAAAAF3N4bIyAAAAALZEOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0J\nhwAAAAAa+/+KSvfvUB2vdAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5bf4320>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3U+IdXeZJ/DvM8Z20QoqjiGTZEaR\nDLS9iRJEcBjsxbTRTXRhExdtECEuIij0JrrRZS9GG2SmAxFDItg6ARWzkO52guBs/JNIUGPGNrQZ\n85qQ0DioM4JD4m8WdctU3rf+173nnnOfzweKqjrvvVW/+7sndZ58f885p8YYAQAAAKCnf7XtAQAA\nAACwPcIhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0NjGwqGqurmqflJV\nj1fVnZv6PQAALI9aEQDmo8YY6/+hVS9J8k9J/lOSS0m+l+R9Y4wfr/2XAQCwKGpFAJiXqzb0c9+S\n5PExxj8nSVV9KcktSQ494FfV+hMqAOjhX8YY/3rbg4AzUisCwETGGHXSYzZ1Wtm1SZ488P2l1bY/\nqKrbq+qhqnpoQ2MAgA7+17YHAOegVgSAGdlU59BhqdSLVnzGGHcnuTuxGgQA0IxaEQBmZFOdQ5eS\nXH/g++uSPLWh3wUAwLKoFQFgRjYVDn0vyQ1V9fqq+qMktyZ5YEO/CwCAZVErAsCMbOS0sjHGc1X1\n4ST/kOQlSe4ZYzy6id8FAMCyqBUBYF42civ7Mw/CeeQAcF4PjzFu2vYgYJPUigBwftu8WxkAAAAA\nCyAcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNHbVRZ5cVU8k+U2S55M8N8a4qapeneS/JXldkieS/MUY439fbJgAACyNWhEAlmEdnUN/Nsa4cYxx\n0+r7O5M8OMa4IcmDq+8BAOhJrQgAM7eJ08puSXLf6uv7krx7A78DAIBlUisCwMxcNBwaSf6xqh6u\nqttX264eYzydJKvPr73g7wAAYJnUigCwABe65lCSt40xnqqq1yb5RlX9z9M+cVUg3H7iAwEAWCq1\nIgAswIU6h8YYT60+P5vkq0nekuSZqromSVafnz3iuXePMW46cP45AAA7RK0IAMtw7nCoqv64ql6x\n/3WSP0/yoyQPJLlt9bDbknztooMEAGBZ1IoAsBwXOa3s6iRfrar9n/N3Y4y/r6rvJbm/qj6Y5OdJ\n3nvxYQIAsDBqRQBYiBpjbHsMqartDwIAlulhp92w69SKAHB+Y4w66TGbuJU9AAAAAAshHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\n7MRwqKruqapnq+pHB7a9uqq+UVU/XX1+1Wp7VdVnqurxqvpBVb15k4MHAGC71IoAsHyn6Ry6N8nN\nl227M8mDY4wbkjy4+j5J3pnkhtXH7UnuWs8wAQCYqXujVgSARTsxHBpjfCvJLy/bfEuS+1Zf35fk\n3Qe2f37s+XaSV1bVNesaLAAA86JWBIDlO+81h64eYzydJKvPr11tvzbJkwced2m17QpVdXtVPVRV\nD51zDAAAzJNaEQAW5Ko1/7w6ZNs47IFjjLuT3J0kVXXoYwAA2ClqRQCYofN2Dj2z3wK8+vzsavul\nJNcfeNx1SZ46//AAAFggtSIALMh5w6EHkty2+vq2JF87sP39qztRvDXJr/ZbigEAaEOtCAALcuJp\nZVX1xSRvT/KaqrqU5BNJ/jrJ/VX1wSQ/T/Le1cO/nuRdSR5P8tskH9jAmAEAmAm1IgAsX42x/VO4\nnUcOAOf28Bjjpm0PAjZJrQgA5zfGOOyafy9y3tPKAAAAANgBwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxk4Mh6rqnqp6tqp+dGDb\nJ6vqF1X1yOrjXQf+7WNV9XhV/aSq3rGpgQMAsH1qRQBYvtN0Dt2b5OZDtv/NGOPG1cfXk6Sq3pjk\n1iR/unrO31bVS9Y1WAAAZufeqBUBYNFODIfGGN9K8stT/rxbknxpjPG7McbPkjye5C0XGB8AADOm\nVgSA5bvINYc+XFU/WLUSv2q17dokTx54zKXVtitU1e1V9VBVPXSBMQAAME9qRQBYiPOGQ3cleUOS\nG5M8neRTq+11yGPHYT9gjHH3GOOmMcZN5xwDXMgY48gPAOBC1IoAsCDnCofGGM+MMZ4fY/w+yWfz\nQjvwpSTXH3jodUmeutgQAQBYErUiACzLucKhqrrmwLfvSbJ/d4oHktxaVS+rqtcnuSHJdy82RFiv\n03QH6SgCgPNTK7JUx3WWn+UDYGmuOukBVfXFJG9P8pqqupTkE0neXlU3Zq8N+IkkH0qSMcajVXV/\nkh8neS7JHWOM5zczdAAAtk2tCADLV3NItqtq+4Ng521qX6867PIJAJN52DVZ2HVqRTZtyv8nUjsC\nUxtjnPiH58TOIViiKQ/w+7/LgR4AYN7msDCudgTm6CK3sgcAAABg4XQOsVO2uRpkFQgAYL7m0DV0\nkNoRmBOdQwAAAACN6Rxi0ea2AgQAwLyoFwFOpnMIAAAAoDHhEKzZGMMKFQAAAIshHAIAAABozDWH\nWCzdOZzXUfuOu4UAwO5QKwKcns4hFmvu/yO/jYLEKW3HO2l+zB0AANCRcAgAAACgMaeVwYZM2dl0\necfLaTpg5t55tQ3mBACYirqDbXKZBS6ncwgAAACgMZ1D0NTB1QIrBHvGGIufi+O6xpb+2gCAi7nI\n9RXVEct3mvff/yP0pXMIAAAAoDGdQ0Ab+6sfp7lj2dJWSs6yErS01wYAnN+67sbatY7Yha7s8+4D\nXd/zrnQOAQAAADSmcwjWbInJulWBKy1lTs6zErSU1wYAu2iq4++6OoYO+7kdaohd6Mre1D7AbtI5\nBAAAANCYziFYk7muGJzF3Fc/1uU01x7ad/lj5jI361gJ6rLyB0BPZzneT2HpHUNd7EJX9rr3gbm9\nPjZDOATntOk/jqf5I7zJduGTfveSLblocrAHgOXZ5HF2G3WN+mGellzjsn1OKwMAAABoTOcQiza3\nduGLOOo1HLYyswuvd2l2fWXMCiAAu6pDvcg87Pop++rF3aZzCAAAAKAxnUMwA+e5MDJnd5E5nMNK\niX0AAHpSA2yeOaY7nUMAAAAAjekcgnPaZifJVOfOL/m8aas/AMBcLLmmYv7UvayDziEAAACAxnQO\nwQJZHWBT5nBtJQDYRY6x86SuPjv78m4SDsEMHPaHdQ4HKn/wt2MO7z0AAPOlXmTdnFYGAAAA0JjO\nIXbCVBdoPux3TvXzrQ5s16bfb+8vAOy289QS6oNl2WS9OKd9wdkFu0nnEAAAAEBjOodgIapqshUD\nqwHTmdMqEACwGbtWW+3S61nHGQg6htgFOocAAAAAGtM5xE7ZxrWHpuQ6RKe3rn1hUyskc33vrAgB\nwPrs4nF1F19Tcr7a0TUp2SU6hwAAAAAa0zkE5zCXFZN1d0rN5XWt08HXZPUFAJjCumqq437OUXXN\nYc9ZRw20i3XiYbq8zrMwJz3oHAIAAABoTOcQO6lbR81Fr0U099e3Lke9zsPmq8uc7Ov2egFgE6Y8\nnp7ld12kVlQjTG8u3e7e+16EQ+y0s4ZElz9+qX8QDzuVau6v5bj3aNNjn/vcrMuu7N8AMBdLPZYu\ncdxnrec5P3PYk9PKAAAAABrTOQQrBxPyXUrL5/paztIue5YLLnZ1kdZyAOigqlyYeebW8f4c/Bne\nq7MzZ33pHAIAAABoTOcQLUjApzGXi+ctwbovmg4AbJZ68mK2UfMs9TqLm6wTlzYXTEfnEAAAAEBj\nOoeAC9lm58sYo/3qR/fXDwCb5lh7PnPqjr58LF3f066vm9PROQQAAADQmM4h4EzmtAqULPdc8n1n\nPad8qa8TAObgLMddx9yzm1uduHTusMeUhEPAsZZykN+VkCjR+gwA2+bYezZLqRf3LaluvHyMZ5nr\nJbw+5sNpZQAAAACN6RwCjrS0VaBkWStBR1ny2AFgCRxrSZZ5c5OljZfl0DkEAAAA0JjOIQAAAM5s\niV3mwOF0DgEAAAA0pnMIuMIurALtwrWHAADmaBdqxX1qRtijcwgAAACgMeEQcIWqsnoCAADQhHAI\nAAAAoDHXHAKu4DxyAAAOs0t1IvAC4RAAAMCOOSzEsVgGHMVpZQAAAACNCYdgTcYY2mwBAJitddSr\nuo9gNwmHAAAAABpzzSE4p6NWXU6zGjP3FZf98emEAgBYr23WinOvQYHt0TkEAAAA0JjOITiHi3bU\nXP78ua7iVJXuIQCACzprPbWOWvFgJ/i6a01d5rB7dA4BAAAANKZzCM5gU6sjm1jRWRcrQwAA57Ou\n+mn/51ykgwjgOMIhOIUpgpGLHPQBANi+TdeMc6sXLSLC7nBaGQAAAEBjOofgGNtYBZnbitA+K0MA\nAIfrXh+pE2H5dA4BAAAANCYcAs6kqmbX1QQAwPapE2G5hEMAAAAAjbnmEAAAwDls6xo7Y4xZd+gc\nHJvrEMEy6BwCAAAAaEznEHAul69WWRUCAOBy7mQGy6BzCAAAAKAx4RDM1BjDCgsAwIy5O9fpmSuY\nN6eVwUw5eK7X3C/cCADQwdxOM1Mfwh6dQwAAAACNnRgOVdX1VfXNqnqsqh6tqo+str+6qr5RVT9d\nfX7VantV1Weq6vGq+kFVvXnTLwI2Rfvr6c19nuY+PoClUiuCmhFYvtN0Dj2X5K/GGH+S5K1J7qiq\nNya5M8mDY4wbkjy4+j5J3pnkhtXH7UnuWvuoAQCYC7UiACzcieHQGOPpMcb3V1//JsljSa5NckuS\n+1YPuy/Ju1df35Lk82PPt5O8sqquWfvIYUJTrgZZedqMuZzXDrBr1IrwgqnqOLUisG5nuuZQVb0u\nyZuSfCfJ1WOMp5O9oiDJa1cPuzbJkweedmm17fKfdXtVPVRVD5192AAAzI1aEQCW6dR3K6uqlyf5\ncpKPjjF+fUxafdg/XLFkP8a4O8ndq59tSZ9FmNvdFQBgLtSK8AI149HMCczTqTqHquql2TvYf2GM\n8ZXV5mf2W4BXn59dbb+U5PoDT78uyVPrGS4AAHOjVgSAZTvN3coqyeeSPDbG+PSBf3ogyW2rr29L\n8rUD29+/uhPFW5P8ar+lGHbF/vnk6zzf27WGAFgitSIcTb04f2MM3UyQpE76D6Gq/kOS/5Hkh0l+\nv9r88eydS35/kn+b5OdJ3jvG+OWqQPgvSW5O8tskHxhjHHuuuFZhlmxdB5NdONDP/cC6C3MMh3h4\njHHTtgdBX2pFOJl68QVzrRd3YW7hKGOME3fwE8OhKTjgswsu8t/SrhyM5vD35Di7Ms9wGeEQO0+t\nyC5YR520C7WMehGmd5pw6NQXpAaOd54LDzr4TGv/vTHvAMDULq8/1IzzpF6kqzPdyh4AAACA3aJz\nCNbssFUGKxDz4v0AALZNzThv3gu60TkEAAAA0JjOIZiAFQcAAE6iZpyfg9eG8v6wy3QOAQAAADQm\nHALWpqqsqAAAsJPGGGe6yxwsiXAIAAAAoDHXHALachcKAADO6vLuIbUku0A4BFzhuHZZBz8AAM5r\nv5bcpdOzLDiyC5xWBgAAANCYziHgD06zgnOalZFdXBECAGB91IswLzqHAAAAABrTOQRszFJWhJwn\nDgCwHQfrr9Nc6HnudSUslc4hAAAAgMZ0DgF/sKlOn6V0EJ2XziMAoKN139L9NM/f9boStkXnEAAA\nAEBjOoeAM7nIitBxz53D6s8Y49Sv77Dx6iACADpR88Du0DkEAAAA0JjOIeAK21gF2oXzx62eAQBM\nYxdqR5gT4RAwK8fdznROBEEAQAfH1WNzqIeERLAeTisDAAAAaEznEDBbVoIAAKZxnnpr3beyB7ZH\n5xAAAABAYzqHoInTrAbNdbVHBxEAwOasq8ba/zndbm4y1xoazkLnEAAAAEBjOodgRzlvHACAw+jG\nXg+1MrtE5xAAAABAYzqHYAet+7zxZB4rI5ePYV2vcw6vDQBg06bqGBpjbK2+qqqNvU41I7tMOAQ7\nZJMH/Dmecnbeg/8cxg4AwGas4+LU6kW6cVoZAAAAQGM6h2AHdL6o4EkrQ1Z9AIDutlErbvO29vvO\n0kGkZqQ7nUMAAAAAjekcAnaC1R4AgCt17jDfp06Ek+kcAgAAAGhM5xAsmJUgAAAALkrnEAAAAEBj\nOocAAAB2jA5z4Cx0DgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMRekhgWrqiTTXHBw/3cBAACw\nW3QOAQAAADSmcwh2wGFdPZd3E52ly0iXEADAsh1Xz62761ztCMuncwgAAACgMZ1DsKOOWsGxsgMA\n0Nu6rluproTdoXMIAAAAoDGdQwAAAA3p/AH26RwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaOzEcKiqrq+qb1bVY1X1aFV9ZLX9k1X1\ni6p6ZPXxrgPP+VhVPV5VP6mqd2zyBQAAsD1qRQBYvhpjHP+AqmuSXDPG+H5VvSLJw0neneQvkvyf\nMcZ/vuzxb0zyxSRvSfJvkvz3JP9+jPH8Mb/j+EEAAEd5eIxx07YHQV9qRQCYtzFGnfSYEzuHxhhP\njzG+v/r6N0keS3LtMU+5JcmXxhi/G2P8LMnj2Tv4AwCwY9SKALB8Z7rmUFW9LsmbknxntenDVfWD\nqrqnql612nZtkicPPO1SDikQqur2qnqoqh4686gBAJgdtSIALNOpw6GqenmSLyf56Bjj10nuSvKG\nJDcmeTrJp/YfesjTr2gFHmPcPca4SSs8AMDyqRUBYLlOFQ5V1Uuzd7D/whjjK0kyxnhmjPH8GOP3\nST6bF9qBLyW5/sDTr0vy1PqGDADAnKgVAWDZTnO3skryuSSPjTE+fWD7NQce9p4kP1p9/UCSW6vq\nZVX1+iQ3JPnu+oYMAMBcqBUBYPmuOsVj3pbkL5P8sKoeWW37eJL3VdWN2WsDfiLJh5JkjPFoVd2f\n5MdJnktyx3F3nwAAYNHUigCwcCfeyn6SQbg9KQCcl1vZs/PUigBwfmu5lT0AAAAAu0s4BAAAANCY\ncAgAAACgMeEQAAAAQGOnuVvZFP4lyf9dfWbzXhNzPRVzPR1zPQ3zPJ3TzvW/2/RAYAbUitPyt346\n5no65noa5nk6a60VZ3G3siSpqofcbWUa5no65no65noa5nk65hpezH8T0zHX0zHX0zHX0zDP01n3\nXDutDAAAAKAx4RAAAABAY3MKh+7e9gAaMdfTMdfTMdfTMM/TMdfwYv6bmI65no65no65noZ5ns5a\n53o21xwCAAAAYHpz6hwCAAAAYGLCIQAAAIDGZhEOVdXNVfWTqnq8qu7c9nh2SVU9UVU/rKpHquqh\n1bZXV9U3quqnq8+v2vY4l6iq7qmqZ6vqRwe2HTq3teczq338B1X15u2NfHmOmOtPVtUvVvv2I1X1\nrgP/9rHVXP+kqt6xnVEvU1VdX1XfrKrHqurRqvrIart9e42OmWf7NRxCrbg5asXNUStOR604HbXi\nNLZRK249HKqqlyT5r0nemeSNSd5XVW/c7qh2zp+NMW4cY9y0+v7OJA+OMW5I8uDqe87u3iQ3X7bt\nqLl9Z5IbVh+3J7lrojHuintz5Vwnyd+s9u0bxxhfT5LV349bk/zp6jl/u/o7w+k8l+Svxhh/kuSt\nSe5Yzal9e72OmufEfg0volachFpxM+6NWnEq90atOBW14jQmrxW3Hg4leUuSx8cY/zzG+H9JvpTk\nli2PadfdkuS+1df3JXn3FseyWGOMbyX55WWbj5rbW5J8fuz5dpJXVtU104x0+Y6Y66PckuRLY4zf\njTF+luTx7P2d4RTGGE+PMb6/+vo3SR5Lcm3s22t1zDwfxX5NZ2rF6akV10CtOB214nTUitPYRq04\nh3Do2iRPHvj+Uo5/0ZzNSPKPVfVwVd2+2nb1GOPpZG+nS/LarY1u9xw1t/bzzfjwqj31ngMt7+Z6\nTarqdUnelOQ7sW9vzGXznNiv4XL2/81SK07L8XRajqkbpFacxlS14hzCoTpk25h8FLvrbWOMN2ev\nne+OqvqP2x5QU/bz9bsryRuS3Jjk6SSfWm0312tQVS9P8uUkHx1j/Pq4hx6yzXyf0iHzbL+GK9n/\nN0utOA/28/VzTN0gteI0pqwV5xAOXUpy/YHvr0vy1JbGsnPGGE+tPj+b5KvZay17Zr+Vb/X52e2N\ncOccNbf28zUbYzwzxnh+jPH7JJ/NC22T5vqCquql2TsIfWGM8ZXVZvv2mh02z/ZrOJT9f4PUipNz\nPJ2IY+rmqBWnMXWtOIdw6HtJbqiq11fVH2XvIkoPbHlMO6Gq/riqXrH/dZI/T/Kj7M3vbauH3Zbk\na9sZ4U46am4fSPL+1dX635rkV/ttl5zPZecqvyd7+3ayN9e3VtXLqur12bv43XenHt9SVVUl+VyS\nx8YYnz7wT/btNTpqnu3XcCi14oaoFbfC8XQijqmboVacxjZqxasuNuSLG2M8V1UfTvIPSV6S5J4x\nxqNbHtauuDrJV/f2q1yV5O/GGH9fVd9Lcn9VfTDJz5O8d4tjXKyq+mKStyd5TVVdSvKJJH+dw+f2\n60nelb0Lg/02yQcmH/CCHTHXb6+qG7PXLvlEkg8lyRjj0aq6P8mPs3eV/zvGGM9vY9wL9bYkf5nk\nh1X1yGrbx2PfXrej5vl99muAzcnlAAAAWUlEQVR4MbXiRqkVN0itOB214qTUitOYvFasMZzuBwAA\nANDVHE4rAwAAAGBLhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgsf8P\npnDUAPbejxAAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5b6f6a0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGvBJREFUeJzt3V+I5XeZ5/HPs8bxYhRUXEM2ya4i\nvTDOTZRGBJfFudgxehO9cIgXYxChvYigMDfRG72ci9UB2Z1AxJAIjm5AxVzIzLhBcG/805Ggidms\nzZg1bULC4KLuCi6Jz17Ur9dKp7q7urrOv3peL2iq6tenqr795Zc6T971O+dUdwcAAACAmf7FphcA\nAAAAwOaIQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOtLA5V1a1V9URV\nnauqu1b1fQAA2D1mRQDYHtXdx/9Fq16W5H8k+Q9Jzif5QZIPdPdPjv2bAQCwU8yKALBdrlvR131b\nknPd/U9JUlVfSXJbkgPv8Kvq+AsVAMzwz939Lze9CLhKZkUAWJPurivdZlUPK7sxyVP7Pj6/HPv/\nqupMVZ2tqrMrWgMATPA/N70AOAKzIgBskVVdOXRQlXrRb3y6+54k9yR+GwQAMIxZEQC2yKquHDqf\n5OZ9H9+U5OkVfS8AAHaLWREAtsiq4tAPkpyqqjdW1R8luT3Jgyv6XgAA7BazIgBskZU8rKy7n6+q\njyb5hyQvS3Jvdz+2iu8FAMBuMSsCwHZZyUvZX/UiPI4cAI7q4e4+velFwCqZFQHg6Db5amUAAAAA\n7ABxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgsOuu5ZOr6skk\nv0nyQpLnu/t0Vb02yX9J8oYkTyb5i+7+X9e2TAAAdo1ZEQB2w3FcOfRn3X1Ld59ePr4ryUPdfSrJ\nQ8vHAADMZFYEgC23ioeV3Zbk/uX9+5O8dwXfAwCA3WRWBIAtc61xqJP8Y1U9XFVnlmPXd/czSbK8\nff01fg8AAHaTWREAdsA1PedQknd099NV9fok36qq/37YT1wGhDNXvCEAALvKrAgAO+Carhzq7qeX\nt88l+XqStyV5tqpuSJLl7XOX+Nx7uvv0vsefAwBwgpgVAWA3HDkOVdUfV9WrLryf5M+TPJrkwSR3\nLDe7I8k3rnWRAADsFrMiAOyOa3lY2fVJvl5VF77O33X331fVD5I8UFUfTvLzJO+/9mUCALBjzIoA\nsCOquze9hlTV5hcBALvpYQ+74aQzKwLA0XV3Xek2q3gpewAAAAB2hDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMNh1m14A\nwEnR3Vf9OVW1gpUAALAJR5kHL2Y+ZBPEIYDLOI47+MN+fYMAAMDuOe558ahfzyzJtfCwMgAAAIDB\nXDkEcIBVXzF0mO/ptz8AANtjE/Ph1biwPjMkR+HKIQAAAIDBXDkEsNi23wZdbj1+IwQAsB7bNiNe\niSuIOApXDgEAAAAM5sohgB10qd9g+Q0RAABwtVw5BAAAADCYOARwguzaY+IBAFiN7jYbcmjiEAAA\nAMBgnnMIGM9vVAAAOIg5kSlcOQRwwriEGACAC8yGHIY4BAAAADDYFeNQVd1bVc9V1aP7jr22qr5V\nVT9d3r5mOV5V9bmqOldVP6qqt65y8QAAbJZZETiJXG3DNIe5cui+JLdedOyuJA9196kkDy0fJ8m7\nk5xa/pxJcvfxLBMAgC11X8yKALDTrhiHuvs7SX550eHbkty/vH9/kvfuO/7F3vPdJK+uqhuOa7EA\nAGwXsyJwkrhiiKmO+pxD13f3M0myvH39cvzGJE/tu9355dhLVNWZqjpbVWePuAYAALaTWREAdshx\nv5R9HXDswOza3fckuSdJqkqaBTamau9H10n5LdGFfw/AFjIrAlvtpM2FidmQwznqlUPPXrgEeHn7\n3HL8fJKb993upiRPH315AADsILMiAOyQo8ahB5Pcsbx/R5Jv7Dv+weWVKN6e5FcXLikGYPX8ZgjY\nEmZFYKdVlbmKUa74sLKq+nKSdyZ5XVWdT/KpJH+d5IGq+nCSnyd5/3LzbyZ5T5JzSX6b5EMrWDPA\nSlTVVl5CbDABtplZEWA7mSG5GrUN/yPkceTAttiGn4kXc8fOFTzc3ac3vQhYJbMisCnbOBselhmS\nC7r7iifDcT8hNcBOu/hO9FoHAnfKAAC7a/8st8lQdLknyjZvchyO+pxDAAAAAJwArhwCuIzLXUnk\ntzQAAHNcava7MB8e11VGl5sxzZ+siiuHAAAAAAZz5RDAVfDbGgAA9jtoPjQzsmtcOQQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMNgV41BV3VtVz1XVo/uOfbqqflFVjyx/3rPv7z5RVeeq6omqeteqFg4A\nwOaZFQFg9x3myqH7ktx6wPG/6e5blj/fTJKqenOS25P86fI5f1tVLzuuxQIAsHXui1kRAHbaFeNQ\nd38nyS8P+fVuS/KV7v5dd/8sybkkb7uG9QEAsMXMigCw+67lOYc+WlU/Wi4lfs1y7MYkT+27zfnl\n2EtU1ZmqOltVZ69hDQAAbCezIgDsiKPGobuTvCnJLUmeSfKZ5XgdcNs+6At09z3dfbq7Tx9xDQAA\nbCezIgDskCPFoe5+trtf6O7fJ/l8/nA58PkkN++76U1Jnr62JQIAsEvMigCwW44Uh6rqhn0fvi/J\nhVeneDDJ7VX1iqp6Y5JTSb5/bUsEAGCXmBUBYLdcd6UbVNWXk7wzyeuq6nySTyV5Z1Xdkr3LgJ9M\n8pEk6e7HquqBJD9J8nySO7v7hdUsHQCATTMrAsDuq+4DH+a93kVUbX4RALCbHvacLJx0ZkUAOLru\nPug5/17kWl6tDAAAAIAdJw4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMdsU4VFU3V9W3q+rxqnqsqj62HH9tVX2rqn66vH3Ncryq6nNVda6qflRVb131\nPwIAgM0wKwLA7jvMlUPPJ/mr7v6TJG9PcmdVvTnJXUke6u5TSR5aPk6Sdyc5tfw5k+TuY181AADb\nwqwIADvuinGou5/p7h8u7/8myeNJbkxyW5L7l5vdn+S9y/u3Jfli7/lukldX1Q3HvnIAADbOrAgA\nu++qnnOoqt6Q5C1Jvpfk+u5+JtkbCpK8frnZjUme2vdp55djF3+tM1V1tqrOXv2yAQDYNmZFANhN\n1x32hlX1yiRfTfLx7v51VV3ypgcc65cc6L4nyT3L137J3wMAsDvMigCwuw515VBVvTx7d/Zf6u6v\nLYefvXAJ8PL2ueX4+SQ37/v0m5I8fTzLBQBg25gVAWC3HebVyirJF5I83t2f3fdXDya5Y3n/jiTf\n2Hf8g8srUbw9ya8uXFIMAMDJYlYEgN1X3Ze/Sreq/l2S/5bkx0l+vxz+ZPYeS/5Akn+d5OdJ3t/d\nv1wGhP+U5NYkv03yoe6+7GPFXSoMAEf2cHef3vQimMusCADbrbsv+VjvC64Yh9bBHT4AHJk4xIln\nVgSAoztMHLqqVysDAAAA4GQRhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAa7Yhyqqpur6ttV9XhVPVZVH1uOf7qqflFVjyx/3rPvcz5RVeeq6omqetcq\n/wEAAGyOWREAdl919+VvUHVDkhu6+4dV9aokDyd5b5K/SPK/u/s/XnT7Nyf5cpK3JflXSf5rkn/b\n3S9c5ntcfhEAwKU83N2nN70I5jIrAsB26+660m2ueOVQdz/T3T9c3v9NkseT3HiZT7ktyVe6+3fd\n/bMk57J35w8AwAljVgSA3XdVzzlUVW9I8pYk31sOfbSqflRV91bVa5ZjNyZ5at+nnc8BA0JVnamq\ns1V19qpXDQDA1jErAsBuOnQcqqpXJvlqko9396+T3J3kTUluSfJMks9cuOkBn/6SS4G7+57uPu1S\neACA3WdWBIDddag4VFUvz96d/Ze6+2tJ0t3PdvcL3f37JJ/PHy4HPp/k5n2fflOSp49vyQAAbBOz\nIgDstsO8Wlkl+UKSx7v7s/uO37DvZu9L8ujy/oNJbq+qV1TVG5OcSvL941syAADbwqwIALvvukPc\n5h1J/jLJj6vqkeXYJ5N8oKpuyd5lwE8m+UiSdPdjVfVAkp8keT7JnZd79QkAAHaaWREAdtwVX8p+\nLYvw8qQAcFReyp4Tz6wIAEd3LC9lDwAAAMDJJQ4BAAAADCYOAQAAAAwmDgEAAAAMdphXK1uHf07y\nf5a3rN7rYq/XxV6vj71eD/u8Pofd63+z6oXAFjArrpef9etjr9fHXq+HfV6fY50Vt+LVypKkqs56\ntZX1sNfrY6/Xx16vh31eH3sNL+a/ifWx1+tjr9fHXq+HfV6f495rDysDAAAAGEwcAgAAABhsm+LQ\nPZtewCD2en3s9frY6/Wwz+tjr+HF/DexPvZ6fez1+tjr9bDP63Ose701zzkEAAAAwPpt05VDAAAA\nAKyZOAQAAAAw2FbEoaq6taqeqKpzVXXXptdzklTVk1X146p6pKrOLsdeW1XfqqqfLm9fs+l17qKq\nureqnquqR/cdO3Bva8/nlnP8R1X11s2tfPdcYq8/XVW/WM7tR6rqPfv+7hPLXj9RVe/azKp3U1Xd\nXFXfrqrHq+qxqvrYcty5fYwus8/OaziAWXF1zIqrY1ZcH7Pi+pgV12MTs+LG41BVvSzJf07y7iRv\nTvKBqnrzZld14vxZd9/S3aeXj+9K8lB3n0ry0PIxV+++JLdedOxSe/vuJKeWP2eS3L2mNZ4U9+Wl\ne50kf7Oc27d09zeTZPn5cXuSP10+52+XnzMczvNJ/qq7/yTJ25Pcueypc/t4XWqfE+c1vIhZcS3M\niqtxX8yK63JfzIrrYlZcj7XPihuPQ0neluRcd/9Td//fJF9JctuG13TS3Zbk/uX9+5O8d4Nr2Vnd\n/Z0kv7zo8KX29rYkX+w9303y6qq6YT0r3X2X2OtLuS3JV7r7d939syTnsvdzhkPo7me6+4fL+79J\n8niSG+PcPlaX2edLcV4zmVlx/cyKx8CsuD5mxfUxK67HJmbFbYhDNyZ5at/H53P5fzRXp5P8Y1U9\nXFVnlmPXd/czyd5Jl+T1G1vdyXOpvXWer8ZHl8tT7913ybu9PiZV9YYkb0nyvTi3V+aifU6c13Ax\n5/9qmRXXy/3perlPXSGz4nqsa1bchjhUBxzrta/i5HpHd781e5fz3VlV/37TCxrKeX787k7ypiS3\nJHkmyWeW4/b6GFTVK5N8NcnHu/vXl7vpAcfs9yEdsM/Oa3gp5/9qmRW3g/P8+LlPXSGz4nqsc1bc\nhjh0PsnN+z6+KcnTG1rLidPdTy9vn0vy9exdWvbshUv5lrfPbW6FJ86l9tZ5fsy6+9nufqG7f5/k\n8/nDZZP2+hpV1cuzdyf0pe7+2nLYuX3MDtpn5zUcyPm/QmbFtXN/uibuU1fHrLge654VtyEO/SDJ\nqap6Y1X9UfaeROnBDa/pRKiqP66qV114P8mfJ3k0e/t7x3KzO5J8YzMrPJEutbcPJvng8mz9b0/y\nqwuXXXI0Fz1W+X3ZO7eTvb2+vapeUVVvzN6T331/3evbVVVVSb6Q5PHu/uy+v3JuH6NL7bPzGg5k\nVlwRs+JGuD9dE/epq2FWXI9NzIrXXduSr113P19VH03yD0leluTe7n5sw8s6Ka5P8vW98yrXJfm7\n7v77qvpBkgeq6sNJfp7k/Rtc486qqi8neWeS11XV+SSfSvLXOXhvv5nkPdl7YrDfJvnQ2he8wy6x\n1++sqluyd7nkk0k+kiTd/VhVPZDkJ9l7lv87u/uFTax7R70jyV8m+XFVPbIc+2Sc28ftUvv8Aec1\nvJhZcaXMiitkVlwfs+JamRXXY+2zYnV7uB8AAADAVNvwsDIAAAAANkQcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGOz/ARuAdmQ2Bb7TAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5ade710>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHpxJREFUeJzt3U+obWeZJ+Df28ZyUAoqtiGdpFuR\n21DWJEoQwaaxBl1GJ1cHFnFQBhHiIIJCTaITHdagtEC6KxAxJIKlHVAxA6kqOwj2xD83EjQxbXkp\n0+aakFDYqF2CTeLXg7NPeXLv+b/3Xnuv/T4PHM4+66y993c/Vs5+8/vetVaNMQIAAABAT/9m0wMA\nAAAAYHOEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKCxtYVDVXVbVf24\nqi5X1d3reh8AAOZHrQgA26PGGKt/0aqXJPnHJP8lyZUk30vyvjHGj1b+ZgAAzIpaEQC2y3Vret23\nJLk8xvinJKmqLyW5mOTQD/yqWn1CBQA9/PMY499uehBwRmpFAJjIGKNO2mddp5XdmOSpAz9fWWz7\nV1V1Z1VdqqpLaxoDAHTwvzc9ADgHtSIAbJF1dQ4dlkq9aMVnjHFvknsTq0EAAM2oFQFgi6yrc+hK\nkpsP/HxTkqfX9F4AAMyLWhEAtsi6wqHvJblQVa+vqj9IcnuSh9b0XgAAzItaEQC2yFpOKxtjPF9V\nH07y90lekuS+Mcbj63gvAADmRa0IANtlLbeyP/MgnEcOAOf1yBjj1k0PAtZJrQgA57fJu5UBAAAA\nMAPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAA\nQGPXLfPkqnoyya+TvJDk+THGrVX16iT/PcnrkjyZ5M/GGP9nuWECADA3akUAmIdVdA79yRjjljHG\nrYuf707y8BjjQpKHFz8DANCTWhEAttw6Tiu7mOSBxeMHkrx7De8BcGZjjIwxNj0MgO7UigCwZZYN\nh0aSf6iqR6rqzsW268cYzyTJ4vtrl3wPAADmSa0IADOw1DWHkrxtjPF0Vb02yTeq6n+d9omLAuHO\nE3cEWLGru4eqakMjAdh5akUAmIGlOofGGE8vvj+X5KtJ3pLk2aq6IUkW35874rn3jjFuPXD+OQAA\nO0StCADzcO5wqKr+sKpesf84yZ8meSzJQ0nuWOx2R5KvLTtIgGUdd62h/WsRuR4RwOqoFQFgPpY5\nrez6JF9dnI5xXZK/HWP8XVV9L8mDVfXBJD9L8t7lhwmwnKo6Vfizv49TzQCWplYEgJmobVgpr6rN\nDwLYeWf5eyccYkYecdoNu06tCADnN8Y48X9ulr0gNcBOctFqAACgi2VvZQ8AAADAjOkcAtq4uvvn\nLKeZ6SQCAAB2lc4hAAAAgMZ0DgFtHdf9c1JX0cHf6yICAOjrvDd5UkOyTXQOAQAAADSmcwhgScet\nFlkRAgDYTeftGDrq+epGNknnEAAAAEBjOocA1uikFSUrRAAA87Jsx9BZXletyFSEQwAb5JQ0AACO\ncpYgSu3IMpxWBgAAANCYziGAA9bVJnweLlIIALA9tqlOPIzakWXoHAIAAABoTOcQwEwcXA2yEgQA\nwHH2a0d1I6ehcwgAAACgMZ1DAAvbfh75QUeN1coQAAAH6SDiNHQOAQAAADSmcwhgh7guEQAAcFY6\nhwAAAGDHzekSCkxPOAQAAADQmHAIAAAAdpxLDnAc4RAAAABAY8IhgIVdWU2pqp35twAAbIupaiy1\nHJsgHAIAAABozK3sASawv/qz7rtEWGUCAJiXo+q3qlpJ7ag+5DR0DgEAAAA0pnMI4ICrV1bOslpz\nmlWZ4/Y5zXtZ+QEA2KxlO8LPUs+dpzZVL3IeOocAAAAAGtM5BHCMKVderPIAAMzHWbp6VlXnqRdZ\nF+EQAAAALElww5w5rQwAAACgMZ1DwE46rK3Xag4AAMC1dA4BAAAANKZzCNgpx10IcP93OogAAPpy\nO3i4ls4hAAAAgMZ0DgE74TQrQAAAcBo6zulG5xAAAABAYzqHAM7p6m4lK0sAANtrWzrNdSWxjXQO\nAQAAADSmcwiYtU2tAB32vu58AQDAQae5k+5R1I1MSTgEcAbLhlHaiAEAdt8qFjDHGGpGJuO0MgAA\nAIDGdA4BnMKqT1/TQQQAsHu25aLXcFY6hwAAAAAaEw4Bs1ZVs+6+GWNYYQIAmMC668Z11HRqRaYi\nHAIAAABozDWHgDbm3GEEAMB0zlI36uxhF+gcAgAAAGhM5xCwE65e3bl6Bee8XUNTrQSNMXQ2AQBM\nYI41lzvdsm7CIWAnLfvBqT0YAADowmllAAAAAI0JhwAOse5bnQIAAGwL4RAAAABAY8IhAAAAOCcd\n5+wC4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAIAluWMZcyYcAjiGW5MC\nAAC7TjgEAAAA0JhwCGAL6E4CAJg/XefMlXAIAAAAoLHrNj0AgDnYXwEaY6zldQEA2B2rrh3VjKyb\nziEAAACAxnQOAZzBwVWbZVaCrP4AAOy+ZTuI1IxMRecQAAAAQGM6hwDO6eqVnMNWhKz2AABwng4i\ndSRTEg4BrIgPcAAAjqNeZFs5rQwAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgses2PQAAAADYdmOME/epqglGAqsnHALa8cEOAMBxTlMv\nnuZ5akrmwmllAAAAAI2dGA5V1X1V9VxVPXZg26ur6htV9ZPF91cttldVfaaqLlfVD6rqzescPMBZ\njDFOvQq0v+/VXwC8mFoR2CWrrvnUkszFaTqH7k9y21Xb7k7y8BjjQpKHFz8nyTuTXFh83ZnkntUM\nEwCALXV/1IoAMGsnhkNjjG8l+cVVmy8meWDx+IEk7z6w/fNjz7eTvLKqbljVYAE27aiOIitCQFdq\nRWAXTFXHqRnZVue95tD1Y4xnkmTx/bWL7TcmeerAflcW265RVXdW1aWqunTOMQAAsJ3UigAwI6u+\nW9lhl2I/NBIdY9yb5N4kqSqxKbBWU67O7L+Xu1MAXEOtCLCgZmSbnLdz6Nn9FuDF9+cW268kufnA\nfjclefr8wwMAYIbUigAwI+cNhx5Kcsfi8R1JvnZg+/sXd6J4a5Jf7rcUA2zCJs/pdi450JhaEZgF\n1/+BPSeeVlZVX0zy9iSvqaorST6R5C+TPFhVH0zysyTvXez+9STvSnI5yW+SfGANYwaYDe3CwK5T\nKwJzJRSC36tt+A/CeeTAumzD37hEOMRaPTLGuHXTg4B1UisC66BOpIsxxokH2aovSA2wFbblwx4A\nAGDbnfeaQwAAAADsAJ1DAAAAwEYd1/nv1Lv10zkEAAAA0JjOIYA1ssrxYqe5FpQ5AwDYXee5NujV\nz1Evrp7OIQAAAIDGdA4BnIPVirM5ywrRwX3NMwDAbljl3YTHGOrEFdM5BAAAANCYziGAM7BCcTqr\nWhnafx3zDgDsqg71ziq7hq5+zV2etykJhwBYmXV88B98XR/+AMCuOqyOUvswFaeVAQAAADSmcwjY\nSfurLKvuZDnL63Vb6VlX1xAAQFdz756eoj6c+xxtC51DAAAAAI3pHAJYk+NWSnZpZUPHEADAeumO\nOZk5Wo7OIQAAAIDGdA4BO2nbu1l26W4U67q+EwAAL6Y7hnXROQQAAADQmM4hYCfpZpmOOQYAgHnT\nOQQAAADQmHAIYEuMMXThAABwornUjVU1+fWR5jI328ZpZcBO8oEAAABwOjqHAAAAABoTDgGwlE20\nCwMAAKsjHAIAAABoTDgEwEroHgIA4DBT1om62s9HOAQAAADQmLuVAbAy+6s07hYHAGwrdQpcS+cQ\nAAAAQGM6h4CdYiVoNzlvHABg3tbdYa5eXI5wCICVc3oZAACHWXWdKBRaDaeVAQAAADSmcwjYCTpU\nttMyKzljDCtBAMDKqBe3y7IdROrE1dI5BAAAANCYziGALbO/etJ9NaT7vx8AoAM133bQOQQAAADQ\nmHAIAAAAoDHhEAAAAEBjrjkEzJq7TgAAACxH5xAAAABAY8IhAAAAgMacVgbM2v6tL3fp9DK38wQA\nAKakcwgAAACgMeEQwJYZY+xUJxQAwDaoKh3acAThEAAAAEBjrjkE7IRduvaQFS0AgPXZpboRVkXn\nEAAAAEBjwiFgpziXHACA01Azwu8JhwAAAAAac80hAAAAmBFdT6yacAhgS/iQBwDgOOpF1sVpZQAA\nAACN6RwCdtI23KLUyg4AAKugrmTddA4BAAAANKZzCGBJVnIAAOZnkx3mp6HGZEo6hwAAAAAa0zkE\n7LRtuPYQ559/K2YAQBfqHjZJ5xAAAABAYzqHgBYOrsQs00VkRedslu3Y2n++eQcAdoW6hm2kcwgA\nAACgMZ1DQDtXr9Yc7G6xkrMarvEEAGy7VXWWn/W9YBsJh4D2fFgDAPS2zE1M1JLsAqeVAQAAADSm\ncwhgSS6avD7mFACYktqDrnQOAQAAADSmcwhgRY47R73bKtRR/96znMffbc4AAGBTdA4BAAAANKZz\nCGBJOlxO77hbxppHAADYDJ1DAAAAAI3pHAJgI3QKAQDAdtA5BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGXJAagGNdfcv5q7mwNAAAzJvOIQAAAIDGhEMAHOmkrqH9fU6zHwAAsJ2EQwAAAACNCYcA\nuMZ5uoF0DwEAwDwJhwAAAAAaEw4BAAAANOZW9gD8q2VPDdt/vtvbAwDAfOgcAgAAAGjsxHCoqu6r\nqueq6rED2z5ZVT+vqkcXX+868LuPVdXlqvpxVb1jXQMHYHXcjh44L7UiAMzfaTqH7k9y2yHb/3qM\nccvi6+tJUlVvTHJ7kj9ePOdvquolqxosAABb5/6oFQFg1k4Mh8YY30ryi1O+3sUkXxpj/HaM8dMk\nl5O8ZYnxAQCwxdSKADB/y1xz6MNV9YNFK/GrFttuTPLUgX2uLLZdo6rurKpLVXVpiTEAALCd1IoA\nMBPnDYfuSfKGJLckeSbJpxbbD7s9zaEXsRhj3DvGuHWMces5xwDAilTVSu4wtqrXAWZPrQgAM3Ku\ncGiM8ewY44Uxxu+SfDa/bwe+kuTmA7velOTp5YYIAMCcqBUBYF7OFQ5V1Q0HfnxPkv27UzyU5Paq\nellVvT7JhSTfXW6IAExF5w+wCmpFAJiX607aoaq+mOTtSV5TVVeSfCLJ26vqluy1AT+Z5ENJMsZ4\nvKoeTPKjJM8nuWuM8cJ6hg4AwKapFQFg/mqMQ0/znnYQVZsfBADXOMtnhI6jjXnENVnYdWpFADi/\nMcaJhfqJnUMA9HUw8NmGxQQAAGD1lrmVPQAAAAAzp3MIgFNx2hgAAOwmnUMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGMnhkNVdXNVfbOqnqiqx6vqI4vtr66q\nb1TVTxbfX7XYXlX1maq6XFU/qKo3r/sfAQDAZqgVAWD+TtM59HySvxhj/FGStya5q6remOTuJA+P\nMS4keXjxc5K8M8mFxdedSe5Z+agBANgWakUAmLkTw6ExxjNjjO8vHv86yRNJbkxyMckDi90eSPLu\nxeOLST4/9nw7ySur6oaVjxwAgI1TKwLA/J3pmkNV9bokb0rynSTXjzGeSfaKgiSvXex2Y5KnDjzt\nymLb1a91Z1VdqqpLZx82AADbRq0IAPN03Wl3rKqXJ/lyko+OMX5VVUfuesi2cc2GMe5Ncu/ita/5\nPQAA86FWBID5OlXnUFW9NHsf9l8YY3xlsfnZ/RbgxffnFtuvJLn5wNNvSvL0aoYLAMC2USsCwLyd\n5m5lleRzSZ4YY3z6wK8eSnLH4vEdSb52YPv7F3eieGuSX+63FAMAsFvUigAwfzXG8V26VfWfkvzP\nJD9M8rvF5o9n71zyB5P8+yQ/S/LeMcYvFgXCf01yW5LfJPnAGOPYc8W1CgPAuT0yxrh104OgL7Ui\nAGy3McaR53rvOzEcmoIPfAA4N+EQO0+tCADnd5pw6Ex3KwMAAABgtwiHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABo7MRyqqpur6ptV\n9URVPV5VH1ls/2RV/byqHl18vevAcz5WVZer6sdV9Y51/gMAANgctSIAzF+NMY7foeqGJDeMMb5f\nVa9I8kiSdyf5syT/d4zxV1ft/8YkX0zyliT/Lsn/SPIfxxgvHPMexw8CADjKI2OMWzc9CPpSKwLA\ndhtj1En7nNg5NMZ4Zozx/cXjXyd5IsmNxzzlYpIvjTF+O8b4aZLL2fvwBwBgx6gVAWD+znTNoap6\nXZI3JfnOYtOHq+oHVXVfVb1qse3GJE8deNqVHFIgVNWdVXWpqi6dedQAAGwdtSIAzNOpw6GqenmS\nLyf56BjjV0nuSfKGJLckeSbJp/Z3PeTp17QCjzHuHWPcqhUeAGD+1IoAMF+nCoeq6qXZ+7D/whjj\nK0kyxnh2jPHCGON3ST6b37cDX0ly84Gn35Tk6dUNGQCAbaJWBIB5O83dyirJ55I8Mcb49IHtNxzY\n7T1JHls8fijJ7VX1sqp6fZILSb67uiEDALAt1IoAMH/XnWKftyX58yQ/rKpHF9s+nuR9VXVL9tqA\nn0zyoSQZYzxeVQ8m+VGS55PcddzdJwAAmDW1IgDM3Im3sp9kEG5PCgDn5Vb27Dy1IgCc30puZQ8A\nAADA7hIOAQAAADQmHAIAAABoTDgEAAAA0Nhp7lY2hX9O8i+L76zfa2Kup2Kup2Oup2Gep3Pauf4P\n6x4IbAG14rT8rZ+OuZ6OuZ6GeZ7OSmvFrbhbWZJU1SV3W5mGuZ6OuZ6OuZ6GeZ6OuYYX89/EdMz1\ndMz1dMz1NMzzdFY9104rAwAAAGhMOAQAAADQ2DaFQ/duegCNmOvpmOvpmOtpmOfpmGt4Mf9NTMdc\nT8dcT8dcT8M8T2elc7011xwCAAAAYHrb1DkEAAAAwMSEQwAAAACNbUU4VFW3VdWPq+pyVd296fHs\nkqp6sqp+WFWPVtWlxbZXV9U3quoni++v2vQ456iq7quq56rqsQPbDp3b2vOZxTH+g6p68+ZGPj9H\nzPUnq+rni2P70ap614HffWwx1z+uqndsZtTzVFU3V9U3q+qJqnq8qj6y2O7YXqFj5tlxDYdQK66P\nWnF91IrTUStOR604jU3UihsPh6rqJUn+W5J3JnljkvdV1Rs3O6qd8ydjjFvGGLcufr47ycNjjAtJ\nHl78zNndn+S2q7YdNbfvTHJh8XVnknsmGuOuuD/XznWS/PXi2L5ljPH1JFn8/bg9yR8vnvM3i78z\nnM7zSf5ijPFHSd6a5K7FnDq2V+uoeU4c1/AiasVJqBXX4/6oFadyf9SKU1ErTmPyWnHj4VCStyS5\nPMb4pzHG/0vypSQXNzymXXcxyQOLxw8kefcGxzJbY4xvJfnFVZuPmtuLST4/9nw7ySur6oZpRjp/\nR8z1US4m+dIY47djjJ8muZy9vzOcwhjjmTHG9xePf53kiSQ3xrG9UsfM81Ec13SmVpyeWnEF1IrT\nUStOR604jU3UitsQDt2Y5KkDP1/J8f9ozmYk+YeqeqSq7lxsu36M8Uyyd9Alee3GRrd7jppbx/l6\nfHjRnnrfgZZ3c70iVfW6JG9K8p04ttfmqnlOHNdwNcf/eqkVp+XzdFo+U9dIrTiNqWrFbQiH6pBt\nY/JR7K63jTHenL12vruq6j9vekBNOc5X754kb0hyS5Jnknxqsd1cr0BVvTzJl5N8dIzxq+N2PWSb\n+T6lQ+bZcQ3Xcvyvl1pxOzjOV89n6hqpFacxZa24DeHQlSQ3H/j5piRPb2gsO2eM8fTi+3NJvpq9\n1rJn91v5Ft+f29wId85Rc+s4X7ExxrNjjBfGGL9L8tn8vm3SXC+pql6avQ+hL4wxvrLY7NhescPm\n2XENh3L8r5FacXI+TyfiM3V91IrTmLpW3IZw6HtJLlTV66vqD7J3EaWHNjymnVBVf1hVr9h/nORP\nkzyWvfm9Y7HbHUm+tpkR7qSj5vahJO9fXK3/rUl+ud92yflcda7ye7J3bCd7c317Vb2sql6fvYvf\nfXfq8c1VVVWSzyV5Yozx6QO/cmyv0FHz7LiGQ6kV10StuBE+TyfiM3U91IrT2ESteN1yQ17eGOP5\nqvpwkr9P8pIk940xHt/wsHbF9Um+undc5bokfzvG+Luq+l6SB6vqg0l+luS9GxzjbFXVF5O8Pclr\nqupKkk8k+cscPrdfT/Ku7F0Y7DdJPjD5gGfsiLl+e1Xdkr12ySeTfChJxhiPV9WDSX6Uvav83zXG\neGET456ptyX58yQ/rKpHF9s+Hsf2qh01z+9zXMOLqRXXSq24RmrF6agVJ6VWnMbktWKN4XQ/AAAA\ngK624bQyAAAAADZEOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAa+/9V\nz3TvTwvIuQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5a5a630>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGsdJREFUeJzt3U+I53ed5/HXe43jYRSMuIZskl2D\n9MI4lyiNCC6Lc9gx5tLx4BAPYxChPURQmEv0osc5rA7I7gQihkRwdAMq5iAz4wbBvajpSIiJ2azN\nmDVtQsLgou4KLonvPdSv10qnuqu6qn7/6v14QFFV3/5V1ac/fLt/b571/f1+1d0BAAAAYKZ/se4F\nAAAAALA+4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBgS4tDVXVrVT1d\nVeer6u5l/RwAALaPWREANkd19/F/06rXJPkfSf5DkgtJHknyoe7+ybH/MAAAtopZEQA2yzVL+r7v\nSnK+u/8pSarqa0nOJNnzDr+qjr9QAcAM/9zd/3Ldi4CrZFYEgBXp7trvNst6WNkNSZ7d9fmFxbH/\nr6rOVtW5qjq3pDUAwAT/c90LgEMwKwLABlnWlUN7ValX/Manu+9Ncm/it0EAAMOYFQFggyzryqEL\nSW7a9fmNSZ5b0s8CAGC7mBUBYIMsKw49kuRUVd1cVX+U5I4kDy3pZwEAsF3MigCwQZbysLLufqmq\nPp7kH5K8Jsl93f3kMn4WAADbxawIAJtlKS9lf9WL8DhyADisR7v79LoXActkVgSAw1vnq5UBAAAA\nsAXEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwa45yhdX1TNJ\nfpPk5SQvdffpqnpTkv+S5K1JnknyF939v462TAAAto1ZEQC2w3FcOfRn3X1Ld59efH53koe7+1SS\nhxefAwAwk1kRADbcMh5WdibJA4uPH0hy+xJ+BgAA28msCAAb5qhxqJP8Y1U9WlVnF8eu6+7nk2Tx\n/i1H/BkAAGwnsyIAbIEjPedQkvd093NV9ZYk36mq/37QL1wMCGf3vSEAANvKrAgAW+BIVw5193OL\n9y8m+WaSdyV5oaquT5LF+xcv87X3dvfpXY8/BwDgBDErAsB2OHQcqqo/rqo3XPw4yZ8neSLJQ0nu\nXNzsziTfOuoiAQDYLmZFANgeR3lY2XVJvllVF7/P33X331fVI0kerKqPJvl5kg8efZkAAGwZsyIA\nbInq7nWvIVW1/kUAwHZ61MNuOOnMigBweN1d+91mGS9lDwAAAMCWEIcAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG2zcOVdV9VfViVT2x69ibquo7VfXT\nxftrF8erqr5QVeer6vGqeucyFw8AwHqZFQFg+x3kyqH7k9x6ybG7kzzc3aeSPLz4PEnen+TU4u1s\nknuOZ5kAAGyo+2NWBICttm8c6u7vJfnlJYfPJHlg8fEDSW7fdfzLveP7Sd5YVdcf12IBANgsZkUA\n2H6Hfc6h67r7+SRZvH/L4vgNSZ7ddbsLi2OvUlVnq+pcVZ075BoAANhMZkUA2CLXHPP3qz2O9V43\n7O57k9ybJFW1520AADhRzIoAsIEOe+XQCxcvAV68f3Fx/EKSm3bd7sYkzx1+eQAAbCGzIgBskcPG\noYeS3Ln4+M4k39p1/MOLV6J4d5JfXbykGACAMcyKALBF9n1YWVV9Ncl7k7y5qi4k+UySv07yYFV9\nNMnPk3xwcfNvJ7ktyfkkv03ykSWsGQCADWFWBIDtV93rfwi3x5EDwKE92t2n170IWCazIgAcXnfv\n9Zx/r3DYh5UBAAAAcAKIQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIPtG4eq6r6qerGqnth17LNV9YuqemzxdtuuP/tUVZ2vqqer6n3LWjgAAOtnVgSA\n7XeQK4fuT3LrHsf/prtvWbx9O0mq6u1J7kjyp4uv+duqes1xLRYAgI1zf8yKALDV9o1D3f29JL88\n4Pc7k+Rr3f277v5ZkvNJ3nWE9QEAsMHMigCw/Y7ynEMfr6rHF5cSX7s4dkOSZ3fd5sLi2KtU1dmq\nOldV546wBgAANpNZEQC2xGHj0D1J3pbkliTPJ/nc4njtcdve6xt0973dfbq7Tx9yDQAAbCazIgBs\nkUPFoe5+obtf7u7fJ/li/nA58IUkN+266Y1JnjvaEgEA2CZmRQDYLoeKQ1V1/a5PP5Dk4qtTPJTk\njqp6XVXdnORUkh8ebYkAAGwTsyIAbJdr9rtBVX01yXuTvLmqLiT5TJL3VtUt2bkM+JkkH0uS7n6y\nqh5M8pMkLyW5q7tfXs7SAQBYN7MiAGy/6t7zYd6rXUTV+hcBANvpUc/JwklnVgSAw+vuvZ7z7xWO\n8mplAAAAAGw5cQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgsGvWvQC4nO7e9zZVtYKVAACwya40N5oXAfbnyiEA\nAACAwVw5xFbb7+oivykCADi5DnKl+UFuc5HZEZhKHOJEc4kxAAAHtdfsaGYEJvCwMgAAAIDB9o1D\nVXVTVX23qp6qqier6hOL42+qqu9U1U8X769dHK+q+kJVna+qx6vqncv+S3AyVdVSf1PT3a96AwCu\njlmRdVr2vJjEnAiMcJArh15K8lfd/SdJ3p3krqp6e5K7kzzc3aeSPLz4PEnen+TU4u1sknuOfdUA\nAGwKsyIAbLl941B3P9/dP1p8/JskTyW5IcmZJA8sbvZAktsXH59J8uXe8f0kb6yq64995Yyxit8I\nXbTX1UR+UwQAl2dWZBOsYlY0FwIn2VU951BVvTXJO5L8IMl13f18sjMUJHnL4mY3JHl215ddWBy7\n9HudrapzVXXu6pcNAMCmMSsCwHY68KuVVdXrk3w9ySe7+9dXqPN7/cGrEnt335vk3sX3luDZSF6d\nAgAOxqzIFBevHjInAifJga4cqqrXZufO/ivd/Y3F4RcuXgK8eP/i4viFJDft+vIbkzx3PMsFAGDT\nmBUBYLsd5NXKKsmXkjzV3Z/f9UcPJblz8fGdSb616/iHF69E8e4kv7p4STEcxSqfewgAOBizIpti\nVbOimRQ4iWq/J1Wrqn+X5L8l+XGS3y8Ofzo7jyV/MMm/TvLzJB/s7l8uBoT/lOTWJL9N8pHuvuJj\nxV0qzNVY5RMBuuMHtsCj3X163YtgLrMim2bZs6L5ENg23b3vf1z7xqFVcIfPYazi3HXnD2wBcYgT\nz6zIYSxrVjQfAtvmIHHowE9IDZumqtzpAwCwp4vz3HHNi+ZD4CS7qpeyBwAAAOBkceUQW+24fyN0\nkZcoBQA4GY46L5oHgQlcOQQAAAAwmCuHOBEu/Y3OUa8k8hsiAICTZfd8d4BXbF72cgA2iiuHAAAA\nAAZz5RAnkt/2AABwOWZFgFdy5RAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg+8ahqrqpqr5bVU9V1ZNV9YnF8c9W1S+q6rHF\n2227vuZTVXW+qp6uqvct8y8AAMD6mBUBYPtVd1/5BlXXJ7m+u39UVW9I8miS25P8RZL/3d3/8ZLb\nvz3JV5O8K8m/SvJfk/zb7n75Cj/jyosAAC7n0e4+ve5FMJdZEQA2W3fXfrfZ98qh7n6+u3+0+Pg3\nSZ5KcsMVvuRMkq919++6+2dJzmfnzh8AgBPGrAgA2++qnnOoqt6a5B1JfrA49PGqeryq7quqaxfH\nbkjy7K4vu5A9BoSqOltV56rq3FWvGgCAjWNWBIDtdOA4VFWvT/L1JJ/s7l8nuSfJ25LckuT5JJ+7\neNM9vvxVlwJ3973dfdql8AAA28+sCADb60BxqKpem507+6909zeSpLtf6O6Xu/v3Sb6YP1wOfCHJ\nTbu+/MYkzx3fkgEA2CRmRQDYbgd5tbJK8qUkT3X353cdv37XzT6Q5InFxw8luaOqXldVNyc5leSH\nx7dkAAA2hVkRALbfNQe4zXuS/GWSH1fVY4tjn07yoaq6JTuXAT+T5GNJ0t1PVtWDSX6S5KUkd13p\n1ScAANhqZkUA2HL7vpT9Shbh5UkB4LC8lD0nnlkRAA7vWF7KHgAAAICTSxwCAAAAGEwcAgAAABhM\nHAIAAAAY7CCvVrYK/5zk/yzes3xvjr1eFXu9OvZ6Nezz6hx0r//NshcCG8CsuFr+r18de7069no1\n7PPqHOusuBGvVpYkVXXOq62shr1eHXu9OvZ6Nezz6threCX/JlbHXq+OvV4de70a9nl1jnuvPawM\nAAAAYDBxCAAAAGCwTYpD9657AYPY69Wx16tjr1fDPq+OvYZX8m9idez16tjr1bHXq2GfV+dY93pj\nnnMIAAAAgNXbpCuHAAAAAFgxcQgAAABgsI2IQ1V1a1U9XVXnq+ruda/nJKmqZ6rqx1X1WFWdWxx7\nU1V9p6p+unh/7brXuY2q6r6qerGqnth1bM+9rR1fWJzjj1fVO9e38u1zmb3+bFX9YnFuP1ZVt+36\ns08t9vrpqnrfela9narqpqr6blU9VVVPVtUnFsed28foCvvsvIY9mBWXx6y4PGbF1TErro5ZcTXW\nMSuuPQ5V1WuS/Ock70/y9iQfqqq3r3dVJ86fdfct3X168fndSR7u7lNJHl58ztW7P8mtlxy73N6+\nP8mpxdvZJPesaI0nxf159V4nyd8szu1buvvbSbL4/+OOJH+6+Jq/Xfw/w8G8lOSvuvtPkrw7yV2L\nPXVuH6/L7XPivIZXMCuuhFlxOe6PWXFV7o9ZcVXMiqux8llx7XEoybuSnO/uf+ru/5vka0nOrHlN\nJ92ZJA8sPn4gye1rXMvW6u7vJfnlJYcvt7dnkny5d3w/yRur6vrVrHT7XWavL+dMkq919++6+2dJ\nzmfn/xkOoLuf7+4fLT7+TZKnktwQ5/axusI+X47zmsnMiqtnVjwGZsXVMSuujllxNdYxK25CHLoh\nybO7Pr+QK/+luTqd5B+r6tGqOrs4dl13P5/snHRJ3rK21Z08l9tb5/lyfHxxeep9uy55t9fHpKre\nmuQdSX4Q5/bSXLLPifMaLuX8Xy6z4mq5P10t96lLZFZcjVXNipsQh2qPY73yVZxc7+nud2bncr67\nqurfr3tBQznPj989Sd6W5JYkzyf53OK4vT4GVfX6JF9P8snu/vWVbrrHMft9QHvss/MaXs35v1xm\nxc3gPD9+7lOXyKy4GqucFTchDl1IctOuz29M8tya1nLidPdzi/cvJvlmdi4te+HipXyL9y+ub4Un\nzuX21nl+zLr7he5+ubt/n+SL+cNlk/b6iKrqtdm5E/pKd39jcdi5fcz22mfnNezJ+b9EZsWVc3+6\nIu5Tl8esuBqrnhU3IQ49kuRUVd1cVX+UnSdRemjNazoRquqPq+oNFz9O8udJnsjO/t65uNmdSb61\nnhWeSJfb24eSfHjxbP3vTvKri5ddcjiXPFb5A9k5t5Odvb6jql5XVTdn58nvfrjq9W2rqqokX0ry\nVHd/ftcfObeP0eX22XkNezIrLolZcS3cn66I+9TlMCuuxjpmxWuOtuSj6+6XqurjSf4hyWuS3Nfd\nT655WSfFdUm+uXNe5Zokf9fdf19VjyR5sKo+muTnST64xjVurar6apL3JnlzVV1I8pkkf5299/bb\nSW7LzhOD/TbJR1a+4C12mb1+b1Xdkp3LJZ9J8rEk6e4nq+rBJD/JzrP839XdL69j3VvqPUn+MsmP\nq+qxxbFPx7l93C63zx9yXsMrmRWXyqy4RGbF1TErrpRZcTVWPitWt4f7AQAAAEy1CQ8rAwAAAGBN\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB/h8I0md7llJg+wAAAABJ\nRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c59c7b70>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHWdJREFUeJzt3U+obWeZJ+Df217LQSmo2IZ0km5F\n0lDWJMpFBJvGGnQZnUQHFnFQBhGugwgKNYlOdFiD1gLprkDEkAiWdkDFDKSq7CDYE//cSNDEdMpL\nmTbXhITCRu0WbBK/Hpx99HhzzrnnnrP32mvt93ngsPdZd+29v/u5cvfr73vXWjXGCAAAAAA9/att\nDwAAAACA7REOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMY2Fg5V1a1V\n9URVXaqquzb1OQAALI9aEQDmo8YY63/Tqpck+ack/ynJ5STfS/K+McaP1v5hAAAsiloRAObl3Ibe\n9y1JLo0x/jlJqupLSW5LcugXflWtP6ECgB7+ZYzxr7c9CLhGakUAmMgYo662z6ZOK7shyVMHfr+8\n2vY7VXWhqi5W1cUNjQEAOvhf2x4AnIJaEQBmZFOdQ4elUn+w4jPGuCfJPYnVIACAZtSKADAjm+oc\nupzkpgO/35jk6Q19FgAAy6JWBIAZ2VQ49L0kN1fV66vqj5LcnuTBDX0WAADLolYEgBnZyGllY4zn\nq+rDSf4hyUuS3DvGeGwTnwUAwLKoFQFgXjZyK/trHoTzyAHgtB4eY5zf9iBgk9SKAHB627xbGQAA\nAAALIBwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEA\nAAA0du4sL66qJ5P8KskLSZ4fY5yvqlcn+W9JXpfkySR/Mcb432cbJgAAS6NWBIBlWEfn0J+NMW4Z\nY5xf/X5XkofGGDcneWj1OwAAPakVAWDmNnFa2W1J7l89vz/JuzfwGQAALJNaEQBm5qzh0Ejyj1X1\ncFVdWG27bozxTJKsHl97xs8AAGCZ1IoAsABnuuZQkreNMZ6uqtcm+UZV/c+TvnBVIFy46o4AACyV\nWhEAFuBMnUNjjKdXj88l+WqStyR5tqquT5LV43NHvPaeMcb5A+efAwCwQ9SKALAMpw6HquqPq+oV\n+8+T/HmSR5M8mOSO1W53JPnaWQcJAMCyqBUBYDnOclrZdUm+WlX77/N3Y4y/r6rvJXmgqj6Y5KdJ\n3nv2YQIAsDBqRQBYiBpjbHsMqartDwIAlulhp92w69SKAHB6Y4y62j6buJU9AAAAAAshHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABo\nTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMbObXsAwMmNMU68b1VtcCQAAADsCp1DAAAAAI3p\nHIKZu5ZuoZO8TkcRAAAAB+kcAgAAAGhMOATNjDFO3Y0EAADA7hEOAQAAADQmHIKZ2nSHj+4hAAAA\nEuEQzFZVuXg0AAAAGyccAgAAAGhMOASNuTg1AAAAwiEAAACAxoRDAAAAAI0JhwAAAAAaO7ftAQDH\n279jmWsDAQCwTofVl+6WCz3pHAIAAABoTDgEC2EVBwCATXM3W+hJOAQAAADQmGsOQWO6kQAAOEh9\nCD0JhwAAABoSBAH7nFYGAAAA0JhwCAAAAKAx4RAAAABAY645BAuyf174um4vei3v45x0AACA3aRz\nCAAAAKAxnUOwQOvuIDqJKz9LJxEAAMBu0DkEAAAA0JjOIViwK7t3puwkAgAAYDcIh2CHHAyLNh0U\n7b+/08sAAACWzWllAAAAAI3pHIIdtemLVusYAgAA2A06hwAAAAAa0zkEO85FqwEAADiOziEAAACA\nxnQOQTOnvRaRawwBAADsJp1DAAAAAI0Jh6Cpk3YCVZWuIQAAgB0mHAIAAABozDWHoLErrz+kQwgA\nAKAf4RAgFAIAAGjMaWUAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQ\nAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANDYVcOhqrq3qp6r\nqkcPbHt1VX2jqn68enzVantV1Weq6lJV/aCq3rzJwQMAsF1qRQBYvpN0Dt2X5NYrtt2V5KExxs1J\nHlr9niTvTHLz6udCkrvXM0wAAGbqvqgVAWDRrhoOjTG+leTnV2y+Lcn9q+f3J3n3ge2fH3u+neSV\nVXX9ugYLAMC8qBVZijHGiX8AujntNYeuG2M8kySrx9eutt+Q5KkD+11ebXuRqrpQVRer6uIpxwAA\nwDypFQFgQc6t+f3qkG2HRu9jjHuS3JMkVSWeBwDYfWpFJneaTqCDr6k67LAF2C2n7Rx6dr8FePX4\n3Gr75SQ3HdjvxiRPn354AAAskFoRABbktOHQg0nuWD2/I8nXDmx//+pOFG9N8ov9lmIAANpQK7I1\n675+kOsRAR1c9bSyqvpikrcneU1VXU7yiSR/neSBqvpgkp8mee9q968neVeSS0l+neQDGxgzHGld\nX9jahwHgZNSKzMVUwY1TzoBdVHNIv51HzroIh4CGHh5jnN/2IGCT1IqcxDb+f42aEViCMcZV/7Fa\n9wWpYTJzCDYBAOhrvx4VEgFLd9prDgEAAACwA3QOsRhTdgpZBQIAWA4d5QBno3MIAAAAoDGdQ8ye\nlSAAAA4zlzpR1zmwdDqHAAAAABrTOcQszWUVCAAAAHadziEAAACAxnQOwSGcLw4AAEAXwiFmxelk\nAABcjZoRYL2cVgYAAADQmM4hAABgEXQMAWyGziEAAACAxnQOMQtzWQVyIWoAAAC60TkEAAAA0Jhw\nCA4YY8ymiwkAAACmIBwCAAAAaMw1h9gqXToAAACwXTqHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYC1KzVVWVxIWpAQBYrv2aFmCpdA4BAAAANCYcAgAAAGhMOAQAAADQmHCIWaiqWZ2rPcZwHSQA\ngJmZW80IsCuEQwAAAACNuVsZszK3u5ftj8MKFQDAfMylZlQjArtC5xAAALBITjMDWA/hEAAAAEBj\nTitjlg6uAG27XfjgGKxMAQDMz3G143H121nqTHUhsEt0DgEAAAA0pnOI2dvUag8AALvnWjp6TnNh\nax1DwC7SOQQAAADQmM4hFu3KlRudRAAAXKvjakqdQkAHOocAAAAAGtM5xE45zXnj1/K+AADsPrUf\n0I3OIQAAAIDGdA6xk07bQWSVCAAAgG6EQ+w0YQ8AAAAcz2llAAAAAI0JhwAAAAAaEw4BAAAANCYc\nAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxs5tewAAAMB0xhgv2lZVWxgJAHOhcwgA\nAACgMZ1DO+iw1aDDWCECANhdJ60Jj9tXvQjQg84hAAAAgMZ0Di3YtawGHfd6K0IAALvhrPXhce+n\nZgTYXTqHAAAAABrTObRAm1oRshoEALBM664PAehF5xAAAABAYzqHFmKK1SAdRAAAyzJlx5BaEWB3\n6RwCAAAAaEzn0Ew5bxwAgKOoFQFYJ51DvMgYQ8EBAMCh1IoAu0c4BAAAANCY08pmxioMAABHUSsC\nsAk6hwAAAAAaEw4BAAAANCYcAgAAAGjMNYd4kara9hAAALjC3K43tD8etSPA8ukcAgAAAGhM5xAA\nAHDNdAwB7A7hENfkqHZmxQEAAAAsk9PKAAAAABrTOcSJzO0CiAAA3VTVLGqyk3SM6zYHWBadQwAA\nAACN6Ryamf3VlG2sCp1lJWeMYSUIAGCHXa3WO0n9qmYEmCedQwAAAACN6RxiLatAAABs3ja6zNfd\n6bM/dh1EAPOhcwgAAACgMZ1DTZ3lLhMn3d9qEADAZkzVQXRcPXfWz9ZBBDAfOocAAAAAGtM5NFOb\nWg3a5OrPUe9nNQgAYDOmrBk31aWk+xxg+4RDO27KMOikn+MLHwBgvdYdEm3zhiQWGAGm57QyAAAA\ngMauGg5V1b1V9VxVPXpg2yer6mdV9cjq510H/uxjVXWpqp6oqndsauBdVNU1r5rsv2YOXUMAwG5T\nK87LwTrwqHrwJPvMgXoVYDon6Ry6L8mth2z/mzHGLaufrydJVb0xye1J/nT1mr+tqpesa7AAAMzO\nfVErAsCiXTUcGmN8K8nPT/h+tyX50hjjN2OMnyS5lOQtZxgfK9eyCnScMcbWV2G2/fkAwPqoFedv\nCV1CAGzXWa459OGq+sGqlfhVq203JHnqwD6XV9tepKouVNXFqrp4hjEAADBPakUAWIjThkN3J3lD\nkluSPJPkU6vthy1FHNomMsa4Z4xxfoxx/pRjaG/Jq0Bz6GACADZGrbgQajIAklOGQ2OMZ8cYL4wx\nfpvks/l9O/DlJDcd2PXGJE+fbYgAACyJWhEAluVU4VBVXX/g1/ck2b87xYNJbq+ql1XV65PcnOS7\nZxsiAABLolZkXXQ2AUzj3NV2qKovJnl7ktdU1eUkn0jy9qq6JXttwE8m+VCSjDEeq6oHkvwoyfNJ\n7hxjvLCZoQMAsG1qRQBYvppDEl9V2x9EE3P43/swS7tmEsCMPOyaLOw6teJmzLUuPIxaEeD0xhhX\n/Uf0qp1DsEm+6AEAAGC7znIrewAAAAAWTjgEAAAA0JhwCAAAAKAx1xxqZv8aP0u6ACEAAD25PiXA\nNHQOAQAAADSmc4itsAoEAAAA86BzCAAAAKAx4VBT2+zc0TUEALB9c63Jqup3PwBMw2llTMYXPADA\nvMzpZiVqRYDt0TkEAAAA0JjOocauXJ3Z1IqRVSAAgHk7rl7bdFeRWhFg+3QOAQAAADSmc4jfWXcn\nkVUgAIDlO6qmUysC7A6dQwAAAACN6RziSIet5ly5QmTFBwCgp5PUisftC8B86BwCAAAAaEznENfE\nqg8AAEdRKwIsk84hAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAA\nAKAx4RAAAABAY1cNh6rqpqr6ZlU9XlWPVdVHVttfXVXfqKofrx5ftdpeVfWZqrpUVT+oqjdv+i8B\nAMB2qBUBYPlO0jn0fJK/GmP8SZK3Jrmzqt6Y5K4kD40xbk7y0Or3JHlnkptXPxeS3L32UQMAMBdq\nRQBYuKuGQ2OMZ8YY3189/1WSx5PckOS2JPevdrs/ybtXz29L8vmx59tJXllV16995AAAbJ1aEQCW\n75quOVRVr0vypiTfSXLdGOOZZK8oSPLa1W43JHnqwMsur7Zd+V4XqupiVV289mEDADA3akUAWKZz\nJ92xql6e5MtJPjrG+GVVHbnrIdvGizaMcU+Se1bv/aI/BwBgOdSKALBcJ+ocqqqXZu/L/gtjjK+s\nNj+73wK8enxutf1ykpsOvPzGJE+vZ7gAAMyNWhEAlu0kdyurJJ9L8vgY49MH/ujBJHesnt+R5GsH\ntr9/dSeKtyb5xX5LMQAAu0WtCADLV2Mc36VbVf8hyf9I8sMkv11t/nj2ziV/IMm/TfLTJO8dY/x8\nVSD8lyS3Jvl1kg+MMY49V1yrMACc2sNjjPPbHgR9qRUBYN7GGEee673vquHQFHzhA8CpCYfYeWpF\nADi9k4RD13S3MgAAAAB2i3AIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoLGrhkNVdVNVfbOqHq+qx6rqI6vtn6yqn1XVI6ufdx14zceq\n6lJVPVFV79jkXwAAgO1RKwLA8tUY4/gdqq5Pcv0Y4/tV9YokDyd5d5K/SPJ/xhj/+Yr935jki0ne\nkuTfJPnvSf79GOOFYz7j+EEAAEd5eIxxftuDoC+1IgDM2xijrrbPVTuHxhjPjDG+v3r+qySPJ7nh\nmJfcluRLY4zfjDF+kuRS9r78AQDYMWpFAFi+a7rmUFW9LsmbknxntenDVfWDqrq3ql612nZDkqcO\nvOxyDikQqupCVV2sqovXPGoAAGZHrQgAy3TicKiqXp7ky0k+Osb4ZZK7k7whyS1Jnknyqf1dD3n5\ni1qBxxj3jDHOa4UHAFg+tSIALNeJwqGqemn2vuy/MMb4SpKMMZ4dY7wwxvhtks/m9+3Al5PcdODl\nNyZ5en1DBgBgTtSKALBsJ7lbWSX5XJLHxxifPrD9+gO7vSfJo6vnDya5vapeVlWvT3Jzku+ub8gA\nAMyFWhEAlu/cCfZ5W5K/TPLDqnpkte3jSd5XVbdkrw34ySQfSpIxxmNV9UCSHyV5Psmdx919AgCA\nRVMrAsDCXfVW9pMMwu1JAeC03MqenadWBIDTW8ut7AEAAADYXcIhAAAAgMaEQwAAAACNCYcAAAAA\nGjvJ3cqm8C9J/u/qkc17Tcz1VMz1dMz1NMzzdE461/9u0wOBGVArTsu/9dMx19Mx19Mwz9NZa604\ni7uVJUlVXXS3lWmY6+mY6+mY62mY5+mYa/hD/puYjrmejrmejrmehnmezrrn2mllAAAAAI0JhwAA\nAAAam1M4dM+2B9CIuZ6OuZ6OuZ6GeZ6OuYY/5L+J6Zjr6Zjr6ZjraZjn6ax1rmdzzSEAAAAApjen\nziEAAAAAJiYcAgAAAGhsFuFQVd1aVU9U1aWqumvb49klVfVkVf2wqh6pqourba+uqm9U1Y9Xj6/a\n9jiXqKrurarnqurRA9sOndva85nVMf6Dqnrz9ka+PEfM9Ser6merY/uRqnrXgT/72Gqun6iqd2xn\n1MtUVTdV1Ter6vGqeqyqPrLa7theo2Pm2XENh1Arbo5acXPUitNRK05HrTiNbdSKWw+HquolSf5r\nkncmeWOS91XVG7c7qp3zZ2OMW8YY51e/35XkoTHGzUkeWv3Otbsvya1XbDtqbt+Z5ObVz4Ukd080\nxl1xX14810nyN6tj+5YxxteTZPXvx+1J/nT1mr9d/TvDyTyf5K/GGH+S5K1J7lzNqWN7vY6a58Rx\nDX9ArTgJteJm3Be14lTui1pxKmrFaUxeK249HEryliSXxhj/PMb4f0m+lOS2LY9p192W5P7V8/uT\nvHuLY1msMca3kvz8is1Hze1tST4/9nw7ySur6vppRrp8R8z1UW5L8qUxxm/GGD9Jcil7/85wAmOM\nZ8YY3189/1WSx5PcEMf2Wh0zz0dxXNOZWnF6asU1UCtOR604HbXiNLZRK84hHLohyVMHfr+c4//S\nXJuR5B+r6uGqurDadt0Y45lk76BL8tqtjW73HDW3jvPN+PCqPfXeAy3v5npNqup1Sd6U5DtxbG/M\nFfOcOK7hSo7/zVIrTsv36bR8p26QWnEaU9WKcwiH6pBtY/JR7K63jTHenL12vjur6j9ue0BNOc7X\n7+4kb0hyS5Jnknxqtd1cr0FVvTzJl5N8dIzxy+N2PWSb+T6hQ+bZcQ0v5vjfLLXiPDjO18936gap\nFacxZa04h3DocpKbDvx+Y5KntzSWnTPGeHr1+FySr2avtezZ/Va+1eNz2xvhzjlqbh3nazbGeHaM\n8cIY47dJPpvft02a6zOqqpdm70voC2OMr6w2O7bX7LB5dlzDoRz/G6RWnJzv04n4Tt0cteI0pq4V\n5xAOfS/JzVX1+qr6o+xdROnBLY9pJ1TVH1fVK/afJ/nzJI9mb37vWO12R5KvbWeEO+mouX0wyftX\nV+t/a5Jf7LddcjpXnKv8nuwd28neXN9eVS+rqtdn7+J33516fEtVVZXkc0keH2N8+sAfObbX6Kh5\ndlzDodSKG6JW3ArfpxPxnboZasVpbKNWPHe2IZ/dGOP5qvpwkn9I8pIk944xHtvysHbFdUm+undc\n5VySvxtj/H1VfS/JA1X1wSQ/TfLeLY5xsarqi0nenuQ1VXU5ySeS/HUOn9uvJ3lX9i4M9uskH5h8\nwAt2xFy/vapuyV675JNJPpQkY4zHquqBJD/K3lX+7xxjvLCNcS/U25L8ZZIfVtUjq20fj2N73Y6a\n5/c5ruEPqRU3Sq24QWrF6agVJ6VWnMbktWKN4XQ/AAAAgK7mcFoZAAAAAFsiHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN/X9E2dX5cU8A6gAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5943fd0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHKpJREFUeJzt3U+oZneZJ/DvMynbRSsYcRIySWYM\nUgOd3kQpQsBhSC+mjdlUXNjERRtEKBcJKPQmutFlL0YbZKYDEUMi2GYCKmYh3e0EwdmoqUiIiZmM\nRZsxZYqExkGdERwSf7O4p8abyr11b937vuf983w+cHnf93fPe++vfpy678P3POecGmMEAAAAgJ7+\nxaonAAAAAMDqCIcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY0sLh6rq\njqp6oarOVdX9y/o9AABsHrUiAKyPGmMs/odWXZXkfyT5D0nOJ3kyyUfGGD9Z+C8DAGCjqBUBYL2c\nWNLPvTXJuTHGPyVJVT2a5HSSPT/wq2rxCRUA9PDPY4x/uepJwBVSKwLATMYYddA2yzqt7PokL+16\nfX4a+/+q6kxVna2qs0uaAwB08D9XPQE4ArUiAKyRZXUO7ZVKveGIzxjjwSQPJo4GAQA0o1YEgDWy\nrM6h80lu3PX6hiQvL+l3AQCwWdSKALBGlhUOPZnkZFXdVFV/lOTuJI8v6XcBALBZ1IoAsEaWclrZ\nGOO1qrovyT8kuSrJQ2OM55bxuwAA2CxqRQBYL0u5lf0VT8J55ABwVE+NMU6tehKwTGpFADi6Vd6t\nDAAAAIANIBwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoT\nDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgsROrngAc1hjjDa+rakUzAQBgXV2sGdWKAIencwgA\nAACgMZ1DrL1LO4Z2jzsiBADAXvWiDiKAw9M5BAAAANCYziHW0n7dQvtt54gQAEAfh60Vd2+rXgTY\nn84hAAAAgMZ0DrFWruQoEAAAvRynVnS9SoD96RwCAAAAaEznECu1qE4h55IDAGwXHeUA89E5BAAA\nANCYziFWwpEgAAD2ssw6Ubc5wN6EQ8xOMAQAwKXUiACr47QyAAAAgMaO1TlUVS8m+U2S15O8NsY4\nVVXvTPJfkrw7yYtJ/mKM8b+ON0022ZxHgbQKA8D6UCtyGKvoGFIzArzRIjqH/myMccsY49T0+v4k\nT4wxTiZ5YnoNAEBPakUAWHPLOK3sdJJHpuePJLlrCb+DDTDGWNm546v83QDAZakVSaJeA1gnxw2H\nRpJ/rKqnqurMNHbtGONCkkyP1xzzdwAAsJnUigCwAY57t7L3jzFerqprknynqv77Yd84FQhnDtwQ\nAIBNpVYEgA1wrM6hMcbL0+OrSb6Z5NYkr1TVdUkyPb66z3sfHGOc2nX+OQAAW0StCACb4cjhUFX9\ncVW9/eLzJH+e5Nkkjye5Z9rsniTfOu4k2SzOHwcA1IrsZ51qxXWaC8AqHee0smuTfHO6/eOJJH83\nxvj7qnoyyWNV9fEkP0/y4eNPk03ggxUA2EWtyJuoFwHWU63DH+iqWv0kOLZ12JcuNRWkANvsKafd\nsO3UittjHevFRM0IbLcxxoF/5I57QWoAAIDLWtdQCIAdx72VPQAAAAAbTDjEQjgaBAAAAJtJOAQA\nAADQmGsOcSTr3ik0x0UF91sDFzQEANix7jUjADt0DgEAAAA0pnMIFmz3ETJdRABAZxdrIR1EAOtN\n5xAAAABAYzqH2Crr1qlz8SjZus0LAID5arTLdU6pE4F1IBziULQCH4+QCADobF1OL5u7FjvMv1ed\nCKwDp5UBAAAANKZziAOt+gjPYazjUaDjvs/RIwBg2+yubxZRY25TvXSYm5o4PQ1YFp1DAAAAAI3p\nHGJfRz2ac9BRi03oRFoHh1knR4gAgE11lOsQdal9jlIv7/eeLmsGHI/OIQAAAIDGdA4xu6paWPdQ\n9yMh7m4BAGy6baxj1qlT/jDXMgLQOQQAAADQmM4hVuLSoxbrdHRlE126fo4KAQBwKV3nwH6EQ6yF\nKwmLfJgBAMDRCYmASzmtDAAAAKAx4RD7qqorOppwpdsf9LOW+fO3ndP0AAAAOCzhEAAAAEBjrjnE\n2lrnLqGq0p0DAADAVtA5BAAAANCYziEOdLkumXXu7gEAAAAOpnMIAAAAoDGdQxyKDiEAAADYTjqH\nAAAAABoTDsERVdVad1SNMdxRDQBgBda9TgS4lHAIAAAAoDHhEAAAAEBjLkgNR+SULQAAALaBziEA\nAACAxoRDcEQuNAgAAMA2EA4BAAAANOaaQ3BErjkEAMBe1InAptE5BAAAANCYziHYUq6HBAAAwGHo\nHAIAAABoTDgEAACwQO5qC2wap5UBAAA0IrgCLqVzCAAAAKAxnUOwRRwFAgBgP2pFYD86hwAAAAAa\n0zkEW8BRIAAA9qNWBA6icwgAAACgMZ1DcEQXj8CMMVY+BwAA1o96EdgUOocAAAAAGtM5BMe0iiNC\njgABAGyOqpq9e0i9CFwJ4RAsyBwhkQ95AIDNtOxaUZ0IHIfTygAAAAAa0zkEC3a5ozbHOVLkaBAA\nwOZT0wHrSOcQAAAAQGM6h2BGjhQBAACwbnQOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAA\nAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOsXBjjIwxVj0NAAAA4BCEQwAAAACNnVj1BNgel3YL\n7dc9VFVzTAcAAAA4BJ1DAAAAAI0Jh5id6xEBAADA+hAOAQAAADQmHAIAAABoTDjEwlSVi00DAADA\nhhEOAQAAADQmHGLhdBABAADA5hAOAQAAADR2YtUTYHtd7B66eOt63UQAAACwfnQOAQAAADSmc4il\n0zEEAAAA60vnEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGjswHCoqh6q\nqler6tldY++squ9U1U+nx6un8aqqL1bVuap6pqret8zJAwCwWmpFANh8h+kcejjJHZeM3Z/kiTHG\nySRPTK+T5INJTk5fZ5I8sJhpAgCwph6OWhEANtqB4dAY43tJfnnJ8Okkj0zPH0ly167xr4wd30/y\njqq6blGTBQBgvagVAWDzHfWaQ9eOMS4kyfR4zTR+fZKXdm13fhp7k6o6U1Vnq+rsEecAAMB6UisC\nwAY5seCfV3uMjb02HGM8mOTBJKmqPbcBAGCrqBUBYA0dtXPolYstwNPjq9P4+SQ37truhiQvH316\nAABsILUiAGyQo4ZDjye5Z3p+T5Jv7Rr/6HQnituS/OpiSzEs2hjjTV8AwFpQK7J21IoA+zvwtLKq\n+lqS25O8q6rOJ/lskr9O8lhVfTzJz5N8eNr820nuTHIuyW+TfGwJc6a5y32wX/q9qr261wGARVEr\nsq72qhkvjqkRAd6o1iFBdx45V+JK9lkf/EADT40xTq16ErBMakWO4nI1oxoR6GSMceAfvUVfkBqW\nZh2CTAAAANg2R73mEAAAAABbQOcQAACwNXSbA1w5nUMAAAAAjQmHAACArVFVLjgNcIWEQwAAAACN\nueYQAACwdXQPARyeziEAAACAxnQOsTEuHv05zB0oHCkCAACAwxEOsXH2ComEQQAAAHA0TisDAAAA\naEznEBtLtxAAAAAcn84hAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0NiB\n4VBVPVRVr1bVs7vGPldVv6iqp6evO3d979NVda6qXqiqDyxr4gAArJ5aEQA232E6hx5Ocsce438z\nxrhl+vp2klTVzUnuTvKn03v+tqquWtRkAQBYOw9HrQgAG+3AcGiM8b0kvzzkzzud5NExxu/GGD9L\nci7JrceYHwAAa0ytCACb7zjXHLqvqp6ZWomvnsauT/LSrm3OT2NvUlVnqupsVZ09xhwAAFhPakUA\n2BBHDYceSPKeJLckuZDk89N47bHt2OsHjDEeHGOcGmOcOuIcAABYT2pFANggRwqHxhivjDFeH2P8\nPsmX8od24PNJbty16Q1JXj7eFAEA2CRqRQDYLEcKh6rqul0vP5Tk4t0pHk9yd1W9tapuSnIyyQ+P\nN0UAADaJWhEANsuJgzaoqq8luT3Ju6rqfJLPJrm9qm7JThvwi0k+kSRjjOeq6rEkP0nyWpJ7xxiv\nL2fqAACsmloRADZfjbHnad7zTqJq9ZMAgM30lGuysO3UigBwdGOMva759wbHuVsZAAAAABtOOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQ2IHhUFXdWFXfrarnq+q5qvrkNP7OqvpOVf10erx6Gq+q+mJVnauqZ6rqfcv+RwAAsBpqRQDY\nfIfpHHotyV+NMf4kyW1J7q2qm5Pcn+SJMcbJJE9Mr5Pkg0lOTl9nkjyw8FkDALAu1IoAsOEODIfG\nGBfGGD+anv8myfNJrk9yOskj02aPJLlren46yVfGju8neUdVXbfwmQMAsHJqRQDYfFd0zaGqeneS\n9yb5QZJrxxgXkp2iIMk102bXJ3lp19vOT2OX/qwzVXW2qs5e+bQBAFg3akUA2EwnDrthVb0tydeT\nfGqM8euq2nfTPcbGmwbGeDDJg9PPftP3AQDYHGpFANhch+ocqqq3ZOfD/qtjjG9Mw69cbAGeHl+d\nxs8nuXHX229I8vJipgsAwLpRKwLAZjvM3coqyZeTPD/G+MKubz2e5J7p+T1JvrVr/KPTnShuS/Kr\niy3FAABsF7UiAGy+GuPyXbpV9e+S/LckP07y+2n4M9k5l/yxJP86yc+TfHiM8cupQPhPSe5I8tsk\nHxtjXPZcca3CAHBkT40xTq16EvSlVgSA9TbG2Pdc74sODIfm4AMfAI5MOMTWUysCwNEdJhy6oruV\nAQAAALBdhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjR0YDlXVjVX13ap6vqqeq6pPTuOfq6pfVNXT09edu97z6ao6V1UvVNUHlvkP\nAABgddSKALD5aoxx+Q2qrkty3RjjR1X19iRPJbkryV8k+d9jjP94yfY3J/lakluT/Ksk/zXJvx1j\nvH6Z33H5SQAA+3lqjHFq1ZOgL7UiAKy3MUYdtM2BnUNjjAtjjB9Nz3+T5Pkk11/mLaeTPDrG+N0Y\n42dJzmXnwx8AgC2jVgSAzXdF1xyqqncneW+SH0xD91XVM1X1UFVdPY1dn+SlXW87nz0KhKo6U1Vn\nq+rsFc8aAIC1o1YEgM106HCoqt6W5OtJPjXG+HWSB5K8J8ktSS4k+fzFTfd4+5tagccYD44xTmmF\nBwDYfGpFANhchwqHquot2fmw/+oY4xtJMsZ4ZYzx+hjj90m+lD+0A59PcuOut9+Q5OXFTRkAgHWi\nVgSAzXaYu5VVki8neX6M8YVd49ft2uxDSZ6dnj+e5O6qemtV3ZTkZJIfLm7KAACsC7UiAGy+E4fY\n5v1J/jLJj6vq6WnsM0k+UlW3ZKcN+MUkn0iSMcZzVfVYkp8keS3JvZe7+wQAABtNrQgAG+7AW9nP\nMgm3JwWAo3Ire7aeWhEAjm4ht7IHAAAAYHsJhwAAAAAaEw4BAAAANCYcAgAAAGjsMHcrm8M/J/k/\n0yPL965Y67lY6/lY63lY5/kcdq3/zbInAmtArTgvf+vnY63nY63nYZ3ns9BacS3uVpYkVXXW3Vbm\nYa3nY63nY63nYZ3nY63hjfyfmI+1no+1no+1nod1ns+i19ppZQAAAACNCYcAAAAAGluncOjBVU+g\nEWs9H2s9H2s9D+s8H2sNb+T/xHys9Xys9Xys9Tys83wWutZrc80hAAAAAOa3Tp1DAAAAAMxMOAQA\nAADQ2FqEQ1V1R1W9UFXnqur+Vc9nm1TVi1X146p6uqrOTmPvrKrvVNVPp8erVz3PTVRVD1XVq1X1\n7K6xPde2dnxx2sefqar3rW7mm2eftf5cVf1i2refrqo7d33v09Nav1BVH1jNrDdTVd1YVd+tquer\n6rmq+uQ0bt9eoMuss/0a9qBWXB614vKoFeejVpyPWnEeq6gVVx4OVdVVSf5zkg8muTnJR6rq5tXO\nauv82RjjljHGqen1/UmeGGOcTPLE9Jor93CSOy4Z229tP5jk5PR1JskDM81xWzycN691kvzNtG/f\nMsb4dpJMfz/uTvKn03v+dvo7w+G8luSvxhh/kuS2JPdOa2rfXqz91jmxX8MbqBVnoVZcjoejVpzL\nw1ErzkWtOI/Za8WVh0NJbk1ybozxT2OM/5vk0SSnVzynbXc6ySPT80eS3LXCuWysMcb3kvzykuH9\n1vZ0kq+MHd9P8o6qum6emW6+fdZ6P6eTPDrG+N0Y42dJzmXn7wyHMMa4MMb40fT8N0meT3J97NsL\ndZl13o/9ms7UivNTKy6AWnE+asX5qBXnsYpacR3CoeuTvLTr9flc/h/NlRlJ/rGqnqqqM9PYtWOM\nC8nOTpfkmpXNbvvst7b28+W4b2pPfWhXy7u1XpCqeneS9yb5QezbS3PJOif2a7iU/X+51Irz8nk6\nL5+pS6RWnMdcteI6hEO1x9iYfRbb6/1jjPdlp53v3qr696ueUFP288V7IMl7ktyS5EKSz0/j1noB\nquptSb6e5FNjjF9fbtM9xqz3Ie2xzvZreDP7/3KpFdeD/XzxfKYukVpxHnPWiusQDp1PcuOu1zck\neXlFc9k6Y4yXp8dXk3wzO61lr1xs5ZseX13dDLfOfmtrP1+wMcYrY4zXxxi/T/Kl/KFt0lofU1W9\nJTsfQl8dY3xjGrZvL9he62y/hj3Z/5dIrTg7n6cz8Zm6PGrFecxdK65DOPRkkpNVdVNV/VF2LqL0\n+IrntBWq6o+r6u0Xnyf58yTPZmd975k2uyfJt1Yzw62039o+nuSj09X6b0vyq4ttlxzNJecqfyg7\n+3ays9Z3V9Vbq+qm7Fz87odzz29TVVUl+XKS58cYX9j1Lfv2Au23zvZr2JNacUnUiivh83QmPlOX\nQ604j1XUiieON+XjG2O8VlX3JfmHJFcleWiM8dyKp7Utrk3yzZ39KieS/N0Y4++r6skkj1XVx5P8\nPMmHVzjHjVVVX0tye5J3VdX5JJ9N8tfZe22/neTO7FwY7LdJPjb7hDfYPmt9e1Xdkp12yReTfCJJ\nxhjPVdVjSX6Snav83zvGeH0V895Q70/yl0l+XFVPT2OfiX170fZb54/Yr+GN1IpLpVZcIrXifNSK\ns1IrzmP2WrHGcLofAAAAQFfrcFoZAAAAACsiHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih\nAAAAgMaEQwAAAACN/T9KCVSxyNzdIgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c593c240>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGntJREFUeJzt3U+o5Wed5/HPdxLbRSsYcRIySWYM\nUgOd3kQpQsBhSC+mjdlUXNjERRtEKBcJKPQmutFlL0YbZKYDEUMi2GYCKmYh3e0Ewdn4pyJBEzMZ\nizZjyoSExkGdERwSv7O4vxpvKrf+5NY959xzv68XXO45vzrn3icPv6rz8M5zzq+6OwAAAADM9C82\nPQAAAAAANkccAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGGxlcaiqbq+q\nZ6vqdFXdt6rfAwDA9rFWBIDDo7r74H9o1RVJ/keS/5DkTJIfJPlQd//kwH8ZAABbxVoRAA6XK1f0\nc29Jcrq7/ylJquqRJCeS7PmCX1UHX6gAYIZ/7u5/uelBwBtkrQgAa9LddbHHrOptZdcleX7X/TPL\nsf+vqk5W1amqOrWiMQDABP9z0wOAfbBWBIBDZFU7h/aqUq/5Pz7d/UCSBxL/NwgAYBhrRQA4RFa1\nc+hMkht23b8+yQsr+l0AAGwXa0UAOERWFYd+kORYVd1YVX+U5K4kj63odwEAsF2sFQHgEFnJ28q6\n+5WqujfJPyS5IsmD3f30Kn4XAADbxVoRAA6XlVzK/g0PwvvIAWC/nuju45seBKyStSIA7N8mr1YG\nAAAAwBYQhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAA\nAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOH\nAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cA\nAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAA\nAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABrvycp5c\nVc8l+U2SV5O80t3Hq+rtSf5LkncmeS7JX3T3/7q8YQIAsG2sFQFgOxzEzqE/6+6bu/v4cv++JI93\n97Ekjy/3AQCYyVoRAA65Vbyt7ESSh5fbDye5cwW/AwCA7WStCACHzOXGoU7yj1X1RFWdXI5d090v\nJsny/erL/B0AAGwna0UA2AKX9ZlDSd7b3S9U1dVJvlVV//1Sn7gsEE5e9IEAAGwra0UA2AKXtXOo\nu19Yvr+c5OtJbknyUlVdmyTL95fP89wHuvv4rvefAwBwhFgrAsB22Hccqqo/rqq3nr2d5M+TPJXk\nsSR3Lw+7O8k3LneQAABsF2tFANgel/O2smuSfL2qzv6cv+vuv6+qHyR5tKo+muTnST54+cMEAGDL\nWCsCwJao7t70GFJVmx8EAGynJ7zthqPOWhEA9q+762KPWcWl7AEAAADYEuIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYBeNQ1X1YFW9XFVP7Tr29qr6\nVlX9dPl+1XK8qurzVXW6qn5UVe9Z5eABANgsa0UA2H6XsnPooSS3n3PsviSPd/exJI8v95Pk/UmO\nLV8nk9x/MMMEAOCQeijWigCw1S4ah7r7O0l+ec7hE0keXm4/nOTOXce/1Du+m+RtVXXtQQ0WAIDD\nxVoRALbffj9z6JrufjFJlu9XL8evS/L8rsedWY69TlWdrKpTVXVqn2MAAOBwslYEgC1y5QH/vNrj\nWO/1wO5+IMkDSVJVez4GAIAjxVoRAA6h/e4ceunsFuDl+8vL8TNJbtj1uOuTvLD/4QEAsIWsFQFg\ni+w3Dj2W5O7l9t1JvrHr+IeXK1HcmuRXZ7cUAwAwhrUiAGyRi76trKq+kuS2JO+oqjNJPp3kr5M8\nWlUfTfLzJB9cHv7NJHckOZ3kt0k+soIxAwBwSFgrAsD2q+7Nv4Xb+8gBYN+e6O7jmx4ErJK1IgDs\nX3fv9Zl/r7Hft5UBAAAAcASIQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAINdNA5V1YNV9XJVPbXr2Geq6hdV9eTydceuP/tkVZ2uqmer6n2rGjgAAJtn\nrQgA2+9Sdg49lOT2PY7/TXffvHx9M0mq6qYkdyX50+U5f1tVVxzUYAEAOHQeirUiAGy1i8ah7v5O\nkl9e4s87keSR7v5dd/8syekkt1zG+AAAOMSsFQFg+13OZw7dW1U/WrYSX7Ucuy7J87sec2Y59jpV\ndbKqTlXVqcsYAwAAh5O1IgBsif3GofuTvCvJzUleTPLZ5Xjt8dje6wd09wPdfby7j+9zDAAAHE7W\nigCwRfYVh7r7pe5+tbt/n+QL+cN24DNJbtj10OuTvHB5QwQAYJtYKwLAdtlXHKqqa3fd/UCSs1en\neCzJXVX15qq6McmxJN+/vCECALBNrBUBYLtcebEHVNVXktyW5B1VdSbJp5PcVlU3Z2cb8HNJPpYk\n3f10VT2a5CdJXklyT3e/upqhAwCwadaKALD9qnvPt3mvdxBVmx8EAGynJ3wmC0edtSIA7F937/WZ\nf69xOVcrAwAAAGDLiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAINduekBAJvX3a+5X1UbGgkAAADrZucQAAAAwGB2DsFg5+4Y2uu4XUQAAABHm51D\nAAAAAIPZOQTDnG+30F7sGgIAADj67BwCAAAAGEwcAs7rjewyAgAAYDuJQwAAAACD+cwhGGI/u4B8\n5hAAAMDRZ+cQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGA+kBqGOPfDpV2mHgAAgMTOIQAAAIDR\n7ByCoVymHgAAgMTOIQAAAIDRxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEITgEunvTQwAA\nAGCoKzc9AJhsdxQ6e7uqNjUcAAAABrJzCAAAAGCwi8ahqrqhqr5dVc9U1dNV9fHl+Nur6ltV9dPl\n+1XL8aqqz1fV6ar6UVW9Z9X/EbBtuvu8byW70J8BwGFjrQgA2+9Sdg69kuSvuvtPktya5J6quinJ\nfUke7+5jSR5f7ifJ+5McW75OJrn/wEcNAMBhYa0IAFvuonGou1/s7h8ut3+T5Jkk1yU5keTh5WEP\nJ7lzuX0iyZd6x3eTvK2qrj3wkQMAsHHWigCw/d7QZw5V1TuTvDvJ95Jc090vJjuLgiRXLw+7Lsnz\nu552Zjl27s86WVWnqurUGx82AACHjbUiAGynS75aWVW9JclXk3yiu399gSsq7fUHr/sAle5+IMkD\ny8/2ASuMcvbvz16fLeRqZQBsI2tFANhel7RzqKrelJ0X+y9399eWwy+d3QK8fH95OX4myQ27nn59\nkhcOZrgAABw21ooAsN0u5WplleSLSZ7p7s/t+qPHkty93L47yTd2Hf/wciWKW5P86uyWYuC1qup1\nXwCwTawVAWD71cUumV1V/y7Jf0vy4yS/Xw5/KjvvJX80yb9O8vMkH+zuXy4LhP+U5PYkv03yke6+\n4HvFbRUGgH17oruPb3oQzGWtCACHW3dfdBfCRePQOnjBh0tzvr+vdhzBaOIQR561IgDs36XEoUv+\nQGpg80QgAAAADtobupQ9AAAAAEeLOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMNhF41BV3VBV366qZ6rq6ar6+HL8M1X1i6p6cvm6Y9dzPllVp6vq2ap63yr/AwAA\n2BxrRQDYftXdF35A1bVJru3uH1bVW5M8keTOJH+R5H9393885/E3JflKkluS/Ksk/zXJv+3uVy/w\nOy48CADgfJ7o7uObHgRzWSsCwOHW3XWxx1x051B3v9jdP1xu/ybJM0muu8BTTiR5pLt/190/S3I6\nOy/+AAAcMdaKALD93tBnDlXVO5O8O8n3lkP3VtWPqurBqrpqOXZdkud3Pe1M9lggVNXJqjpVVafe\n8KgBADh0rBUBYDtdchyqqrck+WqST3T3r5Pcn+RdSW5O8mKSz5596B5Pf91W4O5+oLuP2woPALD9\nrBUBYHtdUhyqqjdl58X+y939tSTp7pe6+9Xu/n2SL+QP24HPJLlh19OvT/LCwQ0ZAIDDxFoRALbb\npVytrJJ8Mckz3f25Xcev3fWwDyR5arn9WJK7qurNVXVjkmNJvn9wQwYA4LCwVgSA7XflJTzmvUn+\nMsmPq+rJ5dinknyoqm7Ozjbg55J8LEm6++mqejTJT5K8kuSeC119AgCArWatCABb7qKXsl/LIFye\nFAD2y6XsOfKsFQFg/w7kUvYAAAAAHF3iEAAAAMBg4hAAAADAYOIQAAAAwGCXcrWydfjnJP9n+c7q\nvSPmel3M9fqY6/Uwz+tzqXP9b1Y9EDgErBXXy7/162Ou18dcr4d5Xp8DXSseiquVJUlVnXK1lfUw\n1+tjrtfHXK+HeV4fcw2v5e/E+pjr9THX62Ou18M8r89Bz7W3lQEAAAAMJg4BAAAADHaY4tADmx7A\nIOZ6fcz1+pjr9TDP62Ou4bX8nVgfc70+5np9zPV6mOf1OdC5PjSfOQQAAADA+h2mnUMAAAAArJk4\nBAAAADDYoYhDVXV7VT1bVaer6r5Nj+coqarnqurHVfVkVZ1ajr29qr5VVT9dvl+16XFuo6p6sKpe\nrqqndh3bc25rx+eXc/xHVfWezY18+5xnrj9TVb9Yzu0nq+qOXX/2yWWun62q921m1Nupqm6oqm9X\n1TNV9XRVfXw57tw+QBeYZ+c17MFacXWsFVfHWnF9rBXXx1pxPTaxVtx4HKqqK5L85yTvT3JTkg9V\n1U2bHdWR82fdfXN3H1/u35fk8e4+luTx5T5v3ENJbj/n2Pnm9v1Jji1fJ5Pcv6YxHhUP5fVznSR/\ns5zbN3f3N5Nk+ffjriR/ujznb5d/Z7g0ryT5q+7+kyS3JrlnmVPn9sE63zwnzmt4DWvFtbBWXI2H\nYq24Lg/FWnFdrBXXY+1rxY3HoSS3JDnd3f/U3f83ySNJTmx4TEfdiSQPL7cfTnLnBseytbr7O0l+\nec7h883tiSRf6h3fTfK2qrp2PSPdfueZ6/M5keSR7v5dd/8syens/DvDJejuF7v7h8vt3yR5Jsl1\ncW4fqAvM8/k4r5nMWnH9rBUPgLXi+lgrro+14npsYq14GOLQdUme33X/TC78H80b00n+saqeqKqT\ny7FruvvFZOekS3L1xkZ39Jxvbp3nq3Hvsj31wV1b3s31AamqdyZ5d5Lvxbm9MufMc+K8hnM5/1fL\nWnG9vJ6ul9fUFbJWXI91rRUPQxyqPY712kdxdL23u9+Tne1891TVv9/0gIZynh+8+5O8K8nNSV5M\n8tnluLk+AFX1liRfTfKJ7v71hR66xzHzfYn2mGfnNbye83+1rBUPB+f5wfOaukLWiuuxzrXiYYhD\nZ5LcsOv+9Ule2NBYjpzufmH5/nKSr2dna9lLZ7fyLd9f3twIj5zzza3z/IB190vd/Wp3/z7JF/KH\nbZPm+jJV1Zuy8yL05e7+2nLYuX3A9ppn5zXsyfm/QtaKa+f1dE28pq6OteJ6rHuteBji0A+SHKuq\nG6vqj7LzIUqPbXhMR0JV/XFVvfXs7SR/nuSp7Mzv3cvD7k7yjc2M8Eg639w+luTDy6f135rkV2e3\nXbI/57xX+QPZObeTnbm+q6reXFU3ZufD776/7vFtq6qqJF9M8kx3f27XHzm3D9D55tl5DXuyVlwR\na8WN8Hq6Jl5TV8NacT02sVa88vKGfPm6+5WqujfJPyS5IsmD3f30hod1VFyT5Os751WuTPJ33f33\nVfWDJI9W1UeT/DzJBzc4xq1VVV9JcluSd1TVmSSfTvLX2Xtuv5nkjux8MNhvk3xk7QPeYueZ69uq\n6ubsbJd8LsnHkqS7n66qR5P8JDuf8n9Pd7+6iXFvqfcm+cskP66qJ5djn4pz+6Cdb54/5LyG17JW\nXClrxRWyVlwfa8W1slZcj7WvFavb2/0AAAAApjoMbysDAAAAYEPEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMH+H8qSMW4kDHVDAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c58b1e10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGjNJREFUeJzt3U+I7XeZ5/HPM4ntohWMOAmZJDMG\nuQOd3kS5hIDDkF5MG7O5cWETF20Q4bpIQKE30Y0ue9HaIDMdiBgSwTYTUDEL6W4nCM5GzY0ETcyk\nvbQZc01IaBzUacEh8ZlF/W5bSer+Sd0659Sp5/WCok797qmq7/3yyz0P7/zOOdXdAQAAAGCmf7Pp\nBQAAAACwOeIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYCuLQ1V1a1U9\nU1Wnq+qeVf0eAAC2j1kRAA6P6u6D/6FVlyX5xyT/JcmZJI8l+VB3//jAfxkAAFvFrAgAh8vlK/q5\nNyU53d3/lCRV9VCSE0n2fMCvqoMvVAAwwz9397/d9CLgDTIrAsCadHdd6D6relrZNUme2/X1meXY\nv6qqk1V1qqpOrWgNADDB/970AmAfzIoAcIis6sqhvarUq/6PT3ffl+S+xP8NAgAYxqwIAIfIqq4c\nOpPkul1fX5vk+RX9LgAAtotZEQAOkVXFoceSHKuq66vqD5LckeSRFf0uAAC2i1kRAA6RlTytrLtf\nrqq7k/x9ksuS3N/dT63idwEAsF3MigBwuKzkrezf8CI8jxwA9uvx7j6+6UXAKpkVAWD/NvluZQAA\nAABsAXEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGCwyy/lm6vq\n2SS/TvJKkpe7+3hVvT3Jf0/yziTPJvmz7v4/l7ZMAAC2jVkRALbDQVw59CfdfWN3H1++vifJo919\nLMmjy9cAAMxkVgSAQ24VTys7keTB5faDSW5fwe8AAGA7mRUB4JC51DjUSf6hqh6vqpPLsau6+4Uk\nWT5feYm/AwCA7WRWBIAtcEmvOZTkvd39fFVdmeRbVfW/LvYblwHh5AXvCADAtjIrAsAWuKQrh7r7\n+eXzS0m+nuSmJC9W1dVJsnx+6Rzfe193H9/1/HMAAI4QsyIAbId9x6Gq+sOqeuvZ20n+NMmTSR5J\ncudytzuTfONSFwkAwHYxKwLA9riUp5VdleTrVXX25/xtd/9dVT2W5OGq+miSnyX54KUvEwCALWNW\nBIAtUd296TWkqja/CADYTo972g1HnVkRAPavu+tC91nFW9kDAAAAsCXEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBLt/0AoDN6O5/vV1VG1wJAAAAmyQOwTC7\noxAAAAB4WhkAAADAYOIQAAAAwGDiEAAAAMBgXnMIhvBaQwAAAOzFlUMAAAAAg4lDMERVect6AAAA\nXkccAgAAABjMaw7BEF5zCAAAgL2IQzDE2aeU7Y5EnmYGAACAp5UBAAAADObKIRjG1UIAAADs5soh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMEuGIeq6v6qeqmqntx17O1V9a2q+sny+YrleFXV56vq\ndFX9sKres8rFAwCwWWZFANh+F3Pl0ANJbn3NsXuSPNrdx5I8unydJO9Pcmz5OJnk3oNZJgAAh9QD\nMSsCwFa7YBzq7u8k+cVrDp9I8uBy+8Ekt+86/qXe8d0kb6uqqw9qsQAAHC5mRQDYfvt9zaGruvuF\nJFk+X7kcvybJc7vud2Y59jpVdbKqTlXVqX2uAQCAw8msCABb5PID/nm1x7He647dfV+S+5Kkqva8\nDwAAR4pZEQAOof1eOfTi2UuAl88vLcfPJLlu1/2uTfL8/pcHAMAWMisCwBbZbxx6JMmdy+07k3xj\n1/EPL+9EcXOSX569pBgAgDHMigCwRS74tLKq+kqSW5K8o6rOJPl0kr9M8nBVfTTJz5J8cLn7N5Pc\nluR0kt8k+cgK1gwAwCFhVgSA7Vfdm38Kt+eRA8C+Pd7dxze9CFglsyIA7F937/Waf6+y36eVAQAA\nAHAEiEMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\nXTAOVdX9VfVSVT2569hnqurnVfXE8nHbrj/7ZFWdrqpnqup9q1o4AACbZ1YEgO13MVcOPZDk1j2O\n/3V337h8fDNJquqGJHck+ePle/6mqi47qMUCAHDoPBCzIgBstQvGoe7+TpJfXOTPO5Hkoe7+bXf/\nNMnpJDddwvoAADjEzIoAsP0u5TWH7q6qHy6XEl+xHLsmyXO77nNmOfY6VXWyqk5V1alLWAMAAIeT\nWREAtsR+49C9Sd6V5MYkLyT57HK89rhv7/UDuvu+7j7e3cf3uQYAAA4nsyIAbJF9xaHufrG7X+nu\n3yX5Qn5/OfCZJNftuuu1SZ6/tCUCALBNzIoAsF32FYeq6updX34gydl3p3gkyR1V9eaquj7JsSTf\nv7QlAgCwTcyKALBdLr/QHarqK0luSfKOqjqT5NNJbqmqG7NzGfCzST6WJN39VFU9nOTHSV5Ocld3\nv7KapQMAsGlmRQDYftW959O817uIqs0vAgC20+Nek4WjzqwIAPvX3Xu95t+rXMq7lQEAAACw5cQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwS4Yh6rq\nuqr6dlU9XVVPVdXHl+Nvr6pvVdVPls9XLMerqj5fVaer6odV9Z5V/yUAANgMsyIAbL+LuXLo5SR/\n0d1/lOTmJHdV1Q1J7knyaHcfS/Lo8nWSvD/JseXjZJJ7D3zVAAAcFmZFANhyF4xD3f1Cd/9guf3r\nJE8nuSbJiSQPLnd7MMnty+0TSb7UO76b5G1VdfWBrxwAgI0zKwLA9ntDrzlUVe9M8u4k30tyVXe/\nkOwMBUmuXO52TZLndn3bmeXYa3/Wyao6VVWn3viyAQA4bMyKALCdLr/YO1bVW5J8NcknuvtXVXXO\nu+5xrF93oPu+JPctP/t1fw4AwPYwKwLA9rqoK4eq6k3ZebD/cnd/bTn84tlLgJfPLy3HzyS5bte3\nX5vk+YNZLgAAh41ZEQC228W8W1kl+WKSp7v7c7v+6JEkdy6370zyjV3HP7y8E8XNSX559pJiAACO\nFrMiAGy/6j7/VbpV9Z+S/M8kP0ryu+Xwp7LzXPKHk/z7JD9L8sHu/sUyIPzXJLcm+U2Sj3T3eZ8r\n7lJhANi3x7v7+KYXwVxmRQA43Lr7nM/1PuuCcWgdPOADwL6JQxx5ZkUA2L+LiUNv6N3KAAAAADha\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBLhiH\nquq6qvp2VT1dVU9V1ceX45+pqp9X1RPLx227vueTVXW6qp6pqvet8i8AAMDmmBUBYPtVd5//DlVX\nJ7m6u39QVW9N8niS25P8WZL/291/9Zr735DkK0luSvLvkvyPJP+xu185z+84/yIAgHN5vLuPb3oR\nzGVWBIDDrbvrQve54JVD3f1Cd/9guf3rJE8nueY833IiyUPd/dvu/mmS09l58AcA4IgxKwLA9ntD\nrzlUVe9M8u4k31sO3V1VP6yq+6vqiuXYNUme2/VtZ7LHgFBVJ6vqVFWdesOrBgDg0DErAsB2uug4\nVFVvSfLVJJ/o7l8luTfJu5LcmOSFJJ89e9c9vv11lwJ3933dfdyl8AAA28+sCADb66LiUFW9KTsP\n9l/u7q8lSXe/2N2vdPfvknwhv78c+EyS63Z9+7VJnj+4JQMAcJiYFQFgu13Mu5VVki8mebq7P7fr\n+NW77vaBJE8utx9JckdVvbmqrk9yLMn3D27JAAAcFmZFANh+l1/Efd6b5M+T/KiqnliOfSrJh6rq\nxuxcBvxsko8lSXc/VVUPJ/lxkpeT3HW+d58AAGCrmRUBYMtd8K3s17IIb08KAPvlrew58syKALB/\nB/JW9gAAAAAcXeIQAAAAwGDiEAAAAMBg4hAAAADAYBfzbmXr8M9J/mX5zOq9I/Z6Xez1+tjr9bDP\n63Oxe/0fVr0QOATMiuvl3/r1sdfrY6/Xwz6vz4HOiofi3cqSpKpOebeV9bDX62Ov18der4d9Xh97\nDa/mv4n1sdfrY6/Xx16vh31en4Pea08rAwAAABhMHAIAAAAY7DDFofs2vYBB7PX62Ov1sdfrYZ/X\nx17Dq/lvYn3s9frY6/Wx1+thn9fnQPf60LzmEAAAAADrd5iuHAIAAABgzcQhAAAAgMEORRyqqlur\n6pmqOl1V92x6PUdJVT1bVT+qqieq6tRy7O1V9a2q+sny+YpNr3MbVdX9VfVSVT2569iee1s7Pr+c\n4z+sqvdsbuXb5xx7/Zmq+vlybj9RVbft+rNPLnv9TFW9bzOr3k5VdV1Vfbuqnq6qp6rq48tx5/YB\nOs8+O69hD2bF1TErro5ZcX3MiutjVlyPTcyKG49DVXVZkv+W5P1Jbkjyoaq6YbOrOnL+pLtv7O7j\ny9f3JHm0u48leXT5mjfugSS3vubYufb2/UmOLR8nk9y7pjUeFQ/k9XudJH+9nNs3dvc3k2T59+OO\nJH+8fM/fLP/OcHFeTvIX3f1HSW5Octeyp87tg3WufU6c1/AqZsW1MCuuxgMxK67LAzErrotZcT3W\nPituPA4luSnJ6e7+p+7+f0keSnJiw2s66k4keXC5/WCS2ze4lq3V3d9J8ovXHD7X3p5I8qXe8d0k\nb6uqq9ez0u13jr0+lxNJHuru33b3T5Oczs6/M1yE7n6hu3+w3P51kqeTXBPn9oE6zz6fi/OaycyK\n62dWPABmxfUxK66PWXE9NjErHoY4dE2S53Z9fSbn/0vzxnSSf6iqx6vq5HLsqu5+Idk56ZJcubHV\nHT3n2lvn+WrcvVyeev+uS97t9QGpqncmeXeS78W5vTKv2efEeQ2v5fxfLbPienk8XS+PqStkVlyP\ndc2KhyEO1R7Heu2rOLre293vyc7lfHdV1X/e9IKGcp4fvHuTvCvJjUleSPLZ5bi9PgBV9ZYkX03y\nie7+1fnuuscx+32R9thn5zW8nvN/tcyKh4Pz/OB5TF0hs+J6rHNWPAxx6EyS63Z9fW2S5ze0liOn\nu59fPr+U5OvZubTsxbOX8i2fX9rcCo+cc+2t8/yAdfeL3f1Kd/8uyRfy+8sm7fUlqqo3ZedB6Mvd\n/bXlsHP7gO21z85r2JPzf4XMimvn8XRNPKaujllxPdY9Kx6GOPRYkmNVdX1V/UF2XkTpkQ2v6Uio\nqj+sqreevZ3kT5M8mZ39vXO5251JvrGZFR5J59rbR5J8eHm1/puT/PLsZZfsz2ueq/yB7Jzbyc5e\n31FVb66q67Pz4nffX/f6tlVVVZIvJnm6uz+364+c2wfoXPvsvIY9mRVXxKy4ER5P18Rj6mqYFddj\nE7Pi5Ze25EvX3S9X1d1J/j7JZUnu7+6nNryso+KqJF/fOa9yeZK/7e6/q6rHkjxcVR9N8rMkH9zg\nGrdWVX0lyS1J3lFVZ5J8OslfZu+9/WaS27LzwmC/SfKRtS94i51jr2+pqhuzc7nks0k+liTd/VRV\nPZzkx9l5lf+7uvuVTax7S703yZ8n+VFVPbEc+1Sc2wftXPv8Iec1vJpZcaXMiitkVlwfs+JamRXX\nY+2zYnV7uh8AAADAVIfhaWUAAAAAbIg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMNj/ByBKEG2smcGYAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38c5826cc0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGsRJREFUeJzt3U+I53ed5/HXe23HwygYcQ3ZJLsG\n6YVxLlEaEVwW57BjzKXjwSEexiBCe4igMJfoRY9zWB2Q3QlEDIng6AZUzEFmxg2Ce1HTkRATs1mb\nMWvaNAmDi7oruCS+91C/Xiud6q7q6vr9q/fjAUVVfetXVZ98/Nq/N8/6/n6/6u4AAAAAMNO/WPcC\nAAAAAFgfcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGCwpcWhqrqtqp6p\nqnNVdc+yfg8AANvHrAgAm6O6++h/aNVrkvyPJP8hyfkkjyb5UHf/5Mh/GQAAW8WsCACb5cSSfu67\nkpzr7n9Kkqr6WpLTSfa8w6+qoy9UADDDP3f3v1z3IuAqmRUBYEW6u/a7zbIeVnZjkud2fX5+cez/\nq6ozVXW2qs4uaQ0AMMH/XPcC4BDMigCwQZZ15dBeVeoVf/Hp7vuS3Jf4axAAwDBmRQDYIMu6cuh8\nkpt3fX5TkueX9LsAANguZkUA2CDLikOPJjlZVbdU1R8luTPJw0v6XQAAbBezIgBskKU8rKy7X6qq\njyf5hySvSXJ/dz+1jN8FAMB2MSsCwGZZykvZX/UiPI4cAA7rse4+te5FwDKZFQHg8Nb5amUAAAAA\nbAFxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgsBPX8s1V9WyS\n3yR5OclL3X2qqt6U5L8keWuSZ5P8RXf/r2tbJgAA28asCADb4SiuHPqz7r61u08tPr8nySPdfTLJ\nI4vPAQCYyawIABtuGQ8rO53kwcXHDya5Ywm/AwCA7WRWBIANc61xqJP8Y1U9VlVnFseu7+4LSbJ4\n/5Zr/B0AAGwnsyIAbIFres6hJO/p7uer6i1JvlNV//2g37gYEM7se0MAALaVWREAtsA1XTnU3c8v\n3r+Y5JtJ3pXkhaq6IUkW71+8zPfe192ndj3+HACAY8SsCADb4dBxqKr+uKrecPHjJH+e5MkkDye5\na3Gzu5J861oXCQDAdjErAsD2uJaHlV2f5JtVdfHn/F13/31VPZrkoar6aJKfJ/ngtS8TAIAtY1YE\ngC1R3b3uNaSq1r8IANhOj3nYDcedWREADq+7a7/bLOOl7AEAAADYEuIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYPvGoaq6v6perKondx17U1V9p6p+\nunh/3eJ4VdUXqupcVT1RVe9c5uIBAFgvsyIAbL+DXDn0QJLbLjl2T5JHuvtkkkcWnyfJ+5OcXLyd\nSXLv0SwTAIAN9UDMigCw1faNQ939vSS/vOTw6SQPLj5+MMkdu45/uXd8P8kbq+qGo1osAACbxawI\nANvvsM85dH13X0iSxfu3LI7fmOS5Xbc7vzj2KlV1pqrOVtXZQ64BAIDNZFYEgC1y4oh/Xu1xrPe6\nYXffl+S+JKmqPW8DAMCxYlYEgA102CuHXrh4CfDi/YuL4+eT3Lzrdjclef7wywMAYAuZFQFgixw2\nDj2c5K7Fx3cl+dau4x9evBLFu5P86uIlxQAAjGFWBIAtsu/Dyqrqq0nem+TNVXU+yWeS/HWSh6rq\no0l+nuSDi5t/O8ntSc4l+W2SjyxhzQAAbAizIgBsv+pe/0O4PY4cAA7tse4+te5FwDKZFQHg8Lp7\nr+f8e4XDPqwMAAAAgGNAHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhM\nHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGOzE\nuhcAAAAAHI3ufsXnVbWmlbBNXDkEAAAAMJgrhwC2iL8EAQCw26Xz4eW+bm7kSlw5BAAAADCYK4cA\ntsRefxXylyAAAA5i9yxpduRS4hDAhtvvUuHdt3FHDwAwx0HmRDgIDysDAAAAGEwcAgAAABhMHAIA\nAAAYTBwCAACALXTY55vsbs9XxCuIQwAAAACDiUMAx4i/AAEAAFdLHAIAAAAY7MS6FwAAAAAczsXn\nHbqaK8gP+1xFHF/iEMCG233nvd+dvjt6AADganlYGQAAAMBgrhwC2CKuDAIAYC+Xzol7XXFuluRy\nXDkEAAAAMJgrhwAAAOCYcZUQV8OVQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\nnVj3AgAAAID16+7Lfq2qVrgSVs2VQwAAAACD7RuHqur+qnqxqp7cdeyzVfWLqnp88Xb7rq99qqrO\nVdUzVfW+ZS0cgIPp7n3fAA7LrAiw/Q4yE5obj7eDXDn0QJLb9jj+N9196+Lt20lSVW9PcmeSP118\nz99W1WuOarEAAGycB2JWBICttm8c6u7vJfnlAX/e6SRf6+7fdffPkpxL8q5rWB8AK+AvQcBhmRUB\ntpcZkIuu5TmHPl5VTywuJb5ucezGJM/tus35xbFXqaozVXW2qs5ewxoAANhMZkUA2BKHjUP3Jnlb\nkluTXEjyucXxvZ6+fM8M2d33dfep7j51yDUAALCZzIoAx5SrjY6nQ8Wh7n6hu1/u7t8n+WL+cDnw\n+SQ377rpTUmev7YlAgCwTcyKALBdDhWHquqGXZ9+IMnFV6d4OMmdVfW6qrolyckkP7y2JQJwGP6q\nA6yLWREAtsuJ/W5QVV9N8t4kb66q80k+k+S9VXVrdi4DfjbJx5Kku5+qqoeS/CTJS0nu7u6Xl7N0\nAADWzawIANuvNuGvylW1/kUAHBPX8u961V5PB8KGe8xzsnDcmRUBluMwc6N5cft0977/o+175RAA\nx4M7cgAAdrs4Hx4kEpklj7dreSl7AAAAALacK4cAjhl/1QEA4GqYH3HlEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg+8ahqrq5qr5bVU9X1VNV9YnF8TdV1Xeq6qeL99ctjldV\nfaGqzlXVE1X1zmX/RwAAsB5mRQDYfge5cuilJH/V3X+S5N1J7q6qtye5J8kj3X0yySOLz5Pk/UlO\nLt7OJLn3yFcNAMCmMCsCwJbbNw5194Xu/tHi498keTrJjUlOJ3lwcbMHk9yx+Ph0ki/3ju8neWNV\n3XDkKwcAYO3MigCw/a7qOYeq6q1J3pHkB0mu7+4Lyc5QkOQti5vdmOS5Xd92fnHs0p91pqrOVtXZ\nq182AACbxqwIANvpxEFvWFWvT/L1JJ/s7l9X1WVvusexftWB7vuS3Lf42a/6OgAA28OsCADb60BX\nDlXVa7NzZ/+V7v7G4vALFy8BXrx/cXH8fJKbd337TUmeP5rlAgCwacyKALDdDvJqZZXkS0me7u7P\n7/rSw0nuWnx8V5Jv7Tr+4cUrUbw7ya8uXlIMAMDxYlYEgO1X3Ve+Sreq/l2S/5bkx0l+vzj86ew8\nlvyhJP86yc+TfLC7f7kYEP5TktuS/DbJR7r7io8Vd6kwABzaY919at2LYC6zIgBstu6+7GO9L9o3\nDq2CO3wAODRxiGPPrAgAh3eQOHRVr1YGAAAAwPEiDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAy2bxyqqpur6rtV9XRVPVVVn1gc/2xV/aKqHl+83b7r\nez5VVeeq6pmqet8y/wMAAFgfsyIAbL/q7ivfoOqGJDd094+q6g1JHktyR5K/SPK/u/s/XnL7tyf5\napJ3JflXSf5rkn/b3S9f4XdceREAwOU81t2n1r0I5jIrAsBm6+7a7zb7XjnU3Re6+0eLj3+T5Okk\nN17hW04n+Vp3/667f5bkXHbu/AEAOGbMigCw/a7qOYeq6q1J3pHkB4tDH6+qJ6rq/qq6bnHsxiTP\n7fq289ljQKiqM1V1tqrOXvWqAQDYOGZFANhOB45DVfX6JF9P8snu/nWSe5O8LcmtSS4k+dzFm+7x\n7a+6FLi77+vuUy6FBwDYfmZFANheB4pDVfXa7NzZf6W7v5Ek3f1Cd7/c3b9P8sX84XLg80lu3vXt\nNyV5/uiWDADAJjErAsB2O8irlVWSLyV5urs/v+v4Dbtu9oEkTy4+fjjJnVX1uqq6JcnJJD88uiUD\nALApzIoAsP1OHOA270nyl0l+XFWPL459OsmHqurW7FwG/GySjyVJdz9VVQ8l+UmSl5LcfaVXnwAA\nYKuZFQFgy+37UvYrWYSXJwWAw/JS9hx7ZkUAOLwjeSl7AAAAAI4vcQgAAABgMHEIAAAAYDBxCAAA\nAGCwg7xa2Sr8c5L/s3jP8r059npV7PXq2OvVsM+rc9C9/jfLXghsALPiavm3fnXs9erY69Wwz6tz\npLPiRrxaWZJU1VmvtrIa9np17PXq2OvVsM+rY6/hlfx/YnXs9erY69Wx16thn1fnqPfaw8oAAAAA\nBhOHAAAAAAbbpDh037oXMIi9Xh17vTr2ejXs8+rYa3gl/59YHXu9OvZ6dez1atjn1TnSvd6Y5xwC\nAAAAYPU26cohAAAAAFZMHAIAAAAYbCPiUFXdVlXPVNW5qrpn3es5Tqrq2ar6cVU9XlVnF8feVFXf\nqaqfLt5ft+51bqOqur+qXqyqJ3cd23Nva8cXFuf4E1X1zvWtfPtcZq8/W1W/WJzbj1fV7bu+9qnF\nXj9TVe9bz6q3U1XdXFXfraqnq+qpqvrE4rhz+whdYZ+d17AHs+LymBWXx6y4OmbF1TErrsY6ZsW1\nx6Gqek2S/5zk/UnenuRDVfX29a7q2Pmz7r61u08tPr8nySPdfTLJI4vPuXoPJLntkmOX29v3Jzm5\neDuT5N4VrfG4eCCv3usk+ZvFuX1rd387SRb/ftyZ5E8X3/O3i39nOJiXkvxVd/9JkncnuXuxp87t\no3W5fU6c1/AKZsWVMCsuxwMxK67KAzErropZcTVWPiuuPQ4leVeSc939T939f5N8LcnpNa/puDud\n5MHFxw8muWONa9la3f29JL+85PDl9vZ0ki/3ju8neWNV3bCalW6/y+z15ZxO8rXu/l13/yzJuez8\nO8MBdPeF7v7R4uPfJHk6yY1xbh+pK+zz5TivmcysuHpmxSNgVlwds+LqmBVXYx2z4ibEoRuTPLfr\n8/O58n80V6eT/GNVPVZVZxbHru/uC8nOSZfkLWtb3fFzub11ni/HxxeXp96/65J3e31EquqtSd6R\n5Adxbi/NJfucOK/hUs7/5TIrrpb709Vyn7pEZsXVWNWsuAlxqPY41itfxfH1nu5+Z3Yu57u7qv79\nuhc0lPP86N2b5G1Jbk1yIcnnFsft9RGoqtcn+XqST3b3r6900z2O2e8D2mOfndfwas7/5TIrbgbn\n+dFzn7pEZsXVWOWsuAlx6HySm3d9flOS59e0lmOnu59fvH8xyTezc2nZCxcv5Vu8f3F9Kzx2Lre3\nzvMj1t0vdPfL3f37JF/MHy6btNfXqKpem507oa909zcWh53bR2yvfXZew56c/0tkVlw596cr4j51\necyKq7HqWXET4tCjSU5W1S1V9UfZeRKlh9e8pmOhqv64qt5w8eMkf57kyezs712Lm92V5FvrWeGx\ndLm9fTjJhxfP1v/uJL+6eNklh3PJY5U/kJ1zO9nZ6zur6nVVdUt2nvzuh6te37aqqkrypSRPd/fn\nd33JuX2ELrfPzmvYk1lxScyKa+H+dEXcpy6HWXE11jErnri2JV+77n6pqj6e5B+SvCbJ/d391JqX\ndVxcn+SbO+dVTiT5u+7++6p6NMlDVfXRJD9P8sE1rnFrVdVXk7w3yZur6nySzyT56+y9t99Ocnt2\nnhjst0k+svIFb7HL7PV7q+rW7Fwu+WySjyVJdz9VVQ8l+Ul2nuX/7u5+eR3r3lLvSfKXSX5cVY8v\njn06zu2jdrl9/pDzGl7JrLhUZsUlMiuujllxpcyKq7HyWbG6PdwPAAAAYKpNeFgZAAAAAGsiDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAz2/wCIfXw+8kY6lAAAAABJRU5E\nrkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b389c1dabe0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGtNJREFUeJzt3VGIpXeZ5/Hfs8bxYhSMuIZskl1F\nemEyN1EaEVyWzMWO0ZvWC4d4MQYR2osICnMTvdHLuRgdkN0JRAyJ4JgNqJgLmRk3CO6Nmo4ETcxm\nbMasaRMSBhd1R3BJfPai3h4rneru6uo659Sp5/OBoqreOlX1z8ubPg/f+p9zqrsDAAAAwEz/ZtML\nAAAAAGBzxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBVhaHquq2qnqq\nqs5W1V2r+j0AAGwfsyIAHB3V3Yf/Q6teleQfk/yXJOeSPJLkg93940P/ZQAAbBWzIgAcLdes6Oe+\nI8nZ7v6nJKmqB5KcSrLnHX5VHX6hAoAZ/rm7/+2mFwFXyKwIAGvS3XW526zqYWU3JHlm1+fnlmP/\nqqpOV9WZqjqzojUAwAT/e9MLgAMwKwLAEbKqnUN7VamX/cWnu+9Jck/ir0EAAMOYFQHgCFnVzqFz\nSW7a9fmNSZ5d0e8CAGC7mBUB4AhZVRx6JMmJqnpLVf1BktuTPLSi3wUAwHYxKwLAEbKSh5V194tV\n9bEkf5/kVUnu7e4nVvG7AADYLmZFADhaVvJS9le8CI8jB4CDerS7T256EbBKZkUAOLhNvloZAAAA\nAFtAHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAA\nGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAY\nTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhM\nHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwc\nAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwC\nAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIA\nAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAA\nABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAA\nGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAY\nTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGEwcAgAAABhMHAIAAAAYTBwCAAAAGOyaq/nmqno6\nya+TvJTkxe4+WVVvSPLfk7w5ydNJ/qy7/8/VLRMAgG1jVgSA7XAYO4f+pLtv6e6Ty+d3JXm4u08k\neXj5HACAmcyKAHDEreJhZaeS3L98fH+S963gdwAAsJ3MigBwxFxtHOok/1BVj1bV6eXYdd39XJIs\n7990lb8DAIDtZFYEgC1wVc85lORd3f1sVb0pybeq6n/t9xuXAeH0ZW8IAMC2MisCwBa4qp1D3f3s\n8v6FJF9P8o4kz1fV9UmyvH/hIt97T3ef3PX4cwAAjhGzIgBshwPHoar6w6p63fmPk/xpkseTPJTk\njuVmdyT5xtUuEgCA7WJWBIDtcTUPK7suyder6vzP+dvu/ruqeiTJg1X1kSQ/S/KBq18mAABbxqwI\nAFuiunvTa0hVbX4RALCdHvWwG447syIAHFx31+Vuc7VPSA0AAMAQ+9lcsOwYBLbI1b6UPQAAAABb\nzM4h4BX2+ouQvwABAMx1JU9H0t1mR9gydg4BAAAADGbnEPCvLvUXofNf81cgAAAux+wI28XOIQAA\nAIDB7BwCroi/AgEAzHElzzUEbC87hwAAAAAGs3MI8BchAACAwcQh4Ip4OBkAAMDx4mFlAAAAAIPZ\nOQQAAMChstsctoudQwAAAACD2TkE7Iu//gAAzHN+BrySFzAxN8L2sXMIAAAAYDA7hwB/3QEA4JL2\ns4PITAnby84hAAAAgMHsHAIAAGBf7A6C48nOIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBrtn0AgBWqbtfcayq\nXva1858DADDLXrPixZgZOc7sHAIAAAAYzM4hYJwL/0K0+3N/EQIAmOFKdg3tvr15keNIHAKOpSu9\nswcAgP0QiTiOPKwMAAAAYDBxCGCX7rbrCAAAGEUcAgAAABhMHAIAAAAYTBwCAAAAGEwcAo6lqjrQ\nK0gc9PsAANguZj74PXEIAAAAYDBxCAAAAGCwaza9AIBV2r1d2EvUAwCw2/lZ8UrmRA9H4ziycwgA\nAABgMDuHgDH8lQcAgL1cOCfutZPILMlxZucQAAAAwGB2DgEAAMAudgkxjZ1DAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAINdNg5V1b1V9UJVPb7r2Buq6ltV9ZPl/bXL8aqqz1fV2ar6YVW9fZWLBwBgs8yK\nALD99rNz6L4kt11w7K4kD3f3iSQPL58nyXuSnFjeTie5+3CWCQDAEXVfzIoAsNUuG4e6+ztJfnHB\n4VNJ7l8+vj/J+3Yd/1Lv+G6S11fV9Ye1WAAAjhazIgBsv4M+59B13f1ckizv37QcvyHJM7tud245\n9gpVdbqqzlTVmQOuAQCAo8msCABb5JpD/nm1x7He64bdfU+Se5Kkqva8DQAAx4pZEQCOoIPuHHr+\n/Bbg5f0Ly/FzSW7adbsbkzx78OUBALCFzIoAsEUOGoceSnLH8vEdSb6x6/iHlleieGeSX57fUgwA\nwBhmRQDYIpd9WFlVfSXJrUneWFXnknw6yV8mebCqPpLkZ0k+sNz8m0nem+Rskt8k+fAK1gwAwBFh\nVgSA7Vfdm38It8eRA8CBPdrdJze9CFglsyIAHFx37/Wcfy9z0IeVAQAAAHAMiEMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDXTYOVdW9VfVCVT2+69hn\nqurnVfXY8vbeXV/7ZFWdraqnqurdq1o4AACbZ1YEgO23n51D9yW5bY/jf93dtyxv30ySqro5ye1J\n/nj5nr+pqlcd1mIBADhy7otZEQC22mXjUHd/J8kv9vnzTiV5oLt/290/TXI2yTuuYn0AABxhZkUA\n2H5X85xDH6uqHy5bia9djt2Q5Jldtzm3HHuFqjpdVWeq6sxVrAEAgKPJrAgAW+KgcejuJG9NckuS\n55J8djlee9y29/oB3X1Pd5/s7pMHXAMAAEeTWREAtsiB4lB3P9/dL3X375J8Ib/fDnwuyU27bnpj\nkmevbokAAGwTsyIAbJcDxaGqun7Xp+9Pcv7VKR5KcntVvaaq3pLkRJLvX90SAQDYJmZFANgu11zu\nBlX1lSS3JnljVZ1L8ukkt1bVLdnZBvx0ko8mSXc/UVUPJvlxkheT3NndL61m6QAAbJpZEQC2X3Xv\n+TDv9S6iavOLAIDt9KjnZOG4MysCwMF1917P+fcyV/NqZQAAAABsOXEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABg\nMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAw\ncQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBx\nCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEI\nAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgA\nAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAA\nAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAA\nYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgsMvGoaq6qaq+XVVPVtUTVfXx5fgb\nqupbVfWT5f21y/Gqqs9X1dmq+mFVvX3V/xEAAGyGWREAtt9+dg69mOQvuvuPkrwzyZ1VdXOSu5I8\n3N0nkjy8fJ4k70lyYnk7neTuQ181AABHhVkRALbcZeNQdz/X3T9YPv51kieT3JDkVJL7l5vdn+R9\ny8enknypd3w3yeur6vpDXzkAABtnVgSA7XdFzzlUVW9O8rYk30tyXXc/l+wMBUnetNzshiTP7Pq2\nc8uxC3/W6ao6U1VnrnzZAAAcNWZFANhO1+z3hlX12iRfTfKJ7v5VVV30pnsc61cc6L4nyT3Lz37F\n1wEA2B5mRQDYXvvaOVRVr87Onf2Xu/try+Hnz28BXt6/sBw/l+SmXd9+Y5JnD2e5AAAcNWZFANhu\n+3m1skryxSRPdvfndn3poSR3LB/fkeQbu45/aHklincm+eX5LcUAABwvZkUA2H7VfeldulX1n5L8\nzyQ/SvK75fCnsvNY8geT/PskP0vyge7+xTIg/NcktyX5TZIPd/clHytuqzAAHNij3X1y04tgLrMi\nABxt3X3Rx3qfd9k4tA7u8AHgwMQhjj2zIgAc3H7i0BW9WhkAAAAAx4s4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMNhl41BV3VRV366qJ6vqiar6+HL8\nM1X186p6bHl7767v+WRVna2qp6rq3av8DwAAYHPMigCw/aq7L32DquuTXN/dP6iq1yV5NMn7kvxZ\nkv/b3X91we1vTvKVJO9I8u+S/I8k/7G7X7rE77j0IgCAi3m0u09uehHMZVYEgKOtu+tyt7nszqHu\nfq67f7B8/OskTya54RLfcirJA9392+7+aZKz2bnzBwDgmDErAsD2u6LnHKqqNyd5W5LvLYc+VlU/\nrKp7q+ra5dgNSZ7Z9W3nsseAUFWnq+pMVZ254lUDAHDkmBUBYDvtOw5V1WuTfDXJJ7r7V0nuTvLW\nJLckeS7JZ8/fdI9vf8VW4O6+p7tP2goPALD9zIoAsL32FYeq6tXZubP/cnd/LUm6+/nufqm7f5fk\nC/n9duBzSW7a9e03Jnn28JYMAMBRYlYEgO22n1crqyRfTPJkd39u1/Hrd93s/UkeXz5+KMntVfWa\nqnpLkhNJvn94SwYA4KgwKwLA9rtmH7d5V5I/T/KjqnpsOfapJB+sqluysw346SQfTZLufqKqHkzy\n4yQvJrnzUq8+AQDAVjMrAsCWu+xL2a9lEV6eFAAOykvZc+yZFQHg4A7lpewBAAAAOL7EIQAAAIDB\nxCEAAACAwcQhAAAAgMH282pl6/DPSf5lec/qvTHO9bo41+vjXK+H87w++z3X/2HVC4EjwKy4Xv6t\nXx/nen2c6/VwntfnUGfFI/FqZUlSVWe82sp6ONfr41yvj3O9Hs7z+jjX8HL+n1gf53p9nOv1ca7X\nw3len8M+1x5WBgAAADCYOAQAAAAw2FGKQ/dsegGDONfr41yvj3O9Hs7z+jjX8HL+n1gf53p9nOv1\nca7Xw3len0M910fmOYcAAAAAWL+jtHMIAAAAgDUThwAAAAAGOxJxqKpuq6qnqupsVd216fUcJ1X1\ndFX9qKoeq6ozy7E3VNW3quony/trN73ObVRV91bVC1X1+K5je57b2vH55Rr/YVW9fXMr3z4XOdef\nqaqfL9f2Y1X13l1f++Ryrp+qqndvZtXbqapuqqpvV9WTVfVEVX18Oe7aPkSXOM+ua9iDWXF1zIqr\nY1ZcH7Pi+pgV12MTs+LG41BVvSrJf0vyniQ3J/lgVd282VUdO3/S3bd098nl87uSPNzdJ5I8vHzO\nlbsvyW0XHLvYuX1PkhPL2+kkd69pjcfFfXnluU6Sv16u7Vu6+5tJsvz7cXuSP16+52+Wf2fYnxeT\n/EV3/1GSdya5czmnru3DdbHznLiu4WXMimthVlyN+2JWXJf7YlZcF7Pieqx9Vtx4HEryjiRnu/uf\nuvv/JXkgyakNr+m4O5Xk/uXj+5O8b4Nr2Vrd/Z0kv7jg8MXO7akkX+od303y+qq6fj0r3X4XOdcX\ncyrJA9392+7+aZKz2fl3hn3o7ue6+wfLx79O8mSSG+LaPlSXOM8X47pmMrPi+pkVD4FZcX3Miutj\nVlyPTcyKRyEO3ZDkmV2fn8ul/6O5Mp3kH6rq0ao6vRy7rrufS3YuuiRv2tjqjp+LnVvX+Wp8bNme\neu+uLe/O9SGpqjcneVuS78W1vTIXnOfEdQ0Xcv2vlllxvdyfrpf71BUyK67HumbFoxCHao9jvfZV\nHF/v6u63Z2c7351V9Z83vaChXOeH7+4kb01yS5Lnknx2Oe5cH4Kqem2Sryb5RHf/6lI33eOY871P\ne5xn1zW8kut/tcyKR4Pr/PC5T10hs+J6rHNWPApx6FySm3Z9fmOSZze0lmOnu59d3r+Q5OvZ2Vr2\n/PmtfMv7Fza3wmPnYufWdX7Iuvv57n6pu3+X5Av5/bZJ5/oqVdWrs3Mn9OXu/tpy2LV9yPY6z65r\n2JPrf4XMimvn/nRN3KeujllxPdY9Kx6FOPRIkhNV9Zaq+oPsPInSQxte07FQVX9YVa87/3GSP03y\neHbO7x3Lze5I8o3NrPBYuti5fSjJh5Zn639nkl+e33bJwVzwWOX3Z+faTnbO9e1V9Zqqekt2nvzu\n++te37aqqkryxSRPdvfndn3JtX2ILnaeXdewJ7PiipgVN8L96Zq4T10Ns+J6bGJWvObqlnz1uvvF\nqvpYkr9P8qok93b3Exte1nFxXZKv71xXuSbJ33b331XVI0kerKqPJPlZkg9scI1bq6q+kuTWJG+s\nqnNJPp3kL7P3uf1mkvdm54nBfpPkw2tf8Ba7yLm+tapuyc52yaeTfDRJuvuJqnowyY+z8yz/d3b3\nS5tY95Z6V5I/T/KjqnpsOfapuLYP28XO8wdd1/ByZsWVMiuukFlxfcyKa2VWXI+1z4rV7eF+AAAA\nAFMdhYeVAQAAALAh4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg/x/8\nZk+TfpeTtQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b389c08a6a0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGvZJREFUeJzt3VGIpXeZ5/Hfs4njxSgYcQ3ZJLsG\n6YVxbqI0IrgszsWO0ZvWC4d4MQYR2osICnMTvdHLuRgdkN0JRAyJ4OgGVMyFzIwbBPdGTUeCJmYd\nmzFr2oSEwUXdEVwSn72ot8dKp6q7Ul3nnDr1fD7QVNXbp6r+eXnT5+F7/uec6u4AAAAAMNO/2fQC\nAAAAANgccQgAAABgMHEIAAAAYDBxCAAAAGAwcQgAAABgMHEIAAAAYDBxCAAAAGCwlcWhqrqtqn5c\nVeer6q5V/R4AALaPWREAjo/q7qP/oVXXJPnHJP8lyYUkDyd5f3f/6Mh/GQAAW8WsCADHy7Ur+rlv\nTXK+u/8pSarqy0nOJNnzDr+qjr5QAcAM/9zd/3bTi4CXyawIAGvS3XWl26zqaWU3Jnlq19cXlmP/\nqqrOVtW5qjq3ojUAwAT/e9MLgEMwKwLAMbKqnUN7VakXPeLT3fckuSfxaBAAwDBmRQA4Rla1c+hC\nkpt3fX1TkqdX9LsAANguZkUAOEZWFYceTnKqqm6pqj9IcnuSB1f0uwAA2C5mRQA4RlbytLLufr6q\nPpLk75Nck+Te7n58Fb8LAIDtYlYEgONlJW9l/7IX4XnkAHBYj3T36U0vAlbJrAgAh7fJdysDAAAA\nYAuIQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg117Nd9cVU8m\n+XWSF5I8392nq+q1Sf57kjckeTLJn3X3/7m6ZQIAsG3MigCwHY5i59CfdPet3X16+fquJA9196kk\nDy1fAwAwk1kRAI65VTyt7EyS+5fP70/ynhX8DgAAtpNZEQCOmauNQ53kH6rqkao6uxy7vrufSZLl\n4+uv8ncAALCdzIoAsAWu6jWHkry9u5+uqtcn+WZV/a+DfuMyIJy94g0BANhWZkUA2AJXtXOou59e\nPj6X5GtJ3prk2aq6IUmWj8/t8733dPfpXc8/BwDgBDErAsB2OHQcqqo/rKpXX/w8yZ8meSzJg0nu\nWG52R5KvX+0iAQDYLmZFANgeV/O0suuTfK2qLv6cv+3uv6uqh5M8UFUfSvKzJO+7+mUCALBlzIoA\nsCWquze9hlTV5hcBANvpEU+74aQzKwLA4XV3Xek2q3grewAAAAC2hDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw\nmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCY\nOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgE\nAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAA\nADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAA\nMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAw2BXjUFXdW1XPVdVju469tqq+WVU/\nWT5etxyvqvpsVZ2vqh9U1VtWuXgAADbLrAgA2+8gO4fuS3LbJcfuSvJQd59K8tDydZK8K8mp5c/Z\nJHcfzTIBADim7otZEQC22hXjUHd/O8kvLjl8Jsn9y+f3J3nPruNf6B3fSfKaqrrhqBYLAMDxYlYE\ngO132Nccur67n0mS5ePrl+M3Jnlq1+0uLMdeoqrOVtW5qjp3yDUAAHA8mRUBYItce8Q/r/Y41nvd\nsLvvSXJPklTVnrcBAOBEMSsCwDF02J1Dz17cArx8fG45fiHJzbtud1OSpw+/PAAAtpBZEQC2yGHj\n0INJ7lg+vyPJ13cd/8DyThRvS/LLi1uKAQAYw6wIAFvkik8rq6ovJXlHktdV1YUkn0zyl0keqKoP\nJflZkvctN/9GkncnOZ/kN0k+uII1AwBwTJgVAWD7Vffmn8LteeQAcGiPdPfpTS8CVsmsCACH1917\nvebfixz2aWUAAAAAnADiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAA\nAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAA\nwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADA\nYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDi\nEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQ\nAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg4hAA\nAADAYOIQAAAAwGBXjENVdW9VPVdVj+069qmq+nlVPbr8efeuv/t4VZ2vqh9X1TtXtXAAADbPrAgA\n2+8gO4fuS3LbHsf/urtvXf58I0mq6k1Jbk/yx8v3/E1VXXNUiwUA4Ni5L2ZFANhqV4xD3f3tJL84\n4M87k+TL3f3b7v5pkvNJ3noV6wMA4BgzKwLA9rua1xz6SFX9YNlKfN1y7MYkT+26zYXl2EtU1dmq\nOldV565iDQAAHE9mRQDYEoeNQ3cneWOSW5M8k+TTy/Ha47a91w/o7nu6+3R3nz7kGgAAOJ7MigCw\nRQ4Vh7r72e5+obt/l+Rz+f124AtJbt5105uSPH11SwQAYJuYFQFguxwqDlXVDbu+fG+Si+9O8WCS\n26vqlVV1S5JTSb53dUsEAGCbmBUBYLtce6UbVNWXkrwjyeuq6kKSTyZ5R1Xdmp1twE8m+XCSdPfj\nVfVAkh8leT7Jnd39wmqWDgDAppkVAWD7VfeeT/Ne7yKqNr8IANhOj3hNFk46syIAHF537/Wafy9y\nNe9WBgAAAMCWE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAA\nBhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAG\nE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAYT\nhwAAAAAGE4cAAAAABhOHAAAAAAYThwAAAAAGE4cAAAAABrt20wsAYLW6e8/jVbXmlQAAAMeRnUMA\nAAAAg9k5BHBC7bdjaPff2z0EAMBFe82P5sUZ7BwCAAAAGMzOIYDBLj465BEhAIB5rrTTfPdtzIsn\nm51DAAAAAIPZOQRwwhzkEaD9vscjQgAA7MW8eLLZOQQAAAAwmJ1DAPwrjwgBAJx8h9lpfun3mhdP\nFjuHAAAAAAYThwB4ie6+qkeUAAA42cyKJ4s4BMC+3OkDALAfDyieHOIQAAAAwGBekBqAy/KigwAA\nJ4NdPuzHziEAAACAwcQhAA7Ec8oBANiLOXH7iUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAwQFWt\n9B1ovfbQ9hKHAAAAAAYThwAAAAAGE4cAAAAABhOHAAAAAAa7dtMLAODoeAFAAAA2ZZUvds1q2TkE\nAAAAMJidQwAciEeCAAC2m13m7MfOIQAAAIDB7BwCOAE8CgQAwOWYF7kcO4cAAAAABrNzCAAAADg0\nr025/cQhgC22ju3B7uwBALaXp5NxEJ5WBgAAADCYnUMAW2hdjwDZNQQAwH7MiieHnUMAAAAAg9k5\nBMBLeBQIAGC7rXqnuXnxZLFzCAAAAGAwO4cA8MgPAACXZV482ewcAgAAABjMziGAoTz6AwDAfsyK\ns4hDAFvocnfWl774oDt2AIB5Ls6AB3lhavMinlYGAAAAMJidQwAnjEd+AAC4aK8dROZFLmXnEAAA\nAMBgdg4BAADACWe3EJdj5xAAAADAYOIQAAAAwGDiEAAAAMBg4hAAAADAYOIQAAAAwGDiEAAAAMBg\n4hAAAADAYOIQAAAAwGBXjENVdXNVfauqnqiqx6vqo8vx11bVN6vqJ8vH65bjVVWfrarzVfWDqnrL\nqv8jAADYDLMiAGy/g+wcej7JX3T3HyV5W5I7q+pNSe5K8lB3n0ry0PJ1krwryanlz9kkdx/5qgEA\nOC7MigCw5a4Yh7r7me7+/vL5r5M8keTGJGeS3L/c7P4k71k+P5PkC73jO0leU1U3HPnKAQDYOLMi\nAGy/l/WaQ1X1hiRvTvLdJNd39zPJzlCQ5PXLzW5M8tSub7uwHLv0Z52tqnNVde7lLxsAgOPGrAgA\n2+nag96wql6V5CtJPtbdv6qqfW+6x7F+yYHue5Lcs/zsl/w9AADbw6wIANvrQDuHquoV2bmz/2J3\nf3U5/OzFLcDLx+eW4xeS3Lzr229K8vTRLBcAgOPGrAgA2+0g71ZWST6f5Inu/syuv3owyR3L53ck\n+fqu4x9Y3onibUl+eXFLMQAAJ4tZEQC2X3VffpduVf2nJP8zyQ+T/G45/InsPJf8gST/PsnPkryv\nu3+xDAj/NcltSX6T5IPdfdnnitsqDACH9kh3n970IpjLrAgAx1t37/tc74uuGIfWwR0+AByaOMSJ\nZ1YEgMM7SBx6We9WBgAAAMDJIg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMdsU4VFU3V9W3quqJqnq8qj66HP9UVf28qh5d/rx71/d8vKrOV9WPq+qd\nq/wPAABgc8yKALD9qrsvf4OqG5Lc0N3fr6pXJ3kkyXuS/FmS/9vdf3XJ7d+U5EtJ3prk3yX5H0n+\nY3e/cJnfcflFAAD7eaS7T296EcxlVgSA462760q3ueLOoe5+pru/v3z+6yRPJLnxMt9yJsmXu/u3\n3f3TJOezc+cPAMAJY1YEgO33sl5zqKrekOTNSb67HPpIVf2gqu6tquuWYzcmeWrXt13IHgNCVZ2t\nqnNVde5lrxoAgGPHrAgA2+nAcaiqXpXkK0k+1t2/SnJ3kjcmuTXJM0k+ffGme3z7S7YCd/c93X3a\nVngAgO1nVgSA7XWgOFRVr8jOnf0Xu/urSdLdz3b3C939uySfy++3A19IcvOub78pydNHt2QAAI4T\nsyIAbLeDvFtZJfl8kie6+zO7jt+w62bvTfLY8vmDSW6vqldW1S1JTiX53tEtGQCA48KsCADb79oD\n3ObtSf48yQ+r6tHl2CeSvL+qbs3ONuAnk3w4Sbr78ap6IMmPkjyf5M7LvfsEAABbzawIAFvuim9l\nv5ZFeHtSADgsb2XPiWdWBIDDO5K3sgcAAADg5BKHAAAAAAYThwAAAAAGE4cAAAAABjvIu5Wtwz8n\n+ZflI6v3ujjX6+Jcr49zvR7O8/oc9Fz/h1UvBI4Bs+J6+bd+fZzr9XGu18N5Xp8jnRWPxbuVJUlV\nnfNuK+vhXK+Pc70+zvV6OM/r41zDi/l/Yn2c6/VxrtfHuV4P53l9jvpce1oZAAAAwGDiEAAAAMBg\nxykO3bPpBQziXK+Pc70+zvV6OM/r41zDi/l/Yn2c6/VxrtfHuV4P53l9jvRcH5vXHAIAAABg/Y7T\nziEAAAAA1kwcAgAAABjsWMShqrqtqn5cVeer6q5Nr+ckqaonq+qHVfVoVZ1bjr22qr5ZVT9ZPl63\n6XVuo6q6t6qeq6rHdh3b89zWjs8u1/gPquotm1v59tnnXH+qqn6+XNuPVtW7d/3dx5dz/eOqeudm\nVr2dqurmqvpWVT1RVY9X1UeX467tI3SZ8+y6hj2YFVfHrLg6ZsX1MSuuj1lxPTYxK248DlXVNUn+\nW5J3JXlTkvdX1Zs2u6oT50+6+9buPr18fVeSh7r7VJKHlq95+e5Lctslx/Y7t+9Kcmr5czbJ3Wta\n40lxX156rpPkr5dr+9bu/kaSLP9+3J7kj5fv+Zvl3xkO5vkkf9Hdf5TkbUnuXM6pa/to7XeeE9c1\nvIhZcS3MiqtxX8yK63JfzIrrYlZcj7XPihuPQ0nemuR8d/9Td/+/JF9OcmbDazrpziS5f/n8/iTv\n2eBatlZ3fzvJLy45vN+5PZPkC73jO0leU1U3rGel22+fc72fM0m+3N2/7e6fJjmfnX9nOIDufqa7\nv798/uskTyS5Ma7tI3WZ87wf1zWTmRXXz6x4BMyK62NWXB+z4npsYlY8DnHoxiRP7fr6Qi7/H83L\n00n+oaoeqaqzy7Hru/uZZOeiS/L6ja3u5Nnv3LrOV+Mjy/bUe3dteXeuj0hVvSHJm5N8N67tlbnk\nPCeua7iU63+1zIrr5f50vdynrpBZcT3WNSsehzhUexzrta/i5Hp7d78lO9v57qyq/7zpBQ3lOj96\ndyd5Y5JbkzyT5NPLcef6CFTVq5J8JcnHuvtXl7vpHsec7wPa4zy7ruGlXP+rZVY8HlznR8996gqZ\nFddjnbPicYhDF5LcvOvrm5I8vaG1nDjd/fTy8bkkX8vO1rJnL27lWz4+t7kVnjj7nVvX+RHr7me7\n+4Xu/l2Sz+X32yad66tUVa/Izp3QF7v7q8th1/YR2+s8u65hT67/FTIrrp370zVxn7o6ZsX1WPes\neBzi0MNJTlXVLVX1B9l5EaUHN7ymE6Gq/rCqXn3x8yR/muSx7JzfO5ab3ZHk65tZ4Ym037l9MMkH\nllfrf1uSX17cdsnhXPJc5fdm59pOds717VX1yqq6JTsvfve9da9vW1VVJfl8kie6+zO7/sq1fYT2\nO8+ua9iTWXFFzIob4f50TdynroZZcT02MStee3VLvnrd/XxVfSTJ3ye5Jsm93f34hpd1Ulyf5Gs7\n11WuTfK33f13VfVwkgeq6kNJfpbkfRtc49aqqi8leUeS11XVhSSfTPKX2fvcfiPJu7PzwmC/SfLB\ntS94i+1zrt9RVbdmZ7vkk0k+nCTd/XhVPZDkR9l5lf87u/uFTax7S709yZ8n+WFVPboc+0Rc20dt\nv/P8ftc1vJhZcaXMiitkVlwfs+JamRXXY+2zYnV7uh8AAADAVMfhaWUAAAAAbIg4BAAAADCYOAQA\nAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMNj/B3YVc3D+9VuPAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b3897793a90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGgZJREFUeJzt3U+I7XeZ5/HPM4ntohWMOAmZJDMG\nuQOd3kS5hIDDkF5MG7O5cWETF20Q4bpIQKE30Y0uezHaIDMdiBgSwTYTUDEL6W4nCM5GzY2EmJjJ\neGkz5pqQ0DioM4JD4jOL+t2xktT9k7p1zqlTz+sFRZ363VNV3/vll3se3vmdc6q7AwAAAMBM/2LT\nCwAAAABgc8QhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwVYWh6rq1qp6\ntqpOV9U9q/o9AABsH7MiABwe1d0H/0OrLkvyP5L8hyRnkjyW5CPd/ZMD/2UAAGwVsyIAHC6Xr+jn\n3pTkdHf/U5JU1UNJTiTZ8wG/qg6+UAHADP/c3f9y04uAN8msCABr0t11ofus6mll1yR5ftfXZ5Zj\n/19VnayqU1V1akVrAIAJ/uemFwD7YFYEgENkVVcO7VWlXvN/fLr7viT3Jf5vEADAMGZFADhEVnXl\n0Jkk1+36+tokL6zodwEAsF3MigBwiKwqDj2W5FhVXV9Vf5TkjiSPrOh3AQCwXcyKAHCIrORpZd39\nSlXdneQfklyW5P7ufnoVvwsAgO1iVgSAw2Ulb2X/phfheeQAsF+Pd/fxTS8CVsmsCAD7t8l3KwMA\nAABgC4hDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDXX4p31xV\nzyX5TZJXk7zS3cer6p1J/kuSdyd5LslfdPf/urRlAgCwbcyKALAdDuLKoT/r7hu7+/jy9T1JHu3u\nY0keXb4GAGAmsyIAHHKreFrZiSQPLrcfTHL7Cn4HAADbyawIAIfMpcahTvKPVfV4VZ1cjl3V3S8m\nyfL5ykv8HQAAbCezIgBsgUt6zaEk7+/uF6rqyiTfqar/frHfuAwIJy94RwAAtpVZEQC2wCVdOdTd\nLyyfX07yzSQ3JXmpqq5OkuXzy+f43vu6+/iu558DAHCEmBUBYDvsOw5V1R9X1dvP3k7y50meSvJI\nkjuXu92Z5FuXukgAALaLWREAtselPK3sqiTfrKqzP+fvuvvvq+qxJA9X1ceT/DzJhy99mQAAbBmz\nIgBsieruTa8hVbX5RQDAdnrc02446syKALB/3V0Xus8q3soeAAAAgC0hDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAx2wThUVfdX1ctV9dSuY++squ9U\n1U+Xz1csx6uqvlhVp6vqyap63yoXDwDAZpkVAWD7XcyVQw8kufV1x+5J8mh3H0vy6PJ1knwwybHl\n42SSew9mmQAAHFIPxKwIAFvtgnGou7+X5JevO3wiyYPL7QeT3L7r+Fd6x/eTvKOqrj6oxQIAcLiY\nFQFg++33NYeu6u4Xk2T5fOVy/Jokz++635nl2BtU1cmqOlVVp/a5BgAADiezIgBskcsP+OfVHsd6\nrzt2931J7kuSqtrzPgAAHClmRQA4hPZ75dBLZy8BXj6/vBw/k+S6Xfe7NskL+18eAABbyKwIAFtk\nv3HokSR3LrfvTPKtXcc/urwTxc1JfnX2kmIAAMYwKwLAFrng08qq6mtJbknyrqo6k+SzSf46ycNV\n9fEkP0/y4eXu305yW5LTSX6b5GMrWDMAAIeEWREAtl91b/4p3J5HDgD79nh3H9/0ImCVzIoAsH/d\nvddr/r3Gfp9WBgAAAMARIA4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMdsE4VFX3V9XLVfXUrmOfq6pfVNUTy8dtu/7s01V1uqqeraoPrGrhAABsnlkR\nALbfxVw59ECSW/c4/jfdfePy8e0kqaobktyR5E+X7/nbqrrsoBYLAMCh80DMigCw1S4Yh7r7e0l+\neZE/70SSh7r7d939sySnk9x0CesDAOAQMysCwPa7lNccuruqnlwuJb5iOXZNkud33efMcuwNqupk\nVZ2qqlOXsAYAAA4nsyIAbIn9xqF7k7wnyY1JXkzy+eV47XHf3usHdPd93X28u4/vcw0AABxOZkUA\n2CL7ikPd/VJ3v9rdv0/ypfzhcuAzSa7bdddrk7xwaUsEAGCbmBUBYLvsKw5V1dW7vvxQkrPvTvFI\nkjuq6q1VdX2SY0l+eGlLBABgm5gVAWC7XH6hO1TV15LckuRdVXUmyWeT3FJVN2bnMuDnknwiSbr7\n6ap6OMlPkryS5K7ufnU1SwcAYNPMigCw/ap7z6d5r3cRVZtfBABsp8e9JgtHnVkRAPavu/d6zb/X\nuJR3KwMAAABgy4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg10wDlXVdVX13ap6pqqerqpPLsffWVXfqaqfLp+vWI5XVX2xqk5X1ZNV9b5V/yUAANgM\nsyIAbL+LuXLolSR/1d1/kuTmJHdV1Q1J7knyaHcfS/Lo8nWSfDDJseXjZJJ7D3zVAAAcFmZFANhy\nF4xD3f1id/9ouf2bJM8kuSbJiSQPLnd7MMnty+0TSb7SO76f5B1VdfWBrxwAgI0zKwLA9ntTrzlU\nVe9O8t4kP0hyVXe/mOwMBUmuXO52TZLnd33bmeXY63/Wyao6VVWn3vyyAQA4bMyKALCdLr/YO1bV\n25J8PcmnuvvXVXXOu+5xrN9woPu+JPctP/sNfw4AwPYwKwLA9rqoK4eq6i3ZebD/and/Yzn80tlL\ngJfPLy/HzyS5bte3X5vkhYNZLgAAh41ZEQC228W8W1kl+XKSZ7r7C7v+6JEkdy6370zyrV3HP7q8\nE8XNSX519pJiAACOFrMiAGy/6j7/VbpV9e+S/LckP07y++XwZ7LzXPKHk/zrJD9P8uHu/uUyIPyn\nJLcm+W2Sj3X3eZ8r7lJhANi3x7v7+KYXwVxmRQA43Lr7nM/1PuuCcWgdPOADwL6JQxx5ZkUA2L+L\niUNv6t3KAAAAADhaxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBLhiHquq6qvpuVT1TVU9X1SeX45+rql9U1RPLx227vufTVXW6qp6tqg+s8i8AAMDm\nmBUBYPtVd5//DlVXJ7m6u39UVW9P8niS25P8RZL/3d3/8XX3vyHJ15LclORfJfmvSf5td796nt9x\n/kUAAOfyeHcf3/QimMusCACHW3fXhe5zwSuHuvvF7v7Rcvs3SZ5Jcs15vuVEkoe6+3fd/bMkp7Pz\n4A8AwBFjVgSA7femXnOoqt6d5L1JfrAcuruqnqyq+6vqiuXYNUme3/VtZ7LHgFBVJ6vqVFWdetOr\nBgDg0DErAsB2uug4VFVvS/L1JJ/q7l8nuTfJe5LcmOTFJJ8/e9c9vv0NlwJ3933dfdyl8AAA28+s\nCADb66LiUFW9JTsP9l/t7m8kSXe/1N2vdvfvk3wpf7gc+EyS63Z9+7VJXji4JQMAcJiYFQFgu13M\nu5VVki8neaa7v7Dr+NW77vahJE8ttx9JckdVvbWqrk9yLMkPD27JAAAcFmZFANh+l1/Efd6f5C+T\n/LiqnliOfSbJR6rqxuxcBvxckk8kSXc/XVUPJ/lJkleS3HW+d58AAGCrmRUBYMtd8K3s17IIb08K\nAPvlrew58syKALB/B/JW9gAAAAAcXeIQAAAAwGDiEAAAAMBg4hAAAADAYBfzbmXr8M9J/s/ymdV7\nV+z1utjr9bHX62Gf1+di9/rfrHohcAiYFdfLv/XrY6/Xx16vh31enwOdFQ/Fu5UlSVWd8m4r62Gv\n18der4+9Xg/7vD72Gl7LfxPrY6/Xx16vj71eD/u8Pge9155WBgAAADCYOAQAAAAw2GGKQ/dtegGD\n2Ov1sdfrY6/Xwz6vj72G1/LfxPrY6/Wx1+tjr9fDPq/Pge71oXnNIQAAAADW7zBdOQQAAADAmolD\nAAAAAIMdijhUVbdW1bNVdbqq7tn0eo6Sqnquqn5cVU9U1anl2Dur6jtV9dPl8xWbXuc2qqr7q+rl\nqnpq17E997Z2fHE5x5+sqvdtbuXb5xx7/bmq+sVybj9RVbft+rNPL3v9bFV9YDOr3k5VdV1Vfbeq\nnqmqp6vqk8tx5/YBOs8+O69hD2bF1TErro5ZcX3MiutjVlyPTcyKG49DVXVZkv+c5INJbkjykaq6\nYbOrOnL+rLtv7O7jy9f3JHm0u48leXT5mjfvgSS3vu7Yufb2g0mOLR8nk9y7pjUeFQ/kjXudJH+z\nnNs3dve3k2T59+OOJH+6fM/fLv/OcHFeSfJX3f0nSW5Octeyp87tg3WufU6c1/AaZsW1MCuuxgMx\nK67LAzErrotZcT3WPituPA4luSnJ6e7+p+7+v0keSnJiw2s66k4keXC5/WCS2ze4lq3V3d9L8svX\nHT7X3p5I8pXe8f0k76iqq9ez0u13jr0+lxNJHuru33X3z5Kczs6/M1yE7n6xu3+03P5NkmeSXBPn\n9oE6zz6fi/OaycyK62dWPABmxfUxK66PWXE9NjErHoY4dE2S53d9fSbn/0vz5nSSf6yqx6vq5HLs\nqu5+Mdk56ZJcubHVHT3n2lvn+WrcvVyeev+uS97t9QGpqncneW+SH8S5vTKv2+fEeQ2v5/xfLbPi\nenk8XS+PqStkVlyPdc2KhyEO1R7Heu2rOLre393vy87lfHdV1b/f9IKGcp4fvHuTvCfJjUleTPL5\n5bi9PgBV9bYkX0/yqe7+9fnuuscx+32R9thn5zW8kfN/tcyKh4Pz/OB5TF0hs+J6rHNWPAxx6EyS\n63Z9fW2SFza0liOnu19YPr+c5JvZubTspbOX8i2fX97cCo+cc+2t8/yAdfdL3f1qd/8+yZfyh8sm\n7fUlqqq3ZOdB6Kvd/Y3lsHP7gO21z85r2JPzf4XMimvn8XRNPKaujllxPdY9Kx6GOPRYkmNVdX1V\n/VF2XkTpkQ2v6Uioqj+uqrefvZ3kz5M8lZ39vXO5251JvrWZFR5J59rbR5J8dHm1/puT/OrsZZfs\nz+ueq/yh7Jzbyc5e31FVb62q67Pz4nc/XPf6tlVVVZIvJ3mmu7+w64+c2wfoXPvsvIY9mRVXxKy4\nER5P18Rj6mqYFddjE7Pi5Ze25EvX3a9U1d1J/iHJZUnu7+6nN7yso+KqJN/cOa9yeZK/6+6/r6rH\nkjxcVR9P8vMkH97gGrdWVX0tyS1J3lVVZ5J8NslfZ++9/XaS27LzwmC/TfKxtS94i51jr2+pqhuz\nc7nkc0k+kSTd/XRVPZzkJ9l5lf+7uvvVTax7S70/yV8m+XFVPbEc+0yc2wftXPv8Eec1vJZZcaXM\niitkVlwfs+JamRXXY+2zYnV7uh8AAADAVIfhaWUAAAAAbIg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMNj/A/uGAV5bTX1oAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x6b38977600b8>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# imshow(np.reshape(y[2]*255, (image_size, image_size)), cmap=\"gray\")\n",
    "for i in range(1, 5, 1):\n",
    "    ## Dataset for prediction\n",
    "    x, y = valid_gen.__getitem__(i)\n",
    "    result = model.predict(x)\n",
    "    result = result > 0.4\n",
    "#     print(id_name)\n",
    "    for j in range(len(result)):\n",
    "        fig = plt.figure(figsize=(20,20))\n",
    "        fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
    "\n",
    "        ax = fig.add_subplot(1, 2, 1)\n",
    "        ax.imshow(np.reshape(y[j]*255, (image_size, image_size)), cmap=\"gray\")\n",
    "#         ax.imshow(y[i])\n",
    "        ax = fig.add_subplot(1, 2, 2)\n",
    "        ax.imshow(np.reshape(result[j]*255, (image_size, image_size)), cmap=\"gray\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4\n",
      "2\n",
      "[[62930   216]\n",
      " [   38  2352]]\n",
      "[62930   216    38  2352]\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAFpCAYAAACBNaNRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXuMZHd55/05p+6n7tXV9/vYc/H4irEcJ7BAtCHZRWgDG5GL0L7oBa1fEngTKbvLbqIV2Q1iw0bwokQmyYsShEN2kyxCMQa9UdgkhAQZcGwz4/GMZ3pmunumb9PdVdVd99upOu8fZ37PdGGCjT3jcXmej4TcXVN16lQ1es5zvs/3eR7L8zwURVGU4cW+2SegKIqivDI0kCuKogw5GsgVRVGGHA3kiqIoQ44GckVRlCFHA7miKMqQc8MCuWVZ/8KyrHOWZV2wLOs/3aj3URRFudWxboSP3LKsALAEvB1YB/4R+AXP885c9zdTFEW5xblRGfmDwAXP85Y9z+sAfwb89A16L0VRlFuaGxXIp4G1A7+vX31MURRFuc4Eb9Bxre/z2ICGY1nWw8DDV3994w06D0VRlKHF87zvF0tfwI0K5OvA7IHfZ4DNg0/wPO+zwGcBLMvSgS+KoigvkxslrfwjcNiyrEXLssLAzwOP36D3UhRFuaW5IRm553muZVkfBv4KCACf8zzv9I14L0VRlFudG2I//KFPQqUVRVGUF/BSNXLt7FQURRlyNJAriqIMORrIFUVRhhwN5IqiKEOOBnJFUZQhRwO5oijKkKOBXFEUZcjRQK4oijLkaCBXFEUZcjSQK4qiDDkayBVFUYYcDeSKoihDjgZyRVGUIUcDuaIoypCjgVxRFGXI0UCuKIoy5GggVxRFGXI0kCuKogw5GsgVRVGGHA3kiqIoQ44GckVRlCFHA7miKMqQo4FcURRlyNFAriiKMuRoIFcURRlyNJAriqIMORrIFUVRhhwN5IqiKEOOBnJFUZQhRwO5oijKkKOBXFEUZcjRQK4oijLkaCBXFEUZcjSQK4qiDDkayBVFUYYcDeSKoihDjgZyRVGUIUcDuaIoypCjgVxRFGXI0UCuKIoy5GggVxRFGXI0kCuKogw5GsgVRVGGHA3kiqIoQ44GckVRlCFHA7miKMqQo4FcURRlyNFAriiKMuRoIFcURRlyNJAriqIMORrIFUVRhhwN5IqiKEOOBnJFUZQhRwO5oijKkKOBXFEUZcgJvpIXW5a1ClSBHuB6nveAZVk54M+BBWAV+FnP8/Ze2WkqiqIo/xTXIyP/cc/z7vM874Grv/8n4G88zzsM/M3V3xVFUZQbxI2QVn4aePTqz48C77oB76EoiqJc5ZUGcg/4mmVZT1uW9fDVx8Y9z9sCuPrfsVf4HoqiKMoP4BVp5MCbPM/btCxrDPjflmWdfakvvBr4H37RJyqKoig/EMvzvOtzIMv6L0AN+LfA2zzP27IsaxL4O8/zjr7Ia6/PSSiKoryO8DzPeinPe9nSimVZccuykuZn4CeB54DHgfddfdr7gC+/3PdQFEVRXpyXnZFblnUI+IurvwaB/+l53sctyxoB/hcwB1wG3uN5XulFjqUZuaIoyvfwUjPy6yatvBI0kCuKoryQGy6tKIqiKK8NNJAriqIMORrIFUVRhhwN5IqiKEOOBnJFUZQhRwO5oijKkKOBXFEUZcjRQK4oijLkaCBXFEUZcjSQK4qiDDkayBVFUYYcDeSKoihDjgZyRVGUIUcDufJ9+cM//MObfQqKorxEdIztLcKnPvUpAP7dv/t3AHzhC18AoF6v88EPfpBHHnmEbDYLwOjoKNvb2ziOw8/8zM/IMT7/+c/TarUASCaTvPe97x14j0ceeYQPf/jDN/yzKMqtgo6xVRRFuUXQjPx1RDabJZVKcenSpRd97m/91m8BfmZdr9fl9QC33XYb6+vrJBIJXNcFYHNzk3Q6TSQSAaDb7RIKhQay8r/4i7/g3e9+N48++igA5XKZX/7lX75+H1BRbjFeakYevNEnotw4kskk1WqVxcVFAKLRKLZt89GPfhSAxx9/HNu2ecc73sFXvvIVAFzXJRQK0el0ACgWiyQSCf7kT/6EX/3VXwVgZ2eHUqlENBqV54VCIfb29hgbGwPAsizi8Thf/OIXRW5ZXV0F4H3v81e2fv7znwf8i0YymQSg0WjwkY985EZ+LYpyy6EZ+euAu+++G4CPfOQj5PN5zpw5A8DU1BR7e3s4jkOtVgP8TPrRRx/lF37hFwBfD69Wq3S7XaLRKADpdJp8Pk+hUGBhYQGAJ598Etu2icfjAMzPz1MoFAAIh8MARCIRqtWqZPj9fp9wOEy/35cLguu61Ot1fu3Xfu1Gfy2KMvRoRv465fbbbwfA8zxSqRSf/OQnRRIplUq0221+/Md/XH4fHR1lb2+P2dlZAILBIFNTU5TLZcAPvnt7ewOBfHt7m2q1im3b8ryjR49Kxg1+kHZdl2q1Kq8zj4+OjgJQq9Vot9tks1l2d3cBsG2bfr9/o74eRbkl0WKnoijKkKPSypDyzW9+k7GxMS5evCi6dSQSoVgsYtv+9fny5cvMzc0xOjrK2bNnAUgkEoyNjbG2tgbA2toa4XCYeDzO5uYmAPF4nKmpKfr9PpcvXwZ8ucVk7uY5IyMjbG9vyzkZmca8fyAQoF6v47quyC/gF0H7/b7KK4ryIrxUaUUD+ZDw0Y9+lIWFBe666y7A93+Pj4+zvb3NkSNHAFhZWaHb7TI5OQlAq9WiVquJTm1eZ9s2oVBIjp1IJLh8+TKBQACAXq9Hu91md3eXO++8E4CLFy8Si8VERimXyzQaDWZmZiRwN5tNzp8/z/z8POAXXzc2Nuh2uwSDvorX7Xbp9XqEw2FKpRIAH/vYx27cF6coQ4wG8tcRH//4x/mxH/sxer0ec3NzgF80rFQqhEIhLMv/W9u2zc7OjgRWx3G4/fbb+Yd/+AdyuRzga91nzpwhlUoBkMvlKJfL7OzsDARpx3FoNBpyrEgkwtbWFlNTUwCkUimuXLnCpUuX5JwqlYq8zuB5HpFIRPT1er3O1NQUruvyR3/0RwCcPHnyhn13ijLMaEOQoijKLYJm5EPA448/zvT0NBMTE7TbbcB3h6ytrdFqtXjwwQcBOHHiBLFYTDLiXq+H4zh0Oh0ymQzg+793d3e57bbbADhz5gwPPPAAq6urcuxQKCQ/G4/48ePHWV5e5pvf/CYAb3rTm8hmswN3AI1GQ55vzrFer5NMJsW1sre3RzQapdfriSWx3+8PuFl+8zd/80Z8jYoydKj98HXAysoKANVqFbhWJAS/2BiPx1lfX5cgubi4yJUrV0TrzufzOI7D2bNnpdgYj8exLEs08omJCeniNEVT13UplUpkMhkpgDabTTKZDA899BDgFzIbjQaJRIJKpSLv993vfldkm9tvv50nnniCTqcjGnksFqPb7WLbNl/+8pfl/X72Z39WLgiKovxwaEb+GuRTn/oUx44d4/jx44AfNPf399na2pIuzv39faanp1laWpLAOT09zcmTJ6Ug+uyzz3L48GFWV1fZ29uT50xOToo/fGdnh6mpKYrFohz70qVLpNNpWq2WZM25XI61tTXS6TTgZ+2VSoVgMDhQJG02m9IQZHzm5XJZLhymSWh7e1sCdywW40/+5E84ceLEDfxWFWX40Ix8CPn4xz8OwNvf/nZarRbNZhPwi4iTk5P0+33ppgwGg+zt7dHv9yW4Pvfcc2SzWS5cuADAsWPHiMfjOI7DxMQE4Df7xONxCbZHjx5la2uLO++8U2a0WJaF4zhiNQQ/kw8GgyLRpFIpCoUCoVCIXq8H+BbFQqEgss3p06cZGxujXC7LcyzLolgscvvtt7O+vg74naGNRoPf/u3fBtAWfkX5IdF7WUVRlCFHpZXXAJFIhGPHjvGZz3wG8GekXLhwQax+V65cIZVKkUqlBuyAe3t7Aw1A09PTFAoFkVr29vaYnJzEtm3J0h3HIZ/Pi2TSaDQk+zZt/E888QSHDh2i0WjIsaLRKJcuXRKtOxQKkclksG1bCpx7e3u4rivHLpVKbG1tkUql5HW1Wg3z/zmj93c6HaLRqBRYE4kEwWCQhx9++Pp/2YoyRKi0MiREo1H+w3/4D9xzzz0S4AKBAPfff78UGqempojH42xtbUnwKxQK3H333di2LcVO061p5JeJiQlqtRrRaFR08+XlZSqVioynNU076XSa5eVlABlVa7zqcK1Iaf4NkCBuAnkoFMJ1XTnHarVKJpMZcLJEo1H53UhCRkYyOno6nZYCr6IoL44G8pvM2NgYH/vYxzhx4oToyPV6nY2NDclip6amKBQKTE1NDRQWQ6EQ/X5fdOtGo0EoFJJg22636XQ65PN59vf3AT9rL5VKcpxwOEwikSASiUhHaL/fp9Vq0e12xe1iXCv5fB7ws+itrS1CoZDYHSORCMlkku985zuA76JZWVlhenpaiqsm+08mkzKRMZvNkkwm5TnhcHigpV9RlB+MSis3md/8zd/kXe96F7VaTYKk6YQcGRkBrs0Mz+Vykn1PTEywsrJCIpGQouTs7CyBQEBa33d3d4lEInS7XSlAPvXUU9x9993ynFqtxsjICMViUd6v0+lQrVYHjp1IJFhdXZVgH4vFiMfjrK6uSgZeKpVk/C3A0tISIyMjNJtNGX9r5q4UCgXpNp2bm2N9fV0ydcdxCAQCOI4jF6l//s//+fX/8hXlNY52diqKotwiqLRyk/iv//W/Av5SiNHRUcLhsOjWRiIxGbL5t8uXL4tssr6+zujoKJ1OhytXrgCIFdBk9pOTk+zv75PNZsXqNz09LT8DjIyMsLGxQT6fl8zatm0ikQjxeFyy63a7TSaTER270+ngui7j4+NsbW0B/rTFaDQqksnU1BTdbpd4PC7Hzmaz8rqDRVnzvgCZTIZqtSobkBRF+cGotHKTMU0w6XRaNHLwg7cJ0K7rEolEaLfbJBIJwG/QuXjxItPT0xIAO50OuVyOU6dOAf4quE6nQ7lc5ujRowCij5tCo+u6pFIpzp07Jwsh4vE47Xaber0ugbvb7VIoFJiengZ8J83Y2NiAJLS2tkahUBCJxLZt6vU6ExMT4ol3XZder0c6nRZNPBAIMDMzw/nz5+X9q9Uq8/PzopWrtKLciqi08hrm937v9+TncDgsAbxcLksbfq/XI5FIiBWvUqlg2zaNRoNGo8Hq6iqBQIDV1VV53unTp9nZ2WFycpLJyUkcx2F7e5vR0VF2dnbY2dnBdV2SySTLy8viUjEr3SqVCpVKhUgkQjAYpFarybFGR0exLIt+v0+/3ycUCrG6ukqz2eTs2bMyBsCse6tWq+zt7RGLxajX64yOjjI6OkoikSAWi7G1tUUulyOXy5FMJrly5QrZbJZsNkuz2WR+fp7z588PuGIURfn+aCBXFEUZclRauUk8/fTTgC9/9Pt91tfXcRwH8F0btm2LhzsYDJLL5QgGg9LYMzIyItMQjQRj2zbz8/MUi0UA2ZfZ6XSkSSeTydBoNESPd12XcrlMIBCQNv5oNDqw+Qd8KWdra0tcJLu7u3S7XVqtlsxDb7VaTE5Oip99b2+Pvb09ZmZmSCaTgG9jjMVitNtt0fsjkQilUkkcMvl8nkAgQCgUEunp3//7f3+dvnlFGR50scRrDBPIfud3fofjx49L8S+TyRAMBnEcRySEK1euMDc3JxbBarXK4uIitVpNnlOr1QgGgyQSCQmc0WiUbDYrunKr1ZLAbS4SyWSS5557TrRu13VFvzaB1FxIgsGgBFtjezQFyn6/Ty6X48KFC+IjN6vdzHq48fFxgsEg5XJZgr3jOCLPxGIxwB/cNTY2xs7ODuBfuObm5mi1WjITJh6PMzc3xz333HN9/iCKMgRoIH8N8+yzz0qxsd1uc/78eUZGRqRoOT4+TiwW4/Tp04DvRkmlUhI8AdGObdvm+eefB+DQoUMD7zM6OkogEKBarUogbzQaJJNJydpbrRYzMzN4nidjczOZDO12m1wuJw6XdDpNOp3mueeeA/xmn83NzYF2/2azSaFQkM/hui6u69Jut6VoWiwWSaVSuK4rnnSj/Zu7gNHRUbkDMXcO4+Pj0p2qKLcK2qL/GuO//bf/BsCv//qvA9fa6NPpNIuLi+LwAL9rs1KpyO7L5eVlwuEwi4uLkhlvbW1x9OhRut2uBPBarUa73ebw4cMAYk3M5XIi05w6dYof+7EfG2i+2d/fx3Vdme0Sj8c5e/YsyWRyoF0/Go1KRm7siqurq3JRunjxIvPz8wPFSbP6zXy2RCIhrfzms3Q6HY4ePSq/JxIJsV4aK6OZ9WKcLpqZK8o1tNipKIoy5Ki08ipz5coVGo2GaMbb29s0m02mp6el+SUej7O/vy/LkDudDqlUSrzkcM3/7bquNNR0u10mJydFokgkEpRKJYLBoMgdgUCAQCAgvxeLRcbHx4lGoyJjgJ8JO44jmfzU1BSdTkfkl0OHDrG9vU2hUBBNvtfrid4NvvbteR6u60rWfurUKfL5PMFgUOoG0WiUYrEodYPFxUXm5+cplUryWQ4fPszY2JgUZBXlVkClldcQv/Ebv8F73vMewN/sc3Cl2djYmGjdpmiYTqclcIIfEAuFAolEQp5jgnQ2m5UgubGxMTDGtt/vSwOROZZ53ATfer1OLBYjHA6Ljr66uko0Gh1wzoyPj7OzsyOFVTPDpV6vy4XEFFqNHm4cKqFQSCSRBx98kPX19QEpaXt7G8dxZENRv9+nVqsxOzsrEyH39vZIJBI8+eSTchxFUXw0kN9gpqenOX78uEwy7HQ6hMNhsfEtLy8zOTlJt9uVYLuxsUEikZCOSRMQa7WauE1OnTpFLpcbcKQcOXJEBmUdPA4ggdtk+eaCMDU1xdbWFo7jSCHVtm1xrpjHzDRGo6Ob1+zt7ZHNZgG/cGu2/YA/WKtarTIyMjKgo5uO04N3ACMjI5LtP/DAAwQCATY2NpibmwOQC4Hhueee0+KnolxFNXJFUZQhRzPyG8zGxoZk33DNo/3ss88CsLCwgOd5YrcDP2uv1+uimcdiMXK5HI7jyLKJbDaL4zgUCgU5/unTp7n33nsle83lcuIHN5700dFRLly4IJl6JBLBcRyy2ay8n1n2XK1WGR8fB3xNfmdnR7zmtm0zMjJCpVIRbRt8qchILeauotVqyTz022+/HfA1eONSCYfDdDodcaqcOXOGBx98kEAgIOMLzPdjagQqrSjKNTSQvwrcdtttootvbm6Sy+Uk+BqJwXVdmdndarVIp9Py+/b2tkwpNLpyJBKhXC4PNA5ls1nOnz8vwS6bzWLbNqlUSuaqBAIBIpGIWBsvXLggvnFzjo1Gg3Q6zebmplxcYrEYzWaTu+++G/CnLzabTWZnZyUgt1ot2VwEfkA2a9wOWg1DoRDr6+syI71UKmHb9kD3aafTkQsV+I1IB6cvqlauKNfQQH4DMMFvfn6e3/3d36VQKEjWOjc3J0OpwM9sXdclGAxK9hkOh0mn09JxOTs7y+XLl9nf35cJhZVKhV6vx+XLl7nzzjsB3xFjukQBcbW0223RtsEfb2sCeyaTkQKs0bZnZmZk0qLJwE0z0sWLFwFf0+52u5w4cUIyaTNq1wTtZrPJ7bffTrfb5Y477gDg+eef581vfjPRaFTuCjzPIxQKiY7faDQIBoNsbW3JsR3HkQsU+MVX05ykKLc6aj+8wZw4cWJgT6Vt29RqNcnIw+EwpVKJRCIhgXt0dHRg6l8ikcCyLNkcBNeKf4lEQtwezzzzDOl0WoqdpoFnb29P2uYfeughLMuSkbGhUIhQKEQgEJDsNxKJcOrUKY4ePSpSztzcHOfOnZPCZrFYpFarDUxvbLVahMNhyezNHQUgF5JkMsne3h6RSEQKr/1+n06nIxe7RCJBOp0mGo3KxWViYoJAIMDZs2cB/0KixU7l9Y6OsVUURblFUGnlBpPL5Th41+O6LouLi1y6dAnwfdzz8/OUy2WRMcx0QiNRNBoNkSGMR7zb7TI+Po5t25I133333bTbbVks8eY3v1na4c1iiV6vJ638AEePHuXUqVMyJgD8zP7++++nXC5Ltr26ukq1WhVfuWVZLC4ucvLkSTmnkZERdnd3xWr4yCOP8HM/93OMjo7KncTc3BzpdJpWqyXHDgQCjI2NyTltbGwQi8VwHEcsmK1WSyyYwIDMoii3Oiqt3ACMZv3pT3+ao0ePUiwWRZLwPI/NzU2Z/JdMJgmFQiQSCTY2NgC/kDg5OSnBqtFoEIlEBuavVCoV1tbWmJ6ellkr3W5XNtuDL2eEw2FWV1dl1O3s7Cyjo6PSMZlKpQiHw5w8eVKkjnq9zqFDh1heXpYA3Ov1BjpLe72edIgeHInruq7o+FtbW6RSKZLJpKyDW1hYkCmNprvV8zwajQaBQABALlommJvP0mq1RBJKJBIUi0V+8id/8pX/wRTlNcp1k1Ysy/qcZVk7lmU9d+CxnGVZ/9uyrPNX/5u9+rhlWdbvWpZ1wbKsZy3Luv/lf4Th5fTp0zK50Kw6M9t/jBtjfHxcrH31el2COCBNOI7j4DgOY2NjBAIBJicnyWQyMpp2fn4ex3GwLAvLstjY2GB8fJx4PE48Hufpp5+WKYdm+w7A1772NcLhsPxvZWUF27bxPA/P87BtmwsXLnD+/Hm63S7dbpdGoyEWQvB17bGxMVlDF4lEyGaz/Omf/qnMIR8ZGaFcLsuOTtMduru7O7DWDq4NCqtUKrTbbZLJJBMTE0SjUaLRqNzVlEolSqUSOzs7GsQV5SovmpFblvUWoAb8sed5d1197LeBkud5n7As6z8BWc/z/qNlWe8A/m/gHcCPAL/jed6PvOhJvI4y8mQyyWc/+1kA3vrWt9Ltdun1elLIK5fLpNNpKSwmEgni8fjAYol8Ps/W1pZk32tra7KIYWZmBvB92K7r0mq1xAGztrZGKpWSTHdhYYFAIMDu7q5IIsYhYgJ8MBgkGAySzWYlS3cch3PnzrG/vy8F11AoRL/fl+zbtN4D0n25srJCv9+XoNtsNsnn8xSLRbkDsW2bfr9PJBKRIm0kEsF1XSls5vN5bNtmbm5O5rF0Oh263e5Akfatb33rdfiLKcprl+uWkXue9/dA6Xse/mng0as/Pwq868Djf+z5fBvIWJY1+dJOWVEURXk5vCSN3LKsBeCrBzLyfc/zMgf+fc/zvKxlWV8FPuF53jevPv43wH/0PO+pFzn+6yYjP8g3vvENxsfH2d7eFh91qVQSCx74m3emp6dlwTJcmyI4OzsL+AOj5ubmaDabsujBaNvb29tSEJybm+PixYvir56bm+O+++4T7Rquzfc2nu1Op8Pzzz8/0MW5sbFBq9Vid3dXnmeKpka/brVauK6L53ki2Zg1b+Y9IpEIvV5PLJDgZ+Tj4+M0Gg15v2g0SiQSkdfFYjEsy2JqakqmHfZ6Pba3t0WySqVSeJ7HO9/5zuvzx1KU1yA3a/rh93vT7xukLct6GHj4Or//TSWZTDI1NcUf/uEfAn5gM24LE0gbjQa7u7sSxCYnJ0kkEtRqNZFfRkdHaTab8vv6+jpXrlzhjW98o8gZ/X6fvb095ufnRVNfWVmhXC5Lx+T8/LxsEDKNNXNzcwNulLW1NRzHIRKJyKq1VqtFqVQilUqJbFOv15mampKLTbfbFYnk93//9wE/2L/3ve+V78N1XbLZLPV6XbYBFYtFNjc3BwJ3Op1mfX2d++/3SyqVSoXt7W0qlYp8T61Wi4mJCSm+1mo1fu7nfu4V/80U5fXAy83IzwFv8zxv66p08nee5x21LOv/vfrzn37v817k+K+rjNzoz5VKBc/zuHLlilj0TMA2QdrM7nZdV5wdxmZn/s1o0wdXptm2TTgcZmNjQwJ3pVLBcRzJond2drBtW44D17JtEyCDwSCbm5ukUinOnDkD+CMB/uzP/owPfehDMhKg1WqRTCZlHgv4ersZwQt+QDbBHRjYt2kCuWlMOjjK9/bbbx+waMbjcZnPbrL9RCJBoVCQ76hUKsm+0fe///0/1N9HUYaFG90Q9Djwvqs/vw/48oHH/4+r7pWHgPKLBXFFURTllfFSXCt/CrwNyAPbwG8AjwH/C5gDLgPv8TyvZPl2iUeAfwE0gP/zxfTxq+/xusrIjZVwb28P27aZmJgQ2cJxHLEggp81b2xs0Ol0pAFoZGSE6elpadnvdDrcfffd1Go1yWQLhQLtdpt+vy9Ds4ymbl4H1+Qd4xEPhUJ4niea9f7+Pp1Oh3a7LY1F3W6Xdrs9oH//3u/9Hh/+8IflvYw04ziOyEb1ep1MJiM6+iOPPMIv/dIvUSwWxSMejUapVqs8+uijfOQjHwH8u5KDrf61Wo3JyUny+bxk96FQiFKpJOddKBT4mZ/5mVfyZ1KU1zwvNSPXhqAbwN/8zd8A/jq0arUqi4vBlwharZYEO/Bli42NDdGfU6kU6XRaNOTp6Wl6vR6FQkE063A4zP7+PrlcjnPnzgG+tj41NSUBudfrYds22WxWgm06neby5ctiGaxWqzz11FMsLi7KcZrNJqFQiFarJfJINBqV4A7X5J9gMCifLRAIyIUCrq2eW19fF/thNBoVqcgsyeh0OiwuLsp7gT8AbGJi4gUTEs05mo1LivJ6Rle93QQOHTrEf/7P/1lmbne7XcbGxvA8T7Jk01RjMs12u43jOMzMzAzM+q7VauIZt22bcrnM+Pi4HKfRaNBut2VNGvjjcre3tyVrz+fz5PN5Tp8+LZp4uVxmcXFRphiWSiUmJyeJxWKS0Z88eRLws2DzOqPtmwtQIpEQf7w572g0KvPWwb8jMc095gK0u7tLMBjEsiypJeTzefb392X87T/+4z+SyWSwbVu+r1Qq9YILoKIoPpqRX2e+9rWvSYu+KQYaWQH8bNfMIgE/Gy2Xy4TDYclau90u1WpVMlbP8zh79iyHDx+W11UqFcLhMOfPn5c5KleuXKFWq3HfffcB/uzz+fl5qtWqNPYYC6Fp2V9bW5N54eY82+02+/v7zM/PS7ANh8OUy2Vx5Pz8z/886XRaGozAlzsikYgE/1AoJJ/VNEBNTk5y9uxZ4vG4XMzMZzcyTigUYmeidUT1AAAgAElEQVRnh1wuJ4Xa/f19dnd35aLxzDPP8OUvf1kuOoryekSnHyqKotwiaEZ+HTl+/Dif+cxnRKIwc8gdxxH9OxgMkslkBtajtVotQqGQaNtmq71Z/nDs2DFZ/GCKpmaBc7VaFR/51tYW09PTA1qzmYliHmu323Iu4Fsl2+02Y2Njsn6u2WwSCARotVpim4zFYuzu7or88cwzzxAKhSRDBt82GAwGJQuvVqvMz8/T7/el/T8QCMhqN1M4veeee6hUKnJHYNs2sVhMNiWBXxA9ffo07373u1/230dRhg3VyF9lstksoVCI48ePi9cZfOnk4NKEWCxGpVIRzTgSiUiwNxJFOBzGdV2RFaLRKMvLy0xOTorcsre3R7VaZWtrSyYSZjKZgbkumUxGtO2DF2zHcQaWOAQCAZ555hnR2sG/4DSbTdG7q9Uq+Xx+wH0zMzNDtVqVFW3mcxkfe7vd5qmnniKVSsncmHq9Trlcpt/vSw2g0+mQyWREanEch5MnT3L48GHxn6+urlKr1Th+/DiAeN4VRdFAft0wE/9OnDghQ6t6vR7j4+Ps7+9L4F5dXWVxcVGy4nA4TKvVolqtytCobrdLPp+XgHjhwgVyuRwnT56UHZWlUolQKMShQ4ck2F6+fJmRkRG+9a1vAfATP/ETpFIpKpWKBFtzkTjYxNNoNJiZmZHs98qVK6yurtJqteQikU6nZSk0+MG3VqvJpiK4Nq3RvFc+n8eyLDzPY2VlRZ43NzfH5cuXpbnItm1s25ZAbj6H2SQE/oVkZWVFNHtFUa6hGrmiKMqQoxr5deSzn/0sDz30kPxutOBisShOjn6/P5C1tlotyuXyQOv7G97wBiKRCCdOnAB8+WVycpJoNCp2PDN+ttFoSJPM4uIijUZDjj0+Pi5Dtoxt0bZt5ufnRX8fHx/n7NmzjI2NibPkO9/5DtPT07Tbbbm7cByH9fV1kX9arRaTk5NUq1WZ49Lv91lfXxddfXFxkWq1SiaTkWNXq1UZ42v2ltbrdRYWFmTHZ6fTIR6P0+l0ZIztiRMn+KVf+qVX9gdSlCFDG4JuEktLSyIHWJbFxYsXueuuu8S3HY1GJQCCP2hrd3dXJhiCb78z9kJAvNhm+QIgm3ieffbZgYFUi4uLEnyLxSK5XI5GoyGaeCQSwXEcKT6ura3RaDQGZp8Y+cI0BpnzrtVqEqQvXLggmrwJtrZtU6/XRSKKxWLk83lisZhIMPPz8xQKBdbX1zly5AjgF0APXsjMnPLp6WmeeeYZAC5evMinP/3pgQUcivJ6RwP5TeAP/uAPOHz4sBQWTfFwZmZGujRt26bT6Yge3e12qdVqFItFCYiJRIJsNjvgCHn++ec5cuSIXBDuv/9+dnZ2KBQK0tp+9OhR8ZKDHwiTySR/+Zd/yVve8hbAd5bs7+/LcYLBIJOTk5w7d07uGra2tlhfX6fVaom3e39/n3w+L2MEgsEgIyMjrK2tDbTRm8UR4F80+v0+hUKBBx54APD95Ol0mkAgIOdtuj2NiyWZTNJsNpmZmZELV6FQ4H3vM+N9FOXWQAP5TWJ9fV0C8MbGBqlUSkbOgt9GPzIyIlnzzs4OyWSSM2fO8IY3vAHwg+bo6Ki01S8tLbG4uMiJEyeka7RUKokcYuyHBtNY1Gw2icViYuUDRI452MRjNgGZrknXddnc3KTX60l2biyS5uJknDbdbneguNvtduVC1m63OXr0KOVyWT6/af5JJpMipSQSCba2tgZW3HU6HZnLAv7OTjPmVlFuFbQhSFEU5RZBM/LrzDe+8Q0ZSGWmDMZiMdGWNzc3CQaDkiHncjnW19e57bbbRKe2LItoNCqFymg0KsOpjLQxPz/P+vo6uVxO2u0PLoIAP2vu9/vkcjmRLUZHRwkGgzIXfHl5maNHj9LtdqXdPR6Py2ArkxHPzc3R7XY5e/Ys4MtFOzs7jI2NybHT6TSWZYllsdlsygIJM1hrcnKSWq1GIpGQu4Jqtcob3/hGnn/+efkc09PTA3c33W6Xf/Wv/tV1+RspyrCgDUE3Cdd1B7TfdDotnYqAdHVOTU0Bvq4cDodpNpsDQbjX60kRs16vEwqFiEajIj8sLy/T6XQIh8PSSXr27FmOHz/OE088AfgaeTgcJhgMiv5ufOBmhVo6nSYWi7G0tCQXoKWlJWZmZpiZmZEgPTMzw6lTp0RaabfbTExMUC6XpSMzk8nQbrelsGlZFsFgkNtuu002+5j5K/l8Xp5n2zYXL14UbX1/f5+1tbWBIunDD7+ulkkpynVFA/l15Pjx4wO7N40ebFnWQHCv1WpixzPOlN3d3YFi5+XLlxkdHQX84uM999wDXJsDboJ+v9+Xx4z2boZomTuBgw6YCxcuiCvEvN5sqDc2wiNHjhCJRHjmmWfkWPV6nVQqJXcNjuOQSCRwHEesjI7j0Ov1WFhYAHz93XSimtb+vb09crkcly5dGrAb1mo1OUfHcVhYWOBb3/oWH//4xwF/sqMp0CqKMogG8uuIZVmUSiVxpAQCAZ588knuuOMOKVya4P71r38dgDe/+c0Eg8GBOd6O49BqtaTQODIyQrPZZHNzU9raV1dXOXToEDs7O+IsGRkZoVarDfi6zUxxE4DvuOMO6bYEX0ZpNpssLCwMjNYtlUocP35cpI1Go8H09LQE7UAggOu67O/vS5E0FovhOI6MKLj33ntZXV0lk8lIkI5EIjKywMg2ZpSvkZvAvysw3auABnFF+QFosVNRFGXI0Yz8OmL0buPjbjQazM3N0e/3uXTpEuBLDJ7nycyUUChEu92m0WhIU5CZBW7kk62tLcLhsExThGvLiFOplBQ7e70eiURC3mt2dhbXdQkGgyK/NJtNyuWy3DUYuSQWi0kjz/T0tCyIMHr7zMwMnU5HNPpCocC9995LvV4XbXt3d5dKpSLnWCwW6XQ6TE5OSgNSt9ulUCgwPj4uEtTs7Cz9fl/uJKampvjOd77DRz/60ev551GU1y3qWrkBfPOb3wSQTfBGVgDfSdLr9SQglkol8XsbGcN1XcLhsATIcDhMPp8fWNFmdO9EIiGyTSAQoNPpiGd7dnaWbrdLq9UaWPVmVsuBf0GYmpri0qVLEtwbjYYUVk+fPi3HKhQKIvfcdttt7OzsDCyEMNMPzTjeVCpFt9slEAhI0bTZbPKWt7xlYLiY+V5MIXV1dZVqtconP/lJ7eRUbmnUtXITeOyxx3jXu94lme3q6irBYJDDhw9L9mmyWmMj7Pf7xGIxIpGIuD/S6TTNZlMCebvdJhKJkMvlJNs3TTNnzpyR4mIqlWJ5eVk6NE1r/oULF8Ql0+v12N7elgtCr9ej0+kwMTEhjpZMJsPm5ubAqrd+vy9zYsxzSqUSsVhMCrfj4+Osra0NFETT6TTLy8syfrbRaNDtdonH4wMjcrvdrlzIRkZGKJfLotkrivKDUY1cURRlyFFp5TrzpS99SbLmiYkJjhw5wpkzZ8TrvbGxIbO2wZ/ZHYlEsG17wNmyvb0tUkexWOS+++5jY2NDMvtMJkOj0WBhYUE08mAwSK1Wk8w+l8sRCARkMQUgyypMtm/sif1+X5p2IpEI58+fl4XH5nmpVEpkIiPtmOmNgDhMTGady+Vot9vs7u7KvtFQKMTu7q5YHsGvCRz8vV6v84lPfEL3cSq3PCqt3CQajYYMd/rqV78q0w5NQJyenpYRtODb6o4ePUqxWBQpod/vk81mB4ZPra2tMTc3NxC0k8kk9XpdioRLS0sEg0GRP8rlMr1ej2w2KzJGIpHAsqyBZhzbtnEcRzoyXdcllUpJQxMgXaXmOZFIBNd1yeVyA81GkUhEbIXGohgKheS8a7UaY2NjIh+BH/iDwaB4zb93doyiKD8YzchvMN/+9rdpt9vSpVkqlWTYFPj6d7PZJBwODwyRymaznD9/HvADW6VSGShIzszMEAwG6ff78tjKyoqMAgBkU73ZQA/XLhLmNeAH3EAgIMVHy7JkR6gpNi4uLg7s6Dw4l9zcAUQiEXq9nhzHNPrU63UJ2lNTUyQSCZ5//nk5Vr/fJ5FIiG6/vr4+MNddUW5VdPrha4hvf/vbrK2tAfCjP/qjnDlzRlrkbdsmHA6zsbEx4FKpVCoixxgXSTQalaURu7u70gBkZIter8fzzz8vLpJWq0Umk2FkZGRAxjDzTgC2t7ep1+vEYrGBeSie59Fut6UAamyK5s7CFDAPLlY2dkeT/VcqFSKRiCzYAP+isbm5ObDrc3JykkajId/JV77yFX7lV37lOv8VFGX40OmHiqIotwiakd9gvvCFL3D48GGRPPb390VnBl+OSCQSsoAB4NixYzQaDfFe1+t1JicnZSkF+PJLp9MhkUgMyDRf+tKX+MAHPiDvZZqMzLTDaDRKKpUSi2Q0GsXzPJrNpmTb2WwWy7KkCAt+wXV0dHRgrrjxrZtjm41A5hyDwaBk8UY2KhaLTE9Ps729LYVT07R07Nix6/jNK8rwo9LKa4ynn34a8DfUJxIJGYi1vb3N+Pg4Kysr8tj+/r4MoALfV24Ct9nZaYqRRoYxjI+Pix7darXodDpkMhmRUsCXc4z8Ui6XRdYwx04mk6ytrZHP56VL9MiRI1y6dEn2bJpmH7PeDXxNPhaLiYw0OTkpiy/MxSYcDvPcc89J0dN8J29605tkrds73/nO6/StK8pwo66V1ximIzIUClGtViXbHh8f5+TJk8zMzEhA7HQ6hEIhcbbUajV2dnZkSJah0WgMFCnN9h+jWScSiYEGIkDmhZvHS6US09PTuK4rWbrjOORyOVn6DH7mPjExMbBpqNvtyjo3QIK4aT7q9/tMTk6yt7cnz9nY2OCJJ56QaY7gz1Y3r1EU5YdHM/JXmb/6q7/Cdd0BqyEgcgT4maxZkgz+gmTjPZ+fnwf8Yqdxjhy0G6bTaQnSxgmztrYmo2t7vR6FQkEyctPCbyyMBsuy2N/flwy82+3S7/flYjMyMiIecnOsarVKNpsVF8v+/j7ZbJa9vT25AJgphuPj41KkNd2jiqIMosVORVGUWwSVVl4lHnvsMcBvCCoWiwOdnb1ej3q9Lpl1t9ul0WiIHGPmnExOTopuDn7mfvbsWSlIRiIRCoWCyBSlUomRkRFSqZT4wScmJl6wZs1o4ibb397eJhgMDnRy7u/vMz4+Lu9fr9fpdDrYti3699ra2sDqt1arxYkTJ8hms5w7dw7w7wgymQx33nmnZPKKorwyVFq5CTz99NNSkJybm+PSpUs0Gg3RxE3wPNi0s7q6ypEjR0SKMXLIxsaGFA0PHgP8C8DY2BhLS0sSgLPZLIlEQvTwVCrF2bNniUQi3HHHHQDs7OwQj8cJhUKiv29sbJDJZKSLMxgM0ul0iEQiIpuEQiEajYYsrTh//jzT09PUajUJ9oFAgDvuuINAICCfxcg3iqIMoq6V1zBPPPGEBN9Wq4Vt2/T7fXGNdLtd5ufnRWs2a9/6/b6MiD106BArKysD425nZ2dldgr4ATmVSpFIJKRF/tChQ6KLg3/RMHq9Cdqrq6vUajWOHTsmmrjR9U3TkJlWaDR38J0tFy5ckBb7g2vtzM7ShYUFRkZG5E5AUZR/GtXIFUVRbhFUI78J9Hq9gS06Ris2Lfmrq6u4rjuwVKHf79NsNqXBJxgMitRhMvm9vT0ajYZMOszlcgSDQa5cuSKZvGmXN1n84uIirVZrQCLJZrMytMvcFXQ6HcrlsmTttm3jeR4bGxviPul0OszPz4tsY9u2NEAZu6F5vWbjinL9UGnlVeZ//I//wejoqMwVGR8fx/M82RQEvh+73+8PeMDT6TTBYJClpSUA7rzzTr773e9y9913i2xiRtsajT0ajRKPx2m32zIit1arkU6nRTM3wbvVaokkEggE2N3dlQ1E4AfpdDotgbjZbIpGbo7daDRIpVIDOv3p06eJx+PcdtttAC+wOSqK8k+jDUGvUd773vfy+OOPSxfn2bNnCQQCA1l6t9slk8lI0dA4WGKxmATg5eVlaYE/uOotmUzK1MSpqSmWlpYGGoMWFhZYXl6WjDgajZJMJkkkEmxtbQH+ZEXbtolEIhK4G40GrutKAdbMFR8bG5MLhymOGk+8KciaAV+KotwYNJDfBJrNpkgdtm2TSCRwHEdse+12m0OHDknzTLvdlizdSCum9f7ZZ5+VrPny5cvMz88PyB/5fJ6ZmRkuXLgA+LKJCcrmOfV6fWC0bblcJhqN0uv1RFoZGRnB87yB5RepVIpQKCQXnINLL8C3MV6+fBnLssRKqQFdUa4/WuxUFEUZclQjvwl8/etfF8uf4zjs7e3JkghA5oybYqfjOBw7dox2u83KygoA999/P+12m4sXL4q1z7ZtkUXAz5AbjQa2bUuWbCQR85xGo8Hs7CzVanXg/Z977jlGRkZE7zYSicnIc7kciUSCZrM5sGTCtm2Z9RKLxdjc3KRYLEqTUjqdZnZ2VpuBFOUloBr5a4w/+IM/AOCDH/wg3W53YGPQHXfcwebmpmjNB33hcG1A1cGphevr6/Jc87pOp8P58+cH5IupqSmuXLkysJAiEonI79VqlV6vh+u6otHv7+9j2za5XI7V1VXAl2TMcgnwg7ZZZGEaiVqtFoVCQS4aruvS6/Xo9/s8+eSTAPyzf/bPZP6KBnNFuT5oIH+V+OAHPyg/1+v1gSmCpnBpmm1c1yWfz78gsB58TjQaJRaLsbe3J/s3Z2dnRWcHP7Dv7OxQLBZlamK32+Wee+6RQO55Hqurq+TzeQnSY2NjsqbNzFF/9tlnueeee8Q1MzIyQqfTIZVKyRo5o5ub2ePNZpPFxUXZFATXBnwZ7V1RlFeOauSKoihDjmbkN4HV1VXJrE2rfjAYFB/51tYWhw4dEmfLzMwMxWIR13VFdjH2QcdxJMs1SyaMR73VarGzs8PCwgJf//rXAXjooYdIJBKS7S8tLTE9PS0DsOCaH/zZZ5/l0KFDANxxxx14nsfRo0cBXxJKpVLEYjE573w+j+u6MlfFtm0uX75MNpuVz5LJZAbmkyuK8srRQH4TqFarUsg0FkHHcWSuSSgUolKpiK2wUqnQbrcZGxvjy1/+MgA/9VM/JZKLsfYZDf2gtbDRaLC0tMS9994rj33jG98Y6Kxst9uk0+mBjsxCocB99903MJPF8zzxsVcqFfr9Pp1OR97PcLCJyEhER44cAfwLQDwe57VQZFeU1wsayG8C3W6X6elpwG9ZDwQChMNhGT6VTCYJhUID7fGpVIq1tTXe8Y53AL7+nMlk6Pf7opGPjIxw6dIlCb7NZpOJiQnC4bAEW8dxyOfzUpDs9/sUi0VCoZDcHZgM++A0RdOhaTJpU6yFa9Mag8EgjuMM7OzM5XLUajVpSLJtG8uydOKholxHNJC/ynzqU5/ij//4j7nrrrsAfz55o9Hg1KlTIluYzNwsaTZZsJFMwA+ejuOws7MzsH8zk8mIHTEYDLK/v08wGJRjFQoFIpGIFEVjsRgjIyO0221p6Gk0GuTzeUqlksgttm1L8xL4xdbd3d0BSahWq9FqtQYCu8nczbk3Go2BrB6QgqqiKC8PLXYqiqIMOZqRv0r85V/+JQD/8l/+S/77f//v8vj09DTlcpmFhYWBGSnNZlPkl+3tbZlXbiQSs9ih2+2K3e/kyZPcdtttkunWajWROsxezPX1daampuQ4e3t7ZDIZVldXJZNfX19ncnKSaDQqzT1mEqLR9rPZLN1uV5Yyg+9Rz2QyMo3RdV2KxSLT09MDdwnNZlOKpYqivHI0kL9KHFzRdrD78vz58xLQ5ubmAH8iYigUGpA1AoEA1WpVgvva2hqjo6Oii4Pfbbm3tyfShnnNwYFcY2NjMgHRnFen06HVaklw39zcZGtri3A4LF2byWRSZqsArKys0Ov1aLfbErgnJiYGXDMHfehGN69UKuTzeZm0qCjKK0db9F9lvvCFL5DP58U1Yop+ZocnXNO6TRAsl8tEIpGBbUCtVotUKoXjODz//POAr1tnMhkZa5tKpUgmkwSDQRm2ValUaLVaUiDNZrMEg0GZUw5w6dKlF2wEGhsbG5i0ePbsWSYmJuTfwW+/bzabMtmx3W7TarUGmn88z8NxnAG9X1GU74+26L9G+Tf/5t/w2GOPSdZcqVQIBoOk02nxX4dCIRKJhGTk6XSaXC4nnZrgu082NjbI5/PiLAkGgwOZfDqdZmdnh5mZGcmaL168yPT0tBRITdZ8/vx5caI0m02xI87MzAC+TGIKrOB3kZqRteYuYWlpSeQWQDJ413Wl2BqNRuVcFEW5PmixU1EUZch50YzcsqzPAe8EdjzPu+vqY/8F+LfA7tWn/brnef/f1X/7NeADQA/4Zc/z/uoGnPdQs76+zsLCAuBn0b1eT2x94K9/y+fzIq14nsf29jaVSkW83vv7+7Kh3kgXc3NzlMtlyawbjQZjY2P0+32RcFKp1ECRsd1u0+/3mZ2dFWnlgQceEOuhkXJc1x3o/uz1ekSjUcrlsmTbkUiE6elpkXbS6TR7e3s4jjMgr7iuy87OjtyVqKdcUV4ZL0Va+TzwCPDH3/P4pz3P++TBByzLOg78PHAnMAX8tWVZRzzP66EA8MUvfpFEIiEySr/fx7ZtYrGYdDuabkijR/f7fbrdLu12W7ov+/0+29vbjI6OipTRbrcJBoPS6RmJRKhUKsRiMXG2AAPHbrfbRCIRms2mvG50dJRWq8Xi4qLo75Zlcfz4cWnsiUajlEqlgU7ShYUF1tfX5bNtb2/jui62bctFwkxRBA3ginK9eNFA7nne31uWtfASj/fTwJ95ntcGVizLugA8CHzrZZ/h64xOp8OpU6d429veBvjt+uBv9zFZerVaZXx8XKx/gUBAGneM26Tf78tYWRNId3d3CQQC8pxWqyVzVYyOHggEaLVa4mJxHIdGoyHvYY5jthgZLX13d5dWqyXr4A4dOkQqlWJ0dFTO0zQSGR0/HA4Tj8ep1+syWndra4tUKoXrujI10RRHFUV5ebwSjfzDlmU9a1nW5yzLMoOlp4G1A89Zv/qYoiiKcoN4ua6V3wc+BnhX//sp4P3A97PKfF9roWVZDwMPv8z3Hzo++Ulfher3+xw/flwej0QixGIx1tbWRGu2bZvd3V3xlZdKJfb29sRyCL78UqvVBp7X6XQGhm/Nzc1x7tw54vG4ZP5mfrg5TjAYJJFIEAgEpJEoGAxy5MgRTp06Jb7xbDZLv99nfn4e8McIFItFms2mZO07OzuMj4+Ls8Usi85kMnKciYkJYrGYLJ0wny8cDg/UCRRFeem8JB/5VWnlq6bY+U/929VCJ57n/dbVf/sr4L94nvcDpZVbyUcO8Nhjjw0sWkgmk7iuKwXBSCRCsViUABmNRmk0GiQSCZmRYh5bXFyUIL26ukoikRho4gkGg2xubopF0ARx42Nvt9u4rkupVJILyfj4uIzENf72UCjExMSEyCZmfVw6nWZtbU0+i/Gkgy/jmKBuFkK32205P1M4Bf/iYf6/+E9tDlpaWpIpigCf+9zneP/73//DffmKMkTcUB+5ZVmTnudtXf313cBzV39+HPiflmX9P/jFzsPAky/nPV6vfOlLX2J/f59jx47JYyaIGY26VqvR7Xal+Dg/P0+hUKBYLIrWbLLzYrEoBUjjUDGZbjAYFN3aXDgWFhZYXl6WABuJRAgGg0xOTkqwDQaDbG1tMTo6KsXVubk58byDf2dRKBQolUoD89BLpZI4ayzLotls4nmeFEAPFnVNR+rU1JQ0LH0v5iKVTCZl7RzAX//1X/Orv/qrP+zXryivS16K/fBPgbcBecuy1oHfAN5mWdZ9+LLJKvB/AXied9qyrP8FnAFc4EPqWBmk0WhIez34Ukcmk5GgCL7d8GAbu+u6smjCBPfJyUni8bhMHgQ/kEYiEenaNMHbOFfAD67lcnkg+JqlyeYx13WJx+Ps7u5KRu44DolEQgKrccHMz89LJm9ZFkeOHJHP0Wg0cByHaDQqdxumY9TzPNlJGgqFKJVKA2371WqVZDI5MDf9zjvvlGPv7+/zgQ98gF/5lV95+X8MRXmd8FJcK7/wfR7+ox/w/I8DH38lJ6UoiqK8dLRF/1Uml8uxtLQkSySM7j01NcXTTz8N+Nl2sViUImaj0WB/f3+gkSebzVKtVmVRM/jFzu3tbZExOp0Oa2trA+3+tm0TjUbFfjg+Ps7KygqpVEqyXZMN9/t9uXNwHId+vy9au5lp3mw2BzzqxjcOL9wqBH72bZqMzPO2t7eJRCIDdkQj81y+fBnw5R7XdeUO5Omnn5birKLc6mggf5Uxo2WN93pmZkYmFJogGQ6HGR8fl5kklUpFhlsZaSUYDIp0YoqNo6OjstwB/ItGJBJhdnaWqakpwO/InJ2dHfCeR6NRbNuWIqXneYyOjtJsNkWTb7fbRKNR6drs9/tEIhFCoZAUL41EY2Sc7e1tGo2GnAf4RdpCocDo6KgEdONqMVp/qVSi1+uxsbExIMkcLIgeOnSIRCLBzMwM6+vr1+3voyjDiAbyV5m7776bcDgswffYsWNUq1Xq9bpoxLu7uwOTBzc2Nkin04RCISk+rq2tSRZtWvJ3dnbodrsDVr83vOENBINBKVJ+735NY1c8e/as3BHMz89LZn9w/ycg5+Q4Dpubmy/YWtRsNiUDt22bxcVFIpGInDf4BU/btgeKst1uV/T3drst34UJ3GZcgFniDL6LxVzYFOVWRodmKYqiDDmakb/K1Go13v3ud8vGoO9+97vMzc0RCAREIsjn8+zv70v2u7e3x+jo6MA88mq1SiqVolAoSLbcbrdJp9PceeedwDVftxl4ZTD6M/he72g0yu233y4ZcaPRIBQK0Ww2Bxww2WxWsn3Hcbj33nuxLEtcK+bOwkgruVxORgIYYrEYu7u7otWDn3WbRc3mO2q1WliWJedkxvyaTUeBQICpqSkOHz7Ms88++0r/LIoy1GWgAtcAABkUSURBVGggf5V58MEHgWub523bptFokEqlpLPR6MImaC4sLJBMJmm326Kj1+t1XNclFApJ0e/48eNks9mBZQ8GI1F4nofruhLMu90uly5dolgsSsA1yymMx9y838rKivw+MTEhn8HQ6XRIJBKidRupJR6Pi7RSq9WYnJyk1+sNFGB7vZ48J51OY1kW/X5f3s9IRubYwWCQH/3RHx24SCjKrYoG8puECay9Xk8GYJmAnM1myefzEtAbjQYTExPs7e3Jc4zT5dy5czJsyxQVD/q6zXuYYwUCAQKBgGjfy8vLfPe732V/f18Cc6/X4/7776dQKPD2t78dgDNnznD27FkpmnY6HblgmAuOca+YY9frdfGem3+r1+ty4TpIIBCQaYiFQoFcLjdQ0LVtG9u2peuzWCySTCYl+1eUWxkN5DcJE2y73S4LCwvYti3BzYx9PZg1d7tdWVwMvvxSKBRwHEdsiu12W/Z7gp+1mi5R0+zzvViWxc7ODpZlDdgEje3PnMPMzAxnzpyR9zLnEYlEBs6zXq/L76lUin6/LzZE8KWVRCKBZVnyvE6nM2BLNOfa7/elmJlOpwmHwyL1OI7D+fPn+cVf/EU++MEP/vB/AEV5HaHFTkVRlCFHM/KbwL333it6sG3bXLp0icOHD4v+67ou/X5fZINIJEK1WqVSqYhG/p3vfId0Os3Ro0dFEjGe7oOFTfOYkSiazSb9fl/uCDY3NwkEAszNzUlDjpk7fvjwYZFJkskkb3nLW0ST7vV6sujCZM2micict9HiO52OHCcYDNLpdAZmywSDwYEBWqb5yLZt8bGb78Rk7UZrN41VinIro4H8JnDy5EmRUfb397ly5QrxeHygAHpQChkdHZVJgsZH7TgOb33rW1+gEXe7XZExTIfn8vKy+L2NfPLUU08BvtPkyJEjA7JFMBiUhRMbGxsATE9PD+jY5tyXlpbkvOfm5gbcKNFoFMuyCIfDIve0222q1SqO40hzUS6Xw7Is+T0ej0vDkPl83W6XQCAgkk6hUCCfz/+TkpGi3EpoIL9J/NRP/RQAf/7nfw74FkMTAA8dOiS6OCDFyVqtJlvt77nnnhcc0xROTbBOJBK0221Onz7N3//93wN+09DY2NiAY+QnfuInOHnypGTpU1NTlMtlYrEYy8vLgN9denAbUSwWo91uDzQFua6L4zhS/DTUajX5bL1ej1gsNhDIn3rqKX7kR35EBmRlMhlx15i7i0gkQqvVkmJvNBplaWlJ7iIU5VZGA/lNwgRis7+z1WpJ1rq8vMwdd9wxYONzXZdMJiMjYkOhkCxnMMHVFCyfeeYZwA/S5XKZU6dO8dWvfhWA97znPWSzWT7xiU8A8Iu/+It88YtfpNvtSvFxZWWF48ePD3RpNhoN7rzzTsm+Xdflb//2b+n3+9x1113yWeDa6Nlyuczs7Ky098O10boH57aYJRWmQ/XixYscOnSIZrMpGbkZhXvQ7RKNRuVipyi3MlrsVBRFGXI0I79JmCKd6c6s1Woy+7tWq9HpdMQz3e/3CYVC5HK5AdnCdG2aAmS/3+f06dP83d/9HeBrzYFAgK985Sv863/9r+V1m5ub8ppgMMhnPvMZPvShD0lm7zgOlmXJwgnwdexmsykauVkHd/nyZcnkPc/DsiwprJbLZWZmZhgdHRXZxgzkOngHMjk5SSKRkOw/n8/T7/cH5ph7njegkUejUba3t7l48eJ1+GsoynDzkla93fCTuMVWvcE1GeITn/gE09PTRKNR0X9d16Xb7Yo+7Lou4+Pj/OT/3969hsZ53Xkc/x6NLjO6a3SxdbUtE7sRhLYiBJOG9EVLk6bQZF/s0oWmZlnwvsjSFnYp2QZK6LsN2bxod2npNkvTpTQtpNuGwOKkIWQTSuskpbVjO7IUy7XkiyxppBmNNBdJc/bFM+dkxrFsJZY9ejS/Dwwzfjwzeo5H/j9n/ud/zvnCFz60r2UikfADl6lUimw262vA4YNla126Y8+ePWQyGV9p0tDQQHt7O8vLy2X7cx48eJCVlRWfSnHLA7g9O5uamkilUn7yDnyQNnEDkNlslmg0ysTEhL8AtLa2EolEfH4dgpmri4uLPm2Uz+eJRCKsrKz4C0BXVxf5fN5X+7jHyWSSr371qwB+YFZkp9jsVm8K5NvAm2++yczMjK8aicfjTE5O+t5ofX09w8PD3H///b6364yPj/Pmm28C+DI/17NNpVJ0dnbS2NjoV1tcX1/3u/YAvjqldB2XgYEBotEoe/fuLQuctbW1/nUTExPcc889fgq9ew7gl9+NxWJ+oo+b2Tk+Pk48HqepqclvEu2Ce+nApis/dBc312MvXcM8m82SyWT47Gc/e7Mfgci2tNlArhy5iEjIKZBvA/fddx/5fJ50Ok06nSaTydDT00M+nyefz1MoFGhvby+bNJPP55mbm+PUqVP+ea637Ka/RyIR0um0LwtsbGz0uwlFo1Gi0SiJRILa2loWFhb8hBvXay+dWOQ2nyj9s5ta736e69F3d3fT3d1NLBZjZWWFpqYmrLV+L9K1tTUmJydZW1vzG0a4HnhNTY0vPUwkEjQ1NdHU1OQre9w5xuNx8vm8TxmJVDMNdm4DTz31FPX19X5bNQgGLt2SrbW1tfT392Ot9YOUV65c4ZVXXqGmpsbXY7e1tZVtSFFTU0MikSCZTPrX5XI5IpFI2SbO6XSavr4+X5Pd1dXF6uoqqVTK5+TdSoRuqV23HG02m/XnHYvFWFtb8ymh9fV1fwFy6Z5IJOLXYHF5c7eol7tQlK694n6eMYaBgQGfV6+trWV5edmnZ0SqmQL5NvCtb30LgNdeew0Iqj1aWlrKZmhmMhlWVlZ8rvull15i9+7dZdUtbuVDN9i4vr5OQ0MDe/fu9QOB6XSaX/ziFxw5cgQIgqabRemC9tmzZxkaGirb2m337t2cO3fOD0guLCzQ0dFBoVCgdJwlEomULb61uLhIXV2dr/9ubW31uyG5wL2ysuInA7nzjsVitLe3+xx8fX09ly9f9t8S5ubm/GxQN0irmnKpVgrk28jY2BgAo6OjHDt2zPfIY7EYU1NTjI2Nla0iuLCwUDYA6Nbsdr1tFxDPnz/vZ19ms1kOHz7sJxu5kr7SJQJmZmYYGhoim836n5dOpxkaGvLBcs+ePaRSKaLRKCdOnADwa7OULjWwtrZGPB7375PP58lmszQ0NPjJPi4QuzLG+vp6/w3CXZRyuRzpdLrsQjI3N8f8/LwCuFQ95chFREJOPfJtxK2r/cILL7Br1y4/Qcf1sM+fP+8H92pra/2a5K6363q2rmSwv7+fpqYmpqam/GQjN13e5bFramr8GuLuG8DMzAxjY2MMDAz4jSRmZ2dpbGz0pYUQDHiOj4/7nHw6naa2tta/9zvvvMPo6Ci5XM73tt1KjIVCwfekXQ+9NCWTSCTK1nZpb28nk8n4NWPy+TyZTManlUSqmQL5NvTee+8xPDxctoiVyyO7lEhbW5uv6rh06RIQpCQ6Ojr8bMzp6Wk/G9QFxJqaGvr7+zlz5gwAn/jEJxgfHyebzfqBxc7OTmpra8nlcr62PRqNsrKy4t9nYmKC3bt3+8WsAF9R4i4a+/bt89Um7gLkgnihUPBpErcVnEujzM/P+2oWd8xtPedmxK6urtLc3Mwzzzyz9R+ASMgokG9DTzzxBC+//DIzMzNA0GN1Gyu74J5IJHx+2w0krq2tsbKy4nvNrqccj8f9e0GQX3YBOZvNks1m2b17t598k8lkfNWIe4/m5mYymYyfIj87O0s+n6enp8eXHbo1w93P6uzsZHFxkWQyyYEDB4BggazGxkb/TQCCQF66Jrkrl1xaWvLfCKampuju7vbfPp5//nmfmxepdsqRi4iEnKbob1MHDx7ku9/9LgCDg4NMTk6yurrqe7/ZbJaOjg5fHghBasPt0gNBPjwej1NfX+9TG4lEgsHBQf+ay5cv+xpulyKJRqMsLCzQ2trqK0tcOsT10BcWFhgaGuLSpUs+T93R0cHS0hIPPvggEEzHb29vp7m52fe2c7mcr2pxv3tuXZXS+vfl5eWyUsapqSnGx8d5+umngSD9JLLTbXaKvlIr29TY2JhPPSQSCQYGBnwOG4Ja89nZWerq6nxOenR0lGg06nPkv/vd73wteemqgRcuXPADkqWbPLu0TaFQYGRkhLGxMZ+CgWCikAustbW1zMzMEI1GfWBeWFigra2N48ePA0GO3G0G7S4uLjiXLhLmVkx0g591dXWsrKzQ2dnJyZMnAThz5gw//vGPFcBFrkE98m3s4MGDADz77LMsLy/T1tbmK1gWFxeZnp6mu7vbDxoeOHCAbDbrJ9dcuHCBxsZGEomE75HPzMz4XDYEgf3ixYtl1R+RSIRoNMqVK1f8Il1uBUYX2AuFAmtra9TU1Pif19TURE9Pj59Y1NfXRyKRoLW11VfUrK+v+wuHu19cXKS9vZ1EIuHPyVXeuIlMn/vc59i/f7+WrZWqotUPd5ijR4/S0tLiA9zs7CyFQoH6+nq/forbIs6lQ+bn50mn08TjcT8wmEwmWV5e9oOIFy9eJJfLle3FWSgUSKfTLC0tMTIyAgSDlNlstmxA0k3ccamaQqHAXXfd5YO9m2Tk1lKBIJBPT08zPDzsj7mlB9w3C7eM7eXLl/nSl750i/5FRbY/rX4oIlIllCMPiQceeIBXX33V96Qh6HH39PSwb98+IJgI5PLOgE+Z5PN532tPJpN+M2eAnp4eTp8+TWNjY1kPubGxsayOfG1tjcXFRT/VP5PJ+EFM15tfWlpibm7Olxq6dVHczkEQDGS6uniXgpmcnGRubs7v4VkoFHjjjTfK2iIiG1NqJWSOHj0K4AMtBCkV+KAm3A2SplIpGhsbicViZZOGjh075jd/Xlpa8gtxlW4SkcvlylI5bsDUBelkMukX7HIDoH19fQwMDPiLxurqqq+IKa1QccvXupz41NQUdXV1nD17FoDvf//7fpBTpJqpamWHeuyxxwD44Q9/iDGGbDbre9dra2sMDg5y6tQpIAi+nZ2dtLe3+0DuJta4fHQymSQWi5WVBba0tDA/P09bW5sP0jU1NcRiMR/sU6kUDQ0NLC0t+an9br1wdz719fVcuHCB3t5en1uPRCL+QuPO4c477/QXIxH56NQjD7GXXnqJoaEhH1wzmQwNDQ2+ssWtIV5XV+fTFG+99RZtbW3+Nblcjlwux/r6Om1tbUAQ3HO5HENDQz61kk6naW5u9umSlpYWX5/uKl76+vro6+vzVTTWWtbX16mvr/elhfPz8/zlL3/hk5/8JAMDAwCMjIz4i4+IfECDnSIiVUI98hDr6uriJz/5iZ8AlMlkyOVy/s+pVMqvv3L69Gn/ukKhwP79+4Fgoo3b8i0ejwNBj7y3t5eVlRU/AOpSI6U7/bhevfu74eFh+vr6/CCmqx0vFAo+nXLu3Dnee+89vv71r9+ifxWRnUN15FXo9ddfp1Ao+ADa1dXFhQsXuHz5MleuXAHwMyhdpcni4iKrq6usrq7S2dkJBBcEN93fDXZGo1GWl5f9BKFCocC9997L8ePH/SzRjo4O7rrrLh/gXVXNu+++61dtfOSRR27Tv4ZI+Gmwswq9/vrr3HvvvX4Pzfb2diYnJ2lpafEDi24NbzewmcvlqKurY3Bw0K+1AkHpYjwe98vIFgoFGhoafD58YWGB999/n5aWFj9rtKuri0wm4wc7U6kU586d48tf/vLt+QcQqVLKkYuIhJxSKztMbW1t2UJXR48epbe315cfJhIJv3EyBCWL58+fZ2RkhNnZWSDotUciEXbt2uWrVDKZDLFYzK9QmEwmaWhoKNtEubu7m3w+z6FDh25be0V2MuXIxfv1r3/9oU0c3EJXuVyO6enpspUNIZglOjAwULYBhcu9QzBr0+3s416XTCZ59NFHb1ezRHY8BXLZ0JNPPulruIeGhohEIrS0tPiVBltbW0mlUrS0tPi8uTGGVCrl8++f//znK3PyIlVks4Eca23Fb4DVrbK3/v5+//g73/mOfxyLxWwsFqv4+emmWzXeNhtDNdgpIhJySq2IiGxTmqIvIlIlFMhFREJOgVxEJOQUyEVEQk6BXEQk5BTIRURCToFcRCTkFMhFRELuhoHcGDNojHnNGHPaGHPSGPON4vG4MeYVY8x48b6jeNwYY75njJkwxhw3xoze6kaIiFSzzfTI14B/stbeCRwCHjPGjACPA69aa+8AXi3+GeCLwB3F2xHgB1t+1iIi4t0wkFtrL1lr/1h8vAScBvqBh4Hnik97DnB7eD0M/NQGfg+0G2N6t/zMRUQE+Ig5cmPMXuDTwB+AXdbaSxAEe6Cn+LR+YKrkZdPFYyIicgtses9OY0wz8ALwTWttypgN13K51l98aFEsY8wRgtSLiIjchE31yI0xdQRB/GfW2l8VD8+4lEnx/krx+DQwWPLyAeDi1e9prf2RtfZua+3dH/fkRURkc1UrBngWOG2tfabkr14EDhcfHwZ+U3L8a8XqlUNA0qVgRERk691wPXJjzH3AG8AJoFA8/G2CPPkvgSHgPPDX1tpEMfD/O/AgsAL8nbX27Rv8DK1HLiJyFe3ZKSISctpYQkSkSiiQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyCmQi4iEnAK5iEjIKZCLiIScArmISMgpkIuIhJwCuYhIyN0wkBtjBo0xrxljThtjThpjvlE8/qQx5oIx5k/F20Mlr/kXY8yEMWbMGPPArWyAiEi1M9ba6z/BmF6g11r7R2NMC/AO8AjwN0DaWvv0Vc8fAX4O3AP0Ab8FDlhr16/zM65/EiIiVchaazbzvBv2yK21l6y1fyw+XgJOA/3XecnDwPPW2py1dhKYIAjqIiJyC3ykHLkxZi/waeAPxUP/aIw5boz5L2NMR/FYPzBV8rJprh/4RUTkJmw6kBtjmoEXgG9aa1PAD4D9wKeAS8C/uade4+UfSp0YY44YY942xrz9kc9aRES8TQVyY0wdQRD/mbX2VwDW2hlr7bq1tgD8Jx+kT6aBwZKXDwAXr35Pa+2PrLV3W2vvvpkGiIhUu81UrRjgWeC0tfaZkuO9JU/7K+Dd4uMXga8YYxqMMfuAO4BjW3fKIiJSqnYTz/kM8Chwwhjzp+KxbwN/a4z5FEHa5BzwDwDW2pPGmF8Cp4A14LHrVayIiMjNuWH54W05CZUfioh8yJaVH4qIyPamQC4iEnKbyZHfDnPAcvG+WnVRve2v5raD2l/N7b9e2/ds9k22RY4cwBjzdjWXIlZz+6u57aD2V3P7t6rtSq2IiIScArmISMhtp0D+o0qfQIVVc/urue2g9ldz+7ek7dsmRy4iIh/PduqRi4jIx1DxQG6MebC4k9CEMebxSp/P7WCMOWeMOVHcWent4rG4MeYVY8x48b7jRu8TFsVljq8YY94tOXbN9prA94q/D8eNMaOVO/OtsUH7q2KHrevsMFYVn/9t22HNWluxGxAB3geGgXrgz8BIJc/pNrX7HNB11bGngMeLjx8H/rXS57mF7b0fGAXevVF7gYeA/yVYDvkQ8IdKn/8tav+TwD9f47kjxf8HDcC+4v+PSKXbcBNt7wVGi49bgDPFNlbF53+d9m/p51/pHvk9wIS19qy1Ng88T7DDUDV6GHiu+Pg5gu30dgRr7f8BiasOb9Teh4Gf2sDvgfarVtoMnQ3av5EdtcOW3XiHsar4/K/T/o18rM+/0oG8WncTssDLxph3jDFHisd2WWsvQfDhAz0VO7vbY6P2VtPvRFXtsHXVDmNV9/nfyh3WKh3IN7Wb0A70GWvtKPBF4DFjzP2VPqFtpFp+J25qh62wucYOYxs+9RrHdmL7t/Tzr3Qg39RuQjuNtfZi8f4K8D8EX51m3FfI4v2Vyp3hbbFRe6vid8Le5A5bYXKtHcaoos//VuywdrVKB/K3gDuMMfuMMfXAVwh2GNqxjDFNxpgW9xj4AsHuSi8Ch4tPOwz8pjJneNts1N4Xga8VqxcOAUn3FXwnqZYdtjbaYYwq+fw3av+Wf/7bYFT3IYKR3PeBJyp9PrehvcMEo9J/Bk66NgOdwKvAePE+Xulz3cI2/5zg6+MqQY/j7zdqL8FXy/8o/j6cAO6u9Pnfovb/d7F9x4v/eXtLnv9Esf1jwBcrff432fb7CFIDx4E/FW8PVcvnf532b+nnr5mdIiIhV+nUioiI3CQFchGRkFMgFxEJOQVyEZGQUyAXEQk5BXIRkZBTIBcRCTkFchGRkPt/o/CLhpOSGlcAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAELCAYAAAABYSglAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEzpJREFUeJzt3U+sZGd5JvDnjQ0sAhJ2iK1Ou2dwUEcaZ2OslmMJFJFFgvGmzYLIWQQrQuosQAIpWRhYhOVMFIiEklhqhIUZMXgsAcIaZWbCWEhkw59u5BibHkMnOLjpllsRIyATicTmy+KeS1e375/qe+urOqfq95Ouqu7pU3XfPu56/NyvTlVVay0AACzeL6x6AACAdaVoAQB0omgBAHSiaAEAdKJoAQB0omgBAHTSrWhV1b1V9VxVna+qh3r9HIApkImwmarH+2hV1Q1JvpPkt5NcSPKNJL/XWvv2wn8YwMjJRNhcvVa07k5yvrX2D621f03yWJKTnX4WwNjJRNhQN3a636NJXpj5/kKS39ht56ry9vQwbv/UWvvlVQ8xYdeViYlchLFrrdU8+/UqWjv98KtCo6pOJTnV6ecDi/WPqx5g4vbNxEQuwjrqVbQuJDk28/1tSS7O7tBaO53kdOI3N2Dt7ZuJiVyEddTrHK1vJDleVbdX1auTPJDkiU4/C2DsZCJsqC4rWq21l6rqfUn+d5IbkjzSWnu2x88CGDuZCJury9s7XPcQlshh7M621k6seohNIhdh3OY9Gd47wwMAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdKJoAQB0omgBAHSiaAEAdHLjYW5cVc8n+UmSl5O81Fo7UVU3J/nvSd6Y5Pkkv9ta+3+HGxNgGuQiMGsRK1q/1Vq7s7V2Yvj+oSRPttaOJ3ly+B5gk8hFIEmfpw5PJnl0uP5okvs7/AyAKZGLsKEOW7Rakr+pqrNVdWrYdmtr7VKSDJe37HTDqjpVVWeq6swhZwAYE7kI/NyhztFK8pbW2sWquiXJl6rq/857w9ba6SSnk6Sq2iHnABgLuQj83KFWtFprF4fLy0m+kOTuJC9W1ZEkGS4vH3ZIgKmQi8CsAxetqvrFqnrd9vUkv5PkmSRPJHlw2O3BJF887JAAUyAXgWsd5qnDW5N8oaq27+e/tdb+V1V9I8njVfWeJN9P8q7DjwkwCXIRuEq1tvrTAJyLAKN3duatClgCuQjj1lqrefbzzvAAAJ0oWgAAnShaAACdKFoAAJ0oWgAAnShaAACdKFoAAJ0oWgAAnShaAEzKGN5oG+Z1mI/gAYClUK6YKitaAIzaTiVL8WIqFC0AgE4ULQBGy8oVU6doATBaVbXqEeBQnAwPwKgtsmxdu0KmyNGbFS0ANoKnIVkFRWuNtdYEC0B2L1kykt4UrTU1Gx7bhUugAJtov+yTjfSkaK2hvUJDoACbZN7M88sovShaa2aeoBAmALAcitYaUaAArjhIJspRFk3R2lDCBFhnh8k4+cgieR+tNSAUAGCcrGhtMAUNAPpStCZsEa+SUbaAdbOIXJONLIqiBcDaUJAYG0VrooQJAIyfojVBShYATIOiBcBa8EsoY6RoATB5ShZjpWhNjDABgOnwhqUTomQBXE0uMnZWtCZCmABcTS4yBYrWBAgTgKvJRabCU4cjJ0wArpCJTI0VrRETKABXyESmaN+iVVWPVNXlqnpmZtvNVfWlqvrucHnTsL2q6uNVdb6qnq6qu3oOv84ECoyXXATmNc+K1qeS3HvNtoeSPNlaO57kyeH7JHlHkuPD16kkDy9mTIBR+VTk4lL55ZOp2rdotda+kuSH12w+meTR4fqjSe6f2f7ptuWrSV5fVUcWNeymECgwbnJxuWQiU3bQc7Ruba1dSpLh8pZh+9EkL8zsd2HYBrDu5CLwCot+1WHtsG3HX0Wq6lS2ltGZ4Tc3WDtyETbYQVe0Xtxe+h4uLw/bLyQ5NrPfbUku7nQHrbXTrbUTrbUTB5wBYEzkYgd++WTqDlq0nkjy4HD9wSRfnNn+7uFVNvck+dH2UjrAmpOLa0bJYxH2feqwqj6b5G1J3lBVF5L8SZL/nOTxqnpPku8nedew+18nuS/J+ST/kuQPOsy8tjyoYRrkIjCvGsP/3Ktq9UOMwKr+W1TtdAoJXOWsp7OWSy5uWfX/o+Qju2mtzfWPwzvDAwB0omgBAHSiaAEAdKJoAQB0omiNiJMuAWC9KFoAAJ0oWgAAnShaI7Pspw89XQmwM/nIIihaAIyWssPU7fsRPCzfbLD0fFdkAQZMwXZWLfNd4uUji2JFa+R6PdiFCDA1cospUrQmYNHhIqyAqZJfTI2iNRGLChchBUxd7xyTkyySojUhVXWoABAewLo4bB7CsjgZfoIOcrK8QALW0W7ZdtAT52Uli6ZoTVxVpbV21SXAppOFjIWnDtfAdqAIFgAYF0ULAKATRQsAoBNFCwCgE0ULAKATRQsAoBNFCwCgE0ULAKATRQsAoBNFCwCgE0ULAKATRQsAoBNFCwCgE0ULAKATRQsAoBNFCwCgE0ULAKATRQsAoBNFCwCgE0ULAKCTfYtWVT1SVZer6pmZbR+pqh9U1VPD130zf/bBqjpfVc9V1dt7DQ6wKnIRmNc8K1qfSnLvDtv/vLV25/D110lSVXckeSDJrw+3+auqumFRwwKMxKciF4E57Fu0WmtfSfLDOe/vZJLHWms/ba19L8n5JHcfYj6A0ZGLwLwOc47W+6rq6WEJ/aZh29EkL8zsc2HYBrAJ5CJwlYMWrYeTvCnJnUkuJfnosL122LftdAdVdaqqzlTVmQPOADAmchF4hRsPcqPW2ovb16vqE0n+x/DthSTHZna9LcnFXe7jdJLTw33sGDrrrrWD/7WrdspuYFXkYh8HyUn5yJgcaEWrqo7MfPvOJNuvvHkiyQNV9Zqquj3J8SRfP9yI66e1dqiStaj7ABZHLi7GdrYdJuNkI2Oy74pWVX02yduSvKGqLiT5kyRvq6o7s7X8/XySP0yS1tqzVfV4km8neSnJe1trL/cZfZoWHQCz9+e3OFgOubh4PbJRJjIGNYbmvwlL5Ms6zoKFTs621k6seohNsgm5uK13PspFemitzfUPyzvDL8Eyy+wYijPAPJZ1CoRcZJUUrc5W8QAXKsDYLTun5CKromgBsFRKD5tE0epImABcTS6yaRStTlYdJqv++QDXkktsogO9YSm7EyQAV5OLbDIrWgB0o2Sx6RStBRIoAFfIRFC0FkagAFwhE2GLogUA0ImiBQDQiaK1AJbIAYCdKFoAAJ0oWgBsBM8+sAqKFgBAJ4oWAEAnitYCVNWqRwAYFbkIWxStBREqAFeTi6BoAQB0o2gtUFX5DQ5ghkxk0ylaHQgWgCtkIptM0QKgO2WLTaVodSJUAK4mF9lEilZHQgXgaqvMRZnMKihanXlgA1xNLrJJFK0lWMWrEQUZMGZepc2mULSWaFnBIryAqVhWXslFVuXGVQ+wibYf8Iv+JHlBAkzRbHYtOhevvX9YNkVrhRZRuAQIsE6qaqFlS0ayaorWCFwbBK21XcNGaADr7qArXPKRMVK0Rmg7LIQGsOnkIFPnZHgAgE4ULQCAThQtAIBOFC0AgE4ULQCAThQtAIBO9i1aVXWsqr5cVeeq6tmqev+w/eaq+lJVfXe4vGnYXlX18ao6X1VPV9Vdvf8SAMskF4F5zbOi9VKSP2qt/ack9yR5b1XdkeShJE+21o4neXL4PknekeT48HUqycMLnxpgteQiMJd9i1Zr7VJr7ZvD9Z8kOZfkaJKTSR4ddns0yf3D9ZNJPt22fDXJ66vqyMInB1gRuQjM67rO0aqqNyZ5c5KvJbm1tXYp2QqdJLcMux1N8sLMzS4M2669r1NVdaaqzlz/2ADjIBeBvcz9ETxV9dokn0vygdbaj/f4WISd/uAVH1bVWjud5PRw34v/uHaAzuQisJ+5VrSq6lXZCpPPtNY+P2x+cXvpe7i8PGy/kOTYzM1vS3JxMeMCjINcBOYxz6sOK8knk5xrrX1s5o+eSPLgcP3BJF+c2f7u4VU29yT50fZSOsA6kIvAvKq1vVenq+qtSf42ybeS/GzY/KFsnY/weJL/kOT7Sd7VWvvhEEB/keTeJP+S5A9aa3ueb2CJHEbvbGvtxKqHGAu5CLTWdj1XYNa+RWsZBAqMnqK1ZHIRxm3eouWd4QEAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADpRtAAAOlG0AAA6UbQAADrZt2hV1bGq+nJVnauqZ6vq/cP2j1TVD6rqqeHrvpnbfLCqzlfVc1X19p5/AYBlkonA9ajW2t47VB1JcqS19s2qel2Ss0nuT/K7Sf65tfZn1+x/R5LPJrk7ya8k+T9Jfq219vIeP2PvIYBVO9taO7HqIcZgGZk43E4uwoi11mqe/fZd0WqtXWqtfXO4/pMk55Ic3eMmJ5M81lr7aWvte0nOZytgACZPJgLX47rO0aqqNyZ5c5KvDZveV1VPV9UjVXXTsO1okhdmbnYhe4cQwCTJRGA/cxetqnptks8l+UBr7cdJHk7ypiR3JrmU5KPbu+5w81csgVfVqao6U1VnrntqgBVbdCYO9ykXYc3MVbSq6lXZCpTPtNY+nySttRdbay+31n6W5BO5shR+IcmxmZvfluTitffZWjvdWjvhvA9ganpk4nAfchHWzDyvOqwkn0xyrrX2sZntR2Z2e2eSZ4brTyR5oKpeU1W3Jzme5OuLGxlgdWQicD1unGOftyT5/STfqqqnhm0fSvJ7VXVntpbAn0/yh0nSWnu2qh5P8u0kLyV5736vrgGYEJkIzG3ft3dYyhBexgxj5+0dlkwuwrjN+/YO86xoLcM/Jfn/w+WUvCFmXpYpzj3FmZOd5/6Pqxhkw/1zkudWPcQBTPHfvZmXZ4pzHyoTR7GilSRVdWZqvzGbeXmmOPcUZ06mO/e6mep/hynObeblmeLch53ZZx0CAHSiaAEAdDKmonV61QMcgJmXZ4pzT3HmZLpzr5up/neY4txmXp4pzn2omUdzjhYAwLoZ04oWAMBaWXnRqqp7q+q5qjpfVQ+tep69VNXzVfWtqnpq+7PIqurmqvpSVX13uLxpv/vpPOMjVXW5qp6Z2bbjjLXl48Oxf7qq7hrZ3B+pqh8Mx/upqrpv5s8+OMz9XFW9fUUzH6uqL1fVuap6tqreP2wf7fHeY+ZRH+tNM5VcnEImDjNNLhdl4spnXtyxbq2t7CvJDUn+PsmvJnl1kr9LcscqZ9pn3ueTvOGabX+a5KHh+kNJ/suKZ/zNJHcleWa/GZPcl+R/ZutDb+9J8rWRzf2RJH+8w753DP9WXpPk9uHf0A0rmPlIkruG669L8p1httEe7z1mHvWx3qSvKeXiFDJxmGNyuSgTVz7zwo71qle07k5yvrX2D621f03yWJKTK57pep1M8uhw/dEk969wlrTWvpLkh9ds3m3Gk0k+3bZ8Ncnr6+rPa1uaXebezckkj7XWftpa+16S87nyAb5L01q71Fr75nD9J0nOJTmaER/vPWbezSiO9YaZei6OKhOTaeaiTFz5zLu57mO96qJ1NMkLM99fyN5/wVVrSf6mqs5W1alh262ttUvJ1n+wJLesbLrd7TbjFI7/+4Yl5UdmnoIY3dxV9cYkb07ytUzkeF8zczKRY70BpnTMp5qJyUQepzuYxONUJl6x6qK10+cEjfllkG9prd2V5B1J3ltVv7nqgQ5p7Mf/4SRvSnJnkktJPjpsH9XcVfXaJJ9L8oHW2o/32nWHbSuZe4eZJ3GsN8SUjvm6ZWIy7uM/icepTLzaqovWhSTHZr6/LcnFFc2yr9baxeHycpIvZGu58MXtpc7h8vLqJtzVbjOO+vi31l5srb3cWvtZkk/kyvLsaOauqldl68H5mdba54fNoz7eO808hWO9QSZzzCecicnIH6c7mcLjVCa+0qqL1jeSHK+q26vq1UkeSPLEimfaUVX9YlW9bvt6kt9J8ky25n1w2O3BJF9czYR72m3GJ5K8e3jlxz1JfrS9vDsG1zxX/85sHe9ka+4Hquo1VXV7kuNJvr6C+SrJJ5Oca619bOaPRnu8d5t57Md6w0wiFyeeicmIH6e7GfvjVCbuoteZ/PN+ZetVB9/J1pn7H171PHvM+avZeqXB3yV5dnvWJL+U5Mkk3x0ub17xnJ/N1jLnv2Wreb9ntxmztQT6l8Ox/1aSEyOb+78Ocz09/OM+MrP/h4e5n0vyjhXN/NZsLRk/neSp4eu+MR/vPWYe9bHetK8p5OJUMnGYaXK5KBNXPvPCjrV3hgcA6GTVTx0CAKwtRQsAoBNFCwCgE0ULAKATRQsAoBNFCwCgE0ULAKATRQsAoJN/B2l4rEpag9gTAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x720 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "random_batch = random.randint(0, len(valid_ids)//batch_size - 1)\n",
    "random_sample = random.randint(0, batch_size-1)\n",
    "random_batch = 4\n",
    "random_sample = 2\n",
    "print(random_batch)\n",
    "print(random_sample)\n",
    "x, y = valid_gen.__getitem__(random_batch)\n",
    "result =  model.predict(x)\n",
    "result = result > 0\n",
    "\n",
    "fig2 = plt.figure(figsize=(6,6))\n",
    "ax2 = fig2.add_subplot(1,1,1)\n",
    "ax2.imshow(x[random_sample])\n",
    "\n",
    "fig = plt.figure(figsize=(10,10))\n",
    "fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
    "\n",
    "ax = fig.add_subplot(1, 2, 1)\n",
    "ax.imshow(np.reshape(y[random_sample]*255, (image_size, image_size)), cmap=\"gray\")\n",
    "#         ax.imshow(y[i])\n",
    "ax = fig.add_subplot(1, 2, 2)\n",
    "ax.imshow(np.reshape(result[random_sample]*255, (image_size, image_size)), cmap=\"gray\")\n",
    "\n",
    "# imshow(np.reshape(y[random_sample]*255, (image_size, image_size)), cmap=\"gray\")\n",
    "cm_2d = confusion_matrix(y[random_sample].flatten(), result[random_sample].flatten())\n",
    "cm = cm_2d.ravel()\n",
    "\n",
    "# (tn, fp, fn, tp)\n",
    "print(cm_2d)\n",
    "print(cm)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Pixel Accuracy 99.6124267578125%\n",
      "True Positive Accuracy 98.41004184100419%\n",
      "Dice Coefficient 0.9487696651875757\n"
     ]
    }
   ],
   "source": [
    "print(\"Pixel Accuracy \" + str(((cm[3]+cm[0])/(cm[3]+cm[0]+cm[1]+cm[2])*100))+'%' )\n",
    "print(\"True Positive Accuracy \" + str(((cm[3])/(cm[3]+cm[2])*100))+'%' )\n",
    "print(\"Dice Coefficient \" + str(dice(y[random_sample], result[random_sample])))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "21\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAEWCAYAAACg+rZnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecFdXdx/HPdxcQCzZsICh2RWNBJdFoLDGosRtjN7EkPGo0GkseosbY4mNMNGosiUZFMcYSNSJi7MYuIAgIggo2EBXBjgq7+3v+mFm8LFvuLnf23mG/77zmlTtzz5w5l11/9+xvzjmjiMDMzCpbVbkbYGZmLXOwNjPLAQdrM7MccLA2M8sBB2szsxxwsDYzywEHa1tkkpaUdJ+kTyTduQj1HCbpoVK2rRwkPSDpp+Vuhy1eHKw7EEmHShol6XNJM9Kgsl0Jqj4AWBXoHhE/bmslEfGPiBhQgvYsQNKOkkLS3Q2Ob5Yef6LIes6RdEtL5SJi94i4qY3NNWuUg3UHIekU4DLgQpLAugZwNbBPCapfE3g1ImpKUFdWZgLbSupecOynwKuluoAS/m/KMuFfrA5A0nLAecAvIuLuiPgiIuZFxH0RcXpaZglJl0l6N90uk7RE+t6OkqZJOlXSB2mv/Kj0vXOBs4GD0h77MQ17oJL6pD3YTun+kZKmSvpM0huSDis4/nTBedtKGpmmV0ZK2rbgvScknS/pmbSehySt1Mw/w1zg38DB6fnVwIHAPxr8W10u6R1Jn0p6UdL26fHdgDMKPufYgnb8XtIzwBxg7fTYz9L3r5H0r4L6/yDpUUkq+gdohoN1R7EN0BW4p5kyZwLfATYHNgP6A2cVvL8asBywOnAMcJWkFSLidyS99dsjYpmIuL65hkhaGrgC2D0iugHbAi81Um5F4P60bHfgUuD+Bj3jQ4GjgFWALsBpzV0buBn4Sfp6V2AC8G6DMiNJ/g1WBG4F7pTUNSL+0+BzblZwzhHAQKAb8FaD+k4FNk2/iLYn+bf7aXidB2slB+uOoTvwYQtpisOA8yLig4iYCZxLEoTqzUvfnxcRw4HPgQ3a2J46YBNJS0bEjIiY0EiZPYDXImJIRNRExD+BScBeBWVujIhXI+JL4A6SINukiHgWWFHSBiRB++ZGytwSEbPSa14CLEHLn3NwRExIz5nXoL45wOEkXza3ACdGxLQW6jNbiIN1xzALWKk+DdGEnizYK3wrPTa/jgbBfg6wTGsbEhFfAAcBxwIzJN0vacMi2lPfptUL9t9rQ3uGACcAO9HIXxppqueVNPXyMclfE82lVwDeae7NiBgBTAVE8qVi1moO1h3Dc8BXwL7NlHmX5EZhvTVYOEVQrC+ApQr2Vyt8MyIejIgfAD1IesvXFdGe+jZNb2Ob6g0BjgeGp73e+dI0xf+S5LJXiIjlgU9IgixAU6mLZlMakn5B0kN/F/h125tuHZmDdQcQEZ+Q3AS8StK+kpaS1FnS7pIuTov9EzhL0srpjbqzSf5sb4uXgO9JWiO9ufmb+jckrSpp7zR3/TVJOqW2kTqGA+unww07SToI6AsMa2ObAIiIN4AdSHL0DXUDakhGjnSSdDawbMH77wN9WjPiQ9L6wAUkqZAjgF9LajZdY9YYB+sOIiIuBU4huWk4k+RP9xNIRkhAElBGAeOA8cDo9FhbrvUwcHta14ssGGCrSG66vQvMJgmcxzdSxyxgz7TsLJIe6Z4R8WFb2tSg7qcjorG/Gh4EHiAZzvcWyV8jhSmO+gk/sySNbuk6adrpFuAPETE2Il4jGVEypH6kjVmx5JvSZmaVzz1rM7MccLA2M8sBB2szsxxwsDYzy4HmJkmU1bwPp/rOpy1kyZ7bl7sJVoFq5k5f5LVWWhNzOq+0druv7eKetZlZDlRsz9rMrF3VNTY3q3I4WJuZAdRW8nLsDtZmZgBE1JW7Cc1ysDYzA6hzsDYzq3zuWZuZ5YBvMJqZ5YB71mZmlS88GsTMLAd8g9HMLAecBjEzywHfYDQzywH3rM3McsA3GM3McsA3GM3MKl+Ec9ZmZpXPOWszsxxwGsTMLAfcszYzy4HaeeVuQbMcrM3MwGkQM7NccBrEzCwH3LM2M8sBB2szs8oXvsFoZpYDzlmbmeWA0yBmZjngnrWZWQ64Z21mlgPuWZuZ5UCNHz5gZlb53LM2M8sB56zNzHLAPWszsxxwz9rMLAfcszYzywGPBjEzy4GIcregWQ7WZmZQ8TnrqnI3wMysItTVFb+1QNJukiZLel3SoEbeX0PS45LGSBon6Yct1elgbWYGyQ3GYrdmSKoGrgJ2B/oCh0jq26DYWcAdEbEFcDBwdUvNcxrEzAygtrZUNfUHXo+IqQCSbgP2ASYWlAlg2fT1csC7LVXqYG1mBq3KWUsaCAwsOHRtRFybvl4deKfgvWnAtxtUcQ7wkKQTgaWBXVq6poO1mRm0KlingfnaJt5WY6c02D8EGBwRl0jaBhgiaZOIpnMsDtZmZlDKSTHTgN4F+71YOM1xDLAbQEQ8J6krsBLwQVOV+gajmRkQdVH01oKRwHqS1pLUheQG4tAGZd4Gvg8gaSOgKzCzuUrdszYzg5KNs46IGkknAA8C1cANETFB0nnAqIgYCpwKXCfpVyQpkiMjmp+V42BtZgalHA1CRAwHhjc4dnbB64nAd1tTp4O1mRlU/AxGB2szM6j4YO0bjBXsrAsv5Xt7HMy+hx9b7qZYBnYdsCMTXn6SSROf5ten/2Kh97t06cKt/7iGSROf5tmn72PNNXvNf+9/f30CkyY+zYSXn2TAD3YAYIklluC5Z4bx4qiHGfvSY/zu7FMXqvOyP5/Px7Nfze5D5VlE8VsZZBKsJVVLuimLujuSfX/4A/566QXlboZloKqqiisu/z177nU439psJw46aF822mi9BcocfdQhfPTRJ2zYdzsuu+I6/u/CMwHYaKP1OPDAfdh0853ZY8/D+MsVF1JVVcXXX3/NLgMOZMutfsCWWw1g1wE78u3+/ebXt2W/TVl++eXa9XPmSgnXBslCJsE6ImqBHpI6Z1F/R7HV5t9iuWW7lbsZloH+W2/BlClv8sYbbzNv3jzuuONe9t5r1wXK7L3XAIYMuROAu+66n5132i49vit33HEvc+fO5c0332HKlDfpv/UWAHzxxRwAOnfuRKfOnakfYFBVVcUfLvotg37jL/8m1UXxWxlkmbOeCjwl6V7gi/qDEXFFhtc0y4Weq6/GO9O+mScxbfqM+QG3sTK1tbV88smndO++Aj17rsYLI0YvcG7P1VcDkqA84oX/sO46fbjmr4MZMXIMAL84/ijuG/YQ773X5JwLK+FokCxkmbOeCTwMLAWsXLA1SdJASaMkjfr7zf/MsGlm5SUtPCO54TDbxss0f25dXR1bbT2ANdfaiq232oKNN96AHj1W5YAf7cmVV91QotYvnqKuruitHDLrWUfEbwEkLZnuf1nEOfPn28/7cGplP7bBbBFMnzaD3r16zt/vtXoPZsx4v9Ey06fPoLq6muWWW5bZsz9i+vRGzn13wXM/+eRT/vvks+w6YEcmTXqdddbpw+RXngFgqaWWZNLEp9mw73YZfsIcKlN6o1iZ9awl9ZU0EngNeF3SC+m0SrMOb+Sol1h33bXo06c3nTt35sAD9+G+YQ8tUOa+YQ9xxBE/BuBHP9qDx594Zv7xAw/chy5dutCnT2/WXXctRowcw0orrchyyyWrbnbt2pXv77w9kydPYfgDj9JrjS1Yd/3vsO7632HOnC8dqBtTovWss5Jlzvpa4IyIeBhA0i7AdYB/S4p0+u8uYuSYcXz88ad8f9/DOf6YI/hRg5tQlk+1tbWcdPJZDL//Vqqrqhh80+1MnPgq5/zuNEa9OJZhwx7mhhtv46bBVzBp4tN89NHHHHr48QBMnPgq//rXfYwf+zg1tbX88qQzqauro0ePVbnh+suorq6iqqqKf/3rPu4f/kiZP2mOVHjPWi1MR297xdLYiNispWNNcRrEGrNkz+3L3QSrQDVzpze2LGmrfHH2wUXHnKXPu22Rr9daWfas35T0G2BIun848FaG1zMza7sypTeKleVokKNJ1nQdDjyQvj4qw+uZmbVdRx1nHRGzgOOzqt/MrJTKNSSvWJkFa0n9gEFAn8LrRES/ps4xMyubCr/BmGXO+lbgDGA8UNlfWWZmHThYz4qIuzOs38ysdCp8unmWwfpcSX8DHgG+rj+YPtLGzKyiFPFsxbLKMlgfBmwKLMM3aZBg4QdHmpmVXwcO1ltGxCYZ1m9mVjoVPhoky3HWL0jaIMP6zcxKp6OOswb6A+MkvU6SsxYQHrpnZhWpA6dB9s2wbjOzkorayk6DZBmsW1y/2sysYnTgnvWjJKM/BHQlWRtkCuA8tplVnA47dC8iFnjQgKT+eCEnM6tUFR6ssxwNsoCIGEFy09HMrPLUtWIrgywXcvplwW4VsCUwO6vrmZktiqjpuDcYC59kXkMy7fzODK9nZtZ2lR2rSx+sJV0YEWfUP93czCwPKv0GYxY5690yqNPMLFsdMGddLWkFkiF7C4kI563NrOJUes86i2C9IfAijQfrANbO4JpmZoumo+WsgYkRsUUG9ZqZZSZqyt2C5mU5GsTMLDeiwnvWLd5glLS/pG7p60GS7pC0eTOnXF6y1pmZtZcS3mCUtJukyZJelzSoiTIHSpooaYKkW1uqs5jRIOdExGeStgX2Am4H/tpU4YgYXESdZmYVJeqK35ojqRq4Ctgd6AscIqlvgzLrAb8BvhsRGwMnt9S+YoJ1/VMk9wSujoi7gCWKOM/MLDdKFaxJltV4PSKmRsRc4DZgnwZlfg5cFREfAUTEBy1VWkywniHpKuAgYLikLkWeZ2aWG1GrojdJAyWNKtgGFlS1OvBOwf609Fih9YH1JT0j6XlJLc5PKeYG44HAD4G/RMRHknoCjeZgCknqBfwF2I4ky/M0cFJETCvimmZm7ao1Nxgj4lrg2ibebmrYcqFOwHrAjkAv4ClJm0TEx01ds8kesqRlJS2blvkP8G66/znwTFPnFbiR5EnmPUi+Ve5Lj5mZVZyoU9FbC6aRrN9frxfwbiNl7o2IeRHxBjCZJHg3qbme9QS+eXjA/M+T7gewRgsNXjkiCoPzYEktJtHNzMqhhEP3RgLrSVoLmA4cDBzaoMy/gUNI4uJKJGmRqc1V2mSwjojeTb1XpA8lHQ78M90/BJi1iHWamWUiosUec5H1RI2kE4AHgWrghoiYIOk8YFREDE3fGyBpIskgjtMjotn4qIiW58NLOhhYOyIuTHPRq0bEiy2cswZwJbANSU/8WZKc9VstXhCY9+HUyp6ob2WxZM/ty90Eq0A1c6cvcqSd9u2di445vV54rDSRvRVavMEo6UqgM/A94EJgDsk4662bOy8i3gb2LkEbzcwyV1fb7vG3VYoZDbJtRPSTNAaSVfPS4XuNknR2M3VFRJzf2kaamWWtiBuHZVVMsJ4nqYp06Imk7jQ/4fKLRo4tDRwDdAccrM2s4iwOwfoq4C5gZUnnkoy7PrepwhFxSf3rdE2Rk0iean4bcElT55mZlVMRt+/KqsVgHRE3S3oR2CU99OOIeLm5cyStCJwCHAbcBPSrn1ZpZlaJFoeeNSTDT+aRpEKanWou6Y/A/iSze74VEZ8vUgvNzNpBqYbuZaWYJVLPJBkr3ZNkJs6tkn7TzCmnpmXPIpn1+Gm6fSbp01I02sys1GprVfRWDsX0rA8HtoyIOQCSfk/y2K7/a6xwRHiRJzPLnUrvWRcTrN9qUK4TLUyLNDPLm9zmrCX9mSRHPQeYIOnBdH8AyQp6ZmaLjTyPBqkf8TEBuL/g+PPZNcfMrDxy27OOiOvbsyFmZuVUW1fZt9uKWRtkHeD3JM8S61p/PCLWz7BdZmbtqtLTIMV8lQwmeWiASB4AeQfJbEQzs8VGXajorRyKCdZLRcSDABExJSLOAnbKtllmZu0rQkVv5VDM0L2vJQmYIulYkicfrJJts8zM2lelp0GKCda/ApYBfkmSu14OODrLRgEs02uHrC9hOfTlW4+Uuwm2mCpXeqNYxSzk9EL68jPgiGybY2ZWHrkdDSLpHhZ+fPp8EbF/Ji0yMyuDCs+CNNuzvrLdWmFmVma5TYNExKPt2RAzs3JaHBZyMjNb7DX3rMJK4GBtZgYEi0nPWtISEfF1lo0xMyuXmgpPgxTzpJj+ksYDr6X7m0n6S+YtMzNrR4GK3sqhmIGFVwB7ArMAImIsnm5uZouZulZs5VBMGqQqIt5KZpzPV5tRe8zMymJxyFm/I6k/EJKqgROBV7NtlplZ+1ocRoMcR5IKWQN4H3gkPWZmttiozXvPOiI+AA5uh7aYmZVNhT/Vq6gnxVxHI9PmI2JgJi0yMyuDurz3rEnSHvW6AvsB72TTHDOz8sjzQk4ARMTthfuShgAPZ9YiM7MyWBxuMDa0FrBmqRtiZlZOdcp5GkTSR3zzF0IVMBsYlGWjzMzaW6VPHml2BmP67MXNgJXTbYWIWDsi7miPxpmZtZc6Fb+1RNJukiZLel1Sk51bSQdICklbtVRns8E6IgK4JyJq063Sc/BmZm1Sh4rempNOHrwK2B3oCxwiqW8j5bqRPNv2hYbvNaaYtUFGSOpXTGVmZnkVrdha0B94PSKmRsRc4DZgn0bKnQ9cDHxVTPuaDNaS6vPZ25EE7MmSRksaI2l0MZWbmeVFa9IgkgZKGlWwFc47WZ0FhzdPS4/NJ2kLoHdEDCu2fc3dYBwB9AP2LbYyM7O8as3QvYi4Fri2ibcby5PM75BLqgL+DBzZiks2G6yVNmpKayo0M8uj2tKN3JsG9C7Y7wW8W7DfDdgEeCJdzXQ1YKikvSNiVFOVNhesV5Z0SlNvRsSlxbTazCwPSjgpZiSwnqS1gOkkaysdWv9mRHwCrFS/L+kJ4LTmAjU0H6yrgWVovEtvZrZYKVWwjogaSScAD5LE0RsiYoKk84BRETG0LfU2F6xnRMR5banUzCxvSvkIxogYDgxvcOzsJsruWEydLeaszcw6gjyvDfL9dmuFmVmZVfp08yaDdUTMbs+GmJmVU+4fPmBm1hHkOQ1iZtZhOFibmeVApa9S52BtZoZz1mZmuZDb0SBmZh1JXYUnQhyszczwDUYzs1yo7H61g7WZGeCetZlZLtSosvvWDtZmZjgNYmaWC06DmJnlgIfumZnlQGWHagdrMzPAaRAzs1yorfC+tYO1mRnuWZuZ5UK4Z21mVvkqvWddVe4GdEQDfrAj48c9wcQJT3Haaccv9H6XLl24ZcjVTJzwFE89OZQ11+wFwIorLs+DD97OrA8ncdmfz1/gnM6dO3P1VRfx8vj/Mm7s4+y77+7t8lksG0+/MJo9jzie3Q89lr//466F3n/3vQ845pTfst/RJ3HkSWfy3gcfzn/vkr8OZp8jT2Svn5zAhVdcR0Rl9xgrRR1R9FYOmQRrJXpkUXfeVVVVcfnlF7D3Pj9hs8135qAD92HDDddboMxRRx7Mxx9/TN+Nt+eKv/yd319wBgBfffU15577JwYNumChegcNOpEPZs5ik2/twGab78xTTz3fLp/HSq+2tpYLLv8b1/zhbIbe9BeGP/YUU958Z4Eyf7pmMHsP2Il7bric4356EJddNwSAMS9PYszLk7j7+sv4942XM2HS64x86eVyfIzciVZs5ZBJsI7kq3xYFnXn3dZbb86UKW/yxhtvM2/ePO64cyh77TVggTJ77TWAIbf8C4C7776fnXb6LgBz5nzJs8+O5Kuvv16o3p/+9CAuvvhKACKCWbM+yviTWFbGT3qNNVbvQe+eq9G5c2d233k7HnvmhQXKTHnrHb7db1MA+m/xLR5/ZgQAEsydO5d5NTXMnVfDvJoauq+4fLt/hjyqIYreyiHLNMgISf0yrD+XevZcjXemvTt/f/r0Gazec7WFykxLy9TW1vLpp5/RvfsKTda53HLLAnDO707n+eeGc+s/rmGVVVbKoPXWHj6YOZvVVv7m57fqyt35YObsBcpssE4fHn7yOQAeeep5vpjzJR9/8imbb7whW2/+LXba/yh2+tFRfLf/FqyzZu92bX9eRSv+Vw5ZBuvtSAL2ZEmjJY2RNLq5EyQNlDRK0qja2s8zbFr5SAs/6K1hTrGRIs3mHTt1qqZ3r548+9xIvrPND3nhhdFcdNFZi9xWK4/GgkHD34nTjjuKUWMncMDPfsWosRNYdaXuVFdX8/a0GUx9exqP3nk9j915PSNGj2fU2Ant1PJ8q2vFVg5ZjgbZt7UnRMS1wLUAS3TtvVjeFZk+fQa9e/Wcv7/66j14d8b7Dcq8R69ePZk+/T2qq6tZdtluzJ79cZN1zpr1EV98MYd77/0PAHfdPYwjjzwomw9gmVt15e68N/ObG4bvz5zFyiutuECZVVZakcvPHwQk6bFH/vsc3ZZZmjuHPcRmfddnqaWWBGC7b/dj3MTJbLXZxu33AXKq0ofuZdazjogpwJLAD9Kta3qsQxs1aizrrtuHPn1607lzZw788d4MG/bwAmWGDXuYIw4/AID999+DJ554psV677//EXbYYRsAdtppO1555bXSN97axSYbrMfb02Ywbcb7zJs3jwcee5qdtu2/QJmPPv6Uurqkj3fdrXex3w+/D0CPVVZm1EsTqKmpZV5NDaPGvsza6Wgia16H7VlLOgE4Hvh3eugOSVdFxNVZXTMPamtrOfnk3zLsvluorq5m8E2388orr3L22acy+sVxDLv/YW4cfBs33nAZEyc8xezZH3PET34x//zJk59l2W7d6NKlM3vttSt77HkYkya9xplnXcgNN1zOn/54Dh9+OIufDzy1jJ/SFkWnTtWccdLP+Z/Tz6W2rpb9dt+FdddagytvuJWNN1iXnb7bn5Evvcxl1w1BEltu2pezTv4fAAbssA0jxoxjv6NPQoLt+vdjxwaB3hpXW+FDHJXVGExJ44BtI+LzdH8Z4NmI2LSY8xfXNIgtms/feKjcTbAK1LnHRo3c6WmdQ9fcr+iYc+tb9yzy9Vory5y1gHkF+/PSY2ZmFafSc9ZZBushwPOS6qdf7QfclOH1zMzarNKnm2cWrCPiYkmPA9uT9KiPjYiRWV3PzGxRdPQnxUwGvqi/jqRNI2Jcxtc0M2u1DpsGkfQ7YCDwBt9Mpw/ge1ld08ysrUo5GkTSbsDlQDXw94i4qMH7pwA/A2qAmcDREfFWc3Vm2bM+FFg7IhZeyMLMrMKUKg0iqRq4imR+yTRgpKShETGxoNgYYKuImCPpOOBioNmZbFlON58AdMuwfjOzkinhpJj+wOsRMTUi5gK3AfsUFoiIxyNiTrr7PNDizKUse9a/B8ak463n964jYv8Mr2lm1iatyVlLGkiS5q13bbpcBsDqQOGattOAbzdT3THAAy1dM8tgfRPwZ2A8lT8qxsw6uNakQQrXMWpEY/NJGq1c0uHAVsAOLV0zy2A9OyIuzbB+M7OSKeFs7mlA4bq0vYB3GxaStAtwJrBDMff2sgzWIyWdDwxlwTSIh+6ZWcWpLd3QvZHAepLWAqYDB5MMuJhP0hbA34DdIuKDYirNMljXrx6zY8ExD90zs4pUqtEgEVGTLmT3IMnQvRsiYoKk84BRETEU+COwDHBnusb92xGxd3P1ZjmDcfus6jYzK7VSLmoXEcOB4Q2OnV3wepfW1pnlpJgzGjseERdmdU0zs7bqyNPNawtedwX2IBl7bWZWcTrsdPOI+EPhvqQ/8M2DCMzMKkqlP3wg64WcCi0BrNOO1zMzK1qHS4NI6pTeDR3DNwPBq4EegPPVZlaROlywBkYA/YADCo7VAO95USczq1RZPeKwVLII1oL5Tzc3M8uFjtizXjldq7VRnoJuZpWoI44GqSaZmeOH45pZbtRGZa83l0WwnhER52VQr5lZZjpsztrMLE86Ys76+xnUaWaWqQ6Xs46I2aWu08wsa3UdMA1iZpY7Ha5nbWaWRx1xNIiZWe44DWJmlgNOg5iZ5YB71mZmOeCetZlZDtRGbcuFysjB2syMjjnd3MwsdzridHMzs9xxz9rMLAc8GsTMLAc8GsTMLAc83dzMLAecszYzywHnrM3McsA9azOzHPA4azOzHHDP2swsBzwaxMwsB3yD0cwsB5wGMTPLAc9gNDPLAfeszcxyoNJz1qr0bxMDSQMj4tpyt8Mqi38vOpaqcjfAijKw3A2wiuTfiw7EwdrMLAccrM3McsDBOh+cl7TG+PeiA/ENRjOzHHDP2swsBxyszcxywMG6RCSFpEsK9k+TdE6R5x4l6aV0mytpfPr6oswabGUnqXvBz/09SdML9ruUu31WWZyzLhFJXwEzgK0j4kNJpwHLRMQ5raznTWCriPiw9K1s8pqdIqKmva5nC0u/2D+PiD+10/VE8t9/Za8LavO5Z106NSR353/V8A1Ja0p6VNK49P/XKLZSSRdIOrlgf5KkXpLWlfSypBskTZB0s6RdJT0r6VVJW6XlV5I0NL32s5I2Kaj3b5IeBm5c5E9vJZP+bF8q2B8k6az09dOSLpX0lKSJkraSdI+k1wr/kpP06/T342VJJxbU+7KkvwKjgR7t/NFsEXhtkNK6Chgn6eIGx68Ebo6ImyQdDVwB7FuC620AHAhMIvmP7+uI2FbSj4BBwAHA+cALEbG3pAHAYGCr9PwtgO9FxFclaIu1ny8jYntJpwL/BrYEPgGmSroMWB84DOgPVAMjJP0XmAP0BY6KiGPL03RrK/esSygiPgVuBn7Z4K1tgFvT10OA7Up0ydcjYmL6p+xE4JH0+HigT/p6u/SaRMRDQE9JS6fv3etAnUtD0/8fD4yPiPfTn+ObQC9ge+CuiJgTEZ+RBPT637kpETGyvRtsi87BuvQuA44Blm6mTGtuFNSw4M+pa8Hrrwte1xXs1/HNX01qUF/h/hetaIe1n+Z+5rDgz7nh70AnFv6ZF/LPPKccrEssImYDd5AE7HrPAgenrw8Dnm5FlW+S/JmLpP5A71Y26cn0mkjaBZgWEf4PtrK9R/IX0AqSugJ7tPL8J4H9JC0paRlgH+CpUjfS2pdz1tm4BDihYP+XwA2STgdmAke1oq47gcMljQFGAFNb2ZazgRsljQMaYiqSAAADrElEQVQ+b+W1rQwi4itJFwIjSX7eE1t5/ghJ/0zPB7gmIsZLWrfETbV25KF7ZmY54DSImVkOOFibmeWAg7WZWQ44WJuZ5YCDtZlZDjhY20Ik1aYrv70s6U5JSy1CXTtKGpa+3lvSoGbKLi/p+DZc45x04ayijjcoM1jSAa24Vh9JL7e2jWaLysHaGvNlRGweEZsAc4EF1pFQotW/OxExNCKaW/Z1eaDVwdqsI3CwtpY8Bayb9ihfkXQ1yaJRvSUNkPScpNFpD3wZAEm7pasDPg3sX1+RpCMlXZm+XjVdLW5sum0LXASsk/bq/5iWO13SyHTVwHML6jpT0mRJj5AsaNUsST9P6xkr6a4Gfy3skq5i96qkPdPy1ZL+WHDt/2mkzo0ljUjbO07Seq3/5zUrjoO1NUlSJ2B3kgWDIAmKN0fEFiRrTJwF7BIR/YBRwCnp9OjrgL1IFhRarYnqrwD+GxGbAf2ACSQrBU5Je/Wnp6sErkeyetzmwJaSvidpS5Lp+1uQfBlsXcTHuTsitk6v9woLLgfQB9iBZFr3X9PPcAzwSURsndb/c0lrNajzWODyiNicZCXDaUW0w6xNPN3cGrNkwXrKTwHXAz2BtyLi+fT4d0iW23xGEkAX4DlgQ+CNiHgNQNItwMBGrrEz8BOAiKgFPpG0QoMyA9JtTLq/DEnw7gbcExFz0msMpWWbSLqAJNWyDPBgwXt3pCsXviZpavoZBgCbFuSzl0uv/WrBec8BZ0rqRfJl8FoR7TBrEwdra8yXaW9xvjQgFy4AJeDhiDikQbnNad2qgs0R8H8R8bcG1zi5DdcYDOwbEWMlHQnsWPBew7oivfaJEVEY1JHUZ36hiFslvUDSI39Q0s8i4rFWtsusKE6DWFs9D3y3fnEgSUtJWp/kQQhrSVonLXdIE+c/ChyXnlstaVngM5Jec70HgaMLcuGrS1qFBVeV60aScmlJN2CGpM6kqxAW+LGkqrTNawOT02sfl5ZH0voF64CTHlsbmBoRV5CsMb1pEe0waxP3rK1NImJm2kP9p6Ql0sNnRcSrkgYC90v6kGQ52E0aqeIk4FpJxwC1wHER8ZykZ9KhcQ+keeuNgOfSnv3nwOERMVrS7cBLwFsUt/znb4EX0vLjWfBLYTLwX2BV4Nh01bu/k+SyRyu5+EwWfrrPQSQrIs4jWdb0vCLaYdYmXnXPzCwHnAYxM8sBB2szsxxwsDYzywEHazOzHHCwNjPLAQdrM7MccLA2M8uB/weCz7nrTHW9JwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "ax= plt.subplot()\n",
    "cm_2d = cm_2d.astype('float') / cm_2d.sum(axis=1)[:, np.newaxis]\n",
    "sns.heatmap(cm_2d, annot=True, ax = ax); #annot=True to annotate cells\n",
    "\n",
    "print(count_cms)\n",
    "# labels, title and ticks\n",
    "ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels'); \n",
    "ax.set_title('Confusion Matrix'); \n",
    "ax.xaxis.set_ticklabels(['No Tumor', 'Tumor']); ax.yaxis.set_ticklabels(['No Tumor', 'Tumor']);\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}