1128 lines (1127 with data), 650.4 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n",
" from ._conv import register_converters as _register_converters\n"
]
}
],
"source": [
"import os, glob\n",
"import sys\n",
"import pydicom\n",
"import random\n",
"import re\n",
"import scipy\n",
"import scipy.misc\n",
"import numpy as np\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"from PIL import Image\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"plt.set_cmap('gray')\n",
"%matplotlib inline\n",
"## Seeding \n",
"seed = 2019\n",
"random.seed = seed\n",
"np.random.seed = seed\n",
"tf.seed = seed\n",
"\n",
"\n",
"IMG_DTYPE = np.float\n",
"SEG_DTYPE = np.uint8\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"- Author IBBM\n",
"- Date 1/3/2019 (DD/MM/YYYY)\n",
"- Link https://github.com/IBBM/Cascaded-FCN\n",
"\"\"\"\n",
"def imshow(*args,**kwargs):\n",
" cmap = kwargs.get('cmap', 'gray')\n",
" title= kwargs.get('title','')\n",
" if len(args)==0:\n",
" raise ValueError(\"No images given to imshow\")\n",
" elif len(args)==1:\n",
" plt.title(title)\n",
" plt.imshow(args[0], interpolation='none')\n",
" else:\n",
" n=len(args)\n",
" if type(cmap)==str:\n",
" cmap = [cmap]*n\n",
" if type(title)==str:\n",
" title= [title]*n\n",
" plt.figure(figsize=(n*5,10))\n",
" for i in range(n):\n",
" plt.subplot(1,n,i+1)\n",
" plt.title(title[i])\n",
" plt.imshow(args[i], cmap[i])\n",
" plt.show()\n",
" \n",
"def normalize_image(img):\n",
" \"\"\" Normalize image values to [0,1] \"\"\"\n",
" min_, max_ = float(np.min(img)), float(np.max(img))\n",
" return (img - min_) / (max_ - min_)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"- Author IBBM\n",
"- Date 1/3/2019 (DD/MM/YYYY)\n",
"- Link https://github.com/IBBM/Cascaded-FCN\n",
"\"\"\"\n",
"def step1_preprocess_img_slice(img_slc):\n",
" \"\"\"\n",
" Preprocesses the image 3d volumes by performing the following :\n",
" 1- Set pixels with hounsfield value great than 1200, to zero.\n",
" 2- Clip all hounsfield values to the range [-100, 400]\n",
" 3- Apply Histogram Equalization\n",
" \"\"\" \n",
" img_slc[img_slc>1200] = 0\n",
" img_slc = np.clip(img_slc, -100, 400)\n",
" img_slc = normalize_image(img_slc)\n",
"\n",
" \n",
" img_slc = img_slc * 255\n",
" img_slc = img_slc.astype('uint8')\n",
" img_slc = cv2.equalizeHist(img_slc)\n",
" img_slc = normalize_image(img_slc)\n",
" return img_slc"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"class DataGen(keras.utils.Sequence):\n",
" def __init__(self, ids, path, batch_size=8, image_size=128):\n",
" self.ids = ids\n",
" self.path = path\n",
" self.batch_size = batch_size\n",
" self.image_size = image_size\n",
" self.on_epoch_end()\n",
" \n",
" def __load__(self, id_name):\n",
" patient_id = id_name.split('_')\n",
" image_path = os.path.join(self.path,\"patients\", id_name)\n",
" mask_path = os.path.join(self.path,\"masks\")\n",
" all_masks = os.listdir(mask_path)\n",
" dicom_image = pydicom.dcmread(image_path)\n",
" image = step1_preprocess_img_slice(dicom_image.pixel_array)\n",
" image = normalize_image(image)\n",
" image = np.array(Image.fromarray(image).resize([image_size, image_size])).astype(IMG_DTYPE)\n",
" \n",
" mask = pydicom.dcmread(os.path.join(mask_path,patient_id[0]+'_liver' , id_name)).pixel_array\n",
" mask = mask/255.0\n",
" mask = np.clip(mask, 0, 1)\n",
" mask = np.array(Image.fromarray(mask).resize([image_size, image_size])).astype(IMG_DTYPE)\n",
" mask = mask[:, :, np.newaxis]\n",
" return image, mask\n",
" \n",
" def __getitem__(self, index):\n",
" if(index+1)*self.batch_size > len(self.ids):\n",
" self.batch_size = len(self.ids) - index*self.batch_size\n",
" \n",
" files_batch = self.ids[index*self.batch_size : (index+1)*self.batch_size]\n",
"\n",
" image = []\n",
" mask = []\n",
" \n",
" for id_name in files_batch:\n",
" _img, _mask = self.__load__(id_name)\n",
" _img = np.stack((_img,)*3, axis=-1)\n",
" image.append(_img)\n",
" mask.append(_mask)\n",
" \n",
" image = np.array(image)\n",
" mask = np.array(mask)\n",
"\n",
" return image, mask\n",
" \n",
" def on_epoch_end(self):\n",
" pass\n",
" \n",
" def __len__(self):\n",
" return int(np.ceil(len(self.ids)/float(self.batch_size)))\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"20275\n"
]
}
],
"source": [
"image_size = 256\n",
"train_path = \"train\"\n",
"batch_size = 8\n",
"epochs = 20\n",
"\n",
"## Training Ids\n",
"images = []\n",
"for file in os.listdir(os.path.join(train_path, \"patients\")):\n",
" images.append(file)\n",
"print(len(images))\n",
"\n",
"val_data_size = len(images)//5\n",
"\n",
"valid_ids = images[:val_data_size]\n",
"train_ids = images[val_data_size:]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"gen = DataGen(train_ids, train_path, batch_size=batch_size, image_size=image_size)\n",
"x, y = gen.__getitem__(0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x6e3049a02fd0>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXeAVdW9vv8chjI0gaEjIFIEUUQU\nsbfERO9N1Og1tqgoWBPBkth7jS1RjF1s0WgsuX5/RhJjrom9F4qAiCBVEZTe2/n9cfJ+9jl7ZmBo\nzsB5n3+GmXP23mutvYfZZ+1nvZ9MNpvFGGOMMcYYY4wxxhQntaq7AcYYY4wxxhhjjDGm+vDkkDHG\nGGOMMcYYY0wR48khY4wxxhhjjDHGmCLGk0PGGGOMMcYYY4wxRYwnh4wxxhhjjDHGGGOKGE8OGWOM\nMcYYY4wxxhQxnhwyxhhjjDHGGGOMKWI22eRQJpM5JJPJjMtkMl9kMpmLN9VxjDHGGGPM5ofvFY0x\nxpiaQyabzW78nWYyJcDnwI+AacAHwHHZbHbMRj+YMcYYY4zZrPC9ojHGGFOzqL2J9tsP+CKbzU4E\nyGQyfwYOByr8g9+oUaNsWVnZJmqKMRvO1KlTq7sJxtQ4OnToUN1NMMDUqVO/zWazLau7HcasI+t0\nr5jJZDb+00xjjDGmSMhms5m1vWdTTQ5tDeR/mp4G7J7/hkwmczpwOkCzZs248MILN1FTjFl3Bg0a\nVN1NMKbG4/+3awaDBg2aXN1tMGY9WKd7RWOMMcZsWjZV5lBFs1IFT3yy2ewD2Wy2bzab7duoUaNN\n1AxjjDHGGFMDWad7xe+pTcYYY0zRsqnMoWlA/nqD9sBXm+hYxmwUbAsZs27od+YPf/hDNbfEGLMZ\n4ntFY4wxpgaxqSaHPgC6ZTKZbYHpwLHA8ZvoWMasF54MMmbj4EkiY8x64HtFY4wxpgaxSSaHstns\nykwmczbwD6AEeDibzY7eFMcyxhhjjDGbF75XNMYYY2oWm8ocIpvN/g3426bavzHri40hY4wxpvrx\nvaIxxhhTc9hUgdTGGGOMMcYYY4wxZjNgk5lDxtQkbAsZs+kZNGiQc4eMMcYYY4zZDLE5ZIwxxhhj\njDHGGFPE2BwyWyQ2hdbOnnvuyciRIwHYZZddAJg6dSoA9evXB6Bbt27MmTMHgLfffhuA5s2bAzBz\n5kwA+vbtC8CHH35Y8G9jjDHGGGOMMZsHNoeMMcYYY4wxxhhjihibQ2aLoliMoU6dOgEwY8YMAPbe\ne28AjjvuOADuu+8+VqxYAUCdOnUAqFu3LgBfffUVANlslj59+gDw5ZdfAtCkSRMAJk2aBEDTpk2Z\nP38+AB07dix4r/j2228B6NOnD/379wegVq3cvLO2veSSSwC46aabaN++PQCvvvoqAF27dgVg7Nix\n6z4Qpsah30FnDxljjDHGGLP5YHPIGGOMMcYYY4wxpoixOWQ2a7ZEU+inP/0pkFhB3333HQC9evWK\nTCDZQO3atQPgk08+ARKL59NPP2XVqlUAtGjRAoCFCxcCUK9ePSBnB5WUlADEe5U1tGjRotjv0qVL\nK2xnw4YNYz/6evfddwPw2WefFbz32muvBWDChAnxM+UTqV2ymDKZDJCzj2Q56asxxhhjjDHGmI2P\nJ4fMZseWMCG0zz77ADBt2jQASktLYwnWsmXLgCTwecqUKQC0b98+JoEqY/bs2bE/TfhowkhoQgiS\nSSExfvz4gu8rmxiCZAIpn/SkkMifFPriiy8AYnlZepla48aN499aGtetWzcALrjgAgCeeOIJIDeR\n9Nprr1XaRlN9eHmZMcYYY4wxmw9eVmaMMcYYY4wxxhhTxGSy2Wx1t4GOHTtmL7zwwupuhqmhbK6m\nUOPGjenduzdQ3qL4/PPPAWjQoAEAq1evDkOoKmhZmcyaNO3btw8raX3QkrGK7KCqsP322wPrFzKt\npXL5S8nKysqAxKrSe+rVqxc20ZNPPgnAP/7xj/Vqs9m02CDadAwaNOijbDbbt7rbYcymJJPJVP8N\nqzHGGLOZks1mM2t7j80hY4wxxhhjjDHGmCLGmUOmxrK5GEOyeHbffXcgCZDu2LFj2EADBgwAEhNH\neTsKc64IlY7XPjp16hTvr8wYEvPmzSv3s3T4NMCuu+4KwEcffVTwXrWzcePGLFiwoOA1WTwKupYF\nlc+GlKWXtZSPspSEwrqXLl3KGWecAUCbNm0A2GOPPQB49913geS8zJ49u1ymkjHGGGOMMcYYm0PG\nGGOMMcYYY4wxRY3NIVOjqOm2kOybAw44gLp16wKJxTJq1CggsXbGjh1LaWkpkFT9SttAokePHuUq\nfaXtn2bNmlVqGuk4Im37aHtIqpe1adOmnDEkZAeljZ38n6VfKykpKVf9rCqkj6VxXRP5/evUqROQ\nVFrLr8YGMGLECACGDBnC008/DcC//vWvdW6n2TBcvcwYY4wxxpiai80hY4wxxhhjjDHGmCLG5pCp\nVmq6KbTXXnsBSQ7OuHHjgJylIvunS5cuQMU5PzKGxMyZMys8Tu3a5X8VlWUkVq5cWe49Orbem7aP\n8pExJGbNmhX/Vv9kF6nSWZ06dejevTuQGFJLliwBklyi/IygdHUz5RK1bt0agNGjR8drsp06dOgA\nJOZQfoaR9i0jKT2ekOQ26b1pa0rbXHjhhTGGBx98MJCcj08++aTcfo0xxhhjjDGmWPDkkPneqWkT\nQio3P2nSJLp27QrAyJEjAXj77bcrfK+WKgFMmDChysdKL3nS5En+xI2WWaUnc1TGPR8du1u3bkAy\n4dKgQYOYbNluu+2AZNKlcePGQK4MvI6hYOrXX38dgCZNmgC5kvFNmzYFkhDtOXPmAFCrVk48XL58\nOQCNGjUqNxaaqMlfbqb9aMIovbRN7Zs9e3ZMNql/KmGfP8mUHh9N+KQDuBcvXhxB3proatWqFZCE\nVrdu3ZoXXnih3L7NxmPQoEFeWmaMMcYYY0wNw8vKjDHGGGOMMcYYY4oYm0Pme6OmGEM/+clPgMS6\nUSn0q6++OoyUykrFr6n0/JpQmXUZK0LmTqdOncpZRFoqprbkB0DLeJElo/doCdXSpUvZfvvtgcTU\nkUFTv359AJo3b87xxx8PwF//+lcgCQv+5z//CcDJJ5/MV199BUCvXr2AxNp56aWXgMQc+vTTT/nd\n734HwB133AEkY6z+5y97kzGU7ndFIdgTJ04E4KKLLgLg1FNPjde0vdDysvQSt/xzKvNrhx12AOCb\nb74BcmHYhxxySEH/jDHGGGOMMWZLx+aQMcYYY4wxxhhjTBGTyWaz1d0GOnbsmL3wwguruxlmI1MT\nTCHlzmy33XZh1bRs2RKA999/H0jskYpybNIoc+jTTz+ttGx7OuumKq+1atUqLKC0MSRLqHHjxhF6\nLctG1sx9990HwFVXXQXk8oTatm0LwKWXXgrkzChITKl77rmHO++8E4AxY8YA5XOEVq5cGQHUzz33\nHACDBw8GYPXq1QCxj8GDB0e4tAwrZQ499dRTAMyfPz/MIG2v/ioEW5lLbdu2jcynvn37AvDhhx9S\nVbRfjXlZWVlYUJXRrVs36tWrByTj7rL3mw5nD20cBg0a9FE2m+1b3e0wZlOSyWSq/4bVGGOM2UzJ\nZrOZtb3H5pAxxhhjjDHGGGNMEWNzyGw0aoIpJFvkxRdfBODGG28E4KuvvmL8+PFAksEjU0WUlpaW\nK5W+JguoMtZlG9kpkFQVe/PNNwves++++wI5q0f9k30jC+rwww8HEsNmypQpkbmjCl+q5jV37lwg\nl0ukymB6rXPnzkBiGR155JE0b968YDvlE5133nkADBkyBICFCxfSoEEDAE477bRoMyQW1MKFC9H/\nOT169AAS2+mEE04Akqyga665Zq2mT1VI5zNBMiZr2r/GUn3SGL333nsb3CZTiA2iDcPmkCkGbA4Z\nY4wx64/NIWOMMcYYY4wxxhizRlytzGwQ1W0LbbvttkAuPwfg5ptvBuCoo44CoGvXrgDMmTMntpEx\nJFPn888/ByhnDQH07NkTgFGjRpV7rbS0tNLt1kaXLl0AaNKkCZCrvvXoo48CcO+99wKJdSPD5ne/\n+x1HH300AE2bNgUSI0cZQbJamjdvTt26dQFo1qwZANOnTwfgT3/6E5AzgRYuXFhwLFlCMpT+9re/\nRfWurbbaCoABAwYAhHV0yimnxHio7bJ/1L6HHnoIgAsuuIDLL7+8oJ/XXHMNkFQvU3/79u3L2LFj\nAahdO/dflTKXtP8WLVpE/pJeEzo/Moa23XZbvvzyy4IxkYGlnKH8fXz66acAbL311kCuohzAW2+9\nBcDee++NMcYYY4wxxmwJ2BwyxhhjjDHGGGOMKWKcOWTWi+o0hg444AAgVxGrUaNGQJIHo1whVbyS\nGVIR6apga6KynKKKaNiwIZCzgtKZNrJidL3LxmncuHHYP+ltVAFs6dKl0U9ZMQ888ACQGC+qRDZ0\n6NDI9lFVMDF//nwAlixZEjaM2iOL6rDDDgPggw8+oF+/fgB8/fXXALFfjb0yecrKyiIvaerUqQDs\nv//+AMyaNSvaon6q0toXX3wBJJlGer1evXphNKlimq475QjVrl07LCKNQbdu3QCYMWMGAPXr1wcK\nM4fSyODKN4dkd6kNurb22GOPaO9nn31W6T7NuuPsofXDmUOmGHDmkDHGGLP+VCVzyMvKTJWozsmg\n3XffHUiWMz3xxBNAbsKhsgmVNU0KCU0KaWmalhxVxMqVK8v9TMuqtt9+eyAp365Q50wmw0477QQQ\ny7fOPfdcIJmYWrx4MQDfffddTPhowmjo0KEA9O/fHygsxa4Ji0MPPRRISsVrqdaAAQNiwkPB2Fpm\npvY1adIkXtOEj8ZE7evSpUv8TEu7tCRLZeoVwA2w8847FxxDEzO77LILkJug0VIxLY3T5FWfPn2A\nZHlZ27ZtY0yEJtfUpgkTJsQElyZ21K70V6g4nDp/23wmTJhQ7mf57evZsyd77bUXAG+//XaF7zXG\nGGOMMcaYzQEvKzPGGGOMMcYYY4wpYryszFRKdYdNP/PMMwDccMMNQM6uyacqS7zWRNoiadKkSYUG\nCSR2jCyhJUuWxPZaRiazRoHL06dPj+1kMikgW8usZAl98cUX7LrrrkCyJEvLrjKZnAF42WWXxfvP\nPvtsIAlLltmk4O0777yTK664ouA1LRn7wQ9+AOSWl7Vu3RpIxlJjoZ+PGTMmLCCZUuqTQpxF7dq1\nwxTSe2QJKdh73rx5cR51DI25ArPV/xdeeIGf/exnQFJWXv3WNg0aNOCdd95hfZE1pvMzb968Su2i\niujVqxcA7dq1A+Af//jHerfFJHh52brhZWWmGPCyMmOMMWb9cSl7Y4wxxhhjjDHGGLNGnDlkylGd\nxtCee+4JQMuWLaNsu4wV5eAod2ZdzKEuXbqUy5BJmyHKBQLo2LEjkMu9gSQkWZbQTTfdFAaMMpBk\n6ug4f/zjHznxxBOBnAUDMHLkSCAxTJRT1LZt29j34YcfXnDMpUuXAjBkyJAo2648IdlKQrk9Tz31\nFGPGjAGSAGrZO7KLstls9EF5RG3atAGSsW7atCktW7YEkmwg5R3pq8ykVatWRX9k0siUUpj16tWr\nIyi6efPmAGyzzTZAkvn05JNPAvDzn/+c//f//h+QBI5rLM455xwAbr311sgc0rHXhDKMtJ+KcqZk\nDql/am9FqF8ykHr37g3AiBEj1toWY4wxxhhjjKkp2BwyxhhjjDHGGGOMKWKcOWSq1RRSqXOZIarG\n1bhx4zBwZHnI+lCFraqUoM9H26e30/5atGjBtddeCyR5R6ecckrBNrJnevbsGWaOzBpl6EyePBnI\nmTk6prKBlFGjTB6ZQB9//HFUZdM2ytKRGbNgwYKoFCarSOaKLByNY7t27eI92p9yjlQWfuXKlfFv\nbS9LS5k+nTt35qWXXgKIymsqHa98oU8//TT6r76rHQcccABAlHxv3rx5WEo617JuZF7perzzzjtj\njGUX6f8J2Ty33357VFpTO9J2UD5VyROS/SMjavTo0ZW+N82OO+4IQPv27QFi7Mz64eyhquHMIVMM\nOHPIGGOMWX+cOWSMMcYYY4wxxhhj1ogzh4qU6rSF9tlnH04//XQAbrzxRiCpUCUrBZLKYKp4JXtH\nWTCNGzeOnB6ZJDJyZAPlkzZJ+vXrB+QqXkGucpiskyFDhgCEudK0aVMgyeaZPn16ZA3dfffdQJJT\nJHskk8kwbtw4IKnspe3VPlkvHTt2DFNF1o3aou9LSkrCBtJ7VdFM2UPq/9tvv12ukplMHdlK9evX\nj/eoUpjQe8eMGcMdd9wBJFXY1F/1Jb9S2sCBA4HERDr22GNjbAGaNWsW52ro0KFAksO0ePFiILGi\nMplMjPuCBQsAuPrqq4HE1mrQoEEcX33v0KEDAOPHjy/oU+/evSMLKH1tiTp16sR7lOskCyidcVVa\nWhrXlDKW1DflPB188MGuYLYBDBo0yPaQMcYYY4wx3wM2h4wxxhhjjDHGGGOKGJtDRUJ1mkLKeVGm\nzMMPP8yll14KVF5xrE6dOmF1pG0g5e58++23YZSIiowhgO222y7+raycyy67DEiMpPvvvz/MJRlD\n2n/37t2BJHOodu3akSej7ZVjo/YOHz48TJLTTjut4DUZQ6+88goAu+yyC3PnzgUSU0X2iSyX6dOn\nR6UxHVNGjrKDunTpAsDpp5/ObbfdBsDEiRMBuPfeewvaMHfu3OivLCWNjeyZXr16MWrUKACOPPJI\nAMrKyoDEHFIfd9xxxxh/7Uc5R+effz6Qs4H++Mc/Rn/UDoCLL74YyFUg0/4zmdzSWJllsrOOOeYY\nAG6++eY4Rxon7U+o8tr06dPj32ljSP1v27ZtVDDTdSYzKU2+iSbTKn3MOnXqsNdeewE5m8sYY4wx\nxhhjaiIOpN7Cqc5JIX1Y14fs9957D8hN4OhDvsrHz549e6McM13WfNddd43XtESpf//+QLLUa4cd\ndgBg8ODBsQxKwcyaCNFEwEEHHQTAlClTYr/vvvsuAOeeey6QhGyvXr2aG264AUjCnNPkBxbvs88+\nQDImWhalJVSjR4+OUvOaAFE///73vwPJZNaIESMiVFoBy5pY0qTMqlWrYlma3qtJpx49egC5JW2a\nQNIkiZZtffPNN0Bhqfcf/OAHQLI07KSTTgLgxRdfBHIl6DVxov97tF9NvGkpXoMGDXj22WeBZLmh\nArh1npctWxbHUt+rEiCtJWOdO3cG4JNPPlnrNml69OgRQduVUVpaGqHcusbff//9dT6WcTj1mnAg\ntSkGHEhtzKalVq1a8VAu/bBVkQ76umrVqvi3Ih4UDyBWrVrFunzO1H254hTSZDKZddqfMaYQB1Ib\nY4wxxhhjjDHGmDXiZWVbINVlC8nmuOqqqwq+ppeHQWLe5P9sbcg4yS9Fr59pP7JYZL785je/AeB3\nv/tdlKWXQSQbRcumGjVqFMaQlmApdFo/1/KtRYsWhany6KOPAon5o/YdffTREf4sK0ZPWfT9D3/4\nw/hexpCWUOlJzBdffBF9PeeccwDi65VXXgkkT3hk9cybN4++ffsWjJEMnQMPPBDIWS0ycTROeq+W\nAq5cuTLsIhk5MpG0rcydxo0bx/ZaZtW2bVsgMXWmT58e4dka0/zzCUm4c0lJCb/4xS+A5Fz97//+\nL5CYXLNmzeLXv/41kFhAhx56aME2FSFTqrIlYxWRDqZOB15XRElJSdhFMtRkEr366qtVPrYxxhhj\nTBqZPmmjRvdjuu/MZDLlCrMIFRF5/PHHwwrXvbLuL2Xz6F5VhWUgMbd1X7e+aFn/W2+9BSSGuu5R\ns9lsHCMdK2GM2TjYHDLGGGOMMcYYY4wpYpw5tAVQnblConfv3px55pkAnHXWWUASjjxhwoRKt1Om\nT0WZQ5WVEM8vWS4DR3k63bp1A5Kco6OOOgrI5faoZL22v/322wEYMGAAkHsa8swzzxQca/DgwQDs\nvPPOBft9+eWXw3jR04vnn38eSMKn69WrF7lL6qee5KSf9Lz22mvR9lNPPRVIQpKPP/54AIYMGcLk\nyZMBuOWWWwDYZpttgOSJzu9//3sALr300njao9wlGUh6GlSrVq1ol/ar72X6LFiwINooE0fWjUwx\n9b9Zs2bxVEp2kCwomUi1atWKc61jKDBb+9Wa8zp16sQTKgVbK3PpvvvuA2DkyJFh5JxwwgkAEcSt\ndslSy39iJitrTXZRVajIZquMbbfdtqAPyh6qLETdVIyzh8rjzCFTDDhzyJhCSkpKwgzSfYgsoJ/8\n5CcAfPfdd0CuMIvuEYXuHbVt7dq1495TyLDWvbPuX9eV9OfN9H6y2Wyl+9a9YKNGjSJz88QTTwSS\nTMuK9meMKcSZQ8YYY4wxxhhjjDFmjdgc2gypCaaQrI8999wTyFUoeP311wEio0Z5O2nKysrWqTpZ\n2s6QgdGqVauwLi644AIgyfLRmuS7774bgJNPPjm2lx3z29/+FkjMoeXLl3P//fcDSYUw5dkoB0fW\nByQZPF27dgUSW0bl5fPbo3aqPL1sGf3+TZw4MfKNZLVo/w888ACQM3NUIl4WlEiXtF+2bFnsW7aT\nttXYr1ixIp4aKTdIuT2ytdq2bRuvad/569fzt120aFFUoZs5c2YcI7+9devWDZtIY6z2qYqaDJ8v\nv/wy+i57SmOsMTrllFPo1atXwTGOOOIIAP74xz8C8M477wC5a1bnqioVw3bccUcAPv3007W+d13Q\n0zeNldbYm3XDBlGCzSFTDNgcMsVGZTaM7sNatmwZuTx6Tfddes+6ZHvWdNZkF+nna6t4ZkwxY3PI\nGGOMMcYYY4wxxqwRVyvbjKgJxtBee+0FFObgQGHlJq0NroyKrKFddtkFgI8//jh+JjtE66dl4cj+\nWLFiBWeffTaQ5BPdeOONAJF/dPLJJ8e2MlWURaOnK8oZOuyww8IQkk0kU6Vu3bpAYkytWLEijCaZ\nM6pKpZyiq666KrJxLr744oKvWtOttdzNmzfn2muvBRKjRpaRvm/VqlVYNWq7cnq0v/yfq1KY+qB1\n2jo/7du3j+pusr2U3aT3tmzZMsZL7WnUqFHBe/SUplOnTpHvI3NL7dNY1a9fP3KS0uvX89fFQ+48\nnXfeeQXHSvfzpptu4i9/+UvB9jKwtF9Vrvvuu+/CxlIGkvqkcW3cuHH0d12MHtls2mZNeVuyyDSO\n99xzDwC//OUvq3w8Y4wxxmwe5OdMpquIpclms3GfoK+6z+nZsyeQ3Nfo/fnv1f63RNaUd6RxePbZ\nZ4FcxWBjzLrjZWU1nJowIQRJqLEmSfShV8uHqkJFIcCVlaTcfvvtGTt2LJBMSGkSZuDAgUCuNLgm\nN/RhXCXUtSxKExGrVq2KiQpNgGhy4sEHHwRyE0p33HEHANdddx1A7F9tUHvHjx8fgdYKvVYZeYU7\nd+3atdwyqHRwsdr31VdfxYRF+g+7+tKlS5eYANEyMu1XNxkjRoyIsdGx1V+9V+HO7dq1i8kcLZfT\nGKvfnTp1ij+4mqDRRIomN9SnkpKSckHbaoPeu3LlynJadPq9urbmz58f150mBjW26udzzz3Hj3/8\nYwD+/ve/F4yb+qkJuHnz5kV/1WYt7dLPK/tZPrpuatWqFZNVG1JSdffddwdyE3TDhg1b7/0UK15e\n5mVlpjjwsjJTU9G9j77qPk4TNroPgaRwiO7junfvDsBOO+1U8PN8dN+l+ybdi0NyD7W+QdFbKn/4\nwx/iYa0xJoeXlRljjDHGGGOMMcaYNeJlZTWMmmIKQbJUpmXLlmFLKNw3XeqyKlRkDOnpipY1yTCp\nX79+2DpaOiYWL14MQOvWrSNwTlaLjBAtM9Pr999/fxg+OoZKz2sp2bPPPhsmj57sXH755QBcffXV\nQC4AGeD666+P5WhjxowBYI899gCSJUv169cPW0fHlMWjcvJaYpfNZsPa0TKydAn5JUuWxL61fEkB\n0uq3wp2z2Wy5pWdaEidWrVoVT6hkJ2kJn9o3a9asCLLWUyktV9OSLI3f0qVLywUiasmZ3tu6desI\ntlaIotqln6uPmUwm9qcxliH23nvvAfCrX/0qgqx1rmXxyERS+6dNmxbjIwMrbQe1aNGi3M/Sdpu0\n7lGjRlWphP3a0FLKLl26sM8++wDw5ptvbvB+jTHGGLNh6F4ibebk//0/5JBDAKLghhg1alS5/ele\nRfdHVWFN99w2hirm7LPP5m9/+xsA//73vwGHVBtTFWwOGWOMMcYYY4wxxhQxzhyqAdQkWwhg3333\nBRIL5YUXXljrNi1atKi0dL1Qrs2MGTMiZ0UGSKdOneI1gK233jrMHpkhMjd0nLZt28b7tVb7iy++\nAHKZRZAYNplMJoKYtfb7kUceAeCCCy4Acrk/Wsd94IEHAonNImQClZaWhvWkPBw9vVEO0zbbbBM2\nkPJv9PRHNorydVq1ahX90xr1srIyICl736NHj9ifbBg9edJ69LfffhvIZUSpL7J29LuusZ4+fXps\nrydjWs+un3/zzTdx/B122KGg7eqn3jtv3rw4N717947tITGSFi1aFE/bZEjJCpKBpPFs2bJludBr\nWWMKHB84cGCcBxlN48aNA3Jh1WoXQJ8+faI9H374IVC+XH3Hjh0rzRqqCBlva7v2q0Lv3r2jX/r/\ncEOyjIqJYs8dcuaQKQacOWSqE2UgHnrooUBilpeUlDj3p4bj82JMDmcOGWOMMcYYY4wxxpg14syh\naqSmGUP7779/wffKx6kKVTEnZL2UlJSEASKbSJlGspbq168fdoesE+X2yCIpKSmJjCCVP5clMnLk\nSCDJh1myZElsL+6//34gKe3ep0+faKMMH22j9so6qlWrVlg2speUldOgQYPo7/vvvw8k1c5kxcjm\nUWWs/LXrytWRNSO7ZeHChZEFpP2o7dpe2zZv3jyMK9kt6XKn48ePj30rg0c5UzKaysrKCkwjyFVh\ng8SiUluWL18eVTd0jlTBTed37ty50Q79TEaSrjfZWtOnTw97Sv1UXy666CIgt35cVpbap2NqLDQ2\nEydOLMi9gvL5AJWVls1vr8Yvv+9CWVfKcMrfTuj6SFtBI0aMiMoa+j3417/+VWl7jDHGGLPxePXV\nV4Hkb3mHDh3Cwta9hO5h8lcxC2FhAAAgAElEQVRe2EypmShj6L777gOSz10bIy/SmC0Vm0PGGGOM\nMcYYY4wxRYzNoe+RmmYKib59c1EVAwcOBOD2228H4JNPPgFyhkjauKgIZcZ89dVXFb4u+6Zz586R\n6yIz5NxzzwWSylWLFi3i6aefBmDAgAEA5TJ+OnbsyFVXXQUkmUOyWWRnyIhp0qRJWDGyf/TkoEeP\nHkDOPJHJpGPIRNJ7lbczf/78sIyUdaN8I5k1S5cuDTNHYyIDRkaSrJLVq1eHTaSveuKR/9RKZku6\n2oXaov6vWLGiIAsIKFd1rHv37gX5PpAYYBqHOXPmRP90bOX2KJNK57Vp06aRfaTx11gr02jGjBl0\n69atYLu0rSObau7cudE+XSdqnzKlpk6dGtlHf//734HkWpLhc/jhhwMwbNiwuKaFxkbIAquIfGNI\n6LqQ0ZRvDFW2nc5RRXlC2t8HH3wAJBXw3n333UrbZZL/W4s9e8gYY8yaqVevXtxDPffcc0Byn6C/\n1xVVEtM9qNl80Hk844wzgCSv0hhTOTaHjDHGGGOMMcYYY4oYm0ObkJpqCgll7ihf58YbbwTgs88+\nAxJbY/bs2bFNRT8TsmO0P1kkYquttgJg8ODBDBs2DIAjjzwSgN122w2A0aNHA/DnP/+ZG264AUjs\nnyFDhgBw2mmnATBlyhSOOuoogNifrAzlFMlmKisrK1f9K50h06pVq8i70WsyfJT1M2nSJCBn2ui9\n6rfsG/V/+PDhYclof7JtZNIoV6hDhw6xnb6mc45WrVoVloyqkimbRk9HlHH0ox/9qCAfKf+YWic/\nf/782C6dHyRbqX79+tFGnT/tN51TlF/9TNvLaFJfysrK4lh6Te2TNZZf/U3H0Ni+9dZbAPz0pz8F\nCrOujjnmGIC4bnQ9X3vttQD079+fV155hXw0frKhPv/8c9YF2T/6Wtm1n0/aTlK/8y0m7U95Sunq\nfqZibBAZY4zJJ32v16VLl7jXzM/ChOQ+yWyZ6J5eFr8xpjz+X3ATUdMnhnr06BGl4vVHUZNCQhNA\n+cvK9DOFFCsQ+rXXXovttKRI/wlrmZW+79ixYyi8TzzxBADPPPMMACeddBIAv/nNb2LypXPnzkCy\n7E1qb4MGDbj33nuBZLJAkwjp8OmZM2fGpEi65Ln6sGTJkpi8UT/1YT89wTJjxoyYLFF78l+D3Id+\nvUeTBZo00USAllDVqVMnJq0UbK3lX5q4qFWrVoytAq414aUbHAVCz5s3L/ajpUqTJ08Gkomgrbba\nKiZiNHmj/usP5+zZs2PyQn3QOOrYuuFq0qRJTOa0bt26YNykcDdq1CjGVkvXvv7664Kx0QRTgwYN\nor9qp0rIKki6rKwsxl8/0/fjx48H4LDDDoux0WSdxkbnQf0uKSmpcPlYVdF1p7HJX2Kp0PT0BFR6\naVs+CtnWeB522GG88MIL690+Y4wxppjQ33Tdn5SVlcV9jO47zJaNPmvoXtcYUzleVmaMMcYYY4wx\nxhhTxNgc2kjUdFNIqGx48+bN42nKSy+9tMZtFi1aFEHMWu4iO0ZmAyTLi4SMofPPPx9IgpZLS0vD\n1jn22GMB2HrrrYEkNHmHHXYIE0RmkwyaZ599Fsg9ATj55JOB3DIqSJaMKSBYxsncuXPLmTSybLQ0\nqUGDBvGaTBItI5NBpP1Onjw5TBodU/1Xv6dOnRr2il7LN2ggWTaUzWZjTGTbqC2yoVavXh3tUPvU\ndllL2v/8+fPj3OhYPXv2BOCjjz4CcvaXjDAtm9N45S+XUnvSNpYCuNW+VatWxX60/E3baH/t27eP\nPo8ZMwZIlv7pGlO/p02bFq/JepJlI/umXbt2YQPJ0lJ7ZV7JKvu///u/MHBkRsmi0nt32mmncqHV\nayJdul7HriiUXW1We3Vt5Cvvur50XnWN6TzpvJs14+VlxhhTnMg+1v3QU089BSR/78Gl54uNE088\nsbqbYMxmg80hY4wxxhhjjDHGmCLG5tB6srmYQmmUTTNv3jxGjBhR5e3SZbfTgbv9+vUrCEMGuPTS\nS4Hy5dZXr17NhAkTAOjTpw+QGEMqcT958uQwS2R7yBhSDs0tt9wS+TWyTWSPpMOO27ZtG8eQwaQ1\n52pfnTp1Iv9GxkqXLl0AGDt2LJCUUN96663DgJGNlQ6Q7tKlS/QzHUCt9yh3Z8mSJWGbyHCaM2cO\nkBg19evXjzXzGn89GVOOksyfZs2aRX+1P5lisnvmzp0b+TwaJ+1fOUOQZDIpo0k5STKG8q8NjUmH\nDh0K+qv2zZgxI8ZWmVLpJ3hqU5MmTcJO0tjK+NGTwN///vd8+OGHQJLp079//4L2yWLadttty42p\nrjGVjK9Xr160ryL7J42MIWUM6ViicePG5X53ZAwJjc20adMKArbz0e/qypUrOeCAAwB49dVX19o+\nY4wxppg47rjjAHjkkUeA5D6povL0Zstl+fLlkdGYLpJijKkcm0PGGGOMMcYYY4wxRYzNoXVgc7SF\nevfuDcCvfvUrAG6//XYgZyKkc4SETJO0BZGP7BEZHcuWLeOQQw4B4MorrwRg1KhRQGLhqLz84sWL\nI5dHhopMGvHRRx9FdQEZIGq7MltefvnlaKuOJYNI/db3M2bMCNtGJoxMGmUbtWzZMrKPlDWkNqs6\nm3KP6tWrx6effgrAPvvsAyTWjvJhZs2aFSXI01WxZC/p5+PGjQsDSfuRMSXT5/PPP4+x0JMw9SHf\nGIKclaO8Hz0p0VhozD/55BN69eoFJDaL+quxatu2bWQXaZxkO8niURvq1asX7VP/tD9lBrVv3z72\np/wkncPhw4cDSa5T3bp1Yz/ar8ZW1tf8+fOjPeqvnhDJAtOYzJkzh3POOQeAxx57DEiMKZ2Hb7/9\nNsZH+9G1kGbHHXeMa0AGW5r071ZFyD7q2LFjmHP55lZ++0aPHh2/e/fffz8AZ5xxxlqPUaw4e8gY\nY7Zc9Ddc90CHHXYYDz74YMF7bAwVF7oWvv3228g13ZAqtMYUGzaHjDHGGGOMMcYYY4oYm0NVYHM0\nhoSqMzz88MNAkp0DifWTRpk++VWU0ug1mTbXX399GBY33XQTACeccAKQGBydO3cGctk577zzDpDk\nzijf5bLLLgNy9sgll1wCwF577QUk+TWvv/46kLNGZMXILJElouwcZQatWLEiTJV8mwgSS2PhwoVh\npshC0RMn9UG5NnPnzmW//fYDkmwgVSSTCdK6devI4JF106NHj4L3yKzZeuutwwZSBo/GRhbPdttt\nF5XRtJ3QttqmZcuW8TN9Vf/zc5h0LO1P14tMmOXLl8dTGBk+GhMdS/ubMWNGGGFffPEFkOQHyR6b\nPXt2HEtjLCtG46fxbNCgQRhCulY1nmeffXb0Te3RNaRjPv300wBhCy1evDhsrJNOOglIDCKZTVtv\nvXWYWjpHlZlD6v+aqChzqDLyTT2NiSw5fa99QvI7mK6YZowxxhQDuj+Rkax7DVO86JrYbbfdqrkl\nxmyeZPThqzrp2LFj9sILL6zuZgSb82SQ0Ide6bVarqKvkHzw1MSFPvzrPZrI+Oyzz+IDabrU9v77\n7x/704dlTTAokDq9dKdFixYx+XD55ZcDyYSIQpRPOeWU2O/ee+8NECXG1YbGjRvHB2pNmvTr1w9I\nwpM1mdOkSRNeeuklAA466CAgmeTQsUtLS6OtWjKliTIFXesD+Ny5cyOcWpNWmnzRTUqtWrUKJqfy\nx00TEFpON2fOnFgelR8ant/OkpKS+KOnyQwtn9N+NYmy1VZbxXnQezX5osmKxYsXxzE1AaivWj5X\nVlYWYdpqlyZ1NLmm66Zhw4bRPv2/omPlT0zp+kpP5OnYatOiRYsikFrB3g899BCQ3ADefPPNMTH4\n8ccfA8m5Sy/ha9myZYyl9qf3asniqFGj4hoaPHgwkFyj6m86jH1D0eRknTp14jzqZ/mTQun36/dA\n16Z+P0zlbKnLywYNGvRRNpvtW93tMGZTkslkqv+G1VQr6TL1utfQPZYeDpniRQ8E77333rgujDE5\nstlsZm3v8bIyY4wxxhhjjDHGmCLGy8r+w5ZgC4m77ror7IaKjCHIBSzLBtJ7ZVGIzz77rNy+ZXg9\n+eSTALz44osADB06tFzA9ciRI4EkWFkmx6WXXhrHUinxO+64A0gMkzlz5sSyLS2Fk7mhQOlsNhvL\nmGTMyF5SaK/aNH78eH72s58BFdsxeq8sIBlEegola0a2xqJFi8L6UXCx2qD+rly5MkwQ/UyWi96r\nZWwrV66MY8uqkkWlpXtff/117EdPz2QpyX7KL2mv9snsUXiyxmivvfYqF6Ss8ZIt1KxZs3JjK+tJ\nT2S0vCl/mZWe6uk8y25ZunRptEevaZmZ+i/7aNy4cdx2221Acj401gMHDgTg//7v//jxj39cMAY6\ntow4jXF+WxV2fvrppwPJNTVlypQY93vuuQeA7t27R9shuQ43FvnL6rSkTu2saGmnrm39Tqctvtde\ne22jtm9LYtCgQVusPWSMMVs6+nuvEuX6u+zQ6eJF9+dvv/02kKyYsDVkzPphc8gYY4wxxhhjjDGm\niClac2hLMoWESqF369YtAntlF6SzgiZNmhSWjsqZqxx8mi5duoSRogye/v37A4nRsccee0Q5dAVP\nyzCRoSNr5vPPPw+LSLlHMlYUILdo0aLIilEZeRknV111FQBDhgyJsGC9R+1RX7SPrbfeOp4q9OzZ\nE0hsEZkqs2fPLiiRDom5obbL8hg1alT8TKaJ0P4aNmwY4y37SRaQnnTI7pk2bVr0XQaMjq22NGnS\nJPJ5tL2ylmRZyZL58MMPI29JY7vLLrsAyfmAxNpJZwMp+HnZsmUx7nqP+qRzJ8to3rx5sb3GUWOj\nbUpLS8v9TFaM8oUUsDxz5swwtw4//HAgMbk0xo899thaf5f33XdfAK688sq4RpUjpPE68cQTARg+\nfHhkNCkzq0OHDgD89re/Ldjv3Llz15o/1KlTp0oDrUV+CLjGQr9nabMLKv89VVseeOCBMKKMMcaY\nzRHdC2WzWR5//HEAjj/++IL36J7DFB+6z9R93IEHHlidzTFmi8HmkDHGGGOMMcYYY0wRU3TVyrZE\nY0gccsghQM64kJWRzhoSpaWl7LjjjkBSqlvbyGSQAVRWVsb5558PEBkwAwYMAGDXXXcFctWfVEFK\n2THajypD/frXvwaga9euYX48+uijQJLjIkMp3y7SUwHtTyZNz549I19FZpS2VxWz/HXosn5kNMk2\nUo7NokWL4imUDBV9VV6P+jtlypQ4Vn5uUP5xtt1222irkKkjO0VZPJlMJvJmVA1Mx1a/Fy9eHOOm\nXB21XdvIPGnUqFGce/VJZoneu2LFivi3zpEsGZWFr1u3buQ66bzKVpKZpHYuWLAgriHlOMmA0f8z\nJSUlMV7p98pAeuONN+J1jfGtt94KwBlnnAEk5tCpp55KVRk7dmxsJ+tLJpGeUA4fPjwyaTS2uq7V\nB9k877//fpWPnU86m2tjc/DBB8fv04gRIzbJMbYEtqTsIVcrM8WAq5UVJ8OHD4/KrMYI3XPrHrSi\njEZjTCGuVmaMMcYYY4wxxhhj1khRZA5tybYQwFtvvQXAeeedB8DHH38cr2lGXcaKLJJJkybx4Ycf\nAjnDBRJzQ7k22uaWW27hyiuvBBJL5plnngGSGfo///nPUUFKpsV1110HUM7uOfXUUyPnKF1R65NP\nPgFyVo/en59/A4llNHfu3OjP119/XTAmsnCUXzNmzJjIZFK1J/VFlkzjxo2jHWqXUJ+0zerVq8N8\nkX2j11RRbPbs2WGkyNqRSaPjqE8rV64s97QjnWW0YsWKsJI0NnpSoopiahMkhpTalbaqmjVrFhXD\nunTpAiR2kNpdVlZWznCRUab3aP+zZs2KayidOSTbpnbt2pEtpPZo/JUXJdtq2LBhcU0LWVR/+tOf\nWFdGjhwZ465x0vjL4CotLY3+vffee0CS76TfB9lH64v6KXSNTps2LX7WpEkTILHQqoLGJr+Cm80h\nY4wxmwO6f9D9l+xOVQw1BpJ7MGVH6p5qQ+/NjDE5bA4ZY4wxxhhjjDHGFDFbpDm0pZtCQsbPzTff\nDFScgaJ8ExkhFVVXSleJ+sEPfgAkFZxGjx4d9oSe7Mi40M9vvPHGsHeULSTDR099zjnnnPhe1oms\nJ1kZ+jp37tywOWTU6Htl1HTr1i3MCGXlyIpp06YNkBgsu+22W7w2cuRIIGfi6DXImS/Tp08Hyuf+\naGw0jk2bNo0cIvVPT7tky9SuXTsMJuUnibQB9Morr4TZlDaa+vbNRYnMmTMncn50zpSppDHRealX\nr148RVE/NeY6hxMnTozcKVUwk4ml9jVr1iyOJTNF46gMAF0DrVq1imNq/LQfnbsJEybEdatrUcZM\n+unP8uXLY7zPPfdcILHI8iuuVZUFCxZw8MEHA4ldt2TJkoL3dOjQgSuuuAKAs846C4AvvvgCSM6r\n+rLtttvGWMhGU1W6NSGzTGOTbwzpOtN1UxFpq0jnRdcNwNSpUwG46667AKJ6oUnQ34ktKXvIGGM2\nN9LGkO7b8u9njBG6V9RnH2PMxmWLCqQulkkh8fzzzwNwxBFHAMnSoFq1akXQbhotQ4LyoW36sH/H\nHXcAuVBoyIVG64+zPkxfdNFFQPLhE5KQZU1G6MP/HnvsUXC8//mf/4mJkDFjxgDJJNbuu+8OwGef\nfRY3DJp0Si+LatCgQfRHH5DVBpWM13tLSkriA7yChtXO/O/1R0cTPmqfyrarDytWrIgP9T169ACS\nD+ua3Fi9enW5wLx0OLSWOU2bNi1CoRV6rf2ofa+99loseVKI+AEHHAAkfyw1odS8efOYQNGkhtqg\n/Y0bNy4mKhTOrckYfYXyy8e0xE7XhNrdtGnTWDanfur8aFKntLQ0+p5ecqavF198cRzvV7/6FQAv\nvvgiAMcddxwADz74IAD/+te/WBuajGrUqFEsmdQ1rmtMS/Bq164d14XGb+jQoUCy3E1B37oeofzy\nrXVZFramgOo1vabzqfZW9Nr+++8PwOGHHw4U3/+R68LmPEnkQGpTDDiQestE9xheFmSqwr///W8g\neZBtjKk6DqQ2xhhjjDHGGGOMMWtkg8yhTCYzCVgArAJWZrPZvplMpgx4GugETAKOzmazla+RYMPM\noWJ8Ei5b4uqrrwYSuyU/jFgWkayOipDxIston332AZKnNwo5PuWUU3j66aeBRPuVMSTb4/zzz2fU\nqFFAssRG53T77bcHEvOitLQ0DCQtP9JXmR316tUL60cWhmwUGSslJSXRZxkaMmhkXAwZMgSAX/7y\nl9EfLc0SKs3evXv3aIeWSsk6kUWiAOfmzZuHvbPNNtsAib2kJT1lZWXRZi0TUp9kdmhZ11dffRVL\n4RQUrt9NWUvNmjVj9OjRBT9LmymySOrXrx/XhfogZLwsXrw4DCH1V1aR2t2sWbNYHijjR8d+5ZVX\nCva3zTbbxPWh8yA7SJbVzJkzwxqTMq4x0bLDn//85wA89dRT0a7f/va3QGLQ6EnjOeecEybP+vDU\nU08ByfkZNmwYgwcPBpLrX8bUGWecUfB9w4YNOfDAA4GchQXJ75LGD8ov5VT/dS6rgq5Z2XyQ/J5V\n1H8ZWy1btgTg97//PQDHH398lY9ZbNgcMmbTsLHuFW0ObVno7+Rf/vIXAP77v/+7OptjNgMWLlwY\n99z6/GGMqTrflzl0YDab3TnvxvRi4JVsNtsNeOU/3xtjjDHGmOLE94rGGGNMDWdTBFIfDhzwn38/\nBrwKXLSxdl6MppDIzwuCxBhKh+pCYgz169cPSDJqZGl069Yt3vPII48AiUVx6KGHArDTTjsBOZPo\nueeeA4iwXmWsyMyRNQRE2Xtl5yjkWV932WWXsGKUeSN7Rz/fc889ef3114HEMJHVoj7UqlUrTBkF\nUiskWrbSddddB+TsDRkusm1kgCgEeN68eWH0KFhYlpLsJW2TzWYj10j9Ul9kH+VnGKlfyvbR9zJg\nVq5cGWaVcpcUhCx7JpPJFNhXkJgqyiLS619//TU777wzkIRXp3OYatWqFbaT+ql+y2havXp1vKbw\nbNlGurbUl/y8AGUMCQVyL1q0KJ72yDJS/zT2yvg599xzuf766wv6oHN10003AXDNNdfw+OOPA+Xz\nh374wx8CieFUEcowyucXv/gFkOROyfBRMLgsoeXLl0fGk8Zf56Oi4HcZXPq9qyhIujLyjSGd+8qM\nqXbt2kW7dE4U3HjQQQcBuXL3phAHVBvzvbJJ7xVNzUc2ro0hszZ0n9moUaO4h9T9c03IzjVmS2JD\nzaEs8HImk/kok8mc/p+ftc5ms18D/Odrqw08hjHGGGOM2TzxvaIxxhizGbCh5tDe2Wz2q0wm0wr4\nZyaT+ayqG/7nBuF0KF/mO59iNoXSyBQ69thjgcSOeeONN4CKKyTJyJHBIvtoxowZYd3IvJDBMHDg\nQCAxdZYvX84JJ5wAJJaSjBwZHW3atOG2224DoFevXkBiNug4L730EgA9e/aMql96AqDy4KoeNWzY\nsKggpfwgvUc5NkuWLAlDQ8eSvaP+KiNo6tSp0Q6tV5aRJFq0aBHt6tOnT/QdEstDx2nVqlXsu2vX\nrkBi7ciIqVu3brRDY6nX9MRDbWrfvn38W+dBmTeyZcaNGxft0ms9e/YEiFwgZfK0adMmroN0+2QC\nLV++PCwiVU2TgaV2L1myJMZJP9NY6Fj6/dV4QPlzJZYtWxZjLLtIRpLQGN19993RrmeeeabgGPlV\n3x5++GEgsdnUb10bazKHKkK5PD/5yU+A5PdBRtFDDz0E5K4p/U6qatxee+0FJNf1Z58l/yVqrNNW\nkTKcKqswmE+bNm3iXFfGV199FRaWzrnOoc7VulRTM8aYDWSj3CuaLYfGjRuHAWzM2tA9M6y5iqsx\nZsPZIHMom81+9Z+vM4HngX7AN5lMpi3Af77OrGTbB7LZbN9sNttXy3CMMcYYY8yWw8a6V/y+2muM\nMcYUK+ttDmUymYZArWw2u+A///4xcC3wAtAfuOk/X/+/9dm/jaHyvPbaa0CSP5LOKpHRMW/evDCE\nZKPIFpG10bt37/h3//79gYrzVyA3Y6+qRzovytlRhs5OO+0Us/nKO1EbZM2cd9550SaZHw0aNIhj\n5LezTZs2YZTIftBX7VdtgMQGkt2i6liaeLz99tt58MEHC46him7vvvtu9EHGh4whtUFrmvfYYw+g\n0P5Qe2Rr6PtGjRpF5ovaoX4qTyg/Q0i2jbaXNaP2NmzYMMwtvUdPTtQ+ne8lS5bEdmqDttV1U1pa\nSvPmzYHE2EpXF1uxYkXkD8l8kfGTrjDXtm3byOfR+VD7ZPy0b9++XOaQqtrJbtE+dt1116j8pspc\nOr8a6969e0fblSml6/Dggw9mQxg2bBgAxxxzDJDYNmqDrnNIxkQVBO+77z4gl88k06eybCGNa1WY\nMWNGlawfXQf6qutVmVz33nsv4OplFTFo0CDnDhmzkdjU94pm82T+/PnOijHrzFVXXWVjyJhNzIYs\nK2sNPP+fD7u1gSez2exLmUzmA+CZTCYzEJgC/LyqO/SEUOW8++67nHTSSUDlQbb6sFpWVhYfHPVV\nZdK1/KW0tDQ+9Gq5jNCkkZg+fXp8wNWEjD6gagLjhBNOiCVdKi+vY+oDviZjpkyZEsuitOytd+/e\nQDLp0bBhw3IffvWhXBNVs2bNoqysDEgmCxT2m79cC+C2226Ln2liRttoPPPbqIBtTeYohFmTKQ0b\nNozJDL2m/musZs6cGe3TJNjXX38NJAHGmlQoKyuLiSKRDoCuX79+THxo8kpfdR50s1VaWhrH1HWi\n/mocmjVrFhM0mgzSedWEXocOHWI7TcKoXVoGpUmZBQsWROiyJowUgq0x79ixY7ymCUJdtzoPCjJv\n0aJFLIP65ptvCvqgtowbNy4m1dR2laVXsPebb77JhqB26tzrOG3atImJN/Xv4otzBXcGDx4M5Ja0\npcdd6Oe6znfffXc+/PBDILleKroJWpelYOlj63dTpe333HNP3nnnnSrvzxhj1pGNfq9oNl/0tyib\nzRYsFTKmInRPq/vYG264oTqbY0xRsN6TQ9lsdiLQu4Kffwf8cEMaZYwxxhhjNm98r2iMMcZsPmyK\nUvbrzNSpU20NVYICbidPnlyulHsaGR0LFy4sZ//IVLnllluA3NMb7Vtom/SStHfeeSdKjsoMkSGh\nJUezZ88Oy0NPg2SIyHyRdTRjxowIPtZyIYUJK3B59erVcXyFLssy0vKosrKyMEq0vE0mjdopi6RD\nhw6xtEbmh46t8u116tSJMZBRIyNH9oj2v2jRorBtVPJc/ZWdsXz58jBnZAzpHGp/Ct1etmxZmCmT\nJ0+OMYBk+daYMWPYbbfdgPLLBGXfaFyXLVsWP9PY6DzIJlmwYEEYKjKsdEztf9q0aWGqyNjS92q7\nrq0vv/wyzKa0yaUxmj17drRH5pHG6MUXXyxoy/Lly2M5mqwsXVuyjLp168bbb78NJNei9q//UzbU\nHNK1oGtt0qRJQC7oW/vW9aanW1qW1KlTp+iDrgtdh2mTaMKECXE+q6JNawx0XtSufNLHEPo/RKH2\nphCXtTfGmPUjk8nEPYDumWSA6O+f7jONWRO659N98KpVq1zC3phNzIaWsjfGGGOMMcYYY4wxmzE1\nwhwylaPg2IsvvjjCZCtDZgIQWTcK/73iiiuAxH746U9/Gu+VGaFMH6EMnPvvvz9MFxkNMlR0zBUr\nVoQ5I+tkp512AhLDRFk8vXr14oMPPgBgv/32A5KcGf28a9euYagMHz68oE9q57ffflvOfFA7ZWDI\nnJg7d25YACqfqidXslIWLlwYJk27du0KtlefFNi8YMGCyFTKL6sOiW00efLkGC896VA+jsZK1sfC\nhQsj52i77bYDkqwmvadbt25x/vQz7V/Gj9owefLkaLOykXSe1acFCxaE6aNx17E11kuXLo1xSpeR\nlw0l86d+/fphaski08OhtDYAACAASURBVGtq11ZbbRUG0y9/+UsATj89V6VYuT0a1+XLl8d2unZ0\nXmTozJo1K64dnRu1QWMkE2vu3LmRBaRxzC81n0b5XLK9NMYao4ULF4Z9d9pppwFw5513FrRv1apV\nXHbZZQCcddZZlR4LCn9/q4KOUVHQtewr2W1pdO4WL17M0KFDATj11FPX6fjFgA0iY4xZd3TfILtD\n9x+6fzBmXdDKiEwmY2PImE2MzSFjjDHGGGOMMcaYIsbmUA3l+eefBxKjQxYJVP7kJb+8utbnPvXU\nU0BSnUjlufOR1SIjR6bJgAEDAHjttdciz0WZRdqmX79+0T7lmGiGX5k36sOBBx4I5J4gHXHEEQCM\nHDkSSEwHVS2bPXs2hxxyCJDk1uhJlMyTFStWhN0kG0aVs9LlzcvKyqLt2kY5OJ9//jmQy8w56KCD\noj+Q5BKpbyrRrj4CPPPMMwCRB6RjbrvttmG8KJNG9o3GWudsyZIlYbykK5DpiduiRYvCwpIxpNwZ\n2TaqfrbddtvFe2SPyaTR+HXu3Dnym3r06AEkT/k0RiUlJWHe7LLLLgVjoTGXhVO/fv3Ic5LFo+pb\nXbt2jfFSdpSOpbLvumZl0ORna8lk+vjjjwvasmrVqrBgZCvJGlN/X3rpJSBX2v7aa68tGDed+/xr\nS2Os45955plAcs7VlpNPPrmcqaZ+yzJatmxZmDmyjPT7UFkeUEWoit7MmTOrlEdUmTEk8quXPfbY\nY0ByrU+ZMqXK7TLGGGPyqVOnTtwX6G+j7smMqQq6P0xnmBpjNj02h4wxxhhjjDHGGGOKGE/l11Bk\ndDz77LMABXlD+YZQPrJTvvzyy8jOkfVx6623AoUVImSkpJ/oHHXUUUBij/Tp04err74aSGwW2UXv\nv/8+kMvDETJgZFHI8tCTgDp16sS+lfejvBlVvmrRokXkwcjCGDduHJBUo8pms2EVKRdGfdFXGToL\nFy4MO0amiTKNZLtkMpmwV2ShaPxki+gpWL169eLfRx55ZPQLkspr7dq1i+PLolLmkJ6GLF68GIDm\nzZuHnaX9pPOOWrVqFVZR2s6SCaOvq1evjmPLZJJBpOtn8eLFcR40pqoopxybZs2aRb6ULBtZXjvs\nsAOQZEotWrQo9qc+KHNI19rw4cMj80nXuGwnnQ+dpyZNmsR7dD41Jvq+VatWMRY6hq4lVX+T3bZw\n4cK4/mWsycjR+ejUqRPnnXceQFRBE+lMoAYNGvCLX/wCSM7HBRdcACT213nnnRfXkq5jGTr6/fjy\nyy9j/CpD13lFKDeqKkZRRbzxxhsA7LPPPoDNoYpw9pAxxqwZ/d1/4IEH4u+SMeuD7sn01Rjz/WFz\nyBhjjDHGGGOMMaaIsTlUwzjssMOAJFfok08+iddkbGgttywKmS8yENq3b8+FF14IJNZIz549yx0r\nPSOfXtMri6RTp05hteg9ek1WS0lJSZgVyr+RuSGTQ6ZENpsNA0mmjgwY7WPZsmXRZhkXsm5kvrRp\n06bg35DYMbIw8jOMNG4yOfRkS/ksrVu3ZtKkSUAy/jJXZGLJmKpfv35YKBoDHVPWSL6JpAwjmTVq\nl/afnyek8yobRf1v2LBh2ErpymMynGT5rFq1KqwkIUsrv9KXqn8ph0hP/nRN1a1bN865zqfMK425\nxrVJkyaR86N2aj8a15KSkjDI8q0uSDJ51IYFCxaUM7juuuuugj7NmDEjLCKdM9lA2o9YsmRJmEw6\n97om33nnHQD69+9PVdE1AYkBpnOmMbr99tt54IEHgMTq0u+dMo00jhMmTIh26at+LypC19+6GENp\nK61FixbxOydj6Ec/+hEA//znP6u8X2OMMcXN/vvvD8CJJ55YzS0xmyu6pz/nnHOA5J5F97yuVGbM\npseTQzUMlbtWCXt9gNx+++0ZO3ZswXs1waL36ENxu3bt4kOvJpTyl5NBbgJDS7H0QV7LybQs7De/\n+Q0AhxxySEwo6FiaLFI58ueeey6OqQkULRfSh3990G/VqhUfffQRkExmqH364NyiRYuYdEiXdNeH\n4caNGzN+/HggmfjQazvvvDOQBCIvXbqUvffeG0iWFOmPjT6A9+3bNyZA1D4t1RNaXrZ69eposyZv\nNJ4qrb5s2bI4hpbL6T2ajNHrjRo1iskSvUcTDpr0qFWrVkyQ6dg659pW53LGjBkxwaCJAE1EaXlY\n9+7dYztNAGkyS+e7tLS03HlV+zSpoPOz3377MWbMGCD5g65zrm0+++yz2M/o0aOBZKLs5JNPzh9q\nHn744Zhk0Tg9+OCDQHLtH3300eWWCwotxRoyZAgAp59+eoyb+ql+6z3rwgsvvMDAgQOBZLzUhvzr\nWeHrWt6m33Ftkz8pq+t3TRM+ugY1EboupEOw85fKaVJTk7mmPF5eZowxhRx99NFAUgBF9xXGrCu6\nd9JDNWPM94//BzfGGGOMMcYYY4wpYmwO1RC0hEOhy7I7RNoagsQE2W677YBkScsll1wSy3hkAcj0\nETI5IDFnZCtoydgxxxwD5KwbGRFa+vOPf/wDgCuuuALIGSEKpX733XcBeOSRRwC47bbbgGQJz7x5\n8+LpgGwFBSIPHz4cyFkqWkJ02WWXAYXLvyBnnsjIUZix9qdxVGhyfr9k+sjIkWXUpEkTXnjhBSBZ\n1qNlUekw4mw2GxaGLBmZUtJeV6xYEUuGZIfIjNJ50dK5kpKSeNqmdul8aNlUvq0kk0b9llWlY7ds\n2TK208/Sy7kaNmwY22uJlPoks2bBggWxHErvlQ2kPvXt2xfIXY9qs5Zvadxkjw0ZMiTG/5BDDgES\nY00888wzAJxwwgnx9EjnQ6XsH3744RgTWV433HADAK+++ioV8dJLL/G3v/0NSJYoaiy033XhiSee\nCGtK/Z0xYwaQnMOysrJYLnj99dcDyTJEXbvq27Jly6oUBr0uxpD+T0hfvxWhtgsFVL/55ptVPp4x\nxpji4umnn67uJpgtgKVLl9K9e/fqboYxRY/NIWOMMcYYY4wxxpgixuZQDaBv376R8/Pyyy8DRBl3\nGTUygfJJh+Dqa506dRg2bBhABFMLZdKUlJSEwaFy3DqmLAqZNvPnz4/y20I5MWpDu3btIstnt912\nAxIjR9aCXt9mm23CnpB1I9soPxPlpJNOAhKjQSaM2rXHHntEULHMF42XzBCZLJlMJvqrwDuNl2yj\njz/+ONqs/cnYkjUjQySbzYbFozFVlo6oW7dumCCyR7SNrBG1v2XLlmHkKIsmnSM0d+7cGANZSvkB\n1JBYUdlsNuwijbGspV69esV7ZbjoNfVB16PGSG1UO/LHVlZQu3btog/bbLNNwfjJmhk1alTYZzq/\nysWSiaT8gr/85S+Rr6NsKbXnpptuin7LJEuXnq8IvVcW2uGHH77WbcQee+wBwPnnnw/kDD0Fep9y\nyilAYsvdd999QO486Xr7r//6LyAxnHR+1ac1hU/r923EiBHxM5077b8iqmIMVYaun1atWkXWmMkx\naNAg5w4ZY4oaGdD6W6H7E2PWBd3D3HHHHVWyp40xmxabQ8YYY4wxxhhjjDFFjKf5awDnn39+2BcT\nJ04EErtj1KhRQC4fRkaJcmz0tEYVw2QiTJw4MSyEPn36VHrc9957D0hKkSuXSGaOLJk+ffrEsTTD\nrydEsj1atGgRBsS///1vIMksUS6L7JZ58+aFcaE+6ft8Eyhdil3ZN7JTGjVqFO3QsdO2jL7OnDkz\n7B1lNMkO0j4aNWoU75cppMwhVTGTLdOoUaPoj36m98p+Kisr48svvwQSoyddgl6m0/z58+OJifaj\n8yA7qFatWlHhS/lOMjqUISWbpLS0tJz9o/3JAlu6dGm0I13pS5bQt99+G1lRaruQHaS+VVRhS9eL\nStt+9NFHYU/JapOtdemllwJJJs/FF18clo7MOY2X2r1q1aoqGUNC1evOOOOMKm+z7777AvDGG28A\nidkESUU0vabqdqraBoldp8wnjafOnfq0++67x/WiryLfGBJrMoYqQ9e3zpmu4YrQ9di7d2+Xta8A\nVy4zxhQT6Sqpum9LV8M1Zl3Qfesll1xSzS0xxoDNIWOMMcYYY4wxxpiixuZQNaLsldq1a0f1JRkg\n6epJixYtYpdddil4bffddy94T9u2bYHcul1ZBelcHH3/zTffxPHF66+/DhDHya+wpTwi5cPIgpAp\n8fHHH4cRodwaGUQydWRHTZ8+PX6m/uqr8n86d+7MRRddBMCZZ55Z0M5f//rXAAwdOjSyd7Q/mUiy\nWGT87LjjjmFzqA8yN2TWLFiwIKp0KZNGVocsHOXtvP/++/zoRz8CEvNo/vz5QGIkffvtt9Evjb9e\nkx2Tnwmjtqp6lfoik2jmzJlhlMn20v5lhOj7ESNGxPWgMdXTGVlR33zzTfRPY6BjqhJeJpMJY0t9\nT5swyvFZvHhxXAOylNSuP/3pT0DOptK+NW7KJbr44osBuPXWW2Mf2p/sHZ1vXY+tWrWiqvzzn//k\nuOOOW+v7dF5ly8gKqgoyfvR7VlpaGsaabKfBgwcDScU1XYdNmzaNrKxNRX6m19qQfSgj0RhjTPGi\n+xhVgzVmY+CcIWNqFp4cqgb0Qfzyyy8Hch94taxHy1QqQh/Ktaxs4MCBQLJERKG9q1atigkATRYo\ncFhLg/r16xcTA5o82HXXXYHkw6omFxYuXBgf5DW5ocknhUXXqVMnJpN69OgBJB+QNQGiCZuSkpJo\nh5ZJpUvSL1u2rGB88vs3YMAAILd0Z6eddioYI5XB1JioDdlslu233x5IJn70oV2lwTt37hzH0NI1\nTSjpnGm/9erViz9oGj9NlqhvDRs2jA/7+ll6aZfGdcaMGTFppQkaLevTMefMmRMTPNqfzq8+wGvi\nJT8wW2iiRpM9U6ZMiWPovOrY6tOyZcsidLJr165Ach61P/Vp4sSJMcGlCUyVpdfYtGzZMiZ81He9\n9vOf/xyA4cOHA7DDDjtEfzUGmrxTOPTy5curHJbcpk2buAbSEz4qxZvJZLjsssuqtL81cccddwC5\nCUyNnyYPxVlnnQXAnXfeCeSuKfVTywZ1PW4qSkpKYvJRvwdppk2bxvPPPw/AEUccsUnbszni5WXG\nmC2d2rVrx99NTRLpvkP3l8asD4ooMMbUDPxI2BhjjDHGGGOMMaaIsTlUDTz66KNAYmD0798/DAkF\nSH/yySdAshRIhgfkrB9IliZpGZL2m8lkeOihh4DyS0JUTr6kpCSMDZUZl9mg/ckKGj9+fIRVa2mY\nkGEze/bsCCeUhaKS3UcddRRQWPZeQcP9+/cHkmVSBxxwAJAzO7RkSEthdtttNyAJuG7YsGFYKLKp\n0sutZLJkMpmC0tyQGCv6Onv27DC3ZMnIpNF5kOHVr1+/GAvZRVpip/DkLl26RLCzSrLLzpDVI3tm\nm222ifGWyaHleep/w4YNw5KRefT5558XjLlMpe7du4fZI/sk/XSmc+fOYYDJ4FI71e6WLVuGzSWb\nSGGUsoN0bSxZsoQPPvgASK47LcfT+Vm8eHEsvdL1q3Y9/vjjBf3daquton26JoXsp7p16/Lkk08C\ncNpppwHJORP77bcfkDt3snRkj+n61XUke25DOeeccwC47LLLOPvss4Hk90nn6IknngASCyzfgNL4\nywRTe/PRmFQUBF6VMveQewJcmTGUjyw+/X6++uqra93GGGPMlsHKlSvD2DVmY3DYYYcByf36ihUr\n4n7cGFN92BwyxhhjjDHGGGOMKWJsDn2P3HPPPUBSuvuvf/0rkAuWVll5lXKXhaNQ2NLS0jB8Hnnk\nkYL9KXtI5s/MmTPjGDI4ZBcce+yxQG6GXgaIjBwFDmsbfVVOCySZLzJoZMksXrw4soEUUHzVVVcB\niZkja2nZsmVRslLtklkii2Lo0KFcc801QJJtI/NIuSwTJkyI98t4kSkkg0jtnTVrVkGZ9/x2yd6p\nXbt22B133303kJhNPXv2BJKcotGjR4e9ovX26ovCsbfaaquwdpQhIytI9pPMlZUrV0a/ZOjIulE2\n1NKlS+M96TDodO7Ohx9+GIHjaQNJ527ZsmXxmjKVZKPI6lm0aFGYVspY0msae+1j6tSpcW2eeuqp\nQBL+rfLvbdq0KZdXpetM9s69994L5M6zsg1kJKm/utbr16/PddddV7Dd0KFDC8ZCps7NN9/Mueee\nCyTmkc7PKaecwsZg//33Bwib6cwzz4zwTl2L6pPOh66fsWPHxu9afjA7JOZQkyZNwuTS9aa+yJhq\n0aJFQdD5xkBmma5tUx5nDxljtjR0f3TNNdeUK2xizLqg+1fdy7/88stAci9ka8iYmoHNIWOMMcYY\nY4wxxpgiJlMTZmozmUz1N+J74LnnngMSy+Oxxx4DCGsIEgNGT2u0xnvatGlhPcg2ueuuu4DEHJJB\nMWrUqDArZHmoYtIOO+wQx3r//fcBojy6LCC1QYZHnTp1wnhRCXEZDbI/pk6dGgaDzAaZRB06dACS\nHJWpU6cyZMgQAM444wwgsUaUsbJy5cowU2Q2yZ7QccaOHUvfvn2BxA7Jr04GScZPw4YNw8RJWzJi\n0qRJYRUpU0VtV+U22RorV66MHCgdQ9XalMFTUlIS50rbyQhRG5Rx1Ob/Z++846uq7///yg4JSTBA\nZA8VRQH3qNuqbdWvG6tS98SFW6tSrNSFAu6fimjVKmi1ddaqRW2rFrCgqIA4wYEIJAQh7CTc3x+3\nz/fn3HNvQtwJeT8fDx+R3DM+69yc8znPz/vdqZPVi3hTxJ/i+BUVFTZ2sHWwTugf4iAVFBTYWz6g\nX0kdX1RUZOWLW1msAccmk0JsoNmzZ0sK/cm+F198sWXgAowwzJ8tttjC4iVhDDFeGEuMw3vuuUej\nR4+WFNLc036kg1+9erWuuOIKSdLdd99t7SRJM2bMkBRsr8LCQms3LB4ypK0rNk8mOnXqZIYf44b2\nxJzKzs62No2/deX6IPbQpEmTbJxhdzEGsLZoox8CxhD90dg2GE6TJ0/+wcrTUvkpzKEhQ4a8mUgk\ntv/RT+w4PyKt5V6xOcF9STzepON8Wzy7neP8dCQSiXVegG4OOY7jOI7jOI7jOI7jtGI85tCPwL//\n/W9JwU7AdCDTVHFxscULwRIhdgl2Qdu2bc2qGTdunCRZxq9hw4ZJCsbFr371Kz322GOSgrkxcuRI\nScGq2GSTTeyNEMcl4xUGDHbFSy+9ZMZAPIsXhsnGG29sZg7mDPYStgbWR7t27XTxxRdLCvYIMVIo\n35dffmnnxHrCmiB+z2abbWbmBhmwiNFEhirivcyePVu77rqrHTtaP6yeRYsW2fmxTbBjeNNBDJ03\n3njDjBBsLOqCGbJs2TLbj9+R4euAAw5IKUNtba3FScJoiseN+eSTT8zYok0oD2u2Mc7q6uqsjzB+\naCP6p6amxspF37A//Tpt2jTtvPPOkkLsJ/qT+p599tmSkuYaxhZtypjCTps5c6ZZXtgwWFRcD7Tn\nySefbO0/YsQISSFrFjGhTjnlFIutxPWF+dK3b19JIdPf7NmzzfDhON/EGCKzxumnny4paafRf1ED\nLNpW1dXV1sbUhXpyLTGOioqKbGxiGdHG7PtDmkONGUPxbfwtcsN47CHHcdYXotk/+fvu5ofTVBKJ\nhI0XfnJ/xOqA5rCCxXGcgJtDjuM4juM4juM4juM4rRiPOfQD8ve//11SmCW/4YYbJEnvvfeepNRM\nZHGDATsGE6GsrMxiuxx++OGSgt2CiYSJcc8992innXaSFGK1YCtQluHDh9s2WACMBbJjYd1UVFSY\ncYHJQFY1YqS0adPGbAd+Yoi8/vrrKf+urq62t1Gci1g6xB4qLi42kyae4QCjaMCAAWa6cE7+jX2D\n5bJ8+XL7HW8vJk6caMeRkjGNaCeOh9XCcYnBU1FRYTF8sGMwpzj+okWLtPvuu0sKb0gwwagnMWre\neecds6Di2dk4z2uvvWYxqLCKsL4wiKLZ3xgPvXv3liS9/fbbKe2Xk5Nj+2G+EGOJuixevNh+h11E\n7CfMMH5uu+22KRnzomVnjF5wwQW6+eabJUnXXXedpPS3RpR78eLF1pbYTphXzz33nKRk/x5xxBGS\nwljkeJhxXEOTJ0/Wk08+KUl6+eWXJQXjKhPEs+K6ZSzQfosWLbL945YctlBBQYH1FeMY2whLkH7O\nzs7WOeecIymMC7KDcS2UlpbqzTffbLDMEM92+H1Dm2JgUW4nnR/DIPKYQ05rYH29V2yOEK8SI33D\nDTd0Y8j5VvCMQTZh7iUdx/nxaUrMIV9W9gOx7bbb2gM3sFyLB79MD25MlvDwRTr39u3bWzBolpWR\nGp4HUQJUP/HEEzYpwUQD20QfOvmiZtKGiQYecCEvL88eYNmfpUrUoayszI7DRBcPtExokN67vr5e\nm222maQwmcGNCG1UVFRk5Yin96aNqqqqrA788WHiguNuu+22kpIP9jzA83C+zz77SAoTIbm5uXZs\nls/EJ2xY1jVv3jwL7MwkBMuvmAzo1KmTTR4wgcQkExN7TGQkEgkrH9vQjkzM9e3b184FTKQw+cT5\nopM61CW+jGnNmjW2H2OLtubc7dq1s7FDvWg/tjnooIMkJYMoU3b6k4nQQYMG2T5sw9LCW265JaWc\nHP/rr7/W008/LUnaeuutJcnGDYGaV6xYYfsTyHurrbaSFMYxyy+fffZZu7m96aabJIUlQFEYF3/4\nwx8khYk3rgGW5y1evNiuB64drgHGY1ZWVtqSMK6Z+Niqrq62CSnadvr06Slts/nmm69z4qdDhw4N\nfsZEIXXIBGOMSbDosRgL1IUg4LT5O++80+BxHcdxnJYBfwd4KeITQ863hXs6nxRynJaBLytzHMdx\nHMdxHMdxHMdpxbg59D3DcrBx48ZZ+u6HHnpIUrABsDWgvr7e3tJgwmCa8KZ/xowZttTppJNOkiRd\nc801ksJsPMc4/fTTzSh55plnUs6FXdSuXTszQdgfwwGThmU6VVVVphZvueWWkoJVgDmxYMECqxef\ncRyWkFH+Tp06mVkSD4DMsrXu3bubMRM/LtuuXLnSDCHsC4wr6sK+WVlZ1qbx5W/8vrS01KwM6htd\n+hc93uLFi80iYokdS9Low7q6OqsP1gnL0jBMKPemm25q9gn1ZF/sotzcXEtxTpkJoM22/D5aViwl\nbA+slg022MBspf3331+SbMkSBlV1dbUtDeMNIpYR4waDrby8XF988UVKfQmMjr2TnZ1t7T548GBJ\nYUkWphNL7goKCjR06FD7/2gZsIIKCgq03377SZKOOeYYK7OUNIWkMCYSiYQOPfRQScFW2nfffSWF\nt6InnHCCjQHqTduStn2LLbaQlByHGD333XefpLB8DpYvX242F/WiPPRP1CY78cQTJYWlSIwPlj4u\nWbJEG264oaSGzaHGAks3ZgxFyxz9GYW+A/qOceikM2TIEA9O7ThOi4C/R6+88ookN4ac7w5GP/dS\n2OuO4zRP3BxyHMdxHMdxHMdxHMdpxbg59D1DDI45c+aYTUAq+zhYEFVVVWbgYMWcccYZkkLa7Msv\nv9xm24mFQnDjSy+9VFKwW9q0aWOp0rEgsACI/1NWVmZviEifjaGCNUP8EykEeMZ+Yt9ovCLsDspJ\neTAniMmTnZ1tRgSfcVyMn5KSEvuM41BO6Natm5WZcxPnCeuJt16JRMJMF7bFPqEuhYWFdi725ye2\nDeZOv379bB01pgbGDzZT7969UwI7S8Huiqe9nzt3rtk6bEvd6LvS0lIzNDgHlgx2EBbP3nvvbeVi\nTAHt2LNnz7R4Qj169Ehpk5KSEqsz21Iu4v/w+YsvvmhWC+MFO4Y3R/X19dYPBKbGgGMb6ltUVGSm\nVdy2ow9HjRql888/X5I0cuTIlP2BOFbLly+3AM9cM5SF35eWlpr5RXloU+Js0YcLFixQ3759JckM\nJ9qa8q1atcrGOv0Rt9CweVasWGH70daME+J3rVy50uwwLMWPPvoopQ4YbD8GGIrEZdpxxx313//+\n90c7v+M4jvPd4V6Jv0vEkXOc7wpWuOM4LQM3hxzHcRzHcRzHcRzHcVoxbg59Tzz44IOSwpv+r7/+\nOi1bGdYHab6xNaRgHJA9CWuGnyNHjrQ4LsSFwewh9g2z85MmTdJuu+0mKVhLGENYB2vXrjXjIx7/\nhrThnHuDDTawumA4YZaQnahjx46WmQqjAcMEy6Vr1652HowQ4tcQ8wYbatmyZWafENcEq4I3W8uW\nLbP2pi2xPrBHiIGz5ZZbmimEuUF9iaOSl5dn1hPxf7B5KAP79O7d24wP6ovFE493JAWzBysIiD/T\nvn17M3roT7aljpWVlWa6YDKxLbbGXnvtJSlpxFBWjoNBwxvBRCJhfUxfsS19VV9fb+MuHqOJ+pG1\nrXfv3maSjBo1SlLSeJOCHXTKKaekrTunbekr+nn+/PlWP/ZhLFH/U045xdrw7LPPlhTMqLFjx0oK\ncZ6uuOKKNPuJ1PYXXXSRpKQdhKVDfcnyhinG79u1a2fGW/y4tGOnTp3sOqNNMX0Yq48//rgkaeDA\ngVZPxihtjc0XrXvUeJOCMdShQ4eU75amQnwz9qWtm3K8iRMnSvK3zQ3B97rHHnIcpznC3y7g7zt/\n2zz2kPNN4F51xowZdk/H7+JjzXGc5oWbQ47jOI7jOI7jOI7jOK2YrOYwg5uVlfXTF+JbQvYv4n1c\ne+21kpJxRJglJ0tUQ+Tl5VnskjPPPFOStNNOO0kK9s6MGTM0fvx4ScGwIGbRZZddJilYJEOHDtXM\nmTMlhbc+xILh+HvttZdZCm+99ZakZLwQKZgbmAP19fUNxq/h3/X19fZmifqS2QwTA5Nl3rx5aWuQ\nidfDMWpra+3NFW2AKYEVVFBQYOYGhgWWCPXFFlqxYoXFiuEnn9EO0bpzzmjMIinVduH/+YkdRBlq\na2st5tPHH38sKcQwwsTCTJo7d64233xzSUozuqjjvHnzLFMW0L+ck/g4X3/9tcWdwqShTTBfVqxY\nYW3KObG/Bg4c4fazKwAAIABJREFUKEmaPXu2mW5k22Lccc7rrrtOUtLc4Xpgf6werLmZM2fa+Wlb\nLK1HH31UUrCOampqzFoCYtswBlavXm0mDf1w//33SwoGDEbXXXfdlRK/KXpuypeTk2PHGzFihCTp\n1ltvlRTG77HHHms/sX+22WYba1Mp1fSh3RkDjBPagaxos2bNMluOtj3vvPMkpZpTlIP4UIwBzKGc\nnJy0rGKAZcSY6t27d5qNxWdR4tZjQ/Tq1cv6tSmZ0Vor37dBNGTIkDcTicT2697ScVouLflesaWw\n7bbbSgqGuuN8G7i3imbQdRznpyeRSKxTA3VzyHEcx3Ecx3Ecx3EcpxXj5tC35JFHHpEU4ohcccUV\nKZ9PmjTJjIF58+Y1eqwePXqYgXDuueemfIYNtGrVKstgxlt8zBriAPHGv6qqymL5YBdgJDz11FOS\nkkYHFgXGBTFp+Dexc6J2BpYD8Vc4xuzZs81uwO7AIKK8mDr5+flm5sQtCrZp166d/T9vIDBAMH8K\nCgrMAMF4weBgH8q5ePFiOx7mBSYM9kxlZaXVgf7AJKJtsCJWrVpl22DrcDzKhA0VPQ7mBu2GsVNY\nWJiW9Yx9om0zadIkSdIOO+yQ0rbUHwNt5cqVVp64RcK/q6urzYiir+gP7KDPP/88zSSLZ1rDiIl+\nl/DZgAEDJIWYPsXFxTrmmGMkSX/5y18kSQcffLC1qZQa54k+69evn6Qw1unfuro62494VfQL9g22\ny6abbmpGD9cVttY//vEPOw/GC2Od+mMFYSRFM/5hCRJriOutpqbG4pHRBvGsZVErhzbm2sYWnDp1\nqqRkP+2yyy4pbQDUv66uLs1WjGcH/KEoKSmxtiUemZOOm0OO881pifeKLQXulWbPni0p3P85Thzu\n9Wpra9NWExDf9I033pCUvL+OZ5t1HOenoynmkAek/hZ06tQpLQX4KaecIkn67W9/Kyn5AM2DIzCp\nEU+1/fnnn9uyNB7KmQjhgbSystIeVpl0OvDAAyWFL2qWMB100EH2ADl9+nRJ0u9+9ztJ4aFz4cKF\n9sDIEqftttsupU48SK5Zs8bOyYMtn7FMKjs72x7SqSfl4SGWSZNly5bZNvxh4UGeG5Q5c+ZY+Via\nxEM+E1UdO3a0YzMhwGQCPylnUVGRBT5+/fXXJUm/+tWvUrbp0KGD1Y+HfdqL41PHRYsW2SQJS+So\nAxMYX375pd1gEaiZyRse5FFus7OzrU0oJ+3Fvr169dLPf/5zSWFSif2Z1GFyITc315Yf0g+MKY7b\nuXNn/fnPf5YUlk4xqUFZrr/+epss5DMmNWh7xkBtba3+3//7f5Kk448/XpI0ZcoUSdKwYcMkJW88\n6derrrpKUpiY4qaUc1dXV9u2TOrQP0yofPHFF3Z+xgk6/NNPP23lYl+2oV8HDx4sSRo3bpyk5LJL\nxiTXG21LuQgovWrVKisHY5IllCzlKykp0fDhwyWFCTzKwBjl+h01apSVh7HEeIteZ/QDk3yMF8Zh\nplTy39ek0LommWpqamwyjUniuXPnfi/nXp/wANWO4zQnovdVUvi75IGonTiMifz8/LTxwd9/8Ikh\nx2l5+LIyx3Ecx3Ecx3Ecx3GcVoybQ9+CG264wd7as2QEWyFqrGA5AMbQxhtvLEkpqe4POeQQSWEJ\nGpbCXXfdZcfDKsJq4d/YCtdff72k5Bt7lnRwTt7iY3t07drVjkMgasyceDDnrKwsMyFYRsdx2ad9\n+/ZmXGDUxNNy82ZKCkunsDBY/oYxUV1dbSnEsWTYBpNl8eLFtnQKuwYrg7cXn332maTk2zB+t99+\n+6WUh3LX1taaNUU5tt9++5R2g44dO1r9KAMGDEv6evbsmWYTURf6FzMsPz8/zSThjQxL5ebMmWNL\ndugj+oF/055dunQx64R+ji9by8nJsWWGfIaJdNRRR0lKBjmmH7CSaAvqj+01f/58awvGW3wJ1Sab\nbGJ9gn2HoXPTTTdJCmOsqKgobRkj9ZwwYYKkpInF2MRQwc46+eSTJUm33HKLpGQ/YU9hvhx++OGS\npD322EOSNHLkSGuDq6++WlKwgBgn1LF9+/a2jIxtMHyoy5FHHmntFl96hpFEPy1btszMK+rLtX3h\nhRdKkh566CGrJ9cB+1O+Hj16/GDBoJtiIGEuYaUxlhzHcZzmR1ZWVlp6cTeGnHURXx0hhecGx3Fa\nLm4OOY7jOI7jOI7jOI7jtGI8IPU3ADPklVdesRglzz33XMo28VTRmcBGwXbJz8+3wL2nn356ynGI\nJ3L//fdr0KBBksLbe2KPPPTQQ5KCdURq+igE3O3Tp48dA7sDu+WDDz6QJG211VaSgtlRW1tr58SC\noHzEIMnPz7e1xexHG2C3YM8UFRWZPYHFEo8VVFJSYnXHVCGmCtvU1dWZgQNYO2yLHdSuXTuzOxp6\ns1FeXm714idQJ4yxnJyclLJKIabPq6++KinZz9gctEU8rWc06DQmWf/+/SUFswzTrKqqKi3YNWZO\nfLwVFxdr5syZKceLGzYbbbSR1ZOAx/fdd58k6bbbbpOUjBnEOKENsFLiZlKnTp2svvQZ5WMM5OXl\n6cYbb5SUNPCkcF1hImGIRcHW4Sfxifr27Wv7Y1gRIJuxQXyX3NxcK2vc4sFQKi8v16GHHiopXCu8\nHeN41H+LLbawMc1Y4BqMxtDCDsMaoz+43u6//35JyXHDZxyHccy1UFBQYFYR7UU8Jvqyc+fOFgyy\nIZqSmr4p32WZYLxQdmJfeeyhhvmusYc8ILXTGmgp94otjag51ByeCZyWQffu3f3vuuO0MDyVveM4\njuM4juM4juM4jtMobg41Aawe3vC/++67uvfeeyUFMwJLA4qLi82WIDYQBkI8zXSfPn0sWxTrvHnb\n/uijj0pKWjJYJhgq55xzjqT0ODF9+vSx2DMYEWQvGz16tKSk0cCMP2/4sVKwILAfcnNzrVxYMlgk\nELULsIziqdiJNVNYWGjlIkU8Rgh0797dykE78m+sh6VLlzaY4YtzsW1paanVl7g1WBMYEolEwqwM\nzhWPXURMmTZt2ph1wjm4luifdu3amTUC8XZjTCxYsMDOhY1FGciUlkgkbH9+kvWMdqR89fX11g+U\nk3FIX1ZWVprtRTmwUBgvhYWF1k4YOGTkoz2JSdS7d2+9++67kkLcICwbYuc8+uijFueHemEbUYeH\nH35YkjR06NC0sci5iA3Vs2dPM+UwVjgO2xCb5/7777fjcQ0ynnv27CkpNe4P1yAmE8fD5FqyZImV\nCxOJ/sbsKiwstLGNTcX1wHcHGcoWLlxoMbPi3xGUoaSkxPrqkksukSRddtllKdu2a9fO2jSTRRiH\nY2Myft/ccccdksL3lZOOm0OOs26a+71iS8XNIacpxONhbrDBBnYP5DhOy8DNIcdxHMdxHMdxHMdx\nHKdRPFtZEyC+ELFMxo0bpw8//FBSMHO6dOkiKRgS2C5SMDeITxKnc+fOZilge5DJiBg6GBNSsDI4\n56WXXppSlrq6OouXgkGErYBFkZWVZcYL58Ly6NWrV0p5J0+erB122EFSsB84DtbNV199ZdYNZgNW\nBiYMx2vbtq2ZPhyHbbAXli9fbiYIn/G2AjMnNzfX4q7Ey0VZMDlqamrMzMGEoa969+4tKWmnYJZg\nF2GEYFdBIpEwO4O+pi0wQsrLy60/sbsoD2Vh39LSUovnRH9Q72g52YZyUl+sIEyglStXWj/Q7uyL\nXZWTk2OGywUXXCBJOu200yRJ06ZNszrQjxdddFFKHegfytetWzf7jH7k31deeaWkZPY9+obxRn3J\nnIbdtmjRIutr4gnRnrRNIpGw/RkfGEljxoyRFIy6L774wswqsr6RWYvj9uvXzzIPsi19hV1E7KZo\nW9KP99xzjyTpxBNPtDrQ/rx1w0zC/qLPpGCCxWNKUYaZM2daf5CFjX5mrFZXV9t3QTxWVibixhD7\n0vZR4nGIGAONxR3ABHMaZsiQId/ZHnIcx/m+iFsijhNnxYoVTbrHcBynZeHLyhqBhyQe+HgQPPfc\nc23ShofUjh07puxLQNkom2++ecpnPPD179/flp6wdIWAsqTYPvvsszVixIiUc/KQiNbJ5BUPlFEO\nPvhgSWGJR5s2beycTDTwkM+XPA+dpaWlNgnDZAQTIzzY1tfX2zZ8RtBgHqppv+rqaqt7fBkXD7hF\nRUVpKcA5N/smEom0ZV+bbrqppDDxwBKguro6W6pDvZm4oFxfffWV3RAxYQQ8/EeXDzGBxPFoC26m\nCgsL7ZyMDx6444G0CwoKbFv+2LIPk4vLly+3c06ZMkVSmDShXNEg4rQND+482DMZsOmmm1obsByM\nCUf6JS8vz8YDY5O23W677SSlpjNlLLIPP5ncPOuss3TuueemfMZEJsHDmdyRQh/RtvykvvX19db+\nTLCyD0G1GTelpaVWB/anjbhm6uvrbRJswoQJkqRjjjlGUhhLjMulS5emLaFkWR4TrJWVlTaRcs01\n16RsS7vxfbB8+fK0iRmudSYXN9tsM5tY5Ttop512SmmbyspK6+PddttNUrgWM30vfd8wYUQAbq5J\nJrVfeumlH7wMLZlvM0nky8qc1kBzvVdcH+D+YK+99pIk/f3vf5fkk0NOw5SVldmLWe6FHMdp3viy\nMsdxHMdxHMdxHMdxHKdRfFlZI9x1112SwhIUbA3e2Ethtjz+Rr6wsDDlbb8UlrBgTPDGPz8/34yP\nuPWDZfDQQw9ZoF2Oh8FAMGysgyVLlpiNgclAWnQMnby8vLQAhFgjcZti3rx5acugsJawhFasWGHL\ncCgP7UZ9MR6WLVtmy2awnTB1sDy+/vprOwdvJrApMLDq6urS7ATOhaXAv/Pz8+13WBX8G2OnV69e\nevvtt+380fph8WCcLFiwIM32orzUYdmyZbZ0DyuGbSgDS6Lefvtt+/+40UQd5s+fb8YR9aX92JbP\nN9xwQ9uPcUh5GXcLFiywt4WUi/qxrGybbbYx84UxgAUUDxheUlJiY5DrgXPSTwMHDrRzYpphtTBe\n6OfPPvvM2p1t48uZFi5caO1NPePjjXG8ePFiG6OYedSFfiouLtbTTz8tSTr66KMlhXHCUlLa/quv\nvjJDKD5eqP/o0aPtuuIzzCvgGMuXL7d6Av1CnT7++GM7DksJOR7G1eeff669995bUhh3UburqUSD\np38TZRxTjbHImBo4cKAkN4ccx3GaG/wd5X7IjSGnIRgrm2++ud1LOY6z/uDmkOM4juM4juM4juM4\nTivGYw41AjPivH0nVsqnn36aEnA6CjFCoutv15Uq+sEHH9SoUaMkpccRwST4/e9/r/POO09SMsW3\nFAwGYqSwb69evTR58uSM52Id+Q477GBv9DE5eFOEZYCxk0gkzNjAVuLNAaZINKAy0EZYGdHAubQT\nwX8xh4h1I4VYOxhTW2+9taQQtLegoMCsJ9qbYNNbbLFFSvvV19ebSYKZwz7RVPFYGfQVbYSthSGS\nSCSsvhgrnAtbZsGCBWmpydmGcxLnKT8/30wcAh5jlGBg1NTUmElDO9EP9D1l6dy5s5WPdsSa4fgb\nbrihGT2YLgRP5rjZ2dnWJpyTutDGmD6rV6+2NmW80Of8rKmpsb6/7rrrJEnDhw9PaTfsra222srK\nio1Cm2DLdOzYUTvuuKOkYCD94Q9/kCQdeuihkpIp7KXktUm9GAsYdXvuuack6cgjj7Qx9dhjj0kK\n7c94Zp9+/fpZnB8CUI8dO1aSUqwtykpbY0hhZ2EAFRUVWfmob6bg0P369UvZJm4b9unTxwLREycp\nbkz9GPEB4t+FAwYMkJQcd24PrZtvEnvIYw45rYHmeq+4PsL9A3//3CRy4viYcJyWh8ccchzHcRzH\ncRzHcRzHcRrFYw41AiYDNgpst912mjRpkiSlpTOHiooK2w/7BAsAU2errbaSlLQMbr31VknSZZdd\nJim8tcHk+OCDD8zcwKTBGMDSIJPV/Pnz04wVIIPTrbfeajZB1HSRgn2CxdCmTRvLBsZxsSvIENWz\nZ0+zJeIxZaLWCPtS9i233FJSiF+DXdG9e3crF+0Wb8esrKy0rFjYCvRHNIYL1g/tRHmwZmpqaszq\n4CdtQNtQlzlz5li8Gswy3rBxzl69eulvf/ub1UcK44U+5M1LIpGwcmDkMH4wLpYuXWq2CH1HrCH6\nmQxin376qcV1YnzE489ELR4yymHCfPDBB7Yv5hvxb9ifeFb009KlSy1ODf0Zz5C2YsUKK8eBBx4o\nKfQLVtD48eMlJQ0ZjodZRlmwoTp06GBjk/Jg6vzlL3+RFPpw5syZ1ra0+6677pqyz5gxYyxm1k03\n3SRJevTRRyUFO4s6LV++3H6HrcR1gemzySabWBvTZ9HU9dG6lJeXmykFmdLJUz6sII5P7KuioiLt\nv//+KeXh5y9/+UtJ0nvvvZdS70xEzZ+4PdUQFRUVaZkN499XZ511lptDjuM4zYjovYgUTGH+XuXk\n5Lgp4kgKNnZhYaHdXzqOs/7g5pDjOI7jOI7jOI7jOE4rxs2hDBx88MGSwlt1TBrMlVdffdW25e04\nYGssXLjQ/h9D6MUXX5QUzAOMic6dO9v/82YeO2bw4MG2LcfD3sFC4Sd2i5RuDGFcEJdl+fLlZlqQ\nTYkyYNSQPSs7O9ssGeIQYYZgxCxcuNDqhXFAuxFzhM9nzJhhcVawTqgbb6ays7PtOJgmWCT8u02b\nNhZDhfph0vC2i+NR7uj/Uz9MmKqqKotFM2vWLEmyrG/E+sG46Nixo7UB7f/uu+9Kkvbaay9JSWOC\n2FGMJawKjCvezuXn55u9A4wt+mPNmjXWhsRNIm4N9Saj2Nq1ay2uETFyyPI2ceJEScm4U5hIxIXi\nnIzDjh07WplpN47DeKNt8vLy7HdxI4fy/ulPf9Lll18uSRZn67DDDks5HvFyzj77bDv3LbfcIik9\nM18ikbA+fvDBByVJv/3tbyVJd999tyTpzDPPlCT9+c9/trEDtOcFF1wgKdk/Y8aMkRSMIcZH//79\nJYXxnJuba+OM8UI7Yn2VlZVZ+Tg3deK6o95r1qyx64Ft6PtMsYc4B8YV5XrnnXdsPGAexuvN2+Fe\nvXrZ90CcaFyidRlD0TJhGTEWGePYY0888YT2228/SdILL7zQpOO2RoYMGSLpm8UechzH+S5wnxU3\niRwHTj755J+6CI7j/IC4OeQ4juM4juM4juM4jtOKcXOoETBXiIOT6e05sWmwHYj7EY05FI9ZxJsZ\nrIDly5fbm36soEGDBkkKtkZBQYGOOuooSdJdd90lKRgS2AvR+CHYSlgJvLUndsuUKVO0xx57SAq2\nCG/4o8aQFIwpKVgynBMjpG/fvnr55ZclBcOC41Jf4gL1798/xb6QgomE4VBaWmp1x8aYOnWqpBCD\nZ82aNZbBjM/i54acnBw7B2YD/cIbsgEDBthbMspKnBSsKuK8PPHEEzr88MMlyerNcbGPolYLRgjt\nhzlF29TW1prtRf3oK9pkk002sXHGOm+2pS7Rt370PfYTx995550lJfuOdqKNGb9du3a1OmGtUA5i\n/ND3GGLdu3fXK6+8IimYTIwhtrnpppssG9kZZ5whSRo5cqQk6fXXX1eUoqIis1oOOOAASdIuu+wi\nKYyXc845RzfffLOkYHWNGzfOyi4Fg6impsbaifpirjAejz32WIutRNvQz1dddZWkENcpOzvbtsEC\nIm4ULFy40MZQ3759JQWjhv4hBlYmg4d9Mn0WzzhGPy1ZskRTpkyRFLLs0f7HHXecpDB+zjzzTLOn\nmhI7gLaJZybs1q2bpOR3Jd+TbMsYwO5bu3atvXl0c8hxHOenJ37vw/c2GW732Wcf+9vltC4YGx5z\nynFaB57KvhE+/PBDSWHJyPHHHy8pPXV0FB6S5s6da0ulCERL8FqW5fDA1rVrVx155JGSpN/97neS\nwiTEOeecY8fjYZfj8YDGJFH0IY+JovjEDJSVldmkBhMBPMzx0Mo+5eXl9sDHJAc3CTxQVlVV2RKz\neKBsJoA4/ooVK2yigrZg0oSH/jVr1tikFPVkmRTtuN1229n2LJ0CAg8T7HfRokW2/IZJPyZxWKrU\npUsX6z8mQOJLY5ggKSsrs22YIORhncnE6DZMRtBHBOmlPXNzc21ihXIy8cVx582bZxMA1IFJGCY9\nGBvz5s2z8QIswWOyqKqqytqP47D/ueeeKyn5IE+QdNqJycM777xTUhhjp556qgUqJEAz19Cpp55q\n5dh3330lhUkXgqTTr9CvXz+bgGJMcU2xXKq0tNTGEnV48803JYWJQm5yu3fvbhOOjGe+/zhGUVFR\n2jnj/RudgONcTYFrmvaLBminTPHJpTjFxcVWdiYPKSdtEr0WGC9MXtGXLAVcsGCBfa99F+iXuro6\nKx/nZKKa3xcVFenCCy+UFL7fGCdOwzS2vMxT2TutgeZ6r9gaaA7PCk7zwCeJHKfl4qnsHcdxHMdx\nHMdxHMdxnEbxZWWNwNIpbI8bb7xRknT99ddbQOG4kRMNCs0bfSyPvffeW5LMEGGJzGeffWZBcFk+\ngvWBPfPwww9buvv48ihsAIJXR8uMvdOvX7+U8nXo0MGOjQ1DOfk9x8jNzU1L0x4PEt21a1c7NhYB\nBgbWDe3x5ptv6v/+7/9SyoNBg8HRtWtXM41Y0kXbYIisXLnSrCRsjPhyIVJ6R42QeNp79mnfvr31\nOWXG7ooGraaOlI9lUlgp2BqrV6+2+lRWVkoKy8CoA9sOGjTIzjF06FBJIcD1pptuKin5toZ2x2jC\nPqEdWeaUl5dny5VIj84SI/qntrbWjA3sMQIen3baaZKS/UG9MEHGjh0rSWnBk++++25NmjRJkmzJ\nYiboT+obtbGksOTu/fffN1uMcrGka8KECZKSS5UYp5QT4wpoo1mzZlm/0u7xsVBaWmr1xAqifFx3\nWFr0S7TscaswJyfHloZRTtoNk4b6zp4926wxxgvbYHsVFRXpnXfekRSWilL2aLBqrkvKzFtf2pMx\n0aZNGzN7OC40NX19vN6cm7GIDYWVd8QRR1i5MNXcHFo3HqDacZwfG+41Bg8erDvuuENS+JvjtA74\ne03iDvo/vrTdcZz1AzeHHMdxHMdxHMdxHMdxWjEec6gRnnzySUnpcVg++OCDNNsh+tY+DoFY40Gh\nCcQ7evRoS0keDwp77733SkoaDVgPHI8YLccee2zavnGTAcuFt0C1tbX22cEHHyxJuueeeySFeDjR\nfTAsWGtMWSh379697fzYNtgxvHWYPn26pKQ9gz0RT3PPv6uqquwcGD+YCJgWlZWVaUYT22ISYT3k\n5OSYqRI/Z9S6wZqi7rwhIUYL8afWrFlj58Y0oZ7EOVq8eLEZKrQ7dgs2C/v06tXLYgIRK4fYRZSz\ntLTU+pVyYWVwfI7Xrl07O1f8LR9tP3nyZItx9dxzz0mSpban/suXL7f//81vfiMpGRhbkgYOHCgp\nWC3nn3++BQZvDGIOAX3EvlEjhzagvbChiK/TrVs36z/6nMDU2FCMx6VLl9rx6BeOQ/ypUaNGWZvQ\nbuedd56k8NYM+2bmzJlpb9AIKM9Ymzt3rn72s5+llC8e4wcTpE2bNmYrxa9b6t+hQ4e02Ed890Tj\nnQHXCvW89tprJYXxUlJSYnbbTTfdJCkE14eoFUS7NfR9V1xcbOeKW1pco/X19XY9ES/trbfekhTs\nGKdhMplDHnPIaQ0013vF1kJDzwsesHj9hvtK7kUdx2m5eMwhx3Ecx3Ecx3Ecx3Ecp1E85lAjYJFg\ngmBcLFmyxN7o8wYdi4RtiE0jBRMCcwgLABvnuuuusxTTvPXfdtttJUkPPPCAJOmss84yW4kYN1gL\nmVJQ87Y/PtPP76NrhZ955hlJIUPXsGHDJIWMX0VFRXYuykxMFOyMpUuXmrnANtSTfanT4sWLrW2x\nC8iERbuWlZXZNlgdfIbZVFRUZPWjj7AWiAmFoVBcXGxvt/jJNpgvy5Yts+OQPY3MT5yb83Xo0MHq\nxz4YRNFMbvQn9gr2CDYFdauurjbLg/YjRTvmSocOHezNHOWLxwPCzoraXhhXtA0xfxYvXmzbzJgx\nI6Vc2HJz58618XX22WdbW0rB+LnmmmusvmTkimePi0JcJ8YbRgljif7dYIMN0qwYrDtSof/1r39N\nGye0Y9xyKS4utvg6nJsYScQyOu644+zaJT4Udguxg/71r39ZXbCIsG/4yTVfUVFh8XR22203SSE2\nGIYY/cH2UnrGv+h1TFwiLDnqx1grKyuz/Wlb9h89erSk0GcFBQXaZpttJAWT8ayzzpIULLm8vDz7\nvuANYpxonC36A7Nxxx13lCT7jrv33nst5hh95imSm86QIUM87pDjOD8K3HMkEgn7f2JYct/gxtD6\nTfzvc3RMOI6z/uHmkOM4juM4juM4juM4TivGYw41wr///W9JYZacbGX//Oc/LaYI8X8wNpoCxgAm\nRseOHTV8+HBJwZoglgxlWLNmjebMmZOyP1nKMGD4XAr2BGYJlgfWAZm/JKVlK9p8881TytenTx8z\nZzAZyHyFKVVXV2fbcE6MCGwZxtqKFSss9gvwJgq7Kjc312wRLCVirGDh5OXlWaycHXbYQVIwJSBq\n9WApYL5QHo736aefmmGBZUPfY0Ng7CxatMjKg30ze/ZsScH+iFoj7I+lBMRlys/P11/+8hdJ0q9+\n9auUtiCOTX5+vr2p23XXXSWFWEGYL5SlR48eZm7QL9gd2C1SyObWvXt3SdJ9992X0kbV1dXWBrTl\nFVdckVJ2rJLs7Gz9+te/liT9+c9/lpRq2UjS+PHjrd3Ivkf/Am+pZsyYYWOd9uvZs2dKWfLz8+1a\nZD/GNv3KNbVq1SpttNFGkkImOOInYbfl5eVZfakXP4nFk8nUi4+FaKwgshJyDWJyUW/iKH311VeW\nCS1ONG5U3Dhif2IvZTJ92IZ25NoaPHiwjVfO8cEHH0iS7rzzTknJ6zke/4p/cz1EM5pRPupCfbH4\n2rdvb30Kqit4AAAgAElEQVSFYYZxRhY1xq6Tmbg55DGHnNZAc71XbG3wN/eJJ56QJB100EEpn0ef\nK9wqWn/wvnSclk9TYg755FAjPP3005LSH74OOeQQ2yYeMBaiSzviaeUJKrzllltKSk5E8LDKAyPb\n8HPYsGFWDiY5WEZCENdocFyWGVFmJjuiy90gulQqug0TXx9++KEtAzn11FMlhQc9Jjvq6+ttMoOl\nYiy5iS4T4nPOyUQFD5BMJH3yySdWXz7jDxNttNFGG9lDcDzFezxYb5cuXayPOA7nYqIhKyvLHp7p\nK64PJhUIGJyXl2cTWvFJMAIiv/322zrggAMkSU899ZQk6Re/+IWkMF7op0QiYeWgvYAH59LSUutz\nHu5feuklSWGcMNmRnZ1tD9j0KxM+MHnyZFtmRF+x5ImlRtGxRD0Zq0wMXn311ZKk0047zfp+zJgx\nksJkCZMUTNhI0osvvigpXEOkoH/ttdesbbiGmPy65JJLJIWJi+OOO87S6xIwe+zYsZLC0izK9Nln\nn1kb0CaUi4muurq6tNT1TJ4wbhgDUagDY5XxMnv2bLuR5jOWV9I2jNmZM2daG/O7eDDxtm3bWnmY\nfGG8UKcttthChx12mKSwjIwlYoxZ6nv88cfbRCMTMyz7u+qqq6zdqB/XG2OdSWyus7KyMqs7UBeu\npcLCQpv0ZqkebUMwcL7TosGwnXSYJPLJIac10FzvFVsr3APwQhCizxX8neOeLNN2PunQMvB+cpyW\njwekdhzHcRzHcRzHcRzHcRrFA1I3AkslWPLFMqtMAV/jZEr/zFt2jBhMh6FDh5rxgbnCz/PPP19S\ncvkGb/ZZBnb99dennJNjzJo1y84F2EDxFPdSsGTiacxZEiWF5R+DBg2SFILrHnnkkZKSJhGWA4YQ\nZcAuwsSIBq3FJMGa4U1S165dzTjAlMJu+c9//iMpubSNc8TNI8yc6L4cm7ddbIMF9d///teWy2Gb\nYGcQ/DdqP7GMDwsDGBN77rmnJk6cKCkE48WwoC5YGp07d7b2od6Uj7dydXV1Zm6wrAcThD7kGMXF\nxbYEC9Nnjz32kBQMoHHjxpmhQT/wlo/jVVZWmpFCIPS7775bknTggQdKCgGzKysrbWkcSx4JfMw2\nnTp1srED9Ed8zG6wwQa2hI0+oi0GDhwoKRhjUrCVsIPitlybNm3MVGNMslSMZXWLFi1KCdYuhb6K\np3jfaqutbCkm52RJFdfORhttZGOJJYH0EWVhGVxOTo61P7YY1yTXa1VVlb2BZfnn888/LyksP/zq\nq6/semAsUl+OwzX+/PPPm4VG+9PWHC8nJ8fsJ8bJ66+/Lil8t3H8tWvX2tihnLQfv6+vr7f96Jt4\nwOw999xTUgiW7ziO4zQv4sYQZkl2drbdb2Gd/+1vf0vbn78J3AOAG0WO4zg/HW4OOY7jOI7jOI7j\nOI7jtGI85lAjEGwPc4LYKrNmzTJzgzf90Xg/UjLldjRAdBQsgxEjRkhKvmF/4YUXJAUzh5gqvKnP\nysrSlVdeKSkYTTfccIOkEHcmCvGCiAPUFOIpyok1U1ZWZoYL9gSpuqN20b777ispvA168MEHJYVA\nzVgzu+66q6Wup5xYBrRj+/btrY0xGWhbxmxdXV1aIGCsDKwHyrJ06VKzpuJvpTA3unTpYrYJVgdv\ntDCbKF/Hjh3td1gVWEvEeaqurrb+wwYiXgxxdbbffnvbB8uDtubf7Nu2bVszmDIFRZZCHy5ZssTa\nJh7IG2tj6tSpZqERA4YYJkcccYSkZKwfbJN4OlPqglFUVVVlbUGf0Y7E2VmwYIEuvPBCScGKIeYN\nBha2SJcuXXT55ZdLCtcgZgmmSXFxsRlWtDu2F+XD1Js4caL9DnMGa4YxMWPGDHXt2lVSCDLPdRA3\nm6L07t3b2kAKplnbtm2t/RiT9CvXEEG7S0pKrC6UK27YffrppzYGBwwYICkEkMbQ+fLLL61fKTOB\nozl3586dJSXHxoknnigpxMXiOsMMmzBhgl1XBB4lcDnXKKZSeXm59T3jhX7m+pg+fXpa8Pp4bCHG\ny6effmrfG06jeMwhZ72nud4rOg3D3xzuQ+JmriTts88+kqSHH35YUvhbGYW/EdzHNUSmZxo3kL4b\n3Otyz8EqBsdxWh4ec8hxHMdxHMdxHMdxHMdpFDeHGoF03LzxvuWWWyQlswrFjRyMDd5qzJs3L83E\nAWKFYA7V1NSYCXLXXXdJktkLZ5xxhqRk2u9LL71UUrBjiIXE23t+Rt/MxI2maBwQbAR+R1yh+D53\n3HGH/vjHP6acm20xEKKWFKYFBgyWB3bFsmXL7NycA6MDUyKRSOiiiy6SFKwg2pbjde/e3awCzBLi\n6WAAUd6cnBxrYwwV+iWacYO3XJgffBY3nYqKiuxNFv3Mvtgyubm51j7Ul/JE045LyTFGuTBx6E9i\nBS1atMjalOORuY03bRw/GvsFa4TYN/Rd165dLWYP54pbacOGDdMWW2whKdhKtD/9QmyjiRMn2jgg\ndhMmEdfLAw88YPFqGCeAJXTyySdLSl4nnJMsZfTH+PHjJSUzpLHNQw89JCmYKrztol/mzZtntg7m\nChYV7fbqq69ae0+aNElS+rVDn2Wytxoz9hj/nJN4WJSzqqrKtqEdM8UIi7PTTjtJksU/qq+vt3pS\nRvqcvmO8VFRU2FtVrj3GGJnD8vPzLSMcdcfOouxcAxUVFTrhhBMkhbHE9ybbfPHFFxmzJkpKi6d0\nySWX2PGcRnFzyFnvaa73is43Jzs724xT4B4lGksQfv3rX0sKdu4rr7wiKVirGOrE3swE93U5OTlm\nGMX/rjsN4waW47R83BxyHMdxHMdxHMdxHMdxGsXNoUYgqxIWBXbFJZdcYm/2eRPPWwdihjQGb8V5\nG79kyRKzTeDRRx+VJB1zzDGSpJ///OcWm4Rz3nrrrZKSb+Kl8DY/E7169ZIU4utkoiHTqV+/fhZH\nZPLkyZLSrYnGYixlAlOIMmNybL311pKSdSLuCuXhrRIZ0kpLS82A2GabbSQl7RopmES8gSorK7O6\ncxzeGFGWVatWWb0wj7g+eFuFCbRy5UozZ2h/bB5sGSlYGJSD+DdYI9TxjTfeMNuGcrENP0tLS81i\n45xYLcR3wazJzc21GDRsi7HCWOvevbsZM9OmTZMkM8QY623bttXRRx8tSWYQ0baYTtTx66+/tr4i\n5g2GD/bS6NGjbZt4drZ43QoLC61Nzz33XElhHNMmOTk5Zrhg2dAmGEPUZauttjKzjHPxJgzbaMaM\nGVY/+jwaZypa3rlz59q5aNuGMptFYVvGAnGBSkpKrBzAdZHpe4XvAcrAtfPmm2/aZxC/Xhljffv2\ntXPQNoxf2qGgoCAt3hS89dZbkoKJVFpaagZSPGMg9aaMmYi/vd1ll13sOJzLyYibQ856T3O9V3R+\nWLKysuxeLHp/xWdS+HvY2D0493UTJ07UP//5T0nSk08+KUl69tlnJYW/71ixBQUFdh8CrS2bGvcY\n3Mc5jtNycXPIcRzHcRzHcRzHcRzHaRQ3hxqhT58+kkIsEwyEkSNHauLEievcn7fpmBWYCNgP48aN\nkyRdd9112n///SVJzz//vKQQY4S37fvvv7+ZJVgAxJshJkc8VpAUrBjetjSWcalv376SpPfffz/l\n9yUlJWYX8FYF+yOTrUQsGeLqYNhAt27d0gyJOGVlZdYG8XLRrvPnz7fPMGYwYO69915JwYQZMmSI\nZUYiRg7lpL26dOliVg2/420UMaAod0lJib1Zom0wXtg2mn0KsJYobzQDx8cff2z/LwVzg3KvWrXK\nYizRn9Th5ZdflhTiz5SWlpoJwjjBlqHvcnJyUtpSkmUSY/1+586dzRD6zW9+Iyn0B+XkWqitrbUx\nimXDuYmPNXfuXMtwh100bNgwSSE2TTTOE+di3F588cWSQpyB8ePHa8aMGZJCX9FHZILjbVd+fr5d\nO/QDcYU22mgjOy7xpRoiatg1FBOIsjSUVS5+HNqDuEENEb0u4uegrZYuXWr1I8ZCY9cbx6G9GG8c\n45hjjrHvlsceeyxlGywhypCdnW3lw57iO4zj1dXV2XVBGzD+4uOxuLhYN998syTp9NNPb7RtWjlu\nDjnrPc31XtFpGWD6ZGVl2f/Hn4HicZBOOukky+ZK7D7+rsaNoujxGrKKEonENzKOvu/jfRv4e829\noOM4LZemmEM+OdQEJkyYICk8MA8fPtweYkgjHV+KlZeXlzFlpxSCTvOw/vDDD+vYY49NOc4111wj\nSfr9738vKblk5L///a+k8BDIQx0p5PkCz8vLs8C4TEjxwM1DV69evRpdYhaHh2D+KDZUNykslWLb\nb5KKOpo2PB6clyC7TC5UVFSkLUujDegfHl6XLFmSkv5cChNb1I1lU1KY3PjlL38pKSzD4bgbb7yx\nPXDzh5kHZI5XWlqqjTfeWFJ4UI4vnWIC6IsvvrD/ZxKSiT3aZOXKlTbhxnG4kWFf2rq2ttbKEQ80\nTDtMnz7d6scE3kknnSQpTDbV19fbhBMTNDzks2zryiuvlCTdfvvtGjhwoKQQzJ3UtPTLxRdfbP9P\nuVgytvfee6fUv6amxpZ0MlY5J5MVubm59hnLtPg3k7BM1n3yySfWXvykLkz0LVmyxMpHuzPBRaBL\nrtFMQachvmyyMTIt5+TcXLfclDYG5ywqKrLlbfT5uiadpDCG4sG6TznlFDse7cbfDZbGQnV1tU3i\nNhZMu7HlclFycnK04447ppyTpa1OCj455Kz3NPd7RaflE580ys7Otpdx3LOwPI379KlTp9rfwkwT\nRuuCv5Hc12RnZ6ctDf82x+MY0WXh32VJXGtZRuc46zO+rMxxHMdxHMdxHMdxHMdplHWaQ1lZWX+U\ndKCkhYlEov//flcu6c+Sekn6VNKRiURicVZyWvlWSQdIWiHpxEQisc4oos39bRDGDm/hR4wYoWee\neSZlm0xvyTFoeNuA9cBbeKySq6++2oL+YjkMGTIk7XjYLLfddpsk6eCDD5YkK8uUKVMkJW2hhlLY\nR5d4YSzwO2wjzByOsXbtWjt3PHB2v379JCnjUpzttttOUnrw2ajx05BhkZeXZ29nWMKCRUGA21Wr\nVllwb0wElmZh0LA0cPXq1WZ6ZGoLzkl7ReueadtOnTqltUUmMED4ScBszoMdFf3drFmzJKUHsd58\n882tnVlqQ1scccQRkoKxc9xxx9myMn7SRrTDokWLzMbiXBhN2G2HHXaY/vGPf6TUCSPsjDPOkCQz\nO4499lhr/yuuuEKSbLkkbf7666+bpYMpxPXBdxFWVGFhoVlEGHTYS9H06++9915KOeL15XwfffSR\njXnsO8oVtYCwWeI2YNzmqampsWsauyg+Tjp06JCWtr0pVlH8+6R///6SkhZddFmgFL5XGD8VFRW2\nP+3ENd0YfB9x3WHGDRgwwOwursWxY8dKCn2H0fb++++bcfRNjMF4EHDIy8uzZYEjR46UJJ111llN\nPm4rws0h5yfF7xWd9Z24VcS/8/LyzM5pSlKaOIMGDZIkvfbaa5IaXwbeFFiC/eKLL0oKoTF23333\nb2QO8fd96tSpkpKJcaK/dxyn5fF9mUMPSNov9rvLJL2cSCT6SHr5f/+WpP0l9fnff6dLuquphXUc\nx3Ecx3FaJA/I7xUdx3Ecp0WTu64NEonEq1lZWb1ivz5E0l7/+/8HJf1L0m//9/s/JZJT05OzsrLa\nZWVldU4kEl99XwX+KcAqwPj57LPP7E036bgzxdXgTQJv9vnJOuADDzxQUjJuEXYIs/lffvmlpGDm\nVFZWmgGBpYCZxFsH3jZUVVWZRdBQevpMvyP+CkTjClHmeNwfyr18+XIzSjAiMK3iRH+PiRCna9eu\nZrFgYxA0mDrNmTPHLJs4WB6YP2vWrLG2JH5L3PKora01e2JdMV4222yzJplDmC7xQODELuJNUVOO\nUVlZaX0yatQoSWG8PPXUU5LCG6OPPvrIxiixsjBCiOFUUlJi7UfsISwvTKSxY8faunpiKmGs7L77\n7inlrK2ttTF///33S5K22WablHL269fPrhneYGH6EOyQz/Pz821MEtuLbbCC/vWvf9n5sajiY+L2\n22+XJF177bVmJWE4cS6suWXLltmx44YO13hjQd3jxE0YSerevXtKeTn+8uXLzbrhWoJoAOh4IOr4\nOF64cKGNe8y5xuL/YK9hNPFWkLY65JBD7LuP75hTTz015dwEKy8pKcl4jobA9uI7I95etbW1NubH\njBkjSdpzzz0lyYKEOo7z0+P3is76TnylBf9es2bNd7JpHnnkke9Urjj33HNPyr/5m1lYWKjf/e53\nkoLdHSca4Jo67brrrt9r+RzHad5825hDG/JH/H8/K/73+66SvohsN/d/v0sjKyvr9KysrKlZWVlT\nv2UZHMdxHMdxnOaJ3ys6juM4TgtinebQNyTTOraMa8QTicQ9ku6Rmv868nj2nm7dulmcE95qx9/M\nl5eXN2if8IaeuDb333+/pehmxj9ufVxyySX6wx/+IEm66KKLJEmjR4+WFGwKjJoo2A/YAZgY06dP\nNwMBc+Gttxpe8t9QZrNXXnmlwX3iGZKisVZ22WUXSSENOv9mn/nz55uVQPkay7hEyvqTTz5ZUrA7\nOOfSpUvN9BkwYICkYGdFY6PE+4xMXW+88UbK7+P/lsL4wKbKZDURI4nPMmVtwirC9CGey2233WbZ\nu6gvpg8p5LHcampqUlK4S6H9yLo1evRoyy6GzUV6eYya4cOHp8XwIXMH1g4xsCZNmmSZ8xij06ZN\nkxTesG255ZZWP+wYrh1MFQy7uXPnWrtwTuL9UO/dd9/dxj2mGXGOyJpF/C4pXA/E9uLaoSyrVq1K\ni5XDtoxDLJ4ePXrY9f/uu++mbItps3jxYrt2SBXPvzOluY+fm7FKf0RNmrhBFAUDh3aLm0hYh3Pn\nzjWTjN/xvcR3UEVFhZ2TMUBMKmxGjMJPPvkkzWRqKMaXFOK5xYl+V1AejMnOnTtn3MdxnBbDenmv\n6DjNEe6/Vq5caSb4sGHDJKX/Xc7KyrL7QO5ruI9oaDWA4zjrF9/WHFqQlZXVWZL+95PIqnMldY9s\n101S09dgOI7jOI7jOOsDfq/oOI7jOC2IdWYrk6T/rSP/WyQDxUhJixKJxIisrKzLJJUnEolLs7Ky\n/k/SOUpmoNhJ0m2JRGLHJhy/Wb0NitscWCK8ff/kk08s5kZjxDPw8G+OT8akX//612Y0xDOcXX31\n1ZKkoqIie5s+Y8YMSUkLQwpxZjCLGnobn6lMPwQNxe3JZDpgfRAj6KOPPpKUNCamT5+e8fg/+9nP\nJEmTJ09Oi6mElYIlRJvl5uaaTdSYcbEuosZFnLiJlSnOE3F6sE8wfRYuXGhtQDkZJ/fee6+kpFXS\ns2dPScEEw7LhzQ6xoJYuXaq99tpLkvT4449Lkh599FFJScNHknbeeWezijgH2dDuvvtuScl2JFMV\nGetYs059GUt9+vTR5ZdfLimMbcqDeVJTU2P9x7kwpOIxiCoqKsywIjsWxhD2SHZ2ttlEWHtYeDfd\ndJOk1OuWdqO9GG/Qr18/KxeWF21Epjn6vnfv3lZ22gKIadS+fXvbn7GIDcj1Qdyd6HXLubF6Mo3V\npoxj6oshlcm+Y7zutttukkJfUc+Kigoz8jgOMZpuvPFGSSGbSaY4XPHMid8V4ijx5vP444//Xo7b\nwvFsZc5PTmu7V3SclkY8S1mmZ0BiR2IsO46z/tCUbGVNSWX/iJIBBTtIWiDp95KekvSYpB6SPpf0\n60QiUf2/9KR3KJmxYoWkkxKJxDrXiTf3P/hMDvGgdeSRR6YEwpUanzTo1auXpLCchG2HDh0qKTmh\nQT8wIcUDLb+/7bbb7KH34YcflhQCUTOJwDKzpUuXpj30QmOTQ9FJl3URr1NJSUlaCs/4Ay76am1t\nrT1cMjnChBIPl5kmVpqSAjxeF8q3wQYb2ERFpuUtcXjwZrkWD7hMzDX2QE4b9+nTxyZiOB7Ljphg\nueWWWyQlJzbiS/f22WcfSdLZZ58tKdnmtA/LltB8GQP8u7Cw0Jaj8YeeoIQsVcrKyrKyXnZZMonM\ntddeKykZdF1KBk8mZT1L2Q477DD7TApLofbbbz+b2GKii0kw2r5Tp042McNPlvdRBya8vv76a5uM\noP1eeuklSdL48eMlJQMhs6yNMU+dmLhhLNXV1dkyKCYqGMcsWWKiSQrXCNtwU8U13r59e1sqRh1O\nO+00SdJ9990nSRo8eLBN3n4TGG8QXUpWVFQkKUzUxMdNeXm59QnfNbRFQxOuUugzJiAZaz169NDg\nwYMlhe8lJmE59znnnGPHoa8IAM+E3rclPgnG8s0ttthCUvI7hO+RVoxPDjk/KX6v6DgtF+5vmiIM\nOI7TcmnK5FBTspUNauCjfTJsm5B09rqL5jiO4ziO46wP+L2i4ziO47R8mrSs7AcvRDN/G/Tyyy9L\nCm/zy8vLLfV3Q2mtc3JyGjRUsA1YksESFEl64IEHUs6F9bBy5UozODCGXnjhBUnBtGDmn88bo6Ki\nokEDB4ODQMGZbCiILhkhiF186UrcVurWrZsdM77kJHqMuJ2U6Zz8P6m7sVmWLVuWcs7+/fubPUH6\neAwELJyFCxdasGb6pKG03N26dTOTobEletgTBEemTTF0sCLOPPNMOx5tgKlDGdq3b2/jgcDigOlD\nnerq6syCwdBhyRfLmjp27GhlZ3kelhFLu95//30deOCBksLyHcwVlvdgdOXn59vxWJq1xx57pByv\nsrLSjBTagmVNjF/6ND8/32w0tqWfsVHGjh1r1xmfxc23bbfdVlJyHMUDPmOscfy33norbWkiwdIZ\nh4wXKZg52FQEI8fy69Chg9lj34T48sMTTjhBUnIJGvbPQw89JCmMheeee872pz581zCGWP6VCWw+\nrDaWFlZVVWnrrbeWJB1zzDGSUpf+SdIFF1wgqeHA9VLjgakZfyynZSleJoOQbemHUaNG6cgjj2zw\nvK0EN4ec9Z7mfq/oOI7jOM2ZpphD3zYgteM4juM4juM4juM4jrMe8H2nsl+vwOogcCwGwsyZM80Y\nIg4R22Lx1NTUmJmDCYEFwZvzqJGDwcVxDj/8cEnJNPfsSwwaDJgjjjhCkvTqq69KCm/Zy8vLzRSI\nv6XHLFm4cKHZBWzbv39/SSGuDuUtLCy0+CbUieNETYyGUs3HzZpovTGGsAEwD4qLi7V06VJJ6QF7\no/FXqB8/GzIX5syZY6nO4/GhMBCWLFliqTsJeIyBFG/HaB0aCgxcUlJicX+INURslOeff15SSFO/\n0047mRFCfBeORxyhtWvX2rjDwiAmEoYS5VqxYoUFUIbjjjtOkvTYY49JSgYyp/9GjhwpKRgn1LtX\nr142DsaMGSMpWCJTpkyRlAyoTnkxPhjzjAnKKcksFOwT+pO4P9gj5eXl1l477bSTpHB9cb0cddRR\n+tOf/iQpWDZxQ+Wtt96SlLxWqS92HNf2Nttso4bg+qAdGC8XX3yx2W0jRoyQFOJDkdp95cqVZlg1\nFAcsExdeeKGkECeKfqmrq7Nrr6Gg+JtvvrnF+cJ65NrGiqIuUTOH8UbbEoT68ccfNxuRPvrb3/6W\nsg0GVmPmUGOxvjh31OKTUg1MxhQmHGPj6quv/kbxyBzHcRzHcRzHScfNIcdxHMdxHMdxHMdxnFaM\nm0ONgD1CNiQMhfr6+rRsWLypjxI3VPg3xgTxXcrLy+1N/tFHH23nkGT2zKpVqyyeCfAmneNicpSW\nlqbFVoHo7zEiyCqGMQRRO4j/jx/nu6SFj4KBQawaKVgNcQOmMUtg5513lhTqQhtH7SXqjWGC0ZGT\nk2MWSzz7EfFYyEoVtSCwquJtsOmmm1psHPqKsu+///6SgkF06KGH6sorr5QULBvKsN9++1l7RNPQ\nS9J7770nKaSZpz+6d++uCRMmSApZnYg1hN3So0cPi6uDSYOZhJ325ZdfmrVCpirGwtVXXy0pxOTJ\nzc01y4nMV/EMdt27d7exQ0wkTCH24RiXXXaZzj///JS25XiM+U8++cTaCaOEviF2UzR+FPuRtQyi\n6V05PzAOOTflzsrKsjZgLFEWrJ4777xTw4cPl5TMrNZUSCvP2ILq6modddRRje47a9YsM6Ho83i/\nMk6i5hD9Sv1oR4wsKfTReeedJyn0y0knnSQpaYqxfaZ4QQ3BueLXdPQ6YxzGTcTp06frjjvukJSa\nNc1xHMdxHMdxnKbj5pDjOI7jOI7jOI7jOE4rxs2hRiAOzgcffCApZAVq06aNWQrYRRgY0fgiGEPx\nWD4YDdgkt99+u0455ZSUc9x5552SguXSrl07+4y4K7xVJ77JG2+8YWXgLTsxXwYMGCBJFtcmyqxZ\nszLWP2oZxbOyYRmsXr06bb+GbKLGyhA1hqRkrBUMq3gsIyyjTOZQPDMUbVxWVpaWeYz2i/YZcaUw\nQIilQtti/nTs2NHKTJasOF988YUZHNOmTUvZFtPkoosukpQ0d8iURvvRxsTFKSoqMqOEDHCMUYwm\nypSbm6t9991XUjA/GD/0S7t27WwsxTPScdwuXbro0EMPTfmMuDBYKMQnWrNmjZWZ2Dbt2rWTFOyv\niooKffjhhyn7cw1xTmyroUOHmhHFttgobJtIJMx6YjzwGeMG62vJkiX2/9Sb49HfPXr0sPbfaKON\nMrYNlkxdXZ3FcSI2GPuS6au+vt4+o5xxmyoT9Blxsmjz5cuXWwylxmC8xeGa5jujpKTETCEsRfrz\n2WeflZS8xseNGycpWFVkT4O+fftKStpkmFJxc6ixbGVxMtmBGEPxdiwpKdF9990nKRh13yZDnOM4\njuM4juO0ZtwcchzHcRzHcRzHcRzHacVkkZnmJy1EVtZPX4gm8O9//1tS0rwgTs1VV10lSZalKW7Y\nROFtOPZCUVGRpGRckYEDB0oKb9UxBYYNGyYpaR1h6XAuYrXwb+IfnXPOOWbnxGPnRN/eY+BglMRj\nDhAXREIAACAASURBVGFg1NfXm22CGcJbe+Igxe2KKFgk2BBxg0cK5sH7778vKWlgxM0jbCgMm48/\n/jjtWPE4T9CjRw9ri3imNeKozJs3zz6j/eMZpsiaVVVVZUYP5aJ/KHe3bt3MtMAsAwwH4lhNmTLF\nbLSHH35YUojpQ5m+/vpri/vDuSgn+2JbFRcX23jAXMO8OOussyRJJ554op5++mlJYZwwPojTs2rV\nKsuSN2rUKEmhPxk3nHPx4sUaMmSIJOnJJ5+UFMyXaEwf+ph2J/4P8XUwiVauXKn//Oc/kqTdd99d\nUjCvMLnuvffelDpLIc4OYwObp7a21q4vMuBhzUVtHkwy+ozPyEx4ww03SEraUHx/Mn7JPjd69GhJ\nyf458cQTJUmPPPKIJOmZZ55RQ+y9996SZO0Yzyh48803W3bCphC3FulfzCHMLilkKTvmmGMkBWvu\n9ttvt+8nYnL99a9/TdmWts/Ly9P1118vKWQXBMZNZWVlk+yhbwJ9hu314osvfq/HbwG8mUgktv+p\nC+E4PyQt5V7RcRzHcZojiUQia13bNKtlZaRd5mG0uXDwwQdLCpMvXbp0SVvuAjzwVlZW2oMUsESC\nBzIeIDt16qR//etfkqTnnntOUghMzT6bbrqpLYVZF1deeaUFv2VZFWWJPpTxUE694ss+qFs0hXo8\n0HU0eG/8XJApbTYPvTxUMmHAxFlxcXHacjcmRJggWbJkSVqa8IYmqaKTZPE6RCeY+Kx79+6SwgMt\nEwU8ZEfrwmQGdYBoWRqatGLJYo8ePSz4MhM+TPox8dOlSxdbPsaEUXT/6LarV6+2B2Xa7auvvpIU\nJmHGjh1rx2M/JhxZtlZTU2PLhOIBixkvLPMpLy/XLbfcIilMknIuJgbnz59vE4rsx2ROz549JaVO\nTEUniiTZ8ssxY8ZISo4j2iC+1I5+ZbIuJyfHysyEUqZrim3iy7+YZGKf8ePH64ILLpAUlvOR4j06\nYfjAAw+k1GG77baTFJbPRaH92Z/xzeRMfMKlIQgSzmRav379UspOm8yfP98mqfmM8cd1dvTRR9uy\nLZZBHn/88ZLC9U/dli5dat+N8TEfnyD9tmT6nuH6py78DeFviuM4juM4juM4jePLyhzHcRzHcRzH\ncRzHcVoxzcocYglVc+PAAw+UFIyazp0723IZ4K04b7M33HDDBi0WlmtwjLVr19oyD86BtcCytTFj\nxjQY+JjfY49MmTLF0tPHy9UYnBtDgvJ36tSpwWCymAN5eXkNngNDJGrbRO2fKPFlcJnKh1G07bbb\nWnBezkEZMAiilhDBpuMBfTEmKioqzICIB8EG6hCtL8YQywYJ7Nu/f39NnTpVUmhLliYVFBSk1GmT\nTTaxY9OftAWWR/v27c3aqayslBT6HBMGK6dt27ZpgcuxcLDSbrzxxrSg3phvmCsbb7yxGWYE12Ys\nYGtQhvr6elvyB9ST+rdv396MKNpp//33lyQLVE0dKyoq0sb24MGDJSXtONqBMRQfS/HA6G3btrVt\nWGLHuRg/c+fOtf7ERGL5HPVmCdlvf/tb3XrrrZKC5UWaecZ3eXm5BXgmSDVGTSZz6PXXX5cUlpd9\nG/70pz+Z5TVy5EhJ0uTJk1O22WuvvSRJF198sdle0eV3UvgOysnJsTETD5A9fvx4SdJhhx0mKWlF\n8v/s39iS029D/HumpKTEzkX/Uj7HcRzHcRzHcZqGm0OO4ziO4ziO4ziO4zitmGZlDk2cOPGnLkJG\niG/C2/jdd99dW265paRgWmBRxGPgRMEsIWYGdsGXX35pcVIwJEaMGCFJOvnkkyUl344T1wSDAwgk\ni9mQm5urI488UlKIgYJJhHVTXl5uVk08/g/xYjAnGosVwjZVVVVmxcyZMydlm0z7x9/+U3YsjUxB\nq9mHc0YNIOIjYdsQYyVqDsWNoXhsmdra2pT4NFIwcWgTrK+amhqzE2hTYvtgy0ydOtXSyWOj0Db0\nGTZJTk6OBYomcPHNN98sSbr88sut3thAxAiiTRh3WEK5ubl2rnibEkepb9++FnOI9iMuEeepra21\nwOVYYnzGuKEMhYWFKeePloc+69y5s41/ysP+mE1su3r1atsWg+iAAw6QFAIhH3rooQKuLywgAobH\nzyeFuD/UN2o40cfsT+wm4v1g4dTX15t5RNBpxhvjZ8WKFXr00UclSeedd57VK9o2xBn7rvBdVFdX\nZ7ZjQxDjbO3atRo6dKgk6bPPPpMUgk1j/Gy44YbW59QL2wtLiBhdS5Ys0eOPP27lkJTWnt+VeJDu\nmpoau965/tmGwONNjdXkOI7jOI7jOK0VN4ccx3Ecx3Ecx3Ecx3FaMc3KHILx48dbtq3mQDw2SHV1\ntdkIxBoZMGCAJFkK+Q4dOqSZEUBcG4yOdu3amc1x+umnSwp2AW/fhwwZYlmZ4rFfMBCiaarJorTb\nbrtJCrFMoH379mY5cA7sGKAMmcDOiGYZi8cW4W0+xlNjUIeogRAnnu5eCoZANGuaFPqMdq2rq7M4\nM/EMZJCTk2P2CbF4MIkgGhMpHq8nmt1NSo6Bl156KWUb4rqQIY5xdOONN5q9gnVDPUmPXlhYqClT\npkiSXR/E6cHKoPylpaXWR7Ql5cJ2qa+vt3ZnW9qTn4MGDdIll1wiKRnLJgrbcA1ETR9S13NOxmZt\nbW3a79ifcnGMr776ymw2bCK24RoaOXKkLr300pTfAW2SKRYW4wMjhrHeoUMH2w8Th2xqe+65p6SQ\nir6+vl7HHnusJOnqq6+WFK5fbKErrrjCDEF+R735+X3B9Ytt2BReffVVvfrqq5JklhuZyOjv6upq\nM+gwkrjeyK6GAfeLX/zC+n7QoEGSpKeeekqSUuI9MXYYC/HMcNCpU6e06zRT7LX4dwzXzNNPPy1J\n2mmnnRpoAcdxHMdxHMdxJDeHHMdxHMdxHMdxHMdxWjXN0hxq167dT12EjGASzJ8/32wHYgthghCf\nJQqGEBYKJkPXrl0lJQ0C4pgsWrRIUohNw9v74447zuIRAW/oOR5l2myzzexNOrGGKDtv+j/66KO0\nt/cNUVhYmGbQ8KafOEzdunVLyzRGGTgP5OTkmKkRzWAmSTNmzJCUjFOCwYFtQ0YuiG5DRqjoZ9Fz\nv/fee/YZJgJ9xb+XL1+eVh6MFdqYtopvFyUa94R2x+qgHclOh/nz0UcfpZlWmFK///3vJSX7F7MK\ngwPjB6OGzGJvvvmmxdXp2LGjpBBzadddd5WUNDuId0N2NyAbWllZma644oqUshJvC8OJtsjNzTUb\nJm4HYShlZ2fbZ1g7mEJsg5Wy4YYb2jn4Xdy66devn84880xJIVMY1wk2H9dUt27dLPZMNBZVlJqa\nGisPbUDfc03eeeedkpLjJh6bChizt912m0444QRJwYojzhPXL8ZdPCbWjw2WG9fKXXfdJSlZ/3vv\nvVdSsJ/4TiOLGeNuwoQJ1h9kNmNs8n23ePHijGagFOKeMaai1hD90pBlJIVxwX4YdvHr0HEcx3Ec\nx3GcVNwcchzHcRzHcRzHcRzHacU0S3OIjETNDUyTJUuWmPlx3333SZJOOeUUScEgkoJVw1tsbBbe\nuvOGvlu3bmZwXHTRRZLCW3uyKZWWlprJAJgX/IxmiqJ8WCzYI++8847tH397H7c8om/oiWXD23/M\niEmTJklKZprjzT7HwZJpyBKQlJbhjH9/8sknZsVgbsRjj0SzH1E/rBEMEdqhoKAgzX6ir9jn888/\ntz7DLCGr2NZbby1Jeu2116z+HA/bIW6PLV68OM0wIqtYPKNbXl6etRPGUGlpqaRg4UydOtVMpuef\nf16StMkmm0gKY4DPO3ToYDYH9thmm21mZZekBx980OLonHbaaZJklhAm0bhx48y+oG8oD/3N8Vas\nWGFjh3ZjrNOHxFWSwjiLm29YZYWFhdZ+bIOFgnUzb9487bXXXpJCXBkMHLLJReMKYVMRB4hMc9Sl\nR48etn084yD7cF3ceeedOuOMM1LKjvXItmeeeaZZT+zHtU6diOlEjJ6fGuyaQw45JO0zvgfI4Iax\nxzW/cuXKtO8Bvs9feOEFSUkjq6kGT48ePew7LFPsqDiMKeCaIvvjqaee2qTzOo7jOI7jOE5rI4uH\nuJ+0EFlZaYV49tlnJUkHHXTQj16ehmDC5p577rHlFRMnTpQknXTSSSnblpSU2MNgt27dJIWHVFJH\n8/BfVlZmDzEE1e3Zs6ckafjw4ZKSD588wO+yyy4px+Vhmgfm/Px8PfDAA5Kk0aNHSwoPv9OmTbMy\nMqnBAxUTApmW3MQDNWcimtY+ChMuUF1dre23315SWI7CRE98cibT8VmeM23aNFs6xMQM28QnX6QQ\nyJvlUZmWhpH6mgf6hpb6dOnSxfZngoblS0wATZgwIW35WFPgoZqJFSZUFi5caO3GxAdjgnZjUqK2\nttYmI1maRVvTfscff7xtz1IpxgnLHP/4xz/ahAeBjglczGQdk2uJRMKOx3K++LKw1atX22QS4zYa\nIFsK18CaNWtsgpBt48fLzs62SVMmLpmwJN09SylHjRql8ePHSwpLqFhuxOROXV2djXXGFP9eunSp\npHDd3nDDDWnXDBOGlHf16tWaMGGCpHDdv/3225JCAHPqcuedd6YFjm/uvPjii5JCAOhHHnnEJnH4\nGV+yOHfuXAvcvy7y8vLSJoUYE9HJ6/h3WXwimO+J1atXf6NrsQXxZiKR2P6nLoTj/JBkuld0HMdx\nHKdpJBKJrHVt48vKHMdxHMdxHMdxHMdxWjHNclmZJF133XU/dRHSIIX1tGnTbKkDNtDBBx8sKSwZ\nKS4utjfbGBswZswYScHq+eKLL8weGDdunKRQf0yJyy+/3JbAYB5gDmF7YB/l5+fbEpUddthBUlj2\ntv/++0tKmjq8QcdUwX7gLTznXrJkidUTe4qgs1EwhnizT/koN5aGlFwilYmGAgVHjx83k6RgEVBO\nwJ5ZvXq1WVOYLtgt7FtTU2PL0VjaFednP/uZpKRZwzImzB4svKi1gNGz3377SQpBtTFzMoH9wLkY\nG/n5+dY+GBv0IXXC7ikuLjbT5cYbb5QULDTGwowZM6wOGGH0GTZPx44d05ZeYdRwfJbR1dXVpQWT\nx/rAaqMu0bb4/+yde5yV0/7HPzPT/JpmpqakGhUlSSoiSbnEQTg47rmEKORa5F46FQmRopCQ3OVO\nhyOX3K8Rcpfk0lVpppqpSan9+2Of93c9+9nTSOgyfd+v13lVM3s/z3rWWs8+9nre6/PFJIraQPyc\nLWz0MceLvoff8X62jvEaDK+nn35a55xzTkr7MIiY8/Xr17f3xbe9YXJ9/fXXkpJzlddiEwHn/O9/\n/6uePXtKCgHNhYWFkoJdxPw78cQTNzpz6MADD5Qk7bvvvpKko446SiNGjJAkXXDBBZKkJ598UlIw\niNgCGiUeRA0rVqywecc4lBdIXVFAvCQzlZ555plyt8s5juM4juM4zqaOm0OO4ziO4ziO4ziO4zib\nMBusOURuCE+mMSXWJ4QASyEvhLyZeFnqaOl0DBXMHgwEzIm7777b7J2bbrpJUrAMCKudOnWq5aIQ\nUk2WCj+PBjhjU2A5YLBE7QWexGOj0L74U/iCggLLl6GsOpSXqcOT/Xhp+2gI7eryiaJEg6KjRHOJ\n4tkljAvXgv3BuEghl4fXlheOSxgxlgfXRJ9LoXw5Bg2/Gz58uCTplFNOsTLmGGXk6UDUimCeYI/R\n55gwK1euTMtCIlvqiy++kCSNHDlSUtLuwbrhuIQnv//++5Kktm3b2nUNGTJEknT//fdLCuXu7777\nbjO+rr76aknBkuHaoqZYNHBaCjYP15mZmWn3CmYaxhVjhbX0xhtvmD3FaxgrMrlWrFhhtlI8oJ0c\nJQKRy8rKLJeIsWrVqlXKcb/99lu7RzDAaHvr1q0lhbl++umnmwVIzhT5R7x2woQJlg/FtTBnmYfc\nCz/88IO15/PPP9fGBJ9pzz33nN0zDzzwgKRwn9E3iURCHTt2lBQ+5+OfOdFw/DUJol5TuDcdx3Ec\nx3Ecx0nFzSHHcRzHcRzHcRzHcZxNmA3WHAJKa28I5hDsvPPOZuRgBWBBYMJsvfXWZk3ES2JjwmB0\n9OnTxywCjCOMDp6gN27c2KwTXnvvvfdKChWr4iXtpWBIYI3079/f2ouV9Pjjj0sKFb7ilb6aNm2q\nyZMnSwrZNNgUVBnbfvvtzc6h7dgAmCeYLAsWLLAS2FBe5ki84hDnrCiXCEuBXJx4FTMpWEUYCeVV\nYqMP4xW5otXLOA7jSb9RHr5jx456+umnJYXMHKwUoA3NmjWzUvFUVSP/CGsmIyPDrBpsGawdTBUM\noqiRRX+RcRO9Riqs0f9kIWGwZGdnm8XCuegTKn9Rqe+HH37QAQccYO+T0quLVatWzeYB9w7XF8+W\nadu2bVpmEdc/bdo0ScmS6vyO93MuDJZOnTpJSs5Lrpe5X141xHiuEblVRx55ZMrxo/fJdtttJynM\nWd5766232lj8+OOPKb/j3qZ63OzZs63NG5s5RF/07dvXPnPGjBkjSZo+fbqk1GqI3KfkD8XtvXhJ\n+j8Lc3fRokW67777JCWr9TmO4ziO4ziOk8TNIcdxHMdxHMdxHMdxnE2YDd4cwsLYkOjdu7c9HecJ\nN/kz8XycKFgBWCwYGPXq1TNrZZ999pEkTZkyRVLI7bjgggvMPsFOeOqppyTJKpOR+7Fq1SqzM445\n5hhJsqflWDIXXnihVa/6+eefJYUcFzJ9sCyKiorSrI54DggVraJwneVl+sTfH88cqVu3rmUpxd8T\nb4sUzBcqkmHhYFuVlZWZ6RO1CH4PDJryspFef/11ScEAiXPsscdaJk08GwmwUgYOHGh2EhWrGA+O\nP336dHXo0EFSsLNOOukkSWHMmFNXXnmlvYZ5Ezeu6CspZEdRQY8Kez///LP1E+PJHGdcmbszZsyw\nymX9+vWTFKydaBU55iY/i1Ywk4JJ9OWXX9q5r7rqKklhjmPfDBkyxHKEeB/vwdKifQUFBfZ5wn3F\nPIlaQNzTcXvl5ptvTjl3Xl6eZT6RC8U9zr2z2WabpVXZwvwjuwmLrm7dulZJi4qEFWVybUgwv084\n4QSriMh1Ms7YhwcddJDldDFvmUtUy4tmhP0efB5I6Z8rQN+XlpamWYuO4ziO4ziO42wEi0PAFwu+\nhK1PHnzwQdvmxqIIi0U77LCDpOQXVL4Es/jCl2C2k/Gl9pprrrEFHxYC2rVrJymUjn/rrbds+wlf\noNjOwxcz3lOlShX7YssXM9rCNp/GjRvbwsJ1110nKXyBYutOkyZNJCW3w/CliwUCjrcmpeeBdpeU\nlPzuwsxvv/1mCz58GaePWET55ZdfVhuizblp98qVK21RiOuMH7egoMCunUWW+PYetsiVt+DFQgNb\nZnbeeWfbFsm2PtrLF9pBgwZJSoaKs82KoHKugTkwdOhQOy9jw3XH+2rRokX2O66XhSjm2NSpU+31\ntIewagKW27ZtawszbItiGyPHZyEzOzvbFpWOOuooSVKbNm0kSeeff74kqWXLlnZO5hJjxL1En/z4\n44+2sMV1x8d56dKltvDJ3I5uX5JkpeTvvfdeOwfzl4Wj5s2b27/jc5otpPQf4/LTTz/ZfOBefvbZ\nZyWFOfDpp5/aghnt4/5nHGbNmiUpOUfjQfcby+JQFIL7DzvsMElh3rAwPWHCBPscv/zyyyWF7cMV\nLa5XxOoWheLB999++61GjBiR0r7x48ev1Tkdx3Ecx3EcpzLh28ocx3Ecx3Ecx3Ecx3E2YTYac4hw\n3g2BaDg2W3MwTi6++GJJySBaLAqeamMrvP3225KC0ZGdnW1GCVtN2FbB9pQaNWqYPUGIK7YCpglP\nwA8++GAzLuLlzF988UVJ0o477mgGDr+jRPfQoUMlycKUOYYUtsBgmmBFEPxcEVxT/fr1bTsJ23ni\n27fmzp1rBgeGxfbbb5/ynpo1a1o7eB/BzNgY9HHdunXteulrTA5skqjt1bJlS0khcBu7KGqu0C7s\nLI6HIfXLL7/Ya/gZ4/Lwww+nvGf+/PnWPxgW9DVWxdy5c23sCZ7GWMMcYltThw4d9PLLLysK1wKF\nhYV2PWyL5E+OO3HiRPXu3VtSmGf/+Mc/JAVLBlasWGH9DVwLZe8feughu0foU8Z5t912kxTspZyc\nnLRQ8jgzZ87UaaedJim5VVIK2wbpe/r8lltusVDuRx55RFIIku7evbukZKlzzCbuN+YLYeT8/skn\nn9Sdd94pSfrwww8lheBs+m/s2LE69thjJYWxufbaayVJl112mSTppptukiQdfvjhdk9jBRIQvjHC\nPXn66adLkm1j3XnnnW1c2d7HvC7PHCovrD7KihUrzPzC8mLs+ZyJGlh8Hh9//PGS3BxyHMdxHMdx\nHMnNIcdxHMdxHMdxHMdxnE2aDEJc12sjMjLWuBFk+qwu4HddQRl5wKbAzLn99tvNJgAMHSwjQnsb\nNGhgBskWW2whKVgVGDANGjQwswf7gZLn8+fPlxTCl8eMGaMBAwZIShpCkjRu3DhJIVQ3Ly/PrISx\nY8dKknr06CEpPFlv3769pGQeDpk52CPk4FCmesmSJXZ9mBo88Y+G/QKZI2RJlQfvJ7fmzTffXO1r\nAXOIUufYBrvvvrveeeedlOPSN++++669H+OA3Jq4CVMRtBMrKDc3V3vssYekMJ7kRg0bNizlvZtv\nvrmZQthiBPrynsWLF5t9gs2C6UMf8/tPP/3UjA3OHQ/yzsrKsmwqfke7mN9Dhgyxnx1yyCGSpJEj\nR0oKJlh5fdS2bVtJwaiJjiXZW4QSY0EB2U3Z2dk254HrIxMqLy/P7h1yksgsIlOG8Wjbtq1eeeUV\nSUmDSQq2EaHuW221lV0P40AWFNdA/9WsWVO33367pGCscH8QnF1aWqpHH31UknT00UenHAczj36N\n5uYwHo8//rgk6aWXXtLGCvPlmWeekZQMO2cO0LfkQl166aWSktlAfyXc17Vq1TKLqGPHjpJC7hRj\nuJEyOZFItF3fjXCcv5M/8t+KjuM4juOkkkgkMn7vNW4OOY7jOI7jOI7jOI7jbMJsdOYQlW8o872+\n2H///SWFvJTBgwdLCtkZF1xwgT2RJkcjWjkreoxRo0ZZZg+2CHYQeTYlJSVmTWAT0QeUfMeSycjI\nMPsBmwhLA6snPz9ft9xyS8r7eA0WSjQ7h7wfLBasDKwASZozZ46kUJWNvsGoIbMlCoYET/bLy5iJ\nVxzCUFq0aJFlinCu6O/ix4hXfuK99HE0IyhexrwiqFiFCfbEE09Iko455hgzuMifghYtWkgK/Vel\nShUzypgLzBeqcZ144omWkYNxQclz+oj7+eqrr7ZxJf+G32Ga1a5d2/oJA4xqWcypvLw8sziwgbBt\nhgwZIilUK5OUVhGuvPGgrcxx4D2YNdtvv32afRevlle7dm2b01xns2bNJEmdO3eWFAyxFStWmCFE\n/hJjR19F23nooYdKCtlK8Up1e+65p84991xJyQqGknTyySenXMsjjzxieUv0DTlFRxxxhKSQM1ar\nVi0bo2+++UZSqJCGvRXPkdqY4PNm9OjRZn6S34Rhx2cm98CyZctWW4msPCqqJhiHnCLuwU6dOq3x\neTZA3BxyKj1uDjmO4zjO2uPmkOM4juM4juM4juM4jlMhG021MljfxhBgPfBUG3sB8yUzM9PyR8hC\n4T3kqPDaV1991SwWDAYMHY6xzTbbmFWAbYPRgUVCWx588EEze6i6hRHBa/Lz883C4HiYQuQekduz\n+eab6+eff5YknXHGGZKCkUQ733zzTXtqjzURr/IEBQUFlq9De8qzA7AKMH6iJpOUNH8whiBuDEH0\n+IxHebkmVIuKV03C+oBGjRrp8ssvlxT6j4waTKSzzz7b8nMwIrBasITIPWndurXOP/98SdJ1110n\nSWl5O0VFRWb9YHKRV0M+FEbMueeea5lAGGfME6yo4cOHW8YLP7v11ltTrn/BggV2fRhCd911l6Rg\nt9CWZcuW2byI5xtBQUGB3QcYQtE5zmuk5FgeeOCBkmR9079//5TjrVy50s5BvzEPsbOef/55SUn7\nJj4/yjNMaDsZV9wnvBaDasCAAWYyxk0zzKYuXbrY7zBUunbtKikYYVTNyszM1JgxYyTJKpxdffXV\nkkLFr43ZHCKPLTs72/qUscMQI4ssXm1wTfk9Yyj6mUHGENac4ziO4ziO42zKuDnkOI7jOI7jOI7j\nOI6zCbPRZQ4BNgp5NuuLxo0bS5Kee+45ScEOOuusszRp0iRJwXjB5CDrYsaMGZKkt956y56UY51g\nL/B0u1atWmYXYZ1gHsVzekpKSnT//fdLko466ihJ0l577SVJevvttyUljSJyPTA3yLPBwMjISG5L\nXLBggT7++GNJyWpOtEeSBg4cKCmZZ0NeD+ek4lfdunUlBaulYcOG1herIy8vzywqwCjBOsrNzTWz\nIJ4VVJ65gq2AkRRvw1ZbbWXZQJgfHI95Rn7MXnvtZbkpjPmVV14pKVSqatiwobWVcwL2DUbSd999\nZ1XTqIDFcRinxo0bm/XAHMBWYrzJ3bn11lt1wQUXSAqGVIcOHVL6r0qVKpYPBcw3KmxNnz7dDCba\nGs8VYi40atTIDDM+Vzh3eePBeGIMcU9jCy1YsECXXHKJpGDrdO/eXVIY7yuuuMKuAYsNIwnzh3Ep\nLi6286/OMCsP7C+yuGjvlVdeaTlT5AjddNNNkqRu3bpJSpoq9AlV04B5869//UtSMq+M8cV2iudF\nLV26dI2q9m2ItGrVSpLUt29f+9xgbvG5Ql9Twe6XX35Jm29xolZf/DWrM9ik8LnEvUmbmGMbGZ45\n5FR6PHPIcRzHcdaeNckc2ui2lQGl1dc3hN2++uqrksIXjtNPP92+1LMIwRdavoDvvvvukpIBwXwp\n5MsMXwaPPPJISdLEiRPtyzRfqDgeW9oIs87KytIxxxwjKXxxOu+88ySFLS01a9a00GG24QwdvZr6\nkwAAIABJREFUOlSSdNxxx6W079NPP9W4ceNSroVtUqeddpqk5MIACyosfBAyy1Y0KCsrSwsW5vpp\nb0FBQdriUPwLffSLIIs48S1j0cBqFkXiwdRQp04d22ZFn7BAdscdd0gK41taWmpjRX+xgME2rq5d\nu9pCwk477SQpjCswhm3atLEFKBYWmD/0Q1lZmS1IjR49WlIIuj777LMlhW1rn332mX3J7du3r6Tk\nOEphji1cuNAWKpk7vL9Lly6SpBEjRlhfxKH/ec+bb76pnXfeWVIIJY+HiUdhgYv5Cy+88IKkZF+z\n2MLcp2w94/LTTz/Z4ijh38wlFmXKWwhaXXBx9erV0xYYWBRiXJlrS5cutfnAljHmM8dYsWKFtY8w\nbILfGYcnn3xSUnJRjIUt5iqh2nvuuaek5GLYxsrnn38uKbkoRl+yMM02RhZqWOj75ZdffndrWUW/\nX5Mwa/r6tttu+93XOo7jOI7jOE5lxbeVOY7jOI7jOI7jOI7jbMJstNvKYP/991+vIa377ruvpGBa\ntGvXTlKyxDjGRnz7EjYFNkTNmjXNFiE0GONl7ty5kpKhv1999ZWksK0FSwGLh6fxZWVlFhY8YsQI\nSeHp+LXXXispaT9wLra3YKjUrFlTUupWKIwNApExTdiKUVBQYL/DpqDMd506dVLau9NOO9nWMwwT\nbKqKIKx28uTJab/DOGJrXLwEuhS293F9lGTnWgjvlsJ2HrbC3XPPPZJCP1x55ZW6/vrrJQVrh7Hn\n+rOysswUwhCiD/iTbYTxv0dfQ8jz1KlTdfHFF0uSXnnllZRrYuzZyldUVGRmGFbLDjvsICmE/W62\n2WZm72DZsJWNObVo0SLbSkf7aBdGDYHUubm5NjYHHXSQJFlgM/bOqlWrzI7B6sAa4X6AqPHD9TFf\naENOTo5dF8YRx4+bZ1HiAeMV2SeMJ8djPjdq1MhK17Otj88B2tC6dWu7/zGG4vcb93qLFi1sTp55\n5pmSgoV3+OGHS0paVswlxmVjY9999zX7CgOMUGj6jbkwefLkNPunonL1jBXz949AqPv8+fPtvt+I\n8G1lTqXHt5U5juM4ztrjpewdx3Ecx3Ecx3Ecx3GcCtnozaFPP/3Ucn/WB2Ss1KhRQ1IwaYqLi60s\nOGHOmBAYGLS7sLDQSldjcmA2YIJkZWVZOW/yb3hyPmfOHEkhu6V58+b2JJ68kz59+qQc98knn7TX\n0C6e5vMaSm137drVsnzICImXmn788cf13nvvSQpP7zEssAGwIe677z717NlTUjBWhgwZIink7DRv\n3rxcQ0hKzRHCboqHcgMhzDNmzLB+q1evnqRgyWCuzJ4922wMcnQwrhhf3lO/fn2zOjCw4vfSb7/9\nZoYL2UBYS8wBzLAGDRpYBk0czInXXntNgwYNSnkf108/Mh87d+5s58Y6wSTCWKlRo4b9nXnGuZhL\nCxYssLaSLxUP7SZIujyYS9hZ9erVs/HjnAS3YyBhoOXk5Fg7mG/0P22aN2+emUP0QTygesqUKWnt\nYb7ErZTygtBXZyJhZEnS+PHjJYX799RTT7Xjd+rUSVLICuN+pR85fm5ubkpumBTutwceeEBSMsuM\n11x11VWS0s3EDZ199tnHMtCYz9OmTZMUgqn5vPnss8/MUKsI+gv4LPsjENp/2WWX6dBDD/3D71/P\nuDnkVHrcHHIcx3GctcfNIcdxHMdxHMdxHMdxHKdCNnpzaEMDO6VRo0ZmCgwbNkyS0p6AY300btzY\nSjgfdthhktLLchcXF1tWCWOGsYKhRMZRRkaGmRaU2KYt/fv3t+NiX2CscHyOi1GTlZWVViI+Xpq9\ntLTUckI4B7k9GBKNGzeWlKzG9eCDD0oKJs0hhxwiSRo7dqwk6b333rPjYQXQXnJ/5s6dazlBGCHR\namxSMH6ysrLMGMJSoMQ5ZbOzsrLsHPRBgwYNJAXDAQskkUjYa7FPyAaifTNmzDBbhz+xWuIVunJz\nc83CipfYhqVLl5qhMnjwYEnBZmFu7bffftaP9BumDu0k5+WXX36xMvSMK6YUBowU8qCwdj755BNJ\nsrwdLI+vv/46rVocRLNgyA9ifmAQYcBwLyQSCcvpof8WLFiQci277LJLWjl0+hFDZ00qVpVHPL+G\nfKeoqUNFP+bqwQcfLClkLn355Zd2PYw918A8ZC7k5ORYxSzyurgW5trTTz9t8+zEE0+UtPGVXq9e\nvbrGjBkjSZahRR8zVzH3fv31VzMvsb2Y12tjB60Jo0ePNstxI8LNIafSU5n+W9FxHMdx1jVuDjmO\n4ziO4ziO4ziO4zgVUmV9N+Cv4PPPP5cktWrVar21AWMDI2bw4ME64IADJEk33HBDue/ZY489JEkT\nJ040Q6hFixaSQkYLBse8efPMhsE0wCC6/PLLJSVNEN6LvcLvsDR4TePGjc0AuffeeyWFSkvYO2QR\nde3a1SqskXWDBUQ7lyxZoubNm0uShg8fLinYD02bNpUkvfXWW5Jk2URSspqTJP373/+WFMawU6dO\nZo3QB2TckJ80aNAgs07IY+L9WE8YP6tWrUozDzBzME4KCwvNnuJctBXbJmraYXDwMywPTKT27dub\n9cBxMU3efPNNScEyatu2rb0GC4iqTFgpVatWtSpvd999tyRZdstll10mSerdu7ekZN4T14uxwp/8\nvHr16nZdnBuDKGqs0MeYM19++WVKvzEHWrdubXOT49CPjPPMmTPVq1cvSaHKW1FRkfWXFOZYRkaG\ntWN19s/kyZOtXfQ79xJWFFZKQUFBSgW01cFcj1e8wubDHKpfv74dD3uJucW9L4UqZcy3q6++WlLI\n4OIYeXl5aZYcY8Y9etJJJ1lVNsaOiolUsNvQKSkpsXwoPkfoa657xowZkpLmHq/BYPurjSHmJm3K\nzs7WbrvtJkl6//33/9JzOY7jOI7jOM6GSqVYHGJ7xYYAiy+1a9e2wGi2JvHFmS030VLMbJvhiySw\nJSv6ZZ8gab60s8DAtqmaNWvawgUBz7vuuquk8CV7zpw59kX0pptukhSCe0866SRJYRtR3bp1LXSY\nL9y0nTZsueWWGjBggCTprLPOkiRdcsklksKXWNo/d+5c+4IdDQuO8s4779hiE+9jMYHFg9dff92+\nTMbLrLNw8d///leS9O6771p56m222UaS9M0330gKizDXX3+9brnllpT+YlGNxRMWQqpXr27bg+Jf\nbFngmzJlir2PBYd4aHKjRo0kJceZcWSxg3NzTVlZWdaXXBd/Mi5cy/Tp022LDotr/Mk8XLVqlS1s\nMW+ZqwQhZ2dn27yiHWzVY0sfizJLly61ebfFFluk9M1XX30lKdn3Tz/9dEpbWRyiXWzpmzp1qrbb\nbjtJYQGYhR9+/tFHH9mYAFvt+JPFhcWLF/9ugHm0L5h/LEqwKAazZ8+2MeJ62drJQk1WVpZdH6HS\nBHuzkMyWysaNG9uiGn184403SgoB1zk5ObY4wtidc845KefcGGC+MufZwsc9xL1aq1Ytm/N/BLaZ\nsrhY0VY0PoOYW9ddd53dg47jOI7jOI6zqeDbyhzHcRzHcRzHcRzHcTZhKlUg9ejRoyVpvYaJUo77\noYcesqfiH374oaRkEHMUbJLi4mJ7ov3Pf/5TUrIUuRSesGdmZqpJkyaSgjnE7zAdOF5OTo4FUvM0\nHFOHNm2xxRZmXBCCS/lmzBp+HzVM2NqGgYSZdM8991h7+N3RRx8tKVg8XGPDhg0ttHrChAmSwpN+\n3vvQQw9ZX2BVYRVEiRs9mCtYM9FQZywCTA6uheDipk2bpm3n4fgch+0uNWvWtC0n9DGmFdZHdnZ2\nWmlytruxlQg7ZeXKlfZ+LBu2C2FOZGdn299pJwYMZhft3Wmnnazf6FOsNOZJZmamjWt8G+OPP/4o\nKTnHsFn4E2PqpZdekiRdccUVkpLzkK1hcXON8WjUqJGZX8xFYB7T1z/88ENaGXnaTv916NDBxiQe\n+E57mVtFRUVpBsnqytRHIVCa49FXM2fOtG2M3Js9evSQFOZJ1apVLTCeAHTsNNqCqXfzzTdbX86f\nP19SsLUef/xxSck+I/Sae4cQcewiQtk3ZPbZZx9J4Z5h7LhH6evc3Fy7T9mK+Uf4I+HVBKXPnTvX\nCgswnhsBHkjtVHo8kNpxHMdx1h4PpHYcx3Ecx3Ecx3Ecx3EqpFJkDgFZJesTLJmvv/7agk7btWsn\nKZRnJrwWUyIrK8sMBvJbMEMobV+7dm3LyOEpOLkclA/nuA0bNjRzA2uBsGkyUkpLS+3pPBkoZMBg\nL1x11VWSkqYEtgcGCJYQPz/33HMtrwazBJOLsGhsiNLSUrsu/txzzz0lBfMqapVgamDdYEHNnz/f\nLB2yj7A84lbKypUrzeAiQ6dOnTqSwrisXLkyLWMoXhadLJJZs2aZxYKZgmUwatQoOwZ5Nxg0zFGO\ny7XVrl3b/t6mTRtJwRiKhjHHy9tjBzHvsEjy8vJsfmFnxCktLbV5homDaUEGTHZ2tp2T9mFV8XPy\ndpo2bWoGDu1gnjA+ZC5JYS5xXOYSAdzlBUgzZvDGG2/YvGXuYF7RbxyvefPmeuedd1LeHzeGsrOz\nrU/5HW2gr7gWKdzDhGxHx1NK5gIRzM79xGvpY+Z1fn6+3TNHHHGEpBA8fvrpp0tKzinuW8y6uO22\nMTBt2jRJ4d7DgKMvmIdbbrllSvaZlB4ULgWjjPGANTGG+OwlZ0uSHnvsMUlao4wqx3Ecx3Ecx6kM\nuDnkOI7jOI7jOI7jOI6zCVOpzKFjjjlGUsj0oMz3ugRDp0+fPpo4caKkYB7EzaEoWApUbOLfWAw5\nOTlmyfB0PZodIwVLY/ny5WYRkHOC0YARs3z5cjMuyJ0hk4Yn6GTz3HXXXWY7YIRgMZG1MnPmTDOG\nOnbsKCkYNfwcw2nFihWW6UGFM+yTqC1D3go/++yzzySFrKBx48ZZWxnrvffeO6VfOcayZcvMyKEP\n6GvaV61aNTsX+SaUtMZkwMhasmSJ5TpR4vyEE05IeW1mZqbeffddO7YUjCZMH8bum2++UdOmTSVJ\nTzzxRMrxmANLly61Y2OP8H7sB8Z9+fLl1v9cE/MjmqfEnHrrrbckhXuI61y5cqWNNeOHyYH5Q0W9\n4uJiM3toH33MNeTm5trxqAIG9AnjsXz5cjO16DeuH0OksLDQ5jGGEK9lvpBn8/3336dVIItn0qxY\nsSLF1JLCfQBkcjVs2NAsNM6NGYXlMn/+fDON6HfmC/ckWTdHHHGEnn/+eUkhY4jKf5xn1qxZGjZs\nmKRQ6Y62U/Wsffv2eu+997Qhg/132WWXSQqV25hb9FWVKlVs/jIXmJvYd1K6MRQnagDFxzxuj2Vl\nZdln4cMPPyxJOvLII//YBTqO4ziO4zjORoabQ47jOI7jOI7jOI7jOJswlapaGbz44ouSpAMOOOCv\nPOwfYpttttFdd90lKWQDjR8/XpI0adIkScGm+OmnnyyfCKuCnCIsiOOOO87eT7YN1sx2220nKTw9\nX7lyZVoWD/YDVkZOTo5lvPBaLA/+zRP1Pn36mNWB6cN7o8fHTLn22mtTfnfsscdKkh544AFJyXwi\nDBOMCywUcotWrVpl1bD2228/SdKnn34qKZgXTz31lPr06SMpVIfClsEYiubj8DOMASyoaE4MNgLH\nI8OIHBuuqWrVqmaJcC1kKmF0VK1a1awVzKjPP/9cUrDIMFjy8vLMVuD64uZPfn6+mRX8DrB3GLOs\nrCwbD96PMUU/5Obm2s/IVOJ6oyYb5hs2DDbUt99+Kynk4bRq1cr69OKLL5YkPfvss5LC3Fy0aFFa\nllK8yhhtyM/Pt/5hjpM3gz0iBXsKW4m+qChvBgsFg6U8aAd9NHv27JTfV69e3fqkZcuWksJnzs47\n7ywpOWeZMxyHz1zu/3HjxkmSTjzxRBvfeHbRiBEj7BqPP/54ScGcIacIe6xq1ap2r5SXz7MhgWUY\nnbdSmLP/93//Z+PZt29fScHOLA/sNubm2rLDDjtICjlRG4E55NXKnEqPVytzHMdxnLXHq5U5juM4\njuM4juM4juM4FVIpzaENgUmTJpnVcsEFF0gKRknv3r0lhUyUnJwcM3p4gk6Vqx133FGS1LVrV8sm\nwUTAPOCJ+kknnSQpmdWCfcLxMHQwiGrUqGF2wS677CIpmEhU5uEpfM+ePc1gorIZ5gaZHIlEws6F\nWTJy5EhJ0jPPPCMpWDOZmZnWF8y/Sy+9VJK01157SUraD5gf2BTYBLxn1qxZZtvQVvoEY4h/R+F3\nGAnYCrm5udYHWC2YG88995ykYHRNnz7drBHMGsYMSyY3N9cMkMmTJ6dcHxko5EctXrzYroXjMM5c\nb4MGDaytvB/bizHjmhKJhPUbY8VrOV4ikbDjYLcxLhhAy5Ytsz7kT17LmH355ZeSkuOKRcXcp6+v\nu+46u07MJc5Nm6MZMlIyiwdDDTOHan7RMcOYwdxi3vBzzKKSkhIz4BgX5jXnkUK1OSr9MW/jtGvX\nzixAMoLuu+8+SVKnTp0kJe+z+BzEKDzxxBMlhXs0Pz9f999/vyTpqKOOkhSqZh133HF23XwOcL2P\nPPJIWtt4PVbXhsrYsWMlhblO31Pdb/HixZYTxbzFCqrIEGOcub/Wlr/qOOsAN4ecSk9l/G9Fx3Ec\nx1lXrIk5VKkCqeNQurxt23X/38zTpk2zL9F8sY0uBklha8tHH31k72N7GQsOhB6PHDnSts2w2MSX\nyosuukiSUoKDKcnO1ie2tLC48eqrr9piyyeffCIpbH1iYYAvaGwzi7adhYeTTz5ZknTbbbelBbuy\ndapnz552DZL08ssva+jQoZLCFie+yLMNiS/JUthOxjjedtttkpLbr9iOxpf81S0KrVq1Km1bGSHR\n0QVStmJFty1JobQ4Cxg1a9a0L+m8hy+rfJHMy8uzRTrGlXGgj1mw4ffRa6CdbGfKysqyRat4eXrG\nhd9nZGTY+HKd8SDeqlWr2qJSPBA8ukWJ/uF3HIe2RwObWWjkTwKVWWSbOnVq2gINfUrAOn9+/fXX\nVp6eRSEWzpibJSUl9n62cn388ceSZPcA28NKSkrsviJUmmsgWP2UU07RTjvtJEkaNGiQpLCAwecJ\n4zFp0iTtu+++ksLiEgu111xzjaTkvGFLGP3HtqhHH31UUljIqVevXlrA+CmnnJJy3dOnT7fAfbY6\ncTw+H6699loLNd/QITCf8SD4ns+t+vXra+DAgZLC5xyLayzaxe9VKYw9nw+Me3kLSfGFxyjMxdUt\nYDqO4ziO4zhOZcG3lTmO4ziO4ziO4ziO42zCVGpzaH0YQ9ClSxc7P2YQW24IaI5u+eAJN0YEdgb/\nbty4sZWzxrjgKTh2ESHFv/32mxkk2C3YBtg7xx9/vJWRZstZixYtUtrHz1etWmVP9OPByhgrdevW\ntfbQ5h9//FFSsFzOOeccSckAXa4X2yFupbRs2dL+fuCBB0oK4c38e7PNNrPQaogbQ9ES5Rgf9BNt\n50+sDfow2i7aifnTtGlTax8WEO/HCJs3b55tucLYIugam4dtXHPnzjU7gXMwdpg7ixYtsjFhGyJm\nQ3SrnZQ0dThHvDw47SwqKrK+YL5wbq5t3rx5advn2NYzffr0lHa2bt3atuUR4E2J8m7dutlxsZXi\n5cexvxjn7OxsM2jYNhg3h1q2bGnGGn2y2267Wdu5TmjatKmkMAe4H7DutttuOzPluG62f73++uuS\ngon0/fff64MPPkjpP9p70EEHSUrOn0suuURSsIuYk4wHYzds2DAdfvjhKX3y0EMPSQrmWm5ubtq4\ncjzMuMaNG1ub4fnnn9eGSHz76w033CApzL9evXrZa9jmx2cHxlDcWJTCODBfmAPMmyjlGUOAKcR2\nwY0gmNpxHMdxHMdx1go3hxzHcRzHcRzHcRzHcTZhKrU5BM8++6wOPfTQdX5erAlCiLEMMIh23XVX\nScmn0+QRtW/fXpL03nvvSQpWS0FBgdkJWEDkuWDL8Pthw4ZZIDCluskpwuZ5+OGHzYDgZ1gulJzn\nifzAgQPNpsAYIqMFG+KEE06w45133nmSQp4LJg3XlpmZafYTZbwJ08Zq2Xnnnc2EwLY57LDDJMls\noX333deCbDENgPcCVoqUnteDLZOTk2M2B2CxYG2RJ9SwYUM7DkHStJ22rFixwt6H5RDNLJKkd955\nR1KydDZWA5ZRPF8oPz/fzsH7sU44J4bN9OnT087N8TBNatasadfOz+Ih0fn5+Vbmnj694447JAXz\nh2vaeuutde6550qSZQWdeeaZkoIptf3226eEP0fBguI8ixcvtpwfwA7iHmjTpo3l1XB/cV+UV6b+\n/PPPl5Qewr7HHntIkt544w2b62QPNWjQQFKwRyhvvmjRIrOUmKOYPp07d5aUNJHIH6JdWCzMNUyq\n3NxcG0fGDJPoqaeekpS8T4455hhJ0r333ispjBkceuihdsyuXbumHO+1115L65P1CaHazFU+c8gM\nGjNmjN27zCH6kXvxhx9+SMsCwgzjc4Z7q3r16muVGzR69Og//B7HcRzHcRzH2Zhwc8hxHMdxHMdx\nHMdxHGcTZpMoZb/XXnvpzTff/DtPUS5t2rSRFDKHXnjhBUmhEk+0Qg82Adk2PPGGgoICy94gEwjD\nhywfWLZsmT15p2oR5tSOO+4oKVkBjBLYZMlgbPCEHstizJgx9rSe9nEN++23n6RkeXOe+mNsYDtg\nj1De+9tvv7XcEM6FAcR1161bN82KiZORkWEmDW2P5gb9HvGslmiFL8wLzh03iubPn2/WDWYD1ZSo\nzlalShWr0kWFLvqGbCBMn7y8PLOymBfYHtOmTbOfcxzahTVGX5F/dP/999v841wHHHCApJAV1KxZ\nM7tOoC8Yj9mzZ1u5dvqWClrkH1GtrXHjxlZ5i2uYOnWqJGn8+PGSUquLYawx9+PV1PLy8tKskX79\n+kkK8w6DitdLSftHUpotuOeee5rN1717d0nhHvr+++8lJe+FePUrzo0Jd+2110pKGmwYKowzJgwV\nsK644gq7Hl5L9hXn5l7t3LmzXnzxxZSfcU9h1j3yyCOWFUbFvzPOOEOSdOONN9q/6W/uOfrx7LPP\n1ppC+3Jzc3XUUUet8fvWBCrLRa0pKZhczIWtt97a8paeeeYZSeEzgvGI545JShsXzKGcnJy0OV8R\nfN7985//lBTm8QaIl7J3Kj1eyt5xHMdx1p41KWXv5pDjOI7jOI7jOI7jOM4mzCZhDkmhetCECRP+\n7lOlgcHw7LPPSpJluJCZ0a9fv3KffkvBhqhataoZGhhEPDnHxMDGkWRP+jElsEWwWzIzM826GDt2\nrKRkhbUoPH0vLCw0IyKeCXLnnXdKShosmEYjRoyQJMtuOf744yWFSj8LFy60c2NRcDxMmuXLl5ud\nhFVAezBYVq5caX0AcdMHU6d27dpmT/CeuGW0atUqawcGEX3L9fPewsJC6wtsB7KkqH6Uk5Nj5gKG\nD9YC7SJnZ/ny5fr4448lBbuLcSbTaMWKFTYHyJkhjyhagUxKZs2QG9S/f39JwYLAhMnJyTELA1sm\nXsntgw8+sKwi8qEwmXgtFeykkEF16aWXSpLuuusua48kXX/99fZ6Xou107p165TrLe93mDWMw4oV\nK+x66Fuysw455BBJITNo+PDhdp3kCdEnr7zyiiTpscces+O8/PLLkqTdd99dUjCGyD267rrrbKwZ\nZ+5pzKbi4mLrJ2wl8pgwsjDsjjvuOMvn4n4lwwgb7YYbbjBT8PHHH5cU5h9zITs7O60y3YUXXigp\nzGNMpCj77ruvJOnkk0+WFOyvzTff3M4ZzyyqX7++pGBK9erVS1dffbUk6f333087R/x9tAcjjup9\nzMucnBwbX37G5xSfjdFrYTyZs3GysrLsNWtiEPGZioXHnNgAcXPIqfS4OeQ4juM4a8+amEObzOIQ\n2ytWtwjzd8KXOIJk2aJw/fXXS0qW3ObL25QpUyRJzZs3lxS+7Pzwww+25YcvRYTyXnnllZLCws2w\nYcNsexGwqBAtcc8WnYEDB6a8ny+UlPk+//zz7csvQdmUiI5ureJ6+CLLl2kWOZ588klJyS+zbPNg\n4YcvhSzuTJs2zRaKKEnO9jfa2bJlS1t04X20ne1MkydPlpRcDIhv1aM/+WIbXWhikYg/WVRggams\nrMwWMRij+EJS27ZtbYGLhTKgPymhHj0O261YRODLf7169WwrF6/lelnMosx8t27d7HoJOycwnHLu\nmZmZtohDOwlP5xpmzZql4cOHSwrh2Xypvu222ySFL85du3a1xSkWVF599dWUvsnKyrKFJ+YQCyxs\nNWKRLArB1IwVJBIJWwihDxh7tr8xN0aMGGF/pw1sueMa+/fvryuuuEKS9O6770qSRo0aJSkZGi6F\n+bhw4cKULYRSmKMsfsyePdsWh7hvhwwZIiksJnKfLF261O5T7gtgri5btkynnXaaJGmfffaRFBaS\nuJaFCxfaQjTzl/uEfzN3e/bsafcn52TR7rvvvrPX/F0wn1mE4XOPfszJybHPTbaV0dfMqalTp6aF\nnLPoSmj6mrSBc5b3/sLCQknSzTffLEm2fXIDwheHnEqPLw45juM4ztrj28ocx3Ecx3Ecx3Ecx3Gc\nCtlkzCFo1qyZpGAXrAswDjA49t57b0nJ0GApabcQ2owFwdNxtsQsXrzYnpTzO7baxEsz5+Tk2BYv\nTAmMjqiBgNHAlg6MEMwVzI4ZM2bosccekySzFjCQKO/9r3/9y46HUcI2GkKxCXOdNWuWGS88tccW\nwR754osvrF1YBV999ZWk8BS/evXqdn2YNPybayEMfM6cORbgS6AvphCW1V577WVGD6YQ1g4/p+8/\n+ugjex8GCOYF23t+/fVX6/f49jcsEmyXGTNmmIXF9WGocLzS0lLtuuuuksLWMMaTOcBWpUsuuUTn\nnXeeJJkJQ1ugbdu2ZqqwPZBtfphECxcutK1O3bp1kxTmC8YPhlNZWVnaeGCqcL/tsMO8zKKCAAAg\nAElEQVQOZp8B25cwVaJwr/znP/9J6S+OL4UAa+Yk84ztTU2aNJEkDR482OYolg33G/bNk08+af3G\n7xiH9u3bSwp93bNnzzTLqV27dpLCXM3MzLQ+Zqz69OkjKcwp5kZRUZFdC/cb27mw+AYPHmzzLrrl\nNNquBQsWpG2Z5P0Ey9Mn06ZNs3bUrVtXUrAXy9t69lcTvZelYFUxj4YOHWoB/M8995yk8LnCvXjD\nDTeY5fV3wf9v3HrrrZKCiboB4eaQU+lxc8hxHMdx1h43hxzHcRzHcRzHcRzHcZwKqbK+G7CuwSbg\nafS6AGOI7KF4KHFubq7ZF2TQYC3MmDFDUtKwwWAAcmF48s+fF110kVkAvJ9wYmyDRCJhuSuE/nbs\n2FFSyLHhPS1btjTzYMyYMZKkE088UVIwbG6//Xb17t1bUgig5gk/bYGCggIzQAj3JYQZc6JZs2aW\n04PdhoGFIZKRkWGGQbzcPcYQbLbZZjr99NMlBbsDy+aOO+6QlMwZwa458MADJYVsGvqRMGVsGikY\nG7wW86pKlSrWl9hPHAdbhoDfLbbYwsKMo8HiUjCH8vPzbcx5DeNJ5krnzp0lJXOnsIFatGghSTr3\n3HPT3sv7aXPULJOSdhtZLBhI5Nnwc0yg9u3b29/JBsKaIW+qqKjIbKyvv/5aUnoweBSyXTCQsLOi\nhl3cFiMjCMOGPps9e7bZJlhxmFKYNJ07d1a9evUkhbmJpcT4YvP16NFDAwYMkBTsIkwiMn5q165t\nY8M4YKGQ0XX00UdbPzz99NOSkiZe9Fqwg+bNm2djxrXE79cGDRrYPUM+F+eg3D1zoUmTJnY99C33\n2d8JmT70De0cPHhwSvvy8/NtDhFof/fdd0sKIee1a9c28yhuUZbHmryWsWZOYb7xOeg4juM4juM4\nlQ03hxzHcRzHcRzHcRzHcTZhNjlzaF0aQ3GwRahWRoZGWVmZ5eCQMUI1rw4dOkhKZg7xxBviT77J\ngBk5cqRlA2F5YDJg3XTr1s3+jkVBNSDMBt4zefJkOx4l6DE5evXqJSlpZ1A9DVMIewQjhvfk5+eb\ndYKlgf2BURT9e9wK4t8rV65UPDMLo+TTTz+VFKyK9u3bW9YLVgDnvuSSSyQlK31RuYnS5pRDp2oR\nZlFJSYkZJZwTQwzTITMz04wSrgW7K141r6yszOwxTCH6iD9LSkqsghvWCMflNeRQjR071qpg0WYy\njWCbbbYxMwJjiONgcJHFI4V8KIw3DBasj/fee8/mKH2NlUK2TN26de36qOhFhTXGhfmzdOlS6y8y\nluhrWLJkSZoBx/EwYTCAfvvtN7sGrCXmKOZU9erVzYbDauG+BfKYWrRoYSYJ98oZZ5whKcyX2rVr\n25hhszFmVIqjqtzSpUvt+rjPqNRFttfMmTNtzvP5cdBBB0kK8+a2226zdjBGzGuMP9rbv39/XXfd\ndZKSJtS6gv4hv4q5wFx99NFHJSUzr/icY+wuuugiScEIk8J9tSbm0Jq8Zk3K3DuO4ziO4zhOZcLN\nIcdxHMdxHMdxHMdxnE2YTc4cAiwXKhOtC6jERWYGtsL222+vV199VVLIg8EcIhenQYMGZvhgRmA0\nUHkJPv74YzMNTj31VEnBMsAAwgyRwpN0jkcmDKZJ9erVzYbBquD9WBubbbaZGRDYMrwHM4EclQkT\nJqRZUNgnZOa89NJLZtJwnHvuuUeSzMTIyMhIMY2iPPTQQ5KkgQMHSkoaCaeccoqkYDBhgHDurbba\nyv6+5557Sgo2UPPmzSWFfqxdu7ZZD4wL14SR9e2339rY0Me8hjwlcmf69etntgJ9y2swlJo2bWrZ\nM9hYWF6ff/65JOmdd96RJG299daWL0PO0ZVXXikpVFf79ttv7fxkvWClYJzMnz/fKqQxp7788suU\n64S2bduafcJcx4TBCOnWrZudg3HEWsLUwTZ699137e9xs4z3ZGVl2Tm4V4A+Ypyuuuoq61MMGuY6\n9100d4pcHCw0cnCifc1YjR07VpK00047SZJVC8zNzTV7DVsJw4/sK8bj9ddfV5cuXSSF/mfeYBJd\nccUVZo1xn2HQcP2jRo3S6NGjJYWcHu5tMo3os+XLl1tOVDyn6+8iKyvLjEjaMXnyZEnSLrvsIkk6\n/PDDJSWzlh544AFJYcz5zGbs5syZY589fwaMtSVLltjnAHDfcp7DDjvMquI5juM4juM4TmXAzSHH\ncRzHcRzHcRzHcZxNmIx4Zst6aURGxvpvxDqEyjcXXnihpKTRQdUkLIC+fftKCubAlltumZbNQs4G\nhgTUr1/fbBtslKFDh0oKZkhpaam9Bngyj2lCTsySJUvMvqAiEpWgePK/5ZZb2vuxZbA9sBai1ZSw\nd2gDpsV3331nbYjnflBFiYpzhx12mJkbnAv7BNuD4y9fvtzahYlTXo7NTTfdJEk688wzJQVTCntm\n8eLFdr3YXlhF5NdgHcydO1cffPCBJKlTp06SgkGDTcJra9SoYa+lIhpzgffm5uZa3g99StuxrDj+\nb7/9ZsfGgCHnhcphzZo1s37DiMAGuuaaayQlbRYsFiCXiDFk3Bs0aGBmCu/BCMHgmjp1qtlOtIu+\neOutt9J+ToYSlgbnYtwzMzNtzmDd0C4sK/J1/u///s/yh6hORtYX9s5nn31mWVSMNfPlhhtukBTm\nxFlnnaXbb79dknT55ZdbH0jhPisoKLA+5b5nvmDsPPXUU5KSph7XwLj269cvpb0LFy40AykO7dxi\niy3sfuV6ozlJUsisWr58udlU5EvRzr+L7OxsNW3aVFL4fKN95ERhEHXv3l3jxo2TFOYoY8+4N23a\n1Kr+/d1wnxUUFNj4bSBMTiQSbdd3Ixzn72RT+29Fx3Ecx/krSSQS5W+5ibDJLw5NnDhRkrTffvut\ns3PyBYMv+H379rVtI3zJ5MswJdNnzpyprbfeWlL4chRfFILNNtvMFgnatGkjKWxRopx7bm6ubZVg\nEYIv7SwOMTfq1atnCyssMLRq1SrlnGVlZWnBsfES5XzZrlGjhi0w8GUf2DKy7bbb2hd3SqhPmTJF\nUnL7kiRbTIlCnzCuLNjMmDHDFgC4XrY1ffLJJ5KS28P4AsqXahbidt99d0lhESo/P9+2/nG9bHni\nvcXFxXZ++obQYP7NYhbXJknbbbddyjWx4PDmm2/q5JNPTmlHx44dJYXFhAsuuEBSch7RF4T9sljE\n1qdrrrnGXsN1sqjAlse+ffvaImH8Czg/Z97k5uZaEDU/Y2GELYVTpkyxczH/aQPXyeLH/vvvb9u/\nWCBjQZS5mZmZaYt0lH0n8J17h3GqVq2a7r33Xklh8Yr7gQW5OnXq2Dxl2xYLcixosOj0888/2/yl\nL7g32fKUnZ1tiy6MGX3DPcRC5rBhw2yRhPaxEMViTo8ePWy7JwtTzJ3oZwXnYo4Di7pc0957723H\nYx6/8MIL+js55JBD7Pzci/HFYrb5de/e3a6T3zHXWUgqKyuz4zFmLPzy7yj0CXOT+bEmJe55zW67\n7aaXX355TS95XeCLQ06lxxeHHMdxHGftWZPFId9W5jiO4ziO4ziO4ziOswnzu4HUGRkZd0s6VNK8\nRCLR6n8/GyjpDEnUEu6bSCT++7/f9ZF0mqSVknolEom/9zH0n2RdGkPw1VdfSZIGDRokSRowYIBG\njBghSerdu7ek8CR9woQJ9j7soo8//lhS2GZFaDJGRn5+vplD/A6DaMCAAZKkRx55xLZ5YYvwtJ7t\na9gZs2bN0h133CEplLvGCsL6qFevngVGY3uwPYftYTypb9Kkib0PCwCjASto4cKFtr2ILWfdu3dP\nOXd5YMdQuhuLJzc31yyP+O+wLL744gszUzgHf86ZM0dSsD2+/vprs00wGLCrMEuWLVtmZhDjSfvY\nAsSWpz333NP+zms5LkZH165d07ajMc7YD5Svj1plbFlknDEjpk2bZsHR/IywZdrSr18/XXzxxSoP\nxo7XdunSxfqSOYrxglmTnZ2tDz/80Ponem62Unbt2lVSMiD52GOPlaS04HHeu2zZMjNmMM2wv7g/\neO9mm21mY8N48lrm2pIlS8z+iQe1cz9g+hQWFprhQx/TLu7F2bNnWyg8x+vWrZukZOC2FLbpScFM\nYesf9wU2U+PGjc0ew4DZa6+9JIUw8rp169r8wGBirLCE4PXXX7e/H3rooXYOKcypv5rZs2ebEUX/\nxQ0n2v3QQw9Zn7zyyispr23UqJGk5PY+PnvYalaR/cPnW5w1KXGP3XbqqaduaOaQ46xXKvt/KzqO\n4zjOpsCamEP3SDqonJ8PTyQSO/3vf/yffQtJx0tq+b/33JaRkZH1VzXWcRzHcRzH2eC4R/7fio7j\nOI6zUfO75lAikXgjIyOj8Roe73BJ4xKJxK+Svs/IyJgmqZ2kd9e6heuIuBmzLhg5cqSk5JNsrBby\nSDAmyM5ZtWqV5cAQ0otxgK2BtRC1Rjgu5ccxVs466ywrX04mCk/OeTKPffDrr7+avYPFgj2BZVCt\nWjXLS+LJPKYQmSFkwRQXF5tpgb204447SgqmzqBBg8w6wdzAIKAN5YGxwbVhkzRt2tQsCYwDzCbK\nuZ955pmWz3PRRRdJCuXfMUugWbNmZpJwnfQ/tlBhYaHl52CjEAhMH2HUlJSUmIGDnUBuCnZFRkaG\njfmLL74oKRglu+22m6Rg6lSvXt36EmuEzCra/fDDD5tNRB4Tc+D++++XlJw32DXkJ1GKnfypaPgy\nFg9WFX3BOMyfP9+Cnek3IASbMVi+fLkefPBBSUmzSgrZWczN0tJSy5vB+uJ+oM/px+nTp1umD/3Y\nv39/SUmTTkqOIQbY3XffLSmYTIcccoikYIbl5uZaPhc/u+WWWyQl7y8pmQPEvcLYYMVEjSGg/+mD\nadOmSQpl1vfee297LRk8zN9zzjlHUrBnuB4p3FfxPo9CwDKZVPRj9Hh/BYsXL7ax4X59//33JYXx\nxZJs2LChmYjYaFwD83LUqFEV2oRx4vOD++L777+3NsXD8IH7mTF0HCfJpvLfio7jOI5TmfkzmUPn\nZWRkfJqRkXF3RkYGZa8aSJoRec3M//0sjYyMjB4ZGRkfZmRkfPgn2uA4juM4juNsmPh/KzqO4zjO\nRsLvmkOrYZSkQZIS//vzRkndJZWXgF1udYlEInGHpDukDaMCxbo0hgCT5eGHH9akSZMkhZwUsm3G\njBkjKWkvUC2JrBwgp4en73Xr1k2rtsXTdsyh4uJiyxSJGwI8NcdYGT58uFUM4z08decJ/+TJk80W\noTT3AQccIClYFNFKYJg4tIvj8eeqVavMgBo9erSkUI3pwgsvTO/M/4EJg5VBP8ybN8+qxHEObJle\nvXrZez766CNJ0hlnnCEp2B7YN/w7kUiYMYOdxfjQhuzsbMuMwX564403JEm77rqrpGBDZWRkWN9y\nXDKHsCJmzpypAw88UFIYI9pFLtDQoUMlpeanMI5cN+Pdq1cvOzbvx2iiylP0OLyfNlDV6qSTTrJr\n5HrJumIMMV9yc3PTDCv6ABuDn7dt29bukdNOOy3lz/bt20tKGkSYZJhMzCmOR5ZWQUGB7rrrLkmh\nwhdzlTZUq1bN2s6cp4/jFbEaN25sBtwzzzwjKeRtYfVkZWWZ5URfT548WasDu47XDh8+XFKwgtq1\na2d9SmU67CXuxej1MH6MXZzWrVvbazHX6P/mzZtLSo4ZfbI2xNtSXFxs9z8mDmBgcQ8sW7bM3s/9\nyz3NvKtRo4buvPPOCtsQtQ3jxhbGEKzOGpLCXBo7dmyF53McR1Il/G9Fx3Ecx6nMrJU5lEgkfk4k\nEisTicQqSXcqqQNLyac/W0Ze2lDS7D/XRMdxHMdxHGdjwv9b0XEcx3E2LtbKHMrIyNgikUjM+d8/\nj5T0+f/+Pl7SQxkZGcMk1Ze0raRJf7qV65C3335be+yxxzo9Z25urmXcPP3005KC4UOWTJs2bcwu\nAp6kY7tAWVmZ5a9gn2Cl8FS8qKjIqqX9+9//liRtt912kkIlp5tuukmSdMopp1j2DpbMcccdJylk\nouyyyy5mbNx8880pv+PfnTt3tnZjX5Btg5Fz6623SpI++OADMwQ4LrYBRkN5YMWQJUPlr3vuuceu\ngeNhSJDl9Nhjj+n000+XFIwrIAMGo+G3336zvoi/lmuZN2+e5d3Qp9hK8dyUefPmWd4U76HK1vPP\nPy8pmVHFzzB0brzxxpRzYpjMnj3bxhyzbODAgZKCjTJ//nzL4CG7CKuiInsC0wKLgr7Jzc3VBx98\nIClYO+3aJb8LkPP0wgsvWEW0qK0jpZtE2dnZVk2NfiOThr4vKiqytvI7TCmMHyr09e7d2zKyuMfp\nCwyWpk2bWuYT9g7H45owdKi6JiX7MtpOxgOzSJLuvfdeSSGnK14166WXXrL7lfaQYcTxhw8fbmPE\nsZnjmE7dunUrN89ICp8rtHPLLbc0Y3DYsGGSQr8xvtOmTbNj87nCmNNOPr+ef/55q0RGnhiZS9y3\nq1at0tSpU8ttH8YVWVwrVqyw42EgUrWQrKX+/fubURav0ggYSXzuRPuiohymOMyxkpISszuZz47j\npFKZ/1vRcRzHcSoja1LK/mFJ+0jaPCMjY6akAZL2ycjI2ElJDfgHSWdKUiKR+CIjI+NRSV9K+k3S\nuYlEovz9DI7jOI7jOM5Gj/+3ouM4juNs/GRgQqzXRvg+cv3nP/+RFEwQ/sS+qVOnjj0dJz+E7BGM\nE8Zy0aJFKU/IpYqfkpPHgaWBPUN1qgEDBpipQRYP1gLnXrBggZo0aSJJ+uSTTyQFCwqbBUumevXq\nZmdgRGCNYEHsuOOOVhXrnnvukSSzXN5++207zu/B8T7//HP9+uuvkoLtQAUsMmBq1qxptg0V4chJ\n2W+//SQFm6e4uNjaR6U1MlswTubOnWsmBNZJ3JbBMMnIyLC/M0ac8+STT5YkPfHEE/YaqsdhU2ES\nYbn0799fzz33nKSQ90NOD9W3srKyrEofpgW5OuXBHALmC9f4zTffWP/xO2ylLbdM7iAoKyszUyVa\nJU6SevbsKUnaZ599JCVtD+YF10nODtcyc+ZMs0W4dtqDAYNFs2TJEqtQx5x/5513JIXKZP369bPr\nwwhjjmLLMCd+/PFHyxPCwqNKHvNu/Pjxdu8AY0Xff/XVV9ZerCIqptFvzJvvvvtO+fn5koLxxz3J\n+PTr18+sJI7HuOy+++6SwpyqU6eOGUJcC5lZVDhcsmSJmTwYZrwmbgA1a9bMqn9xr3Tr1k1S+Cxr\n3ry53YN8xmAX0U7Ye++9ddVVV0mSrr76aklJw0oKGWRXXHGFzXUsQD4bV2dQrSl8vsWvs3HjxjYm\nfyaP6S9kciKRaLu+G+E4fyf+34qO4ziOs/YkEonyMv9S8MWhcmC7CNtx1gV77bWXpLCAQghz9Asu\nX1IJZGYBiBBrvnAVFBRYOC9fYOLl1qUQkszv2Pq07777SkpuJ5OSpewfeOABSeGLHvCFvEmTJrZg\nxHFYLOFLa3SLG19auSYWkli4KCwstK0svP++++6TFL60s8VDCtvJKoIFGr6IAotOO+ywg959N1lJ\nl34/9NBDJYXS7PTVzJkzbcEiXpabxYAqVarYeLKthXbyJ1+gpbA95bzzzpMU5gKLWiNHjrSFFRZH\nWGRivPlyPGDAAFt0YA7wRZd/l5WVWdtZ0IpvXZRCODrHYxGQ4/HluLS01MY4vsjEYkKDBg1su+Dl\nl18uKSxgMH9YgBg+fLi9lgUZtlBGj8/2JbZgsjjE3KJNL7/8sm2dZBwZ+xEjRkiS8vPzbd7yOxZP\nWLxiLOfMmaMWLVpICtsY6U/K3j/33HM64ogjJEn/+Mc/rJ+kME9YSJoxY4bNIfqYxTHeM2/ePLs+\nFjDffPNNSSG8ftKkSdYOFsFYZKKvWbDNysqyuc0cor9o38yZM23Ri+2Bp556akpf059ZWVn2Pral\nMteZx4sXL7bPjfjWM47DAlPDhg1t8atDhw6SwmLiK6+8Iim5TZXFudtvv11ScqyjREOx46Xs6aM/\nspDUrFkzG6MJEyas8fv+RnxxyKn0bGj/reg4juM4GxNrsjj0Z0rZO47jOI7jOI7jOI7jOBs5a1vK\nvlKzLo0h4Ok/WyZOOOEESdKLL74oKWl2YDKwNQZziC0kPPHHMpBSS5FHadasmRk+PK3nCTolyqdP\nny5Juuyyy6xEN0YTW8+wd+bNm2fbbrAL4mWqsQQmTJhgT++xY2gz5sTs2bPNZLjhhhskycqac/0L\nFy40IwAroyKDiCDhjh07SgrmAKbKuHHjbIsYVgv2FGBF5OXl2dhgibDNDJskWj4cGwUwk4488khJ\n0tFHH60hQ4ZISoYiS2GbILZWcXGxGReM3ciRIyXJ7JQnnnhCUrB8pLAliyBptmFVBKbP5ptvbpYJ\n9ggwP9jCs/nmm5t9wfsZD7Ys/fLLLzYnCRY+7LDDJIXgaNqZk5Njc5o2c5xoaDXzgd8xp3jv+++/\nLyk5Low1c4uwY9r5zTff2Lk4DpYWYz906FBJybBo5jR2C9tBMbF69OhhZtDEiRNT+o8tVcz5JUuW\n2HZL3sO9GQ1CZjy57zlnnz59JMnsNylYTkA7oaCgwK4Bi43xYW4ddNBBGjdunCRZ4Djb8Hr16iUp\nmFw1a9Y004++Zi5yvV26dDELC5OJsGosNOZArVq1zHbk84RxZYtcIpHQddddZ+eXlBYWzTXl5OSk\nha3/EWOIz7hZs2bZtjbHcRzHcRzHqQy4OeQ4juM4juM4juM4jrMJ45lDFTBq1ChJ0tlnn73OzsmT\ndEwTntDn5OTYzwhkJpAWCwK23XZbC3YlV4in7jyhnzVrltkXHDceBsvT99LSUithffHFF0tKNxu2\n3XZby3ghvJa8GIyOaBYM7aC8PPYJWSOfffaZhRnTPsqOc7zo6y+99FJJwdqhvVEweSqyi3gN5gLH\nj+eUFBcXWzAwxgW2CP8mPFoKZhRhy4RgM97Vq1c3g+Oaa66RFLKWCJSeOXOmLrnkEknBnsImwyLb\nZZddJCXDfzEi4pkqzIni4uLVWkSdOnWSlFqKHTMKsIPIrCkuLrbgXuZAfBy++OILy/Dh3Bgq/InZ\nsXTpUjN7GHNCxLF3Vq5caednzDB8+DnzZ+7cuTZmzK3x48entC87OzsttJ3rJEOHa6pWrZrdQx9/\n/LGkcD9gzdSoUcOul/lPsDJ/Yii1aNHCrJ8ZM2ZICvODvKwtttjC/s58i2ZS0ScEbcchT4ww8JUr\nV9rcoZ30I+XuhwwZos6dO0tKnTtSGCtsvLffftvaAZhRWEFbbrmlzW1MHzKCaAPX1rx5c/Xo0UNS\nsO2AnKGcnByb4/z/GbYYx2NcSkpK7H7i/uSzjPtjTUrbN2zY0DLR1uX/P1SAZw45lZ4N9b8VHcdx\nHGdjwDOHHMdxHMdxHMdxHMdxnArxzKEKWB9PhLF3KCNNlsyoUaPMeuCpO0YDVXPIgCkpKTHrBwOB\nylJUu6pVq5ZZIfES5YBBsGTJEmsXNhVP9jFiatasaXYB5gBP8Y899lhJwTKoVq2a2QRk+mA/YWdc\ndNFFZuBg0sTNnNLSUqssh9VyzDHHpPTNe++9Jylp/sQtOQyBqPmDIUTuD2AXYKUUFBRYe4D3YrtM\nmTLFDCEyY8hLASyUHj16WNYV10Jf0+4vvvjCbBuuD2uE99IfUbAnMCMok75s2bI0iwfIvoq+H0sG\n84K5hF2FGSOFscLOYLyjbcYuIt+JvJ24cSYFY4XjMCcGDhxoeTeYLowDeTPM/eLiYhsbquIxf6l8\ntWLFCrN1aAf9xhyl72vVqmXXggGD3UYVuaKiIo0dO1ZSsOPIE+N+4M+pU6fadXKv8zvmY35+vlk7\n9DdWIGYNczQKY8b18trly5fb9ZAnRK4OYzhixAg7x7BhwyRJ559/fspx+feRRx5p9xVzm3wsrLaS\nkhK7L/kZOUqcE5tp2rRpevTRRyVJffv2lRTmDTlDX331lVWqO/nkkyWFe5vqdpCXl2e5XXy+lUfc\nFIwzZ86ctM8Tx3Ecx3Ecx9mYcXPIcRzHcRzHcRzHcRxnE8Yzh9aADh06SEqtArSuICPkyCOP1K67\n7iopmAGYFWQP8TReCk/XsQImTZokKVhC0VwNnv7ztB5DpLxKZ5gbrVu3liSdddZZkpJ2C7YD9k/c\nqiAX6KabbtLBBx8sSXrqqackpVdVKi0ttSwWnvSfe+65KcdbtmyZWSu8nwpi2BrXXnutJOmAAw4w\nC4B2YZxwnTvuuKMZAxgMGBb8iQlTpUoVOx6/u/feeyWFnKj8/HyrtIYJhiXDuJA7U69ePZ155pmS\nQo4Q1aigoKDArpOxWhsY37y8PM2dO1dS+fNiTaEK1Q8//GBzcvvtt5cUMosqqgiFqUNmFSYcGTVS\nmKPkB2EDjR492s7BfYFtg0nE+GRnZ9v8pfIdxskFF1wgKWmTMMaYQ8yPHXbYQVKYW8XFxWYT8Rru\nAYyYCy+80Gwl5gV9jknE+QoLC9OsG/7NXM3NzTXLhnncv39/SclKa1wD/c9cwgzjermXGjVqZGNP\n23/88UdJIQupTZs2di7mJK/FvqFPPv3007R8qHg2UnZ2dtr8xS7CkOK6P//887TPCCw85sttt91m\nFdH4bMAGZE5E87Iwo6J5WlKYYzk5OTY2cZg/y5Yts9y0eFXG9YRnDjmVng39vxUdx3EcZ0NmTTKH\nfHFoA2fKlCmSpOOOO0633nqrpLBlhS9JhACzpaJOnTq2DYwvQmwN4gtRUVGR/YwvtqtbGCgoKLAA\nZM5FACxfVPv06WNl4Nn2wnH5QsqXzddee82+5FOmnUDbN954Q5J04IEH2jY1FgII+WVb1Pbbb28/\nYyGAhQ+CmykVf9ppp9kXRb6k8qWOL++77rqrfZGNh1bz3uhWMn5Gvx1++OGSwpfYwYMH2xft8847\nT1LYdkR/svDVunXrtOBofseX7cLCQltYYPFvdYs72267bdriErBwMXnyZG277bxhePsAACAASURB\nVLaS0heiILogxRfj1X1x3nbbbe1LP9fCa9nmuHDhQtuix2tZHIoHords2dL6gkWOeDh5q1at7FyM\nK+9hrLhf6tata69lIYWFIxYPBgwYYH0aPy5zYuedd5YkjRkzxhZkmduUfCfwevny5XZdbP3j3FzL\nLbfcIim5HZNFoHjAMgtIpaWlNg6ckzl/6qmnSkrOS+7T+DxmHNgGVlhYaNv5mENvvfWWpGRwtJSc\nz8wB2sX2tDPOOENSmD/Lli2z9rDIxyIqc/67776z4zDHWQjkMyP6e0Lm+TzgPbymuLhYN954o6Sw\n1Y45QFB4dFFndazJa6KwKMp8Xt09tI7wxSGn0uP/reg4juM4a48HUjuO4ziO4ziO4ziO4zgV4oHU\nfwC2eBFeuy5g+9bEiRN11VVXSZI9Jcdc4Un67rvvLikZJowFgB2E4UN57+nTp5sxs7py5lC/fn17\nmh7fgsYT+sGDB2vw4MGSwvYbjB/gPXXq1DFD4JBDDpEUTAS2w3Tv3t22iFB2m21XPKmvWrWqtQeD\n4Z577pEULB62nUnBwnj22Wclhb7FLEkkErYdJQ59hWmSmZlp4dKMw8UXXywp9PEHH3xg223iv2Mb\nzejRoyUlt5nFjZxoILOUtIQYV9oRtx0Y54osBkKypfStNXEWLVpkfYidRTsbNmwoKTV4mL7gNWy9\nYXxr165tdgfzgfGEaOl3LJTotqpoWwoKCsxM4bjMGwKW27dvLylpHzHvGGfmKBZetC1YN/Q576WU\nfI8ePXThhRdKCvcFxhr2XP369c3MmTZtmqRw/3JtBC0vWbLE7CKul21r0VBxjBn6grnZq1cvSdIT\nTzxhRl00CFwKJuJtt90mSbrqqqtsbAhv5nOOc8+aNcssoIsuukhSsKnok6htQ39FA/KjbcnLyzN7\nin5r166dpLA1Fsvop59+snv5ySeflBQMKcZnyZIlacYQYeRs32Q+5uXlpd1XwDU0bNjQTK24zRaF\nexgzcj2bQ47jOI7jOI7zp3BzyHEcx3Ecx3Ecx3EcZxPGM4c2Ig488EBJ4ck52TGAiXHRRRellXLG\nkqG0fa1atcw4IM8FA6O8MFtyYTASsI148l9WVmbZKUcccYSkYDbwpB7b5bvvvjODYfz48ZKCWYId\nVLNmTStVTT4KwdvkKJ1xxhlmkJCxwnViJuy9996SksG79Al2CKXYyd2JhmJjwHB/xMvWVwQGQvv2\n7XXOOedICsHb/JtrIUh35cqVqy2fHf05Fg9BwBWF4lYULC6l2kqMOSHMzKXyjCbagxGDEfLzzz+b\nhcW40KdYKFKwmzBLsD7IkqL/cnJy7O9xA4S8l6FDh9rc5Hdk1GCPMIZNmza1OY/9g0FEO7t06WLz\nIg7zDjtlyZIldu0YYfQb4fFLly41K4n7iXwdrDLaX7NmTTs3eT/MBezAX3/91f6OXcTnAtx99926\n4447JKWG1Ec56KCDJCWzwpjrjCv3OP1YrVo1y8768MMPJQXjLRoa/ntwn2VlZZkZxHErMnQwpbgm\nLKqRI0fatWAVEZCPRcW4RG25eJYX/F75+jjcixyP+bae8Mwhp9Lj/63oOI7jOGuPZw45juM4juM4\njuM4juM4FeKZQ2vBfffdp65du67z85I5RMYFvP3225JC9aNzzjlHw4YNkxSsDkwdnrr/+uuvZkDE\nn5Rjs0D79u0tLwUbiMwRTIltt93WqifRDo6LxUOFrUWLFunmm2+WFAwTzByMjs0331ynnHKKpFCq\n+84775QUysIvXLjQTJe77rpLUjCZDj74YEnBbvntt9/MoMEwoW/IF5FC9gl2FiYCcE1lZWVp5e4x\nRDhe3759zXChTwYNGiQpGBMcr7Cw0NqDRVFeefl4RTn6tDxzKG4MxfOiokZQfMzhp59+MqOCsYqX\nYof69etbhhGvAXJ/ioqKzD4B7A6uhbyeRYsWmVXDn3369JEUzKvly5ebCUbWEO/neqOVvhgr5i/G\nGtbS6qwhKeQzYbJstdVWdm5MLgwnxjUzM9New1zdf//9JYV8LMb0vPPOs3ZxLgwb2pmdnW33SDxP\nCLp37265QUCbsbQmTJggKTnXKGvPuTByTjrpJEnSo48+auekjysyhuI5WPw7msnDfGWMoDyrB+OI\nzytK2JN/9OOPP+r4449PaXs8SwvLp6SkxCy2+LkYs5YtW9o8WF3lsqysLOXn50sKn6mO4ziO4ziO\nszHj5pDjOI7jOI7jOI7jOM4mzAaRObTVVlslLr30UvXs2XN9N2WjgOwTno7zlBsrYubMmTr77LMl\nhSwezAGeclepUsX+zvujuTBSyOCQ0u2ieJ7N1ltvbRWNqC7G8ckwwbT55ZdfzBjAuIgft6ioKM0q\n4Fpo16JFi8wMIs+lW7dukoJ1Q55KUVGR4nOd7Bt+fuedd1q+ETYL58S22W+//SRJ1157rfVpx44d\nU9r13HPPSUqaIpgWGAhdunTR6uD99BNGSdQg4jUYXKvLE9p99931zjvvrPZcnO/38lXq1q1r1051\nMrJuyrM8ttlmG0kyqwITBlMkWsGOvsUYwrqZNGmSpKQxQkYQ54RWrVpJkpo0aaLLL79cUjCbMIfo\nP/KxWrVqZdkzHTp0SDnX7bffLkl64YUX0vqA+43xxrJq2LChnYuKbdGqbFLynsR4oR0cjzkxatQo\nSckxxT5jXLmHMPfy8/MtZ4qx43PztddeszZ36tRJUjAG432CiVW/fn2bJ1RKo+1ffPGFpGTfY+9w\nnPhnxdqC0UPlr/JMHc7N3MLa5LV33XWX3VfYWIxD7969JYUss4pgfBmv34O5zJ9UQVxPeOaQU+nx\nzCHHcRzHWXs8c8hxHMdxHMdxHMdxHMepEM8cWkswSCZOnLjOz01FLkwEskz+n73zDK+qStvwk4RA\nAEMQkF5EKY6IiCgq6lhGx16wi4iiFAU+rIiIvSCoKAqKDQviIIp1rOOgYxkUC8wooICIFAWlSQch\n5Puxvd+1zz4nCA4CIe99XXOFnOyzy1prn3Gvc6/npeJS+fLlzUAg7wOrCFOndu3a9g05FgAmDfk4\nfDNfWFiY9m06ZgP7nzFjhlkyffv2lSSddtppkoLRgRVUUFCg9957T5K05557Sgr2CbZQbm6uVSvj\nJ9/QY0zk5+enVRrDAsJYeemllyRFOS9UpkpmhGDq3HrrrWYikfuDuYKBQRWkXXbZxbKPsHnIRML0\n2WOPPcz4wG4BbJl4Ng/XRS4M/RLPGWIbjKjiiFtDxVVhys7OtteSOTGANSSl2zv0GeNmwYIFZqFh\n9tDm9P3UqVPt35hHjKWkBbVq1SozVZLWEvv95Zdf0t5P+9EPWDI//PCDVeDCLKEq2Omnny4psznU\nsmVLSaFaFmOhX79+lrNF/hL2CVZf06ZN7d6huiAWFdfP+daqVcvyiTh37u2mTZtKiqqfYckxbrt0\n6SIp1RxiXO29996Sgh1I7g/jJzc313K2sKggbg7G84I2RPPmzTepglnSHATGz8SJE+3YV155paQw\nFhgbt9xyi31GXHjhhZKkG264QVIwhn6rcp8U2rxx48Ybdb2Yb1hyjuM4juM4jlOS2aYmhwgTLQnL\ny7bGpBC88cYbksKDFUupKCVfuXJlDRo0SJLUq1cvSdJHH32Uso94YGvz5s1T/sbkCctnGjdubA+X\nhPvyEMvyq0mTJllQ7IQJEySFh1WWjlx11VWSoskESruzVIT9EK5dr149e+glDJeH4gYNGkiKHsqY\n1OAhnXPggY39li1b1kpNE47MAzIP2Xvuuac9cD722GOSwsMkE3IsnZs4caLOPvtsSWFC5amnnpIk\njR49WpI0btw4K/mdnFjZ0OQOD7JcQ7zMN9ebLMOdJL4crLilY/n5+TbByARP8jyl9MmlZBAyk1jx\n0vMsJWTS5NBDD5UUjY3ilu3Q9kzmVK1a1R7YGeu0DftYu3atHZMJUdqWCUPGRn5+vr1GKPZee+0l\nKUzUVKlSJS2onfuLY3O969ats/YDjsWE3rx589SmTRv7txTuBwLmaau5c+faMRmjtDVjv27dumlL\n9Tj3J598UlI0HpkUYYkYyxApYc/EZjykO7lclXOJB40Dx2TSavz48ZKioOrkxGdyYi8O938yCDxe\nFp525zONn/TT6tWr1a1bN0lhDDBJR/sxhpctW1ZsKXv6taCgYJPK2tO2juM4juM4jlOS8WVljuM4\njuM4juM4juM4pZhtyhyCwYMHlwh7SJKOO+44SSGEeEty2GGHSVKaPVO+fHn7dvzOO++UJF1++eWS\npC+++EJSZFXwzTtmCvYIdhBGzfLly+3bewwOTBqW51SpUsXsBuBbd5abxUuhd+7cOeWYLAfjG/uV\nK1fq/vvvlxSW1mASYQf96U9/MiuB8+Lbf5agcQ1lypSxwF2OwU9MDCkqAy6FwOIPP/wwpW0PPPBA\nSZExwfWdeuqpksLyIMJ17733Xn3wwQfKBOHL2D0tWrSw5UrFLbXJyclJW/aFZUMfElacqbR9kkWL\nFtl5YNQkKSgosHGCEUKbA4bZihUrrN0xywCbLDc312yqZEgwpgkGy7Jly6wtkmHB8SD0e++9V1Io\nvY5ZxjiOmyL0OSHiGIAYNrvssotZRRg97Ifxfcstt0iKllolz4u2wShq0aKFlVlnWRp9yBJGxl/N\nmjXN4uG+wrzCiJk7d661LUbdgAEDJEmjRo2SFKyg+DVgEGLvYQItXrzYzoN7GvOKY06fPt3uU8Y4\ny66wgbChZsyYkbJUMr4NMEaljRun9DXLXa+77jpJYQmZFEKrWQZ6++23SwqWUXxZbdIYSvZh0mKS\nwmdFfMkn984555wjKXxWOI7jOI7jOE5JxM0hx3Ecx3Ecx3Ecx3GcUsw2aQ6VJLaGMQTYIpSc7t69\nuyTpnnvusawWTA6sm06dOklKDR7mm3m+QefbcWySL7/8UuXLl5cUvkFPWhV16tSx8yFvhZ9YEBg/\nu+22m5W7J2eKfB2+vb/jjjv0z3/+U1IIp73vvvskBZOofv36evnllyVFFpEUTASuD1toyZIlZjBh\n/GAI9OjRQ1JkuxBQzHVybOwT8kXGjh1rgduUz8Zgwcr4+OOPiw16xk6BpHWViUMPPdTOmbamX2Bj\nSoxzTYWFhWb9YCAls1by8/OtTzB6yINhjMWhjadMmSIpWG3xnCHaOwn7o/3I3YmfF2DorFq1ysY0\npgvnQJtyLWXLljXjZd9995UUjBfsmxUrVuiYY46RFMY29wf2GNfSunVrC3HmOrFkDj/8cElRPhj2\nD2XVGWPcD9xnS5cutXHC/jhP7vF58+aZBYNt9+CDD0oK91vjxo3t/dhK5513Xkrbct21atWy83j3\n3XdT/sZ9tueee9o4YXxhkWEdzZw5UxvL119/bSZicfD33Nxca3eMqHvuuUdSCK//6aefbExiODFe\nCC5njOTl5VkWWvz9SZK5RBiI8fuLft3KJewdx3Ecx3EcZ7Pg5pDjOI7jOI7jOI7jOE4pZps1h0pS\n5TKp+HLhW4IOHTpIkj7//HNJ0qeffmo5OBg+VCR7/fXXJUWZHB9//LEkqVGjRpJCaWYMIsjPz0+z\ni8iCwSDIy8srtkw0pa2HDh0qKco9OeOMMyQFCwPzgLySk08+2Sog0abkpsBtt91m1c1OOukkScHC\nIN8o/jvf/lMVi7L0lJsfOHCgnQfbsh/696WXXrJrIKMFOBZjNm4LkYlSXInsefPmFVtSHKZMmZKW\n34LRAZnMISpC3X333ZJC5suaNWvMqEj2b7IKlxQqUiVL0EPFihXt3LGM6F9slMLCQjMuGJO0Ce01\ncuRISVGGULKCFpX0MKamTZump59+WpLUu3dvScF4IVcI42Tx4sWW08MYIJ/o/PPPlyT17dvXbBHM\nHGwxXufnlClTbFwkzbC33nrL/n3xxRdLCu2O4UMlPcb8t99+a+ONY/I3zjt+n2EFJu2xcePGWZZS\njRo1JIVMJQy7uAlEdg7nhQ3ENqtWrbLrwzDjWr799lvbjyS1bNnS8qWKIycnJ23stGzZUlLIpsr0\nWYIN9cgjj0gK47Bbt27WD4wT2o8cKvLLpGAlZTKGIJlLRNvEq6uxH9rAcRzHcRzHcUoybg45juM4\njuM4juM4juOUYrZZc6iksTWMIcAYIn/npJNOMuuBqlvYBRgE7du3t0wWDAEsIMyO3XffXVJkRWDS\nkE8C8cpEfLOPeUA+zpFHHikpfPs+d+5cy3PBSOCbemyP6dOnq3///pKk0aNHSwqZPlQ6KywstG0w\nGvbaay9JwfyhX3JycqzKE7kkgLWQk5Nj+6GCFDk4GEVt27a192EjDBw4UFLI2SEPKA52zMEHHyxJ\nGauYJY0hzBD6I57bUxzYDMuWLbPx0KZNG0khf4WxUFhYaCbZscceKykYF5hD8WNiZzRt2jTlmhhT\n3333nbUfZg7ZQPT9nDlz0iqsMQawgjp27GjnRz/SD5wXuT3VqlWz8U/uDEYXRgfZMqtXr7Yxzn7f\nfvttScGYWrhwoY2TM888M6Vthg0bJimM1dq1a5uZw/mRDRRvM/qE6yNDh5+M0bp162qXXXaRFMYb\n10sO2MCBA3XKKadICn3D+CVLZ926dWZRcU9+//33kkKbc74FBQV2zthdZH3RT6tXr7Y2pN2wyLgm\nmDBhgu07noEkhfGSm5ub9nn5W7aRFD6fMP24l0aMGKFLLrlEUqhWhmlFJhzjZdWqVdaWWEaM62Tf\nxWGbeCUzzC+qp7Vr1+43r8FxHMdxHMdxtlW2+cmhkra8bGvCw6sUyoTz8EZoKg/BBxxwQNqDO0s5\neJhlMiE3NzdjeWdJatWqlaTogZSHJR70eKDige3SSy+VFC1vomT8rbfeKkk68cQTJYUQ4OXLl9v5\nERDMZMeLL74oKQrK5X0syRoyZIgk2VIjgq7nzp1rk2A86PLgzPVWrlzZAq0JFGYCLTmh1KJFC1um\nxeRNpkmhJMUtK9ttt93s2Cylmjt3bso2xS3bi0OI88iRI60t+cmEIf1dpkwZWwo3YsQISWGpzUEH\nHSQp6nuW0jDBwMQAS4vYhxRK2PMaExjxpU9MHnA9Rx11lCTp8ssvlyRdffXVkqJxRPsztmjrePl3\nxjiTB0w2cb3xQGr6Hp555pmUa/vpp5+sDSid3q1bN2ViyZIlevTRRyVFy9EkpS2Dq1Onji3bZIkn\nE2fJUOcZM2bYGOLYTGRwvZdccolN4DFRc/rpp0sKkxOtWrWyCTImibh/mfChHb766ivrX9oWmPjd\nYYcd7N8sQYuXrpfC/cc5SeHzg3Ecfw99lmn5YnHQNtyvBJuXK1dOs2fPlhTaifZjPLK077bbbrPJ\nxOLC4uMkl+HFYRnujTfeuNHX4DiO4ziO4zjbKr6szHEcx3Ecx3Ecx3EcpxSzzZtDzsbzyiuvpL3G\nN/MYBE8++aSkyMy59tprJYVlX4AdgPGzdOnStKUiGAh8Cx83X/bee29JwTDh23vsg2HDhun999+X\nFJZ/rF+/XlKwKrAspGB3XHTRRZJC4HB+fr4tzcE+ee655yQFQwfj54YbblC/fv0kBbsBKwPL6scf\nfzSbYNy4cSnXSen5Zs2aSZKeffZZXXjhhZIyWwXFEV+GF4e2k4Lthf2A1VJQUGDmV9LyINyZ/l20\naJEZKZhDmBywdu1a61fMHAKRCTS+8MILzTrBimF/8XOWpD322MNMEtqNZYj0mRSMDX4mzyte5px/\nM4aAY9etW9e2uemmmyRJ9913n12fFMyhRYsW2XggzPj666+XFMZq3FAsrl/pn4YNG2r58uWSpC++\n+CLlWLD77rubPVWpUiVJoR0xVthHfn6+LdGjTZL9vMMOO9g9gimISUSbT5kyxUyZZLAy9k3ccivO\nSOP84mYN4wM7kPakn2vUqGGvsfwNSzDOphhDSTjfQYMG2e933HGHpDAuGNdYVSz9qlq1qtlAnDPX\nx5jIzs62Y2zMvc29g0nkOI7jOI7jOCURN4ccx3Ecx3Ecx3Ecx3FKMSXGHPLsoY1n4cKFZiAAAch8\nI75+/XrL5zj00EMlSf/9738lBbMG22P16tVmeWBjYLCQmxK3SLAwCKLFmCAU9l//+pcdg/L0mAyV\nK1eWFOXF8M0+WTTJb/hvvPFGy/vAZqEkOZlD8VDcL7/8UlJkuMT3Q6jw3Xffbe9PZqoAGUkXX3xx\nig0jKc2u2hg4h7jhQV4P5hb7W7JkiVkmSYYPHy4ptHVeXp7ZJ7Q1dhav5+TkaN26dZKCpcT+9913\nX0mRnXLllVdKCrYI5gvnTtv/8ssvNu4wuuhzjrNo0SLrB8Aewzjp0KGDpMiaYVxgxSSzahYsWGAm\nDQHemFb8jrlTWFho+TdYY5wXQegbA+8dM2aMvZ/w9uS1nXTSSdpnn31SzotxAnFzir6i/RiHc+bM\nkRRl6tCPp556asr+COB+7bXX7P6kb4oLM2/durUFoSfHYjw4nP1h/PF5QBu/9957kqLPA+6LTMbQ\nppKbm1vs/UQeVdeuXc0KpC3OOOMMSSFrrU+fPpKkxx9/3D5jklZQ/B7kejcmBD6ep+U4juM4juM4\nJRU3hxzHcRzHcRzHcRzHcUoxJcYcgpJoEFF1CwuCb/P/KA488MBi/8a3+jVq1LBMGowBsksWLFgg\nSVZWe8KECXYN5LtQNpwMkkyQ+4PN8sADD0iKbI0uXbpICgYCtsw999wjKbJGrrrqKknh2/tkvkmZ\nMmXMhMJ6Ou200yRFxoYkPf/885KkK664ws6Lc8eWoWz4unXr7DySxhC2DNWpli9fbhWpIJPhQMW2\nZBYNxG0Nrg8TIZ67JEVZUGTQYGxhd1CVDatkhx12sGpdkDSJioqK7PywJtgP59u6dWuzf5Lv5/oZ\nE1OnTrUqb++8807Kfslq+uCDD6z0erJ8OYYY1cJ++eWXtPwqjA6I5+EkLSiugfMtU6aMGT70OfYJ\n192kSRMzmTgPKnvxOxlM48aNs/bGwktSuXJls1f+8pe/SJJV1sIM4/dKlSqZKYSBxTWQKTV//nxd\nc801dj1SsL0wgDLRpk0bSaEdGT/x99BX3JN8XuXl5aUZNE2bNpUkvfXWW5JkfdqlSxd17Nix2PPY\nVGjfTGBpValSReedd56k0BZUYIPHHntMUtTPtFtx41DaOGMIGC+O4ziO4ziOU5Jxc8hxHMdxHMdx\nHMdxHKcUU+LMoZIIZgDfgm/oG+vNwddff22mxqRJk1L+1rlzZ0nS6NGjzUqgstExxxwjKRg6cSuD\nrBbeg10Qr3REFSCMEr59ZxtshWXLltm/sTAwOrA/dt55Z7MAOCa5K+TONGnSxCpTYfxQwSlp8XTu\n3NksEfKRMGHYtkOHDmZztGrVSlJqNTYpNZeEXBhIZg41a9bMqmxhUSXBRpGCsUW7JTONZs2aZQYT\nkOtCbhLWTFFRkV1f0iCC7Oxs+xvWWNIkKiwstCpgV199taRgiwCm0/r16y17hjHEmCfzSpK++eYb\nSSH7ib7jHMiCycvLs7HEdWf6nbwg+hVDDbuwQYMGdhyqimHmHHbYYZKCSTRjxoy0sRPvIyn081FH\nHWXmF2D4cO8sXrzYMofoG8YY4+fEE0+UJL355pv2mcB4S2ZBzZo1y+4R8n+wx+LQ/owpLDQsPsbG\nIYccYvc21bY49w3l7mDqcS+S8cV9vLkozriTwhhYtmyZ9RljiIwhMskmT54sKcogYrzRtpk+K5O2\nGHB/1K9f32yxpM3mOI7jOI7jOCURN4ccx3Ecx3Ecx3Ecx3FKMSXWHCpJ2UN8+823znxT/0eSNIYA\nU2fZsmX2rT+WCCbHlClTJKV+I86/ySnCJsCMadKkSbEmFN/UkzM0ePBgOw8MCY755ptvSorsm+OO\nO06S9MILL0iSTjnlFEmpFdKopIX9RHYM0NadOnUyswkrgG1ph3Llypl5QI4OkFvD3ydPnmz/pi2S\nxsmkSZPSKlNtDJgbVOSKg4mDVXTEEUdICmMrngvEtslqZfGqZWzPGOXYvKdcuXJm3owePVqS9OST\nT0qSevToISmMiQkTJtj1kkWVrAhVs2ZNq3DVt29fScFYoQrYG2+8kXIunEccTKkffvjBDBr6lX5g\nXPP7zJkz0yroYY98+umnkiLzBSsmSaYKdnGTTAp5WBhEe+21lx3/3//+tx1DCjYQfVmvXj2ziTCk\nMJzI8WncuLEuuugiScEO4j0333yzJOmJJ57Q6aefLkkaOXKkpGAZAX2Ql5dn2WL0Q9I62hD0w9ix\nY39z280NbfTSSy9Z+9C2/KS6IO1x3HHHWQ4Z1te4cePS9p00hoD7ZMaMGTr66KMlycy6pFHnOI7j\nOI7jOCWJEjs5VJJgYoWHQSYs4iWstybJsGke9nnwzc3NVa1atSSll+qGTKGsTBTwnkceeURS1A7X\nXnutpBBAzWQCJagfeughe2ht27atpLCU7frrr5ckNWrUyCYSDjjgAEnSvHnzUralzHkcHvJZasMD\nX5kyZezBn78xccTD5UMPPSSp+IfHJPXr15cUJuWKo2bNmtbGLHEiRJgH77y8PFvCNXToUEmhz2jr\n5ERkJhh369evt0kg3s/vLJlZt26d/Y3JGsK+aQto2LChTZQxppKTQzVq1LCJXcZXo0aN7G9JeICn\nXwi8pmw7x5XCZBpjgImR22+/XVIUrj1mzBhJYdkgbcGYL25iKH4OcQg+ZpKTpYsDBgyQFI2fv//9\n75KkM888U1JYZsrnAuebk5Nj46V3796SQvsx3po3b67hw4ennAPLLTt06CApmkB65plnJKWHTDOB\nxkTQ1KlTbcKsuKVUG4L9s+Rwa7BkyRKb2GbijAmbE044QZJ09913S4qWGHbq1ElS+GxgQq+4z7bi\nILCbzyfHcRzHcRzHKcn4sjLHcRzHcRzHcRzHcZxSTIk3hwYPHrzNLy1LLm/5PUuNNhfYHl27dtVz\nzz0nKRgMnBfLVDAImjVrZoYFBgJLqrA1KleubMtjuE5+xkudS1E5eEKE8BFR8gAAIABJREFUe/Xq\nJUlmErH/8847Tw8++KCkENiLAUIA788//6xLLrlEktSzZ09J6QYIpdB/+uknVa5cWVKwlJLLrGbP\nnm3mDdfHz9deey2lbTZEfFkONkzSHMLsoc3nz59vVhBLiZLLDxs3bmxmD21C2ybLtsdDqJOGGn/L\nysqyZYG8xnnRD1IomZ7sT+yl/v3729+xuljmw7a0cfny5e1+4HoxaWgjbK1FixZZX7Hk7J133pEU\nwoirV69ulhPWUrxNpRD8fsghh5ilxLExfbgvcnJyrA2ToetYPfy9adOmOuussyRJL774oiRpyJAh\nkoL9tX79eiv7zpikjc4999yUtnnzzTettDz3Hsu/9t13X0lS+/bt0/qK9mJZ2RlnnGGfiWyDhcdS\nLEybiRMnWlg6ptqmmEP0A58DG7MUbXOTn5+vzz77TFKwE//xj3+kbMN9fOKJJ9rnHWbZxhhDtGM8\nIJtrxwh1HMdxHMdxnJKMm0OO4ziO4ziO4ziO4zilmBJvDkklJ5ya8Fu+fcZ02JKlkDmHhQsXmqlB\n5gjWQ7du3STJMnAmT56cFraMgcHrFStWNMMiuS1ZNZgXq1atsowWjJArrrhCUshqefPNN838YH/Y\nD5gTZcuWNeOD/ZA5ctttt6W8t379+mastG/fPuU6sYHuvPNOde/eXVIwIchzwf7AotkQ9GvFihXT\n7J9krgsh2RMnTkzLtNlvv/0khaybnXbayWwTzhmjgcBmLKG4LUR7Ybww/pYvX26ZPmzD9WGzSMGc\nwaShTTFWsL+++OIL6w+2ZT+EiN9+++22P+yaQYMGScocDEyuC+MFKwgDJjc312wxrgV7hX7gnI48\n8kg79+RYpU0KCwvt3/yN+5NrYYxWqFDBspUwxOgX+rlChQr6+uuvJQVThf7s16+fpDCu582bZ31E\neXUsObK4mjRpYnlY/LzhhhskBfvugQcesGymzz//XJLMDoKJEyfavzFgMJuwvWijDfHxxx9LCibS\n5oLPinXr1llfF8dPP/1k9/Z//vMfSSFwnNex0wYOHKhLL71UUrDv2H9xgfpSqjEkRWOCvuYzwnEc\nx3Ecx3FKMm4OOY7jOI7jOI7jOI7jlGK2C3OopIGRkCy7viUgC2b8+PE69thjJUn33XefpGBnUHmI\nbJS1a9ea+UEGDOdOdsuqVavsW3q+9SeLAwMJ02HJkiVmK2AHYUhgy1SuXNnsF6yWrl27SgpZPGXK\nlDHTAguInCJMH0yTxYsXW5YP5gcVjB5++GFJUf7MlVdeKSnYaBhJZPMkS6pnAptnxx13NIMBknku\ncYMjnrUjRcaWFCp/TZ06Va1bt5YUTIZklTHaqrCw0MYZFg/viV8LplAyeyi+v6RdxO/0K2RlZWnd\nunWSgi3G+WGhNGzYUB9++KGkYHclK5rFwdrBvgGq03300UdmF+2///6Sgs3C9WPLLV++3CwR9osl\nQ8Ww+N8Yx2TSUOmMaylfvryNKfK0yD+ilPr8+fOtX8nkWrVqlaRgNsUNQnKDeA+2Eu+dOHGinTP0\n6dNHUjCmOnfubNfJPUiWUZKGDRva+7h/GWPFvScTWGCbCz4fMJ8yQTvE70kyyLi3qRRH5tCsWbPs\n+i677DJJ4R6Mj6nfomLFipZh5jiO4ziO4zjbA24OOY7jOI7jOI7jOI7jlGK2K3OopGQPJbNbtgZ7\n7723jjvuOEmhOhaWAdbIBRdcICmyjDArMGm+//57SZGRI6VWt+JvWEaYHRzn/vvvt22xOgC7aMcd\ndzRD5YsvvpAkPf7445KCKTFs2DAzKjg+Jgzvjbcx44KqZ2zbrl07SZHtwnViyWB1YDHF80UwS2bN\nmpVyDVgzBQUFluOyMWAMQTLzpVmzZtb+tFsyawgKCwvt+pI2D1bJrrvumpLfJIXr5uf69evT7CIM\nJI6NRVanTh0bO82bN5cUrBuqbs2YMUOPPvqopGAM0VdYaJgsdevWtfbG5qE/sDuqVKmSYoVIIceJ\n/cerliW35VrifcgxOHf6GesLmyc7O1tTpkyRFDKVMKUwnSpXrmxGHu1Iu2EHYc1dc801do9MmjQp\nZb+vvvqqJOm0006zDKXevXtLCnk6tN+QIUPMsuvSpUvKuWPUYW/Fc65ot00xhmBj8ok2Ba5/Q5+R\nWIa33XabfQ6QmxavPicF2/Dggw+2MYVtyBj44IMPJEVtzphJZg3Bb+UgOY7jOI7jOE5JY7uaHCpp\n8ECztejbt6+kqMS3FAKBd911V0myZRPHHHOMPv30U0nhITAZwrp27Vp7gOeBjIdhJiV46J40aZIt\n+yBMl+VXTPzcd9999oBNYDZ/Y5IoNzfXJiYOO+wwSdIJJ5wgKUwW8ZBYvnx5a28eogmU5eG/YsWK\n9lDIwzTXwGRJ/CGYSbAkTBBMmjTJJkVYdhQvc5/pd0lq2bKlpBCQyzF79uxp50MbJ5eT8Xv83/EA\naklq0KCBvSf5/uQkU05OTlpYNZNN7JdJwMLCwrRAZoKVGQNXX3112tK6TEu7pCjkmXGWLFNPAPSc\nOXNsCRKTJMkHdyYalixZYkv0kiXX4yHiLK8C+pAxyjXGz4f3cC1MIM2fP98mPBl/tDmTga+//rqk\naBKUSYxXXnlFUlji2bZtW0nSiBEj7J6hvWhb2iE7O1vDhw+XJN16662SQmB0586dJYXxGJ8cYj9b\nE9ripptukhSdE8srmdhj7J988smSoiBt+oE26Nmzp6QwnumzJUuW2IT26NGjU/YHyXGYiT//+c96\n//33N/n6HMdxHMdxHGdbxZeVOY7jOI7jOI7jOI7jlGK2S3OopCwvY8nInDlzzGjYkrRp00ZSMIUo\nA3/ddddJCss2rrrqKluCkTQ4CCWO2xS8RvlsLB6W06xZs8ZsCqwdljWxlG3hwoX2PpZS8bNDhw52\nLmyD3cL+sDP4ecYZZ5j5wbUkz2vp0qW2rIclPwQM01dJsygTLIWpXbt2Wsn55DI6zKe4ycJyKMYE\n5/TMM8/oyCOPlBSsnaTxk8kg4m9YSvFt+DfES9gn348xFF9yJkVB3pK07777mm2G8YOhwrVkKvuN\nqUF/0Faff/65GS+0CW3LfqpXr26BwozJ4njssccs8JnxF18OKSnNGpLCmKQdeE+FChVsP/fcc4+k\nEOJOefodd9zRDDAMK66FvqSNJOm5556zfUvS9OnTJYW+69ixo92f55xzjqRgwnFvtmvXTs8//7yk\nUN7+iiuuSDk/to0Tt4g2Bxvq8+JgySltPmrUKLVq1UpSCBo/6KCDJEVLY6XI9mJZIG3JUsURI0ZI\nCuOmS5cuevbZZyWFewgjjvFToUKFjO0Th/c4juM4juM4zvaCm0OO4ziO4ziO4ziO4zilmKykObA1\nqF+/ftFVV1212fe7rZtDcOKJJ1pOymeffSZJ2meffVJ+/yMhe+O0005LeZ1A3gULFqh///6SpLFj\nx0oK38Rj2Kxbt85sGswKMkwwCMj6KCgosOsjB+f000+XFGylr7/+2owI8mvYH1bM+vXrzSaiBD02\nC7kshGGXK1fOrBZMlTp16kgKmT55eXlmILz22muSgrlRr149SSG/ZlMDabESyKRJhk9nAmMCu2jQ\noEHWllgsGBLYNryelZWVZvgk7/W4XQSYM7R9/H3xIGYpjIF4CDOlx7mfk9eZn59v7U1Qc7JMfZzk\nWCJ/CiutSpUqZnkUFx7MGF20aJEOPvhgSZFJJkm33HKLpFQTDJOOvuf+IM+mRYsWkiIj5ttvv5UU\nytMzHhnrzZo108UXXywpWC1kGGHHkAtUo0YNe43gaLJ34JxzzrE+J0+LkuwEhq9bt04///yzpGDS\nYX117NhRUgj4Xr16tZlzXO/mCspPhpJnghBsbEPakTG3fPnytDwhzCm2zcnJsXNmbHL9vPfee++V\nJJ1yyinaf//9U47Rq1cvSdKYMWPsvGgfzMF46LqkTQqa30J8XlRUtM/WPgnH+SPJysra+v/B6jiO\n4zgllKKioqzf2sbNIcdxHMdxHMdxHMdxnFLMdh2cUFKyh1555RXLpuFb/JkzZ0oK2SV/JEljCLAp\nCgoKdNZZZ0kKWSUYIhgJ+fn5tj2WDZYM9g5mQ5UqVcxAwhQaNmyYJOmll16SJF144YX2bT0ks29m\nz55t5hHGy/nnny8pVHmi3PeyZcusbTnG2WefLSlUZatYsaKZAeTo8J7zzjtPUlRFTYrMIYwU8mEy\nZatgLpA1RO4RRg1ttHbtWjNfsCCovoVdMW3aNPs3bZnJGJIiyydpDLF/zile7p5tOR+ydMqVK2fn\ng71DewEGR9WqVW1bxkDS5qlevbqVbk8aKpxX/HXan2NjDEHcTOLck2XV4/vjXC+//PKM55AJKutd\neumlKefQpk0bq/yGKcT5YLn85z//sUwktkn2IebQNddcY58DGEn0Hf381FNP2T3IuMNIatiwob2H\nsUm+EbbRww8/LEmWvZSXl2dtQgU47i/OL5PlhpGEaZcJjKFk9lDjxo2tr8aPHy8pZHlxLoyf6dOn\nm0FHxhL7IQesUqVKuuaaayRFnxtS+Ox64YUXJEXGkBSNMSrC0SZYRhiKixcvtjbGXCMTjL5zHMdx\nHMdxnO0NN4ccx3Ecx3Ecx3Ecx3FKMdt15lCcbd0ewqChIg9ggmwJkjlHL774oqTIXuKb8379+kkK\n+Rx8kz5//nzb5resgsaNG5tJ06NHD0nBHCLj4//+7/+0++67SwomCMfCSMjLyzNz6MEHH7T3ScG0\nIEelQoUKZmWwLQYMttFOO+1kxhBGzQMPPJCyDUbGwIEDzZ4qjoKCgjRrAkOH6lNkpKxatcrsGEwN\nTAaMjmHDhln1Lq4FA4Prhbg5lKxsFq+0lKy6lDRpioqK0gwkjsW29OWyZcvMeCHXhW05h4oVK5rl\nhflBBlQy62djKCgoMMsESyZpK5HxE68KBtg2mSp1YZaQnYOpg3WTnZ2tyZMnSwqVyPj5zTffSIqy\nr9g398XIkSMlSQMGDJAUKoh9+umnVq2sbdu2kkLWzRNPPCEp6lfanVycZBbUBRdcYBk+ySweqqox\nxpYsWWJGE2OKsYlhk5+fX2zGVrJ/8/Ly7LVk5TfaOjc31ywxxjznkMwBy8nJUaNGjSSl5y/FM8yw\nnbhe/sYY69q1q6Qon4nPEdoAKzJTpTogH4u2zjSWtjKeOeRs93jmkOM4juP8fjxzyHEcx3Ecx3Ec\nx3Ecx9kg23XmUEli3LhxktItgC0JxtB7770nKbJjJOnOO++0KlHkE33yySeSQgbRggUL0iwMzAa2\nIYdl4cKFZidg7yTzhV544QVrA+wYKgRhKcyZM8cyaS655BJJMsuAvB7MgZUrV9qxqlatKinkOj3/\n/POSpO7du9uxqARFmyQNjAkTJhRrSGFFLFmyxK4deE/c3JCiXJZkHhG5KZhD5cqVs/FBNbF4xlD8\n9/g5YwexP4yknJyctApm2CIcs7Cw0I6VbINk3lF2drbZNrQ722KexO0MtoWkMbTffvvZfcE5Y25h\nnHz33XdmvCQzlejnuOWRNLkyGUNJGwZTjfPFTuvcubOGDx8uKVQMa9OmTcq+KlasaG3BOMGOS1bW\na9u2rbU1fcY5kLfzxBNPWMUxzD6qbZHXM2zYMHXu3FlSsKYw4jhmu3btbFtsNI6J9XTYYYdJijLR\nioO2btmypaTI3irOwIm3NW2MjUXbkudE/44cOdLucbZN2pXZ2dk2NrENk9XG+GyqWLGijbNnn302\nZVsqzWXKDttQRT3HcRzHcRzH2R4oNZNDJSWcmoemeClnKX3y5I+kW7duksKD/NixY21pDWW8KbUd\nL+nMwxWTEDw4Ag95P/zwg02AjBgxQlKYRGAfWVlZ9hoPeAQZMxlQvnx5e2Ak9JoHXH6PHztZ9p1t\nOOa9995rS6R4iAYmJwjpbdGiRVo5aya/mAipWbOmLZnimCx3YdkM57RgwQKb+KCtWaLFeyZPnmwB\nyLQlwdHsh+uPtx/HZpKCa1u/fr39jWU5XAMTPvE+ZN+MTdqC4+Tm5lr4MhS3HEkK7c+EHPthwoyJ\nISlMfBAeTLtKYdKKc+X64tsAD/7JMutMfk6bNs0mZJLL01i+NmHCBEnR8jKOQah069atJYXJ08LC\nQtuGPmJpJvfZkCFDJEVLsuiHN954Q5J04oknSgrBynl5eRaSTN9NmTJFkjRq1ChJ0rnnnmuTQdwf\nnPv3338vKSzfeuaZZ2wilQkjJqiSkzCZoO2ZRG3VqpUtt2Q8Zwq0pm2ZvGLyhUkh2mTBggX2mcM2\nTACzj4KCAmsTPi9pmyuuuEKS1KFDB0nRPXDddddJCsvJGLOMx9q1a9tY57Mm2feO4ziO4ziOs73h\ny8ocx3Ecx3Ecx3Ecx3FKMaXGHCppxAN8JenRRx9Vp06dtsixJ02aJEn68MMPJUk9e/a0YGasEQys\nCy64QFJkXmD4YILErZj473EwOTBijjzySElRAOwdd9whKVg2hJZjK1SvXt2sDI6JecFPgnnnz59v\n2xJOi5ED5cuXV/v27SVJt9xyi6SwDIz+wKjBKIiTtGTi5grv533JJXetW7c22wTrA1sM42fFihVp\nwdNJYygOFhTH5r30U/ny5dPsGOA648vUkkvXsFIgNzfX9se1Y3thrKxduzYteDpZej4TbJPctkqV\nKmamMAaSy8ziS4wwU1g+hxHGcqZM8P7k0qK8vDz95S9/kRSsJ9qoWbNm9jp2EiYethfh0CyJXLp0\nqU4++eSUc2e52qOPPiopMmqSVtvrr78uKYyFF1980fro2GOPTbkGrJmhQ4dKisKwDz/88GKv/bdI\njp94SHsmYygJS9hoGyyh0aNHS4ruee5l7DE+M/baay9JUb/T99wHWGdcN0vwmjZtqp49e0qSLr/8\n8pT9wQ8//GD3PQHjLPl0HMdxHMdxnO0VN4ccx3Ecx3Ecx3Ecx3FKMaXOHCop2UPJfJcLL7xwi5lD\ncNBBB0mSjj76aHuNb9DJbCGA9+effzY7BJsAc4UsGLJNqlWrZt/oY3Bgobz55puSokyU8847T5L0\nyCOPSApGCLkzgwYNsm/2CewlL4XzfPzxx+3vmAwYFpg548ePlxTlihCUTXgw+yPLBNNhQ7ZLMs9G\nClYL+yOXKW7zJMOSeQ+m1PDhw3X22WdLSm9jfo8bLPwb8wJrhrZev369WSzkLiXL3sfhNfabbM/c\n3Nw0qyVpWNWuXXuTStUnoaQ4Fs+iRYssb4Y+ob3oy1122UVSyAGSgs3GGKc/pPT+IzsHy4v9rlu3\nznKn9t9//5T9cP9OmTLF2gc7hvOgpDpjtG3btnr55ZclhawhwqIxhy6++GKzfrivGAMnnXSSpCif\niL+9/fbbKccgpJtQ6z59+mhrgCHEfQXkWJHLtHDhQl1zzTWSovtdCteLlTZv3jz7HOEeuu+++ySF\nNurfv7+kyNLCzEuGxUPt2rXt/h85cqQk2X3nOI7jOI7jONsrbg45juM4juM4juM4juOUYkqdOVTS\n4Jv0smXLpmXHbCkGDBhg3/S///77koJ9wjf0559/vhkbGBzYQQcccICkYEyUK1fODJpk2WuubeXK\nlWZssJ8nnnhCUmiTHXbYQbfffrsk6Z133pEkKy1+2mmnSQp2QKNGjdS3b19JwbA488wzJYWsoEsu\nucT+jZWAGYKdQoZR9erVzYDBlkmWPm/WrJnlN9E2STBD8vPzLQsI24HcmuOPP16S9Nprr1m1pFat\nWqUcM0lOTo6++uqrlGvhHDjfdevWpVXBw3hhm+zs7JR/8z4p9At99tlnn9nfIG7kSCFPaUMcfPDB\nkqLS51hUtD+GE+Tn59t4Y7ywLX2JJZSJpOlUUFBg/ZfJAJOkffbZR1Kw3KRgwNGHVMCqXr26tQHG\nEedD/2AW1atXzzKGbrrpJkmyfBzus6eeesqsuFNPPVVSsLN4fenSpTr//PMlyUwkTEn68Omnn854\n/VuKZKU/cqgwmeJ24JNPPikp5FZRrWzhwoWSojGAQch9T3Uy+oNx17VrV/Xu3VtS8fbfDz/8YPfc\nXXfd9fsv0nEcx3Ecx3FKEG4OOY7jOI7jOI7jOI7jlGJKrTlUUrKHypUrJynKe+Fb/y1NixYt9Oyz\nz0oKFX4eeughScF6qFu3ruXxAHkiZNNUrlxZUmQvYFZgiVAlDKNBClWxzjjjDEmyc8CA6dWrl9lI\nZKlQ0QhLo1u3bvY6NsGAAQMkhUwfbJS41fLdd99Jkg455BBJoZoVFdMGDx5crA0E7F8KeT/8pN0w\nKKpVq5ZmuGBVYUwVFRVZbhNWSzKbit+zsrIs0wY7hG1oVwylOMmKZEVFRfY+fnJe8ewiKbJkevXq\nJSnYO1wvFGc6xfnPf/4jKdXs4H0fffRRyrYFBQW2Xb169SSlWykYRfHqWQ0bNpQU7CL6Y8mSJXbu\nxVUw++KLLyRFOUNUvsPk4vfatWvb/jk+xgs/P/74Y0mRcSVFY/X666+XFIwVTKwuXbpIisb+c889\nJynkVzEOqX527bXX2v2JXcS9iF0UN/T+KDhGpj7HOuM+rVGjhiTpsccekxTGzw033GD2H/cpn4Px\nfp0/f76kYFxhFbEfzK7c3NyMlf3i7Lrrrpo5c6akdGvMcRzHcRzHcbZXSu3kEJSUSaKyZcvacqrk\nQ/6WgAkawqkvvfRSSdKtt94qKQp85gGNCRse6ngoj4cJ83DOZMeIESMkhQmL7Oxse4Dketu2bStJ\nev755yVFD7wE0FKWngfHgQMHSpJ69OghKSrZzVIVHuDZzw033CApmlhhCRAP9zxUM0n3zDPPSEot\nf50MHIZvv/3W/s21M+HAtjy8LliwIG0/hOLGJ9kefPBBSdJ+++0nKZTaZoKA85TC+GDyhiU2TOpk\nZWWlBVDHJ4X4yTZMJLAUjbbmfL/55hub4GJSiHbkvGbMmKEkyYmkTMt9ipuIi/cDk0LJSQkmDuOT\nQ5zH3nvvLSksVSxfvry1Kcu+gIlMtu3Zs6ft+4ILLpAUJnqgefPm1ga0E9fJxON7770nSRo1apS1\nMZMbjO94PzOmKbfOdTGuH3zwQesb7iGOTQD5X//6V0nRMrXNwZAhQySF+00qfiIwPz/fPhuaNm0q\nKUz0nHXWWZKkJk2aSIomdWvWrCkp3DvslzFVrlw5u1e4hxgvfJ4wWZabm2sTgsXRqFGjtOWQjuM4\njuM4jrO948vKHMdxHMdxHMdxHMdxSjGl3hwqKaxduzYtkBrrgVLsW4Lu3btLikpqSzJb6Nhjj7Vl\nLldeeaUkWWAzlkv8/JN2CMvBCOS9//77bSlNslw7Ybv169c3i4NlIJS0p1Q3xtOSJUusnPd1112X\nciyso2rVqlmgNWYUy1wwNzjvWrVqmQGClYHJgcVQpkwZMzcovc4yGo4ZX3bFMjT2hzXCMpj333/f\nrAfaC0MCGyjextg/bMOynHiZ+qR9lixhn52dba/RD8ltGQMdO3bUvHnzUrbhWnhvxYoVzWpJBkln\nMjpok+LCgzPBdWIxxQ2uJCwfJLR7/PjxVvac5YdYJBhOtFlOTo7uv/9+SenGEDRo0EAnnHCCpGjZ\nnRQt+5LCOMb8mTdvnt1DtBdBzVCxYkXbhjGEGdagQQNJkUlz0UUXSZJuvvlmSaEd44YU2xI2n1yO\ntylgDFWrVs3GOGOedsP0WbJkiRo3biwpmE0XXnihtUH8WtasWZMSPC0FC4/Plzlz5tgYx4ziWCwz\nYyzwnjh8nhIOf/zxx2/zJqnjOI7jOI7jbG7cHHIcx3Ecx3Ecx3EcxynFZCVNga1B/fr1iwj63dqU\nhG+Mk322JbOHADsGK+Luu++28FxsEb61J6iab/yXLVtm3+ATIowdcNBBB0mSTj75ZL3wwguSZCG9\n5JSQnVNQUGCWCAYIwbYEZ2NrnHzyyWb/EDz9yiuvSAoWzuWXX54WAo1xwLVht5QvXz6jhZCE7BSM\nHt6DMcHPWbNmmb1CyW5sCEqnf/bZZ5bVhG3z7rvvppwfRogUxkVyfGBKxMOmIVm2Pv4a10AbYDa9\n//77kqSjjjoq7frJ6fnggw8kSc2aNTNbKtl+Gwowxj4B9lGzZk2zTcib4efG5MaQB0S7TZ8+3Uw3\nLBSyh3idfKHRo0eb0US4NBBQ3aNHD7NYatWqJSmM1QMPPFBSyOiqUqWKtQFtjkFEmHthYaH9G1su\naRIuXLhQPXv2lBTMOcrBY5hNnTrV9pu00DB+NgUC0hcvXmz3KXk/3K/xTK6hQ4dKCkYe90GdOnUk\nhbGx0047WbslxwVtXrZsWRsPhH3z2UNbk00VN9A4P9qE+2zMmDGbePXbBJ8XFRXts7VPwnH+SLKy\nsrb+f7A6juM4TgmlqKjoNycN3BxyHMdxHMdxHMdxHMcpxXjmUAnksMMOkxSskWQW0ZaAfJ0jjjhC\nUmQO8W09pgpl5G+55RZJwQ5aunSpWrduLSl8k0/VJypz1atXz97fr18/SVLv3r0lBavizjvvNEMi\nXrVKCqXAsVyKiorMzMGywXBgv9nZ2bZvyqmTc4K5QqWuKlWqpJkvLVu2lCRNmDDBXsPQwGYBqlJx\nDvHrwuCgjeLGRbIqGaW2OTa2TEFBgeXLcM5xY4h2SFpFcWNIivqS7ck+wvbC2KGKVF5eXlrpesq+\nw6xZs4rND8LkyGQOxU2h+LHjphTnThZPkrp169o4SVaGw9Bp3ry5tUmyWtm4ceNS9l+pUqWU/otD\n2z/yyCOWcYUdg/XF2MB2W758uf0NaNtddtnFzpOqe1wDbfDRRx9JijKXyP2inRjjffv2lRQMyays\nLP3jH/+QlDmPZ2NhjOy111569dVXJYV7h3HDPdS0aVO7HrKHqFrI2KCK2erVq+01sq2gUqVK9pPP\nFsYb/YK1GM8Mw76jYh2fOcm8LMdxHMdxHMcpTbg55DiO4ziO4ziO4ziOU4pxcyjB4MGDt/ncoX/9\n618pvydtjy0JNsrXX39ttg12B6YOltGkSZMkRcYK39Lz7T38+c/d90NMAAAgAElEQVR/liT179/f\nKhhhDmDLkBFy7rnn2vuokIRBQI4KtkJeXp7lB7ENVhGZKPXq1TObg3Pm2FRnw4o4//zz1alTp5Rt\nMIY4ZoUKFcz0Sdoy5KhgoeTn51uOE+/HauF8pWDXsC12C1YK1a3iYyI5PrA84lZQEuydrKwsM2m4\nFt7DNVHhrUKFCmnmEAYHFsnKlSstuwcTB5LvldJziBg39E98/HA+5DzRl7Rn3C4jm4Z8J2yoAQMG\n6Pjjj5cktWnTRpI0duxYSaFy3Z133ikpsngw195+++2UY1At78ADDzQrBmONsTp37lxJwYCpWbOm\njUmykPbcc09JYcxXrlzZrgsjjLFA++20005277Hto48+mrLfhx56SFJ0jx533HGSpIcffthek0Je\nz8bA+b377rs65phjJIX+JUcIy61BgwbW3pwz9zamVNu2bSVFmV+0KfcD18t+Z82aZedOZTrMPDLJ\nuAeqVKmS9pkzePBgScF0dBzHcRzHcZzSiJtDjuM4juM4juM4juM4pRivVrYBtnWDCOImyNZi2rRp\nOvHEEyVJDzzwgKRgA2BGYNrMnz/fjBmqiWFXkNWy55576sYbb5QULADsETJXGjVqpBtuuEGS1KtX\nL0nBbsFMYNvc3FwtWrRIUjA/yBp59tlnJUUmB/bJvvvuKylUpgLOLzs7W2eddZYkWb5LPBsIuD4q\nX2WyYwBjA8uGjBXab8aMGZaXwrlTYQkr6p577pEk7bHHHtZeyUpmjJPs7GwbO5gV/M57i4qKLAuJ\na2d/L774oqRQGW7FihWWmUNbcy1c94477phWRYxtMGowfZKZP5nIzc21Pt8YOD+sG66NCmArVqww\nswQLi5yeeL4R23LuTz/9tKRgDPHeiRMnWl+Rr7PHHntIkiZPniwp9Ee5cuXS+oMsrngeFfujH8jk\nuvrqq21brCT2zX3AdT7yyCOSonHDMZJZS8kcr0yQi8X5rlq1yqw92gb7i3bMzc21zwbGL/c4++Ge\n3HnnnW1/GHRUySPL6LvvvjMzintwYyquYYhhA5ZwvFqZs93j1cocx3Ec5/ezMdXKfFnZdgBLlLYm\njRs31n//+19JUosWLSSFEuc8+LH0o2PHjraUiwdHJg+YlPj888/tofe2226TFB74uN6KFSuqe/fu\nklKXj0nhYZj9Z2dn20Nlly5dJIWHax62y5QpYxNcvO+tt96SJA0bNkxSmCDZeeeddccdd0gKS7oy\nTQ4B15dcJsUDdJ06ddIeaAkc5uF97dq1NunSoEEDSdKRRx6Z0kZMaPbs2VMnnHCCpPRleTyAr127\n1h6wk5PEbEMbxa+dZT2jR49Oue7ddtstbSlScjld1apV0yaH2Ca5bV5engUTM7aSxCeGMgWCJ+EY\nTNoxJmibqVOnWsh6nz597DykUDqeSaKhQ4fqsssukxSWzyVDjffbbz9rE/qeiTwm/QjDLlOmjF0n\n/cuECKHVeXl5trSQJWhXXHFFyrZr1qyxpXWXXHKJpDB5et9996Vc78UXX2yTI9yTLD1jgpWg6zjN\nmjWTFJaQEgRdvXp1u4ZDDz1UknTqqadKCuO4Ro0a1l5MQLFEjPHNJOjDDz9sy0tZCkjA9znnnCNJ\nGjFihJ0X9xBtxPigD1evXm39+/HHH6ddl+M4juM4juOUVnxZmeM4juM4juM4juM4TinmN5eVZWVl\n1ZM0XFJNSeslPVxUVHRvVlZWFUmjJO0s6TtJZxQVFS3OitYm3CvpWEkrJZ1fVFQ0fkPH2FaXlUFJ\nWV62rfC3v/1NkmzJF8vMMC4mT55sVhDLeyZOnJi2H77tf/LJJyWFZVYYDbVq1dKPP/6Ysi0mDEHD\nLKPJycmx933yySeSwjIaljNJ0lFHHZXyNwwalvVgzXz00UdmMGFncA3JMulSWM6EuZJcClWlShWz\nJgD7AbtlzZo1tm+MDawTwr453x9++MFeow14L9ZSXl6eGUOYTfQRllDZsmXNeCGYedCgQZKCLYNR\ns379emuf4sjPz08LFuc92DxJsygTmCULFiywNuU8Wb6VaWnRQQcdlHLu9CvLwObMmWPBxJxfvNS8\nFCyy9u3b23hjbDL2zzzzTEnROOJ6R40aJSkKM5dC2DTWzS677GLXQDAzwdv0WYUKFVKWNkqhX1mq\nuXbtWjPSPvvss5TzwnKDefPmWbtz3SxJwyhauXKlGVGUoGe/BD5zvLy8PDOlWOLIfcKxa9SoYftj\n3NF+LK3knmrXrp21Mcvx+P8KDKyJEyemLdds1aqVpDA22VZS2tLH7QRfVuZsVbbEfyv6sjLHcRzH\n+f1szLKyjTGH1km6oqio6E+S9pfUPSsra3dJV0saU1RU1FjSmF9/l6RjJDX+9X9dJA39HefuOI7j\nOI7jlAz8vxUdx3Ecp4Tzm5lDRUVFcyXN/fXfy7Kysr6SVEfSSZIO/XWzJyX9S1LvX18fXhQpCR9n\nZWVVzsrKqvXrfpxSQLt27SSFPJy77rpLUsg7adSokYU48xrwrf6aNWvMvBkyZIgk6bzzzpMUbJnF\nixdbbgtmBXkkHJMclTVr1pgRge1A0C3mxY8//mjWCmYOhg/2BybHmWeeacfCduC9cfMFW4Lzy2QM\nSZHFkDSOsEiwouIluMkC4rywg+KZP1hQ5MM8//zzkoJdVVhYaO9PGoQYRCtXrtSnn34qKdg2GEm0\nI9bNmDFj0rJekqxdu9YyqNgfYML81j6k1LbAKMHcwvDBCItbI7QP/YLx8te//lVSlH1DuDH5U7Q1\ndgoZOrm5uWa80FdYQYyJ/v372/X27t1bkjRgwICU6yQPaNGiRTZGGX+cX9xQYnxgTDGG4ueJrcP7\nzj33XElhHHIPjRo1ykrZc59ddNFFijNz5kwzmWhjcom4fuy2Hj162LEZW2QN0b9jx461fCj6mOvt\n2rVrSlv99NNPZiuRJUU/YC9l4vPPP0/5nf5u06aN3njjjWLf5zjO78P/W9FxHMdxSj6blDmUlZW1\ns6SWksZJqsH/if/6s/qvm9WRNDv2tjm/vpbcV5esrKzPsrKyPuNhznEcx3Ecxym5/FH/rfhHnrPj\nOI7jOJtQrSwrK2sHSc9LurSoqGjpBsqmZ/pD2jrxoqKihyU9LEWZQxt7HluDwYMHS/LsoU3l4osv\nliTde++9koL5069fPzVv3lxSsE6oLha3bnbbbTdJIZOF7KLOnTtLigwkMof4yd++/fZbScGAyc7O\nNruDvBOMBkyMX375xcwKtiWTBisDE+OVV16xsuW8tv/++9vfADuG/SWJ2zFUmEoaEt98803a+8jp\nwVDhPHnP/vvvb9WYqAiF8fLSSy/ZsTGrZs+O/hsdI4Tzmj17tv2N6+JaMDfIphkzZkyxtg99+d13\n36VkHsV/Jit9SVG1L0kaN25cxv02adLE+g9TiKwgrps2Wrlypb3GuMCgIaeoatWqZgz9/e9/lxRs\nFq4NW2bp0qVme/G35557TlIok37CCSfYfugz3rN06dKUnytWrLD9YDu1adMm5b277rqr5ehgx1GW\nfsqUKbYf/r333ntLCsYQFc6obJadna2XX35ZknTKKadICplK8RLvSQuLcU32E/d2nTp1UvKg4tty\nnQcddJBZRBdccEHK+xmjjLFKlSqpb9++kmT327/+9S9tKuRGuTXkOH8sf+R/K3rmkOM4juP8sWyU\nOZSVlZWr6P/sny4qKnrh15d/zMrKqvXr32tJ4ql+jqR6sbfXlfTD5jldx3Ecx3EcZ1vD/1vRcRzH\ncUo2G1OtLEvROvFFRUVFl8Zev1PSwqKiov5ZWVlXS6pSVFR0VVZW1nGSeiiqQLGfpPuKiopab+gY\n23q1MnBz6PeBaYEt9Mgjj5gxhOlC///zn/+095G3guVBRtCBBx4oSerSpYsZM48//njKMTEPMJJu\nuukmq2BGhgkWBfzyyy9mE5FBAxg25MRkZ2dbNayvvvpKUsj9Ofzww9PaADtm3333lSR98MEHKftb\nu3attcn06dMlBZNo6tSpkqJqXphVVJiiQlWdOpGNH88cSkLuygEHHCApqqRF1TgqYJFfQ59dc801\nZg5h6NCmyQpRcWh/jBXIzc21NiaziPbbEJkqwMX3KaVnFGGwwIwZM9LO65BDDpEk3X333bYNx7jx\nxhtTfvJeDJhKlSppxIgRkqROnTpJCpW+yNtZs2aN/Rtbhnb7xz/+ISlYXzfffLPZMTfffLOkYMRR\n2ax69epmP2HmkGnEfps0aWJtwTGxsrin+DvWmxTMIcyrZCZUHDKD+Exs27atpGjsMtaxsvj/GH6f\nO3eumUtYBdyLO+20k6SQf/Tzzz/bfcuYTI6pTJX+yAbjcwUbCiuvpIPNCv/3f//n1cqcrcqW+G9F\nN4ccx3Ec5/ezMdXKNmZZ2YGSzpX0ZVZW1n9+fe0aSf0lPZuVlXWhpFmSTv/1b68r+j/7bxSVJ+24\nieftOI7jOI7jlBz8vxUdx3Ecp4SzMdXKPlTmteGS9JcM2xdJ6v4/ntc2iWcP/T6wAbAgmjRpYtYE\nVgHf8GNn/POf/zTTBbBmsGUWLFhgpgv5RlgFDz/8sKRgRixevNiqUF1yySWSgolQr15ktq9fv96M\nCo6B3RKv8AXk6LAtBgjm0DvvvGPb7rXXXpJCDg7EbRdMECo/YegAFki8LQCbBWujUqVKtk2ymtcn\nn3wiKaqOhR2CGUUFLLKHVq1aZSYTYPFsiKTdAWvXrrX8l//+978pf6O/MW3Wr19vbcL+qKz15ptv\n2uu0YTIXh7FF4H3dunXT2p/KepCTk2MmElXe2D+V8cjxmTZtmo0L/sYYwHzJz8/XOeecIylYMlzL\nGWecISnYUO3atbNKZpg19CcZWllZWXZd9BnnM378eElRPlHSAEtWF8O0K1++vGVHkQ3WrVs3ScEi\nq1ChgrUb7Y8pdNBBB0kK/bH33ntbG2Ap0R+YdrVq1bKcpKOPPlqSdOihh0oK2VfcU0VFRWa1JccU\n9x/7jcO9sj0ZQ0lbyHG2Jfy/FR3HcRyn5POby8q2BCVlWVkcnyD6/cyYMcOW/Dz77LOSwiQMy0uu\nuOIKe6hkwmiHHXaQFB46K1eubBM7N910k6SwFOb222+XFB4o77jjDgvyZZKKkts8QJ5zzjm25IyH\ncR7gmTAgmLqoqMheA4Jyeai+4oor0srA85CeXNIWh/0ml/dUq1bNJjpYQsSESLzUefy6N8QRRxxh\ny/iSy7ZYljNr1qyNKi1fHPQVk05SmATiupiEmTRpkqQQIB1fIsf5sISKSZMKFSrYsjugjRkvLEta\nsWJFWtsOHTpUUpjArFixoi21O/nkkyWF4HLey8QjEyWS9MQTT0gKZeBHjhwpKZpEIQCcCZUXX3xR\nktShQ4eUc+jTp49N8nEs2o1t+vbta9fHWGA8cw9NmzbNJqueeeYZSWEcDxw4UFLqxFxy8pDxG1+q\nxUQM18WEDe3GZMyyZcts+RiTYSxpY0z27dtXo0aNkhTC1mfMmJHyngcffNDOMznW+VyIwzkTLM6x\nNlTufltnUyaDfFmZUxrwZWWO4ziO8/vZmGVlm1TK3nEcx3Ecx3Ecx3Ecx9m+2OhS9o6zuWjYsKEF\n+WI9EMaMddC/f38L5aWMN6YJxs+KFSvsb1gnDRo0kBRKZD/99NOSohLZvXv3lhRKsp977rmSgp2x\ndu1aXXPNNZKCBcS39//+978lBUNn3bp1tqyHZVAsjSGU+JRTTrHr4zVMC44ZN2qKKxcOCxYsMIMD\nGyZpEmUCU4ef2Dfx5WLJoGeW9Ui/zxiC+PVB8rroO8AYqlmzplkn9DNtxDKngoKCNBOJ8GaWOsXB\nQGKcAQZL69atbRkYy/pYjkjodPv27SVFS78wLzEJhw8fLimEO+fl5alLly6SgnF01llnSZJuvfVW\nScE2mj59upk+nB+mGmHneXl5Zkph67B8kLH29ttvm6WEQTN69GhJ4f6Im0OUvQfaGHPo1Vdf1V/+\nEq0Koa8wdKZNmyYphKf/+OOPdu4EyLNEjuu/7bbb7Bpod/7GNTRq1EhJWK6WpFq1amb8YVyNGzcu\n47YlAV8+5jiO4ziO42wN3BxyHMdxHMdxHMdxHMcpxbg59DvxcOr/jeuuu06SLICXkOi77rpLktSq\nVSuzB8itIXiWnwUFBWbk3HHHHZKiPBMpGDpYILfeeqtlx2DJYNtgKzz99NOWvbPPPvukbHPEEUdI\nkt59911JqSXAyV/BmCBwebfddjNT5csvv5QUrCCuiTyl+N8AI4aMmezsbDM3OM8NGUMcg/NJZvMs\nWLDAtqFtsHYwTMih+b0kw5Kl1DwjKVwf5g/9M2/evLS8o2QbxS0ktmVM/PnPf5Ykvf/++7YNGVUE\nUXOdtOOECRP0pz/9KeU1DBjOi5ysLl26WD4RNlHXrl0lBeto+PDhli104oknSgo21ZVXXilJeuyx\nxyRFoeyM19dee01SCGzGUBowYICZSBg5V199tSTpgQcesPNkTGIl0U4Eo2ONTZ8+3dqNMcDfMKaO\nOOIIs+SwinhPq1atJAWrp3LlynZs7nGOjZVXoUIFM5cIpiYziHbD3Ktfv769n5wp4P5YsGCB5Va9\n9957Kom4LeQ4juM4juNsbdwcchzHcRzHcRzHcRzHKcV4tbL/ETeH/jewKbAVqGLWr18/q9yE8XL3\n3XdLCjZLw4YNzRLBaKhZs6akqFKYFCpWzZ8/3yogUfYewyFe9h77h7+R50I1pTFjxkiK8oXIfCHX\nhXsJq2jt2rVmzBx88MH2mpReHexPf/qTvUaFpZYtW0qSvvrqK7sWzJlkzk6mKmi0Bbk9gLmzcOFC\nO37dunUlKa3U++8lWYEM8vPzM+YQbQ6oukWODVYW19iqVSsbF3Xq1JEUMn2wcKpWrWoWDEYZbU2+\nE/vLzc1NqwqHvYO5dvrpp9uYZixh4TBOMJRWrlypV199VVLILOL3888/X1JkGR111FGSpCeffFJS\nMGr4edJJJ1neEvcXbdG8eXNJ0n777We/Y7UB5ekfeughSVG+EDlVjHHuK36nzebOnWvWD4YV58AY\ny8nJsZL19913n6T0cZIJriHZ5scdd5yZViWFzW0KebUypzTg1cocx3Ec5/fj1cocx3Ecx3Ecx3Ec\nx3GcDeLm0GbCDaL/jbfeektSyCWpU6eOunfvLilk+VBBi6pRixYtsqwSKisBeTM9evSQFBkhmB/D\nhg2TFOwgLIadd97ZTCTuC8yS+fPn2zaS9PHHH9vf4rlBUrCDcnJybBsyizB/sIGoPjZ79mwzfbCo\nqACVzAqKU9z1Z2L//fe3c5ci8woLBqvlf6FZs2ZpmUjJKmhxNmab36JatWpm4NCftAXth/XStGlT\nXXrppZKkmTNnSpL+/ve/S5LOO+88SVGVLMYAfU1/DBkyRJJ02mmnSZKqV6+u6tWrS5JuueUWSaEC\nHjlC7du319ChQyXJ8om+/fZbSSETCjNp5syZlvvD+zHBbrjhBkmR5ZbM3uH6LrvsMkmRjUNOEp9L\n2ElUPcOie+ONN2w/rVu3liTdfvvtkoL91LRpUxvTVOZLtjl/HzdunN23VG6jjTCxbrnlFjs/TDys\nItoea27evHlms7E/8sUYN1h92zJ/dKaQm0NOacDNIcdxHMf5/WyMOeSTQ5uJkjg5xEPb5pgY2FxQ\ngrpPnz6qUKGCpBBsy4MtS4PGjh1rAcM8cLNkiWVWlLi+4IIL7GGXh+t7771XknTCCSdIiiZzrr32\nWklh+Q0PqxyHJThz5syx5VmTJ0+WFCY7IF56+8MPP5QkXX755ZKkzz//XFKYIFi2bFlaKXsmJwiJ\njsP7CAZmAi25hEwKS/WSD9E777yz7ZsQZiatYI899ig2lDq5zKdatWppgdHJQOmcnBzbPtNSuDiZ\n9pdkv/32s8kR+ia5X5ab5ebm6uabb5YUljMRhM61rF692ibcuD+YHGKZI8vCli9fbmOAiQ+WW5Uv\nX15SNKH5/PPPS5KysqLP4+OOO05SCApnHO6www7q2LGjpFCmnkkiJnfOP//8tBBy+p4A6U6dOtmE\nFNfF59P9998vKdzzX3/9tbUP55FcnteqVSubDEpOhNKXTJ6efPLJdp/Rbkz8wOLFi23pZIsWLSTJ\nAqqT7LzzztbuTKIxgcY+tnW2RNi0Tw45pQGfHHIcx3Gc348vK3Mcx3Ecx3Ecx3Ecx3E2iJtDm5mS\naBBti7z//vtWHrxPnz6SQlAuRk6HDh3M7MEy+v777yWlBz/vvffe6ty5s6SwFAvLCNtj0KBBtryI\noGfez/769+8vKfNSlrFjx0qSDjjgAHuNc8WwwG6h/DjGxKbaWyyZwlhJXlMm4yZpJlWvXj3tuMlg\n6t12201ff/21pPQQ7EzLwniN601aLvFzZX/YRSyfixtJxdltmFOStOOOO6Yci23ZP8vpFi5caEue\nWMLH+MGMyc7OtqVShIjPmjUr5Tj086uvvmrLDy+44IKUc8BmeuONN3TMMcdICsu0KN9+0kknSZJe\nf/11SdESRoKoWb6FNTNy5EhJkRX0wgsvpLQFfY5BlJOTY0vDGGeUiMdeYmlh48aNzThq2rSpJOmj\njz6SFMZA1apV7W+77757Snt9+umnkmRG1vTp03XTTTdJCuNkwIABKef3448/mjVFW2OwMX5atWol\nKfocgOOPP15SCOneVtkaZendHHJKA24OOY7jOM7vx80hx3Ecx3Ecx3Ecx3EcZ4OU2donsL3Bt8Yl\nySAqruT51uTPf/6zRowYISmE52JM3HXXXZKi8GpMHgJuMXwAq2X27NlmU5BZQvg1eUIVK1bU6NGj\nJUl//etfU/aDAYShJKWXa2/Tpo2kYL58+eWXlnlEMDXbXnzxxZJCkPFPP/1k1kQy5DcT5Lkkz4+s\nmkwkbaKlS5emZQIlS9ljDUnBBIFMVlC8zHtx0P6YJMlAasrMz5o1y0rMJyETqlOnTnriiSckSWed\ndZYk6eWXX5YUAszJo2rSpInlOGFI3XjjjZKkW2+91a6RNiRbiPBqzCHMsNzcXLtObCWuif5ev369\nGjRoIClkXfEeMrQ4zplnnmn5RF26dEnZHz/Xr1+vY489VpL0zDPPSAoWFWbN3/72N1155ZWSQrYS\n4y1u4khSz549rS2xlLiXsJfWrFlj44Nzpe+5zrZt20qK8q24rxjPbMO4XrJkSdpYAsYC59myZUs7\nn23VGNoappDjOI7jOI7jbG7cHHIcx3Ecx3Ecx3EcxynFeObQH0RJMoeAnA8qaW0rHH744ZKkd955\nR1LIaFmwYIHluNx2222SQlWwJK1btzZD6pVXXpEkHXXUUZJCGfOcnBwzNKi+BFgP3C+9evXS3Xff\nLUnq1q1bxmPWrVtXjRo1kiT16NFDUroNRN7LpEmTzNxKlqf/rYpOcaieRU7OhqhSpYodA7Ce4pWh\npk2b9pv7kqRdd901zWhK7rdWrVqWg0P2zpQpU+x8pHDdcTMJC4X2xB4rW7asvUbOEaYKVeSoHDZj\nxgztueeekkI2FcZPPFsKs4fjx6udSTKbadWqVWbAJE0YrJtRo0bpnHPOSWmDZ599VlKoWkaluKVL\nl9r4o3JYu3btUvaXl5dnGUPsr1+/fpJSbSOyhR5//HFJwX6ijRmz1atXt/uLMc/+yREaMmSIZT+x\nDXYW7cZ+Z82apbfeektS8aZPpnHH/jHzsKzKlSu3UeN+S7Ot2UKeOeSUBjxzyHEcx3F+P5455DiO\n4ziO4ziO4ziO42wQzxz6gxg8eHCJs4e2NWMIMIYefvhhSSGD6Oijj7a8oN69e0sKlghVwbBxvvvu\nO6uIRN4MRsKwYcMkSaeeeqqZN+TBUJUJG2X58uWSospp2A2YII899pgk6eyzz5YkPffcc1YVivOg\n6hNVxs4880xJkWHCsdkWuyJuTmA/cT7kCFGJjCpZG0PS3pCCfcPfNmV/2Ebx8yH3B+umoKDAsqPI\nr+GYgLFTs2ZNy/8ht6dv376SIkuJ8/vkk08kBcMMu4v8GjKMatWqZflDZA9h5Fx33XWSogyiXr16\nSQpjCgsHK4rMpEqVKtlY7Nixo6RQ+e6BBx6QFJk1jCHsM6qXkRPFuNxnn300YcIESSFjCCOnYcOG\nkqTLL7/ccra6du0qSWawYQcNHTrUjDrsqZYtW6a0MWM3OzvbcqYY27T1oEGDJEX3wMSJEyVJ48eP\nt+uSonErhT47++yz7XpoY36H+LhjXHAfc1/07NlTUvFW3tZiWzOGHMdxHMdxHGdz4eaQ4ziO4ziO\n4ziO4zhOKcYzh/5ASpo5BE2aNJEkTZ06dSufSWZefPFFSZHl0b17d0mhchimCxlE2FDlypWzPBNy\nZqBWrVqSokpdWEXk2Fx22WWS0quB/fzzz3rqqackhawXTBUyW5o0aWJZNNdff70k6aKLLpIUTA6s\noB133FE1atSQFKqoYR0lK4pJ6fk8EK+IxXkANg+GT3H5QP8LVM7CLKHSVO3atSVFFg9mDllPxVXJ\nO+SQQ3TuuedKCrk8XF/jxo1tO/KDuC6MJCwU3vv999+b4fLzzz9LCoYONs4pp5xiVhb7Yb98VmIt\nVa1a1fqIKnfkEbVv315SZD/RfwMHDpQUxgv9yf02c+ZM3XnnnSnthgHEZ8nixYv10ksvSZJVLfvb\n3/4mKYy7iRMn2vhgTFE1j/vl2muvlRQZT+yPewa7CpPt559/1owZMyRJr732mqSQl0TbUAmwsLDQ\n+oP7obixGn//wQcfLCnYUCeccELatluDkmIKeeaQUxrwzCHHcRzH+f1sTOaQTw5tAUrqJNHIkSMl\nhWVS2xqjRo2yUGMmDfr06SMplGQfMmSIpOjBu1KlSpKkr776SlIoTc6D+IoVK+xBnmU8TBwx6UHp\n80mTJtmkQ3KShaVeZcuWtfBrSolTLpwHZSZR9tlnHys/fsopp0iSlWjnHp01a5ZNADAJFi/7Xhw8\ngDNRRVvFA5+5biYEuKacnJy0YxCEnFwOJoWJAJYmMcHI5KDtNqsAACAASURBVJAUJjGKmxRq06aN\npCismyVdTGxxXkyolClTxtqS/dLPXB/LuapXr27jggkg+oN+GD9+vE3cffHFF5JC37OcjPDkpUuX\natKkSZJkQddMiMyePVtS1PZPP/20pDDZlAwnp83b/397dx4lRXX3f/x9wXEEAQUBcSMIaBSj4IZL\n1DzRmOhjjhiPP7eImKhoXDBGo3lckkdDUOL60yQokkSMcYGASETNz7iceIxLcEFBUFRwYZFBhYCG\nYbF+f/R8bnX3zLTDONM90/15nZMz0z1dVbduFTPlzed+7ymnxKldap/66JBDDgEyg086L11PDViq\nnbW1tXFapKZn6T7UNC0d5/rrr4/ba6BMAyIaJFq7dm08L02L1LHHjh0LwPPPPw+k0zEhvR7aNpvu\nE02522uvvQB49NFH63222NrLgFA2Dw5ZJfDgkJmZWfO5ILWZmZmZmZmZmRXk5FARtNfkkPzud79r\nc4Vh5bDDDgPSwseaRqMEkZIJ8+fPjwV2VfS30LLv2UkXSNMn2qa2tjYW3NVS5UqIHHfccUAmnaHE\nhtJXSu0ojaOlwXv16hWnQSnJpDSPEiujR4+OyRklSzRFrqGpZ1Io6dMSsqcNNZRKyqe+Xbx4MZCm\ngtQn6rNVq1bFNIwSPjpvJZNqamriVED1n46t4uT6+umnn7JkyRIgXZ5e22ia2ccffxynUCk1pmOr\n/3Q9unbtGgs+q//vvvtuIC003rVrV6ZMmQLA4YcfDqT3kPanY59//vkxZaPPaDqj9r9hw4b4nlJQ\nSjINHjwYyCTNzjzzzNg/AEOHDgXSe13T37p37x77S2kipXdUkHvWrFlMmDABSJea1zZKNiklVFtb\nG4tyK0EnSnutWbMmXledi9J8pdQeE0Pi5JBVAieHzMzMms/JITMzMzMzMzMzK8hL2ReB/h/p9pog\nUgqnLXr88ceBzLL2AE8++SSQJkImT54MZGqlKO2g65FfmLpr164xkSJawltUn2XZsmWx3oySJRdc\ncAGQJkK23HLLmJ7IXxJ+zJgxAPz4xz8GMikapUOyi0pnvz7llFNiXZhbbrkFSOsJzZ8/H0iXD//o\no49imkPvNVSAuk+fPkDj9X8K0bGzCw2rjxtbxryqqiomhnRspb1Uz0kprSRJ4jkosaJ0i5Ji69at\ni2kbXRtdDyWS9H51dXVMrGgb9afaMG/evNjfomu3++67A2k/fvTRR7FWkYpC61gqUD1q1KhY1FyJ\nMKV5VJ9HxZyza/Mo4aPC26pX1KdPn1hkXeentishNWbMmLjk/EMPPQSkySEd49BDD43nq2MovalC\n4fo3tOmmm8Y+0TnMmzcPqF/PCtJ7ID8hpvcHDRoU/902lHQrlvacFDIzMzMza2lODpmZmZmZmZmZ\nVTDXHCqB9pggmjp1KpCupNVWKSHxwgsvAPDd734XgJtuuimuvqQ6J0qqaKWlhuTX0GloWW6lZPRV\n9Wa22mqruJ1q5Si5UV1dDaQpmUceeSRupzpJSrXssssuAJx99tmcdtppOe1SskbpFNWfWbJkSaOp\njIZqEDWUAIHMsu1qc366SKmZ7MSL3tN5FUqGKL1yxhlnAOmS86rpE0KI/abEj66hUkdbbLFFXBlM\ny7UrEaZjK1Hzn//8JyZwlPDRinVKt6xevTqmndTHqiWl31FKDp111lnxmmvJ+ZNPPjnn9fbbbx9T\nQOqT8ePHA5nrmb2NzgfSe1T1lNTHa9eujem2H/7wh0CaWlK66pJLLol9oZSSVl7TKnyq8bPTTjvF\n/lHfnnrqqUB631VVVcWkluocKbWkdipdlV1rStdI9Z2UNurcuXNcxa7YyjUt5JpDVglcc8jMzKz5\nXHPIzMzMzMzMzMwKcnKoBNpjckgmTpwIpHVJ2rpvfOMbQCZx8bOf/QyAfffdF4CnnnoKSOv3zJkz\nJyZxpNAqYPmUmlHyp1+/fjGdpBWplKxQEkurSgHcfvvtOdsrXaSEydKlS2OdGiVdlLLRVxk1alRM\nauRTjRnVKYL6aSIlVj744IOY/MivvyTZ6SqlRbp16wZQLyGy5557xro1SsmMGzcOSPtaCZhOnTrF\nflNfiNrZqVOn2HalnrRf9bVWz1q5cmW8jtpGCZh3330XyKzMddtttwFp7SKllnRd1K+rVq2K6S4l\ne/bbbz8gTdLoegH84Ac/ANLEj/pNbWpoNTnVOdLqYnvssQdHH300kKmjld1OrfY2e/ZsdtttNyBN\nUalW0+9//3sgrSP25ptvct999wFpsunZZ5/N6ZvsVcf22ScTTpk5c2a9tgLsv//+PPfccwD85je/\nAeCuu+4C0jRfMZVrUiifk0NWCZwcMjMza76mJIc8OFRC7XmQqL3Ze++9YyHfv/71r0A6DUlTbO66\n6644YKL3NIgwaNAgIB0YWLduXYP/8ZytZ8+e8TOaZqTiw6NGjQLg4osvBjKDCBp80LQm/Ue7Bk2+\n//3vx+lQapcGhTQIoAGHrl27xmOpfZoWpqlA2VPj8mkpdU2JaogGkNSm9957L56vziV/Ktpmm23G\nYYcdltOOG264IbYZ0kGrgQMHxu01OKTz00DKunXr4rSoEELOZ7WfAw44ILZFg0DaRkWTtd8ZM2Zw\n0UUXAek0QRV31mc1gJg/kPhF1KdLlizJOaYGFTfffPM4wKWBHp2LBjZXrFgRt9OUuwEDBgDpPdu/\nf/960wO1Hw0S6b658sor0d8ADf7pGi5YsGCjzk+OOuooIB3AfPnll5u1ny+jUgaFxINDVgk8OGRm\nZtZ8nlZmZmZmZmZmZmYFOTlUQu05OaSpLdOnTy9xS5pOxan//ve/A/DAAw/k/DxJEq6++mogTT0o\nkaOkjmQXYS4kf1qapvsouaFpR8cccwwTJkwA0uTGEUccAaTLonfp0iX2u6ZeafrWjTfeCMAvfvEL\nIDMNSUkaTTuaMmUKkKZuZsyYUW+58UK+KCnVo0ePmEZS4W5Nu1ICqGvXrgwePBiAyy67rMG+UCKn\nR48esa36PaXXSs/U1NTEdqmvda2UrFER6s0226zedC8lbLTfiy++mBkzZuScl6bK5aegClG/rl27\nNvbX3nvvDaSJKS0Vv8MOOwCZ6Wb33nsvACNHjgTSNJTa17t373opqjlz5gDpvbVo0aI4tU7HUDpp\n0aJFANx8881AZvqbkkzqP03HU3HzXr16xWNIfqF2nduKFStike/Gpp61hkpLCuVzcsgqgZNDZmZm\nzefkkJmZmZmZmZmZFeTkUBvQnhNEf/vb3wD4zne+U+KWNF1+PR0Vgu7du3cs/KtE1CuvvAKkiQsl\nOPr06RM/q6RK9jLe+kxjaRMtKa66LrvvvnusS6QizErUnHTSSQBMnjw5JpCUKFFxY7Xl4IMPBuDy\nyy/n9NNPj+cFaYJI9YCuvfZajj/+eIBYhFnnqWOrjg2kS81nv/dF5yVKrlRXV7P11lsD8Nvf/jan\nfepb1R6qqqqKqRslpfRVtXM6dOgQ96f+12e07Hp2jR4lmlQ7SqkdJWyGDh3a6LkVomOoVpDST1ts\nsUUswK3Ej1I9KlCt10OGDOHtt9/OaZdSPfrao0ePmH466KCDgDSho/NOkiQmuNQuFf1+//33gbQo\n+WOPPdZgIezsdtXW1jZaNFvXVUXLn3/++Ub7qKVVeloom5NDVgmcHDIzM2s+J4fMzMzMzMzMzKwg\nJ4faiPacHoJMXZzjjjuu1M3YKKrp8+ijjwKZ1M21114LwFtvvQWkdXq0ypWSF9krfW3McvdKGSmV\nkb0frf618847AzB8+HAgTWeMHTs2LsuuNIpWClMqRaufffzxx3E7pU6UmFI7165dWy+JNGnSJCCt\n8TNv3ryYsNIy7VpNTcmc7GXvdX6NpVF23HHH2PY999wTSFe32mOPPQBizZrq6urYP3pPtYJ0nEWL\nFsXkkGoLqaaPkjTZK5Tps0p0KaX16quvAnDeeec12O5sDV1vpZ2UoNFy8JCmuS699FIgXTJe6aJd\ndtkFyKTUtFT85ZdfDqQ1m7797W8DMG3aNMaMGQOk96iSRGrPI488EmtiqZaUjqk+0rUbPHgws2bN\nyjm/QivV6fx+8pOfAOly9VrRrTU5KdQ4J4esEjg5ZGZm1nxODpmZmZmZmZmZWUGblLoBVh5OOumk\nmFRp6kpepabE0B//+EcgUwNGqzIpOXPRRRcBacJH9YmeeeaZmPzITwwVWt1KiRptk520UZpDNYFU\nB0h1Y7bccsuYzrrzzjuBNAmiY9XU1MRzUlJFK5rlrzC16aabxnNQ2ua0004D0rRSTU1NTCfpuqoe\njhI506ZNA2DrrbeOCR+lWZRcUdpoxx13jOkrtVWrxinpo/1/5Stfif2mlcdUN0m1gzp06ECnTp1y\n2qyaSErAqA7S0qVLeeGFF3L664wzzgDS9FNTfPWrXwVg9uzZcZUu1TBSfx5++OEAjBgxIrZD95SO\nrftEfTRw4MBYP0jpoE8++QSAX/7yl0Am2aRaUkoVnXvuuUB6H69bty6mm9THqt2kY8qsWbPqJaGU\nGNIqcJ9//nm8d3S/qtZVMTgxZGZmZmbW+pwcMjMzMzMzMzOrYK451Ma059pDqj/SlLotbVG/fv1i\nwmX//fcH4JprrgHSmj6qUXP22WfHFcIaS0pl7y+fag6tXLkSyKwElp94UYJD9Wx23XXXmPzQal1K\n0igNpOROVVVVTHfoZ0roDBs2DMgkfXQ++oxSOEqKdOjQISaHVJdINYOUoFFbFi5cGN9TGkU/Uy2n\nM888MyZltEqZ0lhKwIwfPz6+VjpGfax2KdWycuVKfv3rXwPwox/9KKdPr7/++nieOhe1R/2vPlbf\nq+YPpPWNTj311JxzmTp1KpBJACnVov7T9Rg4cCCQSeyoTpSOqZTW7NmzgTQp1rVr11gb6JZbbgHS\nxJQSXePGjYsJH+1H2+gcevTokVPLSu9l940SbNtuu228HqJ0UL9+/QDo379/XDGvWIkhp4U2jmsO\nWSVwzSEzM7Pma0rNIQ8OtTHteXBInnzySQC++c1vlrglG2+33XYDiNPLNMjx4IMPAul/9D/33HNx\nmtA555wDbNx0ukJT8PKXg8+e9qOi0BosmDx5MpAOXmnAoKqqigsvvBCAG2+8EYAjjzwSgLvvvhuA\nkSNHcscddwD1l1fXINQbb7wRp3tpkEVTqGbMmAGkU7PWrFkTB5LUTxp80v47duwYByY0YKEpaBqM\nUQHtHXbYIQ5UaNBFU9k0sBRCiFO5NEiyaNGinL7QsTt06BCntGnqms5fPvvsM/S7SNfhiSeeADJL\nzQP86le/AuCYY46J7dPS8BoMzF7SXn2ia67BoGXLlgHpNLPNN988DgbdcMMNOX2kwZ4uXbrEAR6d\ni+6h/M9mUx8MHjwYSAemPv7447jdVlttBaTT+3Tfaapba/Jg0JfjwSGrBB4cMjMzaz4XpDYzMzMz\nMzMzs4KcHGqjyiFBpITKKaecUuKWtBwt2f3888/Hpdhff/11gDi9af78+UDDy7l/0VLvUL9wdHYi\nRIWT85NCKt6sdMqIESPiZ1988UUgTYZMmDAByEwxUsJFaZP8ZeDXrVsXkzna3zvvvAOkyRKdU8eO\nHWMBZbVHU6AmTpwIZBI1+rzomKKkTaHPZGvsd1j+NkmSxClxSt1oypemVo0ePTqel6ZS6TpoytyH\nH34Y96ki0Jo2p58pvbTddtvFY+k66tqpH3TsFStWcNNNN+X8TFMKtWz96tWr472ja63+0lcliyBN\nDOmz+VPIIF2eXuet65u9n5bmpFDLcnLIKoGTQ2ZmZs3n5JCZmZmZmZmZmRXkpeyt1Sgx1N6WuG+I\narXstddeABx44IHsscceQFr/RqkP1aSZOXNmTJ2IUh/5y4dny99GNXmAuNy9KGWkOj1Dhw4FMkug\nK60jKvh87LHHAnD//ffHdIzq/YwbNw5Iizu//fbbsa5RbW0tkBa9fuONN4C0dk52e9RmpWROPPFE\nIFMX6LrrrgNg3333zdlGtXiU+CmUatTPGkoZZSeZsvcHaZJGiRwVFVfiZ+nSpTHho/5TXyhRo9pG\n3bt3j8vKq9aQCmWrdtXy5ctjYecrrrgCSK+Dim3fdtttQKaWk95Taqd///45r7PtvPPOALz88stA\nmuxav359/Lem+0zpL1GNpL59+/L444/X23drcmrIzMzMzKztcXLIzMzMzMzMzKyCueZQG1cOtYdU\nl0UrYbVn99xzDwAnn3xyTJ88++yzQLq6mGr7jBo1KiZKli9fnrMfpTzyk0ANUfJk6dKlsUaO9pdf\nn2jXXXcFMsuaH3bYYQD8/Oc/B9I6O5MmTQIyq5cpJaP0T9++fYE0cbJmzZp6y7+rTtELL7wAwMMP\nPwzA8OHDGTNmTM5n1S6twrV48eK4Opd861vfAuDSSy8F0lXBlMJpSHYaqLHfYSHkTqvNThkpsXXg\ngQcCcOWVVwKZPlb66qc//SmQudaQ9pter1y5Mq5optXUtDqbVkOrqalh/PjxQLoMvPpI949SX8uX\nL693PQsZMGBAzuu3334byNwvugdVb+rwww8H0jpKqpH05ptvfuFxviwnhVqfaw5ZJXDNITMzs+Zz\nzSEzMzMzMzMzMyvIyaF2ohwSRFopadttty1xS768gw8+mKeffhpIEy6qoTN69Gggk+TQim3Tp09v\ncD9K7qxatSqmWZQUUuoomxIgjz32GJAmhVSTRquOde7cOX5/1FFHAWkNntNOOw3I1ErKX6FKySTV\niRo7dixnn302kCZ0lGrRqmdK8Zxwwglxf/kraakGTq9evWJ9H22nWkbaRkmbq666ik6dOgFpjZxe\nvXrlnEtT6Dhr166NaSfVS5oyZQqQW5tHqSddD6VttNKZ3v/LX/7CyJEjgTRRplpL+vrOO+/EWkqq\n+5Nf/6ehFex23313IFOHKPuYhaiP5s+fz6GHHgrA1VdfDcBBBx30hdu3FCeFis/JIasETg6ZmZk1\nX1OSQx4caifKYXBI7r//fk444YRSN6PVHHLIIQBcc801cdBG/3F/6qmnAunggd7fbLPN4qBLoQLe\nmgb1z3/+M+ezGoBQsejVq1fHqWcafNDglaZbde7cmQsvvBCAm2++GUgLSA8bNiwec+DAgTnt6dat\nG5BOuxo+fDiQKbCsgT9NI9PgUE1NTdyfBll0rEGDBuW06913342v1XYNEqmYtQZsNmzYQJ8+fYC0\nuLSmhT3zzDMAPPDAA0BmcGjEiBFA5h7MPpaO07dv39g+tUeDbDoXDZY99NBDcTsN/mmwT9sAceqZ\npo8VmjKm7XUdNUCoqXzvvfde7GNdc7VBRbAXL17MSy+91OgxWpMHhkrDg0NWCTw4ZGZm1nyeVmZm\nZmZmZmZmZgU5OdSOlFN6SFOx8gs1t2fZ03ogMzVo6tSpQFrwWdOZrrnmGoCc4sz5041EhYtXrVr1\nhQWLs5MrSpQohaIpWXPnzgUy0/uUunn99ddz9nvkkUcCmelqSunItGnTgHQalJJEF110Ea+99hqQ\nJnO07LvavWLFipgC+te//gWk0+g0/UuJmG7dusXt9XtKxbHVzu233z62Q1PjdB1UJFrtmzlzZkwV\nvfrqq0AmPZV9LlVVVfHeVLJJ+9X10c9ra2sbvWaF7LnnnkC6BL2uQX6h7mz6TK9evWI/KZF0/PHH\nA2kqrZicFGobnByySuDkkJmZWfM5OWRmZmZmZmZmZgVtUuoGWGVSnZl//OMfJW5Jy1FiSMWAn3ji\niXppIiWlxo4dC6TFq5W4yaZ6Qkqn9OjRI9ayaSxBlF3rRmmYxtJZK1eujJ/P34+WvZ87d25smwo1\nK7miAuOybNmyuDS62qxkjtJPH3zwQb12aAl2na+sX7+eBQsWAJmEUEPbL126NCZ5VN9J6SztT/vv\n3bt3THDpfPVViastttgiFoHOl592U380RPV/5syZU+9nSgypmPgnn3xSr31KU6ldF1xwAZCp+3TT\nTTcBmZpH2V+LwUkhMzMzM7Py5OSQmZmZmZmZmVkFc82hdqicag9p2XItCV5OevbsWS+1c8QRRwDE\nVbOGDBkCwFlnncWzzz4LpCuYFarLpHpCqiNUqF7NPvtkSpHMnj0byE0JZdczakyhFExj8peeV6Jo\n+fLlse3bbLMNkKaBBgwYAKRJn5133jlu97WvfQ1IU0HZffRFdauUOtpyyy1jvaW9994bIC5tP3jw\nYABmzZrV6H4KXY++ffsCmdXEmqqqqqrePrp06QLAGWecAaQrrT3xxBNN3m9Lc1qo7XPNIasErjlk\nZmbWfK45ZGZmZmZmZmZmBTk51A6VU3JIHnzwQQCGDRtW4pYUxwEHHADAddddB2RW9VINnwkTJgD1\n00Dz5s2rl1BprPbQ4MGDYwomfzWs7ISO6uaoXo9kr3qWT7VylMJRfZyFCxfG/SkdpP2q/lHHjh3j\n90ot7bXXXkCaIFIyZ+XKlbHtm266KZCuPKYU1AEHHBDTRPltVd/oXLJrJGW3ualUw6h3794AsR5S\n9jHy29CnT5/Y79r+wAMPBNI6VGpLbW1trDmk9FQpOTHUfjg5ZJXAySEzM7Pmc3LIzMzMzMzMzMwK\n8mpl7ZD+H/1yShApMTR16lQAjj322FI2p9WpvtAxxxwDwL333huTNFdddRWQplr+/e9/AzBt2rSY\nftlll12ANKGjekBKsLz++uvxeyVXVHtHaZ7evXvHY+o9JX+UgBkwYEC9FEuHDrljymofQHV1NUBM\nwOQbPHgwL730EpAmmvT6s88+q7d/tV2JKSWIZMGCBQ2mmyBNUzVUT6lQYqixNNann34KpCmobNtt\ntx2Q9pv6HmDSpEkA3H777QBcdtllAJxzzjkAPPXUU422pZicFDIzMzMzq1yeVlYGymmQqLFpTpVA\nRZf/9Kc/AbBo0SIgLeq8cOHCOBikQR191RSyadOmAXD66adz8803A+kghAYpdL8sX748LqN+zz33\nAHDuuecCcMUVVwCZQagPP/wQgE02yR1Lfuedd4B0MKV3796xyPL777+fs81HH30E5A7U5A/CaECl\nc+fOQGYpew0OFZrm1hJ23HFHIHeqmApQq0i02qJrUF1dHe/T/fbbD0invWkgqVu3brHNGhBsSzwg\nVB48rcwqgaeVmZmZNZ+nlZmZmZmZmZmZWUFODpWBckoOydChQ+My45VOxbqVYIF0GXRNwerUqROQ\npm6WLl3K+vXrgTStoySMpmZ16NAhpmBUBFr71bSr7OTQkCFDgLQYtpJNmq6WJEmcYqbpZdrvihUr\nALj//vtje5Qc0v6Uwtlqq60ACCHE95S+UVFnJXOaIjuhpKSVprBpipg+U11dHftkm222AWDrrbcG\niCmrMWPGxD6677774rlDOp1u3rx5TW5fMTkpVJ6cHLJK4OSQmZlZ8zk5ZGZmZmZmZmZmBTk5VEbK\nLUE0fvx4AEaOHFnillQepYx69uxJ9+7dgbSO0IABA4A0DaQ6UdXV1THBdMoppwBpMkeJpL59+8bE\nkVJGn3/+OZDWFVJaqGfPnvGYEydOBGD06NEA1NTUAJl7RGkd1WZS8kfpouHDh8f3J0+eDMB5552X\n85k///nPAHzve9/jjjvuAGDEiBE5x9bS861V96g1OTFU3pwcskrg5JCZmVnzOTlkZmZmZmZmZmYF\nOTlURsotOSRHH300ANOnTy9xS6wYGqoRpFpD/fv3B9JV2tatW0cIIX4PaRroxRdfLF6j2xgnhSqL\nk0NWCZwcMjMzaz4nh8zMzMzMzMzMrKBNSt0AazlKC5RbgkiJoYMPPhiAp59+upTNsVa2Zs2a+L1W\nNtPXpUuXlqRN7YHTQmZmZmZm1lxODpmZmZmZmZmZVTAnh6zdcGLILOWkkJmZmZmZtRQnh8qQ/6PR\nrHzdeuut/jduZmZmZmYtyoNDZmZmZmZmZmYVzNPKylS5Fqc2q0ROCpmZmZmZWWtycsjMzMzMzMzM\nrII5OWRm1sY4KWRmZmZmZsXk5JCZmZmZmZmZWQVzcqjMufaQWfvhxJCZmZmZmZWCk0NmZmZmZmZm\nZhXMySEzsxJyWsjMzMzMzErNg0MVwtPLzNoGDwaZmZmZmVlb42llZmZmZmZmZmYV7AuTQyGEHYC7\ngD7A58D4JEn+bwjhf4EzgZq6j16WJMnDddv8D3A6sAEYlSTJ31qh7dYMThCZFZeTQmZW7vysaGZm\n1v41ZVrZeuCiJEleCiF0BV4MITxW97ObkiS5PvvDIYRBwInAbsC2wN9DCDsnSbKhJRtuZmZmZm2C\nnxXNzMzauS+cVpYkyZIkSV6q+34VMBfYrsAmw4D7kiSpTZJkAfAWMLQlGmtm1p44NWRmlcDPimZm\nZu3fRtUcCiH0A/YEnq9767wQwqshhD+EELrXvbcd8H7WZh/QwANCCGFkCGFmCGHm6tWrN7rhZmZm\nZta2tNazYis22czMzNiI1cpCCF2AKcCPkyT5dwhhHPBLIKn7egPwQyA0sHlS740kGQ+MB+jbt2+9\nn1vruvXWW113yKyFOSlkZpWsNZ8VQwh+VjQzM2tFTUoOhRCqyPyx/3OSJFMBkiT5MEmSDUmSfA7c\nQRoH/gDYIWvz7YHFLddkMzMzM2tL/KxoZmbWvjVltbIA/B6YmyTJjVnvb5MkyZK6l98DZtd9Px24\nJ4RwI5kigzsBL7Roq83M2gAnhczM/KxoZmZWDpoyrezrwHDgtRDCK3XvXQacFEIYQiYGvBA4CyBJ\nkjkhhEnA62RWrzjXq0+YmZmZlS0/K5qZmbVzIUlKP4W7b9++ySWXXFLqZlQs1x4yazqnhaytOf/8\n819MkmSfUrfDrDW55pCZmVnzJUnSUL2/HE0uSG1mVsk8KGRmZmZmZuVqo5ayNzMzMzMzMzOz8uLk\nkMVEhKeXmaWcFDIzMzMzs0rh5JCZmZmZmZmZWQVrEwWpQwg1wKfA8lK3pUL0xH1dLO7r4nFfF4f7\nuXia2tdfSZKkV2s3xqyU/KxYdP5dXzzu6+JxXxeH9Dc4RwAABTBJREFU+7l4WvRZsU0MDgGEEGZ6\ntZXicF8Xj/u6eNzXxeF+Lh73tVku/5soHvd18bivi8d9XRzu5+Jp6b72tDIzMzMzMzMzswrmwSEz\nMzMzMzMzswrWlgaHxpe6ARXEfV087uvicV8Xh/u5eNzXZrn8b6J43NfF474uHvd1cbifi6dF+7rN\n1BwyMzMzMzMzM7Pia0vJITMzMzMzMzMzKzIPDpmZmZmZmZmZVbA2MTgUQjgihPBGCOGtEMLPSt2e\nchJCWBhCeC2E8EoIYWbdez1CCI+FEObXfe1e6na2RyGEP4QQloUQZme912Dfhoxb6u7xV0MIe5Wu\n5e1PI339vyGERXX39ishhP/O+tn/1PX1GyGE75Sm1e1TCGGHEMKTIYS5IYQ5IYQL6t73vd2CCvSz\n72uzBvhZsfX4WbH1+FmxePysWDx+ViyOUjwrlnxwKITQEfgtcCQwCDgphDCotK0qO99MkmRIkiT7\n1L3+GfB4kiQ7AY/XvbaNdydwRN57jfXtkcBOdf8bCYwrUhvLxZ3U72uAm+ru7SFJkjwMUPf740Rg\nt7ptflf3e8aaZj1wUZIkuwL7A+fW9anv7ZbVWD+D72uzHH5WLAo/K7aOO/GzYrHciZ8Vi8XPisVR\n9GfFkg8OAUOBt5IkeSdJkrXAfcCwErep3A0DJtZ9PxE4poRtabeSJPkH8HHe24317TDgriTjOWDL\nEMI2xWlp+9dIXzdmGHBfkiS1SZIsAN4i83vGmiBJkiVJkrxU9/0qYC6wHb63W1SBfm6M72urZH5W\nLD4/K7YAPysWj58Vi8fPisVRimfFtjA4tB3wftbrDyh80rZxEuD/hRBeDCGMrHtv6yRJlkDmpgN6\nl6x15aexvvV93jrOq4un/iEr8u6+biEhhH7AnsDz+N5uNXn9DL6vzfL5/m9dflYsLv89LS7/TW1F\nflYsjmI9K7aFwaHQwHtJ0VtRvr6eJMleZOJ854YQDil1gyqU7/OWNw4YAAwBlgA31L3vvm4BIYQu\nwBTgx0mS/LvQRxt4z/3dRA30s+9rs/p8/7cuPyu2Db7PW57/prYiPysWRzGfFdvC4NAHwA5Zr7cH\nFpeoLWUnSZLFdV+XAQ+QiZZ9qChf3ddlpWth2Wmsb32ft7AkST5MkmRDkiSfA3eQxibd119SCKGK\nzB+hPydJMrXubd/bLayhfvZ9bdYg3/+tyM+KRee/p0Xiv6mtx8+KxVHsZ8W2MDj0L2CnEMKOIYRN\nyRRRml7iNpWFEMLmIYSu+h74NjCbTP+OqPvYCODB0rSwLDXWt9OBU+uq9e8PrFTs0ponb67y98jc\n25Dp6xNDCNUhhB3JFL97odjta69CCAH4PTA3SZIbs37ke7sFNdbPvq/NGuRnxVbiZ8WS8N/TIvHf\n1NbhZ8XiKMWz4iZfrslfXpIk60MI5wF/AzoCf0iSZE6Jm1UutgYeyNxXbALckyTJoyGEfwGTQgin\nA+8B/6eEbWy3Qgj3Av8F9AwhfAD8AriWhvv2YeC/yRQG+wz4QdEb3I410tf/FUIYQiYuuRA4CyBJ\nkjkhhEnA62Sq/J+bJMmGUrS7nfo6MBx4LYTwSt17l+F7u6U11s8n+b42y+VnxVblZ8VW5GfF4vGz\nYlH5WbE4iv6sGJLE0/3MzMzMzMzMzCpVW5hWZmZmZmZmZmZmJeLBITMzMzMzMzOzCubBITMzMzMz\nMzOzCubBITMzMzMzMzOzCubBITMzMzMzMzOzCubBITMzMzMzMzOzCubBITMzMzMzMzOzCvb/AXsW\nCJzdYFqZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e304abea710>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"r = random.randint(0, len(x)-1)\n",
"fig = plt.figure(figsize=(20,20))\n",
"fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
"ax = fig.add_subplot(1, 2, 1)\n",
"ax.imshow(x[r])\n",
"print(r)\n",
"ax = fig.add_subplot(1, 2, 2)\n",
"ax.imshow(np.reshape(y[r], (image_size, image_size)), cmap=\"gray\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"- Author nikhilroxtomar\n",
"- Date 10/4/2019 (DD/MM/YYYY)\n",
"- Link https://github.com/nikhilroxtomar/Deep-Residual-Unet\n",
"\"\"\"\n",
"def bn_act(x, act=True):\n",
" x = keras.layers.BatchNormalization()(x)\n",
" if act == True:\n",
" x = keras.layers.Activation(\"relu\")(x)\n",
" return x\n",
"\n",
"def conv_block(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n",
" conv = bn_act(x)\n",
" conv = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides)(conv)\n",
" return conv\n",
"\n",
"def stem(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n",
" conv = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides)(x)\n",
" conv = conv_block(conv, filters, kernel_size=kernel_size, padding=padding, strides=strides)\n",
" \n",
" shortcut = keras.layers.Conv2D(filters, kernel_size=(1, 1), padding=padding, strides=strides)(x)\n",
" shortcut = bn_act(shortcut, act=False)\n",
" \n",
" output = keras.layers.Add()([conv, shortcut])\n",
" return output\n",
"\n",
"def residual_block(x, filters, kernel_size=(3, 3), padding=\"same\", strides=1):\n",
" res = conv_block(x, filters, kernel_size=kernel_size, padding=padding, strides=strides)\n",
" res = conv_block(res, filters, kernel_size=kernel_size, padding=padding, strides=1)\n",
" \n",
" shortcut = keras.layers.Conv2D(filters, kernel_size=(1, 1), padding=padding, strides=strides)(x)\n",
" shortcut = bn_act(shortcut, act=False)\n",
" \n",
" output = keras.layers.Add()([shortcut, res])\n",
" return output\n",
"\n",
"def upsample_concat_block(x, xskip):\n",
" u = keras.layers.UpSampling2D((2, 2))(x)\n",
" c = keras.layers.Concatenate()([u, xskip])\n",
" return c"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def ResUNet():\n",
" f = [16, 32, 64, 128, 256]\n",
" inputs = keras.layers.Input((image_size, image_size, 3))\n",
" \n",
" ## Encoder\n",
" e0 = inputs\n",
" e1 = stem(e0, f[0])\n",
" e2 = residual_block(e1, f[1], strides=2)\n",
" e3 = residual_block(e2, f[2], strides=2)\n",
" e4 = residual_block(e3, f[3], strides=2)\n",
" e5 = residual_block(e4, f[4], strides=2)\n",
" \n",
" ## Bridge\n",
" b0 = conv_block(e5, f[4], strides=1)\n",
" b1 = conv_block(b0, f[4], strides=1)\n",
" \n",
" ## Decoder\n",
" u1 = upsample_concat_block(b1, e4)\n",
" d1 = residual_block(u1, f[4])\n",
" \n",
" u2 = upsample_concat_block(d1, e3)\n",
" d2 = residual_block(u2, f[3])\n",
" \n",
" u3 = upsample_concat_block(d2, e2)\n",
" d3 = residual_block(u3, f[2])\n",
" \n",
" u4 = upsample_concat_block(d3, e1)\n",
" d4 = residual_block(u4, f[1])\n",
" \n",
" outputs = keras.layers.Conv2D(1, (1, 1), padding=\"same\", activation=\"sigmoid\")(d4)\n",
" model = keras.models.Model(inputs, outputs)\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"smooth = 1.\n",
"\n",
"def dice_coef(y_true, y_pred):\n",
" y_true_f = tf.layers.flatten(y_true)\n",
" y_pred_f = tf.layers.flatten(y_pred)\n",
" intersection = tf.reduce_sum(y_true_f * y_pred_f)\n",
" return (2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)\n",
"\n",
"\n",
"def dice_coef_loss(y_true, y_pred):\n",
" return 1.0 - dice_coef(y_true, y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From /usr/lib/python3.6/site-packages/tensorflow/python/keras/_impl/keras/backend.py:1557: calling reduce_mean (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"keep_dims is deprecated, use keepdims instead\n",
"__________________________________________________________________________________________________\n",
"Layer (type) Output Shape Param # Connected to \n",
"==================================================================================================\n",
"input_1 (InputLayer) (None, 256, 256, 3) 0 \n",
"__________________________________________________________________________________________________\n",
"conv2d_1 (Conv2D) (None, 256, 256, 16) 448 input_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_1 (BatchNor (None, 256, 256, 16) 64 conv2d_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_1 (Activation) (None, 256, 256, 16) 0 batch_normalization_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_3 (Conv2D) (None, 256, 256, 16) 64 input_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_2 (Conv2D) (None, 256, 256, 16) 2320 activation_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_2 (BatchNor (None, 256, 256, 16) 64 conv2d_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_1 (Add) (None, 256, 256, 16) 0 conv2d_2[0][0] \n",
" batch_normalization_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_3 (BatchNor (None, 256, 256, 16) 64 add_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_2 (Activation) (None, 256, 256, 16) 0 batch_normalization_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_4 (Conv2D) (None, 128, 128, 32) 4640 activation_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_4 (BatchNor (None, 128, 128, 32) 128 conv2d_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_6 (Conv2D) (None, 128, 128, 32) 544 add_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_3 (Activation) (None, 128, 128, 32) 0 batch_normalization_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_5 (BatchNor (None, 128, 128, 32) 128 conv2d_6[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_5 (Conv2D) (None, 128, 128, 32) 9248 activation_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_2 (Add) (None, 128, 128, 32) 0 batch_normalization_5[0][0] \n",
" conv2d_5[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_6 (BatchNor (None, 128, 128, 32) 128 add_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_4 (Activation) (None, 128, 128, 32) 0 batch_normalization_6[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_7 (Conv2D) (None, 64, 64, 64) 18496 activation_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_7 (BatchNor (None, 64, 64, 64) 256 conv2d_7[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_9 (Conv2D) (None, 64, 64, 64) 2112 add_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_5 (Activation) (None, 64, 64, 64) 0 batch_normalization_7[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_8 (BatchNor (None, 64, 64, 64) 256 conv2d_9[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_8 (Conv2D) (None, 64, 64, 64) 36928 activation_5[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_3 (Add) (None, 64, 64, 64) 0 batch_normalization_8[0][0] \n",
" conv2d_8[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_9 (BatchNor (None, 64, 64, 64) 256 add_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_6 (Activation) (None, 64, 64, 64) 0 batch_normalization_9[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_10 (Conv2D) (None, 32, 32, 128) 73856 activation_6[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_10 (BatchNo (None, 32, 32, 128) 512 conv2d_10[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_12 (Conv2D) (None, 32, 32, 128) 8320 add_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_7 (Activation) (None, 32, 32, 128) 0 batch_normalization_10[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_11 (BatchNo (None, 32, 32, 128) 512 conv2d_12[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_11 (Conv2D) (None, 32, 32, 128) 147584 activation_7[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_4 (Add) (None, 32, 32, 128) 0 batch_normalization_11[0][0] \n",
" conv2d_11[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_12 (BatchNo (None, 32, 32, 128) 512 add_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_8 (Activation) (None, 32, 32, 128) 0 batch_normalization_12[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_13 (Conv2D) (None, 16, 16, 256) 295168 activation_8[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_13 (BatchNo (None, 16, 16, 256) 1024 conv2d_13[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_15 (Conv2D) (None, 16, 16, 256) 33024 add_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_9 (Activation) (None, 16, 16, 256) 0 batch_normalization_13[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_14 (BatchNo (None, 16, 16, 256) 1024 conv2d_15[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_14 (Conv2D) (None, 16, 16, 256) 590080 activation_9[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_5 (Add) (None, 16, 16, 256) 0 batch_normalization_14[0][0] \n",
" conv2d_14[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_15 (BatchNo (None, 16, 16, 256) 1024 add_5[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_10 (Activation) (None, 16, 16, 256) 0 batch_normalization_15[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_16 (Conv2D) (None, 16, 16, 256) 590080 activation_10[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_16 (BatchNo (None, 16, 16, 256) 1024 conv2d_16[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_11 (Activation) (None, 16, 16, 256) 0 batch_normalization_16[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_17 (Conv2D) (None, 16, 16, 256) 590080 activation_11[0][0] \n",
"__________________________________________________________________________________________________\n",
"up_sampling2d_1 (UpSampling2D) (None, 32, 32, 256) 0 conv2d_17[0][0] \n",
"__________________________________________________________________________________________________\n",
"concatenate_1 (Concatenate) (None, 32, 32, 384) 0 up_sampling2d_1[0][0] \n",
" add_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_17 (BatchNo (None, 32, 32, 384) 1536 concatenate_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_12 (Activation) (None, 32, 32, 384) 0 batch_normalization_17[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_18 (Conv2D) (None, 32, 32, 256) 884992 activation_12[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_18 (BatchNo (None, 32, 32, 256) 1024 conv2d_18[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_20 (Conv2D) (None, 32, 32, 256) 98560 concatenate_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_13 (Activation) (None, 32, 32, 256) 0 batch_normalization_18[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_19 (BatchNo (None, 32, 32, 256) 1024 conv2d_20[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_19 (Conv2D) (None, 32, 32, 256) 590080 activation_13[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_6 (Add) (None, 32, 32, 256) 0 batch_normalization_19[0][0] \n",
" conv2d_19[0][0] \n",
"__________________________________________________________________________________________________\n",
"up_sampling2d_2 (UpSampling2D) (None, 64, 64, 256) 0 add_6[0][0] \n",
"__________________________________________________________________________________________________\n",
"concatenate_2 (Concatenate) (None, 64, 64, 320) 0 up_sampling2d_2[0][0] \n",
" add_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_20 (BatchNo (None, 64, 64, 320) 1280 concatenate_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_14 (Activation) (None, 64, 64, 320) 0 batch_normalization_20[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_21 (Conv2D) (None, 64, 64, 128) 368768 activation_14[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_21 (BatchNo (None, 64, 64, 128) 512 conv2d_21[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_23 (Conv2D) (None, 64, 64, 128) 41088 concatenate_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_15 (Activation) (None, 64, 64, 128) 0 batch_normalization_21[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_22 (BatchNo (None, 64, 64, 128) 512 conv2d_23[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_22 (Conv2D) (None, 64, 64, 128) 147584 activation_15[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_7 (Add) (None, 64, 64, 128) 0 batch_normalization_22[0][0] \n",
" conv2d_22[0][0] \n",
"__________________________________________________________________________________________________\n",
"up_sampling2d_3 (UpSampling2D) (None, 128, 128, 128 0 add_7[0][0] \n",
"__________________________________________________________________________________________________\n",
"concatenate_3 (Concatenate) (None, 128, 128, 160 0 up_sampling2d_3[0][0] \n",
" add_2[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_23 (BatchNo (None, 128, 128, 160 640 concatenate_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_16 (Activation) (None, 128, 128, 160 0 batch_normalization_23[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_24 (Conv2D) (None, 128, 128, 64) 92224 activation_16[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_24 (BatchNo (None, 128, 128, 64) 256 conv2d_24[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_26 (Conv2D) (None, 128, 128, 64) 10304 concatenate_3[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_17 (Activation) (None, 128, 128, 64) 0 batch_normalization_24[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_25 (BatchNo (None, 128, 128, 64) 256 conv2d_26[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_25 (Conv2D) (None, 128, 128, 64) 36928 activation_17[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_8 (Add) (None, 128, 128, 64) 0 batch_normalization_25[0][0] \n",
" conv2d_25[0][0] \n",
"__________________________________________________________________________________________________\n",
"up_sampling2d_4 (UpSampling2D) (None, 256, 256, 64) 0 add_8[0][0] \n",
"__________________________________________________________________________________________________\n",
"concatenate_4 (Concatenate) (None, 256, 256, 80) 0 up_sampling2d_4[0][0] \n",
" add_1[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_26 (BatchNo (None, 256, 256, 80) 320 concatenate_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_18 (Activation) (None, 256, 256, 80) 0 batch_normalization_26[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_27 (Conv2D) (None, 256, 256, 32) 23072 activation_18[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_27 (BatchNo (None, 256, 256, 32) 128 conv2d_27[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_29 (Conv2D) (None, 256, 256, 32) 2592 concatenate_4[0][0] \n",
"__________________________________________________________________________________________________\n",
"activation_19 (Activation) (None, 256, 256, 32) 0 batch_normalization_27[0][0] \n",
"__________________________________________________________________________________________________\n",
"batch_normalization_28 (BatchNo (None, 256, 256, 32) 128 conv2d_29[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_28 (Conv2D) (None, 256, 256, 32) 9248 activation_19[0][0] \n",
"__________________________________________________________________________________________________\n",
"add_9 (Add) (None, 256, 256, 32) 0 batch_normalization_28[0][0] \n",
" conv2d_28[0][0] \n",
"__________________________________________________________________________________________________\n",
"conv2d_30 (Conv2D) (None, 256, 256, 1) 33 add_9[0][0] \n",
"==================================================================================================\n",
"Total params: 4,723,057\n",
"Trainable params: 4,715,761\n",
"Non-trainable params: 7,296\n",
"__________________________________________________________________________________________________\n"
]
}
],
"source": [
"model = ResUNet()\n",
"adam = keras.optimizers.Adam()\n",
"model.compile(optimizer=adam, loss=dice_coef_loss, metrics=[\"acc\", dice_coef])\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 996s 491ms/step - loss: 0.1306 - acc: 0.9736 - dice_coef: 0.8694 - val_loss: 0.1069 - val_acc: 0.9758 - val_dice_coef: 0.8931\n",
"\n",
"Epoch 2/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 736s 363ms/step - loss: 0.0991 - acc: 0.9791 - dice_coef: 0.9009 - val_loss: 0.1570 - val_acc: 0.9700 - val_dice_coef: 0.8430\n",
"\n",
"Epoch 3/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0980 - acc: 0.9791 - dice_coef: 0.9020 - val_loss: 0.0977 - val_acc: 0.9784 - val_dice_coef: 0.9023\n",
"\n",
"Epoch 4/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0768 - acc: 0.9822 - dice_coef: 0.9232 - val_loss: 0.0947 - val_acc: 0.9783 - val_dice_coef: 0.9053\n",
"\n",
"Epoch 5/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0733 - acc: 0.9826 - dice_coef: 0.9267 - val_loss: 0.1571 - val_acc: 0.9675 - val_dice_coef: 0.8429\n",
"\n",
"Epoch 6/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 735s 362ms/step - loss: 0.0662 - acc: 0.9833 - dice_coef: 0.9338 - val_loss: 0.9792 - val_acc: 0.9092 - val_dice_coef: 0.0208\n",
"\n",
"Epoch 7/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0626 - acc: 0.9835 - dice_coef: 0.9374 - val_loss: 0.1453 - val_acc: 0.9722 - val_dice_coef: 0.8547\n",
"\n",
"Epoch 8/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0538 - acc: 0.9845 - dice_coef: 0.9462 - val_loss: 0.0602 - val_acc: 0.9834 - val_dice_coef: 0.9398\n",
"\n",
"Epoch 9/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0499 - acc: 0.9849 - dice_coef: 0.9501 - val_loss: 0.0481 - val_acc: 0.9845 - val_dice_coef: 0.9519\n",
"\n",
"Epoch 10/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0428 - acc: 0.9859 - dice_coef: 0.9572 - val_loss: 0.0832 - val_acc: 0.9798 - val_dice_coef: 0.9168\n",
"\n",
"Epoch 11/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 733s 362ms/step - loss: 0.0394 - acc: 0.9862 - dice_coef: 0.9606 - val_loss: 0.1244 - val_acc: 0.9721 - val_dice_coef: 0.8756\n",
"\n",
"Epoch 12/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.0359 - acc: 0.9866 - dice_coef: 0.9641 - val_loss: 0.0668 - val_acc: 0.9818 - val_dice_coef: 0.9332\n",
"\n",
"Epoch 13/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.0305 - acc: 0.9871 - dice_coef: 0.9695 - val_loss: 0.0412 - val_acc: 0.9853 - val_dice_coef: 0.9588\n",
"\n",
"Epoch 14/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.0313 - acc: 0.9871 - dice_coef: 0.9687 - val_loss: 0.0451 - val_acc: 0.9848 - val_dice_coef: 0.9549\n",
"\n",
"Epoch 15/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0292 - acc: 0.9873 - dice_coef: 0.9708 - val_loss: 0.2057 - val_acc: 0.9647 - val_dice_coef: 0.7943\n",
"\n",
"Epoch 16/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 734s 362ms/step - loss: 0.0277 - acc: 0.9875 - dice_coef: 0.9723 - val_loss: 0.0263 - val_acc: 0.9873 - val_dice_coef: 0.9737\n",
"\n",
"Epoch 17/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.0282 - acc: 0.9874 - dice_coef: 0.9718 - val_loss: 0.0264 - val_acc: 0.9873 - val_dice_coef: 0.9736\n",
"\n",
"Epoch 18/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.0246 - acc: 0.9879 - dice_coef: 0.9754 - val_loss: 0.0248 - val_acc: 0.9875 - val_dice_coef: 0.9752\n",
"\n",
"Epoch 19/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 732s 361ms/step - loss: 0.0240 - acc: 0.9879 - dice_coef: 0.9760 - val_loss: 0.0268 - val_acc: 0.9873 - val_dice_coef: 0.9732\n",
"\n",
"Epoch 20/20\n",
"2027/2027 [==============================]2027/2027 [==============================] - 733s 362ms/step - loss: 0.0242 - acc: 0.9879 - dice_coef: 0.9758 - val_loss: 0.0224 - val_acc: 0.9878 - val_dice_coef: 0.9776\n",
"\n"
]
},
{
"data": {
"text/plain": [
"<tensorflow.python.keras._impl.keras.callbacks.History at 0x6e30442c04e0>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# os.environ ['CUDA_VISIBLE_DEVICES'] = '1' \n",
"train_gen = DataGen(train_ids, train_path, image_size=image_size, batch_size=batch_size)\n",
"valid_gen = DataGen(valid_ids, train_path, image_size=image_size, batch_size=batch_size)\n",
"\n",
"train_steps = len(train_ids)//batch_size\n",
"valid_steps = len(valid_ids)//batch_size\n",
"# with tf.device('/gpu:0'):\n",
"model.fit_generator(train_gen, validation_data=valid_gen, steps_per_epoch=train_steps, validation_steps=valid_steps, \n",
" epochs=epochs)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"model.save('liver_model_final_resunet.h5') # creates a HDF5 file 'my_model.h5'\n",
"model.save_weights(\"liver_model_weights_final_resunet.h5\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# del model\n",
"model.save(os.path.join('models','liver_model_final_resunet.h5')s) # creates a HDF5 file 'my_model.h5'\n",
"\n",
"model = keras.models.load_model(os.path.join('models','liver_model_final_resunet.h5'), compile= False)\n",
"# model.summary()\n",
"valid_gen = DataGen(valid_ids, train_path, image_size=image_size, batch_size=batch_size)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(8, 128, 128, 3) (8, 128, 128, 1)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztnXmUXNV957+/Xqr3Xd3aWqBGEkKsBmEhgUxAkm3A2PKc2APYTIjNHDKODdhJnODkxDOxB59JxiaOnYxtHQcvBEPwikKObQjIRrIjQCwGgdAuhNZeJHVL3eqt+s4fr76/uq/qdXdVd1d1CX6fc/pU16tX7913673ffu8V5xwMwzBI0XQ3wDCMwsKEgmEYIUwoGIYRwoSCYRghTCgYhhHChIJhGCFMKBiGESJnQkFErhOR7SKyS0TuydV5DMOYWiQXxUsiUgxgB4B3AzgA4DkAtzjnXpvykxmGMaWU5Oi4ywDscs7tAQAReRjAWgCRQkFErKzSMHJPp3OuebydcuU+zAXwpvf+QGKbIiJ3iMgWEdmSozYYhhHmjUx2ypWlIBHbQtaAc24dgHWAWQqGUUjkylI4AGCe974VwKEcncswjCkkV0LhOQCLRKRNRGIAbgawPkfnMgxjCsmJ++CcGxaRTwH4JYBiAPc7517NxbkMw5hacpKSzLoRFlMwjHzwvHPu8vF2sopGwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCTFgoiMg8EdkgIttE5FURuTuxvVFEnhCRnYnXhqlrrmEYuWYylsIwgD91zi0BsBzAJ0XkfAD3AHjSObcIwJOJ94ZhnCFMWCg45w47515I/H8SwDYAcwGsBfC9xG7fA/DByTbSMIz8MSWrTovIfACXAngGwEzn3GEgEBwi0jLKd+4AcMdUnN8wjKlj0kJBRKoB/BjAp51zPSKS0fecc+sArEscw1adNowCYVLZBxEpRSAQHnTO/SSx+aiIzE58PhtA++SaaBhGPplM9kEA/DOAbc65+7yP1gO4LfH/bQAenXjzDMPIN+LcxCx3EVkJYCOAVwCMJDb/JYK4wiMAzgKwH8CHnXPHxjmWuQ+GkXued85dPt5OExYKU4kJBcPICxkJBatoNAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQphQMAwjhAkFwzBCmFAwDCOECQXDMEKYUDAMI4QJBcMwQkxaKIhIsYi8KCKPJd63icgzIrJTRP5VRGKTb6ZhGPliKiyFuwFs897/LYC/d84tAnAcwO1TcA7DMPLEZFedbgXwPgDfTrwXAKsA/Cixy/cAfHAy5zAMI79M1lL4KoA/R3KB2SYAJ5xzw4n3BwDMneQ5DMPII5NZiv5GAO3Ouef9zRG7Ri4eKyJ3iMgWEdky0TYYhjH1lEziu1cB+ICI3ACgHEAtAsuhXkRKEtZCK4BDUV92zq0DsA6wVacNo5CYsKXgnPucc67VOTcfwM0AnnLOfRTABgAfSux2G4BHJ91KwzDyxmQshdH4CwAPi8j/BvAigH/OwTmMUVizZg0A4PTp0wCAoaEhfd/V1QUAiMfjAICamhocPXoUAFBeXg4AKCoq0u/U1NSE9o/H43AuMOqqq6sBACMjI7o/9xsZCUJMJ06cQGlpKQCgrKwMANDU1IRYLMhSL168GACwb98+bNliXmShIPyRp7UR5j6MyRVXXIHa2loAwBtvvAEA2LFjB4qKAkOPDyEAfeAGBwcBJB/egYEBBMmhpKCI+u0rKysxPDw86n4UHv39/bqN7eAr8YUIKSkp0eP7bWbb2O6ZM2fqZ7wGXntvb29au42MeN45d/l4O1lFo2EYIcxSKBDmz5+Pyy8PhPj27dsBAK+88krafsXFxQCA2tpa9PT0AEia7WVlZSgpCTzCKG2aakUASReB+5eWlqZpfu5fW1uLvr6+0Daem+dPPT7PSevA35/410KLoaKiAgD0fAD02oqKitDY2AgAWLhwIQBg06ZNacc10jBLwTCM7DFLYZp497vfDQAaYDt58mSar+1DCyFK01JDDwwMpH3mWwepPr9zLk27j4yMqEbmufx7hO3g6+DgoAYTGYMgUfGDTPGvl8dn7MRvo39OxjvOPfdcAMDLL788oXO/hcnIUjChkEfOOussAEBHR4dmB0h5eXkoeAckzfeqqiqcPHky7XjNzc0AgGPHjgGIFhg0x6uqqnDq1Klxz+mTKhxisZg+hHxAi4qKQoFO7sfj0y3gtZSVlek5ee8VFRVpOxlQPX78uB6vrq4OANDd3Z3WtkyEzkUXXRTpir0NMffBMIzsMUshD5x99tkAAgsBCAfPokhNNc6aNQvt7e1p244cOQIAaGhoABDUIlBLM3DoWw9RKUxqaL6OjIykuSo8ZmlpqVoKdDt6e3vTLIWxqKysVEuB34vFYqHgpN/WkpISbQ+tq8bGRpw4cSLtWjJh7txgKM7Bgwez+t5bBLMUDMPInlxUNBoAZs+erdps//79AMIBO2pCasGhoSHU19cDSGr5WbNmAQA6Ozs1iEb/uq+vT7U1/eqRkRFN5VG7MxZRU1Oj2pjtEBG1EJjiO3XqlO7X1tYGIOnfNzc3q3VCn76iokKvZd68eXpcIIgp8Fy0MEpKSjS28eabbwII4gi0hPhdP8jpxx4Ir5N91dDQoNfMKs0oaCHU1NRExmmMAnEfqqur3cUXX4z//M//nO6mTJoVK1YAAJ555pkxTVve/JWVlQCCzAF/C77y+3PnztWHlpV+RUVFKgwoMHwTnA8e6xD8iH1UHcHhw4cBBBF7vx6A5weCB4rtjsp0MJDKYGFra6u6NocOBePiSkpKVEAwUCoiKgT4oPLBnjlzZlrNwu9+9zt1JSgYu7u7tW2p9RWGYu6DYRjZUxCWAgONy5Ytw7PPPjvdzZkQy5YtA4Ax208N3NLSomYvX5ubm9HS0gIAmsajpps3b56a8LQszjrrrLT0YE9PD6qqqgAkzXVaDDt27Egb09Da2qouC8cV9Pf363lpndC0b2pq0hqAV199FUCglekmUVPTmqmsrFQLgRq9urpaLSHWHzQ3N+u5mDrkPuXl5eqW0Jo455xzdHAXLZw9e/botWYbfHwbYZaCYRjZU1CWQlVVlfqZ+/btm84mZcX8+fM13UjNX1xcrJqN9fnU9o2NjWhqagKAUDUgfWem7A4cOAAg8N8ZdFywYAGAQCvv2LEDQHIk5NDQkAbvqN15/KamJt2PbRURjQ0wgAlAg4nU0Pysra1NNfi2bcFcvQ0NDVkPe77mmmsAJKs5y8vLNeDKuIFfaZmaNq2oqNC4Ba2DWCymFhbvIVopvb29+ltEpWV9aImNlzY+k6DldvToUbMUDMPInoKyFHxGq6cvJMZrI2MItBToj5eUlGiUnTGA8vJyrdVvbW0FkEy7+dF5arLy8nJ8//vfBxBOdZ533nkAgNdffx0AcOGFFwIAtm7dOuHrpHXS2dmpGvb8888HEGRZCDMvmWaR3vnOdwIIrmXjxo2hzzgBC0eM+pSUlOg1L126FEDQjxs2bACQLBZjf8fjcbXSGLMYrzyasRbGS85kvGK0M2/sQ1Qd/ZlCqllaXV2tDw7Tgnzor7rqKjWFaeYvWLBAA3z8jDdyU1OTBiFp2j/00EOR7aAgYuCTJvWhQ4f0Ydm7dy+AIP3Hm583Tnd3t5rufKW7sWDBAj0eBZ2femWwkGMxJgOPX1JSoi7ReJOrXHnllQCSaVZ+78ILL1QhQtesp6cHmzdvnnQ7zzDMfTAMI3sKoqKxqKgIFRUVkZog1RwuBKLaRG1Jd+Dqq6/WAhtq2tWrVwMIzH1qZhYGlZaWYteuXQCA3/72twCS2tIf+8BCpdHwKw0BqIXxxhtvaBqRAceioiLVoOeccw4AYPPmzeqisN0MVO3evRtr164NXXtLS4sG+ziKcTLjC+bPnw8A2hejwetjH19xxRUaEKWFxYrM3t5etWLY76dOncItt9wCAPjpT38KAGOOGK2rqwuN0ix0xguojvndqW6MYRhnNgURU4jFYq65uVlTSGcyc+bMARCM4We6j+W/LN1taGhQjU+t9pvf/AadnZ2Rx7z++utVe3McxXPPPZdRe/wJWBirYPBx165dafM6XHzxxVlNTrJs2TK1Nl566SUAyestKyvDa6+9Nup3r732WgCB1qZVkm0qmhbOeeedp+1gEJdp0xtvvFHvLQYwjxw5ov3N9Oavf/3rM8oaiILpWPYnELIazpxAY21trVu2bBmefPJJ3UYzj+2bNWtWQQiNOXPmaLAvdfAOkHQR2tvbcdlllwFA2pTpv/71r/XBefzxxzM6L812RuMzdad8oZA6CGvlypUabGN7oqL9UXBMw3ve8x51d6KGYVPoRAk8ulqlpaWjRvnLy8tVuEbdq5deeikA4MUXXxyzvcx08DqBZD/QbRUR/PKXvwSQ/M3OhCwYMHa2xsMCjYZhZE/BBBqrqqpCwZzUqcVY6z7ddHV1RQZvGOSi9vOnP2Maj4Gs4uJizJ49G0AysDae2Ux3gwG28Vi0aBEAYOfOnbqNAVIGIzds2KDuDmsjbr31Vvz1X/915DHf//73qxVAjTswMKBuAPuFNRF79+4d0xz3A8s8LrW3X0cQZSHwGsazEAgtJrpfDQ0N6pLRhWtpaUmrhoyyEAox+D2WhUD3iPfheJilYBhGiElZCiJSD+DbAC5EsLr0xwFsB/CvAOYD2Afgvzrnjo9yCACBpVBeXo7y8vI0zULNMTAwoNqMYwLyiX/uqJmVqcn56k/iQf+bWv7ss89WrcpAWaaWAjXd8uXLta8YUCsvL9d0o28hAIHl8p73vAcA8J3vfAdAUoMASa198OBB3HnnnaE2cSTirFmz0iorS0tLdZwAj0ErZXBwUC0K7tPS0qIFU9TQnZ2dOkozVTP39/erFcaCrOLiYjzxxBMAgPe9730AgH//938fte+AIIAKAN/97ncBBMvrMRjnF12xepNxoyircM+ePWOeK98sWbJE74EoaCVlymTdh38A8Avn3IdEJAagEsBfAnjSOfd/ROQeAPcgWF9yVEQEZWVlWLx4cdqsOf6DN50uhH/uqFmTGejhDzB79myNvNNV4KCmsrIyvbEYKKuoqNAHmQOdSFVVlVbn8eE6evSouicUWHV1dWpWs3qR/Xnw4EH88Ic/1OMRPsg857Fjx/ShZRaCbk97ezs++9nPAkg+0CdPntT6Bz7QDAz29PToVPa8aXt7e1WoUoD5NRq/93u/ByCoiQCC0mleE6s4/WX0ZsyYgUzg8SnMdu7cqb8Hf8+BgQGt60id7ckXDqw8Pfvss1WYTSdjCQQgPIt4JkzYfRCRWgBXI7GArHNu0Dl3AsBaAN9L7PY9AB+c6DkMw8g/k7EUzgHQAeA7InIJgOcB3A1gpnPuMAA45w6LSMt4BxoZGQlVnfn4AbPUnHo+8c8dFcRj2/3gGSsBqdHpTjQ2Nmogy5+shClMankG2/bv34+nn34aQDKguXLlSjzwwAMAgI985CN6rOXLlwNIWhTPP/+8tocmMY9x+vRpDaz58zHyWu66667QtW/dulVTi9Syu3bt0iHWtEBoLRUVFWnQkUPFZ86cqddMrb1x40Ydr0DNy75ob29Pq6zs7u7W/6nBb7rpJnXTqMnvv/9+vXZaFmz3/v371cLi/pdccolahGxP1LRzTFNOt5XAAV87d+5UyyZ1IFddXZ3er/69MBaTCTSWALgMwDecc5cC6EXgKmSEiNwhIltEZEtUxxuGMT1MuHhJRGYB2Oycm594/y4EQmEhgGsSVsJsAL9yzi0e61j19fVu5cqVKC4uxi9+8QsA0ZNu0hel1uF4gFxCH5MaJCqeEIvFcN1114U+r6mp0dGC1Gbvete7AAR+PrUNtWB7e7tqWloIvN7169fr/vzM/92o7T//+c/jvvvuA5DUFNTy/f39OpZiyZIlAJJaBUj65idOnNC+Z7EVz93V1aUBT460bGho0NgAj8vr7e7uxn/8x3+E+mXt2rU6JoJ9WllZiaeeeir0XX9CFQ6PpoWxdOlSPPjgg0jl5ptvDvUblU1vb6/GRWjJPfvss2pVsT1XX321HosxH06vF/W7A9mtVDVdfPzjHwcA3H///bktXnLOHQHwpojwgV8N4DUA6wHclth2G4BHJ3oOwzDyz2SzD3cCeDCRedgD4GMIBM0jInI7gP0APjzeQUpLSzFr1qzQmoJRab/UadHzAc8VNUcA2ygiaT5uZ2enamJ+l/64P8kK05R79+7VTAG1tj8iMjVVV1ZWppqQ1sadd945aqHKhRdeiKuuukrbCwT9zgwD+7m0tFQ/Z2EV4x+xWEzjIxwJuXv3brWSGKtgyri2tlatDcYzfv7zn+u4jQ9+MIhBDw8Pp2lyHn/GjBmavaF1NDAwgFtvvRUA8NhjjwEILJyHH34YQDBWhH2UCn+ToqIiTbWyX4aHh1Xj87u03np6eiKttdRt+YBxEfZpFLyHjh8/nvV4jkkJBefcSwCizJHV2RxnYGAAe/fuxb59+9ICO3wo4/G4dnw+52/kuSgAysrK0uYTjMfjOm6DD1J5ebn+MHzwmGePWsqtp6dHr53n5MMZhd9P/ryCqW4Xg4Br1qzR/b70pS+lHc/P999+++2hdjD9WFdXpw8rZzDq6OhQ94GCiNcdj8f1oWLwcvfu3RoY9Wea/rM/+zMAyVmbGBz7t3/7Nw3osfoyHo+rAKLAWLVqlfYJJ7dhvxcXF6uw4bWMjIyoi8V07/nnn69uA90CCu/KysrIeRunI/g9ljCgIqECmjNnTsapSGIVjYZhhCiIsQ9AoDErKyvTpvTypTO1Kk3SfCz7xXNR00RlShobG1ULs42HDx9WV4IWDs3VlpYWNQG57dprr8UjjzwSOq6/PsJYo/T8z2iGU0OzYvL+++8fs/ad7s9dd90VmiIOSGqfyspK1aAsutq9e7deA60Sticej2sQj8Vdra2teoz169cDCKwUBi5p6jKduGLFCk0PUovX19fr73HRRRdpX/HeoSZlkPDcc8/VgDG3VVVVaTt57YcPH9Y+5+/O9+PN7nzJJZcACFavyjVjjdxMnSimrKxMA9GZYpaCYRghCsJSiMVimDNnDl566aUxJ/2k5qWFUF9fn7PZdrOZzffYsWNqIbDopqOjQ7U1fXMG5JxzqkH5vZkzZ6qfTF+bsYehoaHQvAjcn1o1ahoxnstfPYopOH/C0jVr1gAIzzPAdrDdjCNUVlbqaDxqn5KSEo1j0GLg+02bNqlfzyBqa2urxguYol24cCG++c1vAgA+8YlP6Hd5vdSMtMYGBwfT1tEUEf2ffcT4wTPPPIOPfvSjAJIBxN7eXv19uP+8efN0bAl/90ynNUsda5JLspnbobu7O+uxGgUhFIaHh3HixAn09PREVgsCwc2XGuFdsGBBxlVa2ULTOfX4Ue1YtGiRBsN4MzU1Nek10PxlcG7VqlX64PCm6+zs1HECP/nJT0LHLyoqCmUHgEBg0Fz3++pDH/pQ6Lt8wG+44QYd6vuHf/iHei18MPzFWfng+BkAIMjnc9sNN9wAAPjKV76ipv+qVasAJIcWHz9+XP+nIN+yZYsGB/kQd3R04KabbgKQrBLk8bdv355WN7F06VIN8LG/W1pa1MTnuejiDA4O6mcUAI2NjaqAKGy6urq0PygEMq3jGa2OYaqZO3du2tyXsVgs7X7i71lXV6f3TKaY+2AYRoiCsBROnjyJDRs2YHh4eFQzbHh4WKUfpXcuR02mHpvnjspH79y5UyU0FyRZsWKFBsEYWKNpeuzYMb0GHq+pqUkDXrSWaKqPjIykma+1tbVak8BU3aFDh1Srs/3UjG1tbWr98JwHDhzQABmDkKWlpZpypWXBZd7uu+8+PPpoUIvGgJ2/BDwtBlYxPvXUUzqkmeMSjh49qvvxOisqKrT/OLUbaw22bt2qU6nR4orH43pd1PKPP/64WircxjEk1dXV2vfk2LFj2n/+NHIvvPACgKRrw99JRLRv/RRf6hgJVo2ONxv1ROns7Ex7DgYHB/U34ysth3g8rn2fKWYpGIYRoiAshbKyMixcuHDcqbXo66aOPswFPHbqvASjrQ1ATU5N0dbWpmlH+q7UHocOHVK/mv7erl279FwMVnJOgeHhYVxwwQUAkvX/e/bs0TEgPPeSJUtUY3EbKyZ7enpUg9Ln7u/vV61N7dPd3a2WDVdcuvvuuwEA9957r8YI6ENv27ZNRxv+6Ec/ApAcL/KlL31JLQBee2trq6YOUwuF/P95/MWLF+t3/clbeF3U3suXL9e4AWMV1OJ9fX3alz60jphGXLx4sRY+cWZqtr+lpSWyaCi1WCzVIplqRhs8yP7i7+gtKot3vOMdWZ3DLAXDMEIUhKVw+vTpjCbgpJZmhJoaKhdQ22Q7Zp7XMX/+fI2PsAyYmnrDhg1a6ktNM2fOnNCU50DS96+rq1MLwYdpR5ZYL126VMusORsPrZTzzjsvNOUaEMQlGMWnFi4tLQ3NqgQAX//61/Wa6HNzRGRLS4v62Dw+F52tqalRH5daubKyUn1cZkY2bNigvy0tNLbr6quvVouC/VJfX69tY9yjtbVVi664H60DP4MUNTaEcZWRkRG1BlJTkWOVFvvwN4wa5TsViMiYGRHeM/4MZmOVy0dREEIBSF4sTeJMgoi5nKsxm2M3NTVpe/kD9PX1pbk5d9xxBwDgC1/4gt7UNJdFRB+M1AEsixcv1sAeqa+vV7Oax9+3b5+m6Ohq8QE/fPiwpjD9lat5g1GA+VWif/InfwIgGH8ABIKGwoCC5ciRIzpgitdLs/3111/XYbtbtmwBEDzsNLHpLlVVVenwaLb/X/7lXwAErhbbzeMODQ3pg3/FFVdo23hdrK/whcFYdSd88IeGhvQa2N5syXTG5GyJGiCYCXV1dZGTF42FuQ+GYYQoGEuBpFoIDMixWs6npaUlZxOtMFgWdfzUNkVZNRs3btRqQboidAHKysp0RmVaDyKiQSRaKdSk5557ro5hoCYfHBxUS+Hyy4OBqjt27EhbY4JacMuWLapVqTmcc3o8VigODQ3p9fAYfu08A3x+xZ+/DB2QHGq9YMECvQZ/vAq1PPfr6OhQl4LtocXV1NSUthxcTU2NrqzFKs3t27erlUmryk/VploIa9eu1fQqr3fevHnqbjFITNdovLEPJFdFTGyPX7jE+2qshXGHhoaydh/MUjAMI0TBWArOudDEISTKQiC5nI5trGNHtSl1bIIvnanBqOlWr16tRU7f/va3AQTpP/ra9I3pv/tzLXCfjo4OLdZh6XFDQ4Muq57KrFmz0iYOOX78eFoKMBaLaUqU2olFTyKi18U015tvvqmWDdfR5CSzfs09++D06dNpa2RUVFTgZz/7GYDkPABs4yOPPIJPf/rTAJJasq+vT2MlDHwODQ2lpQNpicyYMUPjEXx98cUX1Trxg4/8bRnA5D6+pTAdU7DR0vIZy0JgcHvNmjX4wQ9+kNW5CkIoiAhKSkpCAiG1hjtqBqbm5uacuw80H/2Ib+rityMjI9p2msanT5/WKDyDaDRnu7q69Phk06ZN+sPzYWHEu62tTYNnvEk/8pGPpAWQLrnkEs068Kbmw8XFUPzjNjQ0aJCSD/bGjRuxYsWK0HGZmTh+/LgKNh7Dz4MzQMq5Dnn9QDIT0NjYqA++P+szZyammc/ofX19vQoMukIlJSVacUjheuWVV+o184HgeWpqarQeg67O1q1bddFeDjCqq6tTFyh1qLyvsKKEAd2qXE26wkxb1FJ1VVVVoVnEgWTw+amnntIsz1hCxMfcB8MwQhSEpeCcSxsOOtZQVVoRuZyrMXXSFN9SGSuY5F8Hc8U0N6kFOzs71SSnGXzgwAHVwnxleuzgwYNqsXz/+98HEGgyBvFYS1FbW6vHIxy3EIvFtE9pCp8+fVotFl7v3XffrTNqp7Js2TKtbiTt7e24555gZn9Oa8ag6OrVq3XqN6Y8Fy9erBaCv2R96kzWfoXle9/7XgBJ1+mll15KGw7c1dWl104LjhO7dHR0qAVH6+HKK6/U/RhIjcfjaSlFtqexsXFMq5QWwkRTh+OROjLSx7cSeL/S9Tt06FDWaVKzFAzDCFEQlgJjCkNDQxkFcVLr+nMBjz3e5BpAeI4Ff6osBtc47RhH+y1ZskRTXzzPnj179Bj0Xf2qNPrCtCKKiopUM7P+/wc/+EHaWpy0APr7+/Vc1MrOOQ1mciWniy66CF/96lcBJC0bf30Ianzu/853vlPHe7DCkms+AsmRnuwLf2wFA6QnT57UeArTuL/61a8AAL//+7+vgU+OS4jH42nFXBUVFar5GT/h+97eXj0Gi5KWLFmiVh37cdeuXaFRkf4xfCthrHs0k/tlIvC+Ki4uTrNCiouL00bx+hWYqUHw8SgYoRCLxTA0NJTW0f4EEfwRU5fIygU8dmpJaVR7/Db7VXepuXEOsunq6tIHidV6f/RHf4R//Md/DB2PN19xcbFu4w2/detWbdvXvvY1AEGQkDBwR4Gxe/duvVF43MHBQT0nj7Vp0yadzfkrX/kKgOTycc3NzRoEpdvR2dmpQ8QZkPTh/mxPR0dHaEZlIDCN6XJwoVte7wsvvKCCgsGzP/7jP1Zhw+DmoUOHcO211wJIDuFmcLayslKDnszYlJSUaPCOAm7//v36cFFwRg2683+f1Pt1oosrjQevJR6PpwmseDyuAp/t8YUT77FMh3Ob+2AYRoiCsBS4wGwU1Mb+wh4MpmS7yEU28NipA2OKiorGNMP866CZl5qu2rNnT9p8gkeOHNGKQ27jXIrDw8OaiuJcg0uXLsUTTzwBINpiYprQtzaYqqPpffLkSQ14MmV4zTXXqEXxxS9+Me24HDxErTPQOaPKAAASMElEQVRnzhwNgn3hC18I7fvqq6/iW9/6FgDgy1/+MoBg8RYG9hgAW7Vqlf6+qQPjdu7ciXXr1gGATlc3d+5cTbPxd2pvb0/rb389jPe///0AkjUXnZ2des2cJs+foo0WAo9RUVGRVrk6a9astDEy2YzdyQb/vkq1RvyxN1FkO+GLWQqGYYSY8AKzACAinwHw3wE4AK8gWDZuNoCHATQCeAHAf3POjTmOVERclH82xv4AwrPvTjWc3ZhBqEz7aawg1FgFLi0tLarFuEoSJy99+umn1VKhpl64cKEG/ViRV15enjb8mgGyXbt2qXVCv7qnp0fbRI3+gQ98AB/72Mf0fyCpjamdgWSQcO7cuTrxCtOlZOvWrbpwLK2OT33qU2nLy23atEmvhTEQxhaAZGUnf4uqqipNLdL66e7uVouJ7eVvtnLlSk3vMs7z9NNP6/4sCNuxY4feWzwui6h869Afx5E6RibVgskXo60FkRKYzO0CsyIyF8BdAC53zl0IoBjAzQD+FsDfO+cWATgO4PaJnsMwjPwzmaXo5wLYDOASAD0Afgbg6wAeBDDLOTcsIisA/C/n3HvHOVZuQrbTTDaFLH4ZLb/HaLq/AhW1VEdHR5pVcvz4cdVwvlYFwmshcp+BgQGdoIUxiM9//vPqT3MimCiYHjx58qSeK4p7770XQFKTPvfccxqn+exnPwsA+MxnPqNT09NCYBuqqqp0PAIXpl26dKn6ydSQIqIxCn+KeSCwqti3v/nNb0ZtK5AsZMp2/UXil1Hngnnz5kX2tx8/ScUb25GRpTBZ9+FuAPcCOA3gcQB3A9jsnFuY+HwegJ8nLIlRicVibubMmejs7By1Ptuf257mXmr1Xi5IPZffDh+a5v5qv6nBU3/ePOKvAD3abD3nnHOOpuzYHn/RVH5v27Ztmuqkyc12v/LKK5o65Lbe3l4VWHxQOZgJCA9VToUP8f79+9NqBhh4nDt3rl7rzTffDCB42FhpSOHnCxZ+xmsrKSlJGzo9Y8YMFQb+0nwMVqYOZtq7d2/aDFq8Xv8Y/kzWY40TYNo5V7MrjUVzc3NWAivlfs25+9AAYC2ANgBzAFQBuD5i10ipIyJ3iMgWEdmSq4IPwzCyZzLuw4cBXOecuz3x/g8ArADwYUyh+xCV4mExC9cXyCVR58pV2imT49OyWLx4sVolDGpddNFFaiYzEEit8sYbb6i1QU338ssva6DMH9rsFyYBSRckFoupWcwg3YEDB9Rc53E5epOVkUAyuHnixAktZKJLUV9fr1qeRUYsQJo3bx6WLVsGIDzxCd0LWgytra348Y9/HGqvP4Mz+4rX5OOvJzGaq1ddXZ1WyOTPlzjW8QuI3FoKAPYDWC4ilRLcqasBvAZgAwCuXXYbgEcncQ7DMPLMZGMKfwPgJgDDAF5EkJ6ci2RK8kUAtzrnxiy6LikpcfX19ejr69OUCjUA/dlcTqiSLdSk9HH9iUT9dQlTGWsJ8UzxtTFTmAwuzZgxQ/1HBiGpXYeGhlSrMQ1ZXV2tsRAG7vr7+zX2Qa3J3+DIkSPqf/N7p06dUguE6T7u39fXpzEKzn/Q39+vKVkG9Y4ePaopYE5Zx+DYyMhIWr/5ZeK0Brq6ujTQONa9EhX8jYr1pFJTUxOa1DaVfMa5sqGoqMgvec59oHGqyDT7wCAU697zyWTO7ee1gdGn6c7k5iSxWAyf/OQnASQj6gsWLFBhxAeO1YmlpaXqWvAzf/IWPlBR1ZEURP39/XqD0UTv6upS05nBOwqmqqoqrSPxzXx/2TogEKQUpnyg/YVvmS1hsFBEtAqR/TjRbIGPv4p56vgCYHpmXIpitEWYgeQYE7/OwyPn7oNhGG9BCs5SoKaiqUjtM5bplm+o+f1UVtR6AqNRV1enwUF/PYJsNRGDd5xsZXh4WC0D/q4MONbU1Oi4Amr22tpa1bAcMbh582adHZppQWrx7u5uvXZWL37iE5/QAByPRUtk3759av3weydOnNBt/qQodBdoJdFSqKio0PEI/CwWi+G1114DkKxnGBgYSNPuPEY8Hh8zxTiZqdSuuuoqAOPXP+SCqCHRvOZRxhKZpWAYRvYUnKWQSq6X9p4ImbRpImtSpFoKmVoOXLa9vLxcA4C0rBgr8H1zMjAwoNdCrV1RUaGBS8YGuM7Ftm3b8Hd/93cAkhPGXHPNNRrMpPXjV0wylsAxAV1dXfq5H3DlNTIAyNfKykrVetTo7e3t6jP7U97Rckute4kq+IlKMfpkEjj0q0SnA1qBUVO1RcVEkKGlUBBDp8eikIQByaRN2QqERYsWpQWOMp3njw9jPB5XocCbgQ92U1MTNm3aBCA523JFRYXORMTagpGREZ0ancKAEf6amhoVBqSsrEwFEF0QBgSrq6v1hmXUv7S0VB9ybps5c2baepS89vLychUs3OfgwYNpwdh4PJ42axJdz2PHjqUFe8eb2ZjCIHXovM90CgQgKQyWL1+uw+wJ+2IigsvcB8MwQhSc+0BtQ9MumwBevmGQsLq6OnJBWqaHmCYcrwKSmpOBQGpDP3XI32u0MRhtbW0AksE+msGlpaVaM8C+jcViOhSb19LY2KhmPQN8bPfAwICmZpmmdM6pBUJz9sorrwQQWFQ0+an56RIB4UAZNTfnZuRgrM7OTnU9HnjggdCxMmW0vsqEqGAe3aVMV6LOBxm6mhZoNAwjewrKUrjxxhvx2GOPTXdzJsSNN94IAKH2M6BGP3kq+trXXEw/+QE7+t/8zF9xidvoH8fjcbUQ+FlJSYlqYrabwcrTp0/r+WkxnDp1SlOM1Og8ZmlpqX7XHwrN9lJ719XVqaZLXWfj4MGDmkplynC04q+oqfP89xPBT43yGjJdaWk6YJUr4w0pbTVLwTCM7CkoS+GtxAUXXKB1/MTX8lEpo9E0W1FRkVoAvm87StopEn/B2/H2H2udAH9RWCCI0vtrZAJJi6GmpkZ9XG6bM2eOZjpoxfT396tGYxyDFsahQ4f0nLQm+vv7tY1RRTqp/VhWVqZWSdS1+yMcUxfcZcyF0/OfKfgjW7206ltv7MOZBusHmDL87W9/CyBtkMqEqK2tHXM5ME6ywgVn/bp+H7o4fAjGq+rzZ9UGAsEx2aXS/MVM+DqRQWNsB8m0PRS4zc3Nmr7jsXI1PD6fePUM5j4YhpE9ZinkEZrNZ511lk4iQrN5om5BLmA609egQGC+05Jg2/bu3TvhwBvTpadOnVI3I9NrTu0jfzxJptBV8Od0HGsh17cAZikYhpE9ZikUCOeee66OFGSZMH8bPwA2VnFKTU2Nps1SJ1SJxWJYunRp6PgzZsxQ7cpgVCZzOaTC6dJ43IkcI5Wpnhw1NW3a3d09Je08w7BA41sJDl/ma2NjowYauYBoR0eHVj4WAhdffLEKMY4F6evry6gWn67W6dOn1WW54IILACAtq0MoVDmLE+sltm/fPiWTsLwFMPfBMIzsMUvBmDY4Qcnx48c1r07tTs1eVVWlQUVaGKxbAJJ1Cr/73e/y0+gzG7MUDMPIHrMUDOPtg1kKhmFkjwkFwzBCmFAwDCOECQXDMEKMKxRE5H4RaReRrd62RhF5QkR2Jl4bEttFRL4mIrtE5GURuSyXjS90KioqtKLQKHw4Ue3bnUwshe8CuC5l2z0AnnTOLQLwZOI9ECxFvyjxdweAb0xNMw3DyBvOuXH/AMwHsNV7vx3A7MT/swFsT/z/LQC3RO03zvGd/SX/RMQl0rT2N4G/srIyV1ZW5tra2lxbW9u0t6eA/rZk8rxPdN2Hmc65wwDgnDssIi2J7XMBvOntdyCx7fAEz/O2ZDK1IxwG/Prrr09Vc6YFDqsGsl/JmcPQOTzdyI6pXgxGIrZF3uEicgcCF8MwjAJiokLhqIjMTlgJswFwOaQDAOZ5+7UCOBR1AOfcOgDrAKtonErOdAuBZGsdGFPHRFOS6wHclvj/NgCPetv/IJGFWA6gm26GYRhnCBkEAR9CEBMYQmAJ3A6gCUHWYWfitTGxrwD4JwC7AbwC4PIMA5nTHYCxP/t7O/xlFGi0AVGG8fbBBkQZhpE9JhQMwwhhQsEwjBAmFAzDCGFCwTCMECYUDMMIYULBMIwQJhQMwwhhQsEwjBAmFAzDCGFCwTCMECYUDMMIYULBMIwQJhQMwwhhQsEwjBAmFAzDCGFCwTCMECYUDMMIYULBMIwQJhQMwwhhQsEwjBAmFAzDCGFCwTCMECYUDMMIYULBMIwQ4woFEblfRNpFZKu37f+KyOsi8rKI/FRE6r3PPiciu0Rku4i8N1cNNwwjN2RiKXwXwHUp254AcKFz7mIAOwB8DgBE5HwANwO4IPGd/ycixVPWWsMwcs64QsE59zSAYynbHnfODSfebkaw5DwArAXwsHNuwDm3F8AuAMumsL2GYeSYqYgpfBzAzxP/zwXwpvfZgcQ2wzDOEEom82UR+SsAwwAe5KaI3SJXlBaROwDcMZnzG4Yx9UxYKIjIbQBuBLDaJdezPwBgnrdbK4BDUd93zq0DsC5xLFuK3jAKhAm5DyJyHYC/APAB51yf99F6ADeLSJmItAFYBODZyTfTMIx8Ma6lICIPAbgGwAwROQDgfyLINpQBeEJEAGCzc+5/OOdeFZFHALyGwK34pHMunqvGG4Yx9UjS8p/GRpj7MC00NTWhqCgwFk+cOAEAGBoaysm5Zs2aBQDo7e1FPB7oib6+vrG+Ykw9zzvnLh9vJ6toNAwjhFkKZwhVVVUAAk1rJInFYgCAkZERDA8Pj7P32x6zFAzDyJ5J1SkY+cMshGgGBwenuwlvOcxSMAwjREEIhaKiIvWZz3SqqqreMtfydmbBggVYsGDBdDdj0tTU1GT9HQs0GsbbBws0GoaRPYUSaOwE0Jt4nW5mwNrhY+0Icya34+xMdioI9wEARGRLJqaNtcPaYe3IbTvMfTAMI4QJBcMwQhSSUFg33Q1IYO0IY+0I85ZvR8HEFAzDKAwKyVIwDKMAKAihICLXJdaJ2CUi9+TpnPNEZIOIbBORV0Xk7sT2RhF5QkR2Jl4b8tSeYhF5UUQeS7xvE5FnEu34VxGJ5aEN9SLyo8SaHttEZMV09IeIfCbxm2wVkYdEpDxf/THKOieRfSABX0vcty+LyGU5bkde1luZdqGQWBfinwBcD+B8ALck1o/INcMA/tQ5twTAcgCfTJz3HgBPOucWAXgy8T4f3A1gm/f+bwH8faIdxwHcnoc2/AOAXzjnzgNwSaI9ee0PEZkL4C4AlzvnLgRQjGAtkXz1x3eRvs7JaH1wPYIpBxchmIT4GzluR37WW3HOTesfgBUAfum9/xyAz01DOx4F8G4A2wHMTmybDWB7Hs7diuBmWwXgMQSzYncCKInqoxy1oRbAXiTiTN72vPYHkssENCIornsMwHvz2R8A5gPYOl4fAPgWgFui9stFO1I++y8AHkz8H3pmAPwSwIqJnnfaLQUUwFoRIjIfwKUAngEw0zl3GAASry15aMJXAfw5gJHE+yYAJ1xywZ189Mk5ADoAfCfhxnxbRKqQ5/5wzh0E8GUA+wEcBtAN4Hnkvz98RuuD6bx3c7beSiEIhYzXisjJyUWqAfwYwKedcz35Oq93/hsBtDvnnvc3R+ya6z4pAXAZgG845y5FUHaeL9dJSfjrawG0AZgDoAqBmZ5KIaTNpuXencx6K5lQCEIh47UiphoRKUUgEB50zv0ksfmoiMxOfD4bQHuOm3EVgA+IyD4ADyNwIb4KoF5EODYlH31yAMAB59wzifc/QiAk8t0fawDsdc51OOeGAPwEwJXIf3/4jNYHeb93vfVWPuoSvsJUt6MQhMJzABYlossxBAGT9bk+qQRz0/8zgG3Oufu8j9YDuC3x/20IYg05wzn3Oedcq3NuPoJrf8o591EAGwB8KI/tOALgTRFZnNi0GsFU/XntDwRuw3IRqUz8RmxHXvsjhdH6YD2AP0hkIZYD6KabkQvytt5KLoNGWQRUbkAQTd0N4K/ydM6VCEyslwG8lPi7AYE//ySAnYnXxjz2wzUAHkv8f07ih90F4IcAyvJw/ncA2JLok58BaJiO/gDwNwBeB7AVwAMI1hjJS38AeAhBLGMIgQa+fbQ+QGC2/1Pivn0FQcYkl+3YhSB2wPv1m97+f5Vox3YA10/m3FbRaBhGiEJwHwzDKCBMKBiGEcKEgmEYIUwoGIYRwoSCYRghTCgYhhHChIJhGCFMKBiGEeL/A3f1GOIOV4tpAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x, y = valid_gen.__getitem__(7)\n",
"result = model.predict(x)\n",
"\n",
"result = result > 0.5\n",
"print(x.shape, result.shape)\n",
"\n",
"imshow(x[1])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x7f8d531d3898>"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAACuCAYAAAA4eMYdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAC+ZJREFUeJzt3WGoZOddx/Hvz8QI1kCybTcsSXSTshZqkLUuaSEoFjFsinTTF5YEaRcN3hYM6DvXFlR8a+uLQogsuOxWNK0iMUtQm2UR+yoluxo3G5M0uyE1212ytpG0UbHd8vfFnOtOtvd679yZuefMM98PHM7Mc2fOec6d+f94zpkzc1JVSJLa9UN9d0CSNF8GvSQ1zqCXpMYZ9JLUOINekhpn0EtS4+YW9En2J3kpybkkh+a1HmnorAX1LfM4jz7JdcDXgF8CLgDPAA9W1b/OfGXSgFkLGoJ5jejvBs5V1StV9V3gi8CBOa1LGjJrQb27fk7LvRV4bez+BeAD6z04iV/P1SS+WVXv7rsTmzRRLYD1oMlUVTZ6zLyCfq0Vv+3Nm2QFWJnT+tW2r/fdgQlsWAtgPWi+5hX0F4Dbx+7fBlwcf0BVHQYOgyMYNW3DWgDrQfM1r2P0zwB7ktyR5AbgAeD4nNYlDZm1oN7NZURfVVeSPAx8GbgOOFJVz89jXdKQWQsagrmcXjlxJ9xV1WROV9W+vjsxL9aDJrGZD2P9ZqwkNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMZtOeiT3J7kH5K8kOT5JL/Vtf9Bkm8kebabPjy77krDZD1oyLZ8zdgku4BdVfVPSW4ETgP3Ax8D3qqqz06wLK+RqUkM7pqx1oP6splrxl4/xcIvAZe6299J8gJw61aXJy0y60FDNpNj9El2Az8DfLVrejjJmSRHktw8i3VIi8J60NBMHfRJfgz4a+C3q+rbwKPAe4C9jEY4n1vneStJTiU5NW0fpKGwHjREWz5GD5Dkh4EngS9X1R+v8ffdwJNVddcGy/GYpCYxuGP0YD2oH5s5Rj/NWTcB/hR4YfxN3X0oteqjwNmtrkNaFNaDhmzLH8YC9wAfB55L8mzX9mngwSR7gQJeBT45VQ+lxWA9aLCmOnQzs064q6rJDPLQzaxYD5rEXA/dSJIWg0EvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalx01wcHIAkrwLfAb4PXKmqfUl2AF8CdjO6IPLHquo/pl2XNGTWgoZqViP6D1XV3rELNh8CTlbVHuBkd19aBtaCBmdeh24OAMe628eA++e0HmnorAX1bhZBX8BTSU4nWenabqmqSwDdfOe1T0qykuRUklMz6IM0BFuqBbAeNF9TH6MH7qmqi0l2AieSvLiZJ1XVYeAwQJKaQT+kvm2pFsB60HxNPaKvqovd/DLwOHA38HqSXQDd/PK065GGzlrQUE0V9EnekeTG1dvAvcBZ4DhwsHvYQeCJadYjDZ21oCGb9tDNLcDjSVaX9RdV9fdJngH+MslDwL8BvzLleqShsxY0WKnq/3CgxyQ1odNjpy82x3rQJKoqGz3Gb8ZKS2wIAz3N3yzOulko42/sbjdbWkqrtbA6tx7atVQjekcvkpbRUgW9JC2jpQ56R/jSVdZDu5Y66CVpGSx90DuKkdS6pQ96SVc58GmTQY9vbmmc9dAeg16SGrdUQf//fSHEUYx0lfXQlqUKeklX+U3Y5WHQj3EUI11lPbRj6YLeUYykZbN0Qb8RRzFaJhsNfKyHNhj0ktS4pQz6JB7CkTrWQ/uWMuglaZls+cIjSd4LfGms6U7g94CbgN8A/r1r/3RV/e2WezhHSTwGqZmwHjRkM7lmbJLrgG8AHwB+DXirqj47wfN7fXdd+z9wN3bwBn3NWOtB22k7rxn7i8D5qvr6jJa3rcbfyL6pNQPN1IPaMKugfwB4bOz+w0nOJDmS5OYZrWOu/EBKM9RMPVgTbZg66JPcAHwE+Kuu6VHgPcBe4BLwuXWet5LkVJJT0/ZBGgrrQUM09TH6JAeA36yqe9f4227gyaq6a4Nl+AmQJjHYY/TWg7bbdh2jf5Cx3dQku8b+9lHg7AzWIS0K60GDM9WIPsmPAq8Bd1bVm13bnzHaTS3gVeCTVXVpg+U4gtEkBjmitx7Uh82M6GdyeuW0fGNrQoMM+lmxHjSJ7Ty9UpI0UAa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW5TQZ/kSJLLSc6Ote1IciLJy9385q49ST6f5FySM0neP6/OS9vNWtAi2uyI/iiw/5q2Q8DJqtoDnOzuA9wH7OmmFeDR6bspDcZRrAUtmE0FfVV9BXjjmuYDwLHu9jHg/rH2L9TI08BNSXbNorNS36wFLaJpjtHfUlWXALr5zq79VuC1scdd6NqkVlkLGrTr57DMrNFWP/CgZIXR7qzUqk3VAlgPmq9pRvSvr+6GdvPLXfsF4Paxx90GXLz2yVV1uKr2VdW+KfogDcFUtQDWg+ZrmqA/Dhzsbh8Enhhr/0R3xsEHgTdXd2ulRlkLGraq2nACHgMuAd9jNEp5CHgnozMMXu7mO7rHBngEOA88B+zbxPLLyWmC6dRm3rfzmJhzLVgPTpNOm3lPpXtj9SpJ/53QIjnd8iEO60GTqKq1Pgt6G78ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcRsGfZIjSS4nOTvW9kdJXkxyJsnjSW7q2ncn+e8kz3bTn8yz89J2sx60iDYzoj8K7L+m7QRwV1X9NPA14HfH/na+qvZ206dm001pMI5iPWjBbBj0VfUV4I1r2p6qqivd3aeB2+bQN2lwrActolkco/914O/G7t+R5J+T/GOSn5vB8qVFYj1ocK6f5slJPgNcAf68a7oE/HhVfSvJzwJ/k+Snqurbazx3BViZZv3SkFgPGqotj+iTHAR+GfjVqiqAqvqfqvpWd/s0cB74ybWeX1WHq2pfVe3bah+kobAeNGRbCvok+4HfAT5SVf811v7uJNd1t+8E9gCvzKKj0lBZDxq6DQ/dJHkM+AXgXUkuAL/P6KyCHwFOJAF4ujuj4OeBP0xyBfg+8KmqemPNBb/dN4H/7OateRdtbhf0t20/0cM6gW2rh7eAl+bQ/SFotR4GXQvp9jJ7l+RUi7utrW4XtL1tfWr5/9rqtg19u/xmrCQ1zqCXpMYNKegP992BOWl1u6DtbetTy//XVrdt0Ns1mGP0kqT5GNKIXpI0B70HfZL9SV5Kci7Job77M60kryZ5rvu1wlNd244kJ5K83M1v7rufm7HOLzWuuS0Z+Xz3Op5J8v7+er64WqoHa2E4tdBr0HdfJnkEuA94H/Bgkvf12acZ+VD3a4Wrp1sdAk5W1R7gZHd/ERzlB3+pcb1tuY/RF4L2MPoq/6Pb1MdmNFoP1sIAaqHvEf3dwLmqeqWqvgt8ETjQc5/m4QBwrLt9DLi/x75s2lq/1Mj623IA+EKNPA3clGTX9vS0GctQD9ZCD/oO+luB18buX+jaFlkBTyU53f1QFcAtVXUJoJvv7K1301tvW1p8Lbdba/9Da2Gk99dxql+vnIGs0bbopwHdU1UXk+xk9JX4F/vu0DZp8bXcbq39D62Fq3p9Hfse0V8Abh+7fxtwsae+zERVXezml4HHGe2Ov76669bNL/fXw6mtty3NvZY9aOp/aC38n95fx76D/hlgT5I7ktwAPAAc77lPW5bkHUluXL0N3AucZbRNB7uHHQSe6KeHM7HethwHPtGdcfBB4M3V3VptWjP1YC0MrBaqqtcJ+DCj62yeBz7Td3+m3JY7gX/ppudXtwd4J6NP5V/u5jv67usmt+cxRhfP+B6jUcpD620Lo93VR7rX8TlgX9/9X8SplXqwFoZVC34zVpIa1/ehG0nSnBn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ17n8BMZHRzoH3LTIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
"\n",
"ax = fig.add_subplot(1, 2, 1)\n",
"ax.imshow(np.reshape(y[1]*255, (image_size, image_size)), cmap=\"gray\")\n",
"\n",
"ax = fig.add_subplot(1, 2, 2)\n",
"ax.imshow(np.reshape(result[1]*255, (image_size, image_size)), cmap=\"gray\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3.6/site-packages/matplotlib/pyplot.py:528: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
" max_open_warning, RuntimeWarning)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3WuQpVddL/7vmp7u6QwJJhET4gB/\nAo63CIkaYygtCjkIMaUVpMrDRcPFfxkQFMGjpyK8QFHxlCWmCpGrYEAQSZUSgaI8EYg3CoiJFWIi\nFwMiDBknKITETKZ7unudF91Pd0+np3umZ9/X51M11d1PP7336qf37P3b3+f3rFVqrQEAAACgTbuG\nPQAAAAAAhkc4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDD+hYOlVIu\nK6V8tpRyZynl6n7dDwAA40etCACjo9Rae3+jpUwl+VySH01yIMk/Jnl2rfVfen5nAACMFbUiAIyW\n3X263UuS3Flr/UKSlFL+LMkVSTZ9wS+l9D6hAoA2/Get9VuGPQg4SWpFABiQWmvZbp9+XVa2L8mX\n1319YGXbqlLKVaWUm0spN/dpDADQgn8f9gBgB9SKADBC+tU5tFkqdcwZn1rrW5K8JXE2CACgMWpF\nABgh/eocOpDkkeu+fkSSu/p0XwAAjBe1IgCMkH6FQ/+YZH8p5fxSykySZyV5f5/uCwCA8aJWBIAR\n0pfLymqtC6WUX0jyf5NMJXl7rfWOftwXAADjRa0IAKOlL0vZn/QgXEcOADt1S6314mEPAvpJrQgA\nOzfM1coAAAAAGAPCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwC\nAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYc\nAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABom\nHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAa\nJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAA\nGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAA\nABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAA\nAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGG7hz0AYHTs2rWc\nF+/evfzUsLCwkKWlpU33fehDH5okuffee497ezMzM6u3093u/Pz8pvuWUpIktdYdjBwAAICd0jkE\nAAAA0DCdQ8Cqhz3sYUmSQ4cOJUkOHz6c0047LclaZ09nfTfQ8Xzwgx9Mknz4wx9Oktx6663527/9\n20337bqM5ubmkiRTU1NZXFzc0e8BAEBv9bO7e2OdCQyeziEAAACAhpVRmN+jlDL8QcCE6Tp+ujmD\nuo6cf//3f0+SPOpRjzqp2+ueK07mzE53n1130dLSUqanpzfd95d/+ZeTLHcXJclNN92U+++/P0my\nZ8+eY25vK+YuokG31FovHvYgoJ/UitB/41I76TKCk1dr3fY/js4hAAAAgIbpHIIxtrFLZmpqKkmy\nuLiYz3zmM0mS/fv3J1mbI6jbp/vYTyfTbXTkyJFj9u26hZLkTW96U5Lk53/+55MkZ555ZpLknnvu\nWZ2rqFsFbWOXkU4iGqBziImnVoTemvS6SHcRHOtEOoeEQzBGtgs6uu2Li4ury9KP24vjZoFSF/R0\nwc/Ro0eTJNPT0/noRz+aJHnyk5+cJHnOc56z+r0keec737l6OydzeRqMEeEQE0+tCKdmFN7zjaJx\nq5Nhp1xWBgAAAMCWdA7BmCilrJ716bqCuqXeN3bb1Fon6kzIVpenbXwO6y4v6ybi7ibmTpJXvepV\nSZJXv/rVm97Pnj17Vn++6zzqvoYRpnOIiadWhJM3Cu/zxtkk1dKgcwgAAACALekcghHXdQktLS2t\nngHarFNo/dec2NxFG1133XV55jOfmST54R/+4STJP/zDPyRZ+zts/BvACNA5xMRTK8L21CaDo+Zm\n3OgcAgAAAGBLOodgxHRnIrql5l//+tcnSV74wheuzqPT7eOsRW/Nz89nZmYmyVqX0XOf+9wkybXX\nXpsk2bt3b5JkZmbmuPMRbbeqHPSYziEmnloRjk+9MVrU54winUMAAAAAbEnnEIyoG264IUly6aWX\nJknOOOOMYQ6nCZut8tZ1B23s1nrqU5+aG2+8cdPbmZ2dTZIcOXKkX0OF9XQOMfHUivBgo/A+ju3p\nJGIU6BwCAAAAYEs6h2CIujMJp512Wi655JIkWe1GOXr0aJJkenp6OINjU928T4uLi8f927z85S9P\nkrzpTW9anbtoFJ5rmVg6h5h4akU4lrpivOkmYtBOpHNIOARD0L0gdJMfP+MZz8if/umfDnNI9MF1\n112XZz7zmcMeBpNPOMTEUyvCslF470bvCYvoN5eVAQAAALClU+ocKqV8Mcl9SRaTLNRaLy6lnJ3k\nvUkeneSLSf5nrfXr29yOCJym1VpXzwQ5czA55ubmsmfPniTJ/v37kyR33nlnkqxu7y47g1Ogc4iR\npVaE3tAx1BbvB+i1QXUO/Uit9aJ1henVST5Sa92f5CMrXwMA0Ca1IgCMuF50Dl1ca/3Pdds+m+RJ\ntdaDpZTzkvxNrfU7trkdUThNczZoMtVaV8/8bOwM+9mf/dkkybXXXpskmZqayuLi4jH7wgnSOcTI\nUivCqVEToIuIXhhE51BNckMp5ZZSylUr286ttR5cGcDBJOec4n0AADCe1IoAMAZ2n+LP/1Ct9a5S\nyjlJ/rqU8pkT/cGVAuGqbXeECdIl/918M6985SuTJEeOHMns7OzQxkV/rD/Ts/Gsz9vf/vYkyW/8\nxm8kSZ785CfnK1/5SpLkgQceGNAIAfpOrQhwCsxLyqCcUudQrfWulY93J3lfkkuSHFppEc7Kx7uP\n87NvqbVerBUeAGAyqRUBYDzseM6hUspDkuyqtd638vlfJ3l1kv+R5L9qrf+nlHJ1krNrrf97m9ty\nMS1NmZ6eTpLccccdSZJHP/rRq9s6J3KWYGlpKUly9OjRY/bdvXt3FhYWkiQzMzM9HDm91s0zNDU1\nlSuvvDJJ8q53veuYfbrHRvd3hg3MOcRIUivCqTPnEMejk4iTcSJzDp1KOPSYLJ8BSpYvT/vTWutv\nl1K+Ocl1SR6V5EtJfqrW+rVtbsuzHk2bn59fDXNOO+20Y77XBUC7du1anbz4+uuvP+bj3/zN3yRJ\nXvWqVyVJnvnMZ+Z7vud7kiRPfOITk6yFEJ2pqake/xbsxPrn4Pn5+SRrlx0ePHgwSXLZZZclSb71\nW781f/VXf5Vk7e+38e9Kk4RDjCS1IvTeybx3Wx8eCJkml5CIE3Ei4dCO5xyqtX4hyYWbbP+vLJ8R\nAgCgUWpFABgfp7SUfc8G4WwQrHb6fO5zn0uy1kXSKaXk9NNPT7J2edGRI0eSLHcVJcuXkyXL3STd\ntm7fCy64IEly4403Jkm+5Vu+JXNzc0nWOlUYLV03WXdGaG5uLnv37k2ydrmgS82IziEaoFaEwRmF\n94ecGt1EbDSIpewBAAAAGGM6h2DEdB0/3VxDm+nOBmz8/3u87cnmkxq/6EUvSpL84R/+4TH32XUg\nMXq6v9/GCcydIWqaziEmnloRhm8U3jdyctSHdHQOAQAAALAlnUNAHvvYxyZJPvrRjyZJHv7whydZ\nm9eG0dE9Zx/vTJAzRE3SOcTEUyvC6BiF94/sjDqxXTqHAAAAANiSziFgdY6hbnWsUXhe4OR0q9vd\ncMMNefrTn55kbQ4pf8+Jp3OIiadWhNGithhfuofapHMIAAAAgC3pHAJWbVwpbRSeHzgx3d/qgQce\nyN13350kOf/884/ZZ6vV7BhrOoeYeGpFGE1qivGlg6gtOoeAk7K0tJSlpaWUUlJKyXvf+97Mzc1l\nbm5u2ENjG93fbO/evdm3b1/27duX8847L+edd96whwYATKiu/mD81FqFexxDOAQAAADQMJeVAcc1\nPT29OtEx48+ZvYnlsjImnloRxsMovLdkZ9SJk81lZQAAAABsafewBwCMrqNHj+byyy9PknzoQx8a\n8mg4VVdeeWWS5L3vfW+S6AoDAACS6BwCAAAAaJo5h4AtnXHGGUmS5z//+UmS173udUMcDafi61//\nepLkB37gB5Ikn//854c5HHrHnENMPLUijJdReI/Jzph7aDKZcwgAAACALekcArbUnT3oniu6j0tL\nS0mSXbtkzOPq9NNPz/333z/sYXDqdA4x8dSKMF5G4T0mO6d7aPKcSOeQCamBLXUv7t2LRPdxYWFh\n0+8z+g4fPpwkgiEAoC9KKQKiMaa+b5NT/gAAAAANEw4BJ2VqauqYf6UUZxXGzMzMTGZmZvKbv/mb\nmZ6ezvT09LCHBAAADJFwCAAAAKBhJqQGTkk3MXXiuuRxtHfv3iTJAw88MOSRcApMSM3EUyvC+BqF\n95ucGjX++LOUPQAAAABbEg4BJ2XjHEPd14uLi0McFTvx3//931lYWFhdeQ4AAGiTcAgAAACgYbuH\nPQBgvGy8bvycc85Jkhw6dGgYwxl53fHa7lrt++67b7WD56yzzur7uJLk9NNPz1133ZUkecxjHrM6\nDgCAXulqIHMPja8TrWcZbzqHAAAAABqmcwjYke7MwZEjR5Ikv/iLv5jXve51SZJduyY/d661Pujs\nycazKvPz83nf+96XJDl48GCS5OUvf/lxb3N2djZJ8pSnPCVJcv311ydJpqamejjyY5199tlJdAwB\nAEDLhEPAjnRBSBcqvP71rx/mcPrmeG20R48ezdLSUpK1UGdubu6Yr6+++upcc801SZLdu7d/uu2C\ntu7j/Pz8MbfXj1beLsi79dZbkyRPeMITkljaHgDoLZeXbe9kar1hHEeXl022yT+9DwAAAMBx6RwC\nemJmZma1c2aSziZs/F3OOOOMJMnHPvax1W6pt771rUmSn/7pn06SvPvd706y3JXT/fzJLBd/4MCB\nY+67n8ezOwN04YUXJtExBACwU1vVbL3uutGJRa/pHAIAAABoWBmFpLGUMvxBADuy/qxF93zSzZUz\nMzMztHHt1MazOhvP7mw22Xa3z+Li4jFfn+zz68b77G5vkG644YYkyeWXXz60MXDSbqm1XjzsQUA/\nqRVh8ozC+9BeGXbX/KCP5bB/X05erXXbP5rOIQAAAICGmXMIOCXrz1RMwrXPR48eTZI87WlPS5Ls\n2bMnydpKZN0KZVvZ6e8/PT2dJHnPe95zzH12HViDmHvoqU99ahIdQwAAbM6qZZNJ5xAAAABAw3QO\nAUPVdahMTU0lSY4cOZIkmZ2dHcp4us6gc889N8la906/dGdc9uzZs9q184xnPKOv97nVOLrOqW4F\ntp/7uZ970D7j3BkGANArOmeYJDqHAAAAABpmtTKgJ0opqx0lJ/O8svGMy/XXX58kueKKK3o3uFMw\nyDNCo/B8vNk15N3nXXeX+YhGjtXKmHhqRZhsx6uBNqvDRqFe6gyzc2gUjoPOqfFxIquVCYeAnuue\nV7pLtNYv/77dUvGdhYWF1TBimPr9orf+Uq1ReD7eigJgZAmHmHhqRaAzivXSMGqkUTgOasPxYSl7\nAAAAALZkQmqgZ7oOoZtuuilJcuGFFyZZWw4+efAZhg984ANJ1i4jO/3005MkBw8ezCMe8Yj+DngT\n3VmY++67L0nyohe9KEnypje9qaf3s3Fy51prFhYWkqxdvjVqZ2Ne8IIXJEn+5E/+JElWxwsAMCit\nL5AxSr93rXXk6lV2TucQAAAAQMN0DgE9080x9IM/+INJksOHDyfZfJLjbtuP//iPH/Oz9957b5Lk\nggsuyDe+8Y0BjPpY3Ri7DqZv/uZvTrLWFdWN81RtNnn37t2j/ZT8Xd/1XUmSM844I0ny9a9/fZjD\nAQAaNgodRK0tXMJk0zkEAAAA0DCrlQE9Nz09nSSZn5/fdt9unze/+c1Jkpe+9KVJlucpuuCCC5Ik\nn/zkJ5MMtrOmG9cznvGMJMmHP/zhY7af7HNnd2ap+x0e//jHJ0k+8YlPHLN9HHRjtaT9yLBaGRNP\nrQgcz6R3Do3C+/WtmHNoPFitDAAAAIAt6RwC+mbv3r1J1uammZ6e3vbsQvf9Xbt2rc7v88pXvjJJ\n8lu/9Vv9Guqq7jmxW4mrm3OoW72sV+6+++4kyVlnnZVkPDqHumMyMzOTZPTPZDVE5xATT60IbGdS\nO4hGvd7SOTQeTqRzSDgE9Nxmy7Rvp7tc63d/93eTJL/927+dI0eOHLPPPffckyR5yEMekmQwgUr3\nu/Rq0sMuWHnjG9+YJHnOc56TJJmdnT2l2x0kRcDIEQ4x8dSKwIkaxvvbftVGo/Be/USpD0eby8oA\nAAAA2JLOIaDvHv7whydJDh48eNx9Ni5lf/bZZx/3bMmnPvWpJMm3fdu3rV661i/OBK357Gc/myR5\n3OMelyQ5evToMIfDGp1DTDy1InAyBl1n9bpeHMc6UefQaNM5BAAAAMCWRn8GVGBsdWcQ/uM//iNJ\n8rKXvSy/8zu/kyQ57bTTjtl3167lrPrMM89MsvUZkwsvvDDJ8vxEv/qrv3rM/qd61qJbnv01r3lN\nkmTPnj1Jdr6EfTcvUjeZ87idCVpcXMzhw4eTJN/5nd855NEAAGyvV3NFQkt0DgEAAAA0zJxDwEB9\n7nOfS5Ls378/yVqnztTUVJKT6/yZmZnJ4x//+CTJJz/5ySRrHUg79ba3vS1J8tKXvjRJVrtmTtUw\nVlrrlZ/4iZ9Iknz4wx9OkgetIsfQmXOIiadWBE5Fv9/z9mq+nVF4b75T5hwabeYcAgAAAGBL43Pq\nGhh7U1NTq/PWdKuTPf3pT0+SXH/99UkePEfPVo4ePZrbb7999baT5Ktf/WqS5GEPe1iStS6X2dnZ\n1c+7szKzs7NJ1s50XHTRRbntttuO2edUTE9P5+abb06SPPShDz3mvkZd9/sfPXo0T3nKU5KsdQ4B\nAIyTjfVXrzp0dAwxSXQOAQAAADTMnEPAUE1PTydZ7lDZiY2rUXRzDnWdSeecc06S5N57782v/Mqv\nJEk+9alPJUluvPHGJDmmo6ibA6lXRuE5difWr/42Lt1ODTPnEBNPrQj0w6nWaTqH1qgXR9uJzDkk\nHAKasGvXrtXAqN+6wOsxj3lM7rjjjiRrl72Nm6WlpVxwwQVJks9//vNJdh7k0TfCISaeWhHol528\nH+51EDIK78l3Sig0HkxIDQAAAMCWTEgNNGFQXUPJWmfNPffc86DL3kbp7MrS0tLqZXid+fn5JGvj\nPXDgQD7zmc8MfGwAAIOwsVbbap/WOQ6TTecQAAAAQMN0DgH02OzsbJLk6quvXu0impmZGeaQNvWi\nF70ob33rW5Mkr3nNa5IkH/vYx5IkV155ZZLkWc961nAGBwAwQLpiHswxaYvOIQAAAICGWa0MoEe6\nsyt79uxJkrz2ta/Ni1/84mEOaUvrzwbt3r3cSNrNQdTN0bSwsDD4gXGyrFbGxFMrApNsFN6Tb0bn\n0OSwWhkAAAAAW9I5BNAntdYsLi4mSaampoY8mgfb7GzQiazYwcjROcTEUysCk2zU6y4dRONP5xDA\nEOzZsyd79uzJO9/5zmEPZVO11tRa89SnPjW7du06Zjn77nsAAEA7hEMAAAAADRMOAfTJH/zBH2Rq\namrkLikrpaSUkv3792d2djazs7PDHhIAADBEwiEAAACAhgmHAHpsbm4uc3Nzufnmm1fn8BnFuXwu\nu+yykRwXAAAwWMIhAAAAgIZZyh6gT6anpzM/Pz/sYTzI0tJSkmTXrl2WJp0MlrJn4qkVgUk2Cu/J\nt6JeHH+WsgcAAABgS7uHPQCASbVr166cf/75SZIvfOELSUbjzMuuXcvnBQ4fPpzp6ekkycLCQpLR\nP3MFAAD0ns4hAAAAgIbpHALok/n5+Xzxi19MstYx1HXmjEIH0fz8/GoXkY4hAABol3AIoE9KKXnX\nu96VJHnggQeSJLOzs8McUpJkcXExyXIgNDc3N+TRAAAAw+ayMgAAAICGbRsOlVLeXkq5u5Ry+7pt\nZ5dS/rqU8q8rH89a2V5KKa8rpdxZSrmtlPJ9/Rw8wCjbvXt3rrnmmlxzzTXZvXt3du/enVLK0C8p\nq7Wm1ppLLrkk09PTq5NSA+yEWhHg1IxCfQgn0jl0bZLLNmy7OslHaq37k3xk5esk+bEk+1f+XZXk\njb0ZJgAAI+raqBUBYKxtGw7VWv8uydc2bL4iyTtWPn9Hkqev2/7OuuwTSc4spZzXq8ECjJOFhYWc\nffbZOfvsszM1NZWpqalhDynJ8pxDi4uLecUrXpGlpaUsLS0Ne0jAGFMrAsD42+mcQ+fWWg8mycrH\nc1a270vy5XX7HVjZ9iCllKtKKTeXUm7e4RgAABhNakUAGCO9npB6swslN10fudb6llrrxbXWi3s8\nBoCRsLS0lLm5uczNzWV+fj7z8/Or8/0MU9fF9PznP3+1iwhgQNSKADCCdhoOHepagFc+3r2y/UCS\nR67b7xFJ7tr58AAAGENqRQAYIzsNh96f5Hkrnz8vyV+u2/7clZUoLk3yja6lGKBFhw4dyqFDh1Y7\niEZhNYpuDI973OOsVgb0i1oRYMyNQt3K4JTtLm8opbwnyZOSPCzJoSSvSnJ9kuuSPCrJl5L8VK31\na2X5kfP6LK9YcTjJC2qt214nXkoZ7jUWAH0yMzOTJLnnnnuSJKeddtowh3MML/YT4xaX3TBMakWA\n3hj21AMbqRUnR6112z/mtuHQIHjBByaVcIgBEA4x8dSKQAtG4b35emrFyXEi4dDuQQwEoFXz8/NJ\nhhsKdYXG0aNHkyQf//jHkyTT09Or2wAAgHb1erUyAAAAAMaIziGAPpqdnU2SfOpTn0qSXHjhhQMf\nQ9cS3E08/a53vStJsrS0NPCxAACwua5mG7XLy2iDziEAAACAhukcAuijubm5JMlFF12UZLhngrqz\nUfv27Uuy3NV0//33D208AACMHhNRt0nnEAAAAEDDdA4B9NHxOoW67YM4M7NxtbLHPe5xSZKFhYW+\n3zcAAONlkHUqo0PnEAAAAEDDyijMhF5KGf4gAAage84d5hmZqamp1c+tWDYRbqm1XjzsQUA/qRWB\nlgz7PbqOoclTa932j+qyMoAB6F5kP/ShDyVJfvRHfzTJ2vLyg9BdVvbkJz85SfL3f//3qxNmAwAA\n7XJZGQAAAEDDXFYGMASDfO7deAmbVuGJ47IyJp5aEWjRsN6rqxUnz4lcVqZzCAAAAKBhwiGACVdK\n2fQMkLNCAABAIhwCAAAAaJrVygAGaNeu5Uz+Ax/4QJLk8ssvT3Ls8vL9Mj8/nyQ599xzkySHDh3q\n+30CAACjT+cQAAAAQMN0DgEM0NLSUpLk4x//eJLkiU98YpLkm77pm/p+3zMzM0l0DAEAjINSytBW\nLKM9OocAAAAAGlZGIYkspQx/EABDMIjn4O4+brrppiRr3UrdHESMvVtqrRcPexDQT2pFoFXDeL9u\nRdvJU2vd9o8qHAIYgtnZ2STJjTfemCS59NJL+3Zf3fN890LvBX/iCIeYeGpFoFXCIXrhRMIhl5UB\nAAAANMyE1ABD0F3Sde211yZJLrnkktVl7nutmwT7iiuuSJLs2bMnSTI3N9eX+wMAoDe6Lp5RuOKH\nyaZzCAAAAKBh5hwCGKKzzjorSfK1r32t57fdPb8vLCwkSW677bYkyROe8IQkydGjR3t+nwyFOYeY\neGpFoHWDfN9uzqHJY84hAAAAALakcwhgBAziufghD3lIkuTIkSNJ1uYiYuzpHGLiqRWB1ukc4lTo\nHAIAAABgS1YrAxiCQa480a1K1q1Sdvjw4b7fJwAA40fXULuEQwBDsFko1G3r9YtyFwp9/etf7+nt\nAgAwGJa0p99cVgYAAADQMJ1DAEO0a9dyRn/77bfn27/925MkMzMzPbntbqn6u+66K4kzTgAAwOZ0\nDgEAAAA0TOcQwBB1y8l///d/f/7rv/4rSe86h6anp5Mk9913X5JkamoqSbK4uJhEBxEAALBM5xAA\nAABAw3QOAYyA+fn51fmHeqVbwv4d73hHkgd3DgEAMF7MIUm/6BwCAAAAaFgZhcSxlDL8QQAM0fT0\ndO68884kyaMe9aie3nZ3homJdUut9eJhDwL6Sa0IcKxev49XL062Wuu2f2CdQwAAAAANM+cQwAg4\nevRozj///CTJN77xjSTJ6aef3pPbPvfcc5MkX/3qV5OsrZAGAACQCIcARsbu3ctPyb0KhTqHDh3q\n6e0BADBcJqam11xWBgAAANAwnUMAI6JbYv7aa69Nkjz72c9OkuzZs2dHt/O2t70tSTI7O5skOXLk\nSC+GCQAATBidQwAAAAANs5Q9wIja6fNz1zk0NTWVxNKkDbCUPRNPrQhwfL14T69enGyWsgcAAABg\nS+YcAhhR3/Ed35EkueOOO5IsdwKdyFmdrmPogx/8YJK1OYvm5+eTWNUCAAA4ls4hAAAAgIbpHAIY\nMV130Oc+97kkye7dO3uqPvvss4/5+bm5uR6MDgAAmDTCIYAR0132tWvXcnPnj/zIjyRJPvrRj57Q\nZWXdhNT79u1Lktx///39GCYAADAhXFYGAAAA0DBL2QOMqK5LqHue3unzdXc7G2+PiWEpeyaeWhFg\ne6dS41nKfrJZyh4AAACALZlzCGBEdWd/ZmdnkyQvfvGL84Y3vOGEf/73fu/3kiR79+5Nkhw+fLjH\nIwQAACaBziEAAACAhplzCGCMfOlLX0qythJZt6LZegsLC0mSAwcOJEke+9jHJkmWlpYGMUQGz5xD\nTDy1IsCJ28l7fHMOTTZzDgEAAACwJXMOAYyRG264IUnynOc8J0ly2mmnPWif3buXn9rPPPPMY7Zb\nrQwAANiMziEAAACAhukcAhjKrT3aAAAQcUlEQVQTpZT80R/9UZLkZ37mZ46735EjR5Ikr371q5Mk\n09PTSZL5+fk+jxAAgGE7mW5xcw3RMSE1wBjyYs86JqRm4qkVAXZuq7pRvdgGE1IDAAAAsCWXlQGM\nkb179yZJ3vzmNydJXvjCFyZZu2RsenraGSAAALakXmQjnUMAAAAADTPnEMAE+OM//uMkyfOf//zV\nM0HdkvaLi4tJLGE/wcw5xMRTKwLAzplzCAAAAIAt6RwCGGNdl9DMzEySZG5ubpjDYTh0DjHx1IoA\nsHM6hwAAAADYktXKAMZY1/2pYwgAANgpnUMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAA\nAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMA\nAAAADds2HCqlvL2Ucncp5fZ12369lPKVUsqtK/8uX/e9Xyul3FlK+Wwp5Wn9GjgAAMOnVgSA8Xci\nnUPXJrlsk+3X1FovWvn3oSQppXx3kmcluWDlZ95QSpnq1WABABg510atCABjbdtwqNb6d0m+doK3\nd0WSP6u1ztVa/y3JnUkuOYXxAQAwwtSKADD+TmXOoV8opdy20kp81sq2fUm+vG6fAyvbHqSUclUp\n5eZSys2nMAYAAEaTWhEAxsROw6E3JnlskouSHEzy2pXtZZN962Y3UGt9S6314lrrxTscAwAAo0mt\nCABjZEfhUK31UK11sda6lOStWWsHPpDkket2fUSSu05tiAAAjBO1IgCMlx2FQ6WU89Z9+ZNJutUp\n3p/kWaWUPaWU85PsT3LTqQ0RAIBxolYEgPGye7sdSinvSfKkJA8rpRxI8qokTyqlXJTlNuAvJnlh\nktRa7yilXJfkX5IsJHlJrXWxP0MHAGDY1IoAMP5KrZte5j3YQZQy/EEAwHi6xZwsTDq1IgDsXK11\nszn/jnEqq5UBAAAAMOaEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAAN\nEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADds2HCqlPLKUcmMp5dOllDtKKb+0sv3sUspf\nl1L+deXjWSvbSynldaWUO0spt5VSvq/fvwQAAMOhVgSA8XcinUMLSf5XrfW7klya5CWllO9OcnWS\nj9Ra9yf5yMrXSfJjSfav/LsqyRt7PmoAAEaFWhEAxty24VCt9WCt9Z9WPr8vyaeT7EtyRZJ3rOz2\njiRPX/n8iiTvrMs+keTMUsp5PR85AABDp1YEgPF3UnMOlVIeneR7k3wyybm11oPJclGQ5JyV3fYl\n+fK6Hzuwsm3jbV1VSrm5lHLzyQ8bAIBRo1YEgPG0+0R3LKWcnuTPk7ys1npvKeW4u26yrT5oQ61v\nSfKWldt+0PcBABgfakUAGF8n1DlUSpnO8ov9u2utf7Gy+VDXArzy8e6V7QeSPHLdjz8iyV29GS4A\nAKNGrQgA4+1EVisrSd6W5NO11t9f9633J3neyufPS/KX67Y/d2UlikuTfKNrKQYAYLKoFQFg/JVa\nt+7SLaX8cJK/T/LPSZZWNr8iy9eSX5fkUUm+lOSnaq1fWykQXp/ksiSHk7yg1rrlteJahQFgx26p\ntV487EHQLrUiAIy2Wutxr/XubBsODYIXfADYMeEQE0+tCAA7dyLh0EmtVgYAAADAZBEOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAAN\nEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0bNtwqJTyyFLKjaWUT5dS7iil/NLK9l8vpXyllHLryr/L1/3Mr5VS7iylfLaU8rR+\n/gIAAAyPWhEAxl+ptW69QynnJTmv1vpPpZQzktyS5OlJ/meS/661/t6G/b87yXuSXJLkW5N8OMm3\n11oXt7iPrQcBABzPLbXWi4c9CNqlVgSA0VZrLdvts23nUK31YK31n1Y+vy/Jp5Ps2+JHrkjyZ7XW\nuVrrvyW5M8sv/gAATBi1IgCMv5Oac6iU8ugk35vkkyubfqGUclsp5e2llLNWtu1L8uV1P3YgmxQI\npZSrSik3l1JuPulRAwAwctSKADCeTjgcKqWcnuTPk7ys1npvkjcmeWySi5IcTPLabtdNfvxBrcC1\n1rfUWi/WCg8AMP7UigAwvk4oHCqlTGf5xf7dtda/SJJa66Fa62KtdSnJW7PWDnwgySPX/fgjktzV\nuyEDADBK1IoAMN5OZLWykuRtST5da/39ddvPW7fbTya5feXz9yd5VillTynl/CT7k9zUuyEDADAq\n1IoAMP52n8A+P5TkyiT/XEq5dWXbK5I8u5RyUZbbgL+Y5IVJUmu9o5RyXZJ/SbKQ5CVbrT4BAMBY\nUysCwJjbdin7gQzC8qQAsFOWsmfiqRUBYOd6spQ9AAAAAJNLOAQAAADQMOEQAAAAQMOEQwAAAAAN\nO5HVygbhP5Pcv/KR/ntYHOtBcawHx7EeDMd5cE70WP9//R4IjAC14mB5rh8cx3pwHOvBcJwHp6e1\n4kisVpYkpZSbrbYyGI714DjWg+NYD4bjPDiONRzL/4nBcawHx7EeHMd6MBznwen1sXZZGQAAAEDD\nhEMAAAAADRulcOgtwx5AQxzrwXGsB8exHgzHeXAcaziW/xOD41gPjmM9OI71YDjOg9PTYz0ycw4B\nAAAAMHij1DkEAAAAwIAJhwAAAAAaNhLhUCnlslLKZ0spd5ZSrh72eCZJKeWLpZR/LqXcWkq5eWXb\n2aWUvy6l/OvKx7OGPc5xVEp5eynl7lLK7eu2bXpsy7LXrTzGbyulfN/wRj5+jnOsf72U8pWVx/at\npZTL133v11aO9WdLKU8bzqjHUynlkaWUG0spny6l3FFK+aWV7R7bPbTFcfa4hk2oFftHrdg/asXB\nUSsOjlpxMIZRKw49HCqlTCX5wyQ/luS7kzy7lPLdwx3VxPmRWutFtdaLV76+OslHaq37k3xk5WtO\n3rVJLtuw7XjH9seS7F/5d1WSNw5ojJPi2jz4WCfJNSuP7YtqrR9KkpXnj2cluWDlZ96w8jzDiVlI\n8r9qrd+V5NIkL1k5ph7bvXW845x4XMMx1IoDoVbsj2ujVhyUa6NWHBS14mAMvFYcejiU5JIkd9Za\nv1BrnU/yZ0muGPKYJt0VSd6x8vk7kjx9iGMZW7XWv0vytQ2bj3dsr0jyzrrsE0nOLKWcN5iRjr/j\nHOvjuSLJn9Va52qt/5bkziw/z3ACaq0Ha63/tPL5fUk+nWRfPLZ7aovjfDwe17RMrTh4asUeUCsO\njlpxcNSKgzGMWnEUwqF9Sb687usD2fqX5uTUJDeUUm4ppVy1su3cWuvBZPlBl+ScoY1u8hzv2Hqc\n98cvrLSnvn1dy7tj3SOllEcn+d4kn4zHdt9sOM6JxzVs5PHfX2rFwfJ6OlheU/tIrTgYg6oVRyEc\nKptsqwMfxeT6oVrr92W5ne8lpZQnDntAjfI47703JnlskouSHEzy2pXtjnUPlFJOT/LnSV5Wa713\nq1032eZ4n6BNjrPHNTyYx39/qRVHg8d573lN7SO14mAMslYchXDoQJJHrvv6EUnuGtJYJk6t9a6V\nj3cneV+WW8sOda18Kx/vHt4IJ87xjq3HeY/VWg/VWhdrrUtJ3pq1tknH+hSVUqaz/CL07lrrX6xs\n9tjusc2Os8c1bMrjv4/UigPn9XRAvKb2j1pxMAZdK45COPSPSfaXUs4vpcxkeRKl9w95TBOhlPKQ\nUsoZ3edJnprk9iwf3+et7Pa8JH85nBFOpOMd2/cnee7KbP2XJvlG13bJzmy4Vvkns/zYTpaP9bNK\nKXtKKednefK7mwY9vnFVSilJ3pbk07XW31/3LY/tHjrecfa4hk2pFftErTgUXk8HxGtqf6gVB2MY\nteLuUxvyqau1LpRSfiHJ/00yleTttdY7hjysSXFukvctP66yO8mf1lr/qpTyj0muK6X8/0m+lOSn\nhjjGsVVKeU+SJyV5WCnlQJJXJfk/2fzYfijJ5VmeGOxwkhcMfMBj7DjH+kmllIuy3C75xSQvTJJa\n6x2llOuS/EuWZ/l/Sa11cRjjHlM/lOTKJP9cSrl1Zdsr4rHda8c7zs/2uIZjqRX7Sq3YR2rFwVEr\nDpRacTAGXiuWWl3uBwAAANCqUbisDAAAAIAhEQ4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0LD/B45PNdw/h9CoAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e3014158240>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuQZWV9N/rv0z09MwwQuUxEAuQl\nhaBBUyGBQDTRFyWeKJbBJJJEKhEvEU2M0RBNkFgVPZhLqVErF/RAVCQoiiQc8QTfvB7NyxsvEQfE\neAUp9egIAl5AcJie6enn/NG9unt6pi8z03vvtff6fKqmunv1vvxm7dV7/9Zv/Z7nKbXWAAAAANBN\nY4MOAAAAAIDBURwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAO61lx\nqJTy1FLKbaWUO0opF/XqeQAAGD5yRQBoj1JrXfsHLWU8ye1JnpJka5JPJ3l2rfWLa/5kAAAMFbki\nALTLuh497ulJ7qi1fjVJSinvTXJOkr1+4JdS1r5CBQDd8J1a648OOgjYR3JFAOiTWmtZ6Ta9GlZ2\nTJJvLvh56+y2OaWUC0opW0opW3oUAwB0wf836ABgP8gVAaBFetU5tLeq1G5XfGqtlyW5LHE1CACg\nY+SKANAiveoc2prkuAU/H5vkzh49FwAAw0WuCAAt0qvi0KeTnFhK+YlSyvokv5Xk+h49FwAAw0Wu\nCAAt0pNhZbXWqVLKHyT5tyTjSd5Ra/1CL54LAIDhIlcEgHbpyVL2+xyEceQAsL9urrWeNuggoJfk\nigCw/wa5WhkAAAAAQ0BxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAA\nOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcA\nAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDD\nFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAA\nAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxx\nCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAA\nOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDDFIcA\nAAAAOkxxCAAAAKDDFIcAAAAAOkxxCAAAAKDD1g06AOiiUsoe22qt+/04i+9bSpnbttRtAAAYDr3K\n4/aWkwLdpHMIAAAAoMN0DsECq+2yWbduXdatm/nz2blzZ5Jkenp6t/tu2rQpu3bt2u13zW0PPvjg\nJMmDDz64Yky/8iu/kiS5/vrr57b99m//dpLka1/7WpLk4x//eJJkbGym3nvIIYfMPXbz3I0f+ZEf\nSZJs27YtU1NTKz4/AABrp03d3HuLRTcRdJPiECyw1If1ySefnCT5zne+kyS56qqrctVVVyVJ3vWu\ndyVJvvzlLydJTjjhhCTJxMTEXPGlud8jHvGI3R5369atSZJjjz12btuOHTuSJOvXr0+Sucd46KGH\ncuihh+52/+Z327dvTzJTFFqt17/+9Xn1q1+dZD4JaJ4bAIDdtamo00uLpyYAusGwMgAAAIAOK22o\ngJdSBh8EI21sbGyuE6fpsmmceuqpSZKXv/zlOfvss5MkRxxxxLKPNzU1NXc1pfnaDOlqm6Wu/uza\ntSvj4+NJks997nNJkmc/+9lJkttvvz3JzJC0Zmgc0Fo311pPG3QQ0EtyRfqlDedGbaWTCIZXrXXF\nP+B2ns0CAAAA0Bc6hxgJzZWMxZNEN0444YS8733vSzLfKdRobjsxMdHrMIfO7//+7+eyyy5LMj8H\n0kMPPTTIkIA96Rxi5MkVORBtON8ZdbqKoN10DgEAAACwLJ1DDJ2mO2hiYmKPLpZXvOIVSZKLL744\nSXL44YcnmZlnqJkTqOkQcoVj39xwww1Jkqc//elJkg0bNiSZX+GsDe8l0FE6hxh5ckX2hZykHeTa\n0B46hwAAAABYls4hWmliYmLuqs/U1NRuv7vooouSJH/1V381t63pXmm6itq6ctgoaeZqOumkk5Ik\nd91119zKZotfM6CndA4x8uSKrKQN5zTsnQ4iGLzVdA6t60cgsFApZe4DvBmaNDk5udttjjnmmPzj\nP/5jkuSss87a7XfNUvQLl2JvJkumd5rXrPmAb4bnfe1rX5u7zTnnnJMkuf7665Ms/foCAKyGos/w\nW5xDAu2kvQIAAACgwwwrY6A+9alPJUlOP/30JPNDlaanp+e6ThhezRWiZrif4WbQE4aVMfLkit3S\nhvMTekcHEfSfCakBAAAAWJY5h+ibF7zgBUmSF77whTnjjDOSzM9F01whauaxYbgtXt6+eb1vuumm\ngcUEALSTTqFuMQcRtJPOIQAAAIAOM+cQPdd0i5x22syUGLVWS8131M/93M9ly5YtSTK30tz09HQS\nVw3hAJhziJEnVxwtPvNZTBcR9JY5hwAAAABYls4h9ktT3V94/Jx00klJkksvvTRJctZZZyWZn1fI\n6mNMT0/PdY01x9DejiVgn+gcYuTJFYefz3n2hU4iWFs6hwAAAABYltXKWJXF3R2Lr/5cf/31ecYz\nnpEk2blz526/0zFEY2xsLNu3b08yfwydcsopSZLPfvazSebnItq1a9cAIgQA1pKOIfbH4uNGJxH0\nnmFlLGlhQWhxceiDH/xgkuSJT3xikmTjxo1Zv379AKJk2Ky0fOkjHvGIJMkDDzwwVyBqhiYCe2VY\nGSNPrjg82nBuwWhTKIJ9Z1gZAAAAAMs6oGFlpZSvJ3kgya4kU7XW00opRyR5X5Ljk3w9yW/UWr9/\nYGEyCAuv/DTf33XXXUmSI488MkkyMTHR/8AYaktd7WmWtP/2t789t+2WW25Jkpx22kxTxOKrkevW\nrcvU1FQvwgRgDcgVu0XXEP2w1HGmowgOzFp0Dj2p1nrKgpb2i5J8pNZ6YpKPzP4MAEA3yRUBoOUO\naM6h2atBp9Vav7Ng221Jzqy13lVKOTrJ/6q1PmqFx3GZoUXWrZtpKGs6Mr7yla/kx3/8x5PMd3ds\n3LhxMMHRSffdd1+SzM1rtWnTpiSuEMEscw7RWnLFbtAxRNvIEWF3/ZhzqCb5n6WUm0spF8xuO6rW\netdsAHclefgBPgcAAMNJrggAQ+BAl7L/hVrrnaWUhyf5cCnly6u942yCcMGKN6RvmiXnm5WhmqtA\nk5OTViJjoA477LAk88dk09VWa83VV1+dJDnvvPOSJOPj40kyt9IZAAMlVxxhOoZoq8XHpk4iWNkB\ndQ7VWu+c/XpPkuuSnJ7k7tkW4cx+vWeJ+15Waz1NKzwAwGiSKwLAcNjvOYdKKQcnGau1PjD7/YeT\n/J9Jzkry3VrrX5dSLkpyRK31T1Z4LJcdBqjpGGps3749SbJjx44k0TXEULj//vuTzHcZQYeYc4hW\nkiuOLh1DDDudRHTNauYcOpBhZUcluW72D2tdkvfUWv9HKeXTSa4ppbwgyTeSnHsAz0EfPP7xj0+S\nfPSjH00yP+m0ohDDpJmkuklYr7rqqiTJ7/zO7ySZmUS9KXwC0BdyxRGhGMSoaY5pRSKYt9/FoVrr\nV5P89F62fzczV4QAAOgouSIADI8DWsp+zYLQKtxzTVV84ev9+te/Pknyyle+crfbqqQzikopmZiY\nSJLs3LlzwNHAmjKsjJEnVxycNpwrQC8556EL+rGUPQAAAABD7ECXsmdIjI3N1AGb5b1vvfXWPPax\nj93rbVXPGSVNl1CtNRdeeGGS5M1vfvMgQwKA1tMxRFdY9h5m6BwCAAAA6DBzDo24Zpn6ycnJJPOV\n8cnJyT2WsIeuOOOMM5IkN910U5Jk3bqZJsqpqamBxQQHwJxDjDy5Yv+04dwA2kQnEaPAnEMAAAAA\nLEvnUEcs7BhKomuITlv8d/Cc5zwnSfJP//RPA4sJDoDOIUaeXLH32nBOAG2le4hhp3MIAAAAgGVZ\nrWyENBXthVd+Lrnkkt1uo2MI9vw7uPLKK5Mk3/72t3PjjTcmSXbs2NH3uACg33QMwcqavxMdRIwy\nw8pG1C233JIk+emf/ukk80vZA8vbtGlTkmR6ejrJ/BA0aDHDyhh5csXeaMN5AAwjRSKGjWFlAAAA\nACzLsLIR0gyVufDCC3PyyScn0TEEq9FcOa21Ztu2bUnmrwhZ5h6AUaNjCA6MYWaMIpUDAAAAgA4z\n59AIaCrWZ5xxRpLkk5/85CDDgaHWTES9fv36JK4IMRTMOcTIkyuujTbk/TCK5Iu0nTmHAAAAAFiW\nOYdGwF/+5V8mSS666KK5bcbBwv5pOoaaVcq+/vWvJ0mOP/74AUUEAAdGxxD0lnMvRoHOIQAAAIAO\nM+fQEGpWJWs6G9rwGsKoalYpu/LKK5MkL3jBCwYZDuyNOYcYeXLF/SNHhP7TPUQbrWbOIcWhIbJx\n48Ykyfbt25PMf+A3RaKmaAT0zrOe9awkyQc/+MG5yathwBSHGHlyxf3ThjwfukqRiDYxITUAAAAA\ny9I51HJNxbnWmoMPPjhJ8uCDDyZJdu3alSQZHx8fTHDQYT/6oz+aBx54IMl89x4MiM4hRp5ccd+0\nIb8HZuggog10DgEAAACwLEvZt9zCKz8f+9jHdvudjiHon8VXYe+99965K0ETExNJkp07d/Y9LgBY\nSNcQAPtD5xAAAABAh+kcarn169cnSZ74xCfmUY961ICjge5aPF58586dc1dnjSUHAGBv5IsMC51D\nAAAAAB2mc6jlDjnkkCTJhz/8YWPIoUUmJiaybdu2PbYl5h4CoP/kidBuOohoO51DAAAAAB2mc6jl\nPvKRj8x9r8oM7dJ0Ci2+EjQ2Nja33ZVcAHrJ5wwAa6G04QOllDL4IFpqcnIyyfzE1ED7NH+nzXCy\nQw89dJDh0D0311pPG3QQ0EtyxaW1IZcH9o2L/vRbrXXFg86wMgAAAIAOM6yspd7+9rcnSdat8xJB\n223YsCHJ/FWgD33oQ0mSpz3taQOLCYDRpmMIhpfJqWkjnUMAAAAAHWbOoZaamppKkoyPjw84EmB/\nvexlL8ull16aZP5vGnrAnEOMPLnintqQwwNrQwcRvWbOIQAAAACWpXOoJZqlr88555wkyZVXXpkk\nOeSQQwYWE3DgXAmiD3QOMfLkintqQw4PrA35Ir2mcwgAAACAZekcaoFSytyqZA8++GCSZP369YMM\nCTgAC99XX/va1yZJLrnkkiTJ9PT0QGJipOkcYuR1PVdcqA25O9AbOojoFZ1DAAAAACxL51DLtOH1\nANbeaafNNHZ8/vOfT5JMTk4OMhxGi84hRp5ccZ5cEUafDiLW2mo6h9b1IxBWdv755w86BKCHtmzZ\nkmT+w74ZOrpjx46BxQQAQPs0RWBFIvrJsDIAAACADtM51BJHHHFEkvnJapul7YHh1lz5af62XQkC\nAADaRgUCAAAAoMN0DrXAhg0bcu655ybRMQSjpukQGh8fT5Ls2rVrt99v2rQpSbJt27b+BgYAQKvV\nWnWb0zcqEQAAAAAdpnOoBaampvLIRz5y0GEAfdBc/WnmHvr2t7+dJDn66KMHFhMAAO1kvkr6RecQ\nAAAAQIcpDrXArl27cvHFF+fiiy9OrXWuOgyMnrGxsd3mFnv4wx+ehz/84Xn9618/wKgAAGgz54n0\nmmFlLXHwwQcnmRliliQTExODDAfok6ZQ9MpXvjI33HBDkuTjH/94kmTnzp0DiwsAgPYxzIxe0TkE\nAAAA0GGlDa1ppZTBBzFAGzduzI033pgkOf300wccDTAoW7duTZIcd9xxA46EIXNzrfW0QQcBvdT1\nXHGhNuTuwODpHGJf1FpXPGB0DgEAAAB0mDmHWmD79u257bbbkugcgi479thjkyRPf/rTkyQf/vCH\nkyQ7duwYWEwAALSPuYdYazqHAAAAADrMnEMtccYZZyRJPvaxjyVJ1q3T1AVdd9hhhyWZ6S5MksnJ\nyUGGQ3uZc4iRJ1ec14bcHWgX3UOsxJxDAAAAACxLe0oLlFLy3//7f5/7HuimxVeD77vvviTz7wvr\n1q3L1NRU3+MCAABGm84hAAAAgA7TOdQCY2NjOfvss5Mk4+PjA44GGJTFnYM7d+5MsvtqFM1tzDkB\nAEBi5TLWhuJQC5RScswxxww6DKBlJiYmksxPRH3XXXfl6KOPHmRIAAC0lCIRB8KwMgAAAIAOs5R9\nCxx66KH5wQ9+MOgwgJabmprKe97zniTJ8573vCTJ9PT0IEOiHSxlz8jreq64UBtyd6DddA6xmKXs\nAQAAAFiWzqGWaMPrALTf9773vSTJkUceOeBIaBGdQ4w8ueI8OSOwWjqIaOgcAgAAAGBZVisboKaS\nu7Cia4Z5YDmHHHJIkuQDH/hAkuScc84ZZDgAALSUc0v2hc4hAAAAgA4z51ALlFKsOATslxe/+MVJ\nkre//e1JZlY0o3PMOcTI63quuFAbcndgOOkg6q7VzDmkONQCmzZtyg9/+MNBhwEMsUc+8pFJkq1b\nt2ZycnLA0dBnikOMvK7nigu1IXcHhpPiUHeZkBoAAACAZekcaok2vA7A8CulZGJiIkmyc+fOAUdD\nn+gcYuTJFefJGYEDoXuom3QOAQAAALAsxaEWGB8fz1ve8pa85S1vSa3VFSFg1Zr3jKmpqUxNTeXj\nH/94JiYm5rqHAACg4XyTpSgOAQAAAHSYOYdaYGxsLAcddFCS5Pvf/36SuOoP7LdmLPn69euTJDt2\n7BhkOPSeOYcYeV3PFRdqQ+4OjA5zEHWDOYcAAAAAWNa6QQdAMj09nR/+8IdJdAwB+6e5kjw9PT33\nfXMlaHx8fO53C28LAEC3Lc4b6S6dQwAAAAAdpnMIYAQs7BKanJxM4koQAACwOopDLVBKmTuJu//+\n+5MkGzZsSJJs3LhxYHEBw6l5/2iKRDfddFOS5PTTTx9YTAAAtJeLihhWBgAAANBhKxaHSinvKKXc\nU0r5/IJtR5RSPlxK+crs18Nnt5dSyt+WUu4opfxXKeVnexn8qFg4Oexhhx2Www47LBMTE5mYmEit\n1eSxwH7ZsGFDNmzYkFNPPTWnnnpqLrnkklxyySUppbgqBKwZuSLA6HDu2V2r6Ry6IslTF227KMlH\naq0nJvnI7M9J8rQkJ87+uyDJW9cmTAAAWuqKyBUBYKiV1VQGSynHJ/l/aq2Pnf35tiRn1lrvKqUc\nneR/1VofVUr5v2a/v3rx7VZ4fOXJWSeddFKS5LbbbhtwJMCo+sVf/MUkyZYtW+bmJWKo3VxrPW3Q\nQdBtcsX+c3Uf6DWd5qOj1rrii7m/cw4d1XyIz359+Oz2Y5J8c8Htts5u20Mp5YJSypZSypb9jAEA\ngHaSKwLAEFnr1cr2Vo3a62WNWutlSS5LXA1a6Pbbb0+SfPGLX0ySnHzyyYMMBxhBH/vYx5Ik69at\n22NlM4AekysCDAkrmHXL/nYO3T3bIpzZr/fMbt+a5LgFtzs2yZ37Hx4AAENIrggAQ2R/i0PXJzl/\n9vvzk3xgwfbnzK5E8fNJ7l9pDDm7a1Ype9GLXpQXvehF2blzZ3bu3DnosIAR0Kx+OD09nenp6UxN\nTWVycjKTk5NZt25d1q1bZyUzYK3IFQFGhBW0u2HFCalLKVcnOTPJ5iR3J/nzJP93kmuS/HiSbyQ5\nt9b6vTJzRvH3mVmxYluS59VaVxwnrlV4aTt27EgyUzQCWEs7duzI+vXrk2gXHnImpGag5IqD5YQN\n6Dd54/BZzYTUq1qtrNd84C9NcQjoFcWhkaE4xMiTKy6tDbk80C3yxuGzmuLQWk9IzRpTFAJ6Zf36\n9XMTUX/5y19Okjz60Y8eZEgAAMAA7O+cQwAAAACMAMPKWqZp0Wtel+9+97tJkk2bNmXjxo0DiwsY\nbVNTU0mSt73tbUmSl770pYMMh31jWBkjT664tDbk8kA3GV42PFYzrEznEAAAAECH6RxqqcUdRNPT\n0yqzQN+ce+65SZJrr712wJGwCjqHGHlyxZW1IacHusc56nDQOQQAAADAshSHhsQdd9yR6enpTE9P\nDzoUoAPOOuusnHXWWYMOAwAA6APFIQAAAIAOUxxquVJKSil597vfnVqr8eRAX7z4xS/Oi1/84vzm\nb/7moEMBYBWanBGgn5yjjg7FoZZq/siaf6997Wtz++235/bbbx90aECHnH322YMOAQAA6DHFIQAA\nAIAOUxwaIjfeeGNuvPFGE1MDffOc5zwnZ555Zs4888xBhwLAKhhaBsD+UBwCAAAA6LDShsmjSimD\nD2KI3HrrrUmSRz/60UmSDRs2DDIcYITt2rUrH/rQh5Ikz3jGMwYcDUu4udZ62qCDgF6SK+6fNuT5\nQLfoXmynWuuKL4zOIQAAAIAO0zk0xJrXbseOHUmS9evXDzIcWmpycjLJfBV/fHw8STI1NZVdu3Yl\nSTZt2jSY4BgqmzdvTpJ897vfHXAkLKJziJEnVzwwbcj3gW7QOdROOocAAAAAWNa6QQfA6jVV2LGx\nsd1+bq4GNV0gY2NjKrYdNzk5OTcXVfN1b8fEIx/5yCTJLbfckiQ59NBDk+x+hdGxRNOd+MY3vjFJ\n8sIXvjDJ/HuOK9IAMNxWk+/5vGc1muPEOcTw0TkEAAAA0GHmHBpizRxDzVX9NryWDFYzv9D4+Hgm\nJiaSJBs3bkyy53Gy8HhpbvMjP/IjSZK77767PwEzFKanp5PMzFOVWCGxhcw5xMiTK64NuSKNA+3q\ncCyxEp1D7bKaOYcMKxtizcl+c6J22mkz5wZbtmwZWEz01+IP5k9/+tNJkic84Qlzww+3b9++4uM0\nt2mKAM9//vOTJJdffvncBNZ0V3MsLZ70vjk2muFlALTb4ikJ6B4n7PSL4WXDx7AyAAAAgA4zrGyE\nNFf3//RP/zR/8Rd/kUSldtQ1HRtNB8fC13strg5OTk7u0S1Cdy0emtgsbf/ggw8OLCaSGFZGB8gV\ne6MN5wH011qfGziGWInz0XawlD0AAAAAy9I5NKL+4z/+I0ly+umnJ5mfK8TYz9HUvJ5rNQdMc7zc\ne++9c5NUw2LNcbJz584BR9J5OocYeXLF3mnDuQC916vc3/HDSpx3toPOIQAAAACWZbWyEfWEJzwh\nSfKGN7whSfKKV7wiicrtMKu17vH6XXfddUnml6Jfzcpky2lWvvvkJz+ZJLqGWNamTZuSJPfff/+A\nIwEAltKL/F/HEKtl5Mrw0DkEAAAA0GHmHBpBpZS5Cm3TCfKTP/mTSZIbbrghSXLEEUfM/Y7hsLBz\n6E/+5E+SzHeGrZV162aaCc0hw94svvJz3nnnJUmuvvrqgcVEEnMO0QFyxf5pw7kBa6OXnRqOE/aV\nzqHBWs2cQ4aVjaCFb9aTk5NJkltvvTVJ8mM/9mN73IZ2War18jWveU3e/OY3J0m2bdu2Js81NjbT\nPDg9PZ1kfvhh83Pze0j2PCbPP//8JMl73/veJN5XAEZB817vPX349Ovk27EBo8mZHwAAAECHGVbW\nMc1S52NjY3nMYx6TZH5S4+OPPz7JfNdIc/VBC2DvLRwytrhr55xzzkmSXH/99Qf0HM2k1c2Qscc+\n9rF58pOfnCR505veNBdH4jVndZoOtoMPPnjAkXSeYWWMPLni4LThXIG963e+5ljgQDi/GCxL2QMA\nAACwLJ1DzE1M3UxG/OCDDyZJdu3alWS+24j++N73vpckOfLII5Mk69evT5JMTU3NdRWtxuI5A447\n7rgkyTe+8Y0l76NziP3heBk4nUOMPLliO7ThvKHr+vmZ6/VmLckXB0vnEAAAAADLsloZcyuaLZ5j\n6N57702SbN682epVB2iljpzHPe5x+cxnPpNkfh83HV3N67O/z9l44xvfuMf2xfGo6LMvmvmrAOiG\nxXmCzpLeG0Ru5nWFbnKmDwAAANBh5hxizuI5aiYmJpLMrHL1lre8JUny/Oc/P8nM/DfJ/DxFLG9x\n59B5552XJLn66quTzMwrtGPHjp4890EHHZRkfmWpYbJ9+/bdfm5WXKMdmveBZz3rWUmSD3zgA4MM\np8vMOcTIkysOhzacVwy7QXZxe/3oJSMUBsucQwAAAAAsS+cQq9J0ETVzjDzpSU9Kknz0ox9NMtPh\noatjT003ULPi2NFHH50k+e53v5ukv3O2tOFvfTWabpQXvvCFueKKK5LMx97sr+Z4ZLCaucjOOOOM\nJMmWLVsGGU6X6Rxi5MkVh8ew5Btt0LZOCq8dvdS2471rVtM5pDjEmlh4HC0eQtWV5dEX/z+vuuqq\n/NEf/VGS5Dvf+U6SA59ken80z9kM0Wp7gaUpDp1wwgn5xje+sdvv2vB+xbzmOG4Kw2NjY3MFI/pK\ncYiRJ1ccfj7DhycXHrbXykTpw2FYjv9RZVgZAAAAAMsymzD7pan8NhNSH3TQQTn22GOTzHeofPOb\n30wy36ny0EMPJUke9rCH9TXWXti1a9fcPmiG0nzwgx9Mkrzuda9LkoyPj+9xv352DDWaTpzFnVxt\nsbjjquk8abqtkvnOlGZ43t/93d8lmZkgvbl90yFF/1166aVJkpe85CUDjgSAtlqua6BtuUkv6JpY\ne0vt04Xbu3BsDYtaq7+DltM5BAAAANBh5hxizY2NzdQcF889snnz5iTJ+973vpx66qlJkkMPPTTJ\nfHdR0xky6Kpy83fRTCjd/Nx0sNx55515+ctfniR5//vfv9fHKKW06mpF0+XVvC6ve93r8qpXvSpJ\n7+chWrg/m46qJp6lrPYYaLpV/v7v/z7JfOeaCdL75/zzz0+SXHnllQOOpLPMOcTIkyt2V5tyqX0x\n6Fx2LbR13x/Ivm3r/6krRuHvYliZcwgAAACAZekcYqCOOuqoJMnhhx+eJPnjP/7jJMnv/u7vzs2V\ns7jDZLnVzxbfZ28dMbt27drta/M4C29z7733Jkle8IIXJJmfT6gxMTHR12Xoe2Hh/2Gp94Hp6em5\nTrCVbNu2be62TQfY4vveeOPWg5FKAAAXIElEQVSN+bVf+7UkyS/90i8lSa655pq9Pt66devmXs99\n0Yb3tK5o9vXjH//4JMmnP/3pub8r+krnECNPrshibfm870InxCD3da/2b1uOn67pwt9LW+kcAgAA\nAGBZOodorWZ1s8Vzxyw8Zpv5ZZpOof/8z/9MkvzhH/5hkuToo49Okpx33nlzq1k18+ycdNJJSZLn\nPve5SZILL7ww3/rWt5LMdxE1nS+L5x4aFc1+W9yhc8ghhyRJHve4x+WYY45Jkrzzne9MkmzdujVJ\n8oY3vCFJct111yWZWZ2uud8JJ5yQJPnsZz+72+MedNBBcyu2LZ6T6kA13UrNa9W8rk3c+9IFxeo0\nx833v//9JMmxxx47t//pK51DjDy5IosNIifT9TBvrff/IPftqOX3beZvaHBW0zmkOEQrjY+Pzw1P\n2bRpU5KZYUsL7cuEz+vXr19yCNVSE2gzY/H+aQpnTWGgDe8hyzn55JOTJF/4whfmtjX/l+b/ttxQ\nRZbW7Ld/+Id/SJK89KUvHWQ4XaY4xMiTKwK91vacdhTItQfHsDIAAAAAlrX8WtIwIAsntW2GlzWV\n5qaqv7fq/uLbNJYb6qJjaHmL98+wTcT9la98JcnuVyqWGrLIvmn2abOPAQCG1VJdLTqK1oauofbT\nOQQAAADQYTqHaL19qdar7LPYwk6n5orFkUcemWR+HqvPfOYzSZJTTjllbi6lZrJuVrZ44nEAgFGx\nsOPFuQajTOcQAAAAQIdZrQzonKXmpkqSSy65JEny6le/Osn8fFXr16/f7T7GTc+zLwbOamWMPLki\n0GZtOKduO/niYFmtDAAAAIBl6RwCWGBxV9GXv/zlJMmjHvWoJMn27duTzHQSjY11s77erGD313/9\n10mSP/uzPxtkOOgcogPkisCwa8N59yDpHBosnUMAAAAALMtyPAALNFd1mq6gRz/60Xu93b/927/l\nSU96UpJkYmJi1Y87zFdNmv/DD3/4wyTJ+9///kGGAwAwNFaTA3a9u4jBMqwMYI189atfTZIceuih\nSZLNmzcvedupqakk80O0mgmvh8kwF7pGjGFljDy5ItBFbThXP1DyxXYwrAwAAACAZRlWBrCfFl8J\nOfHEE5PMX+U5+OCD88ADDyz7GJdeemmS5Pd+7/eybdu2JMmmTZt2e5y2XHFpJuO++OKLk8wPvWvi\nHIWrWwAAbVFKkV/RNzqHAAAAADrMnEMAfdB0/yz3nvvrv/7rSZJrr722LzHtr7Z0MjHHnEOMPLki\n0FVtOF/fH/LFdjHnEAAAAADLMucQQB8sddVnYUfR9ddfnyR57nOfmyS54oor+hHaipqV1W644YYB\nRwIA0C1LdeAMa0cR7aVzCAAAAKDDzDkE0FLXXHNNkuSZz3xmkmRiYmIgcUxOTiZJNm7cOJDnZ0Xm\nHGLkyRUBltaGc/qGuYbaaTVzDhlWBtBSv/Ebv5Ekufvuu5MkD3vYw7Jhw4a+PHeTZJRS8q//+q99\neU4AAGAwDCsDAAAA6DDDygBaZnE7bvM+3c/36507dyaZGcqmPbj1DCtj5MkVAVY2yHN7+WK7Wcoe\nAAAAgGWZcwigZZa66rNjx45MT08n6f3k0Lt27UqSrF+/fu65momp29BxCgDA7prunX7majqGRofO\nIQAAAIAO0zkEMCQ2bNgw173Ta9dee+3c99u3b+/LcwIAMDx0DY0WnUMAAAAAHaZzCGCIrF+/vqeP\n//znPz9J8s53vrOnzwMAQG8MYu4hhp/OIQAAAIAOK22oJpZSBh8EQEstvPrz0Y9+NEnypCc9aU0e\nu5nDaMOGDUmyx8pkDIWba62nDToI6CW5IsC+69W5vrmGhk+tdcUXTXEIYEiMjY3lp37qp5IkN998\nc5JkfHx8nx+ned+fnp7OfffdlyTZvHlzkmTdupnRxlNTUwccL32jOMTIkysC7Lu1PtdXFBpeqykO\nGVYGAAAA0GErFodKKe8opdxTSvn8gm2vKaV8q5Ry6+y/sxf87lWllDtKKbeVUn65V4EDdNFTnvKU\nPOUpT1mTxxofH8/mzZuzefPmlFJSSsnU1JSuIWCfyBUBRluTJzLaVtM5dEWSp+5l+5trrafM/rsh\nSUopJyf5rSSPmb3PpaWUfR/zAADAsLgickUAGGorLmVfa/3fpZTjV/l45yR5b611MsnXSil3JDk9\nySf3O0IAkszMOfTkJz85yf7NNdRorvw84hGPyPr165MkO3fuPPAAgU6SKwKMJt1C3XIgcw79QSnl\nv2ZbiQ+f3XZMkm8uuM3W2W17KKVcUErZUkrZcgAxAADQTnJFABgS+1scemuSE5KckuSuJH8zu31v\npcW9TpFea72s1nqaFVYAVmdqaiqXX355Lr/88v2+/9TUVD7xiU/kE5/4RH7wgx9kx44d2bFjR2qt\nPVvuFOgkuSLAkDLHUDftV3Go1np3rXVXrXU6yeWZaQdOZq7+HLfgpscmufPAQgQAYJjIFQFguKw4\n59DelFKOrrXeNfvjryZpVqe4Psl7SilvSvJjSU5MctMBRwlAkuRzn/tckuShhx5Kkhx00EEr3md6\nejpJ8s53vjNJcsEFF/QoOoAZckWA4aRjqLtWLA6VUq5OcmaSzaWUrUn+PMmZpZRTMtMG/PUkL0qS\nWusXSinXJPlikqkkL6m17upN6AAADJpcEQCGX2nDHBOllMEHAdByY2NjedWrXpUked3rXrfi7ZsV\nyCYmJpIkhx8+Mx/sfffdl2TmylAbPgM4YDebk4VRJ1cE2Hf7k+fpHBpNtdYVX9j9GlYGQP9NT0/n\nMY95zKpv3xSFmg/5DRs27PZ7hSEAgNGjKMT+OJCl7AEAAAAYcjqHAIbExo0b87jHPW6vv2uuEC28\n6nPdddclSdatm3mrn5yc7HGEAAAMEx1DNHQOAQAAAHSYziGAIXL88ceveJtzzz03SXLttdf2OBoA\nANqm6QZabu4hHUMspnMIAAAAoMN0DgEMie3bty/5u+bqz8EHH5ypqal+hQQAQEutpoMIGjqHAAAA\nADpM5xDAkJiYmMgb3/jGJMmFF16YJHNdQvfcc0+SZNu2bYMJDgCAVlrYQWSuIZZS2tBiVkoZfBAA\nLXfIIYfkjjvuSJIcddRRu/2u+aAvpWgd7p6ba62nDToI6CW5IgDsv1rrilVBw8oAAAAAOsywMoAh\nsX379j1agQ877LAkyfj4eJJkenq673EBAADDTecQAAAAQIcpDgEMiampqbztbW/L2972tpRSUkrJ\n9u3bs3379uzatSu7du0y3xAAALDPFIcAAAAAOsxqZQBDZGxspqbfzDG0c+fOQYZDO1itjJEnVwSA\n/We1MgAAAACWZbUygCHSrEZmVTIAAGCt6BwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwC\nAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAO\nUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAA\nAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDF\nIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA\n6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwC\nAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAO\nUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAA\nAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOW7E4VEo5rpTy\n76WUL5VSvlBKedns9iNKKR8upXxl9uvhs9tLKeVvSyl3lFL+q5Tys73+TwAAMBhyRQAYfqvpHJpK\n8se11p9M8vNJXlJKOTnJRUk+Ums9MclHZn9OkqclOXH23wVJ3rrmUQMA0BZyRQAYcisWh2qtd9Va\nb5n9/oEkX0pyTJJzkrxr9mbvSvLM2e/PSXJlnfGfSQ4rpRy95pEDADBwckUAGH77NOdQKeX4JD+T\n5FNJjqq13pXMJAVJHj57s2OSfHPB3bbOblv8WBeUUraUUrbse9gAALSNXBEAhtO61d6wlHJIkn9O\n8vJa6w9KKUvedC/b6h4bar0syWWzj73H7wEAGB5yRQAYXqvqHCqlTGTmw/7dtdZ/md18d9MCPPv1\nntntW5Mct+Duxya5c23CBQCgbeSKADDcVrNaWUny9iRfqrW+acGvrk9y/uz35yf5wILtz5ldieLn\nk9zftBQDADBa5IoAMPxKrct36ZZSfjHJfyT5XJLp2c0XZ2Ys+TVJfjzJN5KcW2v93myC8PdJnppk\nW5Ln1VqXHSuuVRgA9tvNtdbTBh0E3SVXBIB2q7UuOda7sWJxqB984APAflMcYuTJFQFg/62mOLRP\nq5UBAAAAMFoUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAA\nAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMU\nhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAA\noMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEI\nAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6\nTHEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAA\nAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMU\nhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAA\noMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEI\nAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6\nTHEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6bMXiUCnluFLKv5dS\nvlRK+UIp5WWz219TSvlWKeXW2X9nL7jPq0opd5RSbiul/HIv/wMAAAyOXBEAhl+ptS5/g1KOTnJ0\nrfWWUsqhSW5O8swkv5HkwVrrGxfd/uQkVyc5PcmPJfl/k5xUa921zHMsHwQAsJSba62nDToIukuu\nCADtVmstK91mxc6hWutdtdZbZr9/IMmXkhyzzF3OSfLeWutkrfVrSe7IzIc/AAAjRq4IAMNvn+Yc\nKqUcn+RnknxqdtMflFL+q5TyjlLK4bPbjknyzQV325q9JAillAtKKVtKKVv2OWoAAFpHrggAw2nV\nxaFSyiFJ/jnJy2utP0jy1iQnJDklyV1J/qa56V7uvkcrcK31slrraVrhAQCGn1wRAIbXqopDpZSJ\nzHzYv7vW+i9JUmu9u9a6q9Y6neTyzLcDb01y3IK7H5vkzrULGQCANpErAsBwW81qZSXJ25N8qdb6\npgXbj15ws19N8vnZ769P8lullA2llJ9IcmKSm9YuZAAA2kKuCADDb90qbvMLSX4nyedKKbfObrs4\nybNLKadkpg3460lelCS11i+UUq5J8sUkU0lestzqEwAADDW5IgAMuRWXsu9LEJYnBYD9ZSl7Rp5c\nEQD235osZQ8AAADA6FIcAgAAAOgwxSEAAACADlMcAgAAAOiw1axW1g/fSfLD2a/03ubY1/1iX/eP\nfd0f9nP/rHZf/7deBwItIFfsL+/1/WNf94993R/2c/+saa7YitXKkqSUssVqK/1hX/ePfd0/9nV/\n2M/9Y1/D7vxN9I993T/2df/Y1/1hP/fPWu9rw8oAAAAAOkxxCAAAAKDD2lQcumzQAXSIfd0/9nX/\n2Nf9YT/3j30Nu/M30T/2df/Y1/1jX/eH/dw/a7qvWzPnEAAAAAD916bOIQAAAAD6THEIAAAAoMNa\nURwqpTy1lHJbKeWOUspFg45nlJRSvl5K+Vwp5dZSypbZbUeUUj5cSvnK7NfDBx3nMCqlvKOUck8p\n5fMLtu1135YZfzt7jP9XKeVnBxf58FliX7+mlPKt2WP71lLK2Qt+96rZfX1bKeWXBxP1cCqlHFdK\n+fdSypdKKV8opbxsdrtjew0ts58d17AXcsXekSv2jlyxf+SK/SNX7I9B5IoDLw6VUsaT/EOSpyU5\nOcmzSyknDzaqkfOkWusptdbTZn++KMlHaq0nJvnI7M/suyuSPHXRtqX27dOSnDj774Ikb+1TjKPi\niuy5r5PkzbPH9im11huSZPb947eSPGb2PpfOvs+wOlNJ/rjW+pNJfj7JS2b3qWN7bS21nxPHNexG\nrtgXcsXeuCJyxX65InLFfpEr9kffc8WBF4eSnJ7kjlrrV2utO5K8N8k5A45p1J2T5F2z378ryTMH\nGMvQqrX+7yTfW7R5qX17TpIr64z/THJYKeXo/kQ6/JbY10s5J8l7a62TtdavJbkjM+8zrEKt9a5a\n6y2z3z+Q5EtJjolje00ts5+X4rimy+SK/SdXXANyxf6RK/aPXLE/BpErtqE4dEySby74eWuW/0+z\nb2qS/1lKubmUcsHstqNqrXclMwddkocPLLrRs9S+dZz3xh/Mtqe+Y0HLu329Rkopxyf5mSSfimO7\nZxbt58RxDYs5/ntLrthfPk/7y2dqD8kV+6NfuWIbikNlL9tq36MYXb9Qa/3ZzLTzvaSU8sRBB9RR\njvO199YkJyQ5JcldSf5mdrt9vQZKKYck+eckL6+1/mC5m+5lm/29SnvZz45r2JPjv7fkiu3gOF97\nPlN7SK7YH/3MFdtQHNqa5LgFPx+b5M4BxTJyaq13zn69J8l1mWktu7tp5Zv9es/gIhw5S+1bx/ka\nq7XeXWvdVWudTnJ55tsm7esDVEqZyMyH0Ltrrf8yu9mxvcb2tp8d17BXjv8ekiv2nc/TPvGZ2jty\nxf7od67YhuLQp5OcWEr5iVLK+sxMonT9gGMaCaWUg0sphzbfJ/k/knw+M/v3/NmbnZ/kA4OJcCQt\ntW+vT/Kc2dn6fz7J/U3bJftn0VjlX83MsZ3M7OvfKqVsKKX8RGYmv7up3/ENq1JKSfL2JF+qtb5p\nwa8c22toqf3suIa9kiv2iFxxIHye9onP1N6QK/bHIHLFdQcW8oGrtU6VUv4gyb8lGU/yjlrrFwYc\n1qg4Ksl1M8dV1iV5T631f5RSPp3kmlLKC5J8I8m5A4xxaJVSrk5yZpLNpZStSf48yV9n7/v2hiRn\nZ2ZisG1Jntf3gIfYEvv6zFLKKZlpl/x6khfl/2/njm0QiIEgAK7rohICKqADSqIaJATdoCN4EgIy\n3g+6mdCRZV2wWumcpKpuY4xzknuWX/6PVfXY4t5/apfkkOQ6xri8zk4x29/26Z335hreyYqrkhVX\nJCvOIytOJSvOMT0rjirrfgAAAABd/cJaGQAAAAAbUQ4BAAAANKYcAgAAAGhMOQQAAADQmHIIAAAA\noDHlEAAAAEBjyiEAAACAxp61CRgMCCZXXAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e30141084a8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X2MpXddN/73d2Znd2uxKVAL26Xc\nVOhPeTBUsqHIg4GqLCJJKUaEGGmMsRpbH5AYq0F8ig+Jt9yK/gBrKGAiYlW0SPDmFsIdjai0xUJb\noVChwLalpYW29Gkev/cfc66d2e0+zO6cc65zzvf1SpqZuebMzGevc3rO57yvz/W9Sq01AAAAALRp\nru8CAAAAAOiPcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAho0sHCql\nvKyUcnMp5ZZSyuWj+jsAAEwfvSIATI5Sax3+Ly1lPslnk3xfkgNJrkny2lrrfw39jwEAMFX0igAw\nWXaM6Pc+N8kttdbPJ0kp5b1JLkxyxBf8UsrwEyoAaMPdtdZv6bsIOEF6RQAYk1prOd5tRnVa2d4k\nX9709YHBtoNKKZeUUq4tpVw7ohoAoAVf7LsAOAl6RQCYIKOaHDpSKnXIEZ9a6xVJrkgcDQIAaIxe\nEQAmyKgmhw4kOXvT109KcvuI/hYAANNFrwgAE2RU4dA1Sc4tpZxTStmZ5DVJ3j+ivwUAwHTRKwLA\nBBnJaWW11pVSymVJPpRkPsmVtdabRvG3AACYLnpFAJgsI7mU/QkX4TxyADhZ19Va9/VdBIySXhEA\nTl6fVysDAAAAYAoIhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABo\nmHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAA\naJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAA\nAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIA\nAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwC\nAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYc\nAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABom\nHAIAAABomHAIAAAAoGHCIQAAAICG7djOD5dSbk3yjSSrSVZqrftKKY9L8ldJnpLk1iSvrrV+fXtl\nAgAwbfSKADAdhjE59JJa63m11n2Dry9P8pFa67lJPjL4GgCANukVAWDCjeK0sguTvHvw+buTvHIE\nfwMAgOmkVwSACbPdcKgm+T+llOtKKZcMtj2h1npHkgw+nrnNvwEAwHTSKwLAFNjWmkNJXlBrvb2U\ncmaSfyqlfGarPzhoEC457g0BAJhWekUAmALbmhyqtd4++HhXkr9L8twkd5ZS9iTJ4ONdR/nZK2qt\n+zadfw4AwAzRKwLAdDjpcKiUcmop5Zu7z5O8NMmNSd6f5OLBzS5OcvV2iwQAYLroFQFgemzntLIn\nJPm7Ukr3e95Ta/3fpZRrklxVSvnxJF9K8kPbLxMAgCmjVwSAKVFqrX3XkFJK/0UAwHS6zmk3zDq9\nIgCcvFprOd5tRnEpewAAAACmhHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIh\nAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHC\nIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBh\nwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACg\nYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAA\noGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAA\nAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhxw2HSilXllLuKqXcuGnb40op/1RK\n+dzg42MH20sp5S2llFtKKZ8qpTxnlMUDANAvvSIATL+tTA69K8nLDtt2eZKP1FrPTfKRwddJ8v1J\nzh38d0mStw2nTAAAJtS7olcEgKl23HCo1vrPSb522OYLk7x78Pm7k7xy0/Y/r+v+PcnppZQ9wyoW\nAIDJolcEgOl3smsOPaHWekeSDD6eOdi+N8mXN93uwGDbo5RSLimlXFtKufYkawAAYDLpFQFgiuwY\n8u8rR9hWj3TDWusVSa5IklLKEW8DAMBM0SsCwAQ62cmhO7sR4MHHuwbbDyQ5e9PtnpTk9pMvDwCA\nKaRXBIApcrLh0PuTXDz4/OIkV2/a/rrBlSiel+S+bqQYAIBm6BUBYIoc97SyUspfJnlxkjNKKQeS\n/FqS30tyVSnlx5N8KckPDW7+wSQvT3JLkoeS/NgIagYAYELoFQFg+pVa+z+F23nkAHDSrqu17uu7\nCBglvSIAnLxa65HW/DvEyZ5WBgAAAMAMEA4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BMCjlFJSSslpp5123Nvu378/+/fv\nzymnnHLU2+zatSu7du0aZokAAMCQCIcAAAAAGraj7wIA6E83zbO4uHjI9lprkuS+++571M90t11Y\nWEiS3H///UmSnTt3ZseOHQc/3+z1r3/9wd/3zne+c0s1AAAwHbre8WSUUoZYCSerbOdOHFoRpfRf\nBMCM68Kc5eXlJMn3fu/35jOf+UyS5Mtf/vIht+1eG2qtmZubO2TbybyAd3+z1vqo4OjpT396khys\nhRN2Xa11X99FwCjpFQH610d2IDgajlrrcXek08oAAAAAGmZyCGCGlFIOntrVTet0/v7v/z5J8opX\nvCJJMj8/P97iDnO0SaTLLrssSfL2t789q6urY69rCpkcYubpFQHGZxIyguMxUXRiTA4BAAAAcEwm\nhwCmWDcl1E0BLS4u5nnPe16S5N/+7d+S5OD0TXeEpVtDaNK9733vyw/+4A8mSXbv3p1kY9HqSXjt\nmiAmh5h5ekWA0Zjmnsr00NaZHAIAAADgmEwOAUy47qjI5iuHra2tJUn27VsfGLnmmmsO3v6BBx5I\nkjzmMY8ZZ5lDt7i4ePAy96eeemqSjXWUDl9PqXEmh5h5ekWA4ZiE9/+jYpLo6EwOAQAAAHBMO/ou\nAIBjW1hYSJIsLS3lwIEDSZI9e/Yk2ViDp1NrnfqJoU43NZQkDz74YJLkzDPPTJJ89atf7aUmAIBp\nM8vTQpsd7Uq4bI3JIQAAAICGmRwCmFCnnHJKkuSCCy5IknzgAx941JGfzdM1yeweKenWWLrrrruS\nzO6/EwBgu1qZFDoaE0QnRzgE0KPNi00f7h3veEeS5LWvfe2jbt+abiHubj950QcAWNd6GMRwOK0M\nAAAAoGEmhwB61J0WNjc3lx/5kR9JklxxxRVJXK79WB544IEkyete97r89V//dZLk4Ycf7rMkAICx\nMS10fLVWU+YnwOQQAAAAQMPKJCSOpZT+iwAYo/n5+STJ6upqEkd/tmP37t1JksXFxZ4r6c11tdZ9\nfRcBo6RXBFinZzw5rU8Q1VqPuwNMDgEAAAA0zJpDAGPQXZb+nHPOSZJceeWVSZLzzz+/t5pmwfLy\ncp797GcnSa655pokjqgBALNDX8O4mBwCAAAAaJg1hwBGpJRy8GjPG9/4xiTJb/3WbyVJ1tbWkqxf\npYzhaPhccmsOMfP0ikBLJuE9+qxqtV/cyppDTisDGJHnP//5efvb354keepTn3rI94RCw+ESpQDA\ntBMGMQm8OwEAAABomMkhgCHrjv6Yahm9UkqWlpb6LgMA4ISZGGKSmBwCAAAAaJjJIYAh+cY3vpEk\neeSRR5Iku3fv7rOcZnTTWT/1Uz+VJAfXeQIAmEQmhphEJocAAAAAGuZS9gAn6U1velOS5Dd+4zeS\nbFyevptksd7QeN17771Jkj179iTZmOBqgEvZM/P0isC0m4T33bTbn2/lUvYmhwAAAAAaZs0hgJPw\nhje8Ib/6q796yLa5OXl7H7ojcaeffnqSpiaGAIAJZ2JosnT3R6sTRMfinQwAAABAw0wOARzD/Px8\nkmR1dTXJxtGGhx9+ODt2eAqdJN19BADQNxNDTBvvbAA26UZMuxf0U045JUly3333JUmWlpaSuEz9\nJOnusy7IO3y75gwAGAc9B9PMaWUAAAAADTM5BDTr8ImTlZWVPOMZz0iS3HjjjQe3JRuLTS8sLBzy\ns0yOhx9+OEmyf//+JMmHP/zhJE43AwBGw6QQs8TkEAAAAEDDyiSknaWU/osAenX4ZeDX1tZG/jd3\n7dqVJFlcXEyyPnnSTQR132N6dFNene4+HMdjqWfX1Vr39V0EjJJeEdpWa52oqe1JeA/NcEzS42qU\naq3H/YeaHAIAAABomDWHgLFZWFjIm970piTJG9/4xiTJ5z73uUM+/sAP/MDB2y4vL4+0nm5iyNGf\n2bBjx/pL2rXXXptkYy2pBiaHAGDmHa1fG+fkh56RWWZyCAAAAKBh1hwCxurw55ylpaUkG9Mdu3fv\nTpL8yZ/8SX7mZ37miL+jO0J0os9fh//czTffnCR58pOffMjfZja0cg55rDlEA/SK0LYT6fmG/fo/\nCe+XGZ1W+sWtrDkkHALGaqvPOUtLS9m5c2eS5FnPelaS5KabbkqycTn5WuvB33cilyv/4he/mCR5\n4hOfeMjva+XFoRWHL3I+Ca93IyIcYubpFaFtJ3tAcJx/k+nUSv9vQWoAAAAAjsnkEDBWf/qnf5ok\n+Ymf+Ikkx07ru+en7mM3CfId3/EdSZIbb7zx4HRRd3ra0bziFa/I1VdffcTf18oRg1nX3a/d/dnQ\n/WpyiJmnV4S2bfc964n0BJPw/pjxaaVfNDkEAAAAwDGZHALG6qyzzkqS3HbbbUk2Jn62su7PyspK\nkkMnf7rLlX/sYx9LkjzucY9LsrE+0UUXXZRk/bL1p5xyyvD+IUy8c845J0ly66239lvI6JkcYubp\nFaFtk/CeldlkcmiDySEAAACAhpkcAsamlJJdu3YlSR555JEkG0eCFhcXk+Tg97ei1now7e+mitbW\n1pLk4FpEtOtbvuVbkiR33313z5WMnMkhZp5eEZiE963MHpNDG0wOAQAAADRsR98FAO2otR6cGDr8\nilLXX399kuTZz372ln/f5qR/xw5PZxzq61//et8lAABD0vV9JohgNEwOAQAAADTMmkNArw4/CrT5\nYyvnADMaDT1+rDnEzNMrAoebhPexTL9W+sWtrDnkPAygV90Le3damJFhtmt5ebnvEgCAEdMzwnA5\nrQwAAACgYccNh0opV5ZS7iql3Lhp26+XUm4rpVw/+O/lm773y6WUW0opN5dS9o+qcGC2rK6uZnV1\nNXNzc5mbm8tjH/vYvktiSi0sLGRhYSGnnXZaTjvttL7LgZmnVwSA6beVyaF3JXnZEbb/r1rreYP/\nPpgkpZRnJHlNkmcOfuatpZT5YRULAMDEeVf0igAw1Y4bDtVa/znJ17b4+y5M8t5a62Kt9QtJbkny\n3G3UBzSi1ppaa9bW1rK2tpbl5eXceuutufXWW7OyspKVlZW+S2TK3H///bn//vv7LgNmnl4R6FMp\npZlFhWGUtrPm0GWllE8NRom78z/2JvnyptscGGx7lFLKJaWUa0sp126jBgAAJpNeEQCmxMmGQ29L\n8tQk5yW5I8kfDLYfKbI94vLxtdYraq37XH4XOJKHHnoo559/fs4///zs2LHj4NXM4HDd1Nny8nKW\nl5dzzz335J577um7LGidXhEYKxNEsD0nFQ7VWu+sta7WWteS/Fk2xoEPJDl7002flOT27ZUIAMA0\n0SsCwHQ5qXColLJn05cXJemuTvH+JK8ppewqpZyT5NwkH99eiUCLaq259957c++992b//v3Zv98F\nbTiy7khhd5WyM844I2eccUbm5+czP2+dW+iDXhGASWbS7NGOe55GKeUvk7w4yRmllANJfi3Ji0sp\n52V9DPjWJD+ZJLXWm0opVyX5ryQrSS6tta6OpnQAAPqmVwSA6VdqPeJp3uMtopT+iwAmTpfmn3rq\nqUmSf/zHf0ySvPCFL+ytJiZfg0eBrrMmC7NOrwiciEl4j8tka61frLUe9x9shVdgYnUv7A888ECS\n5IILLkiSLC0t9VYTk+vqq69OkoOLl6+srPRZDgDQk+6Nv5AItm47l7IHAAAAYMqZHAKmRjcJsvlo\nUDdFtLCwcMj3aMfi4uIhXztKCAAkJojgRJgcAgAAAGiYBamBqXbbbbclSc4444wkyc6dO/sshx41\nPDVmQWpmnl4RGIZJeO/LZGitb9zKgtQmhwAAAAAaZs0hYOpsPn987969SZIPf/jDSZLv/u7vTrKx\nBhEAAEDS3sTQiTA5BAAAANAwaw4BM6W7cpW1h9rT8JEgaw4x8/SKwDBNwntg+tFqv7iVNYecVgbM\nhB071p/Odu3alST59m//9iTJDTfccMj3mT333XdfkuTUU09Nkjz44IN9lgMATDiXuIdHc1oZAAAA\nQMMcSgdmwurq6iFff+Yzn0liYmjWrays5NJLL02SrK2t9VwNADBNSimmh2DA5BAAAABAwyxIDcyk\nbkHqW265JUly1llnZX5+vs+SGIHl5WWLj1uQmgboFYFRm4T3xYyeBamPzuQQAAAAQMMsxgHMpOXl\n5STJk5/85CTrV7D6pm/6pj5LYoi69YUWFhZ6rgQAmAVHmygxUTQbWp0YOhEmhwAAAAAaJhwCmmBq\naLbUWlNrzb/8y79k9+7d2b17d98lAQAzyMQJrRAOAQAAADRMOATMpG6yZOfOndm5c2f+6q/+KktL\nS1laWuq7NIZgfn4+8/Pzueiii7K2tnZwDSIAgGGy5hCtcCl7oBmT8HzHyenuu260+6Mf/WiS5IIL\nLuitpgniUvbMPL0iMC76xdnU+umBLmUPAAAAwDGZHAKaMDc3l9XV1b7LYEhaP/pzGJNDzDy9IjAu\nk/D+mOHRM64zOQQAAADAMe3ouwCAcVhYWMhP//RPJ0n++I//OMn6osZMl9tvvz1JsnPnziSxwDgA\nMBQmhmidySEAAACAhpkcApqwuLiYt771rUmSlZWVnqvhZH3yk59Msr6GFAAAMBy6awAAAICGmRwC\nZtru3buTJC95yUuytraWJNmxw1PftFlcXEySfPazn00SV54DAOCYXKnsxHiHBMykhYWFJMnrX//6\nJMnv/M7v9FkO29SFQXfeeWeSZHl5uc9yAIAZYSFqWOe0MgAAAICGmRwCZkq3UHE3WWJiaDZ0Y8Ef\n//jHe64EAABmj8khAAAAgIaVSTjHspTSfxHATPn85z+fJNm7d2+S9TWILEo3/dyHR3RdrXVf30XA\nKOkVgVGYhPfCDJ9+8dFqrcfdKSaHAAAAABpmzSFgJp1zzjl9l8AQdEf09u/fnyTZtWtXko1L2wMA\nANtncggAAACgYSaHgJny5Cc/ue8SGKJucujrX/96EhNDAAAwCiaHAAAAABpmcgiYCTt37kySfOlL\nXzpkezd54qoF02lubv0Yxh133NFzJQAATDL9/vYIh4CZ0IUIX/nKV5Ika2trh2xnut122219lwAA\nADPLuyYAAACAhpkcAmbC6upqkuQJT3hCko3JIaab+xEAgGNxOtlwmBwCAAAAaJhwCJgpl112WS67\n7LKsra2ZOplyKysrmZubs24UAACMmI4bAAAAoGGlu8xzr0WU0n8RwFTrpku6aaFJeG5j+3bu3Jlk\n4/7s1pZy/x7iulrrvr6LgFHSKwLDpI+YLdYcOr5a63F3kskhAAAAgIa5WhkwE+bn55Mku3btSvLo\nI0KOKEyPxcXFJMmNN96Y5eXlnqsBAIDZJxwCploX+nQfn/nMZybZOL2sC42YfF2gt2PH+kvTvn3O\nlAIA4Mgc/B0up5UBAAAANMyC1MBM6Z7Tuskhl0GfXo4GbZkFqZl5ekVgmCbhPTDbp1fcOgtSAwAA\nAHBM1hwCZsILX/jCJMnS0lKSjUugMz26++63f/u3k6wvLt4tTg0AAB1TQ8NncggAAACgYSaHgKnW\nXbr+aU97WhJrDE2zbtrrN3/zN3uuBACYRdYagqPzLgoAAACgYSaHgKnWrVPzrGc9K0myY4entUnX\nHbVbWVlJsnFlud27dx9yu1KKI3wAABxkraHRMTkEAAAA0LAyCUdlSyn9FwFMtdNPPz1Jcs899ySx\n9tA06Y4Azc/PJ0lWV1f7LGcaXVdr3dd3ETBKekVgGCbhvS8nx8TQ9tRaj7sDnX8BzITv+q7vSpKD\nlz4/5ZRT+iyHLXjzm9+cZCPIEwoBALCZUGh8HFoHAAAAaJjTyoCZ0i1QvbCw0HMlbLZ5Eeqf/dmf\nTZK8853vTLIx7cVJc1oZM0+vCAzDJLz3ZWtMDA3XVk4rMzkEAAAA0DBrDgFTrTuq0B0JMjE0mbr7\n6ayzzsrdd9/dczUAAEwiE0P9MTkEAAAA0DCTQ8BU6yaGTj311CTJe9/73iTJD//wDydx9KEvDz/8\ncJLkb/7mb5Ikl156aZLkwQcf7K0mAAAmj359MpgcAgAAAGiYySFgJqyuriZJvu/7vi9Jsra2liSZ\nn5/vrabWrK6uZm5u/ZjDRRddlCT50Ic+1GdJAAAHHb5WJf0yMTRZhEPATOjCocc//vFJNsIhxmd+\nfv7g6X1LS0s9VwMAwCQSCk0mp5UBAAAANMzkEDATuiMQv/ALv5Ak+f3f//0+y2nSi170ojz00EN9\nlwEAwAQyMTTZTA4BAAAANKxMwmJcpZT+iwCm2sLCQpJkeXk5iYUGx+GRRx5JkrzlLW9JkrzxjW88\nuP8Zq+tqrfv6LgJGSa8IDJM+cfxMDfWr1nrcO8DkEAAAAEDDrDkEzITuEurdVcu6q5V129m+lZWV\nJBv79EUvelGS5Nprr+2tJgAAJpeJoenhXRMAAABAw0wOATOhmxjqplq6ySG2p9aapaWlJMnNN9+c\nJHn2s5+dxFQWAABHZmJo+ujsAQAAABpmcgiYCfPz80mS3/3d302S/OIv/mIS0y3btbS0lH/9139N\nknzP93zPId8znQUAwGYmhqaXS9kDM+Hw08km4bltVniRn3guZc/M0ysCw6RPHD794mRzKXsAAAAA\njum44VAp5exSykdLKZ8updxUSvm5wfbHlVL+qZTyucHHxw62l1LKW0opt5RSPlVKec6o/xEAa2tr\nWVtby+Mf//g8/vGPP/g1J2Z5eTnLy8t54IEH8sADD6SUkl27dmXXrl19lwZMKL0iMG1KKSZdhqDb\nj/blbNjK5NBKkjfUWp+e5HlJLi2lPCPJ5Uk+Ums9N8lHBl8nyfcnOXfw3yVJ3jb0qgEAmBR6RQCY\ncsddkLrWekeSOwaff6OU8ukke5NcmOTFg5u9O8n/TfJLg+1/XtdP5Pz3UsrppZQ9g98DMFL33HNP\nko01iLpzyh3ROLZHHnkkSfKf//mfSZLnP//5SdYX+u4uZQ9wJHpFgLboq2fTCa05VEp5SpLvTPIf\nSZ7QvYgPPp45uNneJF/e9GMHBtsO/12XlFKuLaVce+JlAwAwafSKADCdtnwp+1LKY5L8bZKfr7Xe\nf4y08EjfeNRy8LXWK5JcMfjdlosHhuL0008/5GtHNo6tW5dp9+7dSTYmhjqrq6tjrwmYTnpFgNmm\nr55tW5ocKqUsZP3F/i9qre8bbL6zlLJn8P09Se4abD+Q5OxNP/6kJLcPp1wAACaNXhEApttWrlZW\nkrwjyadrrW/e9K33J7l48PnFSa7etP11gytRPC/Jfc4hB8bFlbVOzNzcXObm5g5eaWJhYSELCwt9\nlwVMEb0iwGxzRbI2bOW0shck+dEkN5RSrh9s+5Ukv5fkqlLKjyf5UpIfGnzvg0lenuSWJA8l+bGh\nVgwAwCTRKwLAlCvdlXx6LcJ55MCQdc9trla2odsXy8vLSZK77747e/eurwG7c+fOQ743Ca8NbNl1\ntdZ9fRcBo6RXBEZBv3Ns+ufZUWs97p255QWpAabB4aeUeVHbsLKykmQjCNq7d2/m5tbPLhYKAQCt\n0O8cm/65TSd0KXsAAAAAZovoR0PUAAAMx0lEQVTJIWCmnHrqqX2XMHG6o2PdQtPd0aC5ubmDl7IH\nAADaZXIIAAAAoGEmh4CZ8rWvfa3vEibG6upqkmR+fj7JxsRQt+bQ0tJSP4UBADBRrDOEySEAAACA\nhpkcApghtdaDVx774he/mCR5znOek2RjzaHu+wAAAInJIQAAAICmmRwCplp3fnQ3FXPmmWf2WU7v\nlpaW8rGPfSxJcsEFFyTZ2EfdVcsAACCx1hAbyiS8WSil9F8EMBO657TuEu1zc7M5INn9Ow9/Qf/k\nJz+Z8847r4+S6M91tdZ9fRcBo6RXBIZpEt4D90UY1KZa63Hv+Nl81wQAAADAljitDJhqu3btSpK8\n+tWvTpKsrKwkSXbsmO2nt8XFxSTJ7t27kzgKBADAsekXORaTQwAAAAANs+YQMNW6NYVWV1d7rmR0\nNj9PLy0tJUn+6I/+KEnyS7/0S73UxESx5hAzT68IDNMkvAceB5NCdKw5BAAAAMAxzfaiHMDM665K\nNsu6aaGlpaU87WlPS5LcddddfZYEAMCEMSnEdpgcAgAAAGiYySFgqp1++ulJkvvvvz9Jctppp/VZ\nzlB158N/8IMfTJK86lWvmvmrsAEAcGJMDDEMJocAAAAAGuYQNDDV7r333iTTOzHUTQcd6YjPxRdf\nnCS56qqrDm5bWVkZT2EAAEws00IMm3AIoEebX9i/7du+LUny2c9+9pDvtXK5VQAAjk0oxKg4rQwA\nAACgYSaHAHpw+OlkL33pS/OFL3zhiLcBAGD7prG3MinEuJgcAgAAAGiYySFgas3NzeUDH/hAkmRp\naSlJsnPnzj5LOqrDJ4X++7//O0ly7rnnJkkWFhYsNg0AwEGmhhgnk0MAAAAADTM5BEyttbW17Nix\n/jQ2qRNDi4uLSZI//MM/TJJcfvnlR7zdysrKVJ4HDwDAcJgUok8mhwAAAAAaVibhSHUppf8igKm0\nb9++JMk111yT5NFr+/ThkUceSbI+2fTc5z43SXLTTTf1Vg8z77pa676+i4BR0isCwzAJ732PxMQQ\no1ZrPe6DzGllwNQqpRxc2Pnzn/98kuTss89Osr7A8yhsDp+6z7uPd911V5KNU8fe8573jKQGAACm\nlzCISeS0MgAAAICGOa0MmCl33HFHkuSJT3xikvVTu5L1y95vx+rq6iG/b2FhITfccEOS5JWvfGWS\n5Ctf+UqS5KGHHtrW34IT5LQyZp5eERimcb4HNiXEJNjKaWUmhwAAAAAaZs0hYCZ0k0F79uxJkuzd\nuzdJcuDAgSTJ8vLywaNE3W27KaCVlZUk69NA3W26RaXvvvvuJMmrXvWqJMnnPve5JOvTQYf/HgAA\nJl83zTOsCSLTQcwCk0MAAAAADTM5BMyEw6d3vvrVrybZOJLzkpe8JE95ylOSJO985zuTJM985jOT\nJN/6rd+aJPmHf/iHnHbaaUmSc889N0nyiU98Yst/EwCA6WHiBzaYHAIAAABomKuVATNp2OeSwwRz\ntTJmnl4RAE6eq5UBAAAAcEzWHAJmkokhAACArTE5BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDjhsOlVLOLqV8\ntJTy6VLKTaWUnxts//VSym2llOsH/71808/8cinlllLKzaWU/aP8BwAA0B+9IgBMv1JrPfYNStmT\nZE+t9ROllG9Ocl2SVyZ5dZIHaq3/87DbPyPJXyZ5bpKzknw4yf9Xa109xt84dhEAwNFcV2vd13cR\ntEuvCACTrdZajneb404O1VrvqLV+YvD5N5J8OsneY/zIhUneW2tdrLV+IcktWX/xBwBgxugVAWD6\nndCaQ6WUpyT5ziT/Mdh0WSnlU6WUK0spjx1s25vky5t+7ECO0CCUUi4ppVxbSrn2hKsGAGDi6BUB\nYDptORwqpTwmyd8m+fla6/1J3pbkqUnOS3JHkj/obnqEH3/UKHCt9Ypa6z6j8AAA00+vCADTa0vh\nUCllIesv9n9Ra31fktRa76y1rtZa15L8WTbGgQ8kOXvTjz8pye3DKxkAgEmiVwSA6baVq5WVJO9I\n8ula65s3bd+z6WYXJblx8Pn7k7ymlLKrlHJOknOTfHx4JQMAMCn0igAw/XZs4TYvSPKjSW4opVw/\n2PYrSV5bSjkv62PAtyb5ySSptd5USrkqyX8lWUly6bGuPgEAwFTTKwLAlDvupezHUoTLkwLAyXIp\ne2aeXhEATt5QLmUPAAAAwOwSDgEAAAA0TDgEAAAA0DDhEAAAAEDDtnK1snG4O8mDg4+M3hmxr8fF\nvh4f+3o87Ofx2eq+/h+jLgQmgF5xvDzXj499PT729XjYz+Mz1F5xIq5WliSllGtdbWU87Ovxsa/H\nx74eD/t5fOxrOJT/J8bHvh4f+3p87OvxsJ/HZ9j72mllAAAAAA0TDgEAAAA0bJLCoSv6LqAh9vX4\n2NfjY1+Ph/08PvY1HMr/E+NjX4+PfT0+9vV42M/jM9R9PTFrDgEAAAAwfpM0OQQAAADAmAmHAAAA\nABo2EeFQKeVlpZSbSym3lFIu77ueWVJKubWUckMp5fpSyrWDbY8rpfxTKeVzg4+P7bvOaVRKubKU\nclcp5cZN2464b8u6twwe458qpTynv8qnz1H29a+XUm4bPLavL6W8fNP3fnmwr28upezvp+rpVEo5\nu5Ty0VLKp0spN5VSfm6w3WN7iI6xnz2u4Qj0iqOjVxwdveL46BXHR684Hn30ir2HQ6WU+ST/f5Lv\nT/KMJK8tpTyj36pmzktqrefVWvcNvr48yUdqrecm+cjga07cu5K87LBtR9u335/k3MF/lyR525hq\nnBXvyqP3dZL8r8Fj+7xa6weTZPD88Zokzxz8zFsHzzNszUqSN9Ran57keUkuHexTj+3hOtp+Tjyu\n4RB6xbHQK47Gu6JXHJd3Ra84LnrF8Rh7r9h7OJTkuUluqbV+vta6lOS9SS7suaZZd2GSdw8+f3eS\nV/ZYy9Sqtf5zkq8dtvlo+/bCJH9e1/17ktNLKXvGU+n0O8q+PpoLk7y31rpYa/1Ckluy/jzDFtRa\n76i1fmLw+TeSfDrJ3nhsD9Ux9vPReFzTMr3i+OkVh0CvOD56xfHRK45HH73iJIRDe5N8edPXB3Ls\nfzQnpib5P6WU60oplwy2PaHWekey/qBLcmZv1c2eo+1bj/PRuGwwnnrlppF3+3pISilPSfKdSf4j\nHtsjc9h+Tjyu4XAe/6OlVxwvr6fj5TV1hPSK4zGuXnESwqFyhG117FXMrhfUWp+T9XG+S0sp3913\nQY3yOB++tyV5apLzktyR5A8G2+3rISilPCbJ3yb5+Vrr/ce66RG22d9bdIT97HENj+bxP1p6xcng\ncT58XlNHSK84HuPsFSchHDqQ5OxNXz8pye091TJzaq23Dz7eleTvsj5admc3yjf4eFd/Fc6co+1b\nj/Mhq7XeWWtdrbWuJfmzbIxN2tfbVEpZyPqL0F/UWt832OyxPWRH2s8e13BEHv8jpFccO6+nY+I1\ndXT0iuMx7l5xEsKha5KcW0o5p5SyM+uLKL2/55pmQinl1FLKN3efJ3lpkhuzvn8vHtzs4iRX91Ph\nTDravn1/ktcNVut/XpL7urFLTs5h5ypflPXHdrK+r19TStlVSjkn64vffXzc9U2rUkpJ8o4kn661\nvnnTtzy2h+ho+9njGo5IrzgiesVeeD0dE6+po6FXHI8+esUd2yt5+2qtK6WUy5J8KMl8kitrrTf1\nXNaseEKSv1t/XGVHkvfUWv93KeWaJFeVUn48yZeS/FCPNU6tUspfJnlxkjNKKQeS/FqS38uR9+0H\nk7w86wuDPZTkx8Ze8BQ7yr5+cSnlvKyPS96a5CeTpNZ6UynlqiT/lfVV/i+tta72UfeUekGSH01y\nQynl+sG2X4nH9rAdbT+/1uMaDqVXHCm94gjpFcdHrzhWesXxGHuvWGp1uh8AAABAqybhtDIAAAAA\neiIcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBh/w9v1UT4w//0iAAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef0638c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHghJREFUeJzt3U+obWeZJ+Df27mWg1IwYhvSSboV\nuQ1lTaJcRLBprEGX0cnVgUUclEGE6yCCQk2iEx3WoLVAuisQMSSCpR1QMQOpKjsI9kTNjYSYmLa8\nlGlzTUgobNRuwSbx68FZR09uzv+z/639Pg8c9j7rrH3Od76se/ab3/eutWqMEQAAAAB6+lfrHgAA\nAAAA6yMcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0tLRyqqtuq6sdV\ndaWq7lrWzwEAYH7UigCwOWqMsfhvWnVdkn9K8p+SXE3ycJIPjDF+tPAfBgDArKgVAWCznFvS931b\nkitjjH9Okqr6SpKLSfZ9w6+qxSdUANDDv4wx/vW6BwEnpFYEgBUZY9RR+yzrtLKbkjy95/Or07bf\nq6pLVXW5qi4vaQwA0MH/WvcA4BTUigCwQZbVObRfKvWSFZ8xxj1J7kmsBgEANKNWBIANsqzOoatJ\nbtnz+c1JnlnSzwIAYF7UigCwQZYVDj2c5HxVvbGq/ijJ7UkeXNLPAgBgXtSKALBBlnJa2Rjjhar6\naJJ/SHJdknvHGE8s42cBADAvakUA2CxLuZX9iQfhPHIAOK1HxhgX1j0IWCa1IgCc3jrvVgYAAADA\nDAiHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAA\njZ07y4ur6qkkv07yYpIXxhgXquq1Sf5bkjckeSrJX4wx/vfZhgkAwNyoFQFgHhbROfRnY4xbxxgX\nps/vSvLQGON8koemzwEA6EmtCAAbbhmnlV1Mcv/0/P4k713CzwAAYJ7UigCwYc4aDo0k/1hVj1TV\npWnbDWOMZ5Nkenz9GX8GAADzpFYEgBk40zWHkrxjjPFMVb0+ybeq6n8e94VTgXDpyB0BAJgrtSIA\nzMCZOofGGM9Mj88n+XqStyV5rqpuTJLp8fkDXnvPGOPCnvPPAQDYImpFAJiHU4dDVfXHVfXq3edJ\n/jzJ40keTHLHtNsdSb5x1kECADAvakUAmI+znFZ2Q5KvV9Xu9/m7McbfV9XDSR6oqg8n+VmS9599\nmAAAzIxaEQBmosYY6x5Dqmr9gwCAeXrEaTdsO7UiAJzeGKOO2mcZt7IHAAAAYCaEQwAAAACNCYcA\nAAAAGhMOAQAAADR2lruVATO3yAvST3ejAQAAYGZ0DgEAAAA0pnMItsAiO4CWMQZdRQAA87Lo+lI9\nCJtN5xAAAABAYzqHYENtQjfQouz3u1g9AgBYj3XUmbrMYbMJh2CNtikAOqlrf3dFAQDA6c25rjxo\n7OpDWB2nlQEAAAA0pnMIVmjOKzrLppMIAOBw3WrJ3d9XXQjLp3MIAAAAoDGdQ7BE3VZ3Fmnv3Fkt\nAgA6UUO+lLoQlk/nEAAAAEBjOodgSaz4LI7zzQGAbad2PB7XqYTl0DkEAAAA0JjOIVgQqz3LZ6UI\nANgWasfFUB/CYgiH4Iy8sa/PGEMBAADMgppxNdSHcDpOKwMAAABoTOcQnJLVn82glRgA2HTqxtVS\nH8LJ6RwCAAAAaEznEJyC1Z/N5bb3AMCmUDNuBvUhHE3nEAAAAEBjOoeArWSFCABYFx1Dm8m1iOBg\nOocAAAAAGtM5BCdgFWh+dBABAKuiVpyXMYYaESY6hwAAAAAaEw7BMYwxrATNnP9+AABcS50PO5xW\nBrThFDMAYBmEC/OnTqQ7nUMAAAAAjekcgkNYBdpOVoYAANiPOpGudA4BAAAANKZzCPahY6gHK0MA\nAOxHnUg3OocAAAAAGhMOAQAAnILboG8//33pQjgEAAAA0JhrDsEeVgZ6ck45AHBS6sY+1Ip0oHMI\nAAAAoDHhEMDECiAAANCRcAgmggEAAOAgLkDONhMOAQAAADTmgtQAe7jgIABwGJ0jqBfZRjqHAAAA\nABoTDgEAAAA0JhwCAAAAaMw1hwD24VxyAGAv1xriWupFtonOIQAAAIDGdA7RnlUgAADgtHQQsQ10\nDgEAAAA0JhwCAAAAaEw4BHCIMYZTDwEAgK0mHAIAAABoTDgEAAAAZ6TbnDkTDgEAAAA0JhwCOAbX\nHgIAALaVcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAE7AhakBAIBtIxwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQwCm47hAAANdyfUrmSjgEAAAA0JhwCAAAAKAx4RAAAABAY8Ih2quqVNW6hwEA\nwAZTMwLbTDgEcEouOAgAAGwD4RAAAABAY8IhAAAAWCAd5syNcAgAAACgMeEQTFxgEACAo7gwNbCN\nhEMAAAAAjQmHAM7IOeUAAMCcCYcAAAAAGhMOwR7OIQcA4DjUjByHDnPmQjgEAAAA0JhwCGBBrAwB\nAABzJByCfTi9DACAo6gZOS6LiGw64RAAAABAY0eGQ1V1b1U9X1WP79n22qr6VlX9ZHq8ftpeVfW5\nqrpSVY9V1VuXOXiATWRlCOhErQgA83eczqH7ktx2zba7kjw0xjif5KHp8yR5d5Lz08elJHcvZpgA\nAGyo+6JWBIBZOzIcGmN8J8kvrtl8Mcn90/P7k7x3z/Yvjh3fTfKaqrpxUYOFVXMeOQAcTq0IakaO\nT3c5m+q01xy6YYzxbJJMj6+ftt+U5Ok9+12dtr1MVV2qqstVdfmUYwAAYDOpFQFgRs4t+PvtF5fv\nG42OMe5Jck+SVJX4FNg6YwyriAAvpVZkq+2+7+sO4TC7x4c6kU1y2s6h53ZbgKfH56ftV5Pcsme/\nm5M8c/rhAQAwQ2pFAJiR04ZDDya5Y3p+R5Jv7Nn+welOFG9P8svdlmKYM+eRA8CJqBVpTe0IzM2R\np5VV1ZeTvDPJ66rqapJPJfnrJA9U1YeT/CzJ+6fdv5nkPUmuJPlNkg8tYcwAs6FtGNh2akU4mNPM\nOIw6kU1Sm/CHynnkzMUm/Hthnrzps0SPjDEurHsQsExqReZODclh1Iks2xjjyIPstKeVQUtahAEA\nOCn1I7DphEMAAAAAjQmH4BSs/nBSYwwt5QDQmA50DqJOZBMIhwAAAAAaEw7BKVn9AQDgpNSQwCYS\nDgEAAAA0dm7dA4C52135cZ4wAADHtaoa8rhdSmrZ9dv9b6CzjHXQOQQAAADQmM4hWJBrE/5lrr6c\nZDXBKtBmsSIEAOy1tyZYRN122hpDNzz0JhyCJdm0N/pFjgUAgMU7S0CzqIUnIdH6WUxkHZxWBgAA\nANCYziFYgbN07yx6xcBqEADAZjtJ7bis7hI1I/SicwgAAACgMZ1DsAb7rfBcuyqz7HOMq8pKEADA\nDOzXxeN6NMAi6RwCAAAAaEznEGwIqz8AABxmHfWiaw+tzxjD/yOwMjqHAAAAABoTDgEAAAA0JhwC\nAAAAaEw4BI1VlfOY12SM4dx9AABgIwiHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACg\nMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaOzcugcAAADAZhpjrHsI\nwAroHAIAAABoTOcQNGYlCAAAAJ1DAAAAAI0Jh6ApXUMAAAAkwiEAAACA1lxzCAAAgJfQZQ696BwC\nAAAAaEw4BAAAANCY08qgGS3CAAAwD7u1e1WteSRsO51DAAAAAI0Jh6CZqrLyAAAAwO8JhwAAAAAa\nEw4BAAAANCYcAgAAAGhMOAQAAMBLuE4l9CIcAgAAAGhMOARNWQkCAAAgSc6tewDA+uwGRGOMNY8E\nAIBNdO2CoroRtpPOIQAAAIDGdA4BAABwLMe5NIHuIpgfnUMAAAAAjQmHgGPdqtTtTAEAOA41I8yP\ncAgAAACgMdccAn7vOKs87nAGAACwXXQOAQAAADQmHAIAAGChXK8S5kU4BAAAANCYcAgAAACgMeEQ\ncCpahQEAALaDcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABo7t+4BAAAAsJ127247\nxljzSObJ3YFZFZ1DAAAAAI0Jh4AzqSorGgAAADMmHAIAAABoTDgEAAAA0JhwCAAAgKVyKYKTM1+s\nknAIAAAAoDG3sgcAAIA10ynEOukcAgAAAGhM5xDAClkRAgDoTT3IJtI5BAAAANCYziEAAABWYrdr\nZoyx5pEsl+4g5kbnEAAAAEBjOocAVsDqEQDAdlPvMWfCIeBMtr0l+KwUCQAA20mdxzZxWhkAAABA\nY0eGQ1V1b1U9X1WP79n26ar6eVU9On28Z8/XPlFVV6rqx1X1rmUNHGBTVdXvPwC2nVoR6EadxzY6\nTufQfUlu22f734wxbp0+vpkkVfXmJLcn+dPpNX9bVdctarAAAGyc+6JWBIBZOzIcGmN8J8kvjvn9\nLib5yhjjt2OMnya5kuRtZxgfsKHGGK43dA2rSEBHakVg2+3tClfrsa3Ocs2hj1bVY1Mr8fXTtpuS\nPL1nn6vTtpepqktVdbmqLp9hDAAAbCa1IgDMxGnDobuTvCnJrUmeTfKZaft+Meq+rQVjjHvGGBfG\nGBdOOQaAjWAVCeBl1IrAoeZSP81hjLAIpwqHxhjPjTFeHGP8Lsnn84d24KtJbtmz681JnjnbEAEA\nmBO1IgDMy6nCoaq6cc+n70uye3eKB5PcXlWvrKo3Jjmf5PtnGyKwSVxraIfzzgEOplYEjmvTainX\nF6Krc0ftUFVfTvLOJK+rqqtJPpXknVV1a3bagJ9K8pEkGWM8UVUPJPlRkheS3DnGeHE5QwcAYN3U\nigAwf7UJHQBVtf5BAMeyCX8z1skKEhvoEddkYdupFWG7rbO+VNvRwRjjyAP9yM4hgKRvKKRgAABY\nnGtrynXWWuo8+IOz3MoeAAAAgJnTOQSwDytJAACrcVDdtazOdXUevJzOIQAAAIDGdA4Bh+p2rSEr\nSQAAy3ecmuskdVm3mhUWTecQAAAAQGM6hwAmuoYAAJZrWfXW3u97UBeRWg8OpnMIAAAAoDGdQ0B7\nVpEAALaH2g5OTjgEtKNgAAAA+AOnlQEAAAA0pnMIaEG3EAAAwP50DgEAAAA0pnMIONRux81BtwTd\nNDqEAAAATkbnEAAAAEBjOoeAWdMpBAAAcDY6hwAAAAAa0zkEzI5uIQAAgMXROQQAAADQmM4hYDZ0\nDAEAACyecAjYeEIhAACA5XFaGQAAAEBjOoeAjaVjCAAAYPl0DgEAAAA0pnMI2Ci6hQAAAFZL5xAA\nAABAYzqHgI2gYwgAAGA9dA4BAAAANCYcAgAAAGjMaWXAocYYS/3+TicDAABYL51DAAAAAI3pHALW\nQscQAADAZtA5BAAAANCYziHgULsdPou69pCOIQAAgM2icwgAAACgMeEQsDK6hgAAADaPcAgAAACg\nMdccAo7lJNce0iEEAAAwHzqHAAAAABrTOQScyLVdQbudRLqFAAAA5kk4BJyJUAgAAGDenFYGAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA\n0NiR4VBV3VJV366qJ6vqiar62LT9tVX1rar6yfR4/bS9qupzVXWlqh6rqrcu+5cAAGA91IoAMH/H\n6Rx6IclfjTH+JMnbk9xZVW9OcleSh8YY55M8NH2eJO9Ocn76uJTk7oWPGgCATaFWBICZOzIcGmM8\nO8b4wfT810meTHJTkotJ7p92uz/Je6fnF5N8cez4bpLXVNWNCx85AABrp1YEgPk70TWHquoNSd6S\n5HtJbhhjPJvsFAVJXj/tdlOSp/e87Oq07drvdamqLlfV5ZMPGwCATaNWBIB5OnfcHavqVUm+muTj\nY4xfVdWBu+6zbbxswxj3JLln+t4v+zoAAPOhVgSA+TpW51BVvSI7b/ZfGmN8bdr83G4L8PT4/LT9\napJb9rz85iTPLGa4AABsGrUiAMzbce5WVkm+kOTJMcZn93zpwSR3TM/vSPKNPds/ON2J4u1Jfrnb\nUgwAwHZRKwLA/NUYh3fpVtV/SPI/kvwwye+mzZ/MzrnkDyT5t0l+luT9Y4xfTAXCf0lyW5LfJPnQ\nGOPQc8W1CgPAqT0yxriw7kHQl1oRADbbGOPAc713HRkOrYI3fAA4NeEQW0+tCACnd5xw6ER3KwMA\nAABguwiHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMA\nAAAAjQmHAAAAABo7Mhyqqluq6ttV9WRVPVFVH5u2f7qqfl5Vj04f79nzmk9U1ZWq+nFVvWuZvwAA\nAOujVgSA+asxxuE7VN2Y5MYxxg+q6tVJHkny3iR/keT/jDH+8zX7vznJl5O8Lcm/SfLfk/z7McaL\nh/yMwwcBABzkkTHGhXUPgr7UigCw2cYYddQ+R3YOjTGeHWP8YHr+6yRPJrnpkJdcTPKVMcZvxxg/\nTXIlO2/+AABsGbUiAMzfia45VFVvSPKWJN+bNn20qh6rqnur6vpp201Jnt7zsqvZp0CoqktVdbmq\nLp941AAAbBy1IgDM07HDoap6VZKvJvn4GONXSe5O8qYktyZ5Nslndnfd5+UvawUeY9wzxrigFR4A\nYP7UigAwX8cKh6rqFdl5s//SGONrSTLGeG6M8eIY43dJPp8/tANfTXLLnpffnOSZxQ0ZAIBNolYE\ngHk7zt3KKskXkjw5xvjsnu037tntfUken54/mOT2qnplVb0xyfkk31/ckAEA2BRqRQCYv3PH2Ocd\nSf4yyQ+r6tFp2yeTfKCqbs1OG/BTST6SJGOMJ6rqgSQ/SvJCkjsPu/sEAACzplYEgJk78lb2KxmE\n25MCwGm5lT1bT60IAKe3kFvZAwAAALC9hEMAAAAAjQmHAAAAABoTDgEAAAA0dpy7la3CvyT5v9Mj\ny/e6mOtVMderY65XwzyvznHn+t8teyCwAdSKq+Vv/eqY69Ux16thnldnobXiRtytLEmq6rK7rayG\nuV4dc7065no1zPPqmGt4Kf8mVsdcr465Xh1zvRrmeXUWPddOKwMAAABoTDgEAAAA0NgmhUP3rHsA\njZjr1THXq2OuV8M8r465hpfyb2J1zPXqmOvVMderYZ5XZ6FzvTHXHAIAAABg9TapcwgAAACAFRMO\nAQAAADS2EeFQVd1WVT+uqitVdde6x7NNquqpqvphVT1aVZenba+tqm9V1U+mx+vXPc45qqp7q+r5\nqnp8z7Z957Z2fG46xh+rqreub+Tzc8Bcf7qqfj4d249W1Xv2fO0T01z/uKretZ5Rz1NV3VJV366q\nJ6vqiar62LTdsb1Ah8yz4xr2oVZcHrXi8qgVV0etuDpqxdVYR6249nCoqq5L8l+TvDvJm5N8oKre\nvN5RbZ0/G2PcOsa4MH1+V5KHxhjnkzw0fc7J3Zfktmu2HTS3705yfvq4lOTuFY1xW9yXl891kvzN\ndGzfOsb4ZpJMfz9uT/Kn02v+dvo7w/G8kOSvxhh/kuTtSe6c5tSxvVgHzXPiuIaXUCuuhFpxOe6L\nWnFV7otacVXUiqux8lpx7eFQkrcluTLG+Ocxxv9L8pUkF9c8pm13Mcn90/P7k7x3jWOZrTHGd5L8\n4prNB83txSRfHDu+m+Q1VXXjakY6fwfM9UEuJvnKGOO3Y4yfJrmSnb8zHMMY49kxxg+m579O8mSS\nm+LYXqhD5vkgjms6UyuunlpxAdSKq6NWXB214mqso1bchHDopiRP7/n8ag7/pTmZkeQfq+qRqro0\nbbthjPFssnPQJXn92ka3fQ6aW8f5cnx0ak+9d0/Lu7lekKp6Q5K3JPleHNtLc808J45ruJbjf7nU\niqvl/XS1vKcukVpxNVZVK25COFT7bBsrH8X2escY463Zaee7s6r+47oH1JTjfPHuTvKmJLcmeTbJ\nZ6bt5noBqupVSb6a5ONjjF8dtus+28z3Me0zz45reDnH/3KpFTeD43zxvKcukVpxNVZZK25COHQ1\nyS17Pr85yTNrGsvWGWM8Mz0+n+Tr2Wkte263lW96fH59I9w6B82t43zBxhjPjTFeHGP8Lsnn84e2\nSXN9RlX1iuy8CX1pjPG1abNje8H2m2fHNezL8b9EasWV8366It5Tl0etuBqrrhU3IRx6OMn5qnpj\nVf1Rdi6i9OCax7QVquqPq+rVu8+T/HmSx7Mzv3dMu92R5BvrGeFWOmhuH0zywelq/W9P8svdtktO\n55pzld+XnWM72Znr26vqlVX1xuxc/O77qx7fXFVVJflCkifHGJ/d8yXH9gIdNM+Oa9iXWnFJ1Ipr\n4f10RbynLodacTXWUSueO9uQz26M8UJVfTTJPyS5Lsm9Y4wn1jysbXFDkq/vHFc5l+Tvxhh/X1UP\nJ3mgqj6c5GdJ3r/GMc5WVX05yTuTvK6qrib5VJK/zv5z+80k78nOhcF+k+RDKx/wjB0w1++sqluz\n0y75VJKPJMkY44mqeiDJj7Jzlf87xxgvrmPcM/WOJH+Z5IdV9ei07ZNxbC/aQfP8Acc1vJRacanU\nikukVlwdteJKqRVXY+W1Yo3hdD8AAACArjbhtDIAAAAA1kQ4BAAAANCYcAgAAACgMeEQAAAAQGPC\nIQAAAIDGhEMAAAAAjQmHAAAAABr7/9C8BmabobOeAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef0bea9e8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGgZJREFUeJzt3U+I7XeZ5/HPM4ntohWMOAmZJDMG\nuQOd3kS5hIDDkF5MG7O5cWETF20Q4bpIQKE30Y0uezHaIDMdiBgSwTYTUDEL6W4nCM5GzY2EmJjJ\neGkz5pqQ0DioM4JD4jOL+t2xktT9k7p1zqlTz+sFRZ363VNV3/vll3se3vmdc6q7AwAAAMBM/2LT\nCwAAAABgc8QhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwVYWh6rq1qp6\ntqpOV9U9q/o9AABsH7MiABwe1d0H/0OrLkvyP5L8hyRnkjyW5CPd/ZMD/2UAAGwVsyIAHC6Xr+jn\n3pTkdHf/U5JU1UNJTiTZ8wG/qg6+UAHADP/c3f9y04uAN8msCABr0t11ofus6mll1yR5ftfXZ5Zj\n/19VnayqU1V1akVrAIAJ/uemFwD7YFYEgENkVVcO7VWlXvN/fLr7viT3Jf5vEADAMGZFADhEVnXl\n0Jkk1+36+tokL6zodwEAsF3MigBwiKwqDj2W5FhVXV9Vf5TkjiSPrOh3AQCwXcyKAHCIrORpZd39\nSlXdneQfklyW5P7ufnoVvwsAgO1iVgSAw2Ulb2X/phfheeQAsF+Pd/fxTS8CVsmsCAD7t8l3KwMA\nAABgC4hDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDXX4p31xV\nzyX5TZJXk7zS3cer6p1J/kuSdyd5LslfdPf/urRlAgCwbcyKALAdDuLKoT/r7hu7+/jy9T1JHu3u\nY0keXb4GAGAmsyIAHHKreFrZiSQPLrcfTHL7Cn4HAADbyawIAIfMpcahTvKPVfV4VZ1cjl3V3S8m\nyfL5ykv8HQAAbCezIgBsgUt6zaEk7+/uF6rqyiTfqar/frHfuAwIJy94RwAAtpVZEQC2wCVdOdTd\nLyyfX07yzSQ3JXmpqq5OkuXzy+f43vu6+/iu558DAHCEmBUBYDvsOw5V1R9X1dvP3k7y50meSvJI\nkjuXu92Z5FuXukgAALaLWREAtselPK3sqiTfrKqzP+fvuvvvq+qxJA9X1ceT/DzJhy99mQAAbBmz\nIgBsieruTa8hVbX5RQDAdnrc02446syKALB/3V0Xus8q3soeAAAAgC0hDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAx2wThUVfdX1ctV9dSuY++squ9U\n1U+Xz1csx6uqvlhVp6vqyap63yoXDwDAZpkVAWD7XcyVQw8kufV1x+5J8mh3H0vy6PJ1knwwybHl\n42SSew9mmQAAHFIPxKwIAFvtgnGou7+X5JevO3wiyYPL7QeT3L7r+Fd6x/eTvKOqrj6oxQIAcLiY\nFQFg++33NYeu6u4Xk2T5fOVy/Jokz++635nl2BtU1cmqOlVVp/a5BgAADiezIgBskcsP+OfVHsd6\nrzt2931J7kuSqtrzPgAAHClmRQA4hPZ75dBLZy8BXj6/vBw/k+S6Xfe7NskL+18eAABbyKwIAFtk\nv3HokSR3LrfvTPKtXcc/urwTxc1JfnX2kmIAAMYwKwLAFrng08qq6mtJbknyrqo6k+SzSf46ycNV\n9fEkP0/y4eXu305yW5LTSX6b5GMrWDMAAIeEWREAtl91b/4p3J5HDgD79nh3H9/0ImCVzIoAsH/d\nvddr/r3Gfp9WBgAAAMARIA4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4B\nAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEA\nAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAA\nAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAA\nDCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAM\nJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwm\nDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYOAQAAAAwmDgEAAAAMJg4BAAAADCYO\nAQAAAAwmDgEAAAAMdsE4VFX3V9XLVfXUrmOfq6pfVNUTy8dtu/7s01V1uqqeraoPrGrhAABsnlkR\nALbfxVw59ECSW/c4/jfdfePy8e0kqaobktyR5E+X7/nbqrrsoBYLAMCh80DMigCw1S4Yh7r7e0l+\neZE/70SSh7r7d939sySnk9x0CesDAOAQMysCwPa7lNccuruqnlwuJb5iOXZNkud33efMcuwNqupk\nVZ2qqlOXsAYAAA4nsyIAbIn9xqF7k7wnyY1JXkzy+eV47XHf3usHdPd93X28u4/vcw0AABxOZkUA\n2CL7ikPd/VJ3v9rdv0/ypfzhcuAzSa7bdddrk7xwaUsEAGCbmBUBYLvsKw5V1dW7vvxQkrPvTvFI\nkjuq6q1VdX2SY0l+eGlLBABgm5gVAWC7XH6hO1TV15LckuRdVXUmyWeT3FJVN2bnMuDnknwiSbr7\n6ap6OMlPkryS5K7ufnU1SwcAYNPMigCw/ap7z6d5r3cRVZtfBABsp8e9JgtHnVkRAPavu/d6zb/X\nuJR3KwMAAABgy4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJ\nQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lD\nAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMA\nAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAA\nAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAA\nAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAA\ng4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACDiUMAAAAAg4lDAAAAAIOJQwAAAACD\niUMAAAAAg10wDlXVdVX13ap6pqqerqpPLsffWVXfqaqfLp+vWI5XVX2xqk5X1ZNV9b5V/yUAANgM\nsyIAbL+LuXLolSR/1d1/kuTmJHdV1Q1J7knyaHcfS/Lo8nWSfDDJseXjZJJ7D3zVAAAcFmZFANhy\nF4xD3f1id/9ouf2bJM8kuSbJiSQPLnd7MMnty+0TSb7SO76f5B1VdfWBrxwAgI0zKwLA9ntTrzlU\nVe9O8t4kP0hyVXe/mOwMBUmuXO52TZLnd33bmeXY63/Wyao6VVWn3vyyAQA4bMyKALCdLr/YO1bV\n25J8PcmnuvvXVXXOu+5xrN9woPu+JPctP/sNfw4AwPYwKwLA9rqoK4eq6i3ZebD/and/Yzn80tlL\ngJfPLy/HzyS5bte3X5vkhYNZLgAAh41ZEQC228W8W1kl+XKSZ7r7C7v+6JEkdy6370zyrV3HP7q8\nE8XNSX519pJiAACOFrMiAGy/6j7/VbpV9e+S/LckP07y++XwZ7LzXPKHk/zrJD9P8uHu/uUyIPyn\nJLcm+W2Sj3X3eZ8r7lJhANi3x7v7+KYXwVxmRQA43Lr7nM/1PuuCcWgdPOADwL6JQxx5ZkUA2L+L\niUNv6t3KAAAAADhaxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACA\nwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDB\nxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHE\nIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQh\nAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEA\nAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAA\nAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAAgMHEIQAAAIDBxCEAAACAwcQhAAAA\ngMHEIQAAAIDBLhiHquq6qvpuVT1TVU9X1SeX45+rql9U1RPLx227vufTVXW6qp6tqg+s8i8AAMDm\nmBUBYPtVd5//DlVXJ7m6u39UVW9P8niS25P8RZL/3d3/8XX3vyHJ15LclORfJfmvSf5td796nt9x\n/kUAAOfyeHcf3/QimMusCACHW3fXhe5zwSuHuvvF7v7Rcvs3SZ5Jcs15vuVEkoe6+3fd/bMkp7Pz\n4A8AwBFjVgSA7femXnOoqt6d5L1JfrAcuruqnqyq+6vqiuXYNUme3/VtZ7LHgFBVJ6vqVFWdetOr\nBgDg0DErAsB2uug4VFVvS/L1JJ/q7l8nuTfJe5LcmOTFJJ8/e9c9vv0NlwJ3933dfdyl8AAA28+s\nCADb66LiUFW9JTsP9l/t7m8kSXe/1N2vdvfvk3wpf7gc+EyS63Z9+7VJXji4JQMAcJiYFQFgu13M\nu5VVki8neaa7v7Dr+NW77vahJE8ttx9JckdVvbWqrk9yLMkPD27JAAAcFmZFANh+l1/Efd6f5C+T\n/LiqnliOfSbJR6rqxuxcBvxckk8kSXc/XVUPJ/lJkleS3HW+d58AAGCrmRUBYMtd8K3s17IIb08K\nAPvlrew58syKALB/B/JW9gAAAAAcXeIQAAAAwGDiEAAAAMBg4hAAAADAYBfzbmXr8M9J/s/ymdV7\nV+z1utjr9bHX62Gf1+di9/rfrHohcAiYFdfLv/XrY6/Xx16vh31enwOdFQ/Fu5UlSVWd8m4r62Gv\n18der4+9Xg/7vD72Gl7LfxPrY6/Xx16vj71eD/u8Pge9155WBgAAADCYOAQAAAAw2GGKQ/dtegGD\n2Ov1sdfrY6/Xwz6vj72G1/LfxPrY6/Wx1+tjr9fDPq/Pge71oXnNIQAAAADW7zBdOQQAAADAmolD\nAAAAAIMdijhUVbdW1bNVdbqq7tn0eo6Sqnquqn5cVU9U1anl2Dur6jtV9dPl8xWbXuc2qqr7q+rl\nqnpq17E997Z2fHE5x5+sqvdtbuXb5xx7/bmq+sVybj9RVbft+rNPL3v9bFV9YDOr3k5VdV1Vfbeq\nnqmqp6vqk8tx5/YBOs8+O69hD2bF1TErro5ZcX3MiutjVlyPTcyKG49DVXVZkv+c5INJbkjykaq6\nYbOrOnL+rLtv7O7jy9f3JHm0u48leXT5mjfvgSS3vu7Yufb2g0mOLR8nk9y7pjUeFQ/kjXudJH+z\nnNs3dve3k2T59+OOJH+6fM/fLv/OcHFeSfJX3f0nSW5Octeyp87tg3WufU6c1/AaZsW1MCuuxgMx\nK67LAzErrotZcT3WPituPA4luSnJ6e7+p+7+v0keSnJiw2s66k4keXC5/WCS2ze4lq3V3d9L8svX\nHT7X3p5I8pXe8f0k76iqq9ez0u13jr0+lxNJHuru33X3z5Kczs6/M1yE7n6xu3+03P5NkmeSXBPn\n9oE6zz6fi/OaycyK62dWPABmxfUxK66PWXE9NjErHoY4dE2S53d9fSbn/0vz5nSSf6yqx6vq5HLs\nqu5+Mdk56ZJcubHVHT3n2lvn+WrcvVyeev+uS97t9QGpqncneW+SH8S5vTKv2+fEeQ2v5/xfLbPi\nenk8XS+PqStkVlyPdc2KhyEO1R7Heu2rOLre393vy87lfHdV1b/f9IKGcp4fvHuTvCfJjUleTPL5\n5bi9PgBV9bYkX0/yqe7+9fnuuscx+32R9thn5zW8kfN/tcyKh4Pz/OB5TF0hs+J6rHNWPAxx6EyS\n63Z9fW2SFza0liOnu19YPr+c5JvZubTspbOX8i2fX97cCo+cc+2t8/yAdfdL3f1qd/8+yZfyh8sm\n7fUlqqq3ZOdB6Kvd/Y3lsHP7gO21z85r2JPzf4XMimvn8XRNPKaujllxPdY9Kx6GOPRYkmNVdX1V\n/VF2XkTpkQ2v6Uioqj+uqrefvZ3kz5M8lZ39vXO5251JvrWZFR5J59rbR5J8dHm1/puT/OrsZZfs\nz+ueq/yh7Jzbyc5e31FVb62q67Pz4nc/XPf6tlVVVZIvJ3mmu7+w64+c2wfoXPvsvIY9mRVXxKy4\nER5P18Rj6mqYFddjE7Pi5Ze25EvX3a9U1d1J/iHJZUnu7+6nN7yso+KqJN/cOa9yeZK/6+6/r6rH\nkjxcVR9P8vMkH97gGrdWVX0tyS1J3lVVZ5J8NslfZ++9/XaS27LzwmC/TfKxtS94i51jr2+pqhuz\nc7nkc0k+kSTd/XRVPZzkJ9l5lf+7uvvVTax7S70/yV8m+XFVPbEc+0yc2wftXPv8Eec1vJZZcaXM\niitkVlwfs+JamRXXY+2zYnV7uh8AAADAVIfhaWUAAAAAbIg4BAAAADCYOAQAAAAwmDgEAAAAMJg4\nBAAAADCYOAQAAAAwmDgEAAAAMNj/A/uGAV5bTX1oAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef0e661d0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuQZWddN/rv0z3dM5PEIHlzEpMQ\nTCA5kWBxM5VCOSLx5BDA0qDCGxAxWkhiFalCRUtAC7Cso1YpvAUll0qAGlIm5iCCUiXKi8hbgsUl\nCZcQbicTEmCYQIIcAuQy05fn/NF79dx7eqZ777X3fj6fqqnuXr16+pm11+z1W7/1e35PqbUGAAAA\ngDbN9D0AAAAAAPojOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwCAAAAaNjQ\nkkOllGeVUr5SStlZSnnlsH4PAACTR6wIAOOj1Fo3/y8tZTbJ/5vk/0qyK8nNSV5Ya/3ipv8yAAAm\nilgRAMbLliH9vRcn2Vlr/WqSlFJuSnJ5ksNe8Espm5+hAoA2fKfW+r/1PQg4RmJFABiRWms52j7D\nmlZ2VpJv7Pf1rsG2VaWUq0opt5RSbhnSGACgBV/rewBwHMSKADBGhlU5dLis1AFPfGqt1ya5NvE0\nCACgMWJFABgjw6oc2pXk7P2+flSS3UP6XQAATBaxIgCMkWElh25Ocn4p5dxSynySFyR5/5B+FwAA\nk0WsCABjZCjTymqti6WUa5J8MMlsknfWWr8wjN8FAMBkESsCwHgZylL2xzwI88gB4HjdWmu9qO9B\nwDCJFQHg+PW5WhkAAAAAE0ByCAAAAKBhkkMAAAAADZMcAgAAAGiY5BAAAABAwySHAAAAABomOQQA\nAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwCAAAAaJjkEAAAAEDDJIcAAAAAGiY5\nBAAAANAwySEAAACAhkkOAQAAADRMcggAAACgYZJDAAAAAA2THAIAAABomOQQAAAAQMMkhwAAAAAa\nJjkEAAAA0DDJIQAAAICGSQ4BAAAANExyCAAAAKBhkkMAAAAADZMcAgAAAGiY5BAAAABAwySHAAAA\nABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwCAAAAaJjkEAAAAEDDJIcA\nAAAAGiY5BAAAANAwySEAAACAhkkOAQAAADRMcggAAACgYZJDAAAAAA2THAIAAABomOQQAAAAQMMk\nhwAAAAAaJjkEAAAA0DDJIQAAAICGSQ4BAAAANExyCAAAAKBhkkMAAAAADZMcAgAAAGiY5BAAAABA\nwySHAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwC2KBSSkopfQ8D\nAADguEgOAQAAADRsS98DAFivg6tzZmZmsmXLlgO+9/DDD49sPN3vnp+fT5I8+OCDB2xfXFxc3Xdu\nbi7JypiTZGFhIUlSaz3gIwAAwKipHAIAAABomMohYOx1lTgnnnhikuTnf/7nkyTve9/78tWvfjVJ\n8spXvjJJcuONN27od3XVPt3vXMu3vvWtJMl73vOeJMk111yTJKtjesxjHrO67+23354kefvb354k\nueGGG5IkP/jBD5KsVA4dXE10sFKKCiMAgHWa1LhJL0v6oHIIAAAAoGFlHLKppZT+BwH0qntCcrj3\npJ/6qZ9KkuzYsSPJvoqcrtdPkiwtLSVJtm7dOsxhHmB5eTnJvjHPzs4eMJbu6/23dZVJ3Tg/+tGP\nJkne+ta35u///u8P2KfTHZv5+fns2bNn8/8hTLpba60X9T0IGCaxInCwcbiP7YOqIo5HrfWoJ47K\nIQAAAICGqRwCenXSSSclSc4777wkyWc+85lD9lmrB8+k66qElpaWjlj19P3vfz9J8rKXvSx/+7d/\nm+TwK6LRLJVDTD2xIrRtHO5ZJ8E0xMYMx3oqhySHgF59/vOfT5JccMEFSfYt+d6aWusRL+jd+/Th\nvi8IIJJDNECsCG0Zh3vUaSBOpGNaGQAAAABrspQ9MDLbt29ffYLxwAMPJNnXqHlmpu1c9VpPdg73\nvYObYe+/rylnAMAkUSk0HIc7rqqJOJK278YAAAAAGic5BAzNli1bVqtYkuRv/uZv8sADD6xWDSUr\ny73Pzs6mlOJJxjGYmZk5bLVVrTUvfvGL8+IXv7iHUQEAHBtVQ6NVa3XMOSzJIQAAAICGWa0M2BSl\nlEOeQrzqVa9Kkvz5n/95kpUeOLOzs6v7MxwPPvhgkuSEE05Isu9Y60U0taxWxtQTK8L0GYf7UPYR\nm083q5UBAAAAsCarlQEb0j1l2LZtWx566KEk+54E3X///Qfs2/UWYri2b99+wNfd6+HYAwB9UzE0\nnsSLqBwCAAAAaJjkELAh8/PzmZ+fz6//+q8fsvrBySefnJNPPnn1a08iRuPgld+61+Xg12fbtm19\nDA8AaJBVsiaD16hdppUBG/Kd73wnyYEX/C4xIRk0Hg5+HZaXl5MkF198cW655ZY+hgQATDlJhsl1\n8Gsnpm+DyiEAAACAhm2ocqiUcneSHyRZSrJYa72olHJKkv8nyTlJ7k7y32ut/9/Ghgn0rVuCfmlp\nKUly8803J0lOPPHEJJ4oTJLutbr55pvz3Oc+N0nyz//8z0kscw9sLrEitEnV0HTRrLoNm1E5dEmt\n9Um11osGX78yyYdrrecn+fDgawAA2iRWBIAxVzaS1R08Dbqo1vqd/bZ9Jckzaq33lFLOSPK/aq0X\nHOXvkVqGMVRKWX1S8LnPfS5J8oQnPKHPIbHJHn744ST7KsEuu+yyJMlDDz3U25g4Zrfud9MNY0Ws\nCG1QKdQWFUSTp9Z61Bdto5VDNcn/LKXcWkq5arDt9FrrPYMB3JPktA3+DgAAJpNYEQAmwEZXK3ta\nrXV3KeW0JB8qpXx5vT84CBCuOuqOwMiddNJJSZKtW7eurkbWVZgwXbZu3Zok+dmf/dkkyZlnnpkk\nufPOO5McWD0GcBzEijDFxAht0oNoOm2ocqjWunvw8d4k70tycZJvD0qEM/h47xF+9tpa60VK4QEA\nppNYEQAmw3Enh0opJ5ZSfqT7PMkzk9ye5P1JrhzsdmWSf9roIIHR2rFjR3bs2JH77rtvddvWrVtX\nq0yYHqWUA5767Ny5Mzt37syll16aSy+9NHNzc4fsA7AeYkWYXrVWVUM4B6bMcTekLqU8JitPgJKV\n6Wk31lr/71LKf0vy7iSPTvL1JM+vtX73KH+XswrGQPd+sHfv3iRZTQzQLq//RNCQmrEkVoTpJCHA\n4YgZx9t6GlJvaLWyzeKCD+NBcoiDef0nguQQU0+sCONjHO4fGT9ixvG2nuTQRhtSAxOqlJL5+fkk\nyUc+8pEk+5JC3Xaota5e7LuPgkIAaI/rP2vRpHrybXQpewAAAAAmmMohaNiWLStvAT/90z/d80gY\nVw8//HBe9apXJUn++q//OkmysLDQ55AAAIBNpnIIAAAAoGEaUkPDvvzlLydJHvvYxyZJZmdnk5gr\nzIG+973vJUlOP/30JPt6UzE2NKRm6okVoT/jcL/I5HE/MV7W05Ba5RAAAABAw/QcgsZs3bo1SfLv\n//7vueCCC3oeDeOu1rram+ov//IvkySveMUrVr8HAEwn13loi8ohAAAAgIbpOQSNGof/+0yW7pyZ\nmfFcYczoOcTUEyvC6IkV2Qx6D42H9fQcMq0MgHXpgsTf+Z3fSZK87W1v63M4AMAQSApBmzz+BQAA\nAGiYaWXQiG4q0GmnnZYkueeee/ocDlNAmfDYMK2MqSdWhNEZh/tDpo+4sV+WsgcAAABgTXoOwZSb\nnZ1NkjziEY9IomKIjXvooYeSJD/3cz+XJPnoRz+aJFleXu5tTAAAwPFTOQQAAADQMJVDMOWWlpaS\nJOeff36SfdUdpRRzfzkuW7duTZL8y7/8S5LkxBNP7HM4AMAm0GsI2qZyCAAAAKBhKoegEZ/85CeT\n7Fu1DI5XV312/fXXJ0lOOOGEJMmDDz7oqSMAAIeotZq1MOYsZQ9TrmtI/bSnPS1J8qEPfShJMj8/\n39uYmC4u9L2zlD1TT6wIwzcO94VMNzFjfyxlDwAAAMCaTCuDKdc1pH7jG994wHalnRyv7snifffd\nlyTZsmXlUrK4uNjbmAAAgOOncggAAACgYSqHYMp1VR7dR9VCbFR3Dp122mlJVAwBwKTTbwhQOQQA\nAADQMJVD0AgVQwAAAByOyiEAAACAhkkOAQAAADRMcggAAACgYXoOwRQqpWTbtm1JrFIGAADA2iSH\nYArNzs7mRS96UZLkgQceSJKceOKJSSSJAACA0XIPMv5MKwMAAABoWOmmnPQ6iFL6HwRMqXH4P850\nWVpaSpLccccdSZInPOEJSZKFhYXextS4W2utF/U9CBgmsSIMl3iRYVM51K9a61FfAJVDAAAAAA3T\ncwimXFflMTs72/NImHTdU8XFxcUkyTve8Y4kyczMynOGUoonjwAAMIFUDgEAAAA0TOUQTKFSymql\n0L/9278lSS677LI+h8QU6OaKb9mycum46aabkuzrNaRqCAAmk+pfQOUQAAAAQMNUDsEUqrWu9oXp\nqjsuvfTSJHoPsXHdk8Wrr746SfKa17ymz+EAAAAbpHIIAAAAoGEqh2DK/eM//mOS5O1vf3vPI2HS\ndRVD3Qp4X/va15Ikc3NzSZK9e/f2MzAAAMZS17OS8VfGofFYKaX/QcCUG4f/60yH5eXlJMkjHvGI\nJMkDDzyQxDnWo1trrRf1PQgYJrEijI7rOZtJcmg81FqP+kKYVgYAAADQMNPKoBFd1t7TIDZqZmbl\nucIPf/jDnkcCAABsBpVDAAAAAA2THAIAAABomOQQAAAAQMP0HIIp1/Ua6pYb/8AHPpAkufTSSzM/\nP9/buJh83Tm1uLiYRD8rAJgG+lRCm1QOAQAAADSsjENGuJTS/yCgMYuLi5mdne17GEyw7skivbu1\n1npR34OAYRIrwuiNw30ik0+8OB5qrUd9IVQOQaPuvvvuvocAAMCYKqW4sYeGSA4BAAAANExDamjU\neeedp1yYY9KdLw8//HDPIwEAADaTyiEAAACAhqkcgkbNz8/nW9/6VpLklFNOWd0GR9L1Hdi+fXvP\nIwEAADaTyiEAAACAhqkcgkbt3bs3Z5xxRpKVZe1hvR566KEkydOe9rQkyac+9akkycLCQm9jAgCG\no6sc1qsSppvKIQAAAICGlXHIAJdS+h8ENGhmZiU/fOeddyZJzjnnnB5Hw6Torhvdk8TuPBqH60mj\nbq21XtT3IGCYxIrQP9d5jkcXL9KvWutRXwiVQwAAAAAN03MIGra8vJwkOffcc5N4IsT6HPwEyHkD\nANNP7yGYbiqHAAAAABomOQQAAADQMNPKgMzOziZJXv7ylydJ/uIv/iJJsn37dk3kOKJuWmLX0Py8\n885Tag4AABNI5RAAAABAwyxlDxxiHN4XGF/d+bF3794kyY4dO5KsVJ5125xDI2Upe6aeWBHGi+s8\n62UWwniwlD0AAAAAa9JzCIBj0j0B6j52lUOLi4ueJAIAwARSOQQAAADQMD2HgFVbt25Nkjz/+c9P\nklx33XXZtm1bn0NijC0tLSVJPvaxjyVJLrnkEpVD/dBziKknVoTx4nrPeuk5NB7W03PItDJg1Z49\ne5IkMzMrRYXz8/N9Docx1QWEi4uLSZJPf/rTSZK5ubksLCwcsA8AMH26G37Xe46mO0ckicafaWUA\nAAAADTOtDDjEKaeckiS57777VquI4EjuuuuuJMljHvOYnkfSLNPKmHpiRRhP43AvyWRQOdQvS9kD\nAAAAsCY9h4BDfPe7300SVUOsqWtI3T013LJly2ofIgAAYHK48wMAAABomMoh4BDdKmU333xznvzk\nJydZqQqB5NDVym688cYkK5VmVi8BgHa47sP0UDkEAAAA0DClAMAhFhYWkiTPf/7zc9tttyVJTj75\n5D6HxBjpnhJu3bo1SfL0pz89SbJ3797exgQAABw/lUMAAAAADVM5BBzRt771rdx8881JkksuuSSJ\nFczYp1ut7JRTTkmSzM3NrVadAQAAk0NyCDhE11Rwz549ufTSSw/YBp3Z2dkDPi4sLGhMCQANcv2H\nyacEAAAAAKBhR00OlVLeWUq5t5Ry+37bTimlfKiUcsfg4yMH20sp5U2llJ2llNtKKU8Z5uCB0bn7\n7rtz99139z0MxtDjHve4PO5xj0uy8sTQU0Noi1gRgKMRH46/9VQO7UjyrIO2vTLJh2ut5yf58ODr\nJHl2kvMHf65K8tbNGSYAAGNqR8SKADDRjpocqrX+R5LvHrT58iTvGnz+riTP3W/79XXFJ5L8aCnl\njM0aLNCfc889N+eee27fwwBgzIgVAWDyHW/PodNrrfckyeDjaYPtZyX5xn777RpsO0Qp5apSyi2l\nlFuOcwwAAIwnsSIATJDNXq2sHGbbYScX1lqvTXJtkpRSTEAEAJh+YkWYYt2qZYkeMzBpjrdy6Ntd\nCfDg472D7buSnL3ffo9Ksvv4hwcAwAQSKwLABDne5ND7k1w5+PzKJP+03/bfGKxE8dQk93clxcBk\nmp2dzezsbM4777ycd955WVhYyMLCQt/DYowsLi5mcXExp556akopBzw1BJolVoSGqRricKxqO96O\nOq2slPJ3SZ6R5NRSyq4kr03yl0neXUp5SZKvJ3n+YPcPJHlOkp1JHkzyW0MYMzAipZRs2bLyNvGS\nl7wkSbK8vJxk30VfIoDuHPnOd77T80iAPogVgY4bf5hcR00O1VpfeIRv/Z+H2bcmedlGBwUAwGQQ\nKwLA5NvshtTAFKm1ZmlpKUly5ZUrswPm5uaSqBhi39PBBx54IEny0pe+NO985zuTZPW8AQAAxt/x\n9hwCAAAAYAqUcZgXanlSGH/j8F7B+FNR1otba60X9T0IGCaxIkwG8SLrIV4cvVrrUQ+6yiEAAACA\nhuk5BMCGLCwsJEk+9rGPZevWrUmSPXv29DkkAADGlFWPx5PKIQAAAICGqRwCYFO8+c1vzszMyjOH\n7kmQ3gMAADD+VA4BAAAANMxqZcC6jMN7BePP3PFeWK2MqSdWhMkgXuRYiBtHZz2rlZlWBhxRKSUn\nnHBCkuTGG29MklxxxRVJktnZ2d7GBQAAwOYxrQwAAACgYaaVAevSvVdYepK1OC96YVoZU0+sCJNh\nHO4tmRzixtFZz7QylUMAAAAADdNzCFhT11vosssuS5K8733vS5Js3749iYw/+54SLi0t9TwSAADg\neKgcAgAAAGiYnkPAMRmH9wzGl0qyXug5xNQTK8JkECdyLMSNo6PnEAAAAABr0nMIOCZ/+qd/miR5\n7Wtf2/NIAAAYJ10liAoi1qJiaDypHAIAAABomJ5DwHEZh/cOxo8nQb3Qc4ipJ1aEySJOZC3ixdFb\nT88h08qAYzI/P58kufbaa5Mkv/mbv3nAdgAAACaLaWUAAAAADTOtDNiQxcXFJMns7GzPI2EcKBPu\nhWllTD2xIkyecbjPZDyJF0fPUvYAAAAArEnPIeC4zM3NJUne8pa3JEmuvvpqfYcatby8nCT5r//6\nr9UKsqWlpT6HBAAAHAOVQwAAAAAN03MI2BTj8F7CaHWv+d69e5Mkb37zm/PqV7/6gG3Oi5HQc4ip\nJ1aEySUW4GB6Do2enkMAAAAArEnPIWBTlFI8GWpM99RnZmblOcN11123unqdcwEASPbFC2IDVAyN\nN9PKgA3p3uS3bt2aZz/72UmS9773vX0OiZ644PfGtDKmnlgRJt843HfSL7Fif0wrAwAAAGBNKoeA\nTTcO7yuMnqdBvVE5xNQTK8L0ECe2S6zYH5VDAAAAAKxJQ2pg08zOziZJXvOa1yRJXve61yXZ17AY\nAACA8eOODQAAAKBheg4BQ9O9vzz00ENJku3bt/c5HDbZ0tJSkuTTn/50kuTpT396Hn744T6H1Co9\nh5h6YkWYPuNwH8po6TnUHz2HAAAAAFiTyiFgaLpeQ094whOSJJ/5zGf6HA5D5mlQb1QOMfXEijC9\nxuF+lNEQK/ZH5RAAAAAAa7JaGTA0y8vLSZIvfvGLSVaeFuzevTtJcuqppyZJ5ubm+hkcAAC9K6Wo\nHoIxIDkEDN3evXtXPz/zzDOTJH/2Z3+WJPmTP/mTXsYEAMB4OHi6kWQRjJ5pZQAAAAAN05Aa6NU4\nvAexOTQZ7I2G1Ew9sSK0Tbw4HcSK/dGQGgAAAIA16TkE9KJrRH3PPfckSU4//fQkycyMnPWkmpmZ\nWW1CDgAATA53YQAAAAANUzkE9KKbO/7EJz4xSVaXuFc5NLlUDQEAwGRyFwYAAADQMJVDwEh1qxTM\nzs4mSf7wD/8wSbK0tJQk2bLF29Kkmpuby8LCQt/DAAAAjpGl7IFedMmhbjrZqaeemsS0skk2Pz+f\nxcXFJJacHTFL2TP1xIrQJvHEdLGUfX8sZQ8AAADAmszfAHrRTSM77bTTeh4Jm8WUMgAAmEwqhwAA\nAAAapnIIGJlSymqvoQsvvLDn0QAAMI70GoLRUzkEAAAA0DCVQ8DI1FpXV7P6z//8z9VtidULAABa\np2II+qNyCAAAAKBhKoeAkTrhhBOSJCeddFIST4gAAAD6pnIIAAAAoGEqh4Ch6/oJzc/P55prrjns\n9wAAAOhHGYcpHaWU/gcBjMTy8nISSaFp0L2W999/f5Lk1FNPXd3GSN1aa72o70HAMIkVoQ3jcG/K\n8Ij/+1NrPerBN60MAAAAoGGmlQFDt3Xr1iTJFVdc4YnBFJmZWXm+8MhHPjJJVA0BAMCEUjkEAAAA\n0DCVQ8DQ7dmzJ0ly9dVXZ3FxMUmyZYu3HwAAgHGgcggAAACgYR7dA0PT9aQ588wzkyQXX3yxiqEp\n0vUYuvfee5Mks7OzWVpa6nNIAMAEskoZ9E/lEAAAAEDDPMIHhqarLPmjP/qjJMni4mJmZ2eTxKpl\nE6x7urewsJAk2bFjR5KVPlLda+4JIAAAHbH/+CvjEMCXUvofBDA04/A+w+brkkMXXnhhkuSuu+4y\nrawft9ZaL+p7EDBMYkWYbmLF6Sc51K9a61FfANPKAAAAABpmWhkwNNddd12SfRUmc3NzfQ6HTda9\nnjt37ux5JADApFI1BONB5RAAAABAw1QOAUPz27/9230PgU10cCPqj3/8430OBwAA2CQqhwAAAAAa\npnII2DQzMyv55q6ypFvWvNvOZOtWmZidnU2SvOhFL0qy7/XtXm8AgKPRa6gNVimbHO7YAAAAABqm\ncgjYNJdffnmSZM+ePUmSbdu29TkchqSrHPrmN7/Z80gAgEmjYgjGk8ohAAAAgIapHAI2pKsOuuCC\nC/Le976359EAAABwrCSHgOPSNZfrmhFb1hwAgIOZRtYmjagnj2llAAAAAA07anKolPLOUsq9pZTb\n99v2ulLKN0spnx38ec5+33tVKWVnKeUrpZTLhjVwoF9zc3OZm5vLZZddlssuW/mvXmv1dKgBpRRP\ng4BVYkUAmHzrqRzakeRZh9n+P2qtTxr8+UCSlFIuTPKCJI8f/MxbSimzmzVYAADGzo6IFQFgoh21\n51Ct9T9KKees8++7PMlNtdY9Se4qpexMcnESzUhgyuzduzdJNKEGaJxYEQAm30Z6Dl1TSrltUEr8\nyMG2s5J8Y799dg22HaKUclUp5ZZSyi0bGAMAAONJrAgAE+J4k0NvTfLYJE9Kck+S1w+2H64JxWEb\nkNRar621XlRrveg4xwD0YHZ2NrOzsznzzDNz5plnZmlpKUtLS30PixHQawg4BmJFaJxelG0SL06u\n40oO1Vq/XWtdqrUuJ7kuK+XAycrTn7P32/VRSXZvbIgAAEwSsSIATJbjSg6VUs7Y78tfTtKtTvH+\nJC8opWwtpZyb5Pwkn9rYEIFx0lUK7d69O7t3716tJGI6LS4u5v7778/999/f91CACSJWBIDJctSG\n1KWUv0vyjCSnllJ2JXltkmeUUp6UlTLgu5NcnSS11i+UUt6d5ItJFpO8rNZqvgkAwJQSKwLA5Cvj\nMA+0lNL/IIDjMg7vIQzPwsJCnv70pydJbrllpSfs4uJin0PiULfqycK0EyvC5BEjtkWfofFWaz3q\nC3TUyiGAtbzhDW9Ikvz+7/9+zyNhMy0vLydJHnzwwXziE5/oeTQAAIwjSaHpsZGl7AEAAACYcJJD\nwIbccMMNueGGG5JYsnQadK/hwsJCFhYW8pa3vCXz8/OZn5+3NCkAAEwpySEAAACAhuk5BGzInXfe\nmSS544478tjHPjaJuceTrHvtZmdnkyTXXnttlpZWFhJSFQYAANNJ5RAAAABAw1QOARvywx/+MEly\n8cUX57777kuyr/pEBdHk6Zap37lzZ5Lk7rvv7nE0AACMK7H+dFE5BAAAANAwlUPAhnT9aL73ve9l\ny5aVt5Tl5eUkaz9N6PrXeOIwHrrXo3s93/a2tyVJ5ufns3fv3t7GBQBMpoNjPL0LYbyVcfhPWkrp\nfxDAhv3Mz/xMkuT3fu/3kiTPe97zDtmnSxwtLCwk2df4uEss0a/u9Tn11FOTJPfff//qNsbWrbXW\ni/oeBAyTWBHaMA73pqyfh7yTo9Z61BfLtDIAAACAhqkcAjbN/Px8kn1PEfbs2XPIPieffHKS5Nd+\n7deSJC996UuTJE95ylOS7KsompmZWa0qYvQ8CZooKoeYemJFaNM43KtyZOLFyaFyCAAAAIA1qRwC\nNl33FOFw7y/d9+bm5g7Y3jU9fv3rX59kpV/Rox/96AP2ObjRtacVw+PYThSVQ0w9sSIwDvetrBAn\nTh6VQwAAAACsSeUQMFa2bduWJFlcXMzi4uIB3+verx5++OEkK32Juj5HbC5PhCaKyiGmnlgRONg4\n3Me2Spw4eVQOAQAAALCmLX0PAGB/3Qpnh3satGXLylvWpZdemiS56qqr8iu/8itJ9lUTdZVHHJtu\nlbgPfvCDSZKtW7cmOfyKcwAAfTu4ekUlEWyMyiEAAACAhuk5BEycbqWz2dnZ1b5EL3zhC5Mk119/\n/QH7du9x5kYfXnd8utXinve85yXZV0HUVRQx1vQcYuqJFYFjMQ73uNNIPD251tNzSHIImFj7X6C6\n97Kf/MmfTJJ8/OMfT7KSQEqcIq1FAAAQJ0lEQVSS7du3j3h0k8lFfyJJDjH1xIrARozDPe80ECdO\nLg2pAQAAAFiThtTAxDrcU6A77rgjSXLeeeclSX7xF38xSXLdddeZYnYY3XSyN7/5zUmS+fn5A7YD\nAEw6zavh6FQOAQAAADRMzyFgKs3MrOS+u+bVt912W378x388yb5l2tnnJ37iJ5Ikd955Z5KsNvpm\nIug5xNQTKwLDMg73w+NO1f3k03MIAAAAgDXpOQRMpeXl5STJnj17kiQXXHBBzjnnnCTJXXfd1dew\nxs4VV1yRZF+vpu64AQC0oKuKUUFE61QOAQAAADRM5RDQjN27dyfZ94Tor/7qr5Ikf/AHf5Bk5YnR\nNM+p7p6IPfDAA0lWVih797vf3eeQAADGghXNDjXNcTGH0pAaaFZ3wXvmM5+ZJPnXf/3XJpa737Vr\nV5Lk7LPPVko9HTSkZuqJFYG+tBgjTXMc3CoNqQEAAABYk8ohoHnd0vZ79uzJ4x//+CTJ7bffnmTf\nku5btkzuLNyuKXf37/Q0aOqoHGLqiRWBcTAO987DJk6cTiqHAAAAAFiTyiGgeWv13RmH98hj1S1H\n/+CDDyZJ/viP/zhJ8qY3vam3MTFUKoeYemJFYJxMYnx4NCqGppvKIQAAAADWpHIIYB2+/vWvJ0nO\nOuus1W0zM+OZX19YWEiSfO1rX0uSXHDBBUn2PeUah/d9NpXKIaaeWBEYZ5McW6kYaoPKIQAAAADW\nNLnL7wCM0KMf/egkyRvf+MYkyRVXXJHTTz+9zyEd0SWXXJIk+dznPpdkXw8iAAA231r9K8eViiEO\npnIIAAAAoGF6DgEcg23btiVJ9uzZc0w9fLp9hv2U5sorr8z1118/1N/B2NFziKknVgQmxTjcX6+H\nyqG2rKfnkGllAMdgz549SVYu/HNzc0n2XVzf8573JEl+9Vd/dXX/LkDofq5LLh38/bUu0N0+S0tL\n2bLl8G/b3c8f6fsAAAzfsSRdRp1IkhBiLaaVAQAAADTMtDKAIdq+fXuS5Jd+6ZeSJDfddFOSZHFx\nMclKNVCyUvEzOzt7wM92788//OEPkyR33XVXnvjEJ675+0opE1POzKYxrYypJ1YEWjCsGE7FEJay\nBwAAAGBNKocAhuhIS5v+2I/9WJKVBtJJ8pKXvCTnn3/+Afvs2rUrSfILv/ALSZIvf/nL2bt371DH\ny0RSOcTUEysCLTree3WVQhxM5RAAAAAAa1I5BNCDmZmV3Hy34tny8nIWFhYO2Gd+fj7Jvr5Ey8vL\n+glxOCqHmHpiRaB1R4oBVQmxHiqHAAAAAFjTlr4HANCi5eXlJFntIXS4p0H6CwEAkKgQYvgkhwB6\nZJoYAADQN9PKAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwCAAAA\naJjkEAAAAEDDJIcAAAAAGiY5BAAAANAwySEAAACAhkkOAQAAADRMcggAAACgYZJDAAAAAA2THAIA\nAABomOQQAAAAQMMkhwAAAAAaJjkEAAAA0DDJIQAAAICGSQ4BAAAANExyCAAAAKBhkkMAAAAADZMc\nAgAAAGiY5BAAAABAwySHAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAAN\nkxwCAAAAaJjkEAAAAEDDjpocKqWcXUr5SCnlS6WUL5RSXj7Yfkop5UOllDsGHx852F5KKW8qpews\npdxWSnnKsP8RAAD0Q6wIAJNvPZVDi0leUWt9XJKnJnlZKeXCJK9M8uFa6/lJPjz4OkmeneT8wZ+r\nkrx100cNAMC4ECsCwIQ7anKo1npPrfXTg89/kORLSc5KcnmSdw12e1eS5w4+vzzJ9XXFJ5L8aCnl\njE0fOQAAvRMrAsDkO6aeQ6WUc5I8Ocknk5xea70nWQkKkpw22O2sJN/Y78d2DbYd/HddVUq5pZRy\ny7EPGwCAcSNWBIDJtGW9O5ZSTkryD0l+t9b6/VLKEXc9zLZ6yIZar01y7eDvPuT7AABMDrEiAEyu\ndVUOlVLmsnKxv6HW+t7B5m93JcCDj/cOtu9KcvZ+P/6oJLs3Z7gAAIwbsSIATLb1rFZWkrwjyZdq\nrW/Y71vvT3Ll4PMrk/zTftt/Y7ASxVOT3N+VFAMAMF3EigAw+Uqta1fpllL+jyQfTfL5JMuDza/O\nylzydyd5dJKvJ3l+rfW7gwDhb5I8K8mDSX6r1rrmXHGlwgBw3G6ttV7U9yBol1gRAMZbrfWIc707\nR00OjYILPgAcN8khpp5YEQCO33qSQ8e0WhkAAAAA00VyCAAAAKBhkkMAAAAADZMcAgAAAGiY5BAA\nAABAwySHAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwCAAAAaJjk\nEAAAAEDDJIcAAAAAGiY5BAAAANAwySEAAACAhkkOAQAAADRMcggAAACgYZJDAAAAAA2THAIAAABo\nmOQQAAAAQMMkhwAAAAAaJjkEAAAA0DDJIQAAAICGSQ4BAAAANExyCAAAAKBhkkMAAAAADZMcAgAA\nAGiY5BAAAABAwySHAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwC\nAAAAaJjkEAAAAEDDJIcAAAAAGiY5BAAAANAwySEAAACAhkkOAQAAADRMcggAAACgYZJDAAAAAA2T\nHAIAAABomOQQAAAAQMMkhwAAAAAaJjkEAAAA0DDJIQAAAICGSQ4BAAAANExyCAAAAKBhkkMAAAAA\nDZMcAgAAAGiY5BAAAABAwySHAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAA\nAAANkxwCAAAAaJjkEAAAAEDDJIcAAAAAGiY5BAAAANAwySEAAACAhkkOAQAAADRMcggAAACgYZJD\nAAAAAA2THAIAAABomOQQAAAAQMMkhwAAAAAaJjkEAAAA0DDJIQAAAICGSQ4BAAAANExyCAAAAKBh\nkkMAAAAADZMcAgAAAGiY5BAAAABAwySHAAAAABomOQQAAADQMMkhAAAAgIZJDgEAAAA0THIIAAAA\noGFHTQ6VUs4upXyklPKlUsoXSikvH2x/XSnlm6WUzw7+PGe/n3lVKWVnKeUrpZTLhvkPAACgP2JF\nAJh8pda69g6lnJHkjFrrp0spP5Lk1iTPTfLfk/yw1vrXB+1/YZK/S3JxkjOT/FuS/73WurTG71h7\nEADAkdxaa72o70HQLrEiAIy3Wms52j5HrRyqtd5Ta/304PMfJPlSkrPW+JHLk9xUa91Ta70ryc6s\nXPwBAJgyYkUAmHzH1HOolHJOkicn+eRg0zWllNtKKe8spTxysO2sJN/Y78d25TABQinlqlLKLaWU\nW4551AAAjB2xIgBMpnUnh0opJyX5hyS/W2v9fpK3JnlskicluSfJ67tdD/Pjh5QC11qvrbVepBQe\nAGDyiRUBYHKtKzlUSpnLysX+hlrre5Ok1vrtWutSrXU5yXXZVw68K8nZ+/34o5Ls3rwhAwAwTsSK\nADDZ1rNaWUnyjiRfqrW+Yb/tZ+y32y8nuX3w+fuTvKCUsrWUcm6S85N8avOGDADAuBArAsDk27KO\nfZ6W5MVJPl9K+exg26uTvLCU8qSslAHfneTqJKm1fqGU8u4kX0yymORla60+AQDARBMrAsCEO+pS\n9iMZhOVJAeB4WcqeqSdWBIDjtylL2QMAAAAwvSSHAAAAABomOQQAAADQMMkhAAAAgIatZ7WyUfhO\nkgcGHxm+U+NYj4pjPTqO9Wg4zqOz3mP948MeCIwBseJoea8fHcd6dBzr0XCcR2dTY8WxWK0sSUop\nt1htZTQc69FxrEfHsR4Nx3l0HGs4kP8To+NYj45jPTqO9Wg4zqOz2cfatDIAAACAhkkOAQAAADRs\nnJJD1/Y9gIY41qPjWI+OYz0ajvPoONZwIP8nRsexHh3HenQc69FwnEdnU4/12PQcAgAAAGD0xqly\nCAAAAIARkxwCAAAAaNhYJIdKKc8qpXyllLKzlPLKvsczTUopd5dSPl9K+Wwp5ZbBtlNKKR8qpdwx\n+PjIvsc5iUop7yyl3FtKuX2/bYc9tmXFmwbn+G2llKf0N/LJc4Rj/bpSyjcH5/ZnSynP2e97rxoc\n66+UUi7rZ9STqZRydinlI6WUL5VSvlBKeflgu3N7E61xnJ3XcBhixeERKw6PWHF0xIqjI1YcjT5i\nxd6TQ6WU2SRvTvLsJBcmeWEp5cJ+RzV1Lqm1PqnWetHg61cm+XCt9fwkHx58zbHbkeRZB2070rF9\ndpLzB3+uSvLWEY1xWuzIocc6Sf7H4Nx+Uq31A0kyeP94QZLHD37mLYP3GdZnMckraq2PS/LUJC8b\nHFPn9uY60nFOnNdwALHiSIgVh2NHxIqjsiNixVERK47GyGPF3pNDSS5OsrPW+tVa694kNyW5vOcx\nTbvLk7xr8Pm7kjy3x7FMrFrrfyT57kGbj3RsL09yfV3xiSQ/Wko5YzQjnXxHONZHcnmSm2qte2qt\ndyXZmZX3Gdah1npPrfXTg89/kORLSc6Kc3tTrXGcj8R5TcvEiqMnVtwEYsXRESuOjlhxNPqIFcch\nOXRWkm/s9/WurP2P5tjUJP+zlHJrKeWqwbbTa633JCsnXZLTehvd9DnSsXWeD8c1g/LUd+5X8u5Y\nb5JSyjlJnpzkk3FuD81BxzlxXsPBnP/DJVYcLdfT0XJNHSKx4miMKlYch+RQOcy2OvJRTK+n1Vqf\nkpVyvpeVUp7e94Aa5TzffG9N8tgkT0pyT5LXD7Y71puglHJSkn9I8ru11u+vtethtjne63SY4+y8\nhkM5/4dLrDgenOebzzV1iMSKozHKWHEckkO7kpy939ePSrK7p7FMnVrr7sHHe5O8LyulZd/uSvkG\nH+/tb4RT50jH1nm+yWqt3661LtVal5Ncl31lk471BpVS5rJyEbqh1vrewWbn9iY73HF2XsNhOf+H\nSKw4cq6nI+KaOjxixdEYdaw4Dsmhm5OcX0o5t5Qyn5UmSu/veUxToZRyYinlR7rPkzwzye1ZOb5X\nDna7Msk/9TPCqXSkY/v+JL8x6Nb/1CT3d2WXHJ+D5ir/clbO7WTlWL+glLK1lHJuVprffWrU45tU\npZSS5B1JvlRrfcN+33Jub6IjHWfnNRyWWHFIxIq9cD0dEdfU4RArjkYfseKWjQ1542qti6WUa5J8\nMMlsknfWWr/Q87CmxelJ3rdyXmVLkhtrrf9aSrk5ybtLKS9J8vUkz+9xjBOrlPJ3SZ6R5NRSyq4k\nr03ylzn8sf1AkudkpTHYg0l+a+QDnmBHONbPKKU8KSvlkncnuTpJaq1fKKW8O8kXs9Ll/2W11qU+\nxj2hnpbkxUk+X0r57GDbq+Pc3mxHOs4vdF7DgcSKQyVWHCKx4uiIFUdKrDgaI48VS62m+wEAAAC0\nahymlQEAAADQE8khAAAAgIZJDgEAAAA0THIIAAAAoGGSQwAAAAANkxwCAAAAaJjkEAAAAEDD/n9l\nX4Jiki13igAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec211c18>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuMrWdZN/7vPcfdE5S2Umpba1uq\nUAFRG60hyuEFgWrSVuQYFRu1EmgUffFNwT8wP/MLJSqC8IP8CjYtYMUSyiEGfS3lJYhGoEWgYjlU\nDlJbqKUV2u495/v9Y+bZM3s6e/bsmXV41no+n2SyZp5Za+baz6y91vVc93Xfd6m1BgAAAIBumhh2\nAAAAAAAMj+IQAAAAQIcpDgEAAAB0mOIQAAAAQIcpDgEAAAB0mOIQAAAAQIcpDgEAAAB0WN+KQ6WU\n55RSvlRKuaOUcmW/fg8AAKNHrggA7VFqrb3/oaVMJvlykmcluTPJp5O8uNb6bz3/ZQAAjBS5IgC0\ny1Sffu5PJrmj1vrVJCmlvCfJxUm2fMMvpfS+QgUA3XBvrfX7hh0EHCW5IgAMSK21HOk+/ZpWdnqS\nb274+s61YweVUi4vpdxSSrmlTzEAQBd8Y9gBwC7IFQGgRfrVObRVVeqQEZ9a69VJrk6MBgEAdIxc\nEQBapF+dQ3cmOXPD12ckuatPvwsAgNEiVwSAFulXcejTSc4rpZxdSplJ8qIkH+rT7wIAYLTIFQGg\nRfoyrazWulRKuSLJ/04ymeSaWusX+vG7AAAYLXJFAGiXvmxlf9RBmEcOALt1a631gmEHAf0kVwSA\n3RvmbmUAAAAAjADFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDF\nIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA\n6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwC\nAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAO\nUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAA\nAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDF\nIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA\n6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwC\nAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIQAAAIAOUxwCAAAA6DDFIWAoSikp\npbTm5wAAAHTV1LADALppYmK1Nr28vJwkOfnkk5Mki4uLSZL9+/dnaWnpiD+n1pokBwtEzdcAAADs\njM4hAAAAgA7TOQT0zObunX379iVJ5ubmDt7nyiuvTJK87nWv2/HPXVhYSJLcf//9SZKHHnro4Pce\n+chHJklOOeWUQx4zPT2dJFlZWUmy3qEEAEC79Kvz29IDsHM6hwAAAAA6TOcQcFSaEZjjjjsuSfLg\ngw8e/F4z6vMLv/ALSZI/+7M/S5I89rGPTbLaxbN5HaHNawZtZWZmJkly6qmnPux7TVfR5hGnq666\nKknymMc8Jkly2WWXHfze7OxskmR+fv5h/zZrFgEA9M8gc62d/C7dRbBK5xAAAABAh5U2jJKXUoYf\nBLClZlexZu2eZz7zmUmSG2+8MUlywgknHLxv0xXUrO/TdOjspDtotza/hm3+HU1nUdN9lCTPec5z\nkiS33XZbkuSuu+5KkkxNTe1ohzRomVtrrRcMOwjoJ7kijJ42XGfuhY4ixkmt9YhPaJ1DAAAAAB2m\ncwh4mGakZHJyMn/yJ3+SJPmd3/mdLe/bz66gfjlct9H09LTOIUaRziHGnlwRRkMbri37aZTyXdhI\n5xAAAAAA27JbGXDQ4x73uCTJBz7wgSTJD//wDx9ca+hwRnEEZXPMTbfQ4uJi/uEf/iFJctZZZx1y\nu2/fviTrI2KbdzoDAOiace8U2uxIa13CKDOtDDpi85tXrTUve9nLkqxPGWu2fT/xxBMHG9yQbTU1\nbquFrJPk1a9+dZLkqquuOrjgtkIRQ2ZaGWNPrgjt0Ybrx7ZSLKKtTCsDAAAAYFt76hwqpXw9yQNJ\nlpMs1VovKKWclOSvk/xgkq8neUGt9f4j/BzlZ+izZlpU0+VypOlibG1jR9GP/uiPJkk+//nPJ1ld\nwDtJlpeXhxMcXaVziNaSK8Lo0iHUG7qJaINBdQ49vdb65A2J6ZVJbq61npfk5rWvAQDoJrkiALRc\nLzqHLqi13rvh2JeSPK3Wencp5bQkH6u1/vARfo6yNAyIUaDeqLUeHAk6cOBAkuTYY49NkkxMrNbd\ndWcxIDqHaC25IoweuWJ/6CBimAbROVST/H0p5dZSyuVrx06ttd69FsDdSR69x98BAMBokisCwAjY\n61b2T6m13lVKeXSSm0opX9zpA9cShMuPeEfgqJVSDo5ONN0r+/fvT5LMzc0lWV+DiN3ZOPozNbX6\nUtqMtL32ta9Nkrz+9a8/uMZTc3+jcUDHyBVhBMhP+m/jOdZFRBvtqXOo1nrX2u09Sd6f5CeTfHut\nRThrt/cc5rFX11ov0AoPADCe5IoAMBp2veZQKeW4JBO11gfWPr8pyf+T5H8k+U6t9apSypVJTqq1\n/q8j/CylauiTpnOlWQen2VHLiEXvNK+jm8/p5Zdfnre//e1JrENEX1lziFaSK0L76RgaLvk4g7KT\nNYf2Uhw6J6sjQMnq9LTra63/bynl5CQ3JPmBJP+R5Pm11vuO8LO8KkEPNIWfV73qVfmDP/iDJMnx\nxx+fxJvPMCwuLmZ6ejrJ+vlXJKIPFIdoJbkitJeiUDvJ1+mXnRSHdr3mUK31q0l+dIvj38nqiBAA\nAB0lVwSA0bHXBamBIWhGFZpOoaWlpSTJv/zLvyRJHv/4xx9cJJnhabqGkuRb3/pWkuQxj3lMkvVF\nrJu/HQBAv+kYarfDLVUAg7DXrewBAAAAGGFaC2AENaMKTdeJUaD2e9SjHpVk/W913XXXJUl+7dd+\nLUkyOzt7cPFwAIBekiuOFh1EDIPOIQAAAIAO2/VuZT0Nwg4UcFT27duXJHnKU56SJLnpppuSGF1o\ns80jQE2X0OzsbJLkJS95SW688cZDvgc7ZLcyxp5cEfamDdd87I08n73YyW5lOocAAAAAOkznEIyg\nY445Jkmyf//+IUdCL5188slJkvvuuy/J+ghRG16naTWdQ4w9uSLsnjxivOggYjd0DgEAAACwLbuV\nwQhaXFwcdgj02PLycr7zne8kSW6//fYkyfnnn58kmZmZSbL6dzf6BwDQXXYyo18Uh2AENVvYMz4m\nJycPfn7uuecmWX/zf+ELX5gk+eAHP2ixagBgRwwojTdFInrNtDIAAACADrMgNYyw5eXlJMnEhDrv\nODncSNDP/MzP5B//8R8PuQ/EgtR0gFwRjp5coTt0D3EkFqQGAAAAYFs6h2CEzc3NJUlmZ2eHHAmD\nYmSILegcYuzJFeHoteE6j8GSJ3I4OocAAAAA2JbdymCENKMBzUiQjqFuWVpaeth6RPv27UuSg7uY\nGSUEAOgmO5ixFzqHAAAAADpM5xCMEF0h3TY5OZmFhYUk68+FX/qlX0qS/M3f/E2S9Q4iAAC6SQcR\nu2FBahhBj3zkI5Mk99xzT5JkZmZmmOHQAo9//OOTJHfccUeWlpaGHA0DZkFqxp5cEY5eG67zaAdF\nIixIDQAAAMC2TCuDEXTgwIEkOoZYHxX89Kc/nSR51KMeNcxwAABoGdPM2AmdQwAAAAAdpjgEI2hy\ncjKTk5N505velDe96U2Zn5/P/Px8aq3ml3dMKSWllMzOzmZ2djbXXXfdsEMCAKCFXCewHcUhAAAA\ngA6zWxmMgTb8P6Yd9u/fn1//9V9Pktx4441JkoWFhWGGRP/ZrYyxJ1eE3ZMnshXrD3WL3coAAAAA\n2JbOIRgjbfj/THsYEeoMnUOMPbki7J78kO3IF7tB5xAAAAAA25oadgBA73z9619PkpxxxhmZmvLf\nu+tuuummJMlFF12UJFlcXBxmOADAEJRSdA9xWM1zQwcRppXBGHre856Xd77znUmSY489NokX/i5r\n/ub79u1LkszPzyfRZj5GTCtj7MkVoTe893M4rhHGm2llAAAAAGxL5xCMgabSv/H/8/vf//4kySWX\nXJJkfUrR9PT0gKOjLTZ3DjE2dA4x9uSK0FttuAaknXQQjSedQwAAAABsS+cQjKmJidXa78rKSpLk\nvvvuS5I84hGPSJJMTk4+bNTISMF4e9GLXpQk+eu//ushR0KP6Rxi7MkVof/acF1IO7gmGD86hwAA\nAADYls4hGHOTk5NJkuXl5UOOP+lJT8rJJ5+cJPnoRz96yPeaNWkmJiasUTSGmtEgW9uODZ1DjD25\nIrSL/GG86RwaPzqHAAAAANjW1LADAPprc8dQ44tf/OIhHSQbvfKVr0ySTE1N5Y//+I+TJAcOHEiy\nvpbR7OzsIY+ptRplaLkHH3wwSXLhhRcmSW699dYsLS0lMQIIAOzc4XI++cR4aP6Ocvtu0TkEAAAA\n0GHWHAIOa2ZmJgsLC0mSN77xjUmSn/7pn06yvuvZ4x73uCTJ0tJSpqY0I44So0Fjw5pDjD25Ioye\nNlxnsjdyxfGxkzWHFIeAPWneNFZWVrSgjphvfvOb+YEf+IFhh8HeKQ4x9uSKMPracN3J7sjtR58F\nqQEAAADYljkgwJ5MTk4mWR1RePrTn54k+ehHPzrMkNihM888c9ghAAAd0XSf6CCCdtI5BAAAANBh\nOoeAPVleXj74+T/90z8lWR8ZesITnpAkue2225Ikc3NzB+87Ozt7yH0ZvMXFxbzqVa9Ksr7geLO1\nPQBAP2zO/XQSQTvoHAIAAADoMLuVAT3XjAhNT08nSRYWFpKsdgt997vfPeR7ExNq1G2gg2uk2a2M\nsSdXhG5ow7UphydfHF12KwMAAABgW9YcAnquGfVpOoaaUYbFxcV8//d/f5LkO9/5TpL1NYuaXc8Y\njuc973lJkve9731DjgQA6Co7msHwmFYGDFQznWxxcTFJ8vznPz9JcsMNNyRJ5ufnk6wvWM1g3Hvv\nvUmSc845J0nywAMPDDMcjo5pZYw9uSJ0WxuuWTGtbJSZVgYAAADAtnQOAQO1uV246RBqOobe8573\nJEle+MIXDiG67mn+Ds3fZfNtG94jOCKdQ4w9uSIgJ2kPHUSjR+cQAAAAANvSOQS0yszMTJL1TiIG\n48EHH0ySnHDCCUl0Do0YnUOMPbki0JCbtIcOotGhcwgAAACAbdnKHmiVZhezUsrBkaHmWLPTGb13\n7LHHJkn+67/+K0ly+umnJ0kWFhaGFhMAwGabu1V0EkFv6BwCAAAA6DCdQ0CrbBz9aUaGXvziFydJ\nrr766iTJ8ccfP/jAxtzExOpYwSmnnJIkef3rX58kefWrX525ubmhxQUAsB3rJA5PrdW6Q2NE5xAA\nAABAh9mtDGiljWsONT784Q8nSZ773OcOI6ROuuSSS/J3f/d3Sewg12J2K2PsyRWBnWrD9W2X6Bwa\nDTvZrUxxCBgZk5OTSZKlpaUhR9IdKysrB6fxHThwYMjRcBiKQ4w9uSJwNNpwjds1ikTtZit7AAAA\nALZlQWpgZKysrCSx8OAgrays5Atf+EKS5Pzzz08SC1QDAMCY0TkEAAAA0GE6h4CRtdWi1fTW1NRU\nzj777CTJC1/4wiTJddddN8yQAAC2pct88Jpzbe2h0aVzCAAAAKDD7FYGjJxmRGJmZiaf+9znkiTn\nnHNOkmR6enpocY27e++9N0nymMc8JkmyvLw8zHBYZ7cyxp5cEdiLNlzzdoXOoXayWxkAAAAA29I5\nBIy04447Lkly//33J9E5NAgTE6vjCm14/yCJziE6QK4I9ILcpf90DrWTziFg7C0vL2d5eTnXX399\nrr/++mGHM5ZqrYckU5u/BgCARJ44yhSHAAAAADrMtDJgLDz60Y9OknzjG99Ikuzbt2+Y4YylpaWl\nJMnv/u7vJkne9ra3JbEwdQuYVsbYkysCvdCGa9+uML2sXUwrAwAAAGBbOoeAkdaMSjSvZW14TesK\nI0KtoXOIsSdXBHpJvth/8sR20TkEAAAAwLamhh0AwF4Y+QEAgHZpcnQdRKND5xAAAABAh+kcAsbC\nxMRqrfuYY45Jkhw4cGCY4XRKc+5XVlaGHAkAwJFtXrMS0DkEAAAA0Gk6h4Cx0HStzM3NJXn4SJD5\nznvXnNP5+flDjusYAgCA0aY4BIyFze3BikG915zTffv2JUkuvfTSJMn73//+ocUEAADsnWllAAAA\nAB12xOJQKeWaUso9pZR/3XDspFLKTaWUr6zdPmrteCml/Hkp5Y5SyudLKT/ez+ABGrXW1FozMTGR\niYmJLC0tZWlpadhhjbUbbrghN9xwQ/bt23ewmwjoHrkiMKp0mvdfk6PTfjvpHLo2yXM2Hbsyyc21\n1vOS3Lz2dZI8N8l5ax+XJ3lbb8IEAKClro1cEQBG2hGLQ7XWjye5b9Phi5Nct/b5dUku2XD8nXXV\nPyc5sZRyWq+CBTiSlZWVrKys5GUve1le9rKXHTxuxKL3Pvaxj+VjH/tYZmdnMzs7O+xwgCGRKwLA\n6NvtmkOn1lrvTpK120evHT89yTc33O/OtWMPU0q5vJRySynlll3GAABAO8kVAWCE9Hq3sq0mbW45\nXF9rvTrJ1UlSSjGkD/REM3f8hhtuSJK84x3vOOQ4vfPMZz4zSfLd7353yJEAI0SuCLTK5h1voat2\n2zn07aYFeO32nrXjdyY5c8P9zkhy1+7DAwBgBMkVAWCE7LY49KEkL137/KVJPrjh+K+u7URxYZLv\nNi3FAIPQ7IjwwAMP5IEHHshb3/rWvPWtbx12WGNpbm4uc3Nzww4DaCe5IgCMkHKk9rlSyl8leVqS\nU5J8O8lrk3wgyQ1JfiDJfyR5fq31vrLak/eWrO5YsT/JZbXWI84T1yoM9NvGbTRNMeuNlZWVJMnk\n5OSQI+m8W2utFww7CLpLrgiMA9PK+kv+PVy11iP+AY5YHBoEb/hAvykO9Z7iUGsoDjH25IpAv7Xh\nunicyb+HayfFod1OKwMYCccdd1yOO+64fOITn0gpxRtTD01MTGRiwtsIADD65Il0naweAAAAoMMU\nh4Cx9tBDD+Whhx7Kb/7mbw47FAAAgFZSHAIAAADosKlhBwAwCF/84heHHcLYWV5ePuTrUorFHAEA\nYATpHAIAAADoMJ1DwFhrdp3Q0dJ7m3cqc44BAGA06RwCAAAA6DCdQ8BYa7pZZmZm8u53vztJ8pKX\nvCTJwztfODpNVxYAADDaShumAZRShh8E0BnNQsqKQ70xMzOTJFlcXBxyJJ11a631gmEHAf0kVwQG\nrQ3XyePEoOJw1VqP+AdwZQQAAADQYaaVAZ2jY6i3pqZW30p0DgEAwGhyhQQAAADQYTqHgM6Ynp5O\nklxxxRVJkre85S3DDGfkfeITn0hiDjkAAIw6nUMAAAAAHaZzCOiMZk2ca665Jkly8cUXJ0l+9md/\nNkkyOzs7nMBG1M033zzsEAAA+qLpjLZrGV2hcwgAAACgw3QOAZ1z4MCBJMnP/dzPJUnuvffeJDqH\njtYnP/nJJMnKysqQIwEA6I9Siu4hOkHnEAAAAECH6RwCOmtycjJJcsoppyRJfuiHfiif+9znkiT7\n9u0bWlyj4q677kqSLC8vDzkSAABgLxSHgM7aXNT48pe/fHCb+ze+8Y1JkuOOOy6J7do3alqrm3Oi\nOAQAjDOLU++eHHp0mFYGAAAA0GGlDdXPUsrwgwDY4N///d+TJGeddVaS9SlorI+a/fzP/3yS5G//\n9m+HGQ7JrbXWC4YdBPSTXBFokzZcQ48KnUPtUGs94h9C5xAAAABAh+kcAthGG14j28pIUGvoHGLs\nyRWBNpInHpl8sR10DgEAAACwLbuVAWzjJS95SZLkmmuuSZLMzs4m6dYoSDMq1uxKNjFhXAEAwC5m\njBMZPgAAAECHWXMIYAea18rmtkudQ5s1O7c1HURLS0vDDAdrDtEBckVgFLTh2rptupwzt8lO1hwy\nrQxgBza3Da+srHRmetXCwkKS5FOf+lSS1X/7xlsAANhIUWj0dOPKBgAAAIAt6RwCOArNKMjCwkJn\nOoeabqkDBw4MORIAgPYqpZhaxsjqxpUNAAAAAFuyIDXALrz5zW/O5ZdfniSZmZkZcjT9U2s92C1l\n7nhrWZCasSdXBEZNG66zh0ne2C47WZBa5xAAAABAh+kcAtilNrx+9pvOoZGgc4ixJ1cERk0X8sSt\nyBfbSecQAAAAANtSHALYhVJKHnzwwTz44IPDDqWvjP4AABy9Uoo8ipGiOAQAAADQYVPDDgBgFNVa\nc8IJJxz8vAuOOeaYJMmBAweGHAkAAG2iS2r0KQ4B7EIpJRMT4998ubCwkNe85jVJkpWVlSFHAwAA\n9MP4X9kAAAAAcFi2sgfYpaZ99s///M+TJC9/+cuTZOw6irQJt56t7Bl7ckVg1LXhuruf5IvtZit7\nAAAAALZlzSGAXWpGSJ7xjGckSRYXF5Mks7OzQ4upV5rRLaNAAAAw/nQOAQAAAHSYziGAXWq6a576\n1KcmSb7xjW8MM5yeajqGfuInfuJgJ9TCwkKS8Z8zDwDAzugyHx86hwAAAAA6TOcQwC41HTT33ntv\nkuTYY4895Pg4jKR87Wtfy/z8/LDDAAAYaU1eqAObtlIcAtij448//pCvR7ko1CyqvbS0lCS5//77\nhxkOAAAwAKaVAQAAAHSYziGAPWoWan7LW96SJLniiiuGGc6ubG5xbqbITU5OZnl5eRghAQDQYqPc\nLc/D6RwCAAAA6DCdQwA9cs455ww7hF1rRn6mp6cPOW7RRAAAGH86hwAAAAA6TOcQwB41aw5ddNFF\nQ45k95p1hd73vvclSSYmVscOVlZWhhYTAADtY62h8aRzCAAAAKDDdA4BkKWlpSTJaaedlkTHEAAA\ndInOIQAAAIAOK23YiaaUMvwgAI5SM9+6eR3dfDuK87FHMWZya631gmEHAf0kVwTGRRuuv/dKvjh6\naq1H/KOZVgawS82b+x133JFkfWHqzdvBAwDQbeNQFGK8mVYGAAAA0GE6hwCOQtNGOzU1leOPPz5J\ncu655w4zpD1ZXFxMkrz85S9PkszOziZJ5ufnhxYTAMC4GKeOIdPJxpvOIQAAAIAOsyA1wFHYt29f\nkmRubu7gSFCz7fvExGjV21dWVg7GbCRopFmQmrEnVwRGVRuut3tFvji6drIg9WhdyQAAAADQU9Yc\nAjgKc3NzSQ4dBRq1jqHGxMREzj777CTJzMxMkvU1iMZplAsAYNDkUoya0byiAQAAAKAndA4B7MDU\n1OrL5bve9a4kqx1EzfpDo+zee+9NkiwsLAw5EgAA2shaQ91gQWqAbTRTxppFp9vwmrlbTezN1LH7\n7rsvp5122jBDojcsSM3YkysCo2KUc8XDURwafRakBgAAAGBbppUBbKPpGGqmXzVdN1NTUyM7itIs\nPn3aaac9rDMKAADoHp1DAAAAAB2mcwhgB04++eRhh7BnW3U66RgCAOiNcVtvaFS75NkdnUMAAAAA\nHaZzCGALk5OTSZIf+ZEfGXIkvTM3N5ckee9735skmZ6ePriGEgAA0F06hwAAAAA6rLRhXmQpZfhB\nAGR9bvX09HSSZHZ2Nknyve99b2gx9cr+/fuTJCeddFKSZH5+fpjh0Du31lovGHYQ0E9yRWAUtOHa\nuhesNTR+aq1H/KPqHAIAAADoMGsOAWzQjPgsLCwkWe+uaY6P8kjKsccem0THEABAL41LxxDdpjgE\nsIVHPOIRSdaLRDMzM8MMBwAAoG9MKwMAAADosCMWh0op15RS7iml/OuGY39YSvnPUspn1z4u2vC9\nV5dS7iilfKmU8ux+BQ7QT0960pPypCc9KbVWrcIA25ArAoyPUV5Cgb3ZSefQtUmes8XxP6u1Pnnt\n48NJUko5P8mLkvzI2mPeWkqZ7FWwAAC0zrWRKwLASDticajW+vEk9+3w512c5D211vla69eS3JHk\nJ/cQH8BQnHvuuTn33HOzsrKSlZWVYYfTU5OTk5mcdC0G9IZcEQBG317WHLqilPL5tVbiR60dOz3J\nNzfc5861Yw9TSrm8lHJLKeWWPcQAAEA7yRUBYETstjj0tiTnJnlykruT/Ona8a0mKG65WEet9epa\n6wW11gt2GQNA31x33XW57rrrMjU1lamp0d7YcXl5OcvLy7n00ktz6aWXZnp6OtPT08MOCxhvckUA\nGCG7Kg7VWr9da12uta4keXvW24HvTHLmhruekeSuvYUIAMAokSsCwGjZVXGolHLahi8vTdLsTvGh\nJC8qpcyWUs5Ocl6ST+0tRIDBO/PMM3PmmWeO1ZpDX/nKV/KVr3wlc3NzmZubG3Y4wBiTKwKMllKK\nnco67ohzJUopf5XkaUlOKaXcmeS1SZ5WSnlyVtuAv57kt5Kk1vqFUsoNSf4tyVKSV9Ral/sTOgAA\nwyZXBIDRV2rdcpr3YIMoZfhBAGzw7Gc/O0nygQ98IEmyb9++YYazK8vLq9dbzc5kRoPG1q3WZGHc\nyRWBNmvDNfVeyRPHW631iH/g0V5lFaDHZmdnkyTnn39+kmRiYi+bOg5XUxQ6/vjjk+TgItRLS0tJ\nxiORAQAA9m50r3oAAAAA2DOdQwAbNJ1CJ510UpJkZmZmmOEctVprFhcXkyRf/vKXkyQPPfTQMEMC\nAKClTCejoXMIAAAAoMN0DgFs0HTdPOtZzxpyJLvXdDs98YlPTLI+ImSNIQAAYCs6hwAAAAA6zFb2\nAFu48MILkyQf//jHk6zv9DVKzCHvDFvZM/bkikCbteGa+mjJE7tlJ1vZ6xwCAAAA6DBrDgFs0Iyi\n/PM///OQI9md+fn5vPGNb0zU+x9dAAATN0lEQVSyvvbQwsLCMEMCAABazrQygA02L97chtfIo6VN\nuHNMK2PsyRWBNhulfFGe2E2mlQEAAACwLdPKADYYpZGfrZx33nmmkwEAAEdF5xAAAABAhykOAWxh\namoqU1NTufPOO3PnnXdmZWUlKysrww7riM4444wsLCzoGgIA4BDWG2I7ikMAAAAAHWa3MoAdaMNr\n5UZNPMvLy0mSycnJJMnEhJp/B9mtjLEnVwRGQdvyxYaOIexWBgAAAMC27FYGsIVmhKW5/cVf/MUk\nyY033phkdWRomKMwze+empp62NdNN1FbR68AAIB20TkEAAAA0GE6hwC20HTdNLc33XRTkhzcBWxq\namqonUPz8/NJkk9+8pOHHF9aWhpGOAAAnVdK0bnNyLIgNcAutOG1M7HAIEksSE0HyBWBUdOGXFGe\nSMOC1AAAAABsy7QygF347d/+7bzhDW9Isr4o9CA009quvPLKJMns7GyS9WlmAAAAR0vnEAAAAECH\nWXMIYJcG/fpZaz04d9wccjaw5hBjT64IjKphXG/LE9nMmkMAAAAAbMuaQwC7MDk5mY985CNJkmc8\n4xlJkomJ/tbbSyl53OMelySZmZlJsr4GEQAA7dN08bRhxg5sR+cQAAAAQIdZcwhglyYnJ5Mkc3Nz\nh3zdq3nezevz0tJSkmT//v058cQTe/KzGSvWHGLsyRWBUTeI625rDXE4O1lzyLQygD164hOfmCS5\n/fbbe/pzmzf46enpJMmJJ554sAC1vLzc098FAED/mF5G25lWBgAAANBhOocAdqnp3vnGN76RJPm9\n3/u9JMnrXve6JMns7GxPfk+z4PXk5KSOIQCAEVZK6Xn3kOlk9ILOIQAAAIAOsyA1QI/t9XW1WYD6\nsssuS5LccMMNSWxbz2FZkJqxJ1cExlGvrsV1DnEkO1mQWucQAAAAQIfpHALosWc961lJkr//+78/\nqsetrKwkSSYmVuv2RoHYIZ1DjD25IjDO9nJNLl9kJ3QOAQAAALAtnUMAfXLgwIGDO5YdzajOqaee\nmiT57//+7yTJ4uJikt7NS2fs6Bxi7MkVgXG2mxxPxxBHQ+cQAAAAANuaGnYAAOOiGcFpRn/27dt3\nxMc0911cXMy3vvWtJMk999zTpwgBABhlOoboF8UhgB5pCj0zMzNJkq9+9as555xztn1M8wY/MzOT\ns846K8n6gtTNAtUAAIwfSwbQJqaVAQAAAHSYziGAHltYWEiS/NRP/VTuvvvuJMnU1NYvt/Pz80mS\na6+9NtPT00nWF6AGAGB8bV6SYCf3hX7ROQQAAADQYbayB+ijw73GNsebUSCjQeyBrewZe3JFYJxt\nd00uR6QXbGUPAAAAwLasOQTQJ7Ozs3nXu96VJHnBC16QZH0nsmZ9oWY0aGpqKktLS0OIEgAA6Dqd\nQwAAAAAdZs0hgAFodiD7yEc+kiS55JJLkiQrKyuHfB92wZpDjD25IgDs3k7WHDKtDKCPNk8ja7a0\nN4UMAABoC9PKAAAAADpM5xBAHzXTxho6hgAAgLbROQQAAADQYYpDAAAAAB2mOAQAAADQYYpDAAAA\nAB2mOAQAAADQYYpDAAAAAB2mOAQAAADQYYpDAAAAAB2mOAQAAADQYYpDAAAAAB2mOAQAAADQYYpD\nAAAAAB2mOAQAAADQYYpDAAAAAB2mOAQAAADQYYpDAAAAAB2mOAQAAADQYYpDAAAAAB2mOAQAAADQ\nYYpDQCdMTk4+7Njs7GxmZ2eHEA0AAEB7KA4BAAAAdNjUsAMA6KepqdWXuaWlpdRaD/neb/zGbyRJ\n3v3udydJ5ufnBxscAABAC+gcAgAAAOiwsnkkfShBlDL8IICxMj09nSS55pprkiS//Mu/nJWVlSTJ\nxMShdfGZmZkkyeLi4gAjhJ65tdZ6wbCDgH6SKwLA7tVay5Huo3MIAAAAoMOsOQSMpZtuuilJ8tSn\nPvXgsVIOLZhfddVVSR7eSQQAANAlrogAAAAAOsyaQ8BY2vzatri4eLBz6OlPf3qS5DOf+UySZP/+\n/YMNDnrLmkOMPbkiAOzeTtYcMq0MGGnHHntskuR5z3tekuQd73hHkvXiUFMQmp6ePuTzxALUAAAA\niWllAAAAAJ12xM6hUsqZSd6Z5DFJVpJcXWt9UynlpCR/neQHk3w9yQtqrfeX1aH5NyW5KMn+JL9W\na/1Mf8IHumxycjLXX399kuTiiy8+5HtN59D8/HyS5KMf/ejBhad1DAH0jlwRAEbfTjqHlpL8z1rr\n45NcmOQVpZTzk1yZ5OZa63lJbl77Okmem+S8tY/Lk7yt51EDANAWckUAGHFHvSB1KeWDSd6y9vG0\nWuvdpZTTknys1vrDpZT/f+3zv1q7/5ea+23zMy0yCBxWs1bQ5ORkkmRpaSlJcvPNN+cZz3jGlo9p\n7jM1NXXIz4AxZEFqWkWuCADtspMFqY9qzaFSyg8m+bEkn0xyavMmvnb76LW7nZ7kmxsedufasc0/\n6/JSyi2llFuOJgYAANpJrggAo2nHu5WVUo5P8r4kr6y1fm+bUfitvvGw0Z5a69VJrl772UaDgMOa\nnZ1Nkjz2sY9Nktx2220Pu0/TBdncbu4YmpyczPLyct9jBegquSIAjK4ddQ6VUqaz+mb/l7XWG9cO\nf3utRThrt/esHb8zyZkbHn5Gkrt6Ey4AAG0jVwSA0XbE4tDajhJ/keT2WusbNnzrQ0leuvb5S5N8\ncMPxXy2rLkzy3e3mkAMcydzcXObm5nLbbbdt2TWUrHYIlVIyMTGRiYmJnHXWWTnrrLMyMzOTmZkZ\nXUMAfSJXBNqu1nrIB/BwO5lW9pQkv5LktlLKZ9eOvSbJVUluKKX8epL/SPL8te99OKtbk96R1e1J\nL+tpxAAAtIlcEQBG3FHvVtaXIMwjB9ZsXCOo2XGseZ2an59Psr4G0XaPhw6xWxljT64I7EWTS8oT\n6aqd7Fa24wWpAQahefNeWlo65PMkmZmZOezjPvzhDydZX4i6eQwAAN3ShgYIGDVHtZU9AAAAAONF\n5xDQSm9+85sPft50AzWjQM3i0pOTk7nsstWlKt773vcm0TEEAMAq08hg53QOAQAAAHSYziGgFZr1\nhP7oj/4oSXL55Zcf/F7TMbSwsJBkfUHq7/u+78sDDzyQZH2xagAAuk3HEBw9nUMAAAAAHWYre2Co\nmpGd5rVoq9ekpmOo6S5qHlNKsRsF2MqeDpArAsDu7WQre51DAAAAAB1mzSFgqJrOn9tuuy3J+tpB\nzbpCydYdQxsfCwAAwO4pDgED1RR2mu3pmyLQE57whIfd9wMf+ECS5Pd///eTJPv27UuSzM3N9T1O\nAACArjCtDAAAAKDDdA4BQ7G4uJhkfbHpAwcOJEmOOeaYJFtvQWpbUgAAgN7TOQQAAADQYTqHgIE6\n3CLS23UMHemxAAAA7J7OIQAAAIAO0zkEDNXmTqGJidWa9crKyjDCAQAA6BydQwAAAAAdpnMIGIrN\nHUPNekI6hgAAAAZL5xAAAABAh+kcAobCzmMAAADtoHMIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAA\nAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMU\nhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAA\noMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEI\nAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6\nTHEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAA\nAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMU\nhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAA\noMMUhwAAAAA6THEIAAAAoMMUhwAAAAA6THEIAAAAoMMUhwAAAAA67IjFoVLKmaWU/1NKub2U8oVS\nyu+sHf/DUsp/llI+u/Zx0YbHvLqUckcp5UullGf38x8AAMDwyBUBYPSVWuv2dyjltCSn1Vo/U0o5\nIcmtSS5J8oIkD9Za/2TT/c9P8ldJfjLJ9yf5SJIfqrUub/M7tg8CADicW2utFww7CLpLrggA7VZr\nLUe6zxE7h2qtd9daP7P2+QNJbk9y+jYPuTjJe2qt87XWryW5I6tv/gAAjBm5IgCMvqNac6iU8oNJ\nfizJJ9cOXVFK+Xwp5ZpSyqPWjp2e5JsbHnZntkgQSimXl1JuKaXcctRRAwDQOnJFABhNOy4OlVKO\nT/K+JK+stX4vyduSnJvkyUnuTvKnzV23ePjDWoFrrVfXWi/QCg8AMPrkigAwunZUHCqlTGf1zf4v\na603Jkmt9du11uVa60qSt2e9HfjOJGduePgZSe7qXcgAALSJXBEARttOdisrSf4iye211jdsOH7a\nhrtdmuRf1z7/UJIXlVJmSylnJzkvyad6FzIAAG0hVwSA0Te1g/s8JcmvJLmtlPLZtWOvSfLiUsqT\ns9oG/PUkv5UktdYvlFJuSPJvSZaSvGK73ScAABhpckUAGHFH3Mp+IEHYnhQAdstW9ow9uSIA7F5P\ntrIHAAAAYHwpDgEAAAB0mOIQAAAAQIcpDgEAAAB02E52KxuEe5M8tHZL/50S53pQnOvBca4Hw3ke\nnJ2e67P6HQi0gFxxsLzWD45zPTjO9WA4z4PT01yxFbuVJUkp5Ra7rQyGcz04zvXgONeD4TwPjnMN\nh/J/YnCc68FxrgfHuR4M53lwen2uTSsDAAAA6DDFIQAAAIAOa1Nx6OphB9AhzvXgONeD41wPhvM8\nOM41HMr/icFxrgfHuR4c53ownOfB6em5bs2aQwAAAAAMXps6hwAAAAAYMMUhAAAAgA5rRXGolPKc\nUsqXSil3lFKuHHY846SU8vVSym2llM+WUm5ZO3ZSKeWmUspX1m4fNew4R1Ep5ZpSyj2llH/dcGzL\nc1tW/fnac/zzpZQfH17ko+cw5/oPSyn/ufbc/mwp5aIN33v12rn+Uinl2cOJejSVUs4spfyfUsrt\npZQvlFJ+Z+2453YPbXOePa9hC3LF/pEr9o9ccXDkioMjVxyMYeSKQy8OlVImk/x/SZ6b5PwkLy6l\nnD/cqMbO02utT661XrD29ZVJbq61npfk5rWvOXrXJnnOpmOHO7fPTXLe2sflSd42oBjHxbV5+LlO\nkj9be24/udb64SRZe/14UZIfWXvMW9deZ9iZpST/s9b6+CQXJnnF2jn13O6tw53nxPMaDiFXHAi5\nYn9cG7nioFwbueKgyBUHY+C54tCLQ0l+Mskdtdav1loXkrwnycVDjmncXZzkurXPr0tyyRBjGVm1\n1o8nuW/T4cOd24uTvLOu+uckJ5ZSThtMpKPvMOf6cC5O8p5a63yt9WtJ7sjq6ww7UGu9u9b6mbXP\nH0hye5LT47ndU9uc58PxvKbL5IqDJ1fsAbni4MgVB0euOBjDyBXbUBw6Pck3N3x9Z7b/R3N0apK/\nL6XcWkq5fO3YqbXWu5PVJ12SRw8tuvFzuHPred4fV6y1p16zoeXdue6RUsoPJvmxJJ+M53bfbDrP\niec1bOb5319yxcHyfjpY3lP7SK44GIPKFdtQHCpbHKsDj2J8PaXW+uNZbed7RSnlZ4cdUEd5nvfe\n25Kcm+TJSe5O8qdrx53rHiilHJ/kfUleWWv93nZ33eKY871DW5xnz2t4OM///pIrtoPnee95T+0j\nueJgDDJXbENx6M4kZ274+owkdw0plrFTa71r7faeJO/PamvZt5tWvrXbe4YX4dg53Ln1PO+xWuu3\na63LtdaVJG/Petukc71HpZTprL4J/WWt9ca1w57bPbbVefa8hi15/veRXHHgvJ8OiPfU/pErDsag\nc8U2FIc+neS8UsrZpZSZrC6i9KEhxzQWSinHlVJOaD5P8nNJ/jWr5/ela3d7aZIPDifCsXS4c/uh\nJL+6tlr/hUm+27Rdsjub5ipfmtXndrJ6rl9USpktpZyd1cXvPjXo+EZVKaUk+Yskt9da37DhW57b\nPXS48+x5DVuSK/aJXHEovJ8OiPfU/pArDsYwcsWpvYW8d7XWpVLKFUn+d5LJJNfUWr8w5LDGxalJ\n3r/6vMpUkutrrX9XSvl0khtKKb+e5D+SPH+IMY6sUspfJXlaklNKKXcmeW2Sq7L1uf1wkouyujDY\n/iSXDTzgEXaYc/20UsqTs9ou+fUkv5UktdYvlFJuSPJvWV3l/xW11uVhxD2inpLkV5LcVkr57Nqx\n18Rzu9cOd55f7HkNh5Ir9pVcsY/kioMjVxwoueJgDDxXLLWa7gcAAADQVW2YVgYAAADAkCgOAQAA\nAHSY4hAAAABAhykOAQAAAHSY4hAAAABAhykOAQAAAHSY4hAAAABAh/1f7pkElmXNhowAAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef0dcc198>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuQZVdZN/7vmnsukAuQEMj4U0lQ\nUEukBoXiYuCFkCBUQEGD+oJBK4jE0vKFEi0Ko0JVrAJRRCmCpMLFEKFASCG8AbkllERMIkICBlMv\niQkJGYKS61y6e9bvjz67u6enb9PT57o+n6qp7t5zzunV++zu85zvftbapdYaAAAAANq0adgDAAAA\nAGB4hEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANKxv4VAp5axSyk2l\nlJtLKa/r1/cBAGD8qBUBYHSUWuvGP2gpm5N8M8lzktye5F+TvLTW+vUN/2YAAIwVtSIAjJYtfXrc\nn05yc631/yVJKeXyJOckWfIFv5Sy8QkVALTh7lrrI4Y9CDhMakUAGJBaa1ntNv2aVvboJLct+Pr2\n3rY5pZTzSynXllKu7dMYAKAFtw57ALAOakUAGCH96hxaKpU66IxPrfXiJBcnzgYBADRGrQgAI6Rf\nnUO3J9m54OtTk9zRp+8FAMB4USsCwAjpVzj0r0lOL6X8UCllW5Jzk1zRp+8FAMB4USsCwAjpy7Sy\nWut0KeWCJFcm2Zzkklrrjf34XgAAjBe1IgCMlr5cyv6wB2EeOQCs13W11l3DHgT0k1oRANZvmFcr\nAwAAAGAMCIcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBh\nwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACg\nYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAA\noGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAA\nAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABo\nmHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAA\naJhwCAAAAKBhwiEAAACAhm05kjuXUm5Jcl+SmSTTtdZdpZQTk/x9kh9MckuSX6y1/s+RDRMAgHGj\nVgSA8bARnUPPrLU+oda6q/f165J8ptZ6epLP9L4GAKBNakUAGHH9mFZ2TpL39D5/T5IX9uF7AAAw\nntSKADBijjQcqkk+VUq5rpRyfm/bybXWO5Ok9/GkI/weAACMJ7UiAIyBI1pzKMlTa613lFJOSvLp\nUsp/rPWOvQLh/FVvCADAuFIrAsAYOKLOoVrrHb2Pu5P8Q5KfTnJXKeWUJOl93L3MfS+ute5aMP8c\nAIAJolYEgPGw7nColHJMKeUh3edJzkxyQ5Irkry8d7OXJ/nYkQ4SAIDxolYEgPFxJNPKTk7yD6WU\n7nEuq7X+31LKvyb5YCnl15P8V5KXHPkwAQAYM2pFABgTpdY67DGklDL8QQDAeLrOtBsmnVoRANav\n1lpWu00/LmUPAAAAwJgQDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQ\nMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA\n0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDsECpZSUUgZ+\nXwAAABgW4RAAAABAw7YMewAwbJs3b04y2/nTfb5v377DfpyjjjoqSfLggw+u+T5bt25NkkxNTR32\n9wMAAICNIByieSeddFKS5NZbb83HP/7xJMmLXvSiw36cL37xi0mSpz3taUmSAwcOzIVNy+lu+7nP\nfe6Q/9uyZfbXc2ZmJslseHXgwIHDHhcAAEeu1jrsISzJsgbARjCtDAAAAKBhZRQS8FLK8AfBROm6\nbjrT09PZs2dPkmT79u1J5s+ydFPItmzZkk2bNh30f4ej6+rpHmMt9u/fnyTZtm3bIf+3e/fuJMnJ\nJ5+cJDnttNNy8803L/k43f27x0vmf4ZR+B0H+uq6WuuuYQ8C+kmtyKBMUt2kowjo1FpX/YOgcwgA\nAACgYdYcYqx1XTo7duw46OM555yTJHnjG9+YJHnUox617GN0nUQbNZbDsVTHUOdhD3tYkvkzWPv2\n7Vt2rF//+teTJD/2Yz82t61b7HphNxEAAJPVIbSclX5GXUXAYjqHAAAAABqmc4ix1nXSfPe7302S\nHH300cMczoZafKWzlTqcTjvttCTzZ4hmZmbycz/3c0mSK6+8MsnKaxBZn2h97DcAGH1epw+1eJ/o\nJAJ0DgEAAAA0zNXKGDsL19Lp1tPprk62nnV/WrPwzFDXndTtv+7KbQtvOwp/I9ajX109Cx+36+aa\nmZlJMntVvEGPB+JqZTRArchaeI3dGLqIYPKs5WplppUxsropYt2UqX//938/5DYrLejM0hYWTnfd\ndVeS5H3ve1+S5LWvfW2S+QBu06ZNmZqaSpIcOHDgoMdZzzS1jQqbulBrZmZmLqDpgq1u7N14u+Bm\n+/bth4Rfi++7Fk95ylOSJBdddFFuuummJMm73/3uJMk111yz7P26Y/VwvhcAsDaCoY2z3L4UGsFk\n02YBAAAA0DDTyhhZX/3qV5PMX57dlLGN13XXdN0sRx11VJLkP/7jP5LMdsS8973vTZLs3r37oPs+\n9KEPTZLce++9hzxu1yXTTfvr7NixI3v37k0y/3wu7kjqOn+6jqWldN1kN998c/7sz/4sSbJz584k\nyemnn54kc9/naU97WpLks5/9bJ71rGcd9Dgf//jHkyTPf/7zl/1ei+3Zs2fuZ1k8xpU62bpOuO7+\nsIFMK2PiqRVZbBTew9BON1G/jrdW9h/Dt5ZpZd5tAwAAADRM5xAjoVv7pTse9+3bN9dR0iXqkvX+\n6fZ7t48XLrDcLVbdrfPT6Z6fpTq6brjhhiTJj//4jyeZ7+L58pe/nGc84xlJkv/5n/9JkpxwwgkH\n3fe73/1ukuQRj3jEsuPtOna2bt0699g7duw4aOyLxzs1NTXXldTpOpsOZ+2qxftqNd24Fn/PUfjb\ny8TQOcTEUyvS8fo52Vaqrybxuff+hkHROQQAAADAinQOMRL+5m/+Jknyqle9asgjYaFa64ac0Vj4\nd6Z7vOU6jw63M+dwbz9IT3/60/PP//zPSQ5dWwk2kM4hJp5akVF4zwIbbRTrVyaTziEAAAAAVrRl\n2AOgPaWUubM/3cdunZhR7gJp0UY9D0s9znJXnzvc7zkKx0p33N53331JkuOOO26YwwGAiaFjiEk0\nCvUrLKZzCAAAAKBhwiEG7iUveUlqrQedCdq8eXM2b96cUooknbExMzOTmZmZueN2586d2blzZzZt\n2rRsZxQAsLKuTtQ1xCTyXodRZVoZfde9SX7wwQeT5JDLicM46ArUbmHpzZs357Of/WyS5Mwzzxza\nuABgUgiDmGRCIUadU9sAAAAADdM5RN9dfPHFSWY7LRKpeT9YyLv/un179dVXJ0me+cxnZseOHcMc\nEgBMBB1DTDL1OeNC5xAAAABAw3QO0Tfvfve7kyQvfvGLk+gc6qfp6ekk1nPqpx/4gR9IkuzevXtu\n2969e4c1HAAARpj3PIwbnUMAAAAADdM5xIYzb7z/9u/fnyS56qqrkiSnnnpqkuRHf/RHhzamSXPf\nffclSR760IcOeSQAMJnUjEwa3UKMM51DAAAAAA3TOcSG2LFjR84+++wk8+uwuJLTkTlw4ECS+bWa\nTjvttFx00UVJkl/4hV9IkjznOc856D7OwB2ZriMr0TEEAP2iXmHS6BhiEpRR+ONcShn+IDhio3As\nTZJ9+/YlSa6//vokyTOe8Yxs3749SfLggw8mmQ+ONm2abQJ84IEHkiRbtsh918uLO2PoulrrrmEP\nAvpJrTg51ItMAvUi46bWuupBa1oZAAAAQMN0DrEuXcfKiSeemOTgy3vTH6WUubMUi39vR+H3eBI4\nC8SY0jnExFMrTg41C5NAzci40TkEAAAAwIosTMK6zMzMJNExNAjdGbZt27YdtGAyG+eNb3xjkuTo\no4/Onj17kjizCQAbyesqk0DHEJNM5xAAAABAw3QOcVi6tYae9KQnDXkk7ejOUCzsGuqeh5/4iZ9I\nkkxNTSVJtm7dOuDRjafp6ekk8/trubWcAABAxxAt0DkEAAAA0DCdQxyWbq2hL33pS0MeyeTruli6\nrqAnPvGJuf7665PMPw8f+tCHlryPsxtL6zqGbr311oO26xgCgP7wGsu4U1fTCp1DAAAAAA3TOcSq\nSinZtm1bkuTnf/7nhzyadnRnKbp9f9555811DnVOO+20gY9rnG3ZMvsn79nPfvZBX3edWM5uAsDG\n8JrKuNMxRGuEQ6yq1pp9+/YlSf72b/92blvij+YgdNPKHvnIR84toNxt4/CccsopSZLvfOc7Qx4J\nAEwmoRDjyvsaWmdaGQAAAEDDVg2HSimXlFJ2l1JuWLDtxFLKp0sp/9n7eEJveymlvK2UcnMp5aul\nlCf2c/AMTq01tdbs2LEjO3bsSClFuj4gBw4cyIEDB3LJJZfMfc7q9u7dm7179+buu+/O3XffnVJK\n7rrrrtx1112OX4ANpFaE4erqGvXN+thvMGstnUOXJjlr0bbXJflMrfX0JJ/pfZ0kZyc5vffv/CTv\n2JhhAgAwoi6NWhEAxtqqaw7VWq8qpfzgos3nJDmj9/l7knw+ye/3tr+3zk42vqaUcnwp5ZRa650b\nNWD6r0vOTzjhhCTJRz7ykblLgHcL+DI427dvT5J88pOfHPJIRlu3xsEDDzyQJPnFX/zFJAfvN+sg\nAGw8tSIdr7OjoavlPR/L0ykEh1rvmkMndy/ivY8n9bY/OsltC253e2/bIUop55dSri2lXLvOMQAA\nMJrUigAwRja6DWSpCHbJyLrWenGSi5OklCLWHiHdWYY//dM/TZL87M/+7DCHwwKbN29Okpx55plJ\nMncVua67qGXdGaAvfelLSZJPf/rTwxwOAEtTK04gHSqMCx1DsLz1dg7dVUo5JUl6H3f3tt+eZOeC\n252a5I71Dw8AgDGkVgSAMbLezqErkrw8yUW9jx9bsP2CUsrlSX4myT3mkI+Pbj2h5z//+UmS3/qt\n3xrmcFhC1zl03nnnJUk2bVpvvjs57r///iTJ7bffnmS+qwqAoVIrQp/pglk7+wpWV1ZrAy2lfCCz\nCwo+PMldSf4oyUeTfDDJDyT5ryQvqbX+d5n9rXt7Zq9Y8WCS82qtq84T1yo8XN0fy2OPPTZJcu+9\n9w5zOM3rLlW/OPjZsmXL3P+dddbsRWE+8YlPDHZwI6L7u7V///484xnPSJJ8+ctfHuaQYJiuq7Xu\nGvYgaJdasV2mkw3P4YQdLT9PQiGYVWtd9ZdhLVcre+ky//W/lrhtTfLq1YcGAMAkUCsCwPhzXfKG\ndVOUjjnmmCTJPffcM8zh0NN1DC11pmPbtm1JklNPPTVJct999yVJHvKQhwxodKOh2zcf+tCH8m//\n9m9DHg0AtKXlTpRh0wmzNvYTHD4LlgAAAAA0bNU1hwYyCPPIB66UMteF8vrXvz5J8trXvjbJfHeK\nxL3/ut+/hfu6+7zr7JqZmVn2/t3/TfrC1N3P2e2TrlNqeno6e/fuHdq4YERYc4iJp1YcDaPwvqE1\nG1GPt/a8eQ8Dh1rLmkOT/Y4SAAAAgBVZc6hRtda5K1/92q/9WpJk69atSaTtg9Tt689//vN54xvf\nmGS+C2iljqHOJHcMHThwYO7nu+WWW5Ikp5122hBHBADQP/2qwUspE9095L0LbIzJfWcJAAAAwKp0\nDjVqy5Yt+Zmf+ZkkyYknnphksrtQRtXOnTuTJLt3787U1FSSleeFd2dGduzYkSR5wQtekCT58Ic/\nnGR+vahxtnB9IWeCAGD4JrnrZBSod9bHfoONJQ0AAAAAaJjOocYsvBLWr//6ryeZ7SKiP7ozbd3H\n7mpbR/p4e/bsSZJ8/OMfTzIZHUOdhVdwW8sV2wAAxpHOl/Wx36A/pAKN6d5479+/P7/0S7+UZH4h\navrnqquuSjI/HWyjL7/eLS4+zlMDuxf6hS/4QiEAGC5TyiZDV1+N6/MpEIL+G993kgAAAAAcMZ1D\njemmH5155pk56qijhjyayded5TjjjDOSbHzHUPd8vvnNb06S/N7v/V6S8Zgq+LznPS9J8slPfjLJ\n+J/RAgBYC10wa2dfweDoHAIAAABoWBmFs/SllOEPohHbt29PknzoQx/KWWedlcSaQ/3UrQW0e/fu\nJMmpp56apH9r6Sz8fV64sPMoede73pUkOf/884c8EpgY19Vadw17ENBPasXhGYX3CpNilGqyUX1e\nR2kfwSSpta76y6VzCAAAAKBho78wCRuiS+H379+fJHnBC14wzOE055/+6Z+SzHdpdR1FG33W5qMf\n/WiS5IUvfOHcc911iw1S93M98MADSZLLLrssSfLKV75y7optAMDoGtXOknG2XFf3wn3dYudMiz8z\njCKdQwAAAAANs+ZQI7qrWp177rlJkne+851zHSXS+sEZ1L7etm3b3BXMfvM3fzPJYNeWuv/++5Mk\nN9xwQ5LkKU95ysC+NzTImkNMPLXi4I3Ce4QWDbouH8bz7L0HDJ41hwAAAABYkc6hRnRdI1dddVWS\nZNeuXdmyxZJTg9avMyWL1zJaeDW0Qf2O79mzJ0cddVSS5PTTT0+SfOc730ky30kE9IXOISaeWnHw\nRuE9QouG1VUziOdbxxAMz1o6h6QDE27TptnmsC48ePKTnzzM4TSrWxz6DW94Q5LkL//yL5Mk9957\nb5LDf0HuntcuDPrwhz+cJHnLW96SJPnCF74wd9vPf/7zSZIzzjjjsMddaz3khXxqairJodPUPvWp\nT+WFL3zhQf83PT192N8TABgeodBkW/z8dnVeKWXDn3thEIwX08oAAAAAGmZa2YTqkvpuIeoLLrgg\nSfKmN71pbrs0f3gWnqVJVj5Lt9Tz9JCHPCRJcs899ySZn7bVdewsdfn6m266KUny27/920mSG2+8\nMd/+9rcPuk3XidR1Jk1NTR3SIfS+970vSfKyl73soO07duzI3r17l/05gL4xrYyJp1YcnFF4b8C8\njajX1/KcrvR9DrdOBUaPBakBAAAAWJHOoQnXdX10lxR/zGMekyTZvHnz0MbUsu73rTvLcswxxySZ\nXUB63759B9226/7punmmp6fn7n/nnXcmSU466aSDHm+lszfdItULn/tuHaJujaLFfw+e+cxn5uqr\nrz7o/jt27EgSXUIwOnQOMfHUioMzCu8NGA26gmBy6BwCAAAAYEU6hxoxCs8z8xZ3EH3xi1/M05/+\n9INuc+WVVyZJrrrqqiTJa17zmhx//PF9HdfiM0Rbtmw55Ipja1knCRgonUNMPLVi/3ldb8PiOk53\nELRB5xAAAAAAK9oy7AGw8Uopc+vV/MZv/MaQR8NSFp+l2bVr1yFn7Lo1iJ7znOcseZ+N1HUHffOb\n30ySPPaxj00yf9WyhZxZBAAYfUt1e6vjgOWYVjahukWHb7vttiTJySefnGTpN/uw+O9AV0xs3br1\nkGllwMgxrYyJp1bsv1F4T8DgmVYGbTCtDAAAAIAVmVY2obrLjp9yyilDHgn9tFGLCS53/6mpKWeU\nAADG0FouImJhaqCjcwgAAACgYTqHYAwdOHAgSfLggw8mSY499tgks50+yexaQctxhggAYHItrvHU\nfMBa6BwCAAAAaJjOIRgTtda5Mz/79+9Pkpx99tlJki9+8Ysr3m+hrrto27Ztq95n//79ufDCC5Mk\nF110UZJk3759Sz4uADB+vJ4DkOgcAgAAAGhaGYWzBaWU4Q9igmzdujXPetazkiQf+9jHkiTbt28f\n5pBYh4XdO8lsd9Czn/3sg26zefPmJPNXp1uLz3/+80mSpz3taYfcv/t6oa5baS1XvACG4rpa665h\nDwL6Sa3YP17XJ4e1hYDl1FpX/QOhcwgAAACgYTqHJtD27dtz+eWXJ0me97znJVl5fRlG0+Kriu3Y\nsWNuvaDuamWHY9OmTXOPk8x2mB199NFJkk9+8pNJkp/8yZ886D7OQMFY0DnExFMr9s8ovBdgY6jb\ngOWspXNIODShRuF5ZWNs9Av9wulhiy9534VPC2/rWIKRJxxi4qkV+8fr/PgTCgGrMa0MAAAAgBW5\nlP0E2rp1a84555wkyd///d8nmV+Q2pmF0dWdueu6d97whjckmX/uukvIb9T3SZLp6elDti13WwAA\nACaTziEAAACAhukcmkCbNm3KBRdckGT+0uQ6hkZf9xx1i4dfeumlSea7e/pBZxAAwHhS3wMbSecQ\nAAAAQMNcrWxCjcLzyuGZmZlJktx///1Jkkc84hFJDr2CGMAirlbGxFMr9o+acXzpHALWytXKAAAA\nAFiRNYcmSHf2YPv27fmTP/mTJMnrX//6JLPrEDHauvWhjj/++CGPBAAAgJYIhyZI1xZ84MCBPPe5\nz537PBEOjYNuWtlJJ52UJLn77ruTzD+HAAAA0A8SAwAAAICGWZB6Qo3C88r6WFwQOEwWpGbiqRX7\nR804vtSMwFpZkBoAAACAFVlzaAJt27Ytr3jFK5Ikf/3Xf50k2bFjRxJnGEbZ3r17kySvec1rkiR/\n9Vd/lSTZt2/f0MYEAADA5NM5BAAAANAwaw5NoG3btuW2225LkpxwwglJkq1btw5zSKxBd1Wyk08+\nOUnyve99L4m1AIBVWXOIiadW7B91xvgyIwBYK2sOAQAAALAiaw5NoOnp6ezcuTNJ8sADDwx5NKxV\nd/bniU98YpLkU5/61DCHAwAAQCN0DgEAAAA0TOfQBNq6dWsuvPDCJLNdREmyZYunetR1VyXrOoi2\nbduWJNm/f//QxgQAAMDksyD1hBuF55f1scggsEYWpGbiqRX7R604/tSMwGosSA0AAADAioRDAADQ\nqFKKzhMAhEMAAAAALbNKMYyYbmHqF7/4xUmSK664IomFqQEAOFS3bpQOMOBI6BwCAAAAaJirlU2o\n7tL1t956a5Lk5JNPTpJs3rx5aGNifbZu3ZokmZ6eHvJIgBHlamVMPLVi/43CewKOjM4hYDmuVgYA\nAADAiqw5NKG6MwdPetKTksx3EDH6ujN33ceXvOQlSZIPfOADQxsTAACjzdpDwJEQDk2oqampJMkd\nd9yRZH6aGaOve0HvPl522WVJksc97nF505velGR+0WoAAAA4UqaVAQAAADTMgtQTrusY+ta3vpUk\nOfXUU4c5HI6QNmFgCRakZuKpFQdnFN4bcGTUi8BiFqQGAAAAYEUWoplw3dmfN7/5zUmSv/iLvxjm\ncFiHAwcOJEmuvvrqHH300UmSPXv2JHF2DwAAgCOncwgAAACgYdYcasQP//APJ0luvvnmuW3mI48f\nzxmwBGsOMfHUioMzCu8NODLqRWAxaw4BAAAAsCJrDjXilltuSZLMzMwkmb+KGeNl8+bNSeafRwCA\njdR1neggGj86hoAjoXMIAAAAoGHaRxrRXfHq7rvvTpI88pGPHOZwWCcdQwAAAGw0nUONKKWklJK3\nvvWteetb35r7778/tVYtwwAAMMa6Oh/gSAiHAAAAABq2ajhUSrmklLK7lHLDgm0XllK+XUr5Su/f\n8xb83x+UUm4updxUSnluvwbO4em6hN7+9rfn7W9/e+69995hD4k16p67vXv3OjMEwMhRK04mNQdA\nW9bSOXRpkrOW2P7WWusTev8+kSSllMcnOTfJj/Xu8zellM0bNVgAAEbOpVErAsBYWzUcqrVeleS/\n1/h45yS5vNa6r9b6rSQ3J/npIxgfG2z//v3Zv39/fv/3fz979uzJnj17hj0kVjE1NZWpqalcfvnl\n2bZtW7Zt2+ZsHgAjQ6042dQbAG04kjWHLiilfLXXSnxCb9ujk9y24Da397YdopRyfinl2lLKtUcw\nBgAARpNaEQDGxHrDoXckeUySJyS5M8lbetuXOrWw5OWwaq0X11p31Vp3rXMMrMPMzExmZmby/ve/\nP9PT05menh72kFijd77znXPPnyvNATDi1IoAMEbWFQ7VWu+qtc7UWg8keVfm24FvT7JzwU1PTXLH\nkQ0RAIBxolYEgPGyrnColHLKgi9flKS7OsUVSc4tpWwvpfxQktOTfPnIhshGWthxctxxx+W4444b\n8ohYTbfO0DXXXKPbC4CxoFacLNY6BJh8W1a7QSnlA0nOSPLwUsrtSf4oyRmllCdktg34liSvTJJa\n642llA8m+XqS6SSvrrXO9GfoAAAMm1oRAMZfGYV1S0opwx9Ew0bhGGB1ztgBy7jOmixMOrXiaFAz\njiY1IrCaWuuqfyiO5GplTAitwgAArEbNCDC5hEMAAAAADVt1zSHacfbZZydJ/vEf/zFJsmmT7HAU\nOEMHAABAP3n3DwAAANAwC1I6I+3YAAARYUlEQVRziO9973tJkhNPPHHIIyHROQSsyoLUTDy14mga\nhfcRqBWB1VmQGgAAAIAVWXOIQzzsYQ9L4mzQsBw4cCBJcvnllw95JAAAy+s6VtSMw6FjCNhIOocA\nAAAAGmbNIZZ13HHHJUm+//3vD3kkbXI2CFgjaw4x8dSKo20U3k+0SK0IrNVa1hwyrYxl3XPPPUmS\nSy65JK94xSuSzL/4ezHaePv27UuS/Oqv/mqS5KijjkqS7NmzZ2hjAgBYjellg6cWBzaaaWUAAAAA\nDTOtjFUdf/zxednLXpYkufDCC5MkJ5xwwhBHNJm638WuY2j//v0HbQdYhmllTDy14vhQtwyGziHg\ncLiUPQAAAAArsuYQq7rnnnvytre9LUly/fXXJ0muvvrqYQ5pIn3sYx9LkmzevHnIIwEAWB/rD/WX\njiGgX3QOAQAAADTMmkMclq6rZWZmJsn8ujhbt24d2pjG2YEDB5Ik3/zmN/O4xz1uyKMBxpQ1h5h4\nasXxNwrvOSaBziFgPaw5BAAAAMCKdA6xLlu2zC5XNT09nWT2bNDU1FQSXURr0XUMbdq0ae7jKPwu\nAmNJ5xATT604OdQ766NjCDgSOocAAAAAWJGrlbEu3ZpDXedLKSXf+ta3kiSPetSjkiTbtm0bzuBG\nUNcp9OCDDyZJ3vnOdyZJXvOa1wxtTAAAg1ZK0T10GHQMAYNiWhkbpptOdvrppydJbrzxxiSHTqFq\n0f33358kueuuu5Ikp5122jCHA0wW08qYeGrFyTQK70NGlVAI2EimlQEAAACwIp1D9M3OnTuTJNdc\nc02S5Pjjj08yO92sW9B6ku3fv39uat1Tn/rUJMnXvva1JMl99903tHEBE0fnEBNPrdiGUXhfMmw6\nhoB+0DkEAAAAwIp0DtE33RpE3TF29tlnJ0kuueSSPPzhD08y3usRdT/Xcmd4vvnNb+ZHfuRHkswv\nzj01NXXQfQE2gM4hJp5asS2t1Um6hYB+0zkEAAAAwIp0DtE33VmQ7hjrOommpqbm1hzqOmnG0f79\n+5PMdwV1up97+/bt2bdv38DHBTRH5xATT63YrlF4r7LRdAoBg6ZzCAAAAIAVTf4loxiaxWd6FnYJ\nzczMJJk/c3Lssccmmb+K14MPPpjt27cnSTZv3tz3sS7WrYXUja/7eOuttyZJPvrRj+b9739/kuTa\na69d8jF0DQEAHJnFnejjSrcQMOqEQwzF4hf4PXv2JJl/4fzjP/7jnHvuuUmSxz72sUnmp3F1U9IW\nLmK93MLWCxeNXjwNbO/evUmSHTt2zN22+/5f+MIXkiS/8iu/kiS58847k8xPjZuenh77IgUAYFws\nDldGtQ4TAgHjyrQyAAAAgIZZkJqRtH379rluoEc+8pFJkle96lVJkvPOO++g7Uny/e9/P0ly/PHH\nH/Q4C7uFLrvssiTJL//yLydJzjrrrCTJlVdemWR2+lo33e2YY45JMt/RtHia2Sj83gD0WJCaiadW\nZC0GVZ/pDgLGjQWpAQAAAFiRziFGXrcgdbfW0PT0dJL5Ra2T+bWGug6fpXRrCy1ea6j7eiEdQsAY\n0TnExFMrslGWq+10AwGTTOcQAAAAACtytTJGXtch1HUFLXXGZ6WOoc7iDqGlOoY6OoYAACaPDiGA\npekcAgAAAGiYziHGhm4eAAAA2Hg6hwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABom\nHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAa\nJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAA\nGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAA\nABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAA\nAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGrRoO\nlVJ2llI+V0r5RinlxlLK7/S2n1hK+XQp5T97H0/obS+llLeVUm4upXy1lPLEfv8QAAAMh1oRAMbf\nWjqHppP8n1rr45I8OcmrSymPT/K6JJ+ptZ6e5DO9r5Pk7CSn9/6dn+QdGz5qAABGhVoRAMbcquFQ\nrfXOWuv1vc/vS/KNJI9Ock6S9/Ru9p4kL+x9fk6S99ZZ1yQ5vpRyyoaPHACAoVMrAsD4O6w1h0op\nP5jkp5L8S5KTa613JrNFQZKTejd7dJLbFtzt9t62xY91finl2lLKtYc/bAAARo1aEQDG05a13rCU\ncmySDyf53VrrvaWUZW+6xLZ6yIZaL05yce+xD/l/AADGh1oRAMbXmjqHSilbM/ti/3e11o/0Nt/V\ntQD3Pu7ubb89yc4Fdz81yR0bM1wAAEaNWhEAxttarlZWkrw7yTdqrX++4L+uSPLy3ucvT/KxBdtf\n1rsSxZOT3NO1FAMAMFnUigAw/kqtK3fpllKeluTqJF9LcqC3+Q8zO5f8g0l+IMl/JXlJrfW/ewXC\n25OcleTBJOfVWlecK65VGADW7bpa665hD4J2qRUBYLTVWped691ZNRwaBC/4ALBuwiEmnloRANZv\nLeHQYV2tDAAAAIDJIhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHC\nIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBh\nwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACg\nYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAA\noGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAA\nAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABo\nmHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGjYquFQKWVnKeVzpZRvlFJuLKX8Tm/7haWUb5dS\nvtL797wF9/mDUsrNpZSbSinP7ecPAADA8KgVAWD8lVrryjco5ZQkp9Rary+lPCTJdUlemOQXk9xf\na33zots/PskHkvx0kkcl+ackj621zqzwPVYeBACwnOtqrbuGPQjapVYEgNFWay2r3WbVzqFa6521\n1ut7n9+X5BtJHr3CXc5JcnmtdV+t9VtJbs7siz8AABNGrQgA4++w1hwqpfxgkp9K8i+9TReUUr5a\nSrmklHJCb9ujk9y24G63Z4kCoZRyfinl2lLKtYc9agAARo5aEQDG05rDoVLKsUk+nOR3a633JnlH\nksckeUKSO5O8pbvpEnc/pBW41npxrXWXVngAgPGnVgSA8bWmcKiUsjWzL/Z/V2v9SJLUWu+qtc7U\nWg8keVfm24FvT7Jzwd1PTXLHxg0ZAIBRolYEgPG2lquVlSTvTvKNWuufL9h+yoKbvSjJDb3Pr0hy\nbilleynlh5KcnuTLGzdkAABGhVoRAMbfljXc5qlJ/neSr5VSvtLb9odJXlpKeUJm24BvSfLKJKm1\n3lhK+WCSryeZTvLqla4+AQDAWFMrAsCYW/VS9gMZhMuTAsB6uZQ9E0+tCADrtyGXsgcAAABgcgmH\nAAAAABomHAIAAABomHAIAAAAoGFruVrZINyd5IHeR/rv4bGvB8W+Hhz7ejDs58FZ677+//o9EBgB\nasXB8rd+cOzrwbGvB8N+HpwNrRVH4mplSVJKudbVVgbDvh4c+3pw7OvBsJ8Hx76Gg/mdGBz7enDs\n68GxrwfDfh6cjd7XppUBAAAANEw4BAAAANCwUQqHLh72ABpiXw+OfT049vVg2M+DY1/DwfxODI59\nPTj29eDY14NhPw/Ohu7rkVlzCAAAAIDBG6XOIQAAAAAGTDgEAAAA0LCRCIdKKWeVUm4qpdxcSnnd\nsMczSUopt5RSvlZK+Uop5drethNLKZ8upfxn7+MJwx7nOCqlXFJK2V1KuWHBtiX3bZn1tt4x/tVS\nyhOHN/Lxs8y+vrCU8u3esf2VUsrzFvzfH/T29U2llOcOZ9TjqZSys5TyuVLKN0opN5ZSfqe33bG9\ngVbYz45rWIJasX/Uiv2jVhwcteLgqBUHYxi14tDDoVLK5iR/neTsJI9P8tJSyuOHO6qJ88xa6xNq\nrbt6X78uyWdqracn+Uzvaw7fpUnOWrRtuX17dpLTe//OT/KOAY1xUlyaQ/d1kry1d2w/odb6iSTp\n/f04N8mP9e7zN72/M6zNdJL/U2t9XJInJ3l1b586tjfWcvs5cVzDQdSKA6FW7I9Lo1YclEujVhwU\nteJgDLxWHHo4lOSnk9xca/1/tdb9SS5Pcs6QxzTpzknynt7n70nywiGOZWzVWq9K8t+LNi+3b89J\n8t4665okx5dSThnMSMffMvt6OeckubzWuq/W+q0kN2f27wxrUGu9s9Z6fe/z+5J8I8mj49jeUCvs\n5+U4rmmZWnHw1IobQK04OGrFwVErDsYwasVRCIceneS2BV/fnpV/aA5PTfKpUsp1pZTze9tOrrXe\nmcwedElOGtroJs9y+9Zx3h8X9NpTL1nQ8m5fb5BSyg8m+akk/xLHdt8s2s+J4xoWc/z3l1pxsLye\nDpbX1D5SKw7GoGrFUQiHyhLb6sBHMbmeWmt9Ymbb+V5dSnnGsAfUKMf5xntHksckeUKSO5O8pbfd\nvt4ApZRjk3w4ye/WWu9d6aZLbLO/12iJ/ey4hkM5/vtLrTgaHOcbz2tqH6kVB2OQteIohEO3J9m5\n4OtTk9wxpLFMnFrrHb2Pu5P8Q2Zby+7qWvl6H3cPb4QTZ7l96zjfYLXWu2qtM7XWA0nelfm2Sfv6\nCJVStmb2Rejvaq0f6W12bG+wpfaz4xqW5PjvI7XiwHk9HRCvqf2jVhyMQdeKoxAO/WuS00spP1RK\n2ZbZRZSuGPKYJkIp5ZhSykO6z5OcmeSGzO7fl/du9vIkHxvOCCfScvv2iiQv663W/+Qk93Rtl6zP\nornKL8rssZ3M7utzSynbSyk/lNnF77486PGNq1JKSfLuJN+otf75gv9ybG+g5faz4xqWpFbsE7Xi\nUHg9HRCvqf2hVhyMYdSKW45syEeu1jpdSrkgyZVJNie5pNZ645CHNSlOTvIPs8dVtiS5rNb6f0sp\n/5rkg6WUX0/yX0leMsQxjq1SygeSnJHk4aWU25P8UZKLsvS+/USS52V2YbAHk5w38AGPsWX29Rml\nlCdktl3yliSvTJJa642llA8m+XpmV/l/da11ZhjjHlNPTfK/k3ytlPKV3rY/jGN7oy23n1/quIaD\nqRX7Sq3YR2rFwVErDpRacTAGXiuWWk33AwAAAGjVKEwrAwAAAGBIhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANOz/B68jjKa40WfHAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef0673c18>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X2QZVddL/zvmp6ZnrxJggSegWQu\nRkJBpIqAIRVN8YAIGsBiDCEKhYiRqlAWlle5FA9gIaKUWNajV7QEjQJBCvHGAgoqRLkQg5QQhITi\nLYQ8iRdMQhJSVy7JhGRm+mU9f/TZPT2dnp6Z7j5nn3PW51M11d37nNO9Zvfuc37nu397rVJrDQAA\nAABt2tb3AAAAAADoj3AIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYN\nLRwqpVxUSrmllHJbKeUNw/o5AABMHrUiAIyPUmvd+m9aykyS/y/J85LcmeSLSV5Wa/3Glv8wAAAm\niloRAMbL9iF93/OT3FZr/V9JUkr5+yR7k6z5gl9K2fqECgDa8L9rraf3PQg4TmpFABiRWms52n2G\ndVnZ45LcseLrOwfblpVSLi+l3FBKuWFIYwCAFvxH3wOADVArAsAYGVbn0Fqp1GFnfGqtVyS5InE2\nCACgMWpFABgjw+ocujPJmSu+PiPJXUP6WQAATBa1IgCMkWGFQ19McnYp5UdKKTuTvDTJx4b0swAA\nmCxqRQAYI0O5rKzWOl9K+fUkn0gyk+Q9tdabhvGzAACYLGpFABgvQ1nK/rgH4TpyANioG2ut5/U9\nCBgmtSIAbFyfq5UBAAAAMAGEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAAN\nEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAA\nAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMA\nAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RD\nAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDtm/mwaWUbyfZl2QhyXyt9bxSyiOT/I8kj0/y7SS/\nUGv9P5sbJgAAk0atCACTYSs6h36q1npurfW8wddvSHJtrfXsJNcOvgYAoE1qRQAYc8O4rGxvkvcN\nPn9fkp8fws8AAGAyqRUBYMxsNhyqSf5nKeXGUsrlg22PqbXenSSDj4/e5M8AAGAyqRUBYAJsas6h\nJBfWWu8qpTw6ySdLKd881gcOCoTLj3pHAAAmlVoRACbApjqHaq13DT7em+QjSc5P8t1Syu4kGXy8\n9wiPvaLWet6K688BAJgiakUAmAwbDodKKSeVUk7pPk/yM0m+nuRjSV45uNsrk3x0s4MEAGCyqBUB\nYHJs5rKyxyT5SCml+z5/V2v9p1LKF5NcVUp5VZLbk1y6+WECADBh1IoAMCFKrbXvMaSU0v8gAGAy\n3eiyG6adWhEANq7WWo52n2EsZQ8AAADAhBAOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAAN\nEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAA\nAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMA\nAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RD\nAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOE\nQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA07KjhUCnlPaWUe0spX1+x\n7ZGllE+WUm4dfDxtsL2UUv6slHJbKeWrpZSnD3PwAAD0S60IAJPvWDqHrkxy0aptb0hyba317CTX\nDr5OkucnOXvw7/Ik79qaYQIAMKaujFoRACbaUcOhWutnknxv1ea9Sd43+Px9SX5+xfa/rUs+n+TU\nUsrurRosAADjRa0IAJNvo3MOPabWeneSDD4+erD9cUnuWHG/OwfbHqaUcnkp5YZSyg0bHAMAAONJ\nrQgAE2T7Fn+/ssa2utYda61XJLkiSUopa94HAICpolYEgDG00c6h73YtwIOP9w6235nkzBX3OyPJ\nXRsfHgAAE0itCAATZKPh0MeSvHLw+SuTfHTF9l8erERxQZL7upZiAACaoVYEgAly1MvKSikfTPLs\nJI8qpdyZ5C1J/jDJVaWUVyW5Pcmlg7tfk+QFSW5L8mCSy4YwZgAAxoRaEQAmX6m1/0u4XUcOABt2\nY631vL4HAcOkVgSAjau1rjXn32E2elkZAAAAAFNAOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B9GBm\nZiYzMzN9DwMAAEA4BAAAANCy7X0PAGDS7dixI0kyNzf3sNu2bVvK4BcXF5MkF198cZLk+uuvT5Lc\nc889y/fdvn3pKbnrKDpw4MCQRgwAwLiotR7xtlKOugI5bAmdQwAAAAAN0zkEsElnn312kuS6665L\nkjz60Y8+4n0feOCBJMnJJ5+c5NCZooWFheXOofXOEHW3rXeGCQCA8XU8ddzR7quziK0iHALYoDvu\nuCNJsnv37mN+TBcKrbZycurVRUB3udrOnTuPWCAIjQAAxtewarS1vq/AiI1wWRkAAABAw3QOARyH\nrsPnve99b04//fTDtm3EWmd2ujNA3W3dpNYrzwytftxat+kiAgDoVx/12OqfqZOIY6FzCAAAAKBh\nOocAjsO///u/J0lOP/307Ny5cyg/Y/XZna4zqdZ61K6gUoqOIQCAno1TPbZe9zl0dA4BAAAANEzn\nEMAx6FYM6862bGaeoY1a60zP4uJikvXnJepu6+4LAMBwjFPH0FpWz20JHZ1DAAAAAA3TOQSwjre/\n/e1Jku3bx/PpsusK6tRalzuEujNDf/AHf5Ak+dd//dckyT/+4z8mOfyM0bif5QIAGHeTVE9Z0YzV\ndA4BAAAANKyMQ7pZSul/EABJZmdnkyQXXXRRkuTDH/5wkod36EySbr6kBx98MEnyzW9+M0lywQUX\n9DYmttSNtdbz+h4EDJNaERhn4/CeeivpIpo+tdaj/lKFQwAr/NAP/VCS5Pbbb0+SPOIRj+hzOFtq\nrfbh6667Lkmyd+/eJMm+fftGPi42TTjE1FMrAuNoHN5Lj5LQaHIdSzg0uafCAQAAANg0nUNA87qz\nILXW5s4AHThwIEkyMzOTJNmzZ0+S5N57702SLCws9DMwjofOIaaeWhEYJ63Vi0eik2hy6BwCAAAA\nYF3juTYzwAh1Z39aPAvUTcDdueWWW5Ikp5xyShJnhAAAOi3WiuuptaoVp4jOIQAAAICG6RwCmnf/\n/fcnSQ4ePJidO3f2PJp+dR1DnZVnhE488cQkyYMPPjjycQEAMH7WWg2XyaRzCAAAAKBhOoeA5uzY\nsSNJMjc3l+Th3TIcUmvN/Px8kuT2229Pkpx11ll9DgkAYKTMNXTsun2lg2jyWMoeaNY4PP9Nsu5F\nv/tof/bGUvZMPbUi0Bf1zeYIicaDpewBAAAAWJfLyoBmnHDCCUmSf/mXf0mSLC4uJkm2bZOTH48D\nBw4kST73uc8lSX7yJ3+yz+EAAGw5HUNbw2Vmk8M7IgAAAICGmXMIaM44PO9Nsm7/7d+/P0ly4403\nJkme+cxn9jamxplziKmnVgRGRZ04PLqH+mPOIQAAAADWZc4hoAknnHBC/uiP/iiJa583q9tv3RxO\nF1xwQZKl/WqfAgCwFjX4eNM5BAAAANAwcw4BzVj9fOfsxdZaXFzMRz/60STJi1/84p5H0xRzDjH1\n1IrAsI3D++LWqMFHx5xDAAAAAKzLnEPAVNu2bSkDP+ecc7KwsJAkmZmZSZLlr7dvX3oqrLUunzXq\nHsex27ZtWy6++OLDtnVnhJyNAwDGmZqF1rmsDGjGW9/61iTJnj17kiTnn39+kuT5z39+kuSFL3xh\nXv3qVydJnvrUpx722FtvvfWwx87Ozg5/wBOm1pqDBw8mSa6++uokyUte8pI+h9QKl5Ux9dSKQF/G\n4f3ytHN52fC5rAwAAACAdekcApqxY8eOJIe6fh566KEkhy4h2759e+bm5pIk8/Pza36PcXjOHGfd\n/jlw4ECS5E1velOS5K/+6q+SLO1z+3DL6Rxi6qkVgXGilhkOHUTDo3MIAAAAgHXpHAI4DuPwnDmJ\nnvWsZyVJrr/++uWuLPtyy+gcYuqpFYFxpqbZGjqHhkfnEAAAAADrspQ9wDG49NJLkyT33XdfkuQR\nj3hEn8OZGAsLC0mSj3/840mSRz3qUctzPHW3AQBMsq7jRQfR5tRadQ/1SOcQAAAAQMN0DgGsozt7\n8RM/8RNJkhNPPLHP4Uycrkto586dSZJPfOITed7znpdE5xAAAIwLE1IDHINxeK6cFtqFt5wJqZl6\nakVgnKkTt556cWuZkBoAAACAdbmsDGAN3eVQl1xySZLkoYceSpKccMIJvY1pGszPz+fpT396kuRr\nX/takmRubq7PIQEAQPN0DgEAAAA0zJxDAOsYh+fIabKwsJB9+/YlSU477bSeRzM1zDnE1FMrAuNI\nnTh85h7aGuYcAgAAAGBd5hwCWKGba2jPnj1JkoMHDyY5tBQ7mzMzM5NTTz2172EAAAAr6BwCAAAA\naJjOIYCBUkoWFxeTJN/61rd6Hs30evDBB5MkF154YZLks5/9bJ/DAQCA5ukcAgAAAGiYziGAgR07\ndizPMbR69QkrJWydE088MUly6623JlmahyhZWskMAGDcWaVsdLp9rRYfPuEQwMDs7GzuvvvuJF6A\nhmlubi5J8k//9E9JkvPPP7/P4QAAQPNcVgYAAADQMJ1DAAPXXnttTjrppL6HMfV27NiRJHna056W\nJJmfn+9zOAAAx8TlZEwznUMAAAAADdM5BDShlHLEsz0vf/nLkyTPeMYzRjkkAACAsaBzCAAAAKBh\nOoeAJqxcpr7zzW9+M0ly1lln9TEkVulWiHM9PwAwTtQmtEDnEAAAAEDDdA4BU61bfez5z39+/uEf\n/uGw2/bv35/k0OpZjEZ39u0HP/hBkuQ3fuM3kiR/9md/1tuYAADWomuIVgiHgKm0ffvS09vFF1+c\nJHn/+9+//OLeXb40Ozvbz+Aa1+3/nTt3Jkluv/32JId+HwcOHOhnYAAA0CiXlQEAAAA0rIxDm1wp\npf9BABPpaJMYj8NzHOvrfofbti2dr1hcXOxzOJPoxlrreX0PAoZJrQiMmhpyvHT1IhtTaz3qDtQ5\nBAAAANAwcw4BY+tYljbv5q3p5qn5vd/7vSTJm9/85iGPjo3qfp8HDx5Mknzyk59MkvzMz/xMb2MC\nAEh0DNEunUMAAAAADdM5BIyVld1CRzpzMzMzkyRZWFjIZZddliR517veNZoBsmmrO8Le/e539zkc\nAAAdQzRP5xAAAABAw6xWBoyVHTt2JEme+9zn5pprrjnq/bu5hmZnZ4c6LobHamWbZrUypp5aERi2\ncXhfzJFZrWxzrFYGAAAAwLp0DgFDs95qY12H0Nzc3JqPHYfnJoZj9Wpl3Spln/nMZ3ob04TTOcTU\nUytCm46nHtxoZ4maczLoHNqcY+kcMiE1MDSrl5lf6ZxzzkmSfOpTn0qSPOpRjxrdwOhV9+L+0EMP\nJUnuu+++PocDAIwJQQ30x2VlAAAAAA07ajhUSnlPKeXeUsrXV2z73VLKd0opXx78e8GK295YSrmt\nlHJLKeVnhzVwYLx0l4mttHfv3uzdu3d5WfqV/2644YbccMMNOe2003Laaaf1MGL6Njs7m9nZ2Xzl\nK1/JV77ylb6HA2yQWhHYjJX14ai+z1b9TJgmx9I5dGWSi9bY/t9rrecO/l2TJKWUc5K8NMmPDR7z\nzlLKzFYNFgCAsXNl1IoAMNGOOudQrfUzpZTHH+P325vk72utB5J8q5RyW5Lzk1y/4RECY6HrDFpY\nWEiSbN++9PTRTSp81lln5brrrkuS7N69O8mhuYa6szIrJ5LrHk+7vvWtbyVJdu3alSTZv39/n8MB\nNkitCKynj+4cHUFw/DYz59Cvl1K+Omgl7q4JeVySO1bc587BtocppVxeSrmhlHLDJsYAAMB4UisC\nwITYaDj0riQ/muTcJHcn+ePB9rWWR1sztq21XlFrPc/yuzA+SimHdfds23boKeKSSy7JJZdcksXF\nxSwuLubqq6/O1VdfvXy99k033ZTTTz89p59++vJjujllVn9fSJLvf//7+f73v7/8teMEpopaERq0\n1jyTwGTYUDhUa/1urXWh1rqY5K+z1A6cLJ39OXPFXc9IctfmhggAwCRRKwLAZNnQpB+llN211rsH\nX16cpFud4mNJ/q6U8idJHpvk7CRf2PQogZHYuXNnkkNzBd1777354R/+4SSH5hb64Ac/eNjXnZkZ\n84lybBYXF5McOs66Y8nZRZgeakVog9dumB5HDYdKKR9M8uwkjyql3JnkLUmeXUo5N0ttwN9O8uok\nqbXeVEq5Ksk3kswneU2tdWE4QwcAoG9qRQCYfGUc0t5SSv+DgCnVrQrW/a133UFzc3PLK491t116\n6aVJkquuuuqo33etFcjgWOzbty9J8qEPfShJctlll/U5nGlwozlZmHZqRdic1e/5uvptvXpuHN4n\nQsd7js2ptR51BwqHYIJ0wU53Gc7s7GySQ5fnrGXPnj1JkquvvjpJcuqppyZJzjnnnNxyyy1Jksc+\n9rGHfd9u2XpPwgyT42vLCIeYempFOH7j8D4PNku9uDWOJRzazFL2AAAAAEy4DU1IDYxO18UzNzeX\nJz3pSUkOTej7W7/1W0mSX/3VXz1s+7Zt2zI/P5/k0GVlc3Nzh32/+++/f/mysk7XmQQAwGTSMQRs\nhM4hAAAAgIbpHIIxs3qCwAsvvDBJct111z2s06frDups23Yo7129tHzXMbTy53RdRTAqBw4cyDvf\n+c4kh47R1cc1AHD8dAwBm6FzCAAAAKBhViuDMbO6m2K9v1HLyTMpVh6rjtctZ7Uypp5aEY5sHN7P\nwVZTL24tq5UBAAAAsC4TjsCY6eYN+sY3vnHU+0rUmRTdSnqf/vSnHzavFgCwcV5Xga0gHIIxUEpZ\nfkG/4oorkiRnnHFGn0OCLdEd193lks997nP7HA4AAGPMye/+uKwMAAAAoGE6h6BHXTJ+wgkn5IlP\nfGKS5Fd+5Vd6HBFsre4Y//rXv55kqYOou8RM+zsAbN7q11OXmQEboXMIAAAAoGE6h6BH3eTTe/bs\nyZe+9KWeRwNbb//+/UmS7373u0mShYWFPocDAFPnSJ1COoiYNOYb6pfOIQAAAICGlXFIkksp/Q8C\nelRrXT6rIzFnGnTzCnXdcY7robqx1npe34OAYVIrwsaNw/s9WI86cfhqrUfdyTqHAAAAABpmziHo\nQddN8Y53vGN5m8ScaXLw4MEkyX/8x38kOXTMr+ySAwC2ntdZYCN0DgEAAAA0TOcQ9ODyyy9Pkrz8\n5S/veSQwHPfff3+S5ElPelLPIwEAYBy5cmK8mJAaRmD1UqLj8HcHw7Bv374kyROf+MQkyT333NPn\ncFphQmqmnloRjp06k0khHBodE1IDAAAAsC6XlcEQdWn49u1Lf2oPPfRQn8OBoTvllFOSJN/73vd6\nHgkAtEXHEJNCx9B40jkEAAAA0DCdQzBE3Rmcubm5JMnMzMxh26XmTJMHHnggL3rRi5IcWsoeANg8\nXUHAsOkcAgAAAGiY1cpgSEopy51B9913X5Lk5JNP7nNIMHS64XphtTKmnlqR1o3DezbYLHVif6xW\nBgAAAMC6zDkEQ1JrXT7L03UMmWuIabK4uJgk2bZt6TyD4xoAtpaOIaaFOnH8CYdgSGZmZnLzzTcn\nefibaJhk3WTT3QTrp512WpKl47s71gGAjRMKMS2EQpPDO1UAAACAhukcgiFZWFjI2WefncTZH6bL\nf/7nfyZJHvvYxyZJZmdnkzjOAQBYomNo8ugcAgAAAGiYziEYko985CN54IEHkljCnsn20EMPJUmu\nvfbaJMmLXvSiJIfm0Dpw4EA/AwOAKaMLl0mnY2hy6RwCAAAAaJjOIdhiXVr+1Kc+NSeccELPo4Hj\n052xXLnC3pve9KYkyV/8xV8cdh9nNwFga3V1pNdYJo2OocmncwgAAACgYTqHYIt0afn27Ut/Vjt2\n7MjMzEyfQ4Jj1p2hnJ+fP2z78573vHzhC19IkszNzY18XADQotVdGDqJgGHTOQQAAADQMJ1DsEW6\nMzrdCk6f+tSn8rKXvSxJsnPnziSuxWV8dcfm5z73uSTJC17wgiRLnUQHDx7sbVwAAIwv72+mRxmH\nFsVSSv+DgC2yciLBcfj7guPRHb9dyOk4ngg31lrP63sQMExqRVrlNZhxJhiaHLXWo/6yXFYGAAAA\n0DCXlcEW6zounvKUpyxP7ttNUg3jZv/+/UmSz372s4dtt1w9AABr0TE0nXQOAQAAADRMOwMMyetf\n/3qdQ4y1gwcP5nWve12S5G/+5m8Ou03HEAD0x+sw40jH0HTTOQQAAADQMKuVwRCNw98XHMmb3/zm\nvO1tb+t7GGye1cqYempFWqOGZJzoGJp8VisDAAAAYF0mQoEh+bEf+zFzDjGWnP0BgPGkY4hxoFZs\nk3esMCQ33XSTUIixctlll/U9BAAAxphgqF0uKwMAAABomLYGGJJdu3bl9ttvT5Ls2bOn59HQooMH\nDyZJ/vmf/zlJcuWVV/Y4GgDgaLquDZeXMWo6htA5BAAAANAwnUMwJPv3788ZZ5yR5NDZH4k8w1Zr\nXT7O/vzP/zxJ8ju/8zt9DgkAgDHl/QkdnUMAAAAADdM5BFts5bXi27bJXxmtUkqe85znJEmuv/76\nJEtdbAAAAEfinSsAAABAw3QOwRbr5hfauXNnPvrRjyZJLrroouVtiWt7GZ5SSnbt2pUkOXDgQM+j\nAQBgHHk/wmo6hwAAAAAaVrouh14HUUr/g4AtVkpZ7iIah78zpsvqFfDOPffcJMlXvvKV3sZEb26s\ntZ7X9yBgmNSKtE4tyVbRMdSmWutRf/EuK4Mh8SLOMM3PzydJ3vve9yYRCgEAsD7BEOtxWRkAAABA\nw1xWBkM0OzubJHn961+fJPnt3/7tw7bDZjkDRFxWRgPUirBkHN67MbnUje06lsvKdA4BAAAANEzn\nEIzQOPy9Mdm65ek//vGPJ0kuueSSPofDeNA5xNRTK8Lh1JQcDx1D6BwCAAAAYF06h2CExuHvjcn2\n/e9/P0ny+Mc/Pkly33339TgaxoTOIaaeWhEOp6bkWOgYoqNzCAAAAIB1be97ANCSLr13toeN2Ldv\nX84444wkyQ9+8IOeRwMA9KWUop4EtpRwCEZo165dSZK3v/3tSZLXvva1SZKdO3dq++SoTjnllMzN\nzfU9DAAAxpj3FWyEy8oAAAAAGmZCaujBSSedlCS5//77kyyl+xJ+juSBBx5IkjzjGc/IN7/5zZ5H\nwxgyITVTT60IDzcO7+MYT95XsJoJqQEAAABYlzmHYIS2b1/6kzvttNOSHEr1pfus5+STT04SXUMA\nwDILnbCa9xRshs4hAAAAgIbpHIIRmp+fT5LceeedSZJ3v/vdSZJXvOIVmZ2d7W1cAADAZNIxxFbQ\nOQQAAADQMKuVwRgYh79Dxtddd92VJHnSk56Uffv29TwaxpDVyph6akU4MnUkOoc4GquVAQAAALAu\ncw5Bj7qU/4477sju3buTHFrRDDpnnnlmkmRxcbHnkQAA48aqZW3TNcRW8S4UejQzM5Mkefazn53b\nbrut59HQp1rrcvjTvcj/0i/9UpJDx4lwCAAAGAaXlQEAAAA07KidQ6WUM5P8bZL/K8likitqre8o\npTwyyf9I8vgk307yC7XW/1OWTnm/I8kLkjyY5FdqrV8azvBhsnVL23/729/O3r17kyQf/vCHk7i8\nrBVdC/j8/PxyZ9DP/dzPJUk+//nPJ0nm5ub6GRzAMVArwnhweVlbXE7GVjuWzqH5JP+t1vrkJBck\neU0p5Zwkb0hyba317CTXDr5OkucnOXvw7/Ik79ryUQMAMC7UigAw4Y7amlBrvTvJ3YPP95VSbk7y\nuCR7kzx7cLf3Jfl0kv9nsP1ROBM1AAAPVklEQVRv61Jk/flSyqmllN2D7wOsYXFxMddee22S5E//\n9E+TJK973ev6HBIjVkrJ6aefniQ5cOBAkuTgwYN9DgngmKgVYbzoIJpuOoYYluOac6iU8vgkT0vy\nb0ke072IDz4+enC3xyW5Y8XD7hxsW/29Li+l3FBKueH4hw0AwLhRKwLAZDrmSU1KKScn+VCS36y1\n3r9OYrnWDQ+LrWutVyS5YvC9xdo078EHH0ySvPGNb0yS/OIv/mKS5IwzzkjiLMG06n6vO3bsWJ5n\namFhoc8hAWyIWhEAJtcxdQ6VUnZk6cX+A7XWDw82f7eUsntw++4k9w6235nkzBUPPyPJXVszXAAA\nxo1aEQAm21HDocGKEu9OcnOt9U9W3PSxJK8cfP7KJB9dsf2Xy5ILktznGnI4dvPz85mfn8+ePXuy\nZ8+efPWrX81Xv/rVvofFkJRSlruHut99rdU8AcDEUCvCeFpZYzD5/D4ZtmO5rOzCJK9I8rVSypcH\n296U5A+TXFVKeVWS25NcOrjtmiwtTXpblpYnvWxLRwwAwDhRKwLAhCvjcHbadeRwdJdeemmuuuqq\nJIdWn3D2YPx1v6tuHqFuXqFnPvOZSZLrr7/+sNthA26stZ7X9yBgmNSKsDnj8J6PjVHvsxVqrUc9\nkIRDMCFOPvnkXHTRRUmSD3zgA0mSnTt39jkkjkG3HH33XLtr167DPu7fv7+fgTFNhENMPbUibM44\nvOfj+AmG2CrHEg4d11L2AAAAAEwXnUMwgf7yL/8ySfLKVy7N8zk7O5vE2YVx9IUvfCFJ8pznPCdJ\ncuDAgSRLk0/DFtE5xNRTK8LWGIf3fhydmp6tpnMIAAAAgHXpHIIJds899yRJTj311CSH5iBytqEf\nqycKf//7359XvepVSZLFxcXDPo7Dcy9TQ+cQU0+tCFtD/TGe1O4Mm84hAAAAANa1ve8BAMevWw79\nCU94QpLkO9/5zmHbZ2Zm+hlYo7oVybrOrW6Z+i9+8YuZm5vrbVwAACt1HSo6iMaDjiHGic4hAAAA\ngIbpHIIJtLCwkOTQylc//dM/nSS5/vrrextTy+6+++4kyVlnnZUk2bFjR5JDHUUAAJDoFmJ8mZAa\npsjll1+eJHnnO9/p0rIt1k0k3b2gl1Lylre8JUny+7//+0kOXc7XhXfj8PxKE0xIzdRTK8JwqFVG\nRyhEn0xIDQAAAMC6dA7BFNm1a1eS5L3vfW9e9KIXJUlOPPHEPoc08bpL92ZnZ5Mku3fvTpLcc889\ny9u6+0BPdA4x9dSKMBzj8F5wWukUYpzoHAIAAABgXTqHYIqsPEPx5S9/OUny5Cc/OcmhSZI5svn5\n+eV5g7p9+aEPfShJ8pKXvCTJoeXqTTbNGNE5xNRTK8JwjcN7wmmgW4hxpXMIAAAAgHXpHIIptH37\n9uX5cB544IEkh1bb2rZNJtzti/n5+SSHuoFuvfXW/NRP/VSS5Dvf+c5ht83NzSVxZo2xpHOIqadW\nhOFT4xw/nUJMCp1DAAAAAKxre98DALbewsJC9u/fn+TQGY3ubFD3cVrPdBzp/3fgwIHlbqrutm5F\nt0984hNJlrqqVndWmVsIAGjB6pqRh5vW+hkSnUMAAAAATdM5BFOo1pqFhYXDtnVnOr73ve8lSU46\n6aRs3770FDDJ8xCt7hTq5gbq5grqvPWtb83b3/72w7atvs/i4uLyfEQAAC3SQXQ43UK0QjgEjXnk\nIx+ZJPn0pz+dZz3rWYfd1gVK3ceV4Ukfl6Otd4lYkszOzi7fdtlllyU5dKnYi1/84sMe011StlIX\nJAEAcLjV9de0hkXCH1gyue0CAAAAAGyapeyhUTt27HhY58wTnvCEJMlrX/vaJMmv/dqvLd/24IMP\nJkl27dqVZP1L0Y7U8VNrPeJZqLXO2nSTQa++/Ottb3tbkuTNb37z8rYTTjghyaFl6rvHjsNzHAyZ\npeyZempFGC+TWl/pEqJVlrIHAAAAYF06h4DlsygzMzNJDp0NWjmp9VOe8pQkyYknnpgkOfPMM5Mk\nz3ve85Ikr371qzM/P58kyxNddx566KHl79t1AXX3WTl/0GrXXHNNkuSFL3zhYdu7+3aPhcbpHGLq\nqRVhvI3De8qVdAjB4XQOAQAAALAunUPAcenOxHTdO93HBx544LBOo5V+/Md/PMlS99Hpp5+eJHnE\nIx6R5FAH0Rvf+MaHPa7rMuo6kiwzD2vSOcTUUyvC9NjI+0+dQLA5OocAAAAAWJfOIWBourM8az3P\ndKuedfbv3z+SMcEU0jnE1FMrAsDGHUvn0Paj3QFgo9YLn4VBAAAA48FlZQAAAAANEw4BAAAANEw4\nBAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw44aDpVSziylXFdKubmUclMp5b8Otv9uKeU7pZQvD/69YMVj3lhK\nua2Ucksp5WeH+R8AAKA/akUAmHyl1rr+HUrZnWR3rfVLpZRTktyY5OeT/EKSB2qt/++q+5+T5INJ\nzk/y2CSfSvLEWuvCOj9j/UEAAEdyY631vL4HQbvUigAw3mqt5Wj3OWrnUK317lrrlwaf70tyc5LH\nrfOQvUn+vtZ6oNb6rSS3ZenFHwCAKaNWBIDJd1xzDpVSHp/kaUn+bbDp10spXy2lvKeUctpg2+OS\n3LHiYXdmjQKhlHJ5KeWGUsoNxz1qAADGjloRACbTMYdDpZSTk3woyW/WWu9P8q4kP5rk3CR3J/nj\n7q5rPPxhrcC11itqredphQcAmHxqRQCYXMcUDpVSdmTpxf4DtdYPJ0mt9bu11oVa62KSv86hduA7\nk5y54uFnJLlr64YMAMA4USsCwGQ7ltXKSpJ3J7m51vonK7bvXnG3i5N8ffD5x5K8tJQyW0r5kSRn\nJ/nC1g0ZAIBxoVYEgMm3/Rjuc2GSVyT5Winly4Ntb0ryslLKuVlqA/52klcnSa31plLKVUm+kWQ+\nyWvWW30CAICJplYEgAl31KXsRzIIy5MCwEZZyp6pp1YEgI3bkqXsAQAAAJhewiEAAACAhgmHAAAA\nABomHAIAAABo2LGsVjYK/zvJDwYfGb5Hxb4eFft6dOzr0bCfR+dY9/V/GfZAYAyoFUfLc/3o2Nej\nY1+Phv08OltaK47FamVJUkq5wWoro2Ffj459PTr29WjYz6NjX8Ph/E2Mjn09Ovb16NjXo2E/j85W\n72uXlQEAAAA0TDgEAAAA0LBxCoeu6HsADbGvR8e+Hh37ejTs59Gxr+Fw/iZGx74eHft6dOzr0bCf\nR2dL9/XYzDkEAAAAwOiNU+cQAAAAACMmHAIAAABo2FiEQ6WUi0opt5RSbiulvKHv8UyTUsq3Sylf\nK6V8uZRyw2DbI0spnyyl3Dr4eFrf45xEpZT3lFLuLaV8fcW2NfdtWfJng2P8q6WUp/c38slzhH39\nu6WU7wyO7S+XUl6w4rY3Dvb1LaWUn+1n1JOplHJmKeW6UsrNpZSbSin/dbDdsb2F1tnPjmtYg1px\neNSKw6NWHB214uioFUejj1qx93ColDKT5C+SPD/JOUleVko5p99RTZ2fqrWeW2s9b/D1G5JcW2s9\nO8m1g685flcmuWjVtiPt2+cnOXvw7/Ik7xrRGKfFlXn4vk6S/z44ts+ttV6TJIPnj5cm+bHBY945\neJ7h2Mwn+W+11icnuSDJawb71LG9tY60nxPHNRxGrTgSasXhuDJqxVG5MmrFUVErjsbIa8Xew6Ek\n5ye5rdb6v2qtB5P8fZK9PY9p2u1N8r7B5+9L8vM9jmVi1Vo/k+R7qzYfad/uTfK3dcnnk5xaStk9\nmpFOviPs6yPZm+Tva60Haq3fSnJblp5nOAa11rtrrV8afL4vyc1JHhfH9pZaZz8fieOalqkVR0+t\nuAXUiqOjVhwdteJo9FErjkM49Lgkd6z4+s6s/5/m+NQk/7OUcmMp5fLBtsfUWu9Olg66JI/ubXTT\n50j71nE+HL8+aE99z4qWd/t6i5RSHp/kaUn+LY7toVm1nxPHNazm+B8uteJoeT0dLa+pQ6RWHI1R\n1YrjEA6VNbbVkY9iel1Ya316ltr5XlNK+b/7HlCjHOdb711JfjTJuUnuTvLHg+329RYopZyc5ENJ\nfrPWev96d11jm/19jNbYz45reDjH/3CpFceD43zreU0dIrXiaIyyVhyHcOjOJGeu+PqMJHf1NJap\nU2u9a/Dx3iQfyVJr2Xe7Vr7Bx3v7G+HUOdK+dZxvsVrrd2utC7XWxSR/nUNtk/b1JpVSdmTpRegD\ntdYPDzY7trfYWvvZcQ1rcvwPkVpx5LyejojX1OFRK47GqGvFcQiHvpjk7FLKj5RSdmZpEqWP9Tym\nqVBKOamUckr3eZKfSfL1LO3fVw7u9sokH+1nhFPpSPv2Y0l+eTBb/wVJ7uvaLtmYVdcqX5ylYztZ\n2tcvLaXMllJ+JEuT331h1OObVKWUkuTdSW6utf7Jipsc21voSPvZcQ1rUisOiVqxF15PR8Rr6nCo\nFUejj1px++aGvHm11vlSyq8n+USSmSTvqbXe1POwpsVjknxk6bjK9iR/V2v9p1LKF5NcVUp5VZLb\nk1za4xgnVinlg0meneRRpZQ7k7wlyR9m7X17TZIXZGlisAeTXDbyAU+wI+zrZ5dSzs1Su+S3k7w6\nSWqtN5VSrkryjSzN8v+aWutCH+OeUBcmeUWSr5VSvjzY9qY4trfakfbzyxzXcDi14lCpFYdIrTg6\nasWRUiuOxshrxVKry/0AAAAAWjUOl5UBAAAA0BPhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQ\nMOEQAAAAQMOEQwAAAAAN+/8BubXvP6ZiUnAAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef82d82e8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+Mp2V9L/z3tTu7CwtUwB/AApbm\nyIlHm4qW+mBpq9Z6jmgNNKUqNqJiikm1j0Zj/NFW25igsU852rRHRYtg6g9s0ZQ29FS70VpTrS5E\nqYo84hFhhcKjNoLsr9md6/ljvvfO7OzM7Ozs9/f1eiWbmbnn+5259p575vu53/fnvq5Saw0AAAAA\nbdow6gEAAAAAMDrCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaNrBw\nqJTynFLKHaWUO0spbxrU9wEAYPKoFQFgfJRaa/+/aCkbk/y/SZ6dZGeSryS5rNb6zb5/MwAAJopa\nEQDGy8yAvu5Tk9xZa/0/SVJK+XiSi5Ms+4JfSul/QgUAbfhBrfXRox4EHCW1IgAMSa21HOkxg7qt\n7Mwk9yz6eGdv20GllCtLKTtKKTsGNAYAaMH3Rj0AWAe1IgCMkUF1Di2XSh1yxafWek2SaxJXgwAA\nGqNWBIAxMqjOoZ1Jzl708VlJ7h3Q9wIAYLKoFQFgjAwqHPpKknNLKT9TStmc5EVJbhrQ9wIAYLKo\nFQFgjAzktrJa6/5SyquT/GOSjUmurbV+YxDfCwCAyaJWBIDxMpCl7I96EO4jB4D1uqXWev6oBwGD\npFYEgPUb5WplAAAAAEwA4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAA\nAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMA\nAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RD\nAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOE\nQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDD\nhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABA\nw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAA\nQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAA\nAEDDhEMAAAAADRMOAQAAADRMOAQAAADQsJljeXIp5a4kDyU5kGR/rfX8UsqpSW5Ick6Su5K8oNb6\nn8c2TAAAJo1aEQAmQz86h55Zaz2v1np+7+M3Jdleaz03yfbexwAAtEmtCABjbhC3lV2c5Pre+9cn\nuWQA3wMAgMmkVgSAMXOs4VBN8ulSyi2llCt7206rtd6XJL23jznG7wEAwGRSKwLABDimOYeSXFhr\nvbeU8pgknymlfGutT+wVCFce8YEAAEwqtSIATIBj6hyqtd7be/tAkk8leWqS+0spZyRJ7+0DKzz3\nmlrr+YvuPwcAYIqoFQFgMqw7HCqlnFBKOal7P8l/T/L1JDcleWnvYS9N8rfHOkgAACaLWhEAJsex\n3FZ2WpJPlVK6r/PRWuv/LqV8JcknSimvSHJ3kt869mECADBh1IoAMCFKrXXUY0gpZfSDAIDJdIvb\nbph2akUAWL9aaznSYwaxlD0AAAAAE0I4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA\n0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgE\nAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4\nBAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQsCOGQ6WUa0spD5RSvr5o26ml\nlM+UUr7de3tKb3sppfxZKeXOUsptpZSnDHLwAACMlloRACbfWjqHrkvynCXb3pRke6313CTbex8n\nyUVJzu39uzLJe/szTAAAxtR1USsCwEQ7YjhUa/18kh8t2Xxxkut771+f5JJF2z9c530pycmllDP6\nNVgAAMaLWhEAJt965xw6rdZ6X5L03j6mt/3MJPcsetzO3rbDlFKuLKXsKKXsWOcYAAAYT2pFAJgg\nM33+emWZbXW5B9Zar0lyTZKUUpZ9DAAAU0WtCABjaL2dQ/d3LcC9tw/0tu9Mcvaix52V5N71Dw8A\ngAmkVgSACbLecOimJC/tvf/SJH+7aPvlvZUoLkjy466lGACAZqgVAWCCHPG2slLKx5I8I8mjSik7\nk7wtyTuTfKKU8ookdyf5rd7Db07y3CR3JtmV5OUDGDMAAGNCrQgAk6/UOvpbuN1HDgDrdkut9fxR\nDwIGSa0IAOtXa11uzr9DrPe2MgAAAACmgHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABo\nmHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAA\naJhwCAAAAKBhwiEAAACAhgmHAAAAABo2M+oBALSglHLIx7XWEY0EAADgUMIhgHXqAp+lQc+WLVsO\nfn7Pnj1Jkg0b5hs1Z2bm/+zu37//kOccOHBgoGMFAGA8reWi4dILjdBvbisDAAAAaJjOIYCjsLhb\nqLvKc/rppydZ6Aratm1bkuR5z3tefvmXfzlJctpppyVJrrrqqiTJO9/5ziTJz/7szyZJfvzjHx/s\nONq7d+/A/x8AAAxev6YSWPp1dBLRbzqHAAAAABpWxmFS1FLK6AcBsMjS+YQ2btyYZGFuoDPOOCP3\n3ntvkhycV2jz5s1JFuYX2rNnz8Gv03UFzc7OHvJ9Nm3adPD9D37wg0mS3/md3+nz/4Ypd0ut9fxR\nDwIGSa0ITIJRnVvrIuJIaq1HPEh0DgEAAAA0TOcQwCrOOeecJMlP/dRPJUm+9rWvJZlfbaybY6j7\nO3qsV226uYYWr3YGa6BziKmnVgTG0TicSy+mdmQlOocAAAAAWJXVygB6zjrrrNxzzz2HbOvmCFo8\nN1CyMAdR0r+rNF3HUKe7GnXFFVckSa677rqxu0IFANCKca/D+tXNTpt0DgEAAAA0TOcQHIWus6Ob\nG4bx1/3MNm7cmEc96lFJFlYT++53v3vIY/fs2ZO5ublDHtPNK7TUMK/IvPe9702SnH766bn66quT\nOAYBYJys1FGig2NyjXuX0Gp0ELEeJqSGRbpAoNPdYrRt27YkyY033pgkufTSSw97breM+b59+wY5\nRI7ghBNOSJI8/PDDSZLbb789yfyE0ieddFKShVvEjjvuuBGMcP327duXL3zhC0mSZz3rWSMeDWPE\nhNRMPbUi42Q9509O0sfXOJwPD5rjDxNSAwAAALAqnUOwjL/7u79Lkjz72c9OcvhEwcvZsWNHkuQX\nfuEXBjcwkix0/NRaD95eddpppyVJ7rvvviTJ7t27kyRbt24dwQgHzxUgFtE5xNRTKzIOjvW8yWv3\n6IzDOe8oOfbQOQQAAADAqnQO0byus2TXrl0Hryrs2bMnyfrmpHn729+eJHnrW9/apxFOhlLK0K7K\ndF1aW7duzeMe97gkCz+zbl6hadXNaXXDDTckSS6//PJRDofxoHOIqadWZJT6Xd/o4hiscTi/HVeO\nvXbpHAIAAABgVTqHaE7XWfLQQw8lWZhf6Nd//df7+n0e+chH5sEHH0yS7N+/v69fe5wsXvK962o5\n44wzkizM/9PN2XS0y693Vze6leAuuuiiJMnf/M3fJJlfnr41S5cmfdKTnpRkYVW22dnZ0QyMUdI5\nxNRTKzIKgz5P0sUxGONwfjuuHHPt0jkEAAAAwKp0DjExui6RAwcOHPa5LgVf6XjeunVrdu3alWSh\nw+Lxj3/8IIZ5iPPOOy9J8rWvfe2Q7av9X8Zd1ynU7ev7778/yfz/6dRTT132Oe9617uSJG984xuP\n6Xt3+6v7ebv6saDrrtI51CSdQ0w9tSLDNsxzJPVMf43D+e04c7y1aS2dQ8IhxtYJJ5yQJHn44YeT\nJM973vOSJJ/73OeSzE9A3P1x6x774x//OMnCsuad//iP/zgYDg1zafPuNqouFPnd3/3dJMmznvWs\nJMkFF1yQZOE2qWThJL+7RWtczMzMJFkI1b7whS8kWZi0u7t1bDXrfTHatGlTkmTnzp1Jksc85jHr\n+jrTqAuDuuOGJgmHmHpqRdZiHM5rjsW0nrT36+ey1v0z6cfBoE3rccbq3FYGAAAAwKp0DjFWjj/+\n+CTJ7t2786lPfSpJcskllyRZ6KT5vd/7vSTJ7//+7+fLX/5ykuTkk09Okvzar/1akoUrBl3nznqW\npO+nbpn17pasrsvjJz/5SZLkxBNPPPiYZz/72UkWOnO6jp1a60huQ+s6rd761rcmObpbw7r9/9rX\nvjZJ8qEPfejgz3E9f3u6ffGf//mfSeb3W+u6Sc8vvfTSJMlnPvOZUQ6H0dA5xNRTK7KScTiXGYRJ\n7+7o98/laPbHtB4T/TLpxxbro3MIAAAAgFXpHGKsfO9730uSnHnmmSsuUz43N5dkfnLibi6aabD4\n/5UszLPTTWb9q7/6q/nRj36UZGF+n6VdOEeamPtobdy4Mc9//vOTJH/913+dZKF7ZzXd9+/mw3nC\nE56QJPnOd75zzONJkv379x/T15km3T7+4z/+4yTJVVdd5YpZe3QOMfXUinS8xh3ZKDtDBvnz0T3U\nHzqH2qRzCAAAAIBV6RxipJZ2uozD8Thuus6QxV1S1113XZLk5S9/+SGP7eZW6uYvWq+uO+inf/qn\n8+1vfzvJsV1l6J67YcOGgx1S/VBrPdhFtJaOpha4GtQknUNMPbUiasRjM+j6YBg/H51D/aVmbIvO\nIQAAAABWpXOIsdAdh11XSSlFmr2KbhWwbu6hzmWXXZYk+eQnP3mw42g98xF1j7377rtz+umnJ1lf\nZ87u3buTJJdffnmS5MYbb+z7lZxx+Bs2TvzeNEnnEFNPrdgur/ODdax1wzB/PusZq+NnZWrGtugc\nAgAAAGBVOocYqa4DpjsOl3bCsLyl3UBL3XDDDXnRi150yLZu33b7fDmbN29Okmzfvj1JcuGFFx7T\nVYWuc+jv//7vkyQveMEL1v21FuvGNDMzk3/6p39KkjztaU9Lkqlawe5oPPjgg0mSa665Jm94wxtG\nPBqGTOcQU0+t2K5xOFdpxbh35phzqL90DrVlLZ1DZnBlJN785jcnmZ+gODGZ8NE60h/zSy655LAX\nxS4weM973pNkfjn4pY/Zt29fkuSXfumX+jLOLpB60pOelGR+3P14se6+xuzsbJ7+9KcnSV8nup5E\nJ5xwQpLkrLPOOvh71fo+AWCyOcEfrqX7e7V6088Gpo/bygAAAAAadsR2jVLKtUl+PckDtdaf7W37\noyS/k+T/6z3sLbXWm3ufe3OSVyQ5kOT/rrX+4wDGzQTauHFjkvkuoauuumrEo5lu3e1hi73tbW9L\nkjz5yU9Okvz2b//2YY859dRTkxz5trW16r7Ob/7mbyaZv+Wr607qh5mZmYMTZreu+/16xCMekeOP\nPz5JsmvXriSu7gGDpVaE6dSvenDY1D2wPmvpHLouyXOW2f4/a63n9f51L/ZPSPKiJE/sPed/lVI2\n9muwAACMneuiVgSAiXbEzqFa6+dLKees8etdnOTjtda9Sb5bSrkzyVOTfHHdI2RqHDhwIMn8XDfd\nMuvdXEOTdkVi3C23P0888cQkyaWXXpokefGLXzzwcXTdLLfeemuS5JRTTulr59D+/fsPdg51x1f3\nPVs7prqrZBdddFEefvjhEY8GaIlakX7T+TFexuXnMS7jgGl1LHMOvbqUclsp5dpSyim9bWcmuWfR\nY3b2th2mlHJlKWVHKWXHMYwBAIDxpFYEgAmx3iWi3pvk7Ulq7+2fJrkiyXKX6peNeGut1yS5JrE8\n6bTrVqx661vfmmR+KfVuTpzWujvGwSiWeu9+zst1tHSfW+6+9pVWzVi8/YYbbkgy30WULHQOtWbx\nfvvoRz+aJHnJS16SZKGrCmCI1IoAMEHW1TlUa72/1nqg1jqX5AOZbwdO5q/+nL3ooWcluffYhggA\nwCRRKwLAZFlX51Ap5Yxa6329D38jydd779+U5KOllKuTbEtybpIvH/MomWh79+5NkrzlLW8Z8UhI\nRtOt1c0ttbjjZ2kX0NKOn5mZmYPdQF3ny9JOossvvzxnnXVWkuVXaGvVSSedlGRhnqkHH3wwiXv1\ngeFRKwKMt0ldjY7BWctS9h9L8owkjyql7EzytiTPKKWcl/k24LuSvDJJaq3fKKV8Isk3k+xP8qpa\nq/sZAACmlFoRACZfGYcrye4jn05LO0PG4VhjfH3zm99MkoMr2b3jHe/I29/+9iTJueeeO7JxTTJX\ngppxS631/FEPAgZJrdgWNSMMj3qxDbXWI/6ghUMMzTgca4yvLhTqJsyenZ09+GLV6vL0x+rRj350\nkuQHP/jBiEfCgAmHmHpqxbaoGWF41NdtWEs4dCxL2QMAAAAw4da7lD2s2bZt25Iku3fvTpIcf/zx\noxwOY6rrGFrpY9Zuz549SVx5BQAA1kbnEAAAAEDDdA4xMN08Mbt27UqiYwiGpfvdu+2225IkZ599\ndpJkbm5uZGMCAADGl84hAAAAgIbpHGJgDhw4kCR54xvfmGRhHpTjjjtuZGOCFnTzNXXzfekYAgBg\nMauUsZTOIQAAAICG6Rxi4Lp5T/bv3z/ikUDbuitEVjEDAGhbVw/qIKIjHGJguklxt2/fniQ58cQT\nRzkcaEb3Yv/P//zPSZLNmzcnSfbt2zeyMQHAkbh4ATA6bisDAAAAaFgZh4S+lDL6QdB3XYvit771\nrSTJOeeck2ShiwEYjKVtwtqFp94ttdbzRz0IGCS1YhvG4bwEWqNObEOt9Yg/aJ1DAAAAAA0z5xB9\n16XP3XLa73vf+5IkV1111cjGBC3pfgd37tyZJNmyZUuShTmHXJkFAAAW0zkEAAAA0DCdQ/Rd15XQ\ndSlcffXVoxwONGd2djZJ8vnPfz7Jwu+kjiEAAGA5OocAAAAAGma1Mvqum+9EtwKMhtXKmmO1Mqae\nWnG6qRVhdNSJbbBaGQAAAACrMucQfdetUvaRj3wkSbJ3794kyebNm5NIp2HQVvodW9rVBwAAkLit\njAEah2MLEMg2wG1lTD214nRSK8L4UC9ON7eVAQAAALAqt5XRNzMz84fTaaedluTwSXGB4dq9e/eo\nhwAAAEwAnUMAAAAADdM5RN/Mzc0lST772c8mSQ4cOJBkoaMIGK7jjz9+1EMAgMOYawhg/OgcAgAA\nAGiYlg76puscOvfcc0c8EgAAAGCtdA4BAAAANEznEH2xZcuWPP3pT0+SzM7OJkk2bdo0yiEBAAAA\nayAcoi9mZ2ezc+fOJCagBgBgeSajBhhPbisDAAAAaJgWD/piZmYmf/Inf5Lk8NvKSikjGxcAAACw\nOp1DAAAAAA0r43Dfbyll9IPgmI3DsQQcrpsH7MCBAyMeCQNyS631/FEPAgZJrTg91IswntztMd1q\nrUf8AescAgAAAGiYOYc4Jl1HwmMf+9jMzc0lSTZskDnCONi3b1+SZNu2bUmSe+65Z5TDAQAAxpSz\neAAAAICGmXOIY9Ldm3rXXXcd7E7ouomA8eAe8qlnziGmnlpx8o3DOQewMvXidDPnEAAAAACrEg5x\nTLZu3ZqtW7fm5ptvzszMjK4hAAAAmDBuK6MvxuE4ApanTXjqua2MqadWnHxqRRhv6sXp5rYyAAAA\nAFblHiDWpVuu3rL1MH4OHDiQJLnsssuSJMcdd1ySZM+ePSMbEwAAML6c2QMAAAA0zJxD9EWt9eC9\n5O5XhdGanZ1NknznO99Jkvzcz/3cIduZOuYcYuqpFSffOJxzACtzDjfdzDkEAAAAwKrMOcRR6RLl\nzZs3J0le+MIXJkn27t2bLVu2jGxcwIKZmfk/7TfffHOSZG5ubpTDAaBhOoYAJoPOIQAAAICG6Rzi\nqHRXf/bu3Zskuf766w/ZDozevn37kiRf/OIXkyx0EnUdRH5fAQCAxUxIzbp0t5B1J59PfvKTRzkc\nYBkmFmyGCamZemrFyTUO5xrAkakbp5sJqQEAAABYldvKOCpdorxhw3yuuGPHjiQ6hwAAACaNjiE6\nOocAAAAAGmbOIY7JOBw/wPJcCWqGOYeYemrFyaVWhPGmXmyDOYcAAAAAWJU5h1iXbs6hBx54IEny\nyEc+Mhs3bhzlkIAke/fuzbve9a4kC6sK7t27d5RDAgAAxpzOIQAAAICGmXOIo9Ldk7p58+YkyRVX\nXJEkec973pNNmzaNbFzAAveON8ecQ0w9teLkGodzDeBw6sW2mHMIAAAAgFXpHGJduvmFdu7cmSQ5\n/fTTRzkcaF73t7yU4kpQe3QOMfXUipNrHM41gMOpF9uyls4hE1KzLgcOHEiSnHHGGUm88MOodS/w\nl1566cGJqPft25fE7ycAo9O9PnktgvEgFGIlbisDAAAAaJjOIfpmbm4uycIy98DgdFdgu+6gv/iL\nv0iS3HzzzTqGAACAo+IsHgAAAKBhJqRmXbp7Vbu3999/fx75yEcesg0YHr93TTMhNVNPrTj5xuGc\nA1AztspS9gAAAACsypxDrEt39ad7++hHP9oVIQAAlmXVMhg9XUOsRucQAAAAQMN0DgFMMFeAAABY\njXqRtRAO0TcPPPBAkuSUU05JkmzatGmUw4Gp1C1T/1d/9VdJki1btiRJ9u7dO7IxAcBalVLcWgYw\nhtxWBgAAANAwS9nTd//wD/+QJPmVX/mVJMnWrVtHORyYGnv27Mmtt96aJHnmM5+ZZKGTiKZZyp6p\np1acLuNw/gEtcDsZHUvZAwAAALAqnUP03YYN85njO9/5ziTJG97whlEOBybe3Nxckvl5hbpOvO73\nrPscTdM5xNRTK06ncTgPgWmkY4ildA4BAAAAsCqdQwxcd4x1byXZcHT279+fJHnWs56VL37xi0mS\n2dnZUQ6J8aJziKmnVpxu43A+AtPAeRYr0TkEAAAAwKpmRj0Apl83R8oPfvCDQz4GVrd79+4kyZvf\n/OYkyY4dO3QMATB1um4HHUSwPjqG6AedQwAAAAANM+cQA9Ml2N3bAwcOJDn0qpCUGw7X/a58+tOf\nTpI873nPS+KKKisy5xBTT63YBq9zcPScT7EWa5lzyG1lDMxKE1HXWr34wyruuOOOJMlzn/vcEY8E\nAIbH7WWwdkIh+s1tZQAAAAANO2I4VEo5u5Ty2VLK7aWUb5RSXtPbfmop5TOllG/33p7S215KKX9W\nSrmzlHJbKeUpg/5PMBk2btyYjRs35uSTT04pRdoNS7zsZS/Ly172sjzxiU/ME5/4xFEPB2BN1Ir0\nmzoRVub3g0FZS+fQ/iSvr7X+tyQXJHlVKeUJSd6UZHut9dwk23sfJ8lFSc7t/bsyyXv7PmoAAMaF\nWhEAJtwR5xyqtd6X5L7e+w+VUm5PcmaSi5M8o/ew65N8Lskbe9s/XOdvFv5SKeXkUsoZva9Dw+bm\n5pIku3btyr/+678mSX7xF39xlEOCkdu/f3+S5PGPf3y+853vjHg0AEdPrciglFLMPwQ9uoUYtKOa\nc6iUck6SJyf5tySndS/ivbeP6T3szCT3LHrazt62pV/rylLKjlLKjqMfNgAA40atCACTac2rlZVS\nTkxyY5LX1lofXCW5XO4Th0X+tdZrklzT+9ouCTSgu/IzOzubCy+8MMl8t0SSfOlLX0qSPOIRjxjN\n4GBEXv/61ydJvv/97494JADHRq3IIFjBDGA41tQ5VErZlPkX+4/UWj/Z23x/KeWM3ufPSPJAb/vO\nJGcvevpZSe7tz3ABABg3akVf6JJlAAAO20lEQVQAmGxH7Bwq83H9Xya5vdZ69aJP3ZTkpUne2Xv7\nt4u2v7qU8vEk/1eSH7uHnJV0c6y8733vS5K85jWvSZIcd9xxIxsTDMPrXve6JMkHPvCBJMmePXtG\nORyAdVMrMgw6iGiVuYYYlrXcVnZhkpck+fdSyld7296S+Rf6T5RSXpHk7iS/1fvczUmem+TOJLuS\nvLyvIwYAYJyoFQFgwpVxSN/dR07nk5+c70S/+OKLs2HDUc2XDmNn8d/X7qpPd1x3H3er+MExuKXW\nev6oBwGDpFZkqXE4h4FB0zVEv9Raj3gwCYcYS4973OPy7W9/e9TDgGMyOzub3bt3J1mYbF1bPAMg\nHGLqqRU5Eq+rTANhEIOylnBIawYAAABAw9a8lD0M05133pn3v//9SZJXvvKVSZL9+/cnSWZmHLaM\nt9nZ2STJpk2bsnnz5iQLt5O5sgkA/VdK8RrLWNMVxLjTOQQAAADQMHMOMTG6Y1UHEeNu27ZtSZL7\n7rMyM0NhziGmnlqRozEO5zewlM4hRsmcQwAAAACsSusFE6NL2x/72McmSb73ve8dMrcLDFOt9eAy\n9Bs3bkyycIx2x6P5DwBg+JZ2aHgtZpR0DDEpdA4BAAAANEznEBPn7rvvTpJs3bo127dvT5LccMMN\nSZJ3v/vdIxsX06276rh79+4k88ffO97xjiTJH/7hHx7y2K6jDQAYvcWdG7qIGDSdQkwqE1IzsTZs\n2HDwdp7uNp5du3YlSZ7//OcnSW666aYkyd69ew8uKd79we6OfX/A6Sz+e7h3794kyXHHHXfIY664\n4ookyYc+9KHhDQxWZ0Jqpp5akUEZh3MhJp/zCcadCakBAAAAWJXOIZrwspe97LBOjz179iRJtmzZ\nkkTiz6GuvPLKJMkHPvCBEY8EjkjnEFNPrcigjcM5EZPH+QOTQucQAAAAAKvSOUQTtmzZcnAOmc6H\nP/zhJMkLX/jCJMnmzZuzb9++g+8zWVaaQ6qbQHrjxo254447kiRf+tKXkiT33XdfkuRtb3vbsIYJ\ng6BziKmnVmQUxuE8ifGgQ4hJp3MIAAAAgFXpHKIJpZQVr/50cw4df/zxufnmm5MkT3va05Ik+/fv\nP/j8JAdXR2M4lnYDzc3NHfL5UsqKq8899NBDSZIPfvCDSZLXve51Oemkkw75Ol032eKf8zj8TYSj\npHOIqadWZByoEaaHTiBao3MIAAAAgFXpHIKejRs3ZsOG+bx0dnY2SfKUpzwlSbJ9+/Ykycknn5xk\nvuOk6zjqrDTnDYfq9lPXvbO0G6vr4pmZmTnsuT/84Q+TJO9///uTJB/96EfzrW99a9mv21naWQRT\nSOcQU0+tyLhSX4yOmhvWTucQAAAAAKvSOQSr2LRpU5KFTqLOy1/+8lx77bWHbOvmr+k6imqtrmj0\ndN08GzZsyLvf/e4kyXve854kyV133XXIYy+44IIkCyuKLdZ1dnX7eG5u7rBV6KBBOoeYempFJs04\nnGNNA7U09MdaOoeEQ7AOW7ZsOSyUeN/73pckeeUrX5kk+clPfpITTzwxyeHB0bRbHAYlyYtf/OIk\nycc+9rEcd9xxSRb2ydK/QV0gt3//foUVrI1wiKmnVmQaqGtWJgSCwXJbGQAAAACr0jkE67Dckudd\nV9Bytzm96lWvSpL8+Z//+RG/dvf87gpK10lztFdUVpoge7nt65lMe7Xn/PzP/3yS5NZbb02y8u15\nQF/oHGLqqRWZRuNwHjZMuoNgdHQOAQAAALAqnUMwBKt1FS31L//yL0mSP/iDP0iSbN++/eBzt27d\nuupzl5vbaM+ePUlycK6fbqn4ubm5bN68+ZDndXMFHX/88St+j248N954Y5Lkgx/8YJJDu4K65em7\nrzcOf2dgiukcYuqpFWnVpNVQuoNgPOkcAgAAAGBVOodgCLqrKKv9vnWP6Vb46rpv9u3blyTZvHnz\nwfdXsm3btiTJvffee3DbM57xjCTJ5z73uUO+z9atWw++f8kllyRJvv/97ydJbrvttiTJD3/4w8O+\nR9eV1HUgHThwYNUxAQOnc4ipp1aEIxv0eZ2uIJhcOocAAAAAWJXOIRhTa+k2Wu25S5+33NfrupS6\nuYGAiaRziKmnVgSA9VtL59DMMAYCHL1jCW6Xe+5y24RCAAAAuK0MAAAAoGHCIQAAAICGCYcAAAAA\nGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAA\nABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAA\nAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcA\nAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmH\nAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJ\nhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICG\nCYcAAAAAGiYcAgAAAGjYEcOhUsrZpZTPllJuL6V8o5Tymt72PyqlfL+U8tXev+cues6bSyl3llLu\nKKX8j0H+BwAAGB21IgBMvlJrXf0BpZyR5Ixa662llJOS3JLkkiQvSPKTWuv/s+TxT0jysSRPTbIt\nyT8l+a+11gOrfI/VBwEArOSWWuv5ox4E7VIrAsB4q7WWIz3miJ1Dtdb7aq239t5/KMntSc5c5SkX\nJ/l4rXVvrfW7Se7M/Is/AABTRq0IAJPvqOYcKqWck+TJSf6tt+nVpZTbSinXllJO6W07M8k9i562\nM8sUCKWUK0spO0opO4561AAAjB21IgBMpjWHQ6WUE5PcmOS1tdYHk7w3yX9Jcl6S+5L8affQZZ5+\nWCtwrfWaWuv5WuEBACafWhEAJteawqFSyqbMv9h/pNb6ySSptd5faz1Qa51L8oEstAPvTHL2oqef\nleTe/g0ZAIBxolYEgMm2ltXKSpK/THJ7rfXqRdvPWPSw30jy9d77NyV5USllSynlZ5Kcm+TL/Rsy\nAADjQq0IAJNvZg2PuTDJS5L8eynlq71tb0lyWSnlvMy3Ad+V5JVJUmv9RinlE0m+mWR/klettvoE\nAAATTa0IABPuiEvZD2UQlicFgPWylD1TT60IAOvXl6XsAQAAAJhewiEAAACAhgmHAAAAABomHAIA\nAABo2FpWKxuGHyR5uPeWwXtU7Othsa+Hx74eDvt5eNa6r3960AOBMaBWHC5/64fHvh4e+3o47Ofh\n6WutOBarlSVJKWWH1VaGw74eHvt6eOzr4bCfh8e+hkP5nRge+3p47Ovhsa+Hw34enn7va7eVAQAA\nADRMOAQAAADQsHEKh64Z9QAaYl8Pj309PPb1cNjPw2Nfw6H8TgyPfT089vXw2NfDYT8PT1/39djM\nOQQAAADA8I1T5xAAAAAAQyYcAgAAAGjYWIRDpZTnlFLuKKXcWUp506jHM01KKXeVUv69lPLVUsqO\n3rZTSymfKaV8u/f2lFGPcxKVUq4tpTxQSvn6om3L7tsy7896x/htpZSnjG7kk2eFff1HpZTv947t\nr5ZSnrvoc2/u7es7Sin/YzSjnkyllLNLKZ8tpdxeSvlGKeU1ve2O7T5aZT87rmEZasXBUSsOjlpx\neNSKw6NWHI5R1IojD4dKKRuT/EWSi5I8IcllpZQnjHZUU+eZtdbzaq3n9z5+U5LttdZzk2zvfczR\nuy7Jc5ZsW2nfXpTk3N6/K5O8d0hjnBbX5fB9nST/s3dsn1drvTlJen8/XpTkib3n/K/e3xnWZn+S\n19da/1uSC5K8qrdPHdv9tdJ+ThzXcAi14lCoFQfjuqgVh+W6qBWHRa04HEOvFUceDiV5apI7a63/\np9a6L8nHk1w84jFNu4uTXN97//okl4xwLBOr1vr5JD9asnmlfXtxkg/XeV9KcnIp5YzhjHTyrbCv\nV3Jxko/XWvfWWr+b5M7M/51hDWqt99Vab+29/1CS25OcGcd2X62yn1fiuKZlasXhUyv2gVpxeNSK\nw6NWHI5R1IrjEA6dmeSeRR/vzOr/aY5OTfLpUsotpZQre9tOq7Xel8wfdEkeM7LRTZ+V9q3jfDBe\n3WtPvXZRy7t93SellHOSPDnJv8WxPTBL9nPiuIalHP+DpVYcLq+nw+U1dYDUisMxrFpxHMKhssy2\nOvRRTK8La61PyXw736tKKb8y6gE1ynHef+9N8l+SnJfkviR/2ttuX/dBKeXEJDcmeW2t9cHVHrrM\nNvt7jZbZz45rOJzjf7DUiuPBcd5/XlMHSK04HMOsFcchHNqZ5OxFH5+V5N4RjWXq1Frv7b19IMmn\nMt9adn/Xytd7+8DoRjh1Vtq3jvM+q7XeX2s9UGudS/KBLLRN2tfHqJSyKfMvQh+ptX6yt9mx3WfL\n7WfHNSzL8T9AasWh83o6JF5TB0etOBzDrhXHIRz6SpJzSyk/U0rZnPlJlG4a8ZimQinlhFLKSd37\nSf57kq9nfv++tPewlyb529GMcCqttG9vSnJ5b7b+C5L8uGu7ZH2W3Kv8G5k/tpP5ff2iUsqWUsrP\nZH7yuy8Pe3yTqpRSkvxlkttrrVcv+pRju49W2s+Oa1iWWnFA1Ioj4fV0SLymDoZacThGUSvOHNuQ\nj12tdX8p5dVJ/jHJxiTX1lq/MeJhTYvTknxq/rjKTJKP1lr/dynlK0k+UUp5RZK7k/zWCMc4sUop\nH0vyjCSPKqXsTPK2JO/M8vv25iTPzfzEYLuSvHzoA55gK+zrZ5RSzst8u+RdSV6ZJLXWb5RSPpHk\nm5mf5f9VtdYDoxj3hLowyUuS/Hsp5au9bW+JY7vfVtrPlzmu4VBqxYFSKw6QWnF41IpDpVYcjqHX\niqVWt/sBAAAAtGocbisDAAAAYESEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA07P8HBRrTMqVWr6EAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e30140e0c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmQbldZL/7vOj2dkwGugRAwhKEg\nYLhWmWBQ0PAjWKBCSQKUASECChhKBkGCxVBliUqVI8EgV8pQhiQg5CJoEQtUJkEwTAmmSICEGyOZ\nIYQASQ45p6f1+6N795Q+7+nu887786k61d273+5eZ+3d/T7vs5/1rFJrDQAAAADttGvQAwAAAABg\ncCSHAAAAAFpMcggAAACgxSSHAAAAAFpMcggAAACgxSSHAAAAAFpMcggAAACgxXqWHCql/HIp5ZpS\nyrWllDf06ucAADB6xIoAMDxKrbX737SUiSTfTPLUJDcl+XKS59Vav971HwYAwEgRKwLAcJns0ff9\nmSTX1lqvS5JSysVJTk+y6RN+KaX7GSoAaIfba61HD3oQsE1iRQDok1prOdhjerWs7NgkN675+Kbl\nYytKKWeVUi4rpVzWozEAQBtcP+gBwA6IFQFgiPSqcmizrNS6Oz611vOSnJe4GwQA0DJiRQAYIr2q\nHLopyXFrPn5wklt69LMAABgtYkUAGCK9Sg59OcnxpZSHl1Kmk/xakkt69LMAABgtYkUAGCI9WVZW\na50vpbwyyb8lmUhyfq31a734WQAAjBaxIgAMl55sZb/tQVhHDgA7dXmt9eRBDwJ6SawIADs3yN3K\nAAAAABgBkkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAA\nLSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMA\nAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBi\nkkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAA\nANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5\nBAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAA\nLSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMA\nAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBi\nkkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAA\nANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5\nBAAAANBikkMAAAAALSY5BAAAANBikkMAAAAALSY5BAAAANBik4fyxaWUbyW5K8lCkvla68mllKOS\n/N8kD0vyrSTPqbV+/9CGCQDAqBErAsBo6Ebl0JNrrSfWWk9e/vgNST5Zaz0+ySeXPwYAoJ3EigAw\n5HqxrOz0JBcuv39hkmf24GcAADCaxIoAMGQONTlUk3yslHJ5KeWs5WPH1FpvTZLltw84xJ8BAMBo\nEisCwAg4pJ5DSX6+1npLKeUBST5eSrl6q1+4HCCcddAHAgAwqsSKADACDqlyqNZ6y/Lb25L8U5Kf\nSfKdUsqDkmT57W0H+Nrzaq0nr1l/DgDAGBErAsBo2HFyqJRyeCnlyOb9JL+Y5KoklyR50fLDXpTk\nw4c6SAAARotYEQBGx6EsKzsmyT+VUprv875a67+WUr6c5AOllJckuSHJGYc+TAAARoxYEQBGRKm1\nDnoMKaUMfhAAMJout+yGcSdWBICdq7WWgz2mF1vZAwAAADAiJIcAAAAAWkxyCAAAAKDFJIcAAAAA\nWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcA\nAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDF\nJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAA\nAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxy\nCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAA\nWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcA\nAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDF\nJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAA\nAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxy\nCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAAWkxyCAAAAKDFJIcAAAAA\nWkxyCAAAAKDFJIcAAAAAWuygyaFSyvmllNtKKVetOXZUKeXjpZT/t/z2x5aPl1LK20sp15ZSvlpK\neWwvBw8AwGCJFQFg9G2lcuiCJL+84dgbknyy1np8kk8uf5wkT0ty/PK/s5K8szvDBABgSF0QsSIA\njLSDJodqrf+R5I4Nh09PcuHy+xcmeeaa4xfVJV9I8r9KKQ/q1mABABguYkUAGH077Tl0TK311iRZ\nfvuA5ePHJrlxzeNuWj52L6WUs0opl5VSLtvhGAAAGE5iRQAYIZNd/n5lk2N1swfWWs9Lcl6SlFI2\nfQwAAGNFrAgAQ2inlUPfaUqAl9/etnz8piTHrXncg5PcsvPhAQAwgsSKADBCdpocuiTJi5bff1GS\nD685/sLlnSgen+SHTUkxAACtIVYEgBFy0GVlpZT3Jzk1yf1LKTcl+YMkf5rkA6WUlyS5IckZyw//\naJKnJ7k2yY+S/GYPxgwAwJAQKwLA6Cu1Dn4Jt3XkALBjl9daTx70IKCXxIoAsHO11s16/q2z02Vl\nAAAAAIwBySEAAACAFpMcAgAAAGgxySEAAACAFpMcAgAAAGgxySEAAACAFpMcAgAAAGgxySEAAACA\nFpMcAgAAAGgxySEAAACAFpMcAgAAAGgxySEAAACAFpMcAgAAAGgxySEAAACAFpMcAgAAAGgxyaER\nNjExkYmJiUEPAwAAABhhkkMAAAAALTY56AGwfdPT00mSRz3qUUmSq666at3np6amMj8/nySptfZ3\ncAAADIUmDiylDHgkAAw7lUMAAAAALaZyaIQ0d30e8pCHJEkuvfTSJMmRRx657nHHHnts7rjjjiTJ\nvn37+jjC8dXMvUosAGDUqCAC4GAkh0bQW9/61iTJYYcdtunnr7nmmnz5y19OkvzCL/xC38Y1DjYm\ngXbtWiqum5qaSpLs379/5fji4uIARggAsDMbb3JJFgHQsKwMAAAAoMXKMCyTKaUMfhAj5K677kqS\nHHHEEZt+vtaaubm5JKvNq90ZOrC11ULNfM3OziZJ7ne/+yVJzjzzzCTJ29/+9iTJQx/60Fx//fVJ\nVquKNAEHBuTyWuvJgx4E9JJYcWe2EpOIEQHGX631oH/sVQ4BAAAAtJjKoRF0KOesuTs0MTGRhYWF\nbg1ppDWVP3Nzc3nyk5+cJPnwhz+cZLWvUzNXTWXR/Px8JieXWnZddtllSZJvfetbSZIzzjijPwMH\nWKJyiLEnVtyZncSMKol25kBzbT6BYaByCAAAAICOVA6NkKbC5atf/WqS5Pjjj0+yVAW0XS9+8Yvz\n3ve+N0lW+hO11WMf+9gkyX/+539m9+7dSbKyE1mzW1knTVVR89jmDpE7RUCfqBxi7IkVd0blUG8c\n6usncwz0m8ohAAAAADpSOTRCZmZmkiRvetObkiSvf/3r1x3fiqYiZu/evSt3Pe573/t2c5gjox/X\n/rOf/ewkyb/8y78kSfbv39+3nw20hsohxp5YcWd6HW+MewWM+QPGxVYqhySHRli3z90xxxyTJLn9\n9tuTrCaS1lq77fsoWduAe+/evUmSPXv2JOnPE7Mnf6CHJIcYe2LFQ9PPuG1cYh5zBowTy8oAAAAA\n6Ghy0ANg+5plZJ/73OeSJI9//OOTZGVr9Z36zne+kyT5+Mc/niT5xV/8xSTJ7t27Mzs7m2S1KXZT\nVdQ0s56enl45Nj8/3/Hn7N69O/v27TuksW7XzMzMSsVQU0HUz7s0zd0nd4YAgHE26jHPqFXHA3SL\nyiEAAACAFlM5NIKaOxrnnXdekuRxj3tcktUt7Q/1Ts1Tn/rUdT/nsssuy3Of+9wkybOe9awkyUtf\n+tIkyU/8xE8kWWqS/bKXvSxJ8tCHPrTj93/ve9+bF7zgBevG3FQddftuzfe+970k65tuNz+zH5r/\nzz333JMk+b3f+70kydvf/vYkqw2qAQDGyVZiumGqLhpkxdCoV1sB40HlEAAAAECL2a1sBDV3FZr+\nP72uPllcXFz5mU3voaa/UVOFs2/fvpXxHKwy50c/+lEOO+ywJMnRRx+98vVJcvfdd3dlzE972tOS\nJB/5yEdWjg3ybkzTh+nqq69Okvz0T/90ktX5BDgEditj7IkVD80wxPvbMYi+kMNA5RDQK3YrAwAA\nAKAjlUNjoJ/n8EBromutO7rb0VQK/fu//3uS5LTTTjvEEa6OZ5i5MwR0kcohxp5Y8dAMe1zUSa9i\npmGdEzEi0AsqhwAAAADoyG5lI2jXrqWc3pOe9KQkSz18kmTPnj1JenvH4UDfe6c/8/DDD0+y+n/5\nkz/5kyTJG9/4xh19v2G9C9QrzbxvZ0eQts0RADC6Dha3qLQB6A7LysbAMJzDXmiSYFv5//35n/95\nkuTss89e97XDqluBTNMEfGPD8CSZmZlJ0vuG5cDAWVbG2BMrHppxjRXX2mpsNexzIdkF9IJlZQAA\nAAB0pHJoDAzDOey2ffv2rSw1u+KKK5J03vZ91OZgp3eFJiYmkiQLCwtJkkc+8pFJkne/+91JklNO\nOWXlsf/1X/+VJDnppJOSJLfffnuS5GMf+1iS5Pd///dz3XXXrfu+jcXFxSSjN6/QUiqHGHtixUPT\nhudzlUMAB6ZyCAAAAICOVA6NgWE4h710oDsoExMTOfHEE5Mkl156aZJkenq6b+PaiWacT37yk5Mk\nc3NzSbZ+Dnfv3p1ktQl5Mzfz8/NJksnJ1R7zTXXRxqqg5vji4uJKz6K77rorSfLYxz42SXLttddu\n+f8EDJzKIcaeWPHQjHus2DhY1c0ozEMvKoe69f9W1QSjS+UQAAAAAB3Zyn6ENTty3XnnnUmSI444\nYt3xcdHc7WjuVjT/v4WFhVx//fVJhr9iqOnhc+yxx677eDt3cjo9dm3FUGNjxdDG42s/v2fPniTJ\n5ZdfnmS1oun+97//lscHAAynJoYahcoZtq9f57XTz1FVBKNvvLIIAAAAAGyLyqER1lSf3Oc+9xnw\nSHqruUvRvH30ox+dJLnxxhvzspe9LEmyf//+JKsVRMN296KpdvrsZz+bZPXcbWbjjmT9uBvUVB4d\neeSRSTa/wzhscwoAsNbGavNxN0yVYG2bexhHkkOMjCZZ8olPfCJJ8pCHPCRvectbBjmkLWuSV00S\npkli7du3716P3ZgUahJJ/Vgu2OkJvRnPqaeemiT5zGc+0/PxAABs1zAlTbplVP5PbizC6LKsDAAA\nAKDFbGU/wprlRzfffHOS5Oijj04yfg2px0mnOygzMzNJNq8mGibN34xbb701yWqTbWBgbGXP2BMr\ndscwxP10tjFWHIdzpoIIBs9W9gAAAAB0pOfQCGqy703/mgsvvDBJ8upXvzrJUj8bGfrRMjk5mde8\n5jVJViuHmkqiYT2XD3zgA5Mkf/VXf5UkK+MHAICGZtUwGlQOAQAAALSYnkMjrOk59IhHPCJJctVV\nVyVJpqamBjYm1pudnU2S/O3f/m2S5HWve92642sNw+/idjTj/eEPf5gkOffcc1d2j5ufnx/YuKCF\n9Bxi7IkVu2PUYo02GseeQxupIIL+03MIAAAAgI5UDo2RYTiXbG4rd0jG4fw1fZI2q4wCekblEGNP\nrNgd4xBrjLPN4sVxPmcqiKB/VA4BAAAA0JHdymCAmkqb9773vSu7lO3evXuQQzok3/ve95Ikp556\napLkyiuvTKKSCACA9exiBsPFsrIxMgznklX79u3LBz/4wSTJb/3Wb60c28y4njtP9tAXlpUx9sSK\n3TWucceo6xQ3jfs5EzNCb1lWBgAAAEBHKofGwPT0dJLk0ksvTZL81E/9VCYnrRgcBlu9CzIMv4e9\n5G4Q9JTKIcaeWLG7xj3uGDVtrhjaSMwIvaFyCAAAAICOlJeMkXe9611JknPPPTcTExNJZN8HaXFx\n8YCf27VrKS977rnnJknuueeelUbU43DOmrtc99xzT5LkhS98YZLkoosuGtiYAAAYbppUw+CoHAIA\nAABoMT2HxkCTWT/iiCOSJD/4wQ9WKlMYnK3c8RiG379+Oumkk3LVVVclSebn5wc8Ghgbeg4x9sSK\n3dW2+GNYiRUPTgURdIeeQwAAAAB0pHJoDA3DOaXznY6msuvWW29Nkhx99NGtuTPSlv8n9JHKIcae\nWLG7xIrDQeXQwYkboTu2UjmkIfUYaJpPP+c5z0mS3H333Tn88MOT+IM6rJpm1Q94wAMGPBIAAADa\nzrIyAAAAgBazrGwMNNVBk5NLhWCzs7ODHE5r7du3L0ny0Y9+NEny/Oc/P/v371/3mKmpqSTJQx/6\n0CRZac48MzPTr2EO1Pz8fPbu3ZtkaSldkszNzQ1ySDAOLCtj7IkVu2sY4v82205lf9vPlVUQ0B0a\nUgMAAADQkcqhMTQ7O7vS8LjpR0T/dLrD0ZyPZhv3pvdQc77axJ0g6BqVQ4w9sWJvDMPrgDbSiHrr\nxIvQHSqHAAAAAOhIcmgMlFJSSsnU1FSmpqbyrGc9K/Pz8yvVKQxec44mJyczOTmZz3zmM/nMZz6T\nXbt2tbJqCAAAgOHhVSkAAABAi+k5NKaG4by2RbM73IUXXpgkefWrX51kafeyA50H58cacugiPYcY\ne2LF3hCPDEanGMg5WU+8CN2h5xAAAAAAHakcGlPDcF7bopnr5s6GHSi2xp0g6BqVQ4w9sWJviEcG\nQ+XQ1okXoTu2Ujk02Y+BwDibm5tLkjzxiU9MkszMzCRJ9u/fv/KENj09nSR5y1vesvK5tcc98QEA\n/VZKkYwAIIllZQAAAACtdtDkUCnl/FLKbaWUq9Yce3Mp5eZSyhXL/56+5nNvLKVcW0q5ppTyS70a\nOAc2MTGx8v7CwkIWFhYGOJrxVWtNrTWLi4tZXFzMmWeemTPPPDNzc3Mr1UTNY/bv35/9+/fnda97\nXV73utdlZmYmMzMzK1vcA8CoEisCwOjbSuXQBUl+eZPjb6u1nrj876NJUkp5TJJfS/K/l7/mb0op\nE5t8LQAA4+GCiBUBYKQdtOdQrfU/SikP2+L3Oz3JxbXW/Un+p5RybZKfSfL5HY+QbVtYWFipRrGO\nvPd2796dJDn77LOTJIuLi4McztBr+i395E/+ZJLk6quvTpLMz88PbEwA7JxYEbpD3H5vGzd+AXrn\nUHoOvbKU8tXlUuIfWz52bJIb1zzmpuVj91JKOauUclkp5bJDGAMAAMNJrAgAI2KnyaF3JnlEkhOT\n3JrkrcvHN0vpbpoCr7WeV2s92fa7jKJa60q/oObf/Pz8AatfTjnllJxyyikrj2l6EbVR02/pyiuv\nzJVXXtlx3gAYWWJF2ECvSWCY7Sg5VGv9Tq11oda6mORdWSoHTpbu/hy35qEPTnLLoQ0RAIBRIlYE\ngNFy0J5DmymlPKjWeuvyh89K0uxOcUmS95VSzkny40mOT/KlQx4l2zY1NZUkueaaa5Ikj3zkI5Os\n38mMnSulrOwC18zpZrvCNXeHnvvc5yZJJid39Cs31poeTc1crb2jtvHuWlurrQBGjVhxdOhTySho\nqvaB3jnoK9VSyvuTnJrk/qWUm5L8QZJTSyknZqkM+FtJXpYktdavlVI+kOTrSeaTvKLWah91AIAx\nJVYEgNFXhuEuQSll8IMYI6WUTE9PJ0l+53d+J0nyx3/8x0myclzm/dBtZQ6bCq6vfOUrSZITTjgh\niQqurbrvfe+bJLnzzjuTJLt2La2EtSMcrHO5niyMO7Fi7w3Da4JxtJ2Y2znYGa9r4OBqrQf9RZEc\nGlPNi+ijjz46SXLzzTcnkZQ4VM3SsWc84xn59Kc/nSTZt29fkns/oa9N0v3u7/5ukuTNb35zEkm6\nrZqbm0uymmTbOF/T09OZnZ3t+7hgyEgOMfbEir03DK8JxslOYjznoDvE13BvW0kOHcpW9gAAAACM\nOJVDLTEM53mcbPWORFPBdcwxxyRJbrjhhiQaU3fLFVdckZNOOinJanVRU20ELaJyiLEnVuw9sWJ3\nqRwaDqqIYInKIQAAAAA6UjnUEmeddVaS5Nxzz02SzMzMyKQfgomJiR01RR6G37dxsm/fvuzevTvJ\narPvq6++Osm9m1eXUsw/40rlEGNPrNh7niO7S+XQcPL6h7ZSOQQAAABARyqHxlyTHW+qK/bu3bvu\nOFvT/J40O2P9+q//ei655JJ1x7bzfei+Zte45lp/yEMekiS58cYbkyz1JGp2m9tJ1RcMMZVDjD2x\nYv+IVbpjp7G2+e8vr4loC5VDAAAAAHSkcqhlhuF8j7JmJ6xPf/rT+ZVf+ZUkKoeGVTPXzR2hhYWF\ne+0S13xu7WOdI0aQyiHGnlixfzwPdtd2K1PM/+CoImKcbaVySHKoZYbhfI+L5glkY+PjzdzvfvdL\nktx+++29HxgH1Jyj5px97GMfS5I8+9nPTrKU6GsSgJsljtZ+DENEcoixJ1bsH89zvbGVxIO5H06S\nRowDy8oAAAAA6EjlUMs0S6AmJydlwQ9BrXVl/twJGl379+9PslpR9P73vz/vfve7kyTXXHNNkuS7\n3/1ukmTPnj2bfs1aqosYEJVDjD2xYv94DuuNTvGiOR8dXj8xqlQOAQAAANCRyqEx12S3p6enkyTn\nn39+kuRXf/VXV46xM/Pz80my0uR4szsJN9xwQ5LkuOOO69/A6IqNvYa+8IUvJEme8IQnHPBrZmZm\nkqxWF639+mH4W8vYUjnE2BMr9p/nre7bGCua4/GkuohhpHIIAAAAgI5UDrXE1NRUkuTnfu7nkiT/\n9m//tlLlQO8sLCwkSSYmJgY8Eg5Vcy6bnc42uyv0z//8z0mS0047beXYYYcdliT50Y9+tO7rhuFv\nL2ND5RBjT6zYf56noHdUF9FvKocAAAAA6EjlUEsNw3mHcdPsYNZUFyXJy1/+8iTJO9/5ziTJAx/4\nwCTJt7/97SSrPasWFxc33QENtkDlEGNPrNh/YkUYHJVFdJvKIQAAAAA6UjnUMnv27EmSvOpVr8of\n/uEfJkl27949yCHBWJudnU2yumPgxl3u7rjjjiTJCSeckNtuuy2JvkRsm8ohxp5YcXA8F8FwUVXE\nTmylckhyqKWG4bwDq8miWutK4/i//uu/TpL85V/+ZZLVJWhNogk2kBxi7IkVB0fMCMNPwoiDsawM\nAAAAgI5UDrVMs5Tl+uuvX2mMu7Z5LjB4CwsLSZK5ubkkq8tBd+3apWk1m1E5xNgTKw7OMLxWALZH\nJREbqRwCAAAAoCPJoZYopaSUkomJiUxMTOT888/P3Nxc5ubmUmt1VwiGSPN7unv37uzevXvld/T0\n00/P1NTUSm8iAADYyOs7dkJyCAAAAKDF9BxqmYmJiSTJcccdl29+85tJogoBRsj09HSS9buc0Xp6\nDjH2xIqD43kGRp8eROg5BAAAAEBHKodabBjOPbAz973vfZMke/fuTbK6wxmtpHKIsSdWHCwxI4w2\nlUNspXJosh8DAeDQ1VpXtrf/oz/6oyTJ61//+iRZ2eJeAA8AAGyXZWUAAAAALWZZWYsNw7kHtqep\nELrrrruSJEcdddS647SSZWWMPbHiYIkZYbRZVoaG1AAAAAB0pOdQS01PT+fzn/98kuRxj3tckmRy\n0uUAw27XrqWcftOQWsUQAABwqFQOAQAAALSYUpGWKqXkz/7sz5IkF198cRKVQwAAANBGKocAAAAA\nWsxuZS02DOceODR2nyB2K6MFxIqDJWaE8SBubC+7lQEAAADQkSYzLTUzM5NPfepTSZInPvGJSZKp\nqalBDgnYhnvuuSdJ8rznPS9J8qEPfShJMjs7O7AxAQAAo8myspaanp7O6aefniR5z3ves3IsUW4I\no8TvK7GsjBYQKw7WMLxeAA6duLG9LCsDAAAAoCOVQy3WZI4XFxcHPBJgp5rloAsLC0nc3W0plUOM\nPbHiYHlugfGgcqi9VA4BAAAA0JGG1C3mLhCMrn379iVJXvKSlyRJ3v3udyfRkBoAANg+lUMAAAAA\nLabnECqIYIRZO070HKIFxIrDQcwIo0m8iJ5DAAAAAHSk5xArmWR3g2B0NLsMHnnkkUmSvXv3rjsO\nAACwVZJDACNo166lws+77rprwCMBAABGnWVlAAAAAC2mcghghCwsLCRJPv/5zydJdu/enWR1a3sA\nAIDtUjkEAAAA0GK2sieTk0sFZNdff32S5IEPfGCS1Z4mwPCyNSmxlT0tIFYcLsPw+gHYOvEitrIH\nAAAAoCM9h1qsySA3lUMf/OAHkySvfOUrBzYm4MBqrZmdnU2SnH322UmS6enpJMnc3NzKYwAAALZD\n5RAAAABAi+k5xL0MwzUBdGb4fOlSAAAU50lEQVTtOGvoOcTYEysOF7EijBZxI3oOAQAAANCRnkOs\nmJqaSpJ885vfTJI8/OEPX3ccAACaKgQVRDDcVAyxHZaVcUDDcG0Am/NkzxqWlTH2xIrDSawIw028\nSMOyMgAAAAA6sqwMYIR8+9vfTpJMTEwkSRYXF5O4ewsAAOycyiEAAACAFlM5xIpmTWrTgPq1r31t\nkuScc84Z2JiA9S655JIkKoYAGDyNqQHGh8ohAAAAgBZTOcSK5q7P7OxskuRtb3tbEpVDMGhrfzdv\nvPHGJMn09PTKsbWPAQCg3exSxk6oHAIAAABoMckhDur0008f9BCg1UopKaVkamoqtdbUWrN///7s\n379/5WMAGJTmeQqA0VWG4UVFKWXwg6CjYbhOoO3m5uby8Ic/PEly8803D3g0DJHLa60nD3oQ0Eti\nxdEgXoThIFnLRrXWg14UKocAAAAAWkxDarbkKU95SpLkIx/5SJJkZmZmkMOBVpqamlIxBAAAdJ3K\nIQAAAIAW03OIbRmG6wXayvpxDkDPIcaeWHF0iBVhcMSKHIieQwAAAAB0JDkEAAAA0GKSQwAAAAAt\nZrcytmTXrqU84tFHH50kKzsmTU9PD2xMMK6afg3NuvHm9w4Ahl3z3KX3EPSPXkN0g8ohAAAAgBZT\nOcSWLC4uJkluv/32JCqGoJfm5+eTJB/5yEeSJHv37h3kcAAAgDFnK3t25Itf/GKS5MQTT0ySTE1N\nKWeELvM7xRbZyp6xJ1YcXcPwWgPGmXiRrbCVPQAAAAAdHXRZWSnluCQXJXlgksUk59Vazy2lHJXk\n/yZ5WJJvJXlOrfX7ZSl1eW6Spyf5UZLfqLV+pTfDp9+axtRnnHFGkuS6665LImMN3fSOd7wjSbJn\nz54kyb59+5K4+woMJ7EiAIy+rVQOzSc5u9Z6QpLHJ3lFKeUxSd6Q5JO11uOTfHL54yR5WpLjl/+d\nleSdXR81AADDQqwIACNu2z2HSikfTvKO5X+n1lpvLaU8KMmna62PLqX87fL7719+/DXN4zp8T7fD\nR9SVV16ZJHn0ox+dqampAY8GxsNxxx2XJLnpppsGPBJGhJ5DDBWxIptR/QrdZeUG29H1nkOllIcl\nOSnJF5Mc0zyJL799wPLDjk1y45ovu2n52MbvdVYp5bJSymXbGQMAAMNJrAgAo2nLW9mXUo5I8qEk\nr6m13tkhU7nZJ+51q6DWel6S85a/t1sJI6apEjrnnHOSJH/zN3+Tycmly0kWGw6NiiFgFIkV6aS5\nHlQQAQynLVUOlVKmsvRk//e11n9cPvyd5RLhLL+9bfn4TUmOW/PlD05yS3eGCwDAsBErAsBoO2hy\naHlHib9L8o1a6zlrPnVJkhctv/+iJB9ec/yFZcnjk/yw0xpyRtP8/Hzm5+dzwQUX5IILLsju3bsH\nPSQYafv378+TnvSkPOlJT8quXbtWdgYEGHZiRYD+KaVYqUFPbGVZ2c8neUGSK0spVywfe1OSP03y\ngVLKS5LckOSM5c99NEtbk16bpe1Jf7OrIwYAYJiIFQFgxG17t7KeDMI68rEwDNcSjDJ3gdghu5Ux\n9sSK40XMCDsnXmQntrJb2ZYbUkMnU1NTOeqoo5Ikd9xxx4BHA6Pj7rvvTpI84QlPWGn0Pjc3N8gh\nAUBPaU4N2ycpRK9pagEAAADQYiqH6Iq5ubl8//vfX3esuRskyw33trCwkCS57rrrkiRXX331yjEA\nAEi8lqJ/VA4BAAAAtJiG1PRMc20tLi4mWc16y37DKr8PdIGG1Iw9seJ4G4bXIzCMxIl0y1YaUqsc\nAgAAAGgxPYfoul27lnKOdqKAA3MnCACAzYgTGQSVQwAAAAAtpnKIrmt6DDVUENFmze/Dxoo6AGCJ\nWBGWiBMZJMkhem7Pnj1Jkle96lVJkr/4i7/I7t27Bzkk6JuNSaHJyaU/u/Pz8wMbEwAAw0NSiGFg\nWRkAAABAi9nKnr4bhmsO+sWdIPrAVvaMPbFiu4gVaQtxIv1iK3sAAAAAOtJziL4rpaw06W3uDDV9\nWWCcTExMDHoIADByNKgG6D+vyAEAAABaTHKIvimlpJSS6enpnHHGGTnjjDMyPz9v1ybGTnOtNzuT\nAQDbpx8L46qJFWGYSA4BAAAAtJjdyhiopmqo6Tkkg84oWVhYSLLaW+j+979/kuR73/vewMZEK9mt\njLEnVmyvYXitAt3k9Q6DYLcyAAAAADrSEIO+a/oOJcl73vOeJMmZZ56ZJCs9WmTUGXazs7O57bbb\nkiQ/+7M/myT54Q9/OMghAcDYsXMZ48LrG4adZWUMRJMEOvroo5Mkt9xyyyCHA9t21FFH5fvf/36S\n1etZc3UGxLIyxp5YkcYwvHaB7ZAUYhhYVgYAAABAR5aVMRBNhcWtt96aZDWj3lQQ3e9+91tZegbD\n5B3veEeS5M4771w51jSmBgB6yzIzRoWKIUaNyiEAAACAFlM5xFD58R//8STJ17/+9TzqUY9KYpt7\nBqvpK/SMZzwjSXLppZcmWX/H0t1LAOgvFUQMI69XGGUqhwAAAABazG5lDJWmSuioo47Kd7/73QGP\nBpKnPvWpSZJPfOITAx4JHJDdyhh7YkUOZBhey4CKIYad3coAAAAA6EjPIYbK4uJikuT222+/11ry\n5q3MPIdq47XU7J43OTmZu+++O0ly5JFHJold8wBgiOk9xCB5XcI4kRxiKJVSMjMzkyR5/vOfnyR5\n3/veN8ghMUbm5ubWfXzllVcmSU4++d4rc2ZnZ/syJgBg50opEkT0nGQQ48yyMgAAAIAW05CakfEP\n//APSZLTTjstieU+bM/+/ftXqtG+9KUvJUle8pKXJEmuvfbaJEsVRQsLC4MZIOychtSMPbEiWzEM\nr2sYP6qFGAcaUgMAAADQkcohRs4pp5ySJPnsZz+70jtmampqkENiBDzsYQ/L9ddfv+7YxMREkqgW\nYtSpHGLsiRXZjmF4fcPoUinEOFI5BAAAAEBHditj5Fx22WVJlrL6X/va15Ikj3nMYwY5JIbQrl1L\nue/m7mFTJbSWiiEAGD+2t2c7VArBEpVDAAAAAC2m5xAjrdl9av/+/UmSr3/960mSRz7ykUmSycml\n4jh3BEZb83eqOY9Nxc/ExMTK544//vgkyX//938PYIQwUHoOMfbEinTDMLzuYbC8JqCt9BwCAAAA\noCM9hxhps7Oz6z5ueg/dddddSVbvEE1NTblTMIKaCqGmMuywww5LknzpS19Kkrz2ta/NF77whSSr\nVWIAAJsppageahnxP2ydV1OMtAM9wd/nPvdJkiwuLvZzOHTZDTfckCS56KKLkiRvfvObkyTT09P3\neuz8/HzfxgUAjCbNqsefhBDsjGVlAAAAAC2mcoixtLGBca11ZYlSs8W5uwqDsfHcNKamppKsrwBq\njjXnrNEsJ3QOAYCd2BhDqCQaPeJA6C6VQwAAAAAtpnKIsTYxMZFk6c7CD37wgySrVShHHnnkwMbV\nVnfffffK+4973OOSJFdffXWSze/+zM3Ndfx+7vIBAN2gkmi4qAqC/lM5BAAAANBiKocYa02foSR5\n0IMelCQ57bTTkiQXX3zxusfec8892bNnT/8GN8Y27hLXVGudccYZ+dd//dckq/2EGu7QAQDDYm3l\nihilf1QMweCoHAIAAABosTIMmfBSyuAHwdhr7kRMTi4VzG3sZ/OCF7wgF1100bpjTeVR07uoUWt1\nZ2MLjjrqqCTJ97///SRL1ULNvK/dSQ44JJfXWk8e9CCgl8SKDBOxS3eJqaH3aq0H/UWTHIJle/bs\nyT333LPu2Etf+tIkybve9a51x2dnZzM9Pd23sQ2jZunY2m3mNz65N5/buMwM6CrJIcaeWJFhNQyv\npUaNZBD031aSQ5aVAQAAALSYyiHooGlQvbGi6LjjjssNN9zQ8WsXFxfXVdVspvn9W1hYWFnutllF\nzsbHb+WOy4Eeu53v0Wk8zf//zDPPTJJ87nOf29L3A7pO5RBjT6zIqBqG11qDplIIBk/lEAAAAAAd\n2coeOti3b9+mx2+66aaVuyBN76GXv/zlSZJzzjknSfKpT30qT3nKUzp+/7179yZJ3vOe9+S3f/u3\nkyQ/+MEPkqw2c15r452XAzXMXlhYyPz8fJLVBtzNY5qG0FNTU1u6k9NUDG18bPP9Nv5sAACWrI2f\nxrmKSHUQjD6VQwAAAAAtpucQdMnu3buTrFYbHX744SuVQQfatr05fthhh608ttMOX4961KOSJM98\n5jOTJL/xG7+RJDnhhBPWPe4b3/jGyg5r73vf+5Ik3/3ud5MkL37xi5MkF198ce6+++51X9dUGTVV\nR53GvtXPAz2n5xBjT6wI3bGTeE1VEIw+PYcAAAAA6EjlEHTJxgqaUsqW785s57HJap+f5meurfRJ\nlvoJNRVITY+hphJpZmYmSTI7O6vaB8aDyiHGnlgRAHZO5RAAAAAAHdmtDLpkYxXOdqpytlvB0+xS\ndiBzc3MH7AU0Ozu7o58JAADAeJIcgjF1oOSPpBAAAABrWVYGAAAA0GKSQwAAAAAtJjkEAAAA0GKS\nQwAAAAAtJjkEAAAA0GKSQwAAAAAtJjkEAAAA0GKSQwAAAAAtJjkEAAAA0GKSQwAAAAAtJjkEAAAA\n0GKSQwAAAAAtJjkEAAAA0GKSQwAAAAAtJjkEAAAA0GKSQwAAAAAtJjkEAAAA0GKSQwAAAAAtJjkE\nAAAA0GKSQwAAAAAtJjkEAAAA0GIHTQ6VUo4rpfx7KeUbpZSvlVJevXz8zaWUm0spVyz/e/qar3lj\nKeXaUso1pZRf6uV/AACAwRErAsDoK7XWzg8o5UFJHlRr/Uop5cgklyd5ZpLnJLm71vqXGx7/mCTv\nT/IzSX48ySeSPKrWutDhZ3QeBABwIJfXWk8e9CBoL7EiAAy3Wms52GMOWjlUa7211vqV5ffvSvKN\nJMd2+JLTk1xca91fa/2fJNdm6ckfAIAxI1YEgNG3rZ5DpZSHJTkpyReXD72ylPLVUsr5pZQfWz52\nbJIb13zZTdkkQCilnFVKuayUctm2Rw0AwNARKwLAaNpycqiUckSSDyV5Ta31ziTvTPKIJCcmuTXJ\nW5uHbvLl9yoFrrWeV2s9WSk8AMDoEysCwOjaUnKolDKVpSf7v6+1/mOS1Fq/U2tdqLUuJnlXVsuB\nb0py3Jovf3CSW7o3ZAAAholYEQBG21Z2KytJ/i7JN2qt56w5/qA1D3tWkquW378kya+VUmZKKQ9P\ncnySL3VvyAAADAuxIgCMvsktPObnk7wgyZWllCuWj70pyfNKKSdmqQz4W0leliS11q+VUj6Q5OtJ\n5pO8otPuEwAAjDSxIgCMuINuZd+XQdieFAB2ylb2jD2xIgDsXFe2sgcAAABgfEkOAQAAALSY5BAA\nAABAi0kOAQAAALTYVnYr64fbk+xdfkvv3T/mul/Mdf+Y6/4wz/2z1bl+aK8HAkNArNhf/tb3j7nu\nH3PdH+a5f7oaKw7FbmVJUkq5zG4r/WGu+8dc94+57g/z3D/mGtbzO9E/5rp/zHX/mOv+MM/90+25\ntqwMAAAAoMUkhwAAAABabJiSQ+cNegAtYq77x1z3j7nuD/PcP+Ya1vM70T/mun/Mdf+Y6/4wz/3T\n1bkemp5DAAAAAPTfMFUOAQAAANBnkkMAAAAALTYUyaFSyi+XUq4ppVxbSnnDoMczTkop3yqlXFlK\nuaKUctnysaNKKR8vpfy/5bc/NuhxjqJSyvmllNtKKVetObbp3JYlb1++xr9aSnns4EY+eg4w128u\npdy8fG1fUUp5+prPvXF5rq8ppfzSYEY9mkopx5VS/r2U8o1SytdKKa9ePu7a7qIO8+y6hk2IFXtH\nrNg7YsX+ESv2j1ixPwYRKw48OVRKmUjyf5I8LcljkjyvlPKYwY5q7Dy51npirfXk5Y/fkOSTtdbj\nk3xy+WO274Ikv7zh2IHm9mlJjl/+d1aSd/ZpjOPigtx7rpPkbcvX9om11o8myfLfj19L8r+Xv+Zv\nlv/OsDXzSc6utZ6Q5PFJXrE8p67t7jrQPCeua1hHrNgXYsXeuCBixX65IGLFfhEr9kffY8WBJ4eS\n/EySa2ut19VaZ5NcnOT0AY9p3J2e5MLl9y9M8swBjmVk1Vr/I8kdGw4faG5PT3JRXfKFJP+rlPKg\n/ox09B1grg/k9CQX11r311r/J8m1Wfo7wxbUWm+ttX5l+f27knwjybFxbXdVh3k+ENc1bSZW7D+x\nYheIFftHrNg/YsX+GESsOAzJoWOT3Ljm45vS+T/N9tQkHyulXF5KOWv52DG11luTpYsuyQMGNrrx\nc6C5dZ33xiuXy1PPX1Pybq67pJTysCQnJfliXNs9s2GeE9c1bOT67y2xYn95Pu0vz6k9JFbsj37F\nisOQHCqbHKt9H8X4+vla62OzVM73ilLK/zfoAbWU67z73pnkEUlOTHJrkrcuHzfXXVBKOSLJh5K8\nptZ6Z6eHbnLMfG/RJvPsuoZ7c/33llhxOLjOu89zag+JFfujn7HiMCSHbkpy3JqPH5zklgGNZezU\nWm9Zfntbkn/KUmnZd5pSvuW3tw1uhGPnQHPrOu+yWut3aq0LtdbFJO/KatmkuT5EpZSpLD0J/X2t\n9R+XD7u2u2yzeXZdw6Zc/z0kVuw7z6d94jm1d8SK/dHvWHEYkkNfTnJ8KeXhpZTpLDVRumTAYxoL\npZTDSylHNu8n+cUkV2Vpfl+0/LAXJfnwYEY4lg40t5ckeeFyt/7HJ/lhU3bJzmxYq/ysLF3bydJc\n/1opZaaU8vAsNb/7Ur/HN6pKKSXJ3yX5Rq31nDWfcm130YHm2XUNmxIr9ohYcSA8n/aJ59TeECv2\nxyBixclDG/Khq7XOl1JemeTfkkwkOb/W+rUBD2tcHJPkn5auq0wmeV+t9V9LKV9O8oFSykuS3JDk\njAGOcWSVUt6f5NQk9y+l3JTkD5L8aTaf248meXqWGoP9KMlv9n3AI+wAc31qKeXELJVLfivJy5Kk\n1vq1UsoHknw9S13+X1FrXRjEuEfUzyd5QZIrSylXLB97U1zb3XageX6e6xrWEyv2lFixh8SK/SNW\n7CuxYn/0PVYstVruBwAAANBWw7CsDAAAAIABkRwCAAAAaDHJIQAAAIAWkxwCAAAAaDHJIQAAAIAW\nkxwCAAAAaDHJIQAAAIAW+/8BUg38oC10oMUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec5e2048>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X1sZVd5P/rvGnvsmcmETIBLEkJK\nACX0DQVoRCt6exuEoASBAmn5laiiUVU1KS+iSK24BKQSqqpU6Ja2/H63VKmA8FJKKSTlRZCQG2i5\nSCFtQlEhzSWkIZCQNEmBvJGZ8dhe9w/7eDyeGdvjsc/e56zPRxode3sf+5m9t32e8+xnrVVqrQEA\nAACgTdu6DgAAAACA7igOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAa\ntmXFoVLKS0op3yql3F5KectW/RwAAEaPXBEA+qPUWjf/m5YykeS2JC9KcneSf01yUa31Pzb9hwEA\nMFLkigDQL5Nb9H2fl+T2WusdSVJK+ViSC5Ic8QW/lLL5FSoAaMN/11r/t66DgGMkVwSAIam1lrX2\n2aphZacnuWvZ53cvbltSSrmklHJTKeWmLYoBAFrw3a4DgA2QKwJAj2xV59CRqlKH3PGptV6R5IrE\n3SAAgMbIFQGgR7aqc+juJGcs+/wpSe7Zop8FAMBokSsCQI9sVXHoX5OcVUp5WillKsmrk3x6i34W\nAACjRa4IAD2yJcPKaq2zpZQ3JLk2yUSS99dab9mKnwUAwGiRKwJAv2zJUvbHHIRx5ACwUTfXWs/t\nOgjYSnJFANi4LlcrAwAAAGAEKA4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSH\nAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDD\nFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAA\nQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAA\nAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJji\nEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABo\nmOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAA\nAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwC\nAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1T\nHAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAA\nDVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIZNHs+TSyl3JnkkyVyS2VrruaWU\nxyf5+yRnJrkzyf+otf7o+MIEAGDUyBUBYDRsRufQC2qtz661nrv4+VuSXF9rPSvJ9YufAwDQJrki\nAPTcVgwruyDJBxc//mCSV2zBzwAAYDTJFQGgZ463OFSTfKGUcnMp5ZLFbafUWu9NksXHJx3nzwAA\nYDTJFQFgBBzXnENJfrHWek8p5UlJriul/H/rfeJignDJmjsCADCq5IoAMAKOq3Oo1nrP4uP9Sa5O\n8rwk95VSTkuSxcf7j/LcK2qt5y4bfw4AwBiRKwLAaNhwcaiUckIp5cTBx0lenOSbST6d5OLF3S5O\n8qnjDRIAgNEiVwSA0XE8w8pOSXJ1KWXwfT5aa72mlPKvST5eSvntJN9L8qrjDxMAgBEjVwSAEVFq\nrV3HkFJK90EAwGi62bAbxp1cEQA2rtZa1tpnK5ayBwAAAGBEKA4BAAAANExxCAAAAKBhikMAAAAA\nDVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQsMmuA6BNpZRDHmuth3w+Pz/fTWAAAADQGJ1D\ndKLWmlprLr744lx88cW54YYbcsMNN2RiYiITExN50YtetLRvKSWllExOTmZyUj0TAAAANpPiEAAA\nAEDDtGGw6fbs2ZMkOf/885MkH/3oR4+67759+5IcHE42MzOTJNm7d2927tyZJLnrrruSJOedd16S\n5I477kiSTE1NZXZ2NolhaAAAo2owvcBGDHJIAI6PziEAAACAhpXjqdRvWhCldB8Em+btb3/7IY/H\ne0dn0B20bdu2Qx4/97nP5ZWvfGWSLHUZPfTQQ0fcd/A9AMbQzbXWc7sOAraSXHG8bPX7D91EAIeq\nta75h1HnEAAAAEDDdA5xXCYmJpIkc3NzeeCBB5IkT3ziE4fys2dmZjI1NZUk2b9/f5Jkeno6SfKf\n//mfSZIXvvCFSZL7778/e/fuHUpcAEOmc4ixJ1ccH12/99BVBLRI5xAAAAAAq9I5xDEZzOEzWB3s\nCU94QpLkgQceWLoTNNhnq9Vaj3r3ZzDH0OTkwoJ8r3rVq/KJT3wiycE7RoOuJ/MRASNO5xBjT644\nuvrwXmM9dBQB42w9nUOKQ6zL4AVzcL0MHufm5pIcLLT0xcrr+sCBA0tD0L773e8mSc4777wkyZ13\n3pkkmZqayoEDB474fIAeUxxi7MkVR8845FIKRsC4MKwMAAAAgFXpHGJN27ZtWxpGtrJzaGCU7qwM\nhpGtXO7+s5/9bF7+8pcfsu9gguvBhNdHsnxSboAO6Bxi7MkVR0cf3ltslVHKdwGW0zkEAAAAwKp0\nDnGYwV2RnTt3Jkl+9md/NjfeeGOXIQ3FzMzM0rxEA+94xzuSJJdffvlRn/ekJz0pSfL0pz89SfLV\nr341yULX0aDjajCXkcmwgS2gc4ixJ1ccDX14XzEMOoiAUaNzCAAAAIBV6RziqF7zmtckST70oQ91\nHMlw1FoPuxM0mGtoMPfQavs++uijSZLdu3cvbZuZmUmSpY6k733ve0mSF7zgBUmSO+64Y7PCB9ql\nc4ixJ1fspz68j+ibo3UVredY6UgCtorOIQAAAABWpXOIw5xwwglJkgcffDBJMjk52WU4vbT89+ZY\n7vIM5hgazDl0wQUXJEmuu+667Nu3bxMjBBqic4ixJ1fslz68f2iFbiJgM+gcAgAAAGBVOocaNrgT\nMbgG+nAttOaxxx5LkvzFX/xF3va2tyU5/LwArEHnEGNPrtgPcpPu6SQCNmI9nUOKQw0bDG267bbb\nkiRnnHFGkmT79u2dxdSqvXv35tvf/naS5Jxzzuk4GmDEKA4x9uSK3erD+wUOpUgEHAvDygAAAABY\nlZmGG/aP//iPSZJTTz01iY6hLu3cuTNnn312kuTMM89Mktx5553dBQQAEF1DAK3QOQQAAADQMJ1D\njfrVX/3VvOhFL0qSTE1NdRwNSTI5ufDr+PM///NJku9+97tJ3LEDAIZP/tFvtVbzDgGbSucQAAAA\nQMOsVtaYyy+/PEny1re+1RxDPTdYTW5+fr7jSICes1oZY0+uOHx9eI/A6nQOAetltTIAAAAAVqVz\nqDF9ON+sbt++fUmSn/qpn0pi1TJgTTqHGHtyxeGRK44eHUTAWnQOAQAAALAqxaFG1FrdCRoR09PT\nmZ6ezqWXXppLL700O3bsyI4dO7oOCwAYY3JFgLYZVjbmrr322iTJL/3SLyVJdu7c2WU4rMNgAupH\nHnkkSXLyyScn0eYNHJVhZYw9ueLWk2eMPsPLgKMxrAwAAACAVU12HQBb4wUveMEhj5atHx3bti3U\nbE866aQk7uQBAFtHngFAonMIAAAAoGk6h8bIxMREkoU5ar74xS92HA3Ha3AOTzjhhCTJY4895u4e\nALBp5BUADOgcAgAAAGiYzqEx9KUvfSkHDhxIYq6hUTQ4d49//OOTJPv27Uvi7h4AAEc3yBWtWgZs\nhM4hAAAAgIaVPnQjlFK6D2KM9OGccvxOP/30JMn999+fJJmdne0yHKC/bq61ntt1ELCV5IqbS644\n3nQOASvVWtf8w2BY2Qgb/OEfDB17/vOfn2RhWJLhZKNrkLDdc889HUcCAABACwwrAwAAAGiYYWVj\nZGZmJsnCkvbbtqn7jarBhNRf/vKXkyTnn3/+IdsBVjCsjLEnV9wcfcj7GT7DzID1DCtTQQAAAABo\nmM6hMdKHc8nmc7cHWIPOIcaeXPH4yBHbJIcEBnQOAQAAALAqq5WNgcHdoLm5uSQLcw4x+h555JEk\nyR/90R8lSf7wD/+wy3AAABghg/cIOoiA9dA5BAAAANAwnUMjaGpqKkny3Oc+N8nBVay2b9/eWUxs\nvl27diVJXvjCFyZJ3vGOdyx1hwEArMVcQwCsl84hAAAAgIbpHBpBg06hpz71qUmSbdvU+MbRYO6o\n5z//+UmiawgAgHUz1xBwLFQVRtDU1FSmpqZy4YUX5sILL8zs7GxmZ2dTa9U+PIZmZmYyMzOTP//z\nP08pxQs9AABr8t4AOBaKQwAAAAANK32oJpdSug9iBPXh3LH1Buf5oYceyhOe8IQkyfz8fJchAf1y\nc6313K6DgK0kVzw2ckSW03UO1FrX/EOgcwgAAACgYSakHiGTkwuna9A9QhsGd3v27NmjYwgAAIBN\np3MIAAAAoGE6h0bQP/3TPyU5uKT99u3bO4yGYZmZmckVV1yRJHnd616XJJmdne0yJAAAeq7Wat4h\nYE06hwAAAAAaZrWyETE9PZ1PfOITSZKXvexlHUdD19z9AZaxWhljT664fn3I7ekfuSO0bT2rlSkO\njZA+nCu6tW/fviTJa1/72iTJlVdemeTgC75rBJqkOMTYkyuun1yA1SgSQZssZQ8AAADAqnQO9dzE\nxESS5KSTTsoPfvCDjqOhb04++eQkyWOPPZZkYdJqoDk6hxh7csW19SGnZ3ToIIK26BwCAAAAYFWW\nsu+5QVX/i1/8oqXrOcyPfvSjJMmuXbuSJDt27EhycG4iAABYadBppoMIGNA5BAAAANAwcw6NiD6c\nJ/pn5V2f173udUmSK664InNzc53FBQyVOYcYe3LFtckV2QidQ9AGcw4BAAAAsCqdQz01NTWVJHne\n856XZGHOIXMNsV4/8RM/kbvuuqvrMIDh0DnE2JMrHl0fcnlGl84haIPOIQAAAABWZbWynpqZmUmS\nXHfddUmSiYmJLsNhROzduzdJcs455+gcAgAAYF0Uh3pusDQ5rGbQUr5t20Iz4JOf/OQuwwEAAGCE\nGFYGAAAA0LA1i0OllPeXUu4vpXxz2bbHl1KuK6V8e/Hx5MXtpZTynlLK7aWUfy+lPHcrgx8npZSU\nUrJjx47s2LEjr33ta/Pa1742+/fvz/79+7sOj54bXD/T09OZnp7O3//932diYsJwRAC2nFyxG7VW\nk1EDsGnW0zl0ZZKXrNj2liTX11rPSnL94udJcn6Ssxb/XZLkvZsTJgAAPXVl5IoAMNLWnHOo1vrl\nUsqZKzZfkOS8xY8/mOSfkvyfi9s/VBduY3y1lLKnlHJarfXezQp43M3OziZJLrrooiTJ9PR0l+Ew\nIgYTmL/0pS9Nkjz00ENdhgNAQ+SKMHosYQ+stNE5h04ZvIgvPj5pcfvpSZYvkXT34rbDlFIuKaXc\nVEq5aYMxAADQT3JFABghm71a2ZFK0EccDF1rvSLJFUlSSml+wPRgzPjg8ZRTTkmSHDhwIEmyffv2\nbgJjJExNTSVJrr/++o4jAYBVyRWhQzqGgKPZaOfQfaWU05Jk8fH+xe13Jzlj2X5PSXLPxsMDAGAE\nyRUBYIRstHPo00kuTvKni4+fWrb9DaWUjyX5+SQPGUN+bObm5pIkZ599dseRMEr+4A/+IEkyObnw\nKz2YuwoAOiJX3CJWKANgK5S1XmBKKX+XhQkFn5jkviRvT/KPST6e5CeSfC/Jq2qtPywLfYr/Kwsr\nVjyW5LdqrWuOE9cqfDgv/KxmUEQctAZbsh6adnOt9dyug6BdcsXhkiOyEYaTQdtqrWv+EVizODQM\nXvAP14fzQn8pDgHLKA4x9uSKB8kR2QjFIWjbeopDmz0hNRs0+IPtBZ/1GBSDBtfNYMLywXAy1xEA\nAInCELA+G52QGgAAAIAxoHOoJwadH//wD/+QJJmZmTlku4o/SbJ///4kyTvf+c4kyfT09CHbAQAA\n4FjpHAIAAABomAmpe6YP54P+00kGLGNCasaeXPEguSLrJV8EBtYzIbXOIQAAAICGmXOoByYnJ3P6\n6acnOXg3SKWflWqtrgsAaJiuIQC2is4hAAAAgIbpHOqB+fn5XHvttUmSubm5JAvdRLDcgQMH8mu/\n9mtJkqmpqaVtiTuJAAAAbJwKRA/s3Lkz3/ve95Ikz3zmMzuOhr6amprKZz7zma7DAACgx0xDAGyE\nYWUAAAAADbOUfU/04TzQT7Ozs0mSu+++O894xjOSLAxFBFhkKXvGnlxxgXyR9dA5BKxkKXsAAAAA\nVmXOoZ7Yu3dvkoX5h2C5iYmJJMl5552XbdsW6rk6hwAAWE7HEHA8dA4BAAAANEznUIcG1f3t27d3\nHAl9NrhOvvvd73YcCQAAAONI5xAAAABAw3QO9cDc3Jy5hlgyWInkwIEDSZJrrrkmSTI1NZWZmZnO\n4gIAoH/MNQRsBp1DAAAAAA0rgy6FToMopfsgOvbYY48lWegOSQ6uUAWDu0GllPTh9xXonZtrred2\nHQRspdZzRa//rEbnELCWWuuafyh0DvXArl27cs011+Saa67JxMSEwhBHJDEEAGCglKIwBGwaxSEA\nAACAhhlW1hN9OA/0y+BO0GCo4YEDB1wnwJEYVsbYaz1X9PrPkegaAtbLsDIAAAAAVmUp+x448cQT\nuw6BHrn00kuTHOwYsnw9AADL6RoCNpvOIQAAAICGmXOoJ/pwHujO7OxsfvjDHyZJTjnllI6jAUaM\nOYcYe63nivJEBnQMARthziEAAAAAVmXOoR5405velL179yZJdu7c2XE0dGFycjK7du1KkmzbtlCz\nHdwldLcQAACArWRYWQ88/elPz2233ZYkmZiY6DgaunLCCSckSebm5pIcnIi6D7+jQK8ZVsbYaz1X\nlAswYFgZsBGGlQEAAACwKsPKeuCOO+7QMdSYwR3AAwcOJEm+8pWvLH08eAQAgETHELD1dA4BAAAA\nNMycQz2we/fu/Pd//3eSZGpqKom7A63ZsWPHUsfQ/Px8x9EAI8acQ4y91nPFPuTrdMt7A+B4mHMI\nAAAAgFWZc6gHJiYmluYcclegTfv37+86BAAAABqlcwgAAACgYTqHeuChhx7K5KRTAQAAHG4w75RR\nBsBW0TkEAAAA0DDtKj3wG7/xG9m7d2+ShVWrEncFWjG4C7R8FZLBuR+sXDczMzP8wAAA6J0j5YwA\nm0FxqAduvfVWE1I36kjne/Ci//nPfz5J8vKXv3xp37m5uUP2AQCgTYaaAZvJsDIAAACAhpU+dCCU\nUroPomN9OA/0y2A42Xe+850kyU/+5E92GQ7QXzfXWs/tOgjYSq3nivJEjoVOImClWuuafxh0DgEA\nAAA0zJxD0FODCamf9rSnJVm4a+hOEAC0Z/D6r4OI9TAXEbAROocAAAAAGqZzCHpu0EFUa3UnCACA\ndZE3AsdC5xAAAABAwxSHYEQsv+tzzTXX5JprrsnJJ5+ck08+ucOoAADoM3NVAethKfseKKVkfn6+\n6zAYIXNzc0mSd7/73UmSN7/5zV2GA3TLUvaMvdZzxYE+5O2MJkPLoG2WsgcAAABgVTqHemD37t35\nlV/5lSTJJz7xiY6jYRS5GwRN0znE2Gs9VxzoQ97OaJIrQtt0DgEAAACwKkvZ98CPf/zj3HnnnUmy\nNPfQoLqvys+RWJoUANpTStE9xIbIHYG16BwCAAAAaJg5h3pg+V2gPpwPRo+7QNA0cw4x9lrPFZeT\nK3I85IzQJnMOAQAAALAqcw71QK01U1NTSZILL7wwSXLVVVd1GRIjYm5uLkly5plnJknuuuuuQ7YD\nAADAWnQOAQAAADTMnEM9MRj/OzgfN954Y5LkOc95TpJk+/bt3QTGUBw4cGCp22fHjh2HfG3//v1J\nkqmpqcPGiQ++9pGPfCRJ8ru/+7tJktnZ2S2NF+gVcw4x9uSKh+tDDk93lueEx3ItmHMI2rSeOYcU\nh3pu+UTV/piPj0cffTRJsnv37iTJZZddln/7t39LknzhC19IcvDcX3zxxUmSK6+8cqmANDExccj3\nc21A0xSHGHtyxcP1IYdn6x1Pjmf5emDAhNQAAAAArErnUM8MKvuDxwcffDBJcuKJJ3YWE5vvxS9+\ncZLkuuuuW3PfXbt2JVmYdPr6669Pkpx66qmH7OOOEDRN5xBjT654uD7k8GwduR2wmXQOAQAAALAq\nnUMjotZq3PAYOJ5zNzk5uTTnUB9+b4He0DnE2JMrHp2cYDzJ94HNpHMIAAAAgFVNdh0AR7Zyafvl\n22iT5ekBAMabfB/ois4hAAAAgIbpHOqplePHH3nkkaVVqyYmJroIiWNUa83MzEyS5K/+6q+SJNPT\n00mS/fv3dxYXAAAALGdC6hHRh/PExmkRBraQCakZe3LFtckVR598EdgqJqQGAAAAYFWGlcEWGiw9\nv3v37iTJo48+2mU4AAD0VK1V9xDQGZ1DAAAAAA3TOQRbpNa61DlkHgAAAAD6SucQAAAAQMN0DsEW\nKaVkYmIiSbJ3796OowEAxtlgrhrdygBshM4hAAAAgIYpDsEWmpiYyMTERObm5pbmH9pM27Zty7Zt\nh/8aT09Pb/rPAgBga9VadX8BnVAcAgAAAGiY4lDPPfWpT81Tn/pUdxBG1Mq7P3v27MmePXuO6XuU\nUpbmEZicnMzk5MGpwm644YbccMMNSz9n8O+zn/3sIc8DAKBdK3NFHUrASqUPfxRKKd0H0XN9OE8c\nv8HQst/5nd9JknzkIx9Jkhw4cGBdz9+3b1+SZPv27YdsP9LQMoUhaMbNtdZzuw4CtpJccf3kjONh\nI3ncRs69fBHaUGtd85dd5xAAAABAw9bsHCqlvD/Jy5LcX2v92cVtlyf5nSQPLO721lrr5xa/dlmS\n304yl+SNtdZr1wzC3aA1uQs0Xh599NEkyQc+8IEkyRvf+Mal4WKzs7OH7Lv83K+8Dla72zP42qCr\naH5+/jijBnpK5xCdkiv2i5xxPK3M+Tb7POsggvG2WZ1DVyZ5yRG2/3mt9dmL/wYv9j+d5NVJfmbx\nOX9VSplYf8gAAIyYKyNXBICRtmZxqNb65SQ/XOf3uyDJx2qt+2ut30lye5LnHUd8zTKZ8HjbvXt3\ndu/enUsuuSSXXHJJaq3Zu3dv9u7de9SJAmutS9fFWtfHzMxMLrroolx00UWHTWINAJtJrghbz0TS\nwFY7njmH3lBK+fdSyvtLKScvbjs9yV3L9rl7cdthSimXlFJuKqXcdBwxAADQT3JFABgRGy0OvTfJ\nM5I8O8m9Sf5scfuRWhmOWNqutV5Raz3XPAlHtvKuwB133JGZmZnMzMx0GBWbbWpqKlNTU0kOX6Z+\n5TVwLJ1k8/Pzue2223Lbbbe5bgDoglwRRohuJGBDxaFa63211rla63ySv8nBduC7k5yxbNenJLnn\n+EIEAGCUyBUBYLRsqDhUSjlt2aevTPLNxY8/neTVpZTpUsrTkpyV5F+OL8S2TU9PZ3p6On/yJ39i\njPEYWm3uoOOZd2rHjh256aabctNNN2ViYiITE+b6BGB45IrdMWclABux5iy1pZS/S3JekieWUu5O\n8vYk55VSnp2FNuA7k1yaJLXWW0opH0/yH0lmk7y+1jq3NaEDANA1uSIAjL7Sh06UUkr3QfTUYD6a\nyy67LJdffnm3wTBSHn744STJ2WefnSS57777ugwH2Do3m5OFcSdXPDZ9yO8ZXbrPYPzUWtf8xba+\ndc8NJhJ++OGHlz4eFIxgNY973OOSJP/1X/+VxAs9AAAAR3Y8S9kDAAAAMOIUh0bE97///czOzmZ2\ndrbrUBhR1157ba699tpMTk5mclLTIAAAh7MIDrRJcQgAAACgYdoHRsTXvva17Nixo+swGGG7du06\n5HEwYTUAAABt0zkEAAAA0DBL2Y+QPpwrRp9Vy2DsWMqesSdX3Bi5I5tB7gijbz1L2escAgAAAGiY\nOYd6blCp3759e370ox8lSU4++eQuQ2LEDe4iugsEAABAonOo9wZLSVrCns0yOzub2dnZ3HLLLV2H\nAgBAz1naHtqgOAQAAADQMBNSj6A+nDNG34EDB7J9+/YkhpjBiDMhNWNPrrgxckY2k3wRRpcJqQEA\nAABYlQmpR0QpZenuzx133JEkefKTn5wk2bFjR2dxMboGXUNJ8sEPfjBJ8sY3vjFJ8tBDD3USEwAA\n/WRRExhvOocAAAAAGmbOoRE0qNbPz893HAnjYm5uLknyqle9Kkly9dVXdxkOcGzMOcTYkysenz7k\n+4wX3UMwWsw5BAAAAMCqdA6NsNe85jVJkve85z1Jkj179nQZDiNs5Rhyd4NgpOgcYuzJFY9PH/J9\nxotcEUaLziEAAAAAVmW1shH20Y9+NEnynOc8J0nyhje8Icmhq1DBeqy8+/PII48kWVgRb/AxADCa\nBq/zOojYLFYug/FjWNkYuffee5Mkp556aseRMOr27duXJNm5c2fHkQDrYFgZY0+uuLn6kP8zXhSJ\noN8MKwMAAABgVYaVjZHTTjstibtBHL8dO3YkWbiW3AkCAGA1hpnB6NM5BAAAANAwxaEx9KxnPSvz\n8/OZn5/vOhRG3NzcXD784Q/nwx/+cNehAACbpJSiwwOAQygOAQAAADTMamVjZPkypX04r4y+5XMO\nucMIvWW1MsaeXHHryBnZTPJF6CerlQEAAACwKquVjZHBnZ+pqalceOGFSZKrrrqqy5AYcaWU7N27\nN0ly2WWXJUne+c53dhkSALCJlneeA9Auw8rG3K233pokeeYzn5lEqyfHbuXSpK4h6B3Dyhh7csXh\n6cN7A0affBH6xbAyAAAAAFa+onIZAAASAklEQVSlODSmtm3blm3btuVTn/pUPvWpT2Vubi5zc3Nd\nh8UIstwtAADAeFMcAgAAAGiYOYca0YfzzHjQRQS9Y84hxp5ccfjkjhwP+SL0izmHAAAAAFiVpezH\n3Pbt25NYppTNMzExkSTmsAKAMSZ3ZCN0DMHo0jkEAAAA0DCdQ2PuwIEDh3z+Mz/zM0mSW265pYtw\nGAM6hgAAAMaLziEAAACAhukcasy3vvWtJMm73vWuvPnNb05ycCy5McKs5n/+z/+ZJNm5c2eSZO/e\nvV2GAwAAwCaxlH2jpqen84QnPCFJ8v3vfz/JwSFok5MLNUPFIpa79957kySnn356EhNUQo9Yyp6x\nJ1fsltd81sv7B+gnS9kDAAAAsCrDyhq1f//+/OAHP0hysML/4IMPJkl27NiRZKG7CAZOO+20JO4e\nAkBrLGvPWnQMwejTOQQAAADQMJ1DDZuZmUmSbNu2UCPcs2dPkuSTn/xkkuTFL35xkmT37t0dREdf\n7N+/P0nyp3/6p0kOdpQNtgMAbdBBBDC+dA4BAAAANMxqZSzdBRo8TkxMJEne9ra3JUkuu+yyTE1N\ndRMcnRj8XZidnV26LrZv395lSMDRWa2MsSdX7Kc+vI+gW+YagtFgtTIAAAAAVqVziDWdc845+frX\nv951GAzR7OxskuThhx/OqaeemiSZn59PkszNzXUWF3BEOocYe3LFfuvD+wm6oXMIRsN6OodMSM2a\nvvGNb+RZz3rW0seMv8EL/S//8i8vbRsUhwAAljNRNcDoM6wMAAAAoGE6h1jT/Px8vvnNbyY5/M7Q\nYDnzwfLmjLZ9+/YlSX7zN38zSZbOOwDAWpYPMdJFNN4MJ4Pxo3MIAAAAoGE6h9iQwd2Ciy++OEny\nvve9LxMTE0kO3ilyR2H0XH311UmSz3zmMx1HAgCMspV5oE4igH7TOQQAAADQMEvZc1x27tyZJDnp\npJNy7733Jjm41Pmgk4j+GixZ/8ADDyRJzjjjjCSWq4cRYyl7xp5ccXz04b0Hx8foABg961nKXucQ\nAAAAQMN0DrHp1lrJrNbqjkPPDM7HytXogJGgc4ixJ1ccL/KM0SR/h9GlcwgAAACAVSkOsWm2bduW\nbdu2pZSSUkre9a535V3vetdh+x04cKCD6BiYnZ3N7OxsrrzyyqVzNVBrdTcPANhSg/xjZR4CQHcM\nK2PLDIaTDYaXDXzmM5/Jy172siTJ/Px8koXCEsPx67/+60mSL3zhC3nwwQc7jgbYBIaVMfbkim3o\nw/sSDqeAB6PPsDIAAAAAVqVziKEZdAdNTk5mZmYmSfKXf/mXSZI3vvGNh+w7MzOT7du3Jzm43Prg\n8/UYXNet3elY/v8edGwNjvXjHve4zuICtpTOIcaeXLFdfXiv0prW8mdogc4hAAAAAFalc4heesUr\nXpGrr746SfL5z38+SXL++ecftt++ffuSLHQjLTc3N5fk4LxHtdZjuguy8vdi1O6gfPvb387ZZ5+d\nJDnxxBOTJI888kiXIQFbR+cQY0+uyEp9eA8zbkYt3wXWT+cQAAAAAKvSOUQvTU1NLc2VM5hr6MCB\nA4ft9+EPfzhJ8va3vz1JcuGFFyZJfu7nfi5J8upXvzrJQifRxMREkoOrp61cTa3Wmh07dhzy/Vfu\nu9rqal10G914441Jkh//+MdJkhe+8IVJkhNOOGFpGzD2dA4x9uSKbIY+vO/pG91C0AadQwAAAACs\nSucQvVRKWdfdnUE30KCTZ7Cy2dTUVJKDnT/L/f7v/36S5JxzzkmSPPTQQ0kW7ia9+93vTpLceeed\nSZK//uu/TpJceumlSZJHH300SbJ79+489thjSZJdu3YlOdhVNOhwmp6eXto2mANp5Qpsg30nJiaW\nYl7pgQceSJLcfvvt2bt3b5KDHUInnXRSkizFcqTuKmDs6Rxi7MkV6VIf3i8dLx1C0Lb1dA4pDtGc\nwdCxQeFmMHxtx44dSy/+Rxt6ttwll1ySJLnqqquSHJwce1B8uvzyy5eKNn/8x398yNcefPDBJMk/\n//M/J0k+8IEP5Ctf+cqqce/cuXOpyDSIefBC34ffY6AzikOMPbkiAGycYWUAAAAArErnEM1Z2Va7\nnt+B1Tp0JicnkxwcKra822jwvMGQscE+gw6g5bH04XcRGEk6hxh7ckUA2DidQwAAAACsarLrAGDY\nNtKhs9pzBt1AA8vnJ1o5h9FGupYAAABgK+kcAgAAAGiYziEYIp1CAAAA9I3OIQAAAICGKQ4BAAAA\nNExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAw9YsDpVSziilfKmUcmsp5ZZSyu8tbn98KeW6\nUsq3Fx9PXtxeSinvKaXcXkr591LKc7f6PwEAQDfkigAw+tbTOTSb5PdrrT+V5BeSvL6U8tNJ3pLk\n+lrrWUmuX/w8Sc5Pctbiv0uSvHfTowYAoC/kigAw4tYsDtVa7621fm3x40eS3Jrk9CQXJPng4m4f\nTPKKxY8vSPKhuuCrSfaUUk7b9MgBAOicXBEARt8xzTlUSjkzyXOS3JjklFrrvclCUpDkSYu7nZ7k\nrmVPu3tx28rvdUkp5aZSyk3HHjYAAH0jVwSA0TS53h1LKbuTfDLJm2qtD5dSjrrrEbbVwzbUekWS\nKxa/92FfBwBgdMgVAWB0ratzqJSyPQsv9n9ba71qcfN9gxbgxcf7F7ffneSMZU9/SpJ7NidcAAD6\nRq4IAKNtPauVlSTvS3JrrfXdy7706SQXL358cZJPLdv+m4srUfxCkocGLcUAAIwXuSIAjL5S6+pd\nuqWU/z3J/5vkG0nmFze/NQtjyT+e5CeSfC/Jq2qtP1xMEP5XkpckeSzJb9VaVx0rrlUYADbs5lrr\nuV0HQbvkigDQb7XWo471HlizODQMXvABYMMUhxh7ckUA2Lj1FIeOabUyAAAAAMaL4hAAAABAwxSH\nAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDD\nFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAA\nQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAA\nAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJji\nEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABo\nmOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAA\nAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwC\nAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1T\nHAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAA\nDVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAA\nAAANUxwCAAAAaJjiEAAAAEDD1iwOlVLOKKV8qZRyaynlllLK7y1uv7yU8v1SytcX/7102XMuK6Xc\nXkr5VinlV7byPwAAQHfkigAw+kqtdfUdSjktyWm11q+VUk5McnOSVyT5H0kerbX+Xyv2/+kkf5fk\neUmenOT/SXJ2rXVulZ+xehAAwNHcXGs9t+sgaJdcEQD6rdZa1tpnzc6hWuu9tdavLX78SJJbk5y+\nylMuSPKxWuv+Wut3ktyehRd/AADGjFwRAEbfMc05VEo5M8lzkty4uOkNpZR/L6W8v5Ry8uK205Pc\ntexpd+cICUIp5ZJSyk2llJuOOWoAAHpHrggAo2ndxaFSyu4kn0zyplrrw0nem+QZSZ6d5N4kfzbY\n9QhPP6wVuNZ6Ra31XK3wAACjT64IAKNrXcWhUsr2LLzY/22t9aokqbXeV2udq7XOJ/mbHGwHvjvJ\nGcue/pQk92xeyAAA9IlcEQBG23pWKytJ3pfk1lrru5dtP23Zbq9M8s3Fjz+d5NWllOlSytOSnJXk\nXzYvZAAA+kKuCACjb3Id+/xiktck+UYp5euL296a5KJSyrOz0AZ8Z5JLk6TWeksp5eNJ/iPJbJLX\nr7b6BAAAI02uCAAjbs2l7IcShOVJAWCjLGXP2JMrAsDGbcpS9gAAAACML8UhAAAAgIYpDgEAAAA0\nTHEIAAAAoGHrWa1sGP47yY8XH9l6T4xjPSyO9fA41sPhOA/Peo/1U7c6EOgBueJw+Vs/PI718DjW\nw+E4D8+m5oq9WK0sSUopN1ltZTgc6+FxrIfHsR4Ox3l4HGs4lN+J4XGsh8exHh7Hejgc5+HZ7GNt\nWBkAAABAwxSHAAAAABrWp+LQFV0H0BDHengc6+FxrIfDcR4exxoO5XdieBzr4XGsh8exHg7HeXg2\n9Vj3Zs4hAAAAAIavT51DAAAAAAyZ4hAAAABAw3pRHCqlvKSU8q1Syu2llLd0Hc84KaXcWUr5Rinl\n66WUmxa3Pb6Ucl0p5duLjyd3HecoKqW8v5Ryfynlm8u2HfHYlgXvWbzG/72U8tzuIh89RznWl5dS\nvr94bX+9lPLSZV+7bPFYf6uU8ivdRD2aSilnlFK+VEq5tZRySynl9xa3u7Y30SrH2XUNRyBX3Dpy\nxa0jVxweueLwyBWHo4tcsfPiUCllIsn/neT8JD+d5KJSyk93G9XYeUGt9dm11nMXP39LkutrrWcl\nuX7xc47dlUlesmLb0Y7t+UnOWvx3SZL3DinGcXFlDj/WSfLni9f2s2utn0uSxb8fr07yM4vP+avF\nvzOsz2yS36+1/lSSX0jy+sVj6treXEc7zonrGg4hVxwKueLWuDJyxWG5MnLFYZErDsfQc8XOi0NJ\nnpfk9lrrHbXWmSQfS3JBxzGNuwuSfHDx4w8meUWHsYysWuuXk/xwxeajHdsLknyoLvhqkj2llNOG\nE+noO8qxPpoLknys1rq/1vqdJLdn4e8M61BrvbfW+rXFjx9JcmuS0+Pa3lSrHOejcV3TMrni8MkV\nN4FccXjkisMjVxyOLnLFPhSHTk9y17LP787q/2mOTU3yhVLKzaWUSxa3nVJrvTdZuOiSPKmz6MbP\n0Y6t63xrvGGxPfX9y1reHetNUko5M8lzktwY1/aWWXGcE9c1rOT631pyxeHyejpcXlO3kFxxOIaV\nK/ahOFSOsK0OPYrx9Yu11udmoZ3v9aWU/6PrgBrlOt98703yjCTPTnJvkj9b3O5Yb4JSyu4kn0zy\nplrrw6vteoRtjvc6HeE4u67hcK7/rSVX7AfX+ebzmrqF5IrDMcxcsQ/FobuTnLHs86ckuaejWMZO\nrfWexcf7k1ydhday+watfIuP93cX4dg52rF1nW+yWut9tda5Wut8kr/JwbZJx/o4lVK2Z+FF6G9r\nrVctbnZtb7IjHWfXNRyR638LyRWHzuvpkHhN3TpyxeEYdq7Yh+LQvyY5q5TytFLKVBYmUfp0xzGN\nhVLKCaWUEwcfJ3lxkm9m4fhevLjbxUk+1U2EY+lox/bTSX5zcbb+X0jy0KDtko1ZMVb5lVm4tpOF\nY/3qUsp0KeVpWZj87l+GHd+oKqWUJO9Lcmut9d3LvuTa3kRHO86uazgiueIWkSt2wuvpkHhN3Rpy\nxeHoIlecPL6Qj1+tdbaU8oYk1yaZSPL+WustHYc1Lk5JcvXCdZXJJB+ttV5TSvnXJB8vpfx2ku8l\neVWHMY6sUsrfJTkvyRNLKXcneXuSP82Rj+3nkrw0CxODPZbkt4Ye8Ag7yrE+r5Ty7Cy0S96Z5NIk\nqbXeUkr5eJL/yMIs/6+vtc51EfeI+sUkr0nyjVLK1xe3vTWu7c12tON8kesaDiVX3FJyxS0kVxwe\nueJQyRWHY+i5YqnVcD8AAACAVvVhWBkAAAAAHVEcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQ\nMMUhAAAAgIYpDgEAAAA07P8HxYkQPJY+ZqYAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec557048>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuQZWV5L/7vO32bGUVARUQkUQya\nIChERAtMomgSsWJBoiEaY1QspAwkOeZSirHKS1JJTPzFOlGPJUQU8hPBGCNGKU+iMV7KS4SEigJR\nMRDggHgSrQmMTV/X+aN7dffM9HT3zHTvvfZ+P5+qqe5evXr3u1fvWftZz3re5y1N0wQAAACAOm3r\n9wAAAAAA6B/JIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BAAAABAxbYsOVRK\neW4p5RullFtLKa/bqt8DAMDgESsCQHeUpmk2/0FLGUnyzSQ/neSuJF9N8uKmaW7e9F8GAMBAESsC\nQLeMbtHjnp7k1qZp/j1JSilXJzknyapv+KWUzc9QAUAd/rNpmqP6PQg4QGJFAOiRpmnKevts1bSy\nY5PcueLruxa3LSmlvKqUcn0p5fotGgMA1OA/+j0AOAhiRQDokK2qHFotK7XHHZ+maS5NcmnibhAA\nQGXEigDQIVtVOXRXkuNWfP3oJHdv0e8CAGCwiBUBoEO2Kjn01SQnlFIeW0oZT/KiJB/bot8FAMBg\nESsCQIdsybSypmlmSykXJ/nfSUaSXN40zU1b8bsAABgsYkUA6JYtWcr+gAdhHjkAHKwbmqY5rd+D\ngK0kVgSAg9fP1coAAAAAGACSQwAAAAAVkxwCAAAAqJjkEAAAAEDFJIcAAAAAKiY5BAAAAFAxySEA\nAACAikkOAQAAAFRMcggAAACgYpJDAAAAABWTHAIAAAComOQQAAAAQMUkhwAAAAAqJjkEAAAAUDHJ\nIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BAAAABAxSSHAAAAAComOQQAAABQ\nMckhAAAAgIpJDgEAAABUTHIIAAAAoGKSQwAAAAAVkxwCAAAAqJjkEAAAAEDFJIcAAAAAKiY5BAAA\nAFAxySEAAACAikkOAQAAAFRMcggAAACgYpJDAAAAABWTHAIAAAComOQQAAAAQMUkhwAAAAAqJjkE\nAAAAUDHJIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BAAAABAxSSHAAAAACom\nOQQAAABQMckhAAAAgIpJDgEAAABUTHIIAAAAoGKSQwAAAAAVkxwCAAAAqJjkEAAAAEDFJIcAAAAA\nKiY5BAAAAFAxySEAAACAikkOAQAAAFRMcggAAACgYpJDAAAAABWTHAIAAAComOQQAAAAQMUkhwAA\nAAAqJjkEAAAAUDHJIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BAAAABAxSSH\nAAAAAComOQQAAABQMckhAAAAgIpJDgEAAABUTHIIAAAAoGKSQwAAAAAVkxwCAAAAqJjkEAAAAEDF\nJIcAAAAAKiY5BAAAAFAxySEAAACAikkOAQAAAFRMcggAAACgYqOH8sOllNuT3JdkLsls0zSnlVIe\nmuSaJI9JcnuS85qm+f6hDRMAgEEjVgSAwbAZlUPPaprmlKZpTlv8+nVJPt00zQlJPr34NQAAdRIr\nAkDHbcW0snOSXLH4+RVJzt2C3wEAwGASKwJAxxxqcqhJ8nellBtKKa9a3HZ00zT3JMnix0cc4u8A\nAGAwiRUBYAAcUs+hJGc2TXN3KeURSf6+lPJvG/3BxQDhVevuCADAoBIrAsAAOKTKoaZp7l78+N0k\nf5Pk9CT3llKOSZLFj9/dz89e2jTNaSvmnwMAMETEigAwGA46OVRKeVAp5bD28yQ/k+TrST6W5GWL\nu70sybWHOkgAAAaLWBEABsehTCs7OsnflFLax7mqaZpPllK+muRDpZRXJrkjyS8e+jABABgwYkUA\nGBClaZp+jyGllP4PAgAG0w2m3TDsxIoAcPCapinr7bMVS9kDAAAAMCAkhwAAAAAqJjkEAAAAUDHJ\nIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BDAFiqlpJSy4e0AAAC9NtrvAQAM\ni23bFvLtTdMsfT06unCanZmZSZLMz88nSXbu3Jkk2b1799LPT0xMJEmmp6f3eJw2idR+DQAAsJlU\nDgEAAABUTOUQwBoOpGqnrQr693//9yTJeeedlwsuuCBJ8su//MtJkgc/+MFJko985CNJknPOOSdJ\nMjIykg996ENJkj/6oz9Kktx8881JktnZ2X3G0FYePfDAA3v8bgAABsvBVIdrT8BmUzkEAAAAULHS\nhR4WpZT+DwJghfZuzNjYWJLlPkBtX6C2Ymc1c3NzSRYqfvZ+nPbrdp+2T1EpZel3jI+P7/F4u3bt\nSpIcfvjhS9u+9KUvJUnOOOOMdZ9L+7vb36nKaOjc0DTNaf0eBGwlsSIwqLpwvb0RKpGGW9M06/6B\nVQ4BAAAAVEzlEMCikZGRjIyMJFm+y/Oyl70sSfLWt741yXL1Trtfv7R9iNpxrHW354477kiSPPGJ\nT0yS3H///UkWqqDax2mrihhIKocYemJFYNB04Tr7YKkiGj4qhwAAAABYk9XKABaNjo7m6quvTpKc\ne+65SZZ7DbUVOv2uGGqNjm789H3MMcckSb7//e/v8bPf/va384QnPGGPfdt+R20lkYoiAICNGeRq\noZXWex4qi4aTaWUAi5qm2acpdHuOHMY3wbm5uaXn1yaMbrnlliTJ+eefnyT58pe/vPS9dgoanWNa\nGUNPrAh0UReupbtiGGPlYWJaGQAAAABrUjkEVGfvSpiV58FhrhTaiNWe/2/8xm8kSa655pokyQ9+\n8IMky42t6TuVQww9sSLQBV24du66WmPorlM5BAAAAMCaVA4B1WrPf/Pz80mSbdvky1fTHp/2TtBv\n//ZvJ0ne/va3J1k+bu1+9JzKIYaeWBHopy5cMw8qlUTdoHIIAAAAgDWpHAKq0S5Db9Wtg9O+X7Qr\nuk1MTCRJLrnkkiTJH//xH/dnYKgcYuiJFYFe68J18jBRQdRfKocAAAAAWJPKIaAa3/zmN5MkP/Ij\nP7LHdncyDs3MzEySZGxsbOlYtn2I2veYLrzXDDGVQww9sSLQK2KWrSf27j2VQwAAAACsabTfAwDY\nStu3b0+SXH755TnuuOOSuFux2cbGxpY+b++2nXnmmUmSL37xi30ZEwDAgVAx1DvtsRaTd4tpZcBQ\nat9s2uXVp6amlhoos/UmJyeTJPfcc0+S5HGPe1w/hzPsTCtj6IkVga3Shevh2kkSbT3TygAAAABY\nk2llwFD68Ic/vMfX4+PjfRpJnXbs2JEkOf7445MoHwYAukfVUDeIE7tB5RAAAABAxVQOAUOhrQx6\n9atfnSR55jOfucf33YnohqZpcvTRRydJ/uu//itJMjc3188hAQCVUTHUTU3TiNn7SOUQAAAAQMWs\nVgYMlS6c09hX+3eZnZ3NTTfdlCQ59dRT+zmkYWK1MoaeWBHYTOLF7lI5tDWsVgYAAADAmvQcAgba\ngx70oCTJVVddlSSZmZlJkoyNjfVtTOyrvQs0NjaWJz/5yUmSz3/+80mSn/iJn+jbuACAeqgY6j4r\nl/WPyiEAAACAiuk5BAysUkqOOuqoJMm9996bxN2GQXTxxRcnSS6//PIkyQMPPJDE3b0DoOcQQ0+s\nCBwKMcXgEtNvjo30HJIcAgZaF85hbA5v/gdNcoihJ1YEDoV4cfCJEw+NhtQAAAAArElDamBgtHcM\n2ibUN910U+bm5pIkIyMjfRsXm8OUQABgM6kYGh7ixK2ncggAAACgYiqHgIHRLk9/yimnJEmOOuqo\nbNsmxz0spqamkiS7du1Kkhx++OH9HA4AAB2jgmjruKoCAAAAqJjVyoCB04XzFlvvrrvuymMf+9gk\nyezsbJ9H02lWK2PoiRWBAyFWrIsqovVZrQwAAACANUkOAZ23ffv2bN++PfPz85mfn0/TNO4IDbH2\n7/uwhz0sF110US666KJ+DwkAGBBiRDg4ppUBndeep9qpRe2y9UpI6/GKV7wiSXLVVVclSWZmZpII\nABeZVsbQEysCGyU2qJdrg/0zrQwAAACANakcAjpveno6STI6OprEXYEata+BI488MkkyOTmZxN3B\nRSqHGHpiRWA9YgJarhX2pXIIAAAAgDWN9nsAAPuza9euJMvZf3cB6tVWje3evTuJ1wIAAGwmlUMA\nAAAAFVM5BHRKWyHy+7//+3nIQx6SxBxykm3bFu5lzM/PJ0luvfXWJMmTnvQk/YcAoGLe/9lb+5pQ\naX5gVA4BAAAAVMxqZUAndeHcRHfNzs4mSU466aR861vfSrJcVVQhq5Ux9MSKwN7EimyE6qEFVisD\nAAAAYE16DgGd8oEPfCBJMjc3l5GRkT6Phq5p7xK2VULve9/7csYZZ/RzSAAAdJT+QxtnWhnQV+2J\nuj0Xff/730+SHHHEEX0bE4PFm71pZQw/sSLQ6sL1K4On9njRtDIAAAAA1mRaGdBX7RLlF198cZJk\nx44d/RwOA2jvcuG9q9EAAKib6WXrUzkEAAAAUDE9h4C+GhsbS5LceuutSZIf+qEf6udwGDBN02Rq\naipJcs011yRJXv7yl/dxRH2h5xBDT6wItLpw/crgqrVySM8hAAAAANakcgjohC6cixgOFd4RUjnE\n0BMrAmJFNkOFcWISlUMAAAAArMNqZUBfjI4unH6OPPLIJMnc3FySZGRkpG9jYjhYjQIAgNWIE/dP\ncgjoizY59E//9E9JnKDZfJdcckmS5M/+7M+SZKlxNQAAdZMk2pdpZQAAAAAV05Aa6KsunIMYbhXc\nEdKQmqEnVgTEjGyFCuLEJBpSAwAAALAOPYcAGCrtncXdu3cnSV796lcnSd773vdmenq6b+MCAKBb\n9B5apnIIAAAAoGJ6DgF91YVzEMNpdnY2SXLjjTcmSZ761Kf2czhbSc8hhp5YEeomXqQXhrl6SM8h\nAAAAANak5xDQUxMTE0mSN7zhDUmSycnJJMn27duTDHfGnt4aHV14izvllFOSJI95zGNyxx13JEnm\n5+f7Ni4AAOgalUMAAAAAFdNzCOipbdu27fGxrRxqqzxgs7Tvb1NTU0mSK6+8MhdeeGE/h7RV9Bxi\n6IkVoW5duGalHsM4k2EjPYckh4CeGh8fT5LcdtttSZKjjjoqSTI2Nta3MVGPYXyzj+QQFRArQt26\ncM1KPYYxXtSQGgAAAIA1rZscKqVcXkr5binl6yu2PbSU8vellG8tfjxycXsppfx5KeXWUsq/llJ+\nfCsHDwyuSy65JJdccklmZ2czOzubpmncFWJLzczM5KSTTspJJ52U0dFRUxlhk4gVga0iPoTe2Ujl\n0PuTPHevba9L8ummaU5I8unFr5Pk7CQnLP57VZJ3b84wAQDoqPdHrAgAA23d26ZN03yulPKYvTaf\nk+SZi59fkeQfk7x2cfuVzUJ698ullCNKKcc0TXPPZg0YGGzT09NJkiuuuKLPI6EW7R3HUspSj6uv\nf/3ra/0IcADEigAw+A6259DR7Zv44sdHLG4/NsmdK/a7a3HbPkopryqlXF9Kuf4gxwAAQDeJFQFg\ngGx2w4XVOmCvOkm0aZpLk1yaWIECalFKyfbt25MkX/va15IkJ5100tL3YCu0r63R0dF85jOf6fNo\noHpiRQDooIOtHLq3lHJMkix+/O7i9ruSHLdiv0cnufvghwcAwAASKwLAADnY5NDHkrxs8fOXJbl2\nxfZfXVyJ4ulJdplDDrSapsnk5GQmJydz8skn5+STT04pRdUQPTE9PZ0zzzwzZ555ptXKYOuJFQEY\nSLWukrduZFxK+WAWGgo+vJRyV5I3JvnjJB8qpbwyyR1JfnFx9+uSPC/JrUl+kOQVWzBmYIDt2LEj\nSTI/P58k2bbtYHPUcOAuuOCCJMn11y+0MJmbm0uSKgMA2CxiRQAYfBtZrezF+/nWs1fZt0ly0aEO\nCgCAwSBWBIDBV7pwt1STQahPF8491KVpmkxNTSVJdu7cubRtCNzQNM1p/R4EbCWxItRpSN6nGVDD\n1PqiaZp1n4z5HAAAAAAV040TgCqUUrJ9+/Yk7kQCAMBKKocAAAAAKqZyCOiLvSs3hmlOLwAAwCBR\nOQQAAABQMZVDQF+oFKKfxsbGkiSzs7NJ9CACAKBuKocAAAAAKqZyCIDqzMzM9HsIAADQGZJDQE+1\n08kmJyeTZGlpcdPMAAAA+sO0MgAAAICKqRwCeqptBHzNNdckSV784hcnScbHx5OoIGJrzc/PJ0kO\nO+ywJMn999+fRENqAADqpnIIAAAAoGKlC3dLSyn9HwTQU10491CXpmkyPT2dJLnooouSJH/5l3+Z\nZLlB9YC+Lm9omua0fg8CtpJYEeo0oO/LDIlhmtHQNM26T0blEAAAAEDF9BwCemrbtoWc9Pe+970k\nyRFHHLHHdtgqpZSlnlejowtvf20lEQAA1MzVGAAAAEDFVA4BPbOycuOqq65KklxwwQVJrFZGb7S9\nCz7xiU8kWa5Ya1cxAwCAGqkcAgAAAKiYyiGgZ5qmydTUVJLkla98ZZJkYmKin0OiIk3TZG5uLkny\nuMc9Lkly11139XNIAADQCZayB/qincZjGhn9MGSvO0vZM/TEilCnLlyrUq9hihctZQ8AAADAmkwr\nA/pimDLxAAAAg0zlEAAAAEDFJIcAAAAAKiY5BAAAAFAxPYeAnmqXrr/llluSJI9//OOTJCMjI30b\nEwAAQFJvb1SVQwAAAAAVK03T9HsMKaX0fxBAT3Xh3EO9huyO0A1N05zW70HAVhIrQp3Ei/TDkMWJ\nSZKmadZ9UqaVAQAA0BmSQtB7ppUBAAAAVEzlENBTbUPq66+/PklyyimnJElGR52O2Fpzc3O5++67\nkyy/3mZnZ/s5JAAA6ASVQwAAAAAV05Aa6IsunHuo15A1GtSQmqEnVoS6iBPppyGLE5NsrCG1yiEA\nAACAimnyAUAVmqbJ1VdfnSTZuXNnkmRycnLpewAAUCuVQwAAAAAV03MI6KmxsbEkyfOe97wkyUc/\n+tF+DofKnHTSSUmSm266qc8j2VR6DjH0xIpQly5co1IvPYcAAAAAqI6eQ0BPzczMJEmuvfbaPbbP\nzs4mSUZHnZbYGlNTU3nEIx6RJPnGN76RZPl1BwD0n4oh6B/TyoC+aMs123PQrbfemiQ5+uijkyQP\netCDhrKkk/4a0teUaWUMPbEi1KkL16rUZxjjRdPKAAAAAFiT+RtAX+x9J+jkk09Okjzzmc9Mklx3\n3XW9HhJDqn2tNU2TbdsW7onMz8/3c0gAAHTMMFYMHQiVQwAAAAAV03MI6KQunJsYDtPT00mSE088\nMXfccUeS5cboQ0LPIYaeWBEQG7LVhrlySM8hAAAAANYkOQR0ysjISEZGRnLvvfdmfn5ebxgOWtM0\naZoms7OzmZ2dzQte8ILMzc1lbm6u30MDAA5QKWWPf8DmkhwCAAAAqJjkENAJ7V2giYmJTExM5J3v\nfOdSxQccjPY1NT09nenp6bzjHe9QjQYAQ0IFEWwuDamBTurCuYnB1iaBXvKSlyRJPvKRjyw1px4y\nGlIz9MSKwP6IGdkMw55o1JAaAAAAgDWpHAI6ZWRkJEkyNTW19DkcivHx8SRDt3z9SiqHGHpiRWB/\nunA9y+BTOaRyCAAAAKBqo/0eAMBKRxxxRJKoGmLTuKMIAMPH+zubYdgrhg6EyiEAAACAiqkcAjph\ndHThdPSsZz0rycJKU9u2yV9z4B544IEkydOf/vQky6+t2dnZvo0JADg0KoVga7nyAgAAAKiY1cqA\nvmh7Cs3NzSVJbrjhhiTJj/7ojyZJdu7c2Z+BMTQqmkNutTKGnlgR6taFa1aGS0VxYhKrlQEAAACw\nDj2HgE3TZuDHx8eTJFNTU0my1DtobGxs6fPjjz8+SfKhD30oSXLiiScmcWeIg9dWobU9hgCAwSYu\nhN4RQQMHZO/pYCtNTEwkSV7xilckSd797ncnSQ477LAkyUtf+tKcf/75SZInPvGJqz5+bSWebJ4/\n//M/T7KcHGpfowJLABgM3rPZaq419s+0MgAAAICKaUgNHJA227579+4kyY4dO5a+155P2ulk27dv\nT7KwLH2SzMzMLFUetdUd7c/I4nMwmqZZeu2ceuqpSZIbb7yxn0PqBw2pGXpiRRg8XbjOhL3Ves2h\nITUAAAAAa9JzCNjHan2F9r77s9rdoDYT31YMtdom1OPj4/tk62vN3rM5mqbJV77ylSTJv/3bv/V5\nNABAomqI7nHNsT6VQwAAAAAVUzkELGn7Bz3+8Y9PkvzN3/xNHvvYxyZZ7hvUVgEdTPZdxp7N0t6R\nvP/++/Oa17wmyXKvKwCgv0opqodgwKgcAgAAAKiYyiFgyX/8x38kSY444oh9vtdWDEEXtFVon/rU\np3LzzTf3eTQAQKLXEN1j5sLGWcoeWHojbxtQtw2pVy4TDl30xCc+UXLIUvZUQKwI3dKFa0hYj+uY\nZZayBwAAAGBNppVBpcbGxvKRj3wkSfKDH/wgSbJz58499pFtp+tUDQEAwKFTOQQAAABQMZVDULF3\nvetdSZLnPOc5fR7JgWnnua+sbFptG8Nneno6SXLNNdckWah2ayvfAICto88Qg8L1wMFROQQAAABQ\nMauVAQN3J6itFNm+fXu2bVvIcU9OTi5tS9wxGHb+vnuwWhlDT6wI/Tdo8SL1Eifuy2plAAAAAKxJ\nzyGo1MTERN7xjnckSaamppa2dcn++gj9zu/8TpLkPe95T+bn55Mkz3jGM5Ikf/AHf5AkOf3005Mk\nMzMzSZLDDjvMXQQAgAocTMynMmrwifUPjcohAAAAgIrpOQQV68L//7W0vYV27tyZZO27Ae339n5O\nz3rWs5Ik//AP/2BFsyHgb7cqPYcYemJF6L+ux42bHSN0/fmyL3Hi/m2k55BpZVCpkZGR7Nq1K0ny\nkIc8JEn3Tqivfe1rkyTvfOc71913f2/gX/jCF5IsPLcHHnggSTI+Pr60jcFw4YUXJtl/EhAA2Bq1\nvueKOaiNaWUAAAAAFVt3Wlkp5fIkP5fku03TnLS47U1JLkjyfxd3e33TNNctfu+SJK9MMpfkN5qm\n+d/rDkKpMPRF1++EbEZlT/sYExMTeelLX5okufTSSw/5cektVV5rMq2MvhIrwnCrIV5cS9efP+LE\njdispezfn+S5q2x/e9M0pyz+a9/sT0zyoiRPXPyZ/1VKGdn4kAEAGDDvj1gRAAbauj2Hmqb5XCnl\nMRt8vHOSXN00zVSS20optyY5PcmXDnqEwJY599xzkyTXXHNNkm4sZd/2BfqlX/qljI2NJVlejv5g\ntHd7HnjggVx22WVJVA4Niqmpqfzpn/5pkmzKawHYGmJFABh8h9Jz6OJSyr+WUi4vpRy5uO3YJHeu\n2OeuxW37KKW8qpRyfSnl+kMYAwAA3SRWBIABsaGl7BfvBn18xTzyo5P8Z5Imye8nOaZpmvNLKe9K\n8qWmaf7/xf3em+S6pmn+ep3HN5ET+mB0dKF48I477kiSHHXUUUkWVjJL+jt/dyt+d/u8du/enaQb\nlVKszRzyDdFziL4TK8Lw6mrPnV7FCF19/iwTL65vs3oOrfbA9zZNM9c0zXySy7JQDpws3P05bsWu\nj05y98H8DgAABpNYEQAGy0Elh0opx6z48ueTfH3x848leVEpZaKU8tgkJyT5p0MbIrBVZmdnMzs7\nm0c96lF51KMelbvvvjt33313du3alV27dmV+fn7LfnfTND2/EzM3N5e5ublMTEyoGhoAr3nNazI+\nPp7x8fGUUtwVggEiVgRgq4kPN9e6DalLKR9M8swkDy+l3JXkjUmeWUo5JQulwrcnuTBJmqa5qZTy\noSQ3J5lNclHTNHNbM3QAAPpNrAgAg29DPYe2fBDmkUOnnHTSSUmSL3zhCzn88MM39bHb1ci2b9+e\nZHked5v138rsfxfOd2zcIx/5yNx77739HsYg0HOIoSdWhP7pWvyk1xAtVUMbt5GeQ+tWDgH1aE+w\nN998c5LkoQ996NLUss16g/zGN76RJPnxH//xJMlZZ52VJHnGM56RZDlp1CaRDtWOHTuSJNddd93S\nc9m27VAWamSr7J0o3LVrVz+HAwBkYxfge8eJpZRNT65ICrGSxNDmc4UEAAAAUDHTyoA1PfKRj0yS\n3HPPPUn2re7YiJU/01YGTU1N7fE4bYPozaoYah1//PFJkm9/+9sHNXZ6Z3p6OknylKc8JUnyrW99\na+l1wppMK2PoiRVh8Gz0OnO1uKyfMVsXro9Zn3j+wGzZUvYAAAAADAc9h4AlY2NjSZZ78kxNTeU5\nz3nOHvscTMXQ7t27kyTnnXdeZmdnV93nYCpEVs5nb8fe9hU688wzkySf/exnD2rs9N74+HiS5Otf\n//o6ewIAXXQwVTdN0+wTo6kYYn/E81tH5RAAAABAxVQOAUsZ+Cc/+clJkte97nVJkhe84AWb8rgP\nfvCDkyQ//dM/nc997nNJksnJySQ5pNXQxsfHlyqOfu7nfi5Jcv755ydJnve85x3CyOklvaAAoPu2\nsrJGjyHoP5VDAAAAABWzWhmwzx2TmZmZJMt9fDbL7OxsfuzHfixJcvvtty9tO1gXXnhh3va2t+2x\nre1b036ku9rX3a5du5IkP//zP58k+fznP58kmZub68/ABo/Vyhh6YkXon35eL25VJVEXroE5MCrM\nD81GViuTHIJKtCfU9v/8yv/7vSzlvf/++5Mkt9xyS5Lk9NNPX/V3r3ZuapNVZ599dpLk2muv3Wc/\nbxyD57777kuSPOQhD0my72uVdUkOMfTEitA7XX3/PZhFURgeYvxDYyl7AAAAANakcggq8bu/+7tJ\nkj/5kz/p80gWtFOGRkZGkiTbtu2Zq17r3NSF8xabx52gQ6ZyiKEnVoStNyjx1Xpxw6A8DzZGnLg5\nVA4BAAAAsCZL2cOQu+yyy5IkL3zhC/s8kj21FUOtdkl7dweGW9M0mZ6eTpJMTEz0eTQAAECicggA\nAACgaiqHYIisXOXpzjvvTJK96PtqAAAYeklEQVQce+yx/RzSutoqkre//e373addlv7cc8/d42cs\nVz94Zmdn881vfjNJ8rSnPa3PowGAug1if55errJL//j79p7KIQAAAICKWa0Mhsjo6EIx4MzMzD6r\ngXVVew665557kiTHH398kmRqamqffb/61a8mSZ7ylKckcUdhUPm7bTqrlTH0xIqwubpwDXio9hdP\nDMNzq5k4cWtYrQwAAACANek5BANs27aF/G670tfMzMzS97peMdRqK5x+9md/Nsnyc1nNKaecksQd\nhUE0OTmZJDn66KOXXpvt3x4A6I1hrqoZ5udWCzF+f0kOwQBrlwL/8Ic/nGQ5sdImjbqsfQNvkwYX\nXnhhkuS3fuu3lvYZGxtLkrzwhS/cY9/DDjusZ+Pk0LR/5w984ANJFl6bgjcA6C3vvcB6un8FCQAA\nAMCW0ZAaBkhbKdQ2a27//7Zft98fBHsvQ7pWGenZZ5+dJLnuuuu2fmBsqraa7fDDD0+S3H///f0c\nzrDSkJqhJ1aEg9eF673NpBH18DGdbOtpSA0AAADAmvQcggGxbdu2PPWpT02SfP7zn9/je+Pj4/0Y\n0iHZvXt3kuTkk09OkoyOLpyOZmdnkyzcQdixY0eS5LWvfW0fRsihaCuGPv7xjydZ/nuXUtzZAwBA\nxVDHqBwCAAAAqJieQzBAuvD/dbPt747ByMhInv3sZydZXo3NKmWDxx2hntBziKEnVoQDN2xx43ox\nxbA932EmPuw9PYcAAAAAWJPKIei4sbGxJMn09HSfR7K5NnLHYNu2hfz1X/3VXyVJfuEXfmFLx8Tm\ncUeop1QOMfTEirBxXbi+2woqh4aHOLH3NlI5pCE1dNT27duTJK9+9auTLCSH2kRRLSfU9vnedttt\nfR4JGzE5OZnf+73fS7LcYHxubi6JgA0Attowv9fWEvsOO3/HbjOtDAAAAKBippVBR7XNl//7v/87\nycLdoEHNtrfnmcnJyVx55ZVJkt/8zd9MsrHpcuPj43vs24XzFst/h/Z1+ZnPfCZnnXVWP4dUK9PK\nGHpiRVjfMMZHBxL7DuPzHyaDeh0zLDSkBgAAAGBNKoegY9qs+s/8zM8kST75yU/2czibbjPvGnTh\n/FWz+++/P0mye/fuJMkJJ5yQ++67r59DqpXKIYaeWBH2Ncxx0KHEi8N8XAaRiqFuUDkEAAAAwJqs\nVgYd0WbVd+7cmSR5wxve0M/hbJm9+9QciIc97GFJkpe//OVJkpmZmaUVzeidmZmZJMnb3va2JMlb\n3vKWJO7UAQCwQMXQ4FE5BAAAAFAxlUPQMe1qTyeddFKSQ6u06bIPfOADSZKLL744SfL9739/3Z/5\n1V/91STLFSv0R1ut9eY3vznJ8L02AYD+2rsaeSOxhgpmODQqhwAAAAAqZrUy6Ijx8fEkybe//e0k\nybHHHptk+Ksynv/85ydJPv7xjydJRkcXChpnZ2eX9rn33nuTJA996EP32If+GPbX5ACyWhlDT6wI\ne+rCNVyvbTT+qPHYdIk4sZs2slqZKyzoiGc/+9lJkkc/+tFJ6nlj++hHP5okGRkZ6fNI2J/Jyckk\nyXnnnZck2bZtoeh0fn6+b2MCAOpSS2w8qCSFBp9pZQAAAAAVUzkEfdRm2EspOf/881f93rBTMdR9\n9913X5LlqX+1vDYBAFibuHB4qBwCAAAAqJiG1NBHbab9yCOPzN13350kmZiY6OeQqFz7nrDyLpA7\nQp2nITVDT6wIC7pw7QYtMeLg2EhDapVDAAAAABXTcwj6oM2yH3744UmSK664Ymkpe+inubm5JMno\n6MLbgztCANB/KoboEvHhcFI5BAAAAFAxlUPQB9u2LeRlDzvssCTJc57znH4Oh4rt3WPo9ttvT5Kc\nddZZS9vdrQSA/vAeTJeoGBpuGlJDH3Xh/x91+8EPfpAk2blzZ5LlN/2RkZEky9PM6DQNqRl6YkVq\nJVakCySFBp+G1AAAAACsybQy6KGxsbEkyRe+8IUkyeTkZJJkx44dfRsTdXvrW9+aJHnLW96yx/b5\n+fl+DAcAgD5TKVQnlUMAAAAAFdNzCPqgC//vqMfeTadb7goNDT2HGHpiRWojVqRfxIfDSc8hAAAA\nANak5xD00D333NPvIVCR9q7j1NRUkuTXfu3XkiTve9/7+jYmAGD/VAzRayqFaKkcAgAAAKiYyiHo\ngQceeCBJMjEx0eeRUJP2TlC7Gp7XHwB0l6oheknFEHtTOQQAAABQMZVDsMnaLHzTNHnNa16TJJme\nnk6icoPNNzs7myQZHV04nTdNk4c//OFJku9973t77Nu+DgGA/lMpRK+pFmItkkOwydo3+s997nM5\n44wzkiTbtinSY3O1Taa/+MUvJkl+/dd/PUly0003ZWRkZNWfEYQCANRDMogD4YoVAAAAoGIqh6jG\n2NhYkmRmZmZTHq+dxtNO62m11RnT09P7reCAQ3XEEUckWX69rawKmpub68uYAID1qeRlq6gU4lCo\nHAIAAAComMohqvH6178+SfLmN7951e9PTEws9XHZiJ/6qZ9KkrzrXe9KkjzhCU/Y4/ttpRIcqPaO\n4t53f0ZHR5eqglY2Pl9tXwCgO1QLsVXEgGwWlUMAAAAAFStdyGKXUvo/CIbeeq/1r33tazn55JNX\n/ZnVMvLtsuDt91QKsdn2ft2VUtx5ZDU3NE1zWr8HAVtJrEivbOR99kAqNbxvs9lUCnEwmqZZ94Wj\ncggAAACgYnoOwaITTzxxn21rZebHx8eTuCPEobnqqquSJC95yUuWtm3btnre3msNAPrP+zG9pFKI\nXpEcogpjY2O58cYbkyRPetKTkux7AX6wy847YdPaexriyiXl29fXxz/+8STJ85///P0+zvz8/FYN\nEQCAjnN9QT+YVgYAAABQMQ2pGWpt1n18fDw/+ZM/mST5u7/7u34OiSHUVvrMzMwkWa4SuvPOO3Pl\nlVcmSd70pjclSSYmJpIkU1NTPR4lQ0xDaoaeWJFe68I1EvVQKcRW05AaAAAAgDWpHKIabTVH2wem\n/bi/5r8Mv717BK1menp6j33byp+VvvOd7yRJrrjiiiTJX/zFXyRJbr31VpVC9ILKIYaeWJF+6MJ1\nEsNDdRD9pHIIAAAAgDVZrYxqtH1hduzYkST5x3/8xyTJWWed1a8hsQU2Ug00OzubZLl6bHx8fJ+f\naV8v1157bZLkPe95T5Lk05/+9D6P11aljY6O7vH4iYohABhUbVyggogDoUKIQaVyCAAAAKBieg5R\nrbbX0Omnn54k+cQnPpEjjzwyiYx/V22kKuiBBx5IslzNMzY2ts8+X/3qV5Mkl156aZLkgx/8YJJk\n9+7d++zb9gzae0Wy1bjDSJ/oOcTQEyvSBd7fcY3AoNJzCAAAAIA1qRyCRS960YuWKkjYuAPp8dP2\n5EmWK3Daipy2QmdlP6C9VwabnJxMstw3KlleTaztG/SHf/iHSZL3ve99SRZWDEuSN7/5zXnjG9+4\nx757j2W186FqIAaAyiGGnliRLhETDCdVQQyzjVQOSQ7BCldeeWWS5KUvfWmfR9J9e0+z2rZt26pT\nuJLlaVxPfepTl7Z99rOfTbLc6Pmaa65JsjC9L0ne/e5352Mf+9gej/O0pz0tSfKVr3xladsZZ5yR\nJPniF7+4x77ttLK26fSOHTuWkkswZCSHGHpiRbqoC9dRNdk7ebP38Zfcgf0zrQwAAACANa1bOVRK\nOS7JlUkemWQ+yaVN0/zPUspDk1yT5DFJbk9yXtM03y8LKdv/meR5SX6Q5OVN0/zzOr9D2p1OaJtU\nH3744UmS2267bY+vh8FGpoG1U7WaptlnalfrO9/5TpLlaqv3vve9+eY3v7nqvm1F0cpmzu3jtuNp\nv9dun5ub26f5c/v3aauW9vfYqymluMPHsFI5RF+JFamZ2GL/VPJAd2xW5dBskt9umubHkjw9yUWl\nlBOTvC7Jp5umOSHJpxe/TpKzk5yw+O9VSd59EGMHAGAwiBUBYMCNrrdD0zT3JLln8fP7Sim3JDk2\nyTlJnrm42xVJ/jHJaxe3X9kspNG/XEo5opRyzOLjQKe1FSn3339/kuRXfuVXkiR/+7d/27cxbZaV\njZ6ThabM+5u73fb6ec973pNPfepTqz5e29OnbTLdPv5qVqvqmZqaWnXfdvtqd+JWVgyt9dircWcP\nYGuIFalZjQtXqAiC4XRAPYdKKY9JcmqSryQ5un0TX/z4iMXdjk1y54ofu2tx296P9apSyvWllOsP\nfNgAAHSNWBEABtO6lUOtUsqDk/x1kv/RNM1/r5ExXu0b+6TSm6a5NMmli49dT6qdgdBWo3zyk59M\nsnyH5OlPf3qS5Etf+tLSvhvp4dMr7bhXWzXsX/7lX5Ikl112WZLkqquuyu7du1d9nLbvz2qVOq22\nAqndZ7PumNV05w1gmIgVqdl6K2kNki7EtEDvbahyqJQyloU3+w80TfORxc33llKOWfz+MUm+u7j9\nriTHrfjxRye5e3OGCwBA14gVAWCwrVs5tLiixHuT3NI0zZ+t+NbHkrwsyR8vfrx2xfaLSylXJ3la\nkl3mkDOo9u6j8+UvfznJnitftZUzbQ+efjryyCOTZNWKoPHx8T2+XqtXz8rVytYzyHfGADh0YkXY\nV9d6EakGAtazkaXsn5Hk80m+loXlSZPk9VmYS/6hJD+U5I4kv9g0zfcWA4R3JnluFpYnfUXTNGvO\nFVcqzCBq/++006u6kBx68IMfnGTjyaH9/f/vWkADrMlS9vSVWBH2ryuxlOQQ1G0jS9mvmxzqBW/4\nDLI3vvGNSZIXvehFSZIf/uEfTpLs2LFjU/sR3XjjjTn11FPX3KdNULUJK6AKkkMMPbEiw2Crr7sk\ngID9kRyCPjj77LOTJNddd10mJyeTLCSKkuVpau3y763Z2dl9tu39Br9yKhvACpJDDD2xIsPsYOI7\niSDgQGwkOXRAS9kDAAAAMFxUDsEmae/gtFO7Zmdnc8EFFyRJLrnkkiTJrl27kiTHHbewSMvDHvaw\nJMltt92W448/fo/H27ZtIXe71nLyAFE5RAXEigBw8FQOAQAAALAmlUOwhfZe9WtsbCzJvsvIT0xM\nZGpqqreDA4aFyiGGnlgRAA6eyiEAAAAA1jS6/i7Awdq7Mm/viqGWqiEAAAD6ReUQAAAAQMUkhwAA\nAAAqJjkEAAAAUDHJIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BAAAABAxSSH\nAAAAAComOQQAAABQMckhAAAAgIpJDgEAAABUTHIIAAAAoGKSQwAAAAAVkxwCAAAAqJjkEAAAAEDF\nJIcAAAAAKiY5BAAAAFAxySEAAACAikkOAQAAAFRMcggAAACgYpJDAAAAABWTHAIAAAComOQQAAAA\nQMUkhwAAAAAqJjkEAAAAUDHJIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAAAKiY5BAA\nAABAxSSHAAAAAComOQQAAABQMckhAAAAgIpJDgEAAABUTHIIAAAAoGKSQwAAAAAVkxwCAAAAqJjk\nEAAAAEDFJIcAAAAAKiY5BAAAAFAxySEAAACAikkOAQAAAFRMcggAAACgYpJDAAAAABWTHAIAAACo\nmOQQAAAAQMUkhwAAAAAqJjkEAAAAUDHJIQAAAICKSQ4BAAAAVExyCAAAAKBikkMAAAAAFZMcAgAA\nAKiY5BAAAABAxSSHAAAAAComOQQAAABQMckhAAAAgIpJDgEAAABUTHIIAAAAoGKSQwAAAAAVkxwC\nAAAAqJjkEAAAAEDFJIcAAAAAKiY5BAAAAFAxySEAAACAikkOAQAAAFRMcggAAACgYpJDAAAAABWT\nHAIAAAComOQQAAAAQMUkhwAAAAAqJjkEAAAAULF1k0OllONKKZ8ppdxSSrmplPKbi9vfVEr5P6WU\nGxf/PW/Fz1xSSrm1lPKNUsrPbuUTAACgf8SKADD4StM0a+9QyjFJjmma5p9LKYcluSHJuUnOS3J/\n0zRv22v/E5N8MMnpSR6V5FNJHt80zdwav2PtQQAA+3ND0zSn9XsQ1EusCADd1jRNWW+fdSuHmqa5\np2maf178/L4ktyQ5do0fOSfJ1U3TTDVNc1uSW7Pw5g8AwJARKwLA4DugnkOllMckOTXJVxY3XVxK\n+ddSyuWllCMXtx2b5M4VP3ZXVgkQSimvKqVcX0q5/oBHDQBA54gVAWAwbTg5VEp5cJK/TvI/mqb5\n7yTvTvK4JKckuSfJ/9fuusqP71MK3DTNpU3TnKYUHgBg8IkVAWBwbSg5VEoZy8Kb/QeapvlIkjRN\nc2/TNHNN08wnuSzL5cB3JTluxY8/OsndmzdkAAC6RKwIAINtI6uVlSTvTXJL0zR/tmL7MSt2+/kk\nX1/8/GNJXlRKmSilPDbJCUn+afOGDABAV4gVAWDwjW5gnzOTvDTJ10opNy5ue32SF5dSTslCGfDt\nSS5MkqZpbiqlfCjJzUlmk1y01uoTAAAMNLEiAAy4dZey78kgLE8KAAfLUvYMPbEiABy8TVnKHgAA\nAIDhJTkEAAAAUDHJIQAAAICKSQ4BAAAAVGwjq5X1wn8m2b34ka338DjWveJY945j3RuOc+9s9Fj/\n8FYPBDpArNhbzvW941j3jmPdG45z72xqrNiJ1cqSpJRyvdVWesOx7h3Huncc695wnHvHsYY9+T/R\nO4517zjWveNY94bj3DubfaxNKwMAAAComOQQAAAAQMW6lBy6tN8DqIhj3TuOde841r3hOPeOYw17\n8n+idxzr3nGse8ex7g3HuXc29Vh3pucQAAAAAL3XpcohAAAAAHpMcggAAACgYp1IDpVSnltK+UYp\n5dZSyuv6PZ5hUkq5vZTytVLKjaWU6xe3PbSU8vellG8tfjyy3+McRKWUy0sp3y2lfH3FtlWPbVnw\n54uv8X8tpfx4/0Y+ePZzrN9USvk/i6/tG0spz1vxvUsWj/U3Sik/259RD6ZSynGllM+UUm4ppdxU\nSvnNxe1e25tojePsdQ2rECtuHbHi1hEr9o5YsXfEir3Rj1ix78mhUspIknclOTvJiUleXEo5sb+j\nGjrPaprmlKZpTlv8+nVJPt00zQlJPr34NQfu/Umeu9e2/R3bs5OcsPjvVUne3aMxDov3Z99jnSRv\nX3xtn9I0zXVJsnj+eFGSJy7+zP9aPM+wMbNJfrtpmh9L8vQkFy0eU6/tzbW/45x4XcMexIo9IVbc\nGu+PWLFX3h+xYq+IFXuj57Fi35NDSU5PcmvTNP/eNM10kquTnNPnMQ27c5Jcsfj5FUnO7eNYBlbT\nNJ9L8r29Nu/v2J6T5MpmwZeTHFFKOaY3Ix18+znW+3NOkqubpplqmua2JLdm4TzDBjRNc0/TNP+8\n+Pl9SW5Jcmy8tjfVGsd5f7yuqZlYsffEiptArNg7YsXeESv2Rj9ixS4kh45NcueKr+/K2k+aA9Mk\n+btSyg2llFctbju6aZp7koUXXZJH9G10w2d/x9brfGtcvFieevmKknfHepOUUh6T5NQkX8n/a+eO\nWaOIojAMvwejFmon2GgRxD5YCQFJZWFnIWihQSwsYmFtY2ujrYVop0JAgylE/4JpBI22IiGSdFpY\nGY/F7GKMsyJm587uzvs0m51scTgcuB+XO9fZbsyOPoNzLe3k/DfLrFiW62lZrqkNMiuWUSorjsLm\nUNQ8y+JVTK7ZzDxJdZxvISJOt11QRznnw3cPOA7MAJ+BO73n9noIIuIg8BS4kZlf//bTmmf2+x/V\n9Nm5lv7k/DfLrDganPPhc01tkFmxjJJZcRQ2h9aAY9u+HwXWW6pl4mTmeu9zE1iiOlq20T/K1/vc\nbK/CiTOot875kGXmRmZuZeYP4D6/jk3a612KiL1Ui9CjzHzWe+xsD1ldn51rqZbz3yCzYnGup4W4\npjbHrFhG6aw4CptDK8CJiJiOiH1Ulygtt1zTRIiIAxFxqP83cAZ4R9Xf+d7P5oHn7VQ4kQb1dhm4\n3Lut/xTwpX/sUv9nx7vK56hmG6peX4iI/RExTXX53evS9Y2riAjgAfAhM+9u+5ezPUSD+uxcS7XM\nig0xK7bC9bQQ19RmmBXLaCMrTu2u5N3LzO8RcR14BewBHmbmastlTYojwFI1V0wBjzPzZUSsAIsR\ncRX4BJxvscaxFRFPgDngcESsAbeA29T39gVwlupisG/AleIFj7EBvZ6LiBmq45IfgWsAmbkaEYvA\ne6pb/hcyc6uNusfULHAJeBsRb3rPbuJsD9ugPl90rqXfmRUbZVZskFmxHLNiUWbFMopnxcj0dT9J\nkiRJkqSuGoXXyiRJkiRJktQSN4ckSZIkSZI6zM0hSZIkSZKkDnNzSJIkSZIkqcPcHJIkSZIkSeow\nN4ckSZIkSZI6zM0hSZIkSZKkDvsJLxljpME94hIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec450438>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X2Q5VdZL/rv6p7uniQTDSkJAsmF\nSIXieFCHMHIR8BqEiwHUQFFCKPXwYlUEAbVKCwGr0LJKkUKJWgcjsaQSDJALGsooykvQKFWKmISo\nQAxEwLwQCUfJ+8z027p/dP96enp6enpmeu/f3nt9PlWp7v3r3d3PrN7Z+9nPetZapdYaAAAAANo0\n1XcAAAAAAPRHcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0LCBFYdK\nKReWUm4tpdxWSnnToH4PAADjR64IAKOj1Fp3/oeWMp3ki0n+3yR3JvmnJC+vtX5hx38ZAABjRa4I\nAKNl14B+7tOS3FZr/XKSlFKuTnJRkk1f8EspO1+hAoA2/J9a6yP7DgKOk1wRAIak1lqOdZ9BLSt7\nbJI71t2+c/XamlLKJaWUG0opNwwoBgBowX/0HQCcALkiAIyQQXUObVaVOmzGp9Z6eZLLE7NBAACN\nkSsCwAgZVOfQnUnOWXf77CRfG9DvAgBgvMgVAWCEDKo49E9JziulnFtKmU1ycZJrB/S7AAAYL3JF\nABghA1lWVmtdLKW8PsnHkkwneU+t9fOD+F0AAIwXuSIAjJaBHGV/3EFYRw4AJ+rGWuu+voOAQZIr\nAsCJ6/O0MgAAAADGgOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBh\nikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAA\noGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgA\nAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExx\nCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0\nTHEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAA\nADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4B\nAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYp\nDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACA\nhikOAQAAADRMcQgAAACgYYpDAAAAAA1THALYRCklpZS+wwAAABg4xSEAAACAhu3qOwCAUbG+W2jX\nrpWnx/n5+STJ9PR0kmRpaamf4AAAAAZE5xAAAABAw3QOAc3ouoLm5uaSJAcOHDjs6+edd15uvfXW\nTb/3jjvuSJJceumlh31MkgsuuCBJcv311+9kuAAAjIBa67bva89KxpXOIQAAAICGleOpgg4siFL6\nDwKYCN3eQN2eQQcPHlz72mMe85gkyV133XXY9ywuLiZZ2V/o1FNP3fTnbnyuLKXkwQcfTJJMTa3U\n2bvv/d3f/d0kyYc//OF86lOfSnKoW6nbs6jbywh2wI211n19BwGDJFcEhmUY7491FzFstdZjPugU\nh4Cx0xVjSilHbBD90Y9+NEny4he/OEly9913r913dnY2SbJ79+7Dvqd7HhzkC/V//Md/JEnOPffc\nJMkpp5yS5FCxaH0RC46T4hATT64I7KRReA+8nmIRg7ad4pBlZQAAAAANO6kNqUspX03yQJKlJIu1\n1n2llDOT/H9JHp/kq0leWmv95smFCXDI8vJykuSGG27IU5/61CRHdt48/PDDSQ6fGTrarMygZmtq\nrWs/++yzz05yKPaNv3v37t1ZWFhIkiO6oQDGlVwRGAWj1im00WbbF8Cw7UTn0LNrrXvXtbS/Kckn\na63nJfnk6m0AANokVwSAETeIZWUXJbly9fMrk7xoAL8DaEApJaWUTE9PZ3p6Om984xvzxje+MbXW\n1Frz5Cc/ee2+s7OzmZ2dzdzc3Nrmz+t/Rh8zMOt/59TU1NpeSclKd9DS0tLav+Wtb33r2rXu3wsw\noeSKwEB1+VX337jZGP84/hsYPydbHKpJPl5KubGUcsnqtUfVWu9OktWPZ53k7wAAYDzJFQFgDJzU\naWWllMfUWr9WSjkrySeSvCHJtbXWM9bd55u11kds8r2XJOmShKeecBDAROm6bUopa/vz/Pmf/3mS\n5Id/+Id7i2unbTwhrdtvKMnaqWqd7j5mjTgKp5UxsuSKwLC0lifZl4jjMfDTymqtX1v9eE+SDyd5\nWpKvl1IenSSrH+85yvdeXmvdJ6EFAJhMckUAGA8nfFpZKeW0JFO11gdWP39ekl9Lcm2SVyT5zdWP\nf7YTgQJt6GZ9aq1HnEC28T7jPGOyMfZdu3atXfvIRz6SJHnhC1849LgAdopcERiG1jqGOts5kReO\nx8kcZf+oJB9efSDuSvL+WutHSyn/lOSDpZSfSnJ7kh87+TCBSbd79+4kyczMTJLkT/7kT9Ze9NZv\nMJ1M5gvg+n/Tc5/73CTJAw88kCQ5/fTTe4kJ4CTJFYGBabUoBINywsWhWuuXk3zPJtf/K8lzTiYo\nAADGm1wRAMbHyXQOAZy0rivowIEDSZL9+/f3Gc5I6Dak7jbkfu1rX5skufzyy7O0tNRbXAAAfdMx\ndKRJ2HKB/p3sUfYAAAAAjDGdQ0CvpqZWatTdjEfXGTM9Pd1bTKOi24fp93//95OsjM3ll1/eZ0gA\nAL3QMXRsOog4GTqHAAAAABpWRqECW0rpPwhgqLp9debn55OYDdrMZrM/119/fZLkOc9Z2cu125eI\npt1Ya93XdxAwSHJFQK54/HQQ0am1HvPBoHMIAAAAoGE6h4ChKaWs7THU7S20ca+h7utmOrZmfFhH\n5xATT64IbRuF96zjSL5IR+cQAAAAAFtyWhkwNLXWIzqGDh48mCSZm5vrLa5xsrCwkCR57WtfmyR5\n97vfncTeQwDA5NExdHKcXsbxsKwMGJrp6ekjikOcmG4cd+1aqfF3xbWu2EZTLCtj4skVoU3yxZ2l\nSNQuy8oAAAAA2JJlZcDQzM7O5gMf+ECSQ0fYd0fac3wWFxeTHJpR6zqIAABgM7VW3UMclc4hAAAA\ngIbZcwgYqu45xwZ5O+ttb3tbkuSXf/mXrc9vjz2HmHhyRWiLXGbw5OBtsecQAAAAAFvSOQQMzdTU\n1NopWwxGKWVtJmgUnt8ZCp1DTDy5IrRFDjN4OofaonMIAAAAgC0pDgEDNzU1lampqbzwhS9MrdVs\n0ADMz89nfn4+H/nIR9a6h9Z3EQEAQEdOzkaWlQEDs3F503XXXZfnPOc5fYbUhG7cp6enk8RSvsln\nWRkTT64IbRmF96itMJHYBsvKAAAAANiSziFgaEbh+WZSdWM7Pz+fubm5JIdmgmxQPfF0DjHx5IrQ\nBrlKf3QQTTadQwAAAABsaVffAQCTS8fK8HRjPTc3l/n5+STJTTfdlCQ5//zze4sLAIDR1+XrOoja\npXMIAAAAoGE6h4CB6WYgfuRHfiRJ8uCDD2bPnj19htSE2dnZJMlTnvKUJMkb3vCGJMlll12WJFlc\nXOwnMAAAYCTpHAIAAABomNPKgIF78pOfnCS5+eabMz093XM07bKGfGI5rYyJJ1eENozCe1PkjJPI\naWUAAAAAbMmeQ8DAdXvd6Brqx4EDB5Ik+/atNJfccMMNfYYDAMAIc3JZmxSHgIHZtWvlKearX/1q\nkuRZz3pWj9G0a/fu3UmSv/iLv0iSfPu3f3uf4QAAMAYUidpiWRkAAABAw3QOAQPTHZn+vve9L0ny\nspe9LDMzM32G1LTTTz/9sNuzs7NZWFhIYgNIAAA2p4OoDTqHAAAAABqmcwgYuDvuuCPJoT2I6Mcp\np5yS5PDZHzNAAABshw6iyaZzCAAAAKBhZRT2mSil9B8EMHAPPPBA9uzZ03cYzeqe77u9oKamptb+\nHt1x94ylG2ut+/oOAgZJrghtGIX3phybzqHxU2s95h9N5xAAAABAw2wAAgxNt+cN/ehmedafGHfa\naacl0TkEAMD22HtoMukcAgAAAGiYziFgYLrZhG52YXp6us9w2MQjH/nIJMl9992X5NB+RAAAQDsU\nh4CB2bip4Fe+8pWce+65PUXDZm655ZYkyezsbM+RAACt2zixCAyPZWUAAAAADVMcAgaulJJSSj7x\niU/kwIEDNj8eQaeeempOPfXUtb8VAADQDsUhAAAAgIaVUVjPWUrpPwhgKJaXl5M4+nLUHDx4MEmy\nZ8+eJDamHjM31lr39R0EDJJcEdoyCu9R2R45/XiotR7zD6VzCAAAAKBhTisDBm79yRNmF0bTwsJC\nEh1DAADQIp1DAAAAAA3TOQT0ott7aGpKjXoU7Nrl5QAAAFrl3QAwcJttKqgoNFq65X5PfOITkyRf\n/OIX+wwHAGjY+i0JgOHw7gwAAACgYY6yB4Zm165d+f7v//4kyV//9V/3HA2bWVpaSpKceeaZSZL7\n77+/z3DYHkfZM/HkitCmUXivyvY4dGa0OcoeAAAAgC3ZcwgYmsXFxXzlK19Jkhw8eDBJMjc312dI\nbDA9PZ3EkfYAANASnUMAAAAADbPnENCLUXju4Ujd3+WKK65IkrzmNa/J/Px8jxGxDfYcYuLJFaFN\n8sXxYc+h0WbPIQAAAAC2pHMI6MUoPPdwbFNTh+YQ/M1Gls4hJp5cEdomBxkfOohGk84hAAAAALbk\ntDJgqLrZhDPPPDNJcvvttydJ9uzZ01tMHJ2ZOgAAmHyKQ8BQdcWGb37zm0kUhUaVo+wBADheXa5v\nedn4sawMAAAAoGGKQ8BQlVIOm0m4+OKLc/HFF+fAgQM5cOBAj5GxmX/7t3874m8GADBM8hAYPMUh\nAAAAgIY5yh4YCd0eN9PT0z1HwkaPeMQjkiT33ntvz5FwFI6yZ+LJFYFReN/K9un2Gi2OsgcAAABg\nS4pDwEi46qqrctVVV/UdBpuYnp7W0QUAwLbVWnV7jRnFIQAAAICG7eo7AIAk+fKXv9x3CBzFdddd\nlyR5xjOekSTZv39/n+EAAA3q9rDRjQKDoTgE9GpqaqWB8aabbkqSzM/PJ0lmZ2d7i4nD7d27N8mh\nTcMlZwAAMFksKwMAAABomKPsgZEyCs9JbM6RpCPLUfZMPLki0JErjid5ZL8cZQ8AAADAluw5BIyU\nj370o0mSCy+8sOdI6HR7DX3hC19Ikpx//vlJkoMHDyYxgwcADI+9D2EwdA4BAAAANMyeQ8BIee5z\nn5skueaaa3L66af3HA2bsWZ85NhziIknVwQ2GoX3sWyf/LFf9hwCAAAAYEs6h4CRNArPTazo/hbL\ny8tJkl27bFc3YnQOMfHkisBGcsXxonOoXzqHAAAAANiS4hAwEkoph80ovP3tb+8xGtbr/jZLS0tZ\nWlrK1VdfnauvvvqIvxkAwLDIQ2BnWRsAjISNrcHf/OY3s7S0lCSZnp7uIyQ2mJ2dTZK86EUvSpKc\neuqpSZKHHnqot5gAAICTp3MIAAAAoGHHLA6VUt5TSrmnlPK5ddfOLKV8opTypdWPj1i9Xkopv1dK\nua2U8i+llPMHGTwwud7+9rdnenpa19AImpuby9zcXPbv35/9+/f3HQ7QM7kiAIy/7XQOXZHkwg3X\n3pTkk7XW85J8cvV2kjw/yXmr/12S5LKdCRMAgBF1ReSKADDWjlkcqrX+XZL/3nD5oiRXrn5+ZZIX\nrbv+3rri00nOKKU8eqeCBSafzQXHx/Ly8trx9kC75IpAn+SOsDNOdM+hR9Va706S1Y9nrV5/bJI7\n1t3vztVrRyilXFJKuaGUcsMJxgAAwGiSKwLAGNnp08o2K9nWTa6l1np5ksuTpJSy6X2A9qw/taw7\nzv4XfuEXkiS7djlgsU/d3+aqq65Kkpx22mlJnFYGHBe5IgCMoBPtHPp61wK8+vGe1et3Jjln3f3O\nTvK1Ew8PAIAxJFcEgDFS1s/SH/VOpTw+yV/UWp+8evsdSf6r1vqbpZQ3JTmz1vrGUsoLk7w+yQuS\n/N9Jfq/W+rRt/HyzQcBRLS4uJomTy3q2tLSUJGv7DO3ZsydJMj8/31tMJElurLXu6zsI2iZXBPq2\nnfe19Me+UP2qtR7zD3DMNRqllA8kuSDJt5VS7kzyK0l+M8kHSyk/leT2JD+2eve/zMqL/W1JHk7y\nqhOKHGCdz372s0mSffu8/+1TV6R7xStekeRQsQhom1wRAMbfMYtDtdaXH+VLz9nkvjXJ6042KAAA\nxoNcEQDG37aWlQ08CK3CwBae+MQnJkk+97nPJUlmZmb6DKdZCwsLSZLZ2dmeI2EDy8qYeHJF4FhG\n4X0tR7KcbDRsZ1nZiW5IDQAAAMAEcC40MPK++MUvJjm05013pL2ZiOH68Ic/fNjtbvzN1AEAfZOX\nwMnROQQAAADQMJ1DwMibmlqpY+/duzdJcuutt/YZTlNqrWszce9///uP+BoAADD+dA4BAAAANMxp\nZcDYmJ6eTnJo76H1XS0M3hlnnJEkue+++3qOhA2cVsbEkysC2zUK7285RK4+GpxWBgAAAMCW7DkE\njI1u76Ff+7VfS5K89a1v7TOcidbNutVa18ZdxxAAANuhY2j8WFYGjLy5ubkkybOe9awkyXXXXddn\nOM3pxr97kT948GCf4XAky8qYeHJFYLtG4f0tikOjxrIyAAAAALZkWRkw8rpOFR1Dw3fBBRfoGAIA\nRp6OodGgY2h86RwCAAAAaJjOIWBkdXvdvOAFLzjsejczZGZi5y0vLydJ3vGOdyRJ/vZv/7bPcAAA\ngCHQOQQAAADQMKeVASNvFJ6nJl23n9AXvvCFJMn555/fZzgcH6eVMfHkisCxyBf7paN/tDmtDAAA\nAIAt2XMIGEkzMzN52cte1ncYE29+fj7Jof2ddAwBALBdOoYmh84hAAAAgIbZcwgYKbt3706SnHHG\nGbn77rt7jmayLS0tZXp6OsmhWZ/udndq2Si8RnBM9hxi4skVgWORswyeLqHxtZ09hywrA0ZK98J+\nxx13HPEi7wVpZx08eDCnnXZakmR2djbJoWVmAADjQFFo8OTgbbCsDAAAAKBhOoeAkdIdqb5rl6en\nQes2oU50DAEAcDgdQ23ROQQAAADQMFPzwEh54hOfmOTwzZLZWd1m0/fdd1/PkQAAnBh7DQ2OjqE2\n6RwCAAAAaJjOIWCkfPGLX0ySPPTQQzn99NOTmL3YaUtLS0mSK664IlNTK3ME3eybWTgAAGiPziEA\nAACAhpVRmCUupfQfBDBSRuG5adx1Y9h1XnUnwR04cCBJcsYZZ/QTGDvtxlrrvr6DgEGSKwIbyRUH\nR9f+5Km1HvOPalkZsGN+/Md/PEnymMc8JknyoQ99KEly1113JUkWFhaO+TO++7u/O4kNqXfCxhf2\na6+9Nkny0pe+9IivS7AAAFAYapdlZQAAAAANs6wMOClzc3NJkqc//em5/vrrN73PT/7kTyZJrrrq\nqrXZiI3PPd31M888M0nyjW98w8zFDnnlK1+ZJHn/+9+fZHsdXIwVy8qYeHJFoDMK718nkbx7sm1n\nWZnOIQAAAICG6RwCTkq3L9Di4uLatY0bIXe2mpHoOpD+6q/+KknyzGc+M7OzszsaawsWFhYyMzOT\nJLnmmmuSJC95yUv6DInB0znExJMrwuTY7P3ndrpWRuF96yTRKdQWnUMAAAAAbMlpZcBJed7znrf2\n+dE6hroj1C+77LK84Q1vSLJyGtn6+3b3efazn33Yz2J7uvGamZkxEwQAjJWj5ZDsPGPM0egcAgAA\nAGiY4hBwQkopKaVkYWEhCwsLWV5eXru20dzcXObm5vKa17wmi4uLWVxcTK01tdYsLy9neXk59957\nb+69994cPHgwBw8eNKtxnLqxP/vss7N79+7s3r2775AAANZ0ud/x3Ke7raN8Z8iv2YriEAAAAEDD\n7DkEnJCpqZXa8nXXXZdk5ZSs7sSxjbrZnvn5+bW9hj7+8Y8nSR73uMclSU455ZQkcULZNnV7ND38\n8MNJkvPPPz9Jcs8992RhYaG3uAAATpZOoZ2lY4jtUBwCTkh3XPp73vOeJFu/6HRfW188uvDCCwcY\n3eTqCj/dWHbLx7oxlkwBAJAoCnF8LCsDAAAAaFgZhVnmUkr/QQAnZBSeQ1ry4IMPJknOOeecJMlD\nDz2UJJaSte3GWuu+voOAQZIrwviSKw6fjiE2qrUe80GhcwgAAACgYfYcAk7Ik570pL5DaFK3x9C9\n997bcyQAAMCk0DkEAAAA0DCdQ8AJOeOMM5IcWkdubfNw3H///YfddkoZAABwsnQOAQAAADRM5xBw\nXKanp5Mkn/70p5McOiVrdna2t5gmXdcVVGvNFVdc0W8wAACMJJ38nAzFIeC4dIWK9773vUmS5eXl\nPsNpQvdCX0rJpZdeetjXLCcDAABOlmVlAAAAAA3TOQQcl65T6OMf/3iS5CUveUmf4TShG/N3vOMd\nueuuu3qOBgBg+xyeMXiWk7ETdA4BAAAANKyMQgW3lNJ/EMAJGYXnkFaYFeIobqy17us7CBgkuSKM\nvy5n1Em0s+SHbEet9ZgPFJ1DAAAAAA2z5xBwXDbOTnzf931fkuQf/uEfsrS0lOTQcfcbZ4g4MQ88\n8ECSZGpqyulwAMBY0zG0M+TX7DSdQwAAAAAN0zkEHJeNsz2f/exnkyQzMzN59atfnSR597vfncSM\nxsnquoR+9md/NsnKGB88eLDPkAAATsjR8kKdRDAadA4BAAAANMxpZcCOmJmZyeLiYpLkfe97X5Lk\n5S9/eZ8hTYxPfepTSZLnPe95OXDgQM/RMIKcVsbEkyvC5BqF96PjSIc+x2M7p5VZVgackO4Fqdt8\nemFhIffff3+S5PTTT+8trkn0X//1X0liSRkAMDEUhU6Og1/YaZaVAQAAADRM5xBwQrrZim4pWa11\n7XN2xtLSUpLkbW97WxIzbADA+JPPwGjSOQQAAADQMJ1DwHGZnZ1NkrzwhS9MklxzzTVJVvbDmZub\n6y2uSdTtMfS93/u9SZLPfOYzfYYDAHDcdAoNVq3VvkPsCJ1DAAAAAA1zlD2wLV1XUHcS2Te+8Y0+\nw2nC/v37kySnnnpqkpXTKEbhOZuR4yh7Jp5cEcaPnGV4dA5xLNs5yl7nEAAAAEDD7DkEbGlmZibJ\nof1vDhw4kOTI2SAzFjtnfn4+yaH9nTpm4AAAgEFQHAK2tLCwkORQYaK73RWN2HmLi4tJkvPOOy9J\nMj09nSRZXl5WIAIARp58BcaPZWUAAAAADdM5BBzVzMzMWqfQ+msMRjfL1m1Affvtt/cZDgAA0Aid\nQwAAAAAN0zkEHGFqaqVuvLCwsNbN0u2Ds2uXp41BOdqm3t116/cBgFEmV4HxpXMIAAAAoGFaAIAj\nzM3NJUn+8z//86jHqjN4N910U5Jk3759SczGAQAAg6FzCAAAAKBhOoeAI+zfvz9J8i3f8i09R9K2\nM888s+8QAAAYYUfbsxKOl84hAAAAgIbpHAKOan5+3l5DPXrc4x6XJDnttNOSJA888ECf4QAAbMq+\niDD+FIeANTMzM0mS5z73uUkOHWlPvxSFAACAQfLODwAAAKBhxywOlVLeU0q5p5TyuXXXfrWUclcp\n5ebV/16w7mtvLqXcVkq5tZTyQ4MKHNh5CwsLWVhYyLve9a68613vyq5dmgsB2JpcEQDG33Y6h65I\ncuEm1y+tte5d/e8vk6SU8p1JLk7yP1e/5/dLKdM7FSwAACPnisgVAWCsHbMtoNb6d6WUx2/z512U\n5Opa68EkXyml3JbkaUn+4YQjBIZm7969SZJzzz2350hIkhtuuCFJcsoppyRJ9u/f32c4AJuSKwLA\n+DuZPYdeX0r5l9VW4kesXntskjvW3efO1WtHKKVcUkq5oZRyw0nEAADAaJIrAsCYONHi0GVJnpBk\nb5K7k/z26vWyyX03Pdew1np5rXVfrXXfCcYA7LBXvvKVeeUrX9l3GM2rtabWmn379mXfvn1rtwHG\niFwRGiBH6U8pJaVs9pQKJ+aEikO11q/XWpdqrctJ/jAr7cDJyuzPOevuenaSr51ciAAAjBO5IgCM\nlxM6iqiU8uha692rN1+cpDud4tok7y+lvDPJY5Kcl+QzJx0lMBRPetKT+g6BZG0W6Dd+4zcOuw0w\nLuSKADBejlkcKqV8IMkFSb6tlHJnkl9JckEpZW9W2oC/muSnk6TW+vlSygeTfCHJYpLX1VqXBhM6\nAAB9kysCwPgro7BGtJTSfxDQsN27dyc5dBrW8vJykmRq6mT2rOdkXXnllUmSV73qVUliTT9Hc6M9\nWZh0ckUYLXKS/uks53jUWo/5gDmhZWXAZDlw4MBhtxWF+tElWt2L/e/8zu8cdh0AAGAQvAMEAAAA\naJjOIWhY1yH0yEc+MkmysLCQJJmZmektppZtbA+++eabe4oEAGBzOpphMukcAgAAAGiYziFo1Pou\nlV//9V9PomOob13n1rOf/ewkydzcXJLk4MGDvcUEAMDosBE1g6JzCAAAAKBhjrIHMj8/n0Tn0Kgw\nI8RxcpQ9E0+uCKNjFN4/tkyeyInYzlH2OocAAAAAGmbPIWhYN/OgY2g0fNd3fVcSew0BAKNHx1C/\ndAwxaIpD0LBTTjklSXLPPfckSc4666w+w2naO9/5ztxyyy1JkqWlpZ6jAQAAWmJZGQAAAEDDdA5B\nw/bv358kax0rOof6c/nll2vXBgDgMJaTMSw6hwAAAAAapnMIGjY9PZ0k+exnP5sk+YEf+IE+w2nS\na1/72iTJv//7v2d5ebnnaAAAgBbpHAIAAABoWBmFPS5KKf0HAQ3atWulefCpT31qkuTv//7vkyRT\nU+rGgzI/P58k+djHPpYk+dG3daRgAAAQlElEQVQf/dE+w2Ey3Fhr3dd3EDBIckXo3yi8b2yN/YbY\nKbXWYz6YvAMEAAAAaJg9h6Bhi4uLSZKLL76450gm39LSUpLk4YcfTqJjCAAAGB06hwAAAAAaZs8h\nYM0oPB9MqoWFhSTJm9/85iTJpZdemuTQmBt7ToI9h5h4ckUYHXKWwbPXEDttO3sOKQ4BmZubS5L8\nzM/8TJLkt37rt5LYmHonHDx4MEly3333JUke9ahH9RkOk0lxiIknV4TRMQrvHyeVohCDYkNqAAAA\nALakcwg4wvXXX58kedaznpXp6el+gxljCwsLmZmZSXJoJqj7OArPvUwMnUNMPLkijA45zODoHGJQ\ndA4BAAAAsCWdQ8BR1VozPz+fJJmdne05mtG38fm0lLI2A9R1EHUbU8MO0jnExJMrwugYhfePk0bH\nEIOmcwgAAACALe3qOwBg9HRdQqWUtdkhHUTHtnHW54wzzlg7Ca47tQwAABIdQ4wWnUMAAAAADdM5\nBByh6xKanp5em9G4/fbbkyTnnHNOkkOdMF1nDIdcdNFFSZL9+/evjSUAwCRY31m+nc4XexQdSccQ\no0hxCDiq5eXltc+f8IQnJDm0ofKXvvSlJMnjH//4JMmuXe09nXRj0W02/epXvzpJcu211/YWEwDA\noB1PceNY922teKQwxKiyrAwAAACgYY6yB07KZZddliR5zWtec0QnzSRbXl7O1NRKfd1x9fTMUfZM\nPLkiTLZReE86aDqG6JOj7AEAAADYks4hYMd85CMfSZI84xnPSJLs3r07yaGZkknYvHpxcTFJ8gd/\n8Ad5y1vekuTQBt6Oq6cnOoeYeHJFaMMovDfdaTqGGAU6hwAAAADYks4hYGDOOuusJMnXv/71I762\ntLSUJJmenk5y5EzRyc6yHM8Rq9vRdQV1/5bHPe5xO/JzYQfoHGLiyRWBQRjke2EdQ4wSnUMAAAAA\nbEnnELBjuhmS7nmlO81reXn5iPse7blnY0fRZt+zfiam6+jpvtbtc9Tp9gjatWvXNv8VWzMLxAjS\nOcTEkysCg7YT74vliYwqnUMAAAAAbGlnptIBcuSMy2YdQ92JZXv27EmSPPTQQ0mS7/iO70iS/NIv\n/VKS5JJLLjniezfOxiwuLuZ7vud7kiS33nrrYV97/vOfnyT5xV/8xSTJD/7gD651GW08Ne3BBx9c\nuz4zM5Mkufvuu5Mkb3rTm5IkH/rQh5Ic6kDqOpIAABh/R+v62aqjSKcQk8SyMmCkdC+yU1NT+dZv\n/dYkyf3335/kUEGmK+DMzc2tFXa244//+I+TJD/xEz+RJPnnf/7nJMnevXuPGc8oPFfCUVhWxsST\nKwLAibOsDAAAAIAt6RwCRt7JdO+s/97Z2dnDrnW65WYn+7ugJzqHmHhyRQA4cTqHAAAAANiSDamB\nkXcyXTzrv3d+fn6gvwsAAGAc6RwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikO\nAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICG\nKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAA\ngIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEA\nAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDF\nIQAAAICGHbM4VEo5p5TyN6WUW0opny+l/Nzq9TNLKZ8opXxp9eMjVq+XUsrvlVJuK6X8Synl/EH/\nIwAA6IdcEQDG33Y6hxaT/EKt9X8keXqS15VSvjPJm5J8stZ6XpJPrt5OkucnOW/1v0uSXLbjUQMA\nMCrkigAw5o5ZHKq13l1rvWn18weS3JLksUkuSnLl6t2uTPKi1c8vSvLeuuLTSc4opTx6xyMHAKB3\nckUAGH/HtedQKeXxSZ6S5B+TPKrWeneykhQkOWv1bo9Ncse6b7tz9drGn3VJKeWGUsoNxx82AACj\nRq4IAONp13bvWErZk+RPk/x8rfX+UspR77rJtXrEhVovT3L56s8+4usAAIwPuSIAjK9tdQ6VUmay\n8mL/vlrrNauXv961AK9+vGf1+p1Jzln37Wcn+drOhAsAwKiRKwLAeNvOaWUlyR8luaXW+s51X7o2\nyStWP39Fkj9bd/1/rZ5E8fQk93UtxQAATBa5IgCMv1Lr1l26pZRnJflUkn9Nsrx6+S1ZWUv+wST/\nV5Lbk/xYrfW/VxOE/53kwiQPJ3lVrXXLteJahQHghN1Ya93XdxC0S64IAKOt1nrUtd6dYxaHhsEL\nPgCcMMUhJp5cEQBO3HaKQ8d1WhkAAAAAk0VxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSH\nAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDD\nFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAA\nQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAA\nAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJji\nEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABo\nmOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAA\nAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwC\nAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1T\nHAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAA\nDVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGHHLA6V\nUs4ppfxNKeWWUsrnSyk/t3r9V0spd5VSbl797wXrvufNpZTbSim3llJ+aJD/AAAA+iNXBIDxV2qt\nW9+hlEcneXSt9aZSyulJbkzyoiQvTfJgrfW3Ntz/O5N8IMnTkjwmyXVJnlhrXdrid2wdBABwNDfW\nWvf1HQTtkisCwGirtZZj3eeYnUO11rtrrTetfv5AkluSPHaLb7koydW11oO11q8kuS0rL/4AAEwY\nuSIAjL/j2nOolPL4JE9J8o+rl15fSvmXUsp7SimPWL322CR3rPu2O7NJglBKuaSUckMp5YbjjhoA\ngJEjVwSA8bTt4lApZU+SP03y87XW+5NcluQJSfYmuTvJb3d33eTbj2gFrrVeXmvdpxUeAGD8yRUB\nYHxtqzhUSpnJyov9+2qt1yRJrfXrtdalWutykj/MoXbgO5Ocs+7bz07ytZ0LGQCAUSJXBIDxtp3T\nykqSP0pyS631neuuP3rd3V6c5HOrn1+b5OJSylwp5dwk5yX5zM6FDADAqJArAsD427WN+zwzyU8m\n+ddSys2r196S5OWllL1ZaQP+apKfTpJa6+dLKR9M8oUki0let9XpEwAAjDW5IgCMuWMeZT+UIBxP\nCgAnylH2TDy5IgCcuB05yh4AAACAyaU4BAAAANAwxSEAAACAhikOAQAAADRsO6eVDcP/SfLQ6kcG\n79tirIfFWA+PsR4O4zw82x3rxw06EBgBcsXh8lw/PMZ6eIz1cBjn4dnRXHEkTitLklLKDU5bGQ5j\nPTzGeniM9XAY5+Ex1nA4/08Mj7EeHmM9PMZ6OIzz8Oz0WFtWBgAAANAwxSEAAACAho1ScejyvgNo\niLEeHmM9PMZ6OIzz8BhrOJz/J4bHWA+PsR4eYz0cxnl4dnSsR2bPIQAAAACGb5Q6hwAAAAAYMsUh\nAAAAgIaNRHGolHJhKeXWUsptpZQ39R3PJCmlfLWU8q+llJtLKTesXjuzlPKJUsqXVj8+ou84x1Ep\n5T2llHtKKZ9bd23TsS0rfm/1Mf4vpZTz+4t8/BxlrH+1lHLX6mP75lLKC9Z97c2rY31rKeWH+ol6\nPJVSziml/E0p5ZZSyudLKT+3et1jewdtMc4e17AJueLgyBUHR644PHLF4ZErDkcfuWLvxaFSynSS\ndyV5fpLvTPLyUsp39hvVxHl2rXVvrXXf6u03JflkrfW8JJ9cvc3xuyLJhRuuHW1sn5/kvNX/Lkly\n2ZBinBRX5MixTpJLVx/be2utf5kkq88fFyf5n6vf8/urzzNsz2KSX6i1/o8kT0/yutUx9djeWUcb\n58TjGg4jVxwKueJgXBG54rBcEbnisMgVh2PouWLvxaEkT0tyW631y7XW+SRXJ7mo55gm3UVJrlz9\n/MokL+oxlrFVa/27JP+94fLRxvaiJO+tKz6d5IxSyqOHE+n4O8pYH81FSa6utR6stX4lyW1ZeZ5h\nG2qtd9dab1r9/IEktyR5bDy2d9QW43w0Hte0TK44fHLFHSBXHB654vDIFYejj1xxFIpDj01yx7rb\nd2brfzTHpyb5eCnlxlLKJavXHlVrvTtZedAlOau36CbP0cbW43wwXr/anvqedS3vxnqHlFIen+Qp\nSf4xHtsDs2GcE49r2Mjjf7DkisPl9XS4vKYOkFxxOIaVK45Ccahscq0OPYrJ9cxa6/lZaed7XSnl\n/+k7oEZ5nO+8y5I8IcneJHcn+e3V68Z6B5RS9iT50yQ/X2u9f6u7bnLNeG/TJuPscQ1H8vgfLLni\naPA433leUwdIrjgcw8wVR6E4dGeSc9bdPjvJ13qKZeLUWr+2+vGeJB/OSmvZ17tWvtWP9/QX4cQ5\n2th6nO+wWuvXa61LtdblJH+YQ22TxvoklVJmsvIi9L5a6zWrlz22d9hm4+xxDZvy+B8gueLQeT0d\nEq+pgyNXHI5h54qjUBz6pyTnlVLOLaXMZmUTpWt7jmkilFJOK6Wc3n2e5HlJPpeV8X3F6t1ekeTP\n+olwIh1tbK9N8r9Wd+t/epL7urZLTsyGtcovzspjO1kZ64tLKXOllHOzsvndZ4Yd37gqpZQkf5Tk\nllrrO9d9yWN7Bx1tnD2uYVNyxQGRK/bC6+mQeE0dDLnicPSRK+46uZBPXq11sZTy+iQfSzKd5D21\n1s/3HNakeFSSD688rrIryftrrR8tpfxTkg+WUn4qye1JfqzHGMdWKeUDSS5I8m2llDuT/EqS38zm\nY/uXSV6QlY3BHk7yqqEHPMaOMtYXlFL2ZqVd8qtJfjpJaq2fL6V8MMkXsrLL/+tqrUt9xD2mnpnk\nJ5P8aynl5tVrb4nH9k472ji/3OMaDidXHCi54gDJFYdHrjhUcsXhGHquWGq13A8AAACgVaOwrAwA\nAACAnigOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAa9v8DLOq46A1p\n4QkAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec57d2e8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuQZlV9L/zvoqdnhhnGOl6RIEZN\n5k1EI2hGy6roKfTwGuQfkhQIWByp5CQkVZhoYllBUgnGWHJKk1hlzit5sSJiyhvGGK3E6BHKU54U\nnCBEYkDUUGoil0AAIwjMpbvX+aOf3dPT07fp7ue6Pp+qqe7e/VzWs3pPP7/+7t9eu9RaAwAAAECb\njhv2AAAAAAAYHuEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA3rWzhU\nSjmrlPLNUspdpZTL+vU8AACMH7UiAIyOUmvd+gctZSrJt5L8v0nuTvKVJBfWWr++5U8GAMBYUSsC\nwGjZ1qfHfVmSu2qt306SUsrHk5yTZNk3/FLK1idUANCGB2utTx/2IOAYqRUBYEBqrWWt2/TrtLKT\nk3xv0dd397YtKKVcUkq5pZRyS5/GAAAt+JdhDwA2QK0IACOkX51Dy6VSRxzxqbVeneTqxNEgAIDG\nqBUBYIT0q3Po7iSnLPr6WUnu7dNzAQAwXtSKADBC+hUOfSXJ3lLKc0sp25NckOSzfXouAADGi1oR\nAEZIX04rq7XOlFLemOQLSaaSfLDWekc/ngsAgPGiVgSA0dKXS9kf8yCcRw4AG3VrrXXfsAcB/aRW\nBICNG+bVygAAAAAYA8IhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABom\nHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAa\nJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAA\nGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAA\nABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAA\nAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcA\nAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmH\nAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJ\nhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICG\nCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACA\nhgmHAAAAABomHAIAAABomHAIAAAAoGHbNnPnUsp3kzyaZDbJTK11XynlKUk+keQ5Sb6b5HW11u9v\nbpgAAIwbtSIAjIet6Bx6Va319Frrvt7XlyW5oda6N8kNva8BAGiTWhEARlw/Tis7J8m1vc+vTfJz\nfXgOAADGk1oRAEbMZsOhmuR/llJuLaVc0tt2Yq31viTpfXzGJp8DAIDxpFYEgDGwqTWHkvxMrfXe\nUsozknyxlPKN9d6xVyBcsuYNAQAYV2pFABgDm+ocqrXe2/v4QJJPJ3lZkvtLKSclSe/jAyvc9+pa\n675F558DADBB1IoAMB42HA6VUnaXUvZ0nyd5TZLbk3w2ycW9m12c5DObHSQAAONFrQgA42Mzp5Wd\nmOTTpZTucT5aa/18KeUrSa4rpfy3JP+a5LzNDxMAgDGjVgSAMVFqrcMeQ0opwx8EAIynW512w6RT\nKwLAxtVay1q36cel7KEppZT0jooCAADA2BEOAQAAADRss5eyh4m2tCPouOPm89Raa+bm5hY+T5Id\nO3YkSQ4cOJAkmZ6ezqFDh5a9f3ff5Z5rFE71BABga61U4+lAB0aBziEAAACAhgmHoKdbO6iUkp07\nd2bnzp2ptR7x7+yzz87ZZ5+dv/3bvz3qe+9+97vz7ne/e+HrF7zgBUc9x6mnnppTTz112effvn17\ntm/fbg0jAIAxsbQeXO3fZh4DoN+EQwAAAAANcyl7mrO0K2e5/wPvete7kiRve9vbjtjerSdUa830\n9HSSZGpqKkkyOzt7xOPPzc1l27Yjl/Xq1hrq1h7qHDx4MKeddlqS5Nvf/vbCtqXjXjpW6xQBcSl7\nGqBWZBSMWr2l0xxYL5eyBwAAAGBVOodoQillocNnZmYmSfLLv/zLSZIPfOADAx9P9/9ucZdR1010\n5ZVXJkkuv/zyNR9n+/btSY7uMlr82KPwfxzoK51DTDy1IoM2jvWTTiJgJevpHBIOMdF2796dJHns\nscfy+7//+0mS3/u930tyOCRaeurXsHWnru3YsWPF23SnsJ111llJkuuvv37F23avr/u/3t0XmBjC\nISaeWpF+G4W/iQZJkARtcVoZAAAAAKvSOcRE2bNnT5Lk0UcfTZJ89KMfTZJceOGFQxvTRnUdPt3/\n0cUdTt3C1l33U3d62XJuvvnmJMmZZ56Z5PDcLLfANTCWdA4x8dSK9ItaaJ5OIphsOocAAAAAWJXO\nIcbWcp0vX/3qV5MkL3rRi5Icfcn4cfLOd74zSfK7v/u7SZKrr746F110UZLk+OOPX/fjdItVL+0u\nWu0I0fT0dJL57qWuSwkYWTqHmHhqRbbKKPztM250FcH40zkEAAAAwKpG6zJNcIye+tSnJkkefPDB\nIY9k63RXK9u/f/8R2y+55JL8yq/8yjE/3krrEa125Ozv/u7vksyvU7T06mnd11130aFDh455TAAA\ng6ZraGOWmzfdRDB5dA4BAAAANMyaQ4yNrnOlW2/noosuyp/8yZ8ccZtuf56Eoxnda+g+Tk1NDaxL\nZ7l1irq5fuYzn5kkefvb354k+Zd/+ZckyWOPPbawxpN1imCgrDnExFMrshGj8HfOIHS14ii93kmo\nxWGSrGfNIeEQI29qaipJ8pGPfCRJcv755yeZP52pO7VpEnSXru9O29q9e3eSw6dv/fVf/3XOOOOM\nI7b16413uZCtO82t+3l0Y/ilX/qlJMk111xzVDi09FS0xY85Cr97YEIIh5h4akWORSs1xtI6cFxe\nt+AIBs+C1AAAAACsSucQI++ee+5JkvzIj/zIkEfSX90pY1130M0335wkmZmZSTJ6R4O68XTjXm7h\n6yuvvDJJcvnlly9sW66bCNgUnUNMPLUiaxm1OmkQxrVzaDm6iaC/dA4BAAAAsCqdQ4yUbp2dV7zi\nFfn85z+f5HBnyrZt25JM/pGF7vV16/c873nPS5J861vfGunXXms9anxdd1DXLZQkF198cZLkL/7i\nL5Ikjz/++BH3sSYRHDOdQ0w8tSIrablemKTOoaVGueaFcaRzCAAAAIBVbRv2AGCx3/zN30yS/MEf\n/MHCtkm6Itmx6I7+fO5zn0syv/bQKHdPLTempesQ1Vpz7bXXJkl++qd/Oknypje9adn7WJMIAFhq\nkrpjNmMUa8GttPTnPOmvF0aBziEAAACAhllziJFw4403JjncTbLcla9acdlllyVJ3vve9yZJZmdn\nkyQHDx5cWIdoEiy3HlGSvP71r0+SfOxjHxv4mGBMWXOIiadWZBT+Zhkly3XStDJHuojg2FlzCAAA\nAIBV6RxiYLqUv5SSubm5JO0c4diIpUdFpqamMjMzM6TRbE53xbla64pdYd2+cPDgwSTzHUX/9m//\nliQ56aSTBjBKGFs6h5h4asV2qRVXNslXK9sIHUWwsvV0DlmQmoHpfmFv27Zt4Y/+LuzoFlrmsO4N\nvpu3r3/968MczlGWjm9ubm7htLff+I3fSJJ89atfTZJ84hOfSJL8zu/8Tq655pojHmfp6WWLTzN7\n5jOfmST57d/+7STJ+973viTJE088scWvBgAYNa2HHWsxP8BWcloZAAAAQMOcVsbA3XTTTTnttNOS\nJMcff/yQRzO6ulOxpqenk8x35iw+NW/QlnYKdQtlT01NJUnOPPPM3HDDDUmSJz3pSUmSxx9/PEkW\nTiPctm3bwmljnT//8z9Pklx00UVHbD906NDCa+9oF4ZlOa2MiadWbMso/H1C/6jnYPAsSA0AAADA\nqnQOMTC//uu/niR5z3ves7AosSMHa1vasdPP5+h0z1VrXfh86dpAe/fuTZLcddddSeY7iNZaaLyU\nctTr6faF7vGf/vSnJ0muv/76vOhFL0qSPP/5z0+SfOMb39j4i4TJpXOIiadWbMMo/F3C1lHnw+jQ\nOQQAAADAqnQO0XdXX311kuQNb3hDkiOvRsXW6jp3ZmZmFq4cttKV4H74wx/mhBNOOGLbQw89lCR5\n6lOfmiT5hV/4hXz6059Okpx88slJknvuueeI+yzuMtoK3RpGyZFrFSWHr243Cr+3YIToHGLiqRUn\nm/f18adLCEabziEAAAAAVrV8SwFsAUeBtl43p10HzcMPP5wkOfHEE5McvjrYnj17smvXriRZuDpY\nd5/O4vV/VrJ9+/aFDqSuY2hpp9BW/5y7q6At1l25DQCYHGrF0aHzB9A5BAAAANAwnUNsuXe84x3D\nHsLEm56eTpKcdtppSZL777//qNt0XUSdjXT8dF1HiznKBwBshlpi8HQGAWsRDrElduzYkeuvvz5J\n8opXvGLIo5lcXVhzwQUXJEm+//3vr/u+CjEAYNjUI4MnGALWw2llAAAAAA3TOcSW+K3f+q3s2+dK\nyv22Y8eOJMlf/dVfDXkkAADrp2No8HQMAcdC5xAAAABAw3QOsSlvectbkiRXXHHFQlcL/eMIEAAw\nTnQMAYwHnUMAAAAADSujkOaXUoY/CDZkFPafVjztaU/LQw89NOxhAKPn1lqrRd+YaGrF8aNGHB6d\n5sBStdY1fzHoHAIAAABomDWH2BBHgwZP1xAAMOrUiMOjYwjYDOEQa5qamsrs7GySw2/4c3NzSQ6/\nCXkz6p/zzjsvSbJz587s379/yKMBAFieYAhgfDmtDAAAAKBhOodY0+zs7FFHgo47Tq64lRbP79Ju\nrKmpqSRZ6N4CAICODn5gK/gLHwAAAKBhOodY0zve8Y7MzMwkSbZts8v0w+IjPks7h3QMAQCjzFpD\nw6FjCNhKOocAAAAAGlZGIekvpQx/EKxoFPaRSVdrzdOf/vQkLlkPHLNba637hj0I6Ce14mhSIw6P\nriHgWNRa1/yloXMIAAAAoGEWkGFFjgb1XzfHpRQdQwDAWFAjDo+OIaBfdA4BAAAANEznEEf5whe+\nkCTZv39/kmTnzp3DHM5EW3plMgAAWEqtCPSbcIgcf/zxSZJXvvKVSZJXvepVSZLp6emhjWmQFp/a\n1e/n6CwNhUopWrQBgJGmVgGYXE4rAwAAAGiYzqGGTU1NJUlOOOGEJIdPJ5ubmxvamAZpZmYmSfLE\nE08kSfbs2ZPvfOc7SbJwWflubjarm9NuzruOoeOOO+6I7wMAjJpWO4bW6iofxLw4nQwYFJ1DAAAA\nAA3TOdSw7mjHF7/4xSSHO2m2bWtjt3jpS1+aJDl06FCS5I477ljo7Pn4xz+eJDn33HO35LkOHjyY\nJHnNa16TJNmxY0eS5MCBA1vy+AAAbJwOHaB1OocAAAAAGtZGiwgLuqMi09PTueqqq5Ike/fuTdJO\nx9D73//+JMmdd96Z5MjundnZ2STJeeedl2Tz55LfcsstSQ53Ke3cufOo5wQAGFWtrje0Hv282qxO\nJmDQdA4BAAAANKyMwtGAUsrwBzHhuqMP3Vo3z3ve83LHHXcMc0gD0a0nND09vTAHXYdUt8bScrqr\niL3whS9MkvzjP/7jEd+vta55RKeUkj179iRJHn300Q2MHmBdbq217hv2IKCf1IqDNwp/IwzSZjt1\ntmq+dAwB/VBrXfOXSxvnEbHwhrV///4k84svd9sm+U2oC3m+/OUvL2xbLRTqdJeW/9a3vpXk8Bw9\n+OCDSeYvcd8FbZ0nnngiSfKlL30pyXwgJRQCABh9m62Lu/ttJCSa5FocGB9OKwMAAABomNPKGjUK\nP/dh6Y7OrOcIz9Lb7N69O0ly00035ad+6qeOuO1tt92WJHnJS16ycN+uAwmgj5xWxsRTKw5OyzVi\nsvVdPMvNp04hYNDWc1qZziEAAACAhukcakz38z548GCmp6eTtHf0YjOvt1vMuta6cNl7gCHTOcTE\nUyv23yj8TTAKWquLgTboHAIAAABgVa5WNqG6ox7bt29Pkpx33nlJ5juGFm/n2KznSmcAAIynFq7m\nC7AcnUMAAAAADbPmUCO6n3PLR0MeeeSRJMmb3/zmJMk111wzzOEAbBVrDjHx1Ir9Nwp/E4ySFmtl\nYHJZcwgAAACAVQmHGlNKafZIyK5du7Jr1668+tWvzqtf/epMTU1lampq2MMCABiaWquuIQCcVjbp\nRuHnO6paDcmAieO0MiaeWrF/1IorUysCk8JpZQAAAACsas1wqJTywVLKA6WU2xdte0op5YullH/u\nfXxyb3sppbyvlHJXKeVrpZSX9HPwHKk7ZWzHjh0599xzc+655+bAgQM5cODAsIcGAEwoteL40jUE\nQGc9nUMfSnLWkm2XJbmh1ro3yQ29r5PktUn29v5dkuSqrRkmAAAj6kNRKwLAWFvXmkOllOck+eta\n6wt7X38zyRm11vtKKScl+V+11p8opfz/vc8/tvR2azy+wxZbzKXrV9Z1Un3mM59Jklx44YVJkrm5\nuaGNCWATrDnE0KkVx5POofVRRwPjrp9rDp3YvYn3Pj6jt/3kJN9bdLu7e9uOUkq5pJRySynllg2O\nAQCA0aRWBIAxsm2LH2+5NGrZQxK11quTXJ04GtRPjnQcbceOHUmS173udUmS888/f5jDAYCWqBVH\ngI6hY6MTH2jBRjuH7u+1CKf38YHe9ruTnLLods9Kcu/GhwcAwBhSKwLAGNloOPTZJBf3Pr84yWcW\nbX9D70oUL0/yg7XOIWfr7Nq1K7t27cof/uEfLlylrNbq6NAK9u/fn/379+etb31r3vrWt2ZqamrY\nQwKASaFWBIAxsuaC1KWUjyU5I8nTktyf5Iokf5XkuiTPTvKvSc6rtT5c5nst/0fmr1jxeJJfrLWu\neZ64VuGN6Vpbt2/fniQ555xzkiSf+MQnhjamcaZVGBhTFqRmqNSK48MBw81RKwLjaj0LUq+55lCt\n9cIVvvVflrltTXLp2kMDAGASqBUBYPyt61L2fR+Eo0FbYvHl6x3ZWL/u0vZnnnlmbrrppiTJ7Ozs\nMIcEcCx0DjHx1IpbYxTq/kmgzgbGTT8vZQ8AAADABNA5NEFG4Wc57hwJAsaQziEmnlpxc9SIW0u9\nCIwbnUMAAAAArGrNBakZXTt27EiSXH755UkOr53TbefY7dy5M8n8Ze4BAACgBTqHAAAAABpmzaEJ\nMAo/w0nhHHJgDFlziImnVtwcteLWUi8C48aaQwAAAACsyppDY+i44+Yzvbm5uSGPZLx1R9EOHjyY\nJPnTP/3ThfWauvWbAADGlY4hANbLaWVjaPv27UmST33qU0mS17zmNUmS6enpJFpdN8q8AWPKaWVM\nPLXixoxCnT+J1IzAuHFaGQAAAACr0jk0xkbhZzeOZmdnkxw+Le9Hf/RHkyT33Xff0MYEsAk6h5h4\nasWNUStuLR1DwLjSOQQAAADAqixITXO6jqEzzzwzSfL9738/yfzRIEfYAABYTMcQ0AKdQwAAAAAN\n0zlEM/7jP/4jSXLFFVckSb785S8PczgAAH2hE3pr6BgCWqJzCAAAAKBhOofG0Lve9a4kyeOPP54k\n2bVr1zCHM9L279+fJNm5c2de/OIXJ0nuvffeYQ4JAIARp2sIaI3OIQAAAICGlVE4J7mUMvxBjIFt\n2+YbvX7iJ34iSXLbbbcdsZ2jdUd9du/enccee2zIowHoi1trrfuGPQjoJ7XisRmF+n5c6RgCJlGt\ndc1fblKFMTIzM5Pk8ELK3rwOFz+zs7NJDgdlV1555RG3EwwBALASdTXQOqeVAQAAADRM59AYespT\nnjLsIYyM7ihP1zF04oknJkl+8IMfDG1MAACMNp1CAEfSOQQAAADQMJ1DY+Sss85Kkvzwhz9Mkpxw\nwgnDHM5I6NYc6o7+PPDAA8McDgAAI0zHEMDydA4BAAAANEzn0JiYmprKzTffnETHUOeRRx7Je97z\nniTJO9/5ziGPBgCAUaZrCGBlOocAAAAAGqZzaEzMzs7m4YcfPmLb0vV2xtlqr+XgwYNJ5runFvvJ\nn/zJPPjgg/0fHAAAY2cSamSAQREOjaEuSJkkTzzxRJJk165dSeYDoe7y9C94wQuSJP/+7/+eJJmZ\nmUmSPPbYY4MeJgAAI0gQBLA5TisDAAAAaJjOoTFx3HHH5ZRTTkkyukdGuo6eruNnqbm5uSTJjTfe\nmK997WtJkksvvTRJct555yVJPvnJTy7cfnp6Okly6NCh/gwYAICxMKr1L8Ck0DkEAAAA0LAyCuvX\nlFKGP4gxMgo/s86BAweSJDt27MjZZ5+dJPnKV76SJEctFt0d8dmzZ0/279+f5HC3UddVBMAxu7XW\num/Yg4B+Uisem1GqFVejGwhgMGqta/7C1TkEAAAA0DBrDo2RF77whUmSRx55JMl8B04y3KMuz372\ns5MkDz300EL3z0pHq7rt3fgBANhao9o1pEsIYLTpHAIAAABomM6hMXL77bcnSZ70pCcN9HmXOwL1\nN3/zN0mSBx54YKBjAQBg9OkUAhgvOocAAAAAGqZziDUdOnQo27dvT5KcddZZSZIbb7xxmEMCAGDE\n6BYCGF/CIY4yOzubJJmamkqSvPKVr8zNN988zCEBADCihEIA489pZQAAAAAN0znEgu5S9F3H0OKj\nQN3no3p5VAAABkOnEMDk0TkEAAAA0DCdQ2OilLIlXTszMzNJkm3bDv/ov/CFLyRJHnnkkSTJ6173\nuoXnTOa7hXQMAQC0TccQwOTSOQQAAADQMJ1DY6LWmunp6SSHu3+WWxtoLa9//euTJJ/85CcXtu3e\nvTtJ8sQTTxz1nAAAtEu3EEAbdA4BAAAANEzn0JjYtm1bXvva1yY53NGzniM51113XZLk/PPPT5Ls\n2LHjqNs8/vjjRzwuAABt0SEE0LYyCoFAKWX4gxgjK/3MupBn165d+bVf+7UkyYc//OEkR58yBsDE\nuLXWum/Yg4B+Uisem7Xqe0EQQFtqrWv+4ndaGQAAAEDDnFY2RrZv354k+fEf//EkyZ133pkkCwtV\nv/SlL02SfOMb31i4z9zc3CCHCADAkOkMAuBY6RwCAAAAaJg1hyZAt8j0wYMHk1hYGqAx1hxi4qkV\nAWDjrDkEAAAAwKqsOTQBDhw4MOwhAAAAAGNK5xAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDh\nEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw\n4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQ\nMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA1bMxwqpXywlPJAKeX2\nRdveXkq5p5RyW+/f2Yu+97ZSyl2llG+WUn62XwMHAGD41IoAMP7W0zn0oSRnLbP9vbXW03v/Ppck\npZRTk1yQ5AW9+7y/lDK1VYMFAGDkfChqRQAYa2uGQ7XWLyd5eJ2Pd06Sj9daD9Rav5PkriQv28T4\nAAAYYWpFABh/m1lz6I2llK/1Womf3Nt2cpLvLbrN3b1tRymlXFJKuaWUcssmxgAAwGhSKwLAmNho\nOHRVkh9LcnqS+5L8UW97Wea2dbkHqLVeXWvdV2vdt8ExAAAwmtSKADBGNhQO1Vrvr7XO1lrnknwg\nh9uB705yyqKbPivJvZsbIgAA40StCADjZUPhUCnlpEVf/nyS7uoUn01yQSllRynluUn2Jrl5c0ME\nAGCcqBUBYLxsW+sGpZSPJTkjydNKKXcnuSLJGaWU0zPfBvzdJL+aJLXWO0op1yX5epKZJJfWWmf7\nM3QAAIZNrQgA46/Uuuxp3oMdRCnDHwQAjKdbrcnCpFMrAsDG1VqXW/PvCJu5WhkAAAAAY044BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgE\nAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4\nBAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQsDXDoVIxz/SsAAALOElEQVTKKaWUL5VS7iyl3FFKeVNv+1NKKV8spfxz7+OT\ne9tLKeV9pZS7SilfK6W8pN8vAgCA4VArAsD4W0/n0EySt9Ran5/k5UkuLaWcmuSyJDfUWvcmuaH3\ndZK8Nsne3r9Lkly15aMGAGBUqBUBYMytGQ7VWu+rtf5D7/NHk9yZ5OQk5yS5tneza5P8XO/zc5J8\nuM77P0n+UynlpC0fOQAAQ6dWBIDxd0xrDpVSnpPkxUn+PsmJtdb7kvmiIMkzejc7Ocn3Ft3t7t62\npY91SSnlllLKLcc+bAAARo1aEQDG07b13rCUckKSTyV5c631kVLKijddZls9akOtVye5uvfYR30f\nAIDxoVYEgPG1rs6hUsp05t/sP1Jr/cve5vu7FuDexwd62+9Ocsqiuz8ryb1bM1wAAEaNWhEAxtt6\nrlZWkvxZkjtrrX+86FufTXJx7/OLk3xm0fY39K5E8fIkP+haigEAmCxqRQAYf6XW1bt0SymvSPK/\nk/xTkrne5sszfy75dUmeneRfk5xXa324VyD8jyRnJXk8yS/WWlc9V1yrMABs2K211n3DHgTtUisC\nwGirta54rndnzXBoELzhA8CGCYeYeGpFANi49YRDx3S1MgAAAAAmi3AIAAAAoGHCIQAAAICGCYcA\nAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmH\nAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJ\nhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICG\nCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACA\nhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAA\ngIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAA\nAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEA\nAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIh\nAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHC\nIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBh\na4ZDpZRTSilfKqXcWUq5o5Typt72t5dS7iml3Nb7d/ai+7ytlHJXKeWbpZSf7ecLAABgeNSKADD+\nSq119RuUclKSk2qt/1BK2ZPk1iQ/l+R1SX5Ya/3DJbc/NcnHkrwsyY8kuT7J/1NrnV3lOVYfBACw\nkltrrfuGPQjapVYEgNFWay1r3WbNzqFa63211n/off5okjuTnLzKXc5J8vFa64Fa63eS3JX5N38A\nACaMWhEAxt8xrTlUSnlOkhcn+fvepjeWUr5WSvlgKeXJvW0nJ/neorvdnWUKhFLKJaWUW0optxzz\nqAEAGDlqRQAYT+sOh0opJyT5VJI311ofSXJVkh9LcnqS+5L8UXfTZe5+VCtwrfXqWus+rfAAAONP\nrQgA42td4VApZTrzb/YfqbX+ZZLUWu+vtc7WWueSfCCH24HvTnLKors/K8m9WzdkAABGiVoRAMbb\neq5WVpL8WZI7a61/vGj7SYtu9vNJbu99/tkkF5RSdpRSnptkb5Kbt27IAACMCrUiAIy/beu4zc8k\n+a9J/qmUcltv2+VJLiylnJ75NuDvJvnVJKm13lFKuS7J15PMJLl0tatPAAAw1tSKADDm1ryU/UAG\n4fKkALBRLmXPxFMrAsDGbcml7AEAAACYXMIhAAAAgIYJhwAAAAAaJhwCAAAAaNh6rlY2CA8meaz3\nkf57Wsz1oJjrwTHXg2GeB2e9c/2j/R4IjAC14mD5XT845npwzPVgmOfB2dJacSSuVpYkpZRbXG1l\nMMz14JjrwTHXg2GeB8dcw5H8nxgccz045npwzPVgmOfB2eq5dloZAAAAQMOEQwAAAAANG6Vw6Oph\nD6Ah5npwzPXgmOvBMM+DY67hSP5PDI65HhxzPTjmejDM8+Bs6VyPzJpDAAAAAAzeKHUOAQAAADBg\nwiEAAACAho1EOFRKOauU8s1Syl2llMuGPZ5JUkr5binln0opt5VSbulte0op5YullH/ufXzysMc5\njkopHyylPFBKuX3RtmXntsx7X28f/1op5SXDG/n4WWGu315Kuae3b99WSjl70ffe1pvrb5ZSfnY4\nox5PpZRTSilfKqXcWUq5o5Typt52+/YWWmWe7dewDLVi/6gV+0etODhqxcFRKw7GMGrFoYdDpZSp\nJP9fktcmOTXJhaWUU4c7qonzqlrr6bXWfb2vL0tyQ611b5Ibel9z7D6U5Kwl21aa29cm2dv7d0mS\nqwY0xknxoRw910ny3t6+fXqt9XNJ0vv9cUGSF/Tu8/7e7xnWZybJW2qtz0/y8iSX9ubUvr21Vprn\nxH4NR1ArDoRasT8+FLXioHwoasVBUSsOxsBrxaGHQ0leluSuWuu3a60Hk3w8yTlDHtOkOyfJtb3P\nr03yc0Mcy9iqtX45ycNLNq80t+ck+XCd93+S/KdSykmDGen4W2GuV3JOko/XWg/UWr+T5K7M/55h\nHWqt99Va/6H3+aNJ7kxycuzbW2qVeV6J/ZqWqRUHT624BdSKg6NWHBy14mAMo1YchXDo5CTfW/T1\n3Vn9RXNsapL/WUq5tZRySW/bibXW+5L5nS7JM4Y2usmz0tzaz/vjjb321A8uank311uklPKcJC9O\n8vexb/fNknlO7NewlP2/v9SKg+X9dLC8p/aRWnEwBlUrjkI4VJbZVgc+isn1M7XWl2S+ne/SUsp/\nHvaAGmU/33pXJfmxJKcnuS/JH/W2m+stUEo5Icmnkry51vrIajddZpv5Xqdl5tl+DUez//eXWnE0\n2M+3nvfUPlIrDsYga8VRCIfuTnLKoq+fleTeIY1l4tRa7+19fCDJpzPfWnZ/18rX+/jA8EY4cVaa\nW/v5Fqu13l9rna21ziX5QA63TZrrTSqlTGf+Tegjtda/7G22b2+x5ebZfg3Lsv/3kVpx4LyfDoj3\n1P5RKw7GoGvFUQiHvpJkbynluaWU7ZlfROmzQx7TRCil7C6l7Ok+T/KaJLdnfn4v7t3s4iSfGc4I\nJ9JKc/vZJG/ordb/8iQ/6Nou2Zgl5yr/fOb37WR+ri8opewopTw384vf3Tzo8Y2rUkpJ8mdJ7qy1\n/vGib9m3t9BK82y/hmWpFftErTgU3k8HxHtqf6gVB2MYteK2zQ1582qtM6WUNyb5QpKpJB+std4x\n5GFNihOTfHp+v8q2JB+ttX6+lPKVJNeVUv5bkn9Nct4Qxzi2SikfS3JGkqeVUu5OckWS/57l5/Zz\nSc7O/MJgjyf5xYEPeIytMNdnlFJOz3y75HeT/GqS1FrvKKVcl+TrmV/l/9Ja6+wwxj2mfibJf03y\nT6WU23rbLo99e6utNM8X2q/hSGrFvlIr9pFacXDUigOlVhyMgdeKpVan+wEAAAC0ahROKwMAAABg\nSIRDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADTs/wJjWn7hC1SMeAAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec33c518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuQbVV9L/rv2P3aPEQUkSKgVysh\nJdEqkVCcVPmCVOJBYwQTPZpU5SgxwffjJjFRK1WoNymi8XCq1IOKkYd1o1xN8PrCRK6a4sYSIogS\nlJsrdXwhCNFcFdybfuwe94/u2d279969e3evXq/x+VRRq/fstXr9evZkrt/8zd8Yo9RaAwAAAECb\ndg06AAAAAAAGR3EIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANCwHSsO\nlVLOK6X8WynlzlLKG3bqfQAAGD1yRQAYHqXW2vsfWspEkv83ya8nuSvJl5P8Tq31Gz1/MwAARopc\nEQCGy+QO/dyzk9xZa/2fSVJKuSbJ+UkO+oFfSul9hQoA2vDDWuuJgw4CjpBcEQD6pNZaDvecnRpW\ndkqS7635913L21aUUi4qpdxcSrl5h2IAgBZ8Z9ABwBbIFQFgiOxU59DBqlL73fGptV6e5PLE3SAA\ngMbIFQFgiOxU59BdSR615t+nJrl7h94LAIDRIlcEgCGyU8WhLyc5rZTy2FLKdJIXJvnEDr0XAACj\nRa4IAENkR4aV1VoXSimvSvKPSSaSXFFr/fpOvBcAAKNFrggAw2VHlrI/4iCMIweArbql1nrWoIOA\nnSRXBICtG+RqZQAAAACMAMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAA\nAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQ\nAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY\n4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAA\naJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIA\nAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMc\nAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAAN\nUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAA\nAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMA\nAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGK\nQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANCwye28uJTy7ST3J9mXZKHWelYp5eFJ\n/o8kj0ny7ST/pdb6/20vTAAARo1cEQBGQy86h86ttZ5Raz1r+d9vSPK5WutpST63/G8AANokVwSA\nIbcTw8rOT3L18tdXJ7lgB94DAIDRJFcEgCGz3eJQTfLZUsotpZSLlredVGu9J0mWHx+5zfcAAGA0\nyRUBYARsa86hJE+utd5dSnlkkutLKf/PZl+4nCBcdNgnAgAwquSKADACttU5VGu9e/nxviQfS3J2\nkntLKScnyfLjfYd47eW11rPWjD8HAGCMyBUBYDRsuThUSjmmlPKQ7uskz0hye5JPJHnR8tNelOTj\n2w0SAIDRIlcEgNGxnWFlJyX5WCml+zkfqrX+Qynly0k+Ukp5SZLvJnn+9sMEAGDEyBUBYESUWuug\nY0gpZfBBAMBousWwG8adXBEAtq7WWg73nJ1Yyh4AAACAEaE4BAAAANAwxSEAAACAhikOAQAAADRM\ncQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAA\nNExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQw5EopKaUMOgwAAGBMTQ46\nAICWdEWeWusB35uamkqSzM/PJ0l2796dJFlcXEySzM3Nbfh6AACArdA5BAAAANAwnUMAfTQ9PZ0k\nmZ2d3W/74x73uDz0oQ9Nktx4441Jkve9731JkssvvzxJctNNN+X6669PkjzrWc9KcmC3USlFVxEA\nAHBEdA4BAAAANKwMwx3mUsrggwDokYPNC3T00UcnSV7wghckSa644or9XrN3796VLqDu9esfFxcX\nMzc3l+TADqRjjjlmU3Ewlm6ptZ416CBgJ8kVgRZtN4ezoAmdWuthDwadQwAAAAAN0zkE0GMzMzNJ\n9p9X6LLLLkuSvPzlL0+yeidobXfPkdzdOdS527L3TdI5xNiTKwIt6Me1uTyxTTqHAAAAANiQ1coA\neqSbV+jCCy9Mkrz73e9e+d761cnW37U50rs465+/9k7T+rtO3XN37Vq6H7C4uHhE7wUAQO8NYhTP\nofJE0DkEAAAA0DCdQwA98s53vjNJ8pKXvCTJ/vMIdauL7ZSD3fXpVjbr7hBdcsklSZI3velNK68Z\nhnnnAABaMWy5l04iOiakBtjA+g/ItUvIrz9/dkPHugmph82DDz6YJNm9e3eSpd/NULOxYEJqxp5c\nERhVw3C9faQUiMaPCakBAAAA2JBhZQAH0d0xmZiYSJIsLCwkSd773vcmSV784hcf8JqdHjq2XV3H\nUKfWmiuuuCJJctFFFyVJ9u3b1/e4AADGzSh2DHW62HUQtUXnEAAAAEDDzDkEsEZ3h2RqairJarfN\nbbfdliQ5+eSTkwx/l9BmdfMQ/cEf/EGS5Nprr02S7N27d2AxccTMOcTYkysCo2AYrq13kk6i0WXO\nIQAAAAA2pHMI4CDOPffcJMn111+fZHXOoa5jaFzunKz/DDjhhBOSJD/+8Y8P+n2Gks4hxp5cERhm\nreVL45IHt0TnEAAAAAAb0jkEcBDduXFxcTFJsmtXW7X0bm6lH/zgBwOOhE3QOcTYkysCw2gYrqUH\nSQfR6NA5BAAAAMCGJgcdAMCwOOqoo3Leeeftt63VOyL33HNPkqXfv9sHrd8dAwBgVa212Vx5HCkO\nAc2bnFw6Fb7nPe/JC1/4wv2+1/oHng99AID9uWG2qtsX8sXRZ1gZAAAAQMN0DgHNWT9M6g//8A+T\nJC960YsGFtOwWlxcPOCO0MTExMr3EnfPAIA2yHkOTQfR6NM5BAAAANAwS9kDzRuG8+AocUdo6FjK\nnrEnVwQGSa545OSLw8VS9gAAAABsyJxDQDPWzzXkLtDWPOEJT0iS3H777QOOBACAYWQOotGjcwgA\nAACgYeYcAprVnf+6Vbd27VIvPxLuBA0Ncw4x9uSKwKAMw/XyOJA3DtZm5hwyrAxoRrcE+759+/bb\nrih0ZGZnZ5Mk9957b5LkpJNOGmQ4AADANrkiAgAAAGiYziGgGV3HkPbg7ZmZmUmSnHDCCUmSF7/4\nxUmSq666akARAQD0lnyxt2qthpYNOZ1DAAAAAA0zITXQhJmZmdx6661JktNPPz2JJTZ7zX4cGBNS\nM/bkikC/DcN18riSM/bfZiak1jkEAAAA0DCdQ0AzhuF8N+6e8YxnJEm+8IUvJEkWFhYGGU4rdA4x\n9uSKQL/IF3eezqH+0zkEAAAAwIasVgaMtd27dydJ3vOe96ysVjYxMTHIkMbaZz/72STJ5ZdfniR5\nzWtekySZnZ0dWEwAAAwP834OJ51DAAAAAA0z5xDQhGE417WouyPUPfo77AhzDjH25IpAv8hV+kfn\nUP9sZs4hw8qAsTQ5uXR6+/3f//0kyeLiYnbt0iy50xYXF5McOBG1RAsAGGZylf4zvGy4uFICAAAA\naJjOIWAsHX300UmSc845J0l0DfVJt5+np6cHHAkAALBZrpYAAAAAGmZCamCsDcM5rkXd0vVvfOMb\nkySXXXZZkmRubs7fpPdMSM3YkysCO0VeMjzMPbRzNjMhtc4hAAAAgIbpHALGysTERJLk1a9+dZLk\nr//6r5Osrl7GYLgTtKN0DjH25IrAThmG62GWyBd3js4hAAAAADbkVjowVroOofPOO2+/fzMcSinu\n0AEAwJAxrAwYS8NwbmtZt//n5uaSJNdee22S5MILL1yZrJqeMayMsSdXBHaCfHH4GFq2MwwrAwAA\nAGBDOoeAsdSd27pHdyGGg7/DjtA5xNiTKwI7YRiuhdmfXHFn6BwCAAAAYEOKQ8BYK6W4AzFETj75\n5ExNTWVqamrQoQAAMGRqrTq6BkRxCAAAAKBh1ngGxsKuXUu17u9973tJksXFxf22MxjdnZ99+/Yl\nSe6++26dXAAAMGRcNQEAAAA0TOcQMNK6LpTJycn9HnUMDYfu7zMxMZEkmZuby1VXXZUkeelLX5ok\nmZ2dHUhsAECbzGkz/Kw43H+ungAAAAAaVoahalpKGXwQwFgYhnMam7O+66ubl8jf8IjdUms9a9BB\nwE6SKwK9JNcYHTqHeqPWetgdaVgZMBZOPfXUQYfAEdIuDADARuSL/WNYGQAAAEDDDlscKqVcUUq5\nr5Ry+5ptDy+lXF9K+eby48OWt5dSyjtLKXeWUm4rpZy5k8EDdM4444ycccYZ2bNnT/bs2TPocACa\nIVcEYKfVWg0H3GGb6Ry6Ksl567a9Icnnaq2nJfnc8r+T5JlJTlv+76Ik7+lNmAAADKmrIlcEgJF2\n2OJQrfWGJP+xbvP5Sa5e/vrqJBes2f7BuuTGJMeXUk7uVbAAh3LKKafklFNOycTERCYmJtxdGGLd\n32Z2djazs7O57LLLctlll2VmZiYzMzODDg84QnJFAPpFjr9ztjrn0Em11nuSZPnxkcvbT0nyvTXP\nu2t52wFKKReVUm4updy8xRgAABhOckUAGCG9Xq3sYFOIH7SsV2u9PMnlieVJga3rOk2OO+64/f7N\n8OpWm+j+Vi9/+cuTJK985Sv3+767QjCW5IrAwMgtxket1QpmPbbVzqF7uxbg5cf7lrffleRRa553\napK7tx4eAAAjSK4IACNkq51Dn0jyoiR/tfz48TXbX1VKuSbJf0ryk66lGKDXSimZnZ1Nkrz97W8f\ncDQcqX379iVJ5ubmkiQPfehDkyQPPPBAkmRhYWEwgQG9IFcEgBFSDtdaV0r5cJJzkjwiyb1JLk7y\nfyb5SJJHJ/lukufXWv+jLPV1vTtLK1bsSXJhrfWw48S1CgPbpU149HR/s/n5+STJ/fffnyR5xCMe\nMbCYRtQttdazBh0E7ZIrAqNCvjieDC87vFrrYXfSYYtD/eADH9iuYTiXcWQUh3pGcYixJ1cEekG+\nOJ4Uhw5vM8WhXk9IDdBXxxxzTJLVD3sfDqOj+1tNTU0lSR72sIcl8bcEAHpLUWi8yR17Y6sTUgMA\nAAAwBnQOASPtZz/7WZLVSY0tZT96urs83WP3t9y9e3cefPDBgcUFAACt0DkEAAAA0DCdQ8BIu/vu\nu5Mkk5NOZ+Nienp65bHrIlpcXBxkSAAADDlzD22PziEAAACAhikOASNncnIyk5OTedzjHpcTTzwx\nJ554YiYmJjIxMTHo0NiGWmtqrZmbm8vc3Fw+/elP+7sCAEAfKA4BAAAANKx04/IGGkQpgw8CGDnD\ncP5iZxkzvim31FrPGnQQsJPkisB2yBnbIn88UK31sDvFDK7AyOhO9D7g27CwsJAnPvGJSZJvfOMb\nSZL5+flBhgQAjBA5Y5tMTL01hpUBAAAANEznEDAyuur/0572tCTJ3NzcyrLnjJ9SSj7/+c8nSU44\n4YQBRwMAAONL5xAAAABAw3QOASPnda97XZJkcXFxwJGwkyYmJvLwhz980GEAAMDY0zkEAAAA0DBL\n2QMjY/1qZcNw/mJnzc7OJkle9rKXJUk+/OEPJ1mabypxDCyzlD1jT64IbIU8ASuWLdnMUvY6hwAA\nAAAapnMIGFnDcP5iZ3V/4+6uj7s/B6VziLEnVwS2Qq5Ip/UcUucQAAAAABuyWhkAQ6v1uzwAANAP\nOoeAkTM1NZWpqam85S1vGXQoAAAMqVKKG02wSYpDAAAAAA0zITUw0obhHMbOW1hYSJI89alPTZLc\ncsstSZL5+fmBxTRETEjN2JMrAtshX6TTaieZCakBAAAA2JDOIWAsDMO5jJ2zb9++JMnevXuTJA95\nyEMGGc6w0TnE2JMrAtshT6Sjc+jQdA4BAAAANMxS9sDIKqW4E9SIiYmJJMmxxx474EgAAGD86BwC\nAAAAaJjOIWBk1VozObl0GrvtttuSJKeffnqSZGpqamBxsXMefPDBJMnrX//6JMmll166Mh8RAAAc\nTKtzDR0JE1IDA9GdoLd7DuqGGx1//PFJkh/+8IfbC4yRsGvXrpVHxSETUjP+5IrAdgzDNS/DodUi\nkQmpAQAAANiQYWVAX3XV+unp6STJ7Ozstn5e1zXyox/9aL/t3R2iVu8OjKv5+fkkyde+9rUkyZOe\n9KRBhgMADDEdQ7B5OocAAAAAGmbOIaCvjjrqqCTJc57znCTJNddcs9/3t9vp053TdA61wd83iTmH\naIBcEdiKYbjWZbi0mjuacwgAAACADZlzCOibqampnHnmmUkO7Bhab9euXVlcXNzwOaWUldXKFhYW\nDvge46ube+jpT396vvSlLyVJ5ubmBhkSAACMLJ1DAAAAAA3TOQT0zXXXXZdf+7Vf229bNxa86wT5\n5Cc/mST57d/+7cN2gqztDrrxxht7GSpDrusY+9SnPpWHPOQhA44GABgW5hmCrdE5BAAAANAwnUNA\nz3UdPd2dm25lsvVdQ2ufOz09nSR59rOfnWTj+WNmZmaSJLOzs/nOd76TJDnhhBN6ETojYteupXsb\nt912W44++ugkyZ49ewYZEgAwQDqGYHssZQ/suCM5z3STUH/hC19YKSatLQYlyQUXXJAk+djHPrZS\nRJqamkpiIuoW+Ztbyp7xJ1eENg3DtSrjqbX80VL2AAAAAGxI5xDQM+uHk23n/LJv376V1993331J\nkp/7uZ9Lkv26hVqr+rO/Wmse/ehHJ0l+8IMfJEkWFhYGGdIg6Bxi7MkVoQ1d7rc+p4Rea+0aQucQ\nAAAAABvSOQT0XFeJX9/B0U0iDNu19s5ia3d+DkLnEGNPrgjjaxiuR2lPa/mjziEAAAAANmQpe6Dn\n1o8Xb60yT//Mzs7mzW9+c5LkbW97W5Jk7969A4wIAABGj84hAAAAgIbpHAJ6pusQWlxcHHAkjLvu\nWJuZmcmtt96axHEHAABbZUJqoCdKKZmYmEiSzM/PDzgaWrGwsJDvf//7SZLHPOYxgw1mcExIzdiT\nK8L4GYbrUNrV2rQXJqQGAAAAYEOGlQE9UWtduQM0NzeXJJmenh5kSDRgcnIy9913X5Lk6KOPTpLs\n2bNnkCEBAMDI0TkEAAAA0DBzDgE9t2/fviTJrl3qz/RPa2PH1zDnEGNPrgjjZxiuQ2lXa3mjOYcA\nAAAA2JA5h4Ce0zFEP3VzXAEAAFvjCg4AAACgYTqHgJ6ZnFw6pdx8881Jkic+8YlJkqmpqYHFxPjr\nVsXrjrP5+flBhgMAbEI354u5h2A46BwCAAAAaJjVyoCemZiYSJIce+yxSZIf//jHgwyHxrS26sQa\nVitj7MkVYXwNw/Uo7Wktb9zMamWGlQE90y1h/5Of/GTAkdCiE088MUnyox/9KEmyuLg4yHAAAGBk\nGFYGAAAA0DCdQ0DPzczMJElOPvnkJMk999wzyHBoxL//+78POgQA4AiVUgwtgyGgcwgAAACgYTqH\ngJ6bnZ1NstrJceWVVyZJLrzwwoHFxPh64IEHkiRPe9rTkiQ33HDDIMMBAICRo3MIAAAAoGGWsgf6\nZnFxcWVM+a5datP0RndM/eIv/mKS5Nvf/naSZGFhYVAh9Zul7Bl7ckVowzBcm9IGS9kfyNUZAAAA\nQMMUh4AdU0pJKSXT09OZnp7O+eefv7INemVhYSELCwv5zGc+k8985jNZXFzM4uLioMMCAI6QPBEG\nx7AyoG+OOeaYPP/5z0+yOkk19FqDSaVhZYw9uSK0aRiuVRlvreSNhpUBAAAAsCGdQ0BfTU1N7ffv\nubm5AUXCuHnyk5+cJLn11luTJHv37h1kOP2kc4ixJ1eEtg3DNSvjSefQKp1DAAAAAA3TOQQMhe5c\ntG/fviRLS923Uslne7ol6ycnJ5O0cwdoDZ1DjD25IjAM162Mn1byRp1DAAAAAGxoctABAOOvq8gf\n7I5P1+1x3HHHJUl+/OMfrzy3lUo+29N1m73zne9MkkxPTycxnxUAjJON8kk4Uq4zDqRzCAAAAKBh\n5hwCeqKUsrISWdexMTMzk2T1Ds/8/PwBd3u6qn332mc84xlJkk9+8pM7HzRjqcE7QeYcYuzJFYH1\nhuE6ltHVWr5oziEAAAAANqRzCOiJmZmZnHzyyUmSb33rW0mSSy+9NEnym7/5m0mSBx98MF/72teS\nJL/3e7+XZGlVsiRZXFxMkuzevXvlud35ac+ePUmSo48+esd/D0ZPd+x0x1Jrd4Kic4gGyBVhvHU5\n33Y+w4fhupbR0Vq+uJnOIRNSA9ty1FFHJUle8YpX5B3veEeS1QmCX/3qVydZHTK2sLCQxz72sUlW\nP8BvvfXWJMmZZ56ZZKko1OlO2s985jOTJNddd91+7713796V96ddXXHove99b5LV4Yyzs7MDiwkA\nOLiNijiH+t5mLuTXPkehCI6cYWUAAAAADTvssLJSyhVJnp3kvlrrE5a3vTnJHyb59+WnvanWet3y\n996Y5CVJ9iV5Ta31Hw8bhFZhGDndEJ7f+q3fSpJ89KMfPaLXd+ee7rH7ed3S9slqB9KhPPvZz16Z\nuHp+fj7JapfS+vdprXW0Rd1E6N3ww66jqIG7h4aVMVByRWAzevV5bOgZvdDatUGvJqS+Ksl5B9n+\n32utZyz/133Y/1KSFyZ5/PJrLiulTGw+ZAAARsxVkSsCwEg7bHGo1npDkv/Y5M87P8k1tdbZWuu3\nktyZ5OxtxAcMqcXFxSwuLuajH/3oEXcNJUvV+lJKdu3atdI1lCT3339/7r///rzrXe867M/41Kc+\ntfJzrrzyylx55ZXZt2/ffh1Hc3NzmZuby8LCwgHfYzx0x+L09HSmp6dX/s61VncIoQ/kikA/befz\nvcsbu/+AVduZc+hVpZTbSilXlFIetrztlCTfW/Ocu5a3HaCUclEp5eZSys3biAEAgOEkVwSAEbGp\npexLKY9J8qk148hPSvLDJDXJ/5bk5Frr75dS/keSL9Va//fl530gyXW11r8/zM93axdGRDenz/e/\n//0kyYknnrgj77Nv375MTCyNNHjTm96UJLnkkksOG9fnP//5JMlTnvKUJMnb3va2JMmXvvSl/Mu/\n/EuSrKyq9ru/+7tJzEs0LrrV7J73vOclWVrNrhHmHGLg5IrAofSri3ereZwu4za1lvf3as6hg/3g\ne2ut+2qti0nen9V24LuSPGrNU09NcvdW3gMAgNEkVwSA0bLVzqGTa633LH/9vyb5T7XWF5ZSHp/k\nQ1lKAH4uyeeSnFZr3XCSD3eDYPT04y7LoVY06yr9Rx99dPbs2bPfa7rvrX/N4uLiykpo09PTSbLy\nWneMxsNrX/vaJMnf/M3fJMkBx8YY0znEwMkVgUMZRJ7Vy64QeeJ40jl0oMnDPaGU8uEk5yR5RCnl\nriQXJzmnlHJGllqFv53kpctv+PVSykeSfCPJQpJXHu7DHgCA0SVXBIDRt6nOoR0Pwt0gGBkzMzNJ\nkgcffLDv792dr2ZnZ5Mk8/PzOeGEE1a+PlLd73LqqacmSe68885ehEmfdcfFb/zGbyRJPvvZzyZJ\nSyvT6Rxi7MkVYXQNyfXmtl4/DL8DvaVz6ECKQ8CWDMO5I1mddPioo45KsnqiX3/C3yjebrjZP//z\nP+fMM89MsjrBNcOt1rpSGPzud7+bJDn99NOTJAsLCwOLq88Uhxh7ckUYPcOSK66lSERHcehA21nK\nHgAAAIARd9g5hwDW6iZzvvTSS5Mkr3jFK5Iku3fvHkg8XcfQ+smrj+RuwOLiYpLkV3/1V/Ozn/2s\nxxGyk0opK3/rt771rSvbAIDBWr9IyDDYSp4IrdA5BAAAANAwcw4BW9J12HSdRN28PYPWTSr9hCc8\nIcnq5NWb8YIXvCBXXnllktWOJEZHdxdwYmIiiQmpYZzIFWF0DcP15qFstYNomH8nNtZq15g5hwAA\nAADYkM4h4Ih0q3j9/M//fJLk9ttvT7LarTFo999/f5LV+Wfe8Y53HNHrtzN3Ef1Xaz3kCnUN0TnE\n2JMrwugahuvNjWwnfxj2340DtZov6hwCAAAAYEM6h4BtGYZzyMHMz88nSX791389SXLjjTdmbm4u\nyYEx79q1VCdfXFwc2t+Hg9M5lETnEA2QK8LoGpXcqhd5xKj8ri1rNV/cTOeQ4hCwJd1E1C9+8YuT\nJO973/sGGM2BusmIu2XqjznmmJUhcd15b2FhIclqIWkYzodsXasf9lEcogFyRRh9o5JnGWY2nhrO\nE5MYVgYAAADAYegcAnriRz/6UR760IcmGY7JqddPLL1r16780z/9U5Lkgx/8YJLkS1/6UpLkjjvu\n6H+A9MTCwkI+8IEPJEle9rKXDTiagdE5xNiTK8L4GIbrT9qjc0jnEAAAAAAbmBx0AMBo6+bxOffc\nc/PlL385yXB0Dh1skuKnP/3pSZJzzjlnv+d2cw5NTk42f1dh1MzPz+eLX/zioMMAAICRpnMIAAAA\noGHmHAJ65oILLkiSXHPNNUlWVzQb9m6c7jw47HFyoFprjjvuuCTJAw88MOBoBsacQ4w9uSKMn2G4\nDqUdref55hwCAAAAYEM6h4Ceu/rqq5Mkz3ve85IkRx999CDDYcy1ficoOodogFwRxtcwXI8yvuSJ\nS3QOAQAAALAhnUNAz3Wrlf13psAEAAATtUlEQVTgBz9IkpxwwglJVO7pndnZ2STJc5/73Fx//fVJ\nkoWFhUGGNEg6hxh7ckUYb8NwTcp4cv2xZDOdQ4pDwI679957kySPfOQjBxwJ46L77Nq1SwNsFIdo\ngFwR2jAM16aMF8WhJYaVAQAAALAhxSFgx5100kk56aST8upXvzp79uzJnj17Bh0SI66UklJKJicn\nBx0KANAj3ec79IJj6cgoDgEAAAA0zJxDQF+dffbZSZKbbrppwJEwiubn55Mkz3jGM5IkX/ziF1e2\nNcycQ4w9uSK0aRiuVRldOodWmXMIAAAAgA3pHAL6Zu0cMYuLi0maXn6cbXAnaD86hxh7ckVo2zBc\nszJ65IurdA4BAAAAsCHLvAB9U2tdmR+m6yB6y1vekiS5+OKLBxYXo2fXrqV7G10HGgAwvkopuofY\nNB1DW2NYGTAUdu/enST5zne+kyQ5/vjjMz09PciQGCLd8MOnPOUpSZKvfOUrSWIy6iWGlTH25IpA\nZxiuXxluikMHMqwMAAAAgA3pHAIGqqvsd11Cxx57bJLkq1/9ak455ZQkq3eIuqFEtKs7XrrHYfgM\nGwI6hxh7ckVgPTkA6+kYOjSdQwAAAABsyITUwEB1d31mZ2f3e/yFX/iFla+vvfbaJMn555+fZP+7\nAu4QjLe5ubkkyZ/8yZ8kSaamppKYawgAWrc+B9RJBNujcwgAAACgYeYcAoZeNw/R05/+9CTJpz71\nqSRLXUYzMzMDi4v+0SG2IXMOMfbkisCRGIZrXPpPvnho5hwCAAAAYEPmHAKG3gMPPJAk+fSnP51k\n9a7A2WefnZtuumlgcbGzFhcXc9111yVJjjnmmCTJz372s0GGBACMAKuatkXHUG/oHAIAAABomDmH\ngJHT3R2YnJzMwsJCkuSb3/xmkuTRj350ktVVrYZddw52x2PV2n3S7Rd3ADdkziHGnlwROJT1ucFG\nOZU8YjzJow9vM3MOGVYGjJzug33tcuZnnbV0bfz+978/SfK85z0vSfLggw8mSXbv3t3PEA+p+/C6\n7777kiTHH398ktEpZvVD9/e94447smvXUoPr4uLiIEMCAIbUwZa0P1Sx4GDPZXQpCvWWYWUAAAAA\nDTOsDBhrb37zm5MkF1988crE1scee+x+z+nn0K7uPboJlruYWO0O6rqF3A3aNMPKGHtyReBIHElu\nNwzXw+sZTr85csXNs5Q9AAAAABvSOQQ04znPeU6S5OMf/3iSZN++fUmSiYmJJMns7GxmZmaS7Fw3\n0aF+Xq31kJ1NrZibm0uS3H///UmSk046aaWbaBg+q4aYziHGnlwR6JdhyDnW5ovDEM8w0jV0ZHQO\nAQAAALAhnUNAM7o7DF2n0MLCwn7ff/vb357Xv/71+21b31203Y6irjOpe++1q3A95jGPSZJ861vf\n2u853XuP+x2SrnOo20dsms4hxp5cERiUQVwvHyznG4br9mEy7nlxr+kcAgAAAGBDOocANvCOd7wj\nSfLHf/zHh3zORt1E3ffm5+eTrHYFPf7xj0+y2pl0MDfccEOS5KlPfeqRhj2Sut/zi1/8YhJ3yI6A\nziHGnlwRGAUHy1026nA5VK4zqqus9YOOoa3ZTOeQ4hDABjZaSvQjH/lIkuT5z3/+YX9ON0TsJS95\nSZLkwx/+cJLVotHBdBNT/+Vf/mWS5DWvec1mwx4J3ZC6v/iLv0iSXHLJJUmSBx98cGAxjSjFIcae\nXBEYZ+vzzCMpgAzD9Xw/KAptj2FlAAAAAGxI5xDAFpRSsnv37iTJ3r17k6x2vrzqVa9Ksv+S9F2H\n0PT09JbfcxjO19u19nfo7gC5E7RtOocYe3JFgMMbh1xxPXlib+gcAgAAAGBDOocAemRycjJJcuON\nNyZJfvmXf3nle3/6p3+aJHnXu96VZOvz6lx77bVJkgsuuCDJ6NxN6T5rFhcXMzExkWR1yfpuCXu2\nTOcQY0+uCLB5w3CN3yujkusOO51DAAAAAGxI5xBAH3RdMrOzsz35ec997nOTJB/60IeSZGX+o2HV\nfdbMz8/n7LPPTpLccccdSXQO9YDOIcaeXBHgyA3Dtf5W6RjqLZ1DAAAAAGxI5xBAH3R3P3p1zp2a\nmkqS/NVf/VWS5I/+6I968nN7rZtbqetsWrvKW9dFNQyfQyNO5xBjT64IsHWjkmvpFto5OocAAAAA\n2JDOIYAR1nUQ3XDDDUmSJzzhCTn22GP7GkP3OTI7O5vp6ekkq/MIXXLJJUmSt771rUmSXbt2ZXFx\nsa/xNUDnEGNPrgiwfcNw7X8wOoZ23mY6hxSHAEbYrl1LDaBdweXcc8/N5z//+R19z3379iXJypL0\n3fCwr3zlKznqqKOSJH/+53+eJPn0pz+9o7GQRHGIBsgVAXpjSK7/Bx1CcwwrAwAAAGBDOocAxkx3\nN2Z+fj7JanfR+rs0i4uLK11A3fC0rgtoZmbmkD//rrvuSpKceuqpSVaHjF188cUr79ENL+t+HjtK\n5xBjT64IsLN6XRfQHTRcdA4BAAAAsKHJQQcAQG91XTuTk0un+L/7u79Lkpx55plJksc+9rFJkte8\n5jX5sz/7syTJTTfdlCT5h3/4hyTJBz7wgSTJcccdl5/+9Kcbvt/Buoy6CakBABh+On3QOQQAAADQ\nMHMOAYy5bj6hbn6hbmWzo446aqXDp7tbtH4FslLKUKxqwYbMOcTYkysCwNaZcwgAAACADZlzCGDM\ndauWrbd3794DtnXdRR1dQwAAMP4UhwBYoRgEAADtMawMAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAA\nAEDDFIcAAAAAGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQ\nAAAAQMMOWxwqpTyqlPKFUsodpZSvl1Jeu7z94aWU60sp31x+fNjy9lJKeWcp5c5Sym2llDN3+pcA\nAGAw5IoAMPo20zm0kOSPa62nJ/mVJK8spfxSkjck+Vyt9bQkn1v+d5I8M8lpy/9dlOQ9PY8aAIBh\nIVcEgBF32OJQrfWeWutXlr++P8kdSU5Jcn6Sq5efdnWSC5a/Pj/JB+uSG5McX0o5ueeRAwAwcHJF\nABh9RzTnUCnlMUmelOSmJCfVWu9JlpKCJI9cftopSb635mV3LW9b/7MuKqXcXEq5+cjDBgBg2MgV\nAWA0TW72iaWUY5P8fZLX1Vp/Wko55FMPsq0esKHWy5NcvvyzD/g+AACjQ64IAKNrU51DpZSpLH3Y\n/22t9drlzfd2LcDLj/ctb78ryaPWvPzUJHf3JlwAAIaNXBEARttmVisrST6Q5I5a66VrvvWJJC9a\n/vpFST6+Zvt/XV6J4leS/KRrKQYAYLzIFQFg9JVaN+7SLaU8Jcn/neRfkywub35TlsaSfyTJo5N8\nN8nza63/sZwgvDvJeUn2JLmw1rrhWHGtwgCwZbfUWs8adBC0S64IAMOt1nrIsd6dwxaH+sEHPgBs\nmeIQY0+uCABbt5ni0BGtVgYAAADAeFEcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQMMUhAAAA\ngIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAAANAwxSEA\nAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgEAAAA0DDF\nIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqmOAQAAADQ\nMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAAGqY4BAAA\nANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAapjgE\nAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSHAAAAABqm\nOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaJjiEAAAAEDDFIcAAAAA\nGqY4BAAAANAwxSEAAACAhikOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAA\nAAAapjgEAAAA0DDFIQAAAICGKQ4BAAAANExxCAAAAKBhikMAAAAADVMcAgAAAGiY4hAAAABAwxSH\nAAAAABqmOAQAAADQMMUhAAAAgIYpDgEAAAA0THEIAAAAoGGKQwAAAAANUxwCAAAAaNhhi0OllEeV\nUr5QSrmjlPL1Usprl7e/uZTy/VLKV5f/e9aa17yxlHJnKeXfSin/eSd/AQAABkeuCACjr9RaN35C\nKScnObnW+pVSykOS3JLkgiT/JckDtdZ3rHv+LyX5cJKzk/xckv8ryS/WWvdt8B4bBwEAHMottdaz\nBh0E7ZIrAsBwq7WWwz3nsJ1DtdZ7aq1fWf76/iR3JDllg5ecn+SaWutsrfVbSe7M0oc/AABjRq4I\nAKPviOYcKqU8JsmTkty0vOlVpZTbSilXlFIetrztlCTfW/Oyu3KQBKGUclEp5eZSys1HHDUAAENH\nrggAo2nTxaFSyrFJ/j7J62qtP03yniQ/n+SMJPck+W/dUw/y8gNagWutl9daz9IKDwAw+uSKADC6\nNlUcKqVMZenD/m9rrdcmSa313lrrvlrrYpL3Z7Ud+K4kj1rz8lOT3N27kAEAGCZyRQAYbZtZrawk\n+UCSO2qtl67ZfvKapz03ye3LX38iyQtLKTOllMcmOS3Jv/QuZAAAhoVcEQBG3+QmnvPkJL+X5F9L\nKV9d3vamJL9TSjkjS23A307y0iSptX69lPKRJN9IspDklRutPgEAwEiTKwLAiDvsUvZ9CcLypACw\nVZayZ+zJFQFg63qylD0AAAAA40txCAAAAKBhikMAAAAADVMcAgAAAGjYZlYr64cfJvnZ8iM77xGx\nr/vFvu4f+7o/7Of+2ey+/l92OhAYAnLF/nKu7x/7un/s6/6wn/unp7niUKxWliSllJutttIf9nX/\n2Nf9Y1/3h/3cP/Y17M//E/1jX/ePfd0/9nV/2M/90+t9bVgZAAAAQMMUhwAAAAAaNkzFocsHHUBD\n7Ov+sa/7x77uD/u5f+xr2J//J/rHvu4f+7p/7Ov+sJ/7p6f7emjmHAIAAACg/4apcwgAAACAPlMc\nAgAAAGjYUBSHSinnlVL+rZRyZynlDYOOZ5yUUr5dSvnXUspXSyk3L297eCnl+lLKN5cfHzboOEdR\nKeWKUsp9pZTb12w76L4tS965fIzfVko5c3CRj55D7Os3l1K+v3xsf7WU8qw133vj8r7+t1LKfx5M\n1KOplPKoUsoXSil3lFK+Xkp57fJ2x3YPbbCfHddwEHLFnSNX3Dlyxf6RK/aPXLE/BpErDrw4VEqZ\nSPI/kjwzyS8l+Z1Syi8NNqqxc26t9Yxa61nL/35Dks/VWk9L8rnlf3Pkrkpy3rpth9q3z0xy2vJ/\nFyV5T59iHBdX5cB9nST/ffnYPqPWel2SLJ8/Xpjk8cuvuWz5PMPmLCT541rr6Ul+Jckrl/epY7u3\nDrWfE8c17Eeu2BdyxZ1xVeSK/XJV5Ir9Ilfsj77nigMvDiU5O8mdtdb/WWudS3JNkvMHHNO4Oz/J\n1ctfX53kggHGMrJqrTck+Y91mw+1b89P8sG65MYkx5dSTu5PpKPvEPv6UM5Pck2tdbbW+q0kd2bp\nPMMm1FrvqbV+Zfnr+5PckeSUOLZ7aoP9fCiOa1omV+w/uWIPyBX7R67YP3LF/hhErjgMxaFTknxv\nzb/vysa/NEemJvlsKeWWUspFy9tOqrXekywddEkeObDoxs+h9q3jfGe8ark99Yo1Le/2dY+UUh6T\n5ElJbopje8es28+J4xrWc/zvLLlif/k87S+fqTtIrtgf/coVh6E4VA6yrfY9ivH15FrrmVlq53tl\nKeVpgw6oUY7z3ntPkp9PckaSe5L8t+Xt9nUPlFKOTfL3SV5Xa/3pRk89yDb7e5MOsp8d13Agx//O\nkisOB8d57/lM3UFyxf7oZ644DMWhu5I8as2/T01y94BiGTu11ruXH+9L8rEstZbd27XyLT/eN7gI\nx86h9q3jvMdqrffWWvfVWheTvD+rbZP29TaVUqay9CH0t7XWa5c3O7Z77GD72XENB+X430Fyxb7z\nedonPlN3jlyxP/qdKw5DcejLSU4rpTy2lDKdpUmUPjHgmMZCKeWYUspDuq+TPCPJ7Vnavy9aftqL\nknx8MBGOpUPt208k+a/Ls/X/SpKfdG2XbM26scrPzdKxnSzt6xeWUmZKKY/N0uR3/9Lv+EZVKaUk\n+UCSO2qtl675lmO7hw61nx3XcFByxR0iVxwIn6d94jN1Z8gV+2MQueLk9kLevlrrQinlVUn+MclE\nkitqrV8fcFjj4qQkH1s6rjKZ5EO11n8opXw5yUdKKS9J8t0kzx9gjCOrlPLhJOckeUQp5a4kFyf5\nqxx8316X5FlZmhhsT5IL+x7wCDvEvj6nlHJGltolv53kpUlSa/16KeUjSb6RpVn+X1lr3TeIuEfU\nk5P8XpJ/LaV8dXnbm+LY7rVD7effcVzD/uSKO0quuIPkiv0jV+wruWJ/9D1XLLUa7gcAAADQqmEY\nVgYAAADAgCgOAQAAADRMcQgAAACgYYpDAAAAAA1THAIAAABomOIQAAAAQMMUhwAAAAAa9v8D7S4A\n185nNOkAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec1f5828>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuQZlddL/zvmumeS0gAEYghBAIY\nrUPQSiB4YkU0QV8M8JIgFBRYZSJYhCqgXtFTBfECBtBSKA1eOCJBY1CRcBEwJSDicLhYZZQEuQQi\nMRxCMiYEVISEzKW7Z71/9LP7Nj09PT3PfX0+VVNP9+7dz7N6z+5+1v7u31qr1FoDAAAAQJu2jboB\nAAAAAIyOcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhg0sHCqlXFhK\n+VIp5dZSyuWDeh0AACaPviIAjI9Sa+3/k5ayPcktSf6fJHuTfCrJ82utX+z7iwEAMFH0FQFgvMwM\n6Hl/KMmttdb/mySllGuTXJxk3Tf8Ukr/EyoAaMN/1FofMupGwDHSVwSAIam1lqPtM6hhZacmuWPF\n53t725aUUi4rpdxQSrlhQG0AgBZ8ddQNgC3QVwSAMTKoyqH1UqlVd3xqrVcluSpxNwgAoDH6igAw\nRgZVObQ3yWkrPn94kjsH9FoAAEwWfUUAGCODCoc+leSMUsqjSik7kjwvyXUDei0AACaLviIAjJGB\nDCurtc6XUl6W5MNJtie5utb6hUG8FgAAk0VfEQDGy0CWsj/mRhhHDgBbdWOt9ZxRNwIGSV8RALZu\nlKuVAQAAADABhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgE\nAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4\nBAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw2aO55tLKbcluSfJQpL5Wus5pZQHJXlnktOT3JbkubXWbx5fMwEA\nmDT6igAwGfpROXRBrfWsWus5vc8vT7Kn1npGkj29zwEAaJO+IgCMuUEMK7s4ydt6H78tyTMH8BoA\nAEwmfUUAGDPHGw7VJH9XSrmxlHJZb9vJtda7kqT3+NDjfA0AACaTviIATIDjmnMoyXm11jtLKQ9N\n8pFSyr9u9ht7HYTLjrojAACTSl8RACbAcVUO1Vrv7D1+Pcn7kvxQkrtLKackSe/x60f43qtqrees\nGH8OAMAU0VcEgMmw5XColHK/UspJ3cdJnpLkpiTXJbm0t9ulSf76eBsJAMBk0VcEgMlxPMPKTk7y\nvlJK9zx/WWv921LKp5K8q5Tyc0luT/Kc428mAAATRl8RACZEqbWOug0ppYy+EQAwmW407IZpp68I\nAFtXay1H22cQS9kDAAAAMCGEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAAN\nEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAA\nAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMA\nAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RD\nAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADTtqOFRKubqU8vVSyk0rtj2olPKRUsq/\n9R6/q7e9lFJ+v5Ryaynlc6WUxw+y8QAAjJa+IgBMvs1UDl2T5MI12y5PsqfWekaSPb3Pk+SpSc7o\n/bssyZv700wAAMbUNdFXBICJdtRwqNb6iST/tWbzxUne1vv4bUmeuWL7n9VF1yd5YCnllH41FgCA\n8aKvCACTb6tzDp1ca70rSXqPD+1tPzXJHSv229vbdphSymWllBtKKTdssQ0AAIwnfUUAmCAzfX6+\nss62ut6OtdarklyVJKWUdfcBAGCq6CsCwBjaauXQ3V0JcO/x673te5OctmK/hye5c+vNAwBgAukr\nAsAE2Wo4dF2SS3sfX5rkr1dsv6S3EsW5Sb7VlRQDANAMfUUAmCBHHVZWSnlHkvOTPLiUsjfJryX5\nrSTvKqX8XJLbkzynt/sHkzwtya1J7kvyggG0GQCAMaGvCACTr9Q6+iHcxpEDwJbdWGs9Z9SNgEHS\nVwSArau1rjfn3ypbHVYGAAAAwBQQDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nwQQqpaSUsqntG+0LAAAAwiEAAACAhs2MugHA5u3atWvV5/v370+SbN++PUlSa116nJ2dTZLs2LEj\nSfKd73xn1b6zs7NL379t27ZVz7+wsJAkOXDgwNJrdZVG3WsAAAAwHVQOAQAAADRM5RBMiG3btuWC\nCy5Ikrzyla9Mkpx33nlJkpmZw3+VP/rRjyZJvvzlLydJXvSiFyVJrr/++iTJox/96Dz0oQ9Nktx+\n++1JkmuvvXbV9951111L1UW33HLLqudXSQQAML4G2UczdyVMH5VDAAAAAA0r43DXv5Qy+kbAmPvX\nf/3XfP/3f/+qbYcOHUqyPGdQp9aaubm5JMtzDnXm5+eTrK426v4OrL0LtLCwsDTv0AknnJAkOfPM\nM5MkX/ziF1ftW0pRRQSjcWOt9ZxRNwIGSV8Rjm6c+mEqi2C81FqP+ktpWBmMqW5y6Be84AVJclgw\nlBweCnVKKYeFQp31hqAd6Q18+/bt2b1796ptn/3sZ1c9zxOf+MQkyec///lVE1gDANCmWquACCaM\nYWUAAAAADTOsDPpk7QTNK6t3uqXhuyFdx2IcfkdX6trTPXbVS+4OwcgYVsbU01eEIxu3vuJa+ogw\nepsZVqZyCAAAAKBh5hyCPumqhLp5d2qt+Yu/+IskyVvf+tYkyd/93d8d9Xm6uyuPf/zjk6w/gfQo\nde1bexfI2HIAAIDJpHIIAAAAoGHmHIItWjvH0Mtf/vIkyRvf+MalfdZW/WymsuZ+97tfkuSb3/xm\nkmR2drZPLR6M7ue/5557ln72K664YoQtguaYc4ipp6/INDnS9dexVmCPw3XcZqgsh9Ez5xAAAAAA\nG1I5BFuwY8eOHDx4MEnyyU9+MknyxCc+MUmyc+fOpf26369u31e/+tVJkt///d9Pkuzfv39p365C\nqNt3ErkzBCOhcoipp6/IpNvsNddm+1LjcA23WfqHMHqbqRwajxluYcx1k013wc3pp5+eL37xi0mW\nh451+6zUvRl2gVG3pP16b+hzc3NJkn379iVJdu/e3bf2D8KhQ4eSrF7Kvvu4+xoAQMsmKcQZlO4Y\nCIlgvBlWBgAAANAwlUOwCY94xCOSJP/2b/+WZLEypquO6SqGNrob0lUcffvb306yvNx958QTT8xn\nPvOZJONfMdRZWTHUUTEEALD1iqGjVdlMciWSCiIYbyqHAAAAABqmcgg20C0rf8stt6zavm3btqXK\nmY10d0i+853vJEnuvvvudfe7995788hHPvJ4mjp07voAAKx2vJU9LfSvVBDBeFI5BAAAANAwlUOw\nga7ip5szaOUy9ZvR3RF54AMfmCS57rrrVn29e74///M/z8zMeP867t+/P0ny+te/Psly29fOnwQA\n0JpBzwU0yXMNHcnKn0kVEYyeyiEAAACAho13qQKMWL/u0txzzz1JslQdND8/n2S5+ubRj350X15n\nkLq2X3HFFUN/7e5u0tr/j1JKX++kbdu2zYprAMCmTWNFzyis18cDhkvlEAAAAEDDVA5Bz+zsbB78\n4AcnSe68886+Pvf973//JMsVQ52uSuUHfuAH+vp6g7B3794kyyu4dfMxDcrKqqDZ2dkky3M/7dix\nI0mysLCQhYWF436t7meqtea+++5b9bXdu3cnSfbt23fY93Xt6HT/n2v/nwGA6TOMqqFWK5OsaAbD\nJxyieV3w8OQnPzl/+7d/u+prg35j2r59+9LrjOubYDfh9OWXX55kOaA50lCvfqm15vTTT0+SnH32\n2UmS9773vUmS97znPUmSZz/72X05Xt3PuJkJx7sAaNu2bfngBz+YJLn66quTJF/72teSLAdJ9957\nb2699dZ1vx8AmEyD6vuMWx9wGox7uOb/nHFiWBkAAABAw8rR0tRSytVJ/t8kX6+1Pq637YokL0ry\njd5uv1xr/WDva7+U5OeSLCT5/2qtHz5qI0oZ70iXJgzyzsJXv/rVJMsTT3fVI92QpXvuuSfbti1m\nteN+B2HQ7Vv5/9BV9HSv2VV5dUPJZmZmRlpx1bWjG0bWDTObm5tLkuzfv39pSOEnPvGJJMnTn/70\nJMs/W7dvvyfXpik31lrPGXUjaJe+Iq0Y9Pv0en0ZfYO2jft1AZOj1nrUk2kzlUPXJLlwne1vrLWe\n1fvXvdk/NsnzkpzZ+54/LKVs33yTAQCYMNdEXxEAJtpR5xyqtX6ilHL6Jp/v4iTX1loPJPlKKeXW\nJD+U5B+33EIYsEHekekqhN7xjnckWU7/u2XhH/CAByRZnntoEnSVLl0Vz8o7GpuoRDys0qf7/JZb\nbjls/64SZ+1dk+74rfe1Yer+39b+/3XHpntMkh/+4R9OsjzZ+UknnZQkOeOMM5Jk1dxEg57PCaCf\n9BWZdqN8P9YnaFutVfUQQ3M8cw69rJTyuVLK1aWU7+ptOzXJHSv22dvbdphSymWllBtKKTccRxsA\nABhP+ooAMCG2ulrZm5O8LkntPf5OkhcmWS/WXDfmrrVeleSqxDhyRqO7A9PNGzOI6p3uNa655ppV\nr9X5j//4jySLK6X9/d//fZIszT00rrpqqI9+9KNJFtuerF/B0/0sK5ek71Y7e9jDHpYk2bt3b5Ll\nVdBWmtQ7Jeu1e71qoiT57Gc/myQ54YQT8qQnPSlJ8g//8A8DbiHAwOkrMvHGqVpHBVG7jvR/Pqn9\nZMbXlq5Ca61311oXaq2Hkrw1i+XAyeLdn9NW7PrwJHceXxMBAJgk+ooAMFmOulpZkvTGkf/NihUo\nTqm13tX7+BeS/M9a6/NKKWcm+cssdgAelmRPkjNqrQvrPvHy84vAOS5r76Z0n3dz1hw4cGAsxosf\nyQknnJAXv/jFSZIrr7wySXLvvfcmSU488cTBNm6L1lZc/fEf//FSFVBX+dJVF33sYx9Lsvizvf/9\n7x9ySyfHkeZz6la127dv32gaxrizWhkjp6/IpBuHipzNVIKMQzsZLyqI2IzNrFZ21GFlpZR3JDk/\nyYNLKXuT/FqS80spZ2WxDPi2JC/uveAXSinvSvLFJPNJXnq0N3sAACaXviIATL5NVQ4NvBHuBnGc\ndu3alSTZv3//qu1vf/vbkyQ//dM/PfQ2rbSVRP+CCy5Islx9Mzc3d9h8NeOg+xtSa106/msrXlZu\nP9IKZCzr5nXq5mz65Cc/mST50R/90aWV2ubn50fTOMaRyiGmnr4igzIO10KdrfaNxulnYLT0rzmS\nzVQOCYeYaN3F86mnLi50cvvtt6/6+oEDB5IkO3fuHG7D1uj+UB/PZILXX399zjzzzCTjO9SMwejC\nolLK0nDDxzzmMUmSb3/720mWz3WaJBxi6ukr0i/jcO1zJP26sB/nn5HhEhbR2Uw4NN7LIgEAAAAw\nUCqHmApHOo/XTlA9THNzc0tVHg960IO2/DxdddTMzEze/e53J0kuuuiiJMuTQnf7uDsw3WqtS5NW\ndxVDj3vc45Ikd99998jaxcipHGLq6StyPMbhemczVA4xaK4V2qVyCAAAAIANHXW1MhhnR7szMsp0\nvNaaN73pTUmWlybvqj6ORTffzMGDB/OsZz0ryXLFkDtDbVk5ofeDH/zgJMnXvva1JMlv//ZvJ0ku\nv/zypfMDAFrWaj/peOa4ZLrVWlUPcUQqhwAAAAAapnKIifWzP/uzS3P6jOPqXTMzM/nd3/3dJP27\nc6MihCN50YtelCR59KMfnWc/+9kjbg0ADJ9KmdVUELGeUc7JynhTOQQAAADQMKuVMbFqrUvz8XSr\ndY2bQSXyO3fuTLI8z0xXNdLNR+NOQLvm5uaW5rg699xzkySf//znkyT79u1L4g7iFLJaGVNPX5Gt\nmJT3u0H32yblODAarhvasJnVyoRDTKxxOHfXs7JUc9B/bGdmFkeGHjx4cNV2f+RZ6SlPeUqS5OMf\n/3iSw88XJp5wiKmnr8hWjGtfcS3hEOPA9cN0s5Q9AAAAABsyITUTpxs69drXvjavfOUrkywPsxon\n11133VJlz/z8fF+fu/t5Tz/99CSSftbXDbv8wAc+kGT5dwcAAFZaWWHm2qJNKocAAAAAGqZyiInT\nzZdy+eWXj9VE1GuXhbz44ov7/hrdc3cVIM997nPXfW1IDp+o/c4770ySPOIRj0jS/4o2AGDz9NsY\nV64t2jQ+V9YAAAAADJ3Vypg43Tw+p5xySm677bYk47mUfb+T9lLK0hLlXeXQPffc09fXoA3XXHNN\nkuQlL3nJ0vL2TDSrlTH19BXZinG4ztmIVcqYFCqIJp/VygAAAADYkDmHmDgLCwtJkksuuST79+9P\nkpxwwglDbUOt9YgJer+S9e3btydZ/nl37Nix9HN2FVPdnDFdNRVsxvOf//wkiyvqve997xtxawCg\nv8a9YkbFEJPGHERtUDkEAAAA0DBzDjHRRnX+zs3NLc3/01X2/ORP/mSS5OMf/3iSra8E1c2fdNJJ\nJyVJvvWtbyVJfuEXfiFXXnnlqufuqouk+GzFoUOHllYu+8Y3vpFkeTVAJoo5h5h6+ooci3G4vtlI\nv/tt4/7zMj1cc0yuzcw5ZCwKU+HQoUNJhjcx9ezs7NIfx8c//vFJki996UtJjn958O/7vu9Lktx8\n882rth84cGDpY8PI6Je9e/cmWX6z7x51NAGgv/p5Ye19mlEwvGy6GVYGAAAA0DDlB0ycLqmenZ3N\nhRdemGRxYt1keYn3QemGkL3pTW9amhz605/+dF+eu0vi5+bm1t2+c+fOvrwOdLZt27Y0jOzd7353\nkuQ5z3nOKJsEAFs2ztU0/aq0GOefEZhsKocAAAAAGmZCaqbCsM/j/fv3Z9euXUmW7wR1k0N38x9t\n1KZubqRf+ZVfSZK89rWvXargGHT1E6zn3nvvTZK87nWvS5L83u/9XpLFCarH4X2CDZmQmqmnr8ix\nGNf3reOpHhrXn4m2mXtocmxmQmqVQwAAAAANUznEVBiH8/iFL3xhkuRP//RPl7Z11UTdXEWdrnJo\nz549SZLzzjtvaQUyCTzjwHk4UVQOMfX0FTkW49Av3MixvMeO+89C2/QXJ4fKIQAAAAA2ZLUyJtq5\n556bZHmFr9nZ2ZG15eqrr171mKxfTZQsz0vUzVs0ynYDAEyTrpphXKtu1rZL9QUwDgwrYyqMw3m8\nni4E6oaRdbrJp7vhZrt37x5uw+AodFQnimFlTD19RbZiXPuHME30GSeDYWUAAAAAbMiwMiZaN4nz\nP//zPydJzj777CTjM0xrbcVQx3L1jKuuqu2Zz3xmkuRDH/rQ0jZ3YAEAYDqpHAIAAABomDmHmArj\ncB7DNFj7u3Sk6jfGijmHmHr6ihwP/UQYHHMOTQZzDgEAAACwIeEQE0tKDf1XSln1b/v27aNuEgAA\nMGDCIQAAAICGWa2MiVVrzc6dO5Mkn/zkJ5MkT3rSk0bZJJg6CwsLo24CAByXrtrc3EMAR6ZyCAAA\nAKBhVitjKnTncfdoPiI4Pl3F0BOe8ITcdNNNq7YxdqxWxtTTV6QfxuG6B6aN667JsJnVyoRDTKxS\nSmZnZ5Mkz3rWs5Ik11xzTZIsDTcDjo83/IkgHGLq6SvSL+Nw7QPTRF9xMljKHgAAAIANCYeYWLXW\nHDx4MAcPHsxpp52W0047LQsLC1lYWEit1Z0h2ILud+fAgQM5cOBA/uAP/iA7d+5UjQcAAFNMOAQA\nAADQMHMOMdHWLk06DuczTBtjyceeOYeYevqK9Iu+IvSXfuJkMOcQAAAAABuaGXUD4HjMzCyewhdd\ndFGSZG5uLkmWVjEDtqa7szo/Pz/ilgBA/6ytOgdgkcohAAAAgIapHGKidZVC119/fZLk0KFDSZbv\nBhkDC1vT/e684x3vyO7du5Mk+/btG2WTAOC4qRgCWJ9wiInWXcD++7//e5JYbhv67P3vf/9S6AoA\nAEwnw8oAAAAAGmYpe6ZKV+FgOBkcn+53adu2bX6fxp+l7Jl6+or0yzhc+8A00U+cDJayBwAAAGBD\n5hxionVL1v/6r/96kuTgwYNJzD0Ex6tbwv4973lPduzYkWT59wsAAJguKocAAAAAGqZyiIm2sLCQ\nJHnFK14x4pbAdOmqhXbs2JGZmcW3irm5uSTmawBgMnn/AjgylUMAAAAADbNaGVOhqyDatk3eCf2w\n8r3B79XYs1oZU09fkX4Yh+semDZWK5sMVisDAAAAYEPmHGIqdJUN3R0hCTYcn+536N57711aFbCb\ncwgAAJguwiEmVikl//iP/5hk+aK1u4gF+uPEE08UtgIAwJQzrAwAAACgYSakZuJ0VQyzs7M5++yz\nkySf+MQnkiwvvw0cn64a78QTT8z8/HyS5NChQ6NsEkdmQmqmnr4i/TIO1z4wLVSXTw4TUgMAAACw\nIZVDTIWXvvSlSZLf/M3fTJKcdNJJR9zXpNWweTMzM0sVQ+PwfsG6VA4x9fQV6RfvZdA/rqcmh8oh\nAAAAADakcoipsHPnziTJ93zP9yRJXv7yl696TJIrr7wySfITP/ETSZIf/MEfHGYTYSLcd999SZIf\n+7EfS5LceOON7rKOP5VDTD19RfrNextsnYqhyaNyCAAAAIANqRxiKs3MzCTJ0ipLSbJ79+4kyb59\n+5Ikl156aZLkLW95S5Ll6iPAHaEJo3KIqaevyCiMw3USjCP9xMmzmcoh4RDNe+Yzn5kkufbaawVE\nNGftBO3d47Zti4Wllq+fCMIhpp6+IqM0DtdLMA6EQpPLsDIAAAAANjQz6gbAqHSVEW94wxuSSMJp\nU3fef+hDH0qSzM7OJknm5uZG1iYAAGC4VA4BAAAANMycQzSv+x2otaoeolnO/YlmziGmnr4iozQO\n10swSvqJk8+cQwAAAABsyJxD0CMRpxUrVyg744wzklidDAAAWqZyCAAAAKBhKodozs6dO5Mk97vf\n/UbcEhiNrnLoaU97Wvbu3ZtExRAArGWuIVpnZEVbVA4BAAAANEzlEM05cOBAkuS///u/R9wSGI6V\ncwwlyfbt25Mku3fvXvp9AACARMVQq4RDNOMBD3hAkuRDH/pQkmTXrl2jbA4MzdzcXJJkdnZ21fZ9\n+/aNojkAAIwpwVC7DCsDAAAAaNhRK4dKKacl+bMk35PkUJKraq2/V0p5UJJ3Jjk9yW1Jnltr/WZZ\njBp/L8nTktyX5GdrrZ8eTPNhc3bu3JkXvOAFSZInPvGJI24NDNfBgweTJN/93d894pYA00hfkWlk\nMmpao2KIzVQOzSf5X7XW/5Hk3CQvLaU8NsnlSfbUWs9Isqf3eZI8NckZvX+XJXlz31sNAMC40FcE\ngAl31MqhWutdSe7qfXxPKeXs16+jAAASD0lEQVTmJKcmuTjJ+b3d3pbkY0le2dv+Z3Uxbr++lPLA\nUsopveeBoZiZWTy1u+W5zz333LzxjW8cZZNgZH78x388SUw+DQyEviLTRMUQ0KpjmnOolHJ6krOT\n/FOSk7s38d7jQ3u7nZrkjhXftre3be1zXVZKuaGUcsOxNxsAgHGjrwgAk2nTq5WVUk5M8ldJXl5r\n/fYGYxLX+8JhEXyt9aokV/WeW0TPlnTnYbcKUze3ysMe9rAkycc+9rEkyaMe9ajhNw5G7JprrkmS\nfOpTn0ribigwWPqKTDLvkbTKXEN0NlU5VEqZzeKb/dtrre/tbb67lHJK7+unJPl6b/veJKet+PaH\nJ7mzP80FAGDc6CsCwGTbzGplJcmfJLm51nrlii9dl+TSJL/Ve/zrFdtfVkq5Nsn/TPItY8jpp507\ndyZZnD+lu8vzrne9K0ly8cUXJ1m++7OwsDCCFsLwdef69u3bl+4Adb8r7oYCg6SvyKTwfggqhTiy\nzQwrOy/JzyT5fCnlM71tv5zFN/p3lVJ+LsntSZ7T+9oHs7g06a1ZXJ70BX1tMQAA40RfEQAmXBmH\nBN04co7Fr/7qryZJXve61y1t6+Ya2rFjx0jaBKM2Pz+fZHn+LZpyY631nFE3AgZJX5FjMQ7XNzCO\nVA21q9Z61P/8TU9IDaPWvdHv37//sK+5IGaadef+em/od9yxuODPIx7xiCTJzMzMUlAEAC0RCsH6\nhEJsxjEtZQ8AAADAdFE5xNg60t2fXbt2HbZNGk5r3vSmNyVJfvEXf3HVdpOwA9AS1UJwONdGbIXK\nIQAAAICGqRxirNz//vdPknz5y18ecUtgfHR3f1beBeoq6Obm5lbt6w4qAEBbVArRDyqHAAAAABqm\ncoixsn379iTLFUTA8t2gbdu25dChQ0nWX7UPAIC2qBqiX1QOAQAAADRM5RBj5SEPeUiSLFVHQCvm\n5+eXKue6O0AvfOELV33u9wIAoG0qhRgU4RBj5ZZbbkmyONluN9HuzMziaeoPIdOom0D69ttvz/nn\nn58kueOOO5IkO3fuXLUPAABtci3EoBlWBgAAANAwlUOMlZVLdquWYBp05/HCwkKS5Uq4zp49e5Ik\nF1544WF3hA4cODCEFgIAMI5UCzFMKocAAAAAGqZyiLGiWohp082dtWPHjiTJqaeemiS58847V23v\nKosAAGibiiFGQeUQAAAAQMNUDjFWupR8x44d+fmf//kkyetf//okyys3SdKZJO985zuTJJdcckmS\nZHZ2dtXXDx48OPQ2AcC06PqFqs+ZZK5vGAcqhwAAAAAaVsYhZS+ljL4RjK3rrrsuSfKUpzwlyfIc\nLRJ2xl0pZanirasQGoe/uUydG2ut54y6ETBI+oocjfdXJonrGIat1nrUk07lEAAAAEDDVA4xttaO\nIf+v//qvJMmJJ56YJJmZmZG6M1JdNVBXzdbpzsuZmZnMz88PvV00R+UQU09fkc0Yh+saOBrXL4zC\nZiqHTEjN2Ore4LsL7zPPPDPJ8hLghw4d8seVodm/f3+SZNeuXUmS+fn5ow5xtDw9AAyPyakZZ65b\nGHeGlQEAAAA0TOUQY29ubi5J8o1vfCOJu0IM14EDB5Ik7373u5MsL0l/8skn5+67797we52jADB8\n+oqMExVDTAqVQwAAAAANUznE2Ovu+qyd2LeUkksvvTRJ8uY3vzlJsnv37uE2jqnTnWfdXZ6nP/3p\nSZI9e/as2u9oVUMAwGipIGKUVAwxaVQOAQAAADTMUvZMtJ07dyZZng/mGc94xqqvd+e35J7N2rt3\nb5Lk/PPPT5J8+ctfHmFrYFMsZc/U01ekX8bh2ofp41qDcbeZpexVDgEAAAA0TOUQU6mbH+bJT35y\nkuTgwYPZsWPHKJvEGOnmFdq+fXuS5bs9r3rVq/Ibv/Ebq762dq4rGEMqh5h6+or02zhcAzG5VAox\naTZTOSQcYipt27ZYFHfo0KEkyVVXXZUXvehFSZJ9+/YlMXl1K7q/cXNzc0sB4Ve+8pUkyQUXXJAk\n+epXv5pkcZhit3Q9TBDhEFNPX5FBG4drIsaTIIhpYFgZAAAAABtSOUQTSilLd4Re/OIXJ0n+6I/+\nKEmysLCQZHkYEZOj1nrY3Zyu8qebrLzzjGc8I3/zN3+TZLmyrHs0dIwJp3KIqaevyCiMw3USw6dS\niGmkcggAAACADakcojldhVA3/8x999239DVVRJNlvYnGr7jiiiTJa17zmlXbd+zYkYMHDw6raTBM\nKoeYevqKjINxuG7i+KgKolUqhwAAAADY0MyoGwDD1lUH7d+/P8lyldChQ4cyM7P4KzE3N7dq37V3\nirr96J/uGK+8o7N2LqC1cwV9+MMfzkUXXbRqn7VzDXW6/1MAgK1Yr+pENdF4UykEm6dyCAAAAKBh\nyh9oVnenZ2XFyqFDh5Iks7OzSZYrhx70oAclSZ7whCckWaxYOdKqWGxNV9mzcg6hV7/61UmSV73q\nVUmSxz72sUmS2267bWnf7o5Q9//Y/b+s5c4eANBvR6pM0e8YLRVDcOxUDgEAAAA0zGplcAy6uxDb\nt2/P/e9//yTJf/7nf67ap6uAmZubW6pA6h7Xm1dn0h3Lz7R///6lOZ66eYO6zz/ykY8kSZ761Kcm\nWaza6qqyulXGun3XzkUEjbNaGVNPX5FpMg7XX9NgmvrTMGibWa3MsDI4Bt2b+fz8fL75zW8mWT2h\ndZKcddZZSZIf+ZEfyaMe9agkyQMf+MAkyQtf+MKl70+WJ7Y+cODA0vNsZbLrfoVO6z3P0Z67+1lm\nZ2eXQpy1y8t3/vAP/zCXXHJJksXjkyRf+tKXVn3Pyg7T2iFiQiEAYNJt1F8THC0S/MDwGVYGAAAA\n0DDDymAIuuFRXSXMG97whiTJAx7wgCSLQ9Ne+cpXJlkebrXWwsLCUnVRp6uk6Yay7d69O8liFdPa\noVhrh7atHPbW3Z3pvqfbPj8/v/RxZ//+/UmSXbt2JUk+97nPJUkuuuiiXHjhhUmSt7zlLaueZ+Vk\n091rdBVSqoHguBlWxtTTV6RV43Ct1i+qgWB0NjOsTOUQAAAAQMNUDsEQrF1uvfu8qyiqtR42v05X\nQdTtu7CwcNjzfu/3fm+S5JGPfGSSZM+ePUmShzzkIXnJS16SJLn00kuTJGeffXaS5Kd+6qeSJK94\nxSvyL//yL0mSE088cdVrvuY1r0mSnHzyyfnABz6w6jUf97jHJUluuummJKvnSOo+7qqLgKFQOcTU\n01eEo1t7Xbe2/9lPqoBgsqgcAgAAAGBDKodghNa7o7P2TsxWfkdXzlvUff/auYfm5+eXVljrKpi6\n+X+6KqWZmZmliqZB3n0CjovKIaaeviIAbJ3KIQAAAAA2NHP0XYBBWa8Kpx+VOV1F0EpdVdB6q4Pt\n27dv3ddeOc+RiiEAAIDpJBwCBD8AAAANM6wMAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaNhRw6FSymmllP9TSrm5lPKFUsrP97ZfUUr591LK\nZ3r/nrbie36plHJrKeVLpZSfHOQPAADA6OgrAsDkK7XWjXco5ZQkp9RaP11KOSnJjUmemeS5Se6t\ntf72mv0fm+QdSX4oycOS/H2S76u1LmzwGhs3AgA4khtrreeMuhG0S18RAMZbrbUcbZ+jVg7VWu+q\ntX669/E9SW5OcuoG33JxkmtrrQdqrV9JcmsW3/wBAJgy+ooAMPmOac6hUsrpSc5O8k+9TS8rpXyu\nlHJ1KeW7ettOTXLHim/bm3U6CKWUy0opN5RSbjjmVgMAMHb0FQFgMm06HCqlnJjkr5K8vNb67SRv\nTvKYJGcluSvJ73S7rvPth5UC11qvqrWeoxQeAGDy6SsCwOTaVDhUSpnN4pv922ut702SWuvdtdaF\nWuuhJG/Ncjnw3iSnrfj2hye5s39NBgBgnOgrAsBk28xqZSXJnyS5udZ65Yrtp6zY7aeS3NT7+Lok\nzyul7CylPCrJGUn+uX9NBgBgXOgrAsDkm9nEPucl+Zkkny+lfKa37ZeTPL+UclYWy4BvS/LiJKm1\nfqGU8q4kX0wyn+SlG60+AQDARNNXBIAJd9Sl7IfSCMuTAsBWWcqeqaevCABb15el7AEAAACYXsIh\nAAAAgIYJhwAAAAAaJhwCAAAAaNhmVisbhv9I8p3eI4P34DjWw+JYD49jPRyO8/Bs9lg/ctANgTGg\nrzhc/tYPj2M9PI71cDjOw9PXvuJYrFaWJKWUG6y2MhyO9fA41sPjWA+H4zw8jjWs5ndieBzr4XGs\nh8exHg7HeXj6fawNKwMAAABomHAIAAAAoGHjFA5dNeoGNMSxHh7Hengc6+FwnIfHsYbV/E4Mj2M9\nPI718DjWw+E4D09fj/XYzDkEAAAAwPCNU+UQAAAAAEMmHAIAAABo2FiEQ6WUC0spXyql3FpKuXzU\n7ZkmpZTbSimfL6V8ppRyQ2/bg0opHyml/Fvv8btG3c5JVEq5upTy9VLKTSu2rXtsy6Lf753jnyul\nPH50LZ88RzjWV5RS/r13bn+mlPK0FV/7pd6x/lIp5SdH0+rJVEo5rZTyf0opN5dSvlBK+fnedud2\nH21wnJ3XsA59xcHRVxwcfcXh0VccHn3F4RhFX3Hk4VApZXuS/53kqUkem+T5pZTHjrZVU+eCWutZ\ntdZzep9fnmRPrfWMJHt6n3Psrkly4ZptRzq2T01yRu/fZUnePKQ2TotrcvixTpI39s7ts2qtH0yS\n3t+P5yU5s/c9f9j7O8PmzCf5X7XW/5Hk3CQv7R1T53Z/Hek4J85rWEVfcSj0FQfjmugrDss10Vcc\nFn3F4Rh6X3Hk4VCSH0pya631/9ZaDya5NsnFI27TtLs4ydt6H78tyTNH2JaJVWv9RJL/WrP5SMf2\n4iR/Vhddn+SBpZRThtPSyXeEY30kFye5ttZ6oNb6lSS3ZvHvDJtQa72r1vrp3sf3JLk5yalxbvfV\nBsf5SJzXtExfcfj0FftAX3F49BWHR19xOEbRVxyHcOjUJHes+HxvNv6hOTY1yd+VUm4spVzW23Zy\nrfWuZPGkS/LQkbVu+hzp2DrPB+NlvfLUq1eUvDvWfVJKOT3J2Un+Kc7tgVlznBPnNazl/B8sfcXh\n8n46XN5TB0hfcTiG1Vcch3CorLOtDr0V0+u8Wuvjs1jO99JSyo+OukGNcp7335uTPCbJWUnuSvI7\nve2OdR+UUk5M8ldJXl5r/fZGu66zzfHepHWOs/MaDuf8Hyx9xfHgPO8/76kDpK84HMPsK45DOLQ3\nyWkrPn94kjtH1JapU2u9s/f49STvy2Jp2d1dKV/v8euja+HUOdKxdZ73Wa317lrrQq31UJK3Zrls\n0rE+TqWU2Sy+Cb291vre3mbndp+td5yd17Au5/8A6SsOnffTIfGeOjj6isMx7L7iOIRDn0pyRinl\nUaWUHVmcROm6EbdpKpRS7ldKOan7OMlTktyUxeN7aW+3S5P89WhaOJWOdGyvS3JJb7b+c5N8qyu7\nZGvWjFX+qSye28nisX5eKWVnKeVRWZz87p+H3b5JVUopSf4kyc211itXfMm53UdHOs7Oa1iXvuKA\n6CuOhPfTIfGeOhj6isMxir7izPE1+fjVWudLKS9L8uEk25NcXWv9woibNS1OTvK+xfMqM0n+stb6\nt6WUTyV5Vynl55LcnuQ5I2zjxCqlvCPJ+UkeXErZm+TXkvxW1j+2H0zytCxODHZfkhcMvcET7AjH\n+vxSyllZLJe8LcmLk6TW+oVSyruSfDGLs/y/tNa6MIp2T6jzkvxMks+XUj7T2/bLcW7325GO8/Od\n17CavuJA6SsOkL7i8OgrDpW+4nAMva9YajXcDwAAAKBV4zCsDAAAAIAREQ4BAAAANEw4BAAAANAw\n4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0LD/HwOSUSZwpJcHAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fec0a8748>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuQZWdZL/7v27e5ZDJJuCTkRkIg\nXDRWRkyB3AmigWgIVhEuWlwkGAqjhdSRm1AeL1iciuAl8COQU0QUhAkqv18AQcSUIihwMlARQi6c\nIJFJCCGIJDDTM31bvz+6V3dPz8ye7p7de6+91+dTNdXda/be/e7Ve+/1rGc97/OWqqoCAAAAQDuN\n9HsAAAAAAPSP5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALTYhiWH\nSinPKqXcVkq5vZTyho36PQAADB6xIgA0R6mqqvsPWspokq8n+dkkdya5IcmLqqq6ueu/DACAgSJW\nBIBmGdugx31ckturqvqPJCml7ExycZJDHvBLKd3PUAFAO3yvqqoH93sQsEZiRQDokaqqypFus1HT\nyk5NsnvZz3cubFtUSrmslLKrlLJrg8YAAG3wn/0eAKyDWBEAGmSjKocOlZU64IpPVVVXJ7k6cTUI\nAKBlxIoA0CAbVTl0Z5LTl/18WpJvb9DvAgBgsIgVAaBBNio5dEOSs0spDyulTCR5YZKPbtDvAgBg\nsIgVAaBBNmRaWVVVM6WUX0/yqSSjSa6pquprG/G7AAAYLGJFAGiWDVnKfs2DMI8cANbrS1VVndfv\nQcBGEisCwPr1c7UyAAAAAAaA5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABAi0kO\nAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABA\ni0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BAA\nAABAi0kOAQAAALSY5BAAAABAi0kOAQAAALSY5BCwKqWUlFL6PQwAAAC6THIIAAAAoMXG+j0AoHnq\nCqGqqha/n5iYSJLs37//oNscycjIfB56bm5ucdvY2PzHz8zMzBHvX//u2vT09Kp/NwAAAJ1JDgEH\n2bx5c5JkcnJyMQHzd3/3d0mShz70oUmSk046KUmyffv2Iz7ej370oyTJtm3bFrd973vfS5I86EEP\nOuL9v/CFLyRJrr766iTJzp07F8d3OOPj40mWEkmHspYEFwAAB2piDKUNAqyPaWUAAAAALVaakO0t\npfR/ENBCKytnHvGIRyRJrrzyyiTJs5/97MXbTk1NJVma4lXfpxdXZ+qpZ7OzsweMYfnv/tCHPpQk\n+f3f//0kS5VNn/nMZw56vHpK2+joaJKlqXLLH7MJn42wSl+qquq8fg8CNpJYEfpvGGMjVUa0RVVV\nR3yxqxwCAAAAaDGVQ9ASdVPoTZs2LW676KKLkiTXXnvtAbftZVXQWqxlXCsrnZb7zne+kyT5yEc+\nkiS5/PLLF29bP/byaiJoOJVDDD2xIvReE84Tm6Bp8TCsh8ohAAAAADpSOQQtUVfQ/NzP/VyS5GMf\n+9hiL5+6B09bzM3NJVmqDtqyZUuS5Oabb17sXfSWt7wlyYGVVsvvU0pxRY2mUDnE0BMrwsYT16yd\nqiIGhcohAAAAADpSOQQtcffddydJjjnmmCTJscce28/hNNLs7OziVbO6mqpe7ezd7353kmTnzp1J\n5iuK9CWiIVQOMfTEirCxmnBOOCxUE9FEKocAAAAA6EjlEAyB+grF8vdzXdWysp9QvWoZq7OyL1O9\nCtqb3vSmvO1tb+vbuGAZlUMMPbEidFcTzgGHnQoimmQ1lUOSQzBEzjrrrCTJN77xjT6PpF1WHvxH\nR0eTzE9Tgx6QHGLoiRXh6DThnK/tJIvoJ9PKAAAAAOioXetXw4AbHx9PslSZ8rznPS9JcumllyZJ\nnvSkJ/VnYC1XX42rm1ZfddVVSZJbb711cRoaAEAvqRZqluV/D1VENJHKIQAAAIAW03MIBsgFF1yQ\nJPnYxz6WZKm5dF1JRH/VTcDrv8ff//3f56KLLkqy9Leam5vrz+AYZnoOMfTEinBkTTivY21UENEr\neg4BAAAA0JHKIWi4F7/4xUmSv/zLv1zsXzMxMZFk6QqRqw7N0OnvsXKbSiK6SOUQQ0+sCIfXhPM5\nukNMz0ZROQQAAABAR1Yrg4Za2b8mWaoYqrm60Cyd/h4zMzNJkhtuuCFJ8pSnPCWJyiEAYO1UCw2n\nlX9XsT69ZFoZNMSZZ56ZJPnmN7/Z34Gwoaanp5Mk4+PjSZYO+ps3b86+ffv6Ni4GmmllDD2xIsxr\nwrkb/SFRxNEwrQwAAACAjiSHoA9KKSmlZNu2bdm2bVs2b96cb37zm6qGWmBsbCxjY0szequqSlVV\nueaaa/o4KgCgyep4gfbyGmCjSQ4BAAAAtJieQ9AHdeXIH/3RHyVJXv3qV5tH3HKTk5PZsmVLEnPK\nWTM9hxh6YkXaqgnnajSTeJG10HMIAAAAgI4sZQ99UK9YtXfv3j6PhKaoq4aS5Pbbb0+SPOIRj0iS\njIzM5/Etew8A7aBiiCOpXyMqiOgWlUMAAAAALaZyCHqoXo1sdnY2SbJ169Z+DoeGevjDH54kueOO\nO5Ikj3/845Mk99xzT7+GBAD0gIoh1qqqKtVDdIXKIQAAAIAWs1oZbKDR0dEkyczMTJ9HwiCqK8zq\n15GrQhyG1coYemJF2qAJ52UMNrEih2O1MuihUkpKKdm0aVM2bdqUK664IjMzMxJDrNvIyMhiM+ok\n+Zd/+ZfF7+vXW/0PABhMVVVJDNEVXkscDckhAAAAgBYzrQw2yO7du3PyyScnWZoWBEdjcnIy//Vf\n/5VkaZn7enn7ukKtCZ/p9JxpZQw9sSLDyDGbjaa6nJppZQAAAAB0ZCl76LL3vve9SZKHPOQhKobo\nqs2bN+chD3lIkuT73/9+kuQJT3hCkuTrX/96kmTfvn39GRwAsCoqhuiVla81lUR0onIIAAAAoMX0\nHIIua8J7iuF1uCtAP/VTP5UkufHGGxf7ENEaeg4x9MSKDAMxIk2geqid9BwCAAAAoCM9h+Ao1dn3\nz33uc30eCW1wuKs9//Zv/5ZkfkWzE044IcnSKnmzs7O9GRwAAI1WV7CpIGIlySFYh1JKJiYmkiTP\neMYzkiSPf/zj+zkkWq5+PY6Ojh72oF//rKwdAHrLsZemkSRiJdPKAAAAAFpMQ2o4Sk14D0EndVXR\n+Ph4kmTv3r39HA7dpyE1Q0+syKATLzIoVBINJw2pAQAAAOhIcgjWYWRkJFVVuQrEQJiamsrU1FQu\nvPDCXHjhhSmluCoEAD0gXmTQeL22l+QQAAAAQIvpOQTrcN9992XTpk1Jlvq5qMSgqVauRrH8axOO\nARw1PYcYemJFBo3jK8PA+c3w0HMIAAAAgI7G+j0AGAQjI/N51JtuuilJsn379n4OB9Zk5VWfycnJ\nJMlxxx2XmZmZJMnc3FzPxwUAw0bFEMNkZfU5w03lEAAAAECLqRyCVXjlK1+ZJHnEIx7R55HA0du8\neXOSZP/+/a4EAQAAkkOwXH2iXDeZ/sVf/MUkybve9a6+jQk2yv79+/OpT30qSXLxxRcnSfbt29fP\nIQHAQDKdjGFmelk7mFYGAAAA0GJHtZR9KeWOJD9MMptkpqqq80opD0hybZIzk9yR5PlVVf33ER5H\nqp1GGR0dTZLs3r07SXLSSSclWWpMDcPGlaCBZil7GkusyLBTMUSbiBcHV6+Wsj+/qqodywLTNyS5\nvqqqs5Ncv/AzAADtJFYEgIbbiJ5DFyd5+sL3f5Hkn5O8fgN+D3RVKSXj4+NJksc97nFJkpNPPrmf\nQ4INVy9l/6//+q9Jkic/+clJXAkFNpRYEQAa5mgrh6ok/1BK+VIp5bKFbSdVVXV3kix8PfEofwcA\nAINJrAgAA+BoK4eeVFXVt0spJyb5dCnl1tXecSFAuOyIN4QeqaoqU1NTSZLPfvazi9sS82sZXmNj\n84eBxz/+8UlUDAFdJ1ZkaDlm0jbOjYbbUVUOVVX17YWv303y/yZ5XJJ7SiknJ8nC1+8e5r5XV1V1\nniaaAADDSawIAINh3cmhUsoxpZRj6++T/FySm5J8NMlLF2720iTXHe0goVd27NiRHTt2LP5cSpEZ\np1WOOeaYHHPMMf0eBjAExIoMq6qqVA0BQ2fdS9mXUs7K/BWgZH562gerqvrDUsoDk3w4yUOTfCvJ\nJVVVff8Ij+XTlUZwoKftJEMHkqXsaSSxIsNKvEjbiRcHz2qWsl93cqibHPBpiia8H6CfHOwHkuQQ\nQ0+sSJOIF2k78eLgWU1yaCOWsoeBMjExkSR57nOf2+eRQP9MTk4mSd773vcmSX7t134tSbJ///6+\njQkAgObRmHo4He1S9gAAAAAMMJVDtF69fP21117b55FA/2zevDlJcuONNyZJZmdnk8xfEVI+DwCm\nkwHDTeUQAAAAQItpSA0LmvBegKYwh3ygaEjN0BMr0gRiRTiQeHFwrKYhtcohAAAAgBbTc4jWGh8f\nT5J8/etfT5JMT08vbgMAgETFEBxOVVWqh4aIyiEAAACAFlM5ROvU2e3p6ekkyZlnntnH0UCz1KuU\nPfjBD06S/OAHP1h8rwAAAMNJcojWqJNCExMTSZI3v/nNSZLJyckk80t5K4uk7er3wBe/+MUkyY4d\nOySHAABgyJlWBgAAANBilrKndcbG5gvm/vM//zNJ8pCHPCRJMjIiVwr1MaGuINqxY0f+/d//vZ9D\n4sgsZc/QEyvSD004T4KmM/NiMFjKHgAAAICOJIdonZmZmczMzOSUU07JKaeckpGREVVDsKCUcsAV\noF/6pV86aBsAACTzFXaq7IaDM2IAAACAFtNziNZqwmsfBoGqocbTc4ihJ1akH8SKsHbixmbScwgA\nAACAjsb6PQAAmmv//v35gz/4gyTJW97ylsVtAADA8DCtjNYYHx9Pkjz96U9Pknz84x9PkkxMTPRr\nSDBQlAk3lmllDD2xIr3WhHMkGETixWYyrQwAAACAjlQO0VpNeO3DIJibm0uSXHHFFUmSN77xjf0c\nDgdTOcTQEyvSa+JEWB+VQ82kcggAAACAjlQO0VpNeO3DILn11luTJD/+4z+eZOk95L3UdyqHGHpi\nRXrNsQ2OjgqiZlE5BAAAAEBHlrIHYFUe9ahHHfCzq6oAADAcVA4BAAAAtJjkEACrUkpJKSXHHXdc\njjvuuH4PBwAA6BLJIQAAAIAW03OI1qg75o+OjvZ5JDCY5ubmkiSvf/3rkyS/93u/lyTZt29fEj2I\nAACYV8eFVi0bHJayp7Wa8NqHQeZg3xiWsmfoiRXpNXEidId4sRksZQ8AAABAR5JDAAAAAC0mOQQA\nAADQYhpS01qapMHa1O+ZugH1JZdckiT5m7/5mwP+HwAGXSnFcQ1oFZVDAAAAAC1mtTJao64QGhub\nL5i7+uqrkyQve9nL+jUkGGhf+MIXkiRPeMIT+jyS1rNaGUNPrEg/NOE8CYaF2Rr9ZbUyAAAAADrS\nc4jWWNlj6IwzzkiSzMzMJFmqKAJW55xzzun3EAAAgC5QOQQAAADQYkolaJ3p6ekkyac//ekkyfnn\nn9/P4cDA2rZtW7+HAAAAdIGG1LReE94DMMg0GOw7DakZemJF+kmsCEdPvNhfGlIDAAAA0JFpZbRW\n3YD6gx/8YJLkkksuyfj4eD+HBAAAAD2ncggAAACgxfQcovUe+MAHJkm+9a1vZevWrX0eDQwec8j7\nTs8hhp5YkX5qwvkSDDrxYn/pOQQAAABAR5JDtFYpJaWUTE5OZnJyMu985zv7PSQYKFVVpaqqbN26\nNVu3bnVFCIChVMeMAMNMcggAAACgxfQcggWnn356vvWtb/V7GDBwXE3tOz2HGHpiRZqgCedNMKjE\ni/21mp5DlrKHBd/+9rdz/fXXJ0l+5md+ps+jgeaqg+M9e/YkSV784hcnST70oQ9lZmamb+MCgI1U\nn9xKEsHaVVUlQdRwppUBAAAAtJhpZXAITXhfwKA4/vjjkyT333+/905/mFbG0BMr0kSOebA2Kof6\nx1L2AAAAAHSk5xAsMzExkSS58cYbkyQPf/jDkyTHHnts38YETTU3N5ck+cAHPpAkecELXpDJyckk\nrqYCAMAgUTkEAAAA0GJ6DkEHv/Vbv5Uk+V//638lSUZHR/s5HGg088j7Rs8hhp5YkaZqwrkUDBox\nY+/pOQQAAABARyqHYBXq98ny94uMNxxo586dedGLXtTvYbSRyiGGnliRpmvCORUMCudRvadyCAAA\nAICOrFYGq1Bnt7/61a8mSc444wwrmMGCqampJMm+ffuyZcuWJFlctQwA2qCOFVUQAYPKtDJYh6uu\nuiqvfOUrkyiLhOW8H/rCtDKGnliRQdOEcyxoKvFi75lWBgAAAEBHKodgner3zv79+5MkmzZt6udw\noG/q98LMzEwmJib6PJpWUjnE0BMrMqiacK4FTaNyqPdUDgEAAADQkeQQrNOWLVuyZcuW7N69O7t3\n7+73cKBvpqenMz09nZ07d2bTpk3ZtGlTSimuCgHQeo6HwKCQHAIAAABoMUvZwzrt27cvSXL22Wcn\nST75yU8mSX72Z382STI6OtqfgUGfXH311ZmdnU2ixwIALFdKcWwEGk3lEAAAAECLWa0MumTLli1J\n5vuv1F9nZmaSJGNj80V69fvN3HOGkdd131itjKEnVmSYNOH8C/pBrNg/q1mtzLQy6JJ6mln9oVdK\nyT333JMkOf7445MsBQPj4+NJkpGRkcXtPiwZFPXreGpqKkly3XXX9XM4ADBQVsZ8kkVAE5hWBgAA\nANBippXBBpqYmEiSnHXWWUmSSy+9NEnykpe8JEly4oknJpmvOtq8eXMfRgjrV0+hfOxjH5skueWW\nWxYbUtNTppUx9MSKtEUTzs1go5gp0T+rmVamcggAAACgxVQOQQ/Uy9rXjanrRtV1lcUHP/jBvOhF\nL0qS7N+/P0myadOmAx5DXyKayuuy71QOMfTEirRVE87VoFvEjP2jcggAAACAjlQOQQ/V2fKVS9ov\nfx8++clPTpJ89rOfPeD/ZmZmFlc5gyZxFajvVA4x9MSKcKAmnMPBWokZ+0flEAAAAAAdjfV7ANAm\nK6/yHOqqz65du5IsZdZPOOGEJMnnP//5bN26NUly+umnJ0mmpqaSLPU0qr8CADC8DlWBoZqIJlM1\n1HwqhwAAAABaTOUQNMy+ffsO+PkHP/hBkuTRj370Ys+hBz7wgUmSX/mVX0mSXHrppUmShz3sYUmS\nkRF5XzZOvdreTTfdlCSZmJhIslTJBgD03uEqM1QUAauhITUMkPqgXyd/xsbm87tzc3NJkrPOOitJ\ncuuttx7xsaqqUt7JmtTHizoJ9JrXvCZJcs011yRJ9u/f35+BoSE1Q0+sCN3Vi3NAySqWc97RXxpS\nAwAAANDRESuHSinXJPmFJN+tquqchW0PSHJtkjOT3JHk+VVV/XeZTwf+WZILk+xN8rKqqr58xEG4\nGgTrUmfg6/fx8uk9l19+eZLkne985yHvu3///sXKI42sWYu6Uu0BD3hAkuSHP/zhAdvpOZVD9JVY\nEYZDNyt61lIlopKoHVQO9Ve3Kofel+RZK7a9Icn1VVWdneT6hZ+T5NlJzl74d1mSq1Y7WAAABtL7\nIlYEgIG2qp5DpZQzk3x82dWg25I8vaqqu0spJyf556qqHlVKec/C9x9aebsjPL50MXTZyqqildtf\n8IIX5L3vfW+SZPPmzUk0smZtXAFqDJVD9J1YEYbPWip6jjYmUD00vMSLzbCRPYdOqg/iC19PXNh+\napLdy25358K2g5RSLiul7Cql7FrnGAAAaCaxIgAMkG6XCRwqG3XINHBVVVdXVXWeq52wMaqqOuRV\nmHr7Rz7ykRxzzDE55phjsn379mzfvr0PowSgZcSKMCBKKQf863Sbbv0uoH/Wmxy6Z6FEOAtfv7uw\n/c4kpy+73WlJvr3+4QEAMIDEigAwQNabHPpokpcufP/SJNct2/6SMu+nk9x3pDnkQH9MT08vfr9n\nz57s2bNn8arNueeem3PPPfeA2wyjw1VX0dnu3buze/fuI98QaDOxIgyZlZVEw17p07bnC6tZyv5D\nSZ6e5EFJ7knyP5P8f0k+nOShSb6V5JKqqr6/sDzpOzO/YsXeJL9SVdUR54lrMgjNNGyJk3379iVJ\nvvzl+VWTn/CEJyRZSpSNj48f1Mh7EAOBjR77IO6TIachNX0lVgS6pQmx53rinCaMu1s6Pf/1PE9x\nYzOspiH1qlYr22gO+NBMTfh86CbJoe4YxH0y5CSHGHpiRWiHJsSekkOSQ8NoNcmhsV4MBKDfqqrK\n3NxckuSZz3xmkmRycjJJ8vM///NJko9//OOLB72pqakkyejoaJJkbOzwH5f9TCTVCa+JiYnFbbOz\ns0nmk12HUv9//dwAAFi/lRcXB8la4tdBfp4cWbdXKwMAAABggKgcAhaNjMzni5/61Kcmma+s2bx5\nc5LBLwmdnp7Ozp07kxxc6fOP//iPiz/Xz/cFL3hBkuSyyy5LkjzxiU886DFnZmaSHFypU+/HJIvV\nSvW2uiKprkSqH2N55U99m+Xbav/xH/+RJDnrrLOSJBdffHGS5IQTTkiSXH/99TnzzDOTJLt2HbqN\nx1objdf7a8+ePUlcNQIAOJTl8XIT4qRBj9/pLZVDAAAAAC2mITVwWE34fOiWqampPO1pT0uyVFFT\nV+0sr4Spv1/Zr6eu5lmurtB5+ctfniR52cteliQ5/fTTF29z7733Jkke/OAHJ0n+5E/+JMlS36PX\nvva1SZJPfepTi/e56KKLkiQf+9jHkhxYZVSPq67+2bRpU5Jk//79i8/lcH+3+nH++q//Okly4YUX\nHrI6aaX6sd/znvckSV7/+tcnWep3RN9pSM3QEyvCcGtSzLlR1TbrfY6HG08/el6u5TmoWmqW1TSk\nVjkEAAAA0GIqh4DDqqpqoJd0X6nbz2HlSmZ176G6Imn5/9Xbtm7dmiTZu3dvkhxUCZQs9Ro6VLVS\nN/r9HO3n/jC8FoaMyiGGnlgRhlsTzklr4pzDUzk0uFQOAQAAANCR5BBwkPHx8YyPj+eCCy7Inj17\nFlepGkR19dP09HSe85zn5DnPeU7XHnt2djazs7OZmprK1NRUZmZmDqgaSnLQtsnJyUxOTi7+PD09\nfdDqYfXjdXo+/fCjH/0oP/rRjzI6OrpYNQUAcDSaVDXEofUz/qR3TCsDOmrCZ0Q3TE1N5ZRTTkmS\n3HfffUlyUCKnLUwrGzqmlTH0xIowfJoaY4pzlhzN38h+bBbTygAAAADoaKzfAwCara6uqRsrD6rR\n0dHcddddSZJt27b1eTSDpb5qVC9df8455yRJbr755iTJ3NxcfwYGADRWUyuDgENTOQQAAADQYnoO\nAR3993//d5Lk+OOP7/NIuqftc6D1HBo6eg4x9MSKMFiacI55tMQ73fk72o/NoOcQAAAAAB0NdhMR\nYEOVUvKBD3wgSXLppZcmSTZv3rz4f4Om7p90/vnnJ0k++9nPHrCdQ6uvGk1PTydJrrzyyiTJa1/7\n2iTzK8Etvx0AAINLTNdOKocAAAAAWkzPIaCjepWyPXv2JEkmJib6OZyuqCtdPvnJTyZJXvjCFyZZ\nWo1rENSVWys/w7du3Zq9e/cmmV+hLUlmZ2cPedv1+uEPf5gk2b59e1cej6Om5xBDT6wIg6UJ55jd\nMojV8kerm3+/Nu6/JtJzCAAAAICO9BwCOhoZmc8hv+Utb0mSvO51r0uSbNu2rW9jOlrj4+NJkosv\nvjjJ0nMZhMqh+upLvXrcqaeemiS56aabkiTXXnttfuEXfiHJ0lWfbl2xqSuQ7r333iRLVWV6NgEA\nw2p5FU0bqmCGqeqLtTGtDOho5fSl73znO0mSk046qW9j2ijdPuCXUg5K0NRf5+bm1jyuqqpyzDHH\nJEk++MEPJkkuuOCCJMmmTZuSzE+Z6/bUv/o51NPxrrjiiiRLCcO6UXUTjictZVoZQ0+sCINlWGOC\nYUoO9epvNEz7bJCZVgYAAABARyqHgDV5//vfnyT55V/+5STDdTWg28/lxBNPzHe/+90kyUUXXZQk\n+fznP58k+d73vnfQ7euKn7pCp57+du655yZJbrjhhsXb1pVHKyuSeuHWW29NkjzmMY/p2e+kI5VD\nDD2xIgyeJpxnbpRBjX/78TcZ1H01bFQOAQAAANCRyiFgXZrw2XG06udQN6J+xzvekTe96U1J1tdk\nue77Uz/ezMzMYtPmeltdDVQvM7/cpz71qSRLfYTqMdSP0W91Q+qvfe1rSZLzzpsvVql7DtE3KocY\nemJFGDzDECsezkZVwwzjPlM51AwqhwAAAADoqBmXo4GBs3IVs0FUP4e6iuf973//qp9PKSVbtmxJ\nkrztbW9LkrzqVa864DbLK37qqqJOV0+e8YxnHPL+3V6Sfq3q319XMr3vfe9LkoyMjBwwrkF+LQAA\n3SU+ODz7hCZSOQQAAADQYnoOAetSXw162cteliS55pprFv+v35Uu67Xe8Tbhc7QX6p5DZ5xxRpLk\n7rvvTrK0chp9o+cQQ0+sCINvmOKlo4lxh2k/rMagnQ8Mq9X0HJIcAo7Ktm3bkiSnnHJKbrvttiRL\nDYrr5suDYq0HryZ8fvZSnRz67d/+7STJFVdc0c/hsERyiKEnVoThMcjxk6TQ2kkONYOG1AAAAAB0\npCE1cFT27NmTJPnGN76Rk08+OUnymc98JknyyEc+sm/jWo26wfKxxx6bZP7KxuGu6tRXPerG0q97\n3et6MMJmWNmQ+t57702STExMJEmmpqb6MzAAYOBoVN0OKoYGj8ohAAAAgBbTcwjomnpJ+Lo3za23\n3pokOeuss5I0twfReq5sTE1NNfb5bJT6eFFXWu3du/eA7fSNnkMMPbEiDK9BiCP0Glo7lUPNoucQ\nAAAAAB2pHAI2zNjYfFuzHTt2JEluuOGGg66eNOGqwmrGsHJ+fBM+O/ulCX8zDqByiKEnVoTh1vS4\nSuXQ2okXm0XlEAAAAAAdWa0Yn3gmAAAYg0lEQVQM2DD16lZf+cpXkhy4Gljdr2br1q09H1c9hpGR\nkcVxLd/eSb0S2/79+xdX63JlBABg/VbGUsNQbTMMz4F2UTkEAAAA0GIqh4ANNzU1tfh9fWXo2c9+\ndpLkE5/4RM/Hs56rU89//vOTJE960pOSLK3M1iaugAEAvbCWqu6NpkKctpAcAvriH/7hH5IsJVlm\nZ2c39PdVVbWYpHr7299+2NvVAUA9ZewZz3hGkmTnzp0bOr4mq/fbxz/+8SRL+2Z50g8AoNuWJ2aa\nkChajUEZJ6xkWhkAAABAi1nKHmiU5UvFb1QZ79jYfNHkaqqV7rvvviTJtm3bkiw1sW6je++9N0ly\n4okn9nkkrGApe4aeWBGo9er8dT1xaBPOrZvCdLxmsZQ9AAAAAB3pOQQ0Ql3N86u/+qtJkquuumpx\nW30V5miuQCyvRFpNxdCZZ56ZJNm8eXOSdlcM1fu/3hdNahIJALSLOAQ2RnvPdgAAAADQcwholro6\nZd++fYtXhOpVsepVstZjamoq559/fpJk165dSZLp6ekDbjM+Pp6ZmZkkG7962iCp9/9f/dVfJUle\n9apXHbC9CceRltNziKEnVgSOpNvxyFoq1sVCB9NzqFn0HAIAAACgI5VDQKMsn0d+wgknJEmuu+66\nJMlTnvKUxf9bfttOln/GraZv0Nzc3Kofuy3qCqGnPe1pSZYqr+oqK/pO5RBDT6wIHEm3zmtVDHWH\nWLpZVlM5pCE10CjLD7L3339/kuSpT31qkuQTn/hEkuSJT3xikuS444474uPUU8fe9a53LU5Zq5Md\nmzZtSrKU9PjkJz/ZnScxZOrpfF/4whf6PBIAgEPrZaNqSaHDkxQaXKaVAQAAALSYaWXAwLnkkkuS\nJB/+8IcXtx1uqlndWPqcc87J7bffnmRpOtTo6OgBP9OZK0GNZVoZQ0+sCKzFes5x19qugEMTLzaT\nhtQAAAAAdKRyCBhY55xzTr761a8mSfbv35/k4Gqgus9QKeWguehN+PwbJK4ENZbKIYaeWBFYj7XE\neiqHukO82EwqhwAAAADoSOUQMLBGR0ezZcuWJMkrXvGKJMnv/M7vJElOP/30JMmePXsOul8TPvcG\nkStBjaVyiKEnVgSORqfY70jxjbhxbcSLzaRyCAAAAICOVA4BA21kZD7HPT4+nmTp6k69Sln9dbkm\nfO4NIleCGkvlEENPrAh0w+FWt13NfVgd8WIzqRwCAAAAoKOxfg8A4GjMzc0lWVqt7HBGR0dzxhln\nJEmmp6eTLFUbAQAw/FS1wOFJDgGtMDY2lte85jVJlpa5Hxub/wgUKBze7OxsbrnlliRLybQ6uQYA\nAAwH08oAAAAAWkxDaqB1mvC513T1PpqamsrrXve6JMl73vOeJEeewkfPaUjN0BMrAv0iblwbFfnN\npCE1AAAAAB2pHAJa5+abb06SPOYxj0myvmVN22Jubi6jo6NJkpGRkcVtNIrKIYaeWBHopyacMw8K\n8XQzqRwCAAAAoCOVQ0Br1Z9/e/fuTZJs3rx5sTqGeTMzM/nGN76RJDn33HOT6DnUQCqHGHpiRaAJ\nmnDu3HQqh5pJ5RAAAAAAHY31ewAA/VJf2XjDG96QJHnrW9+a6enpJMn4+HiSzv2IhrlXUf3cZmdn\n82d/9mcHbAMAaKM65hMTMYxMKwNab/PmzUmSffv25bzz5mfn3HDDDUmSO++8M0ly2mmnHXS/enrV\npk2bDtg+bEmj6667Lkny3Oc+t88j4TBMK2PoiRWBJmvCOXVTDEv8O2xMKwMAAACgI9PKgNZb3mB5\n165dSZauekxMTCRJpqamDrrfa17zmiTJH//xHx+wvb7tyMjI4vS02szMTJJkbOzIH7+zs7NJsriU\nfD9MT08vVlZ12hcAAG3VlGoZFUwcDZVDAAAAAC2m5xBAl9RXjZ73vOclSS677LI885nPPOA2//zP\n/5wkefrTn37Ex7vtttuSJI961KOSJJOTk9myZUuXRttZfWyYmprKK17xiiTJtddemySLTbtpDD2H\nGHpiRYC168e5flOqqDiQnkMAAAAAdKRyCKDL6t48pZQD+hklB66Mdrj71T196lXQ6se48sor8xu/\n8RtJersi2p/+6Z8mWeqxROOoHGLoiRUB1q+X5/wqh5pJ5RAAAAAAHVmtDKDLOq3mdaiKocPdb2XV\n0Zve9KY88YlPTJLs2LEjyfyKaMnGXaWZnp7OaaedlmSpkqkeZxMqTwEA6KyOE8VudKJyCAAAAKDF\n9BwCGED1Z/fMzEySZGxsYwpB9+3bl6c97WlJkhtvvDFJ58oo+kLPIYaeWBHg6PXi3F/PoWZaTc8h\nySGAAXTGGWckST796U8nSc4+++wN+T1VVS0e5B3sG0tyiKEnVgTojo0+/xcvNpOG1AAAAAB0dMTk\nUCnlmlLKd0spNy3b9rullLtKKTcu/Ltw2f+9sZRyeynltlLKBRs1cIA2u+uuu3LXXXflkY98ZB75\nyEdu2O8ppeSmm27KTTfdlImJiUxMTKSU4qoQsEisCDA4xHEczmoqh96X5FmH2P4nVVXtWPj3iSQp\npfxYkhcm+fGF+7yrlDLarcECANA474tYEQAG2hE7mFZV9S+llDNX+XgXJ9lZVdX+JN8spdye5HFJ\nPr/uEQJwkNnZ2SRLS9k/+tGPTpLccsstXb8adM455yTRiBo4NLEiAAy+o+k59OullK8slBKfsLDt\n1CS7l93mzoVtBymlXFZK2VVK2XUUYwAAoJnEigAwINabHLoqycOT7Ehyd5K3L2w/1OXqQ7ZDr6rq\n6qqqzrPCCsDaVVWVqqoyNzeXubm53Hbbbbntttu6XjVUVVXuv//+3H///RkZGVmsVAI4ArEiQIPp\nPcRK64ryq6q6p6qq2aqq5pL878yXAyfzV39OX3bT05J8++iGCADAIBErAsBgWVdyqJRy8rIffzFJ\nvTrFR5O8sJSyqZTysCRnJ/k/RzdEAA6nvuozNjaWsbGxfOc73+n642/fvj3bt29frFICOBKxIgAM\nliM2pC6lfCjJ05M8qJRyZ5L/meTppZQdmS8DviPJK5OkqqqvlVI+nOTmJDNJLq+qanZjhg4AQL+J\nFQFg8JWqOuQ0794OopT+DwJggNVzxv/8z/88L3nJSw7Y1u3fQeN8SU8Whp1YEWBjbFQ+QNzYLFVV\nHfEPIjkEMGQc5FtHcoihJ1YE2Fjdjh/Fjc2ymuSQZWcAAAAAWuyIPYcAGCz1lZpuXAGqqiqTk5NJ\nkre+9a1Jkje/+c1JktlZbUIAAGAYqBwCAAAAaDGVQwBDZmRkPu//8pe/PEny7ne/O0kyMTGx5scq\npWRsbP5Qce211y5uAwBgeHSr8lycOLhUDgEAAAC0mNXKAIbcF7/4xSTJ4x73uCRLV4TWemXHlaDG\nsloZQ0+sCNAbKoeGk9XKAAAAAOhI5RDAkDvuuOOSJJ/73OeSJGeccUaS5Nhjjz3ifWdnZzM6OprE\nlaAGUznE0BMrAvTO0eQIxIvNtJrKIQ2pAYbcfffdlyT5iZ/4iSTJ61//+iTJH/7hHy4mfmpzc3NJ\nlppa7927N4997GOTZPG2lrAHABhe3WpOzWAxrQwAAACgxUwrA2ipycnJbN68+YBtd9xxR5KlKqEr\nr7wy73jHO5Ik+/fv7+n4WDXTyhh6YkWA3ltLrsB0smbTkBoAAACAjvQcAmip7du3Z3p6+oBt4+Pj\nSbK4vZRivjkAQAutpveQiqHhoXIIAAAAoMVUDgG01MqqoUNtUzUEANBuqoPaQeUQAAAAQItJDgEA\nAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJ\nDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAA\nQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQ\nAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0\nmOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEA\nAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJ\nDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAA\nQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC0mOQQ\nAAAAQItJDgEAAAC0mOQQAAAAQItJDgEAAAC02BGTQ6WU00sp/1RKuaWU8rVSyqsXtj+glPLpUsr/\nXfh6wsL2Ukq5spRyeynlK6WUx270kwAAoD/EigAw+FZTOTST5H9UVfWYJD+d5PJSyo8leUOS66uq\nOjvJ9Qs/J8mzk5y98O+yJFd1fdQAADSFWBEABtwRk0NVVd1dVdWXF77/YZJbkpya5OIkf7Fws79I\n8tyF7y9O8pfVvC8kOb6UcnLXRw4AQN+JFQFg8K2p51Ap5cwkP5nki0lOqqrq7mQ+KEhy4sLNTk2y\ne9nd7lzYtvKxLiul7Cql7Fr7sAEAaBqxIgAMprHV3rCUsi3J3yb5zaqq7i+lHPamh9hWHbShqq5O\ncvXCYx/0/wAADA6xIgAMrlVVDpVSxjN/sP+rqqo+srD5nroEeOHrdxe235nk9GV3Py3Jt7szXAAA\nmkasCACDbTWrlZUk701yS1VVf7zsvz6a5KUL3780yXXLtr9kYSWKn05yX11SDADAcBErAsDgK1XV\nuUq3lPLkJJ9N8tUkcwubfzvzc8k/nOShSb6V5JKqqr6/ECC8M8mzkuxN8itVVXWcK65UGADW7UtV\nVZ3X70HQXmJFAGi2qqoOO9e7dsTkUC844APAukkOMfTEigCwfqtJDq1ptTIAAAAAhovkEAAAAECL\nSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAA\nAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjk\nEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAA\ntJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4B\nAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECL\nSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAA\nAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjk\nEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAA\ntJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4B\nAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECL\nSQ4BAAAAtJjkEAAAAECLSQ4BAAAAtJjkEAAAAECLHTE5VEo5vZTyT6WUW0opXyulvHph+++WUu4q\npdy48O/CZfd5Yynl9lLKbaWUCzbyCQAA0D9iRQAYfKWqqs43KOXkJCdXVfXlUsqxSb6U5LlJnp/k\nR1VVvW3F7X8syYeSPC7JKUn+Mckjq6qa7fA7Og8CADicL1VVdV6/B0F7iRUBoNmqqipHus0RK4eq\nqrq7qqovL3z/wyS3JDm1w10uTrKzqqr9VVV9M8ntmT/4AwAwZMSKADD41tRzqJRyZpKfTPLFhU2/\nXkr5SinlmlLKCQvbTk2ye9nd7swhAoRSymWllF2llF1rHjUAAI0jVgSAwbTq5FApZVuSv03ym1VV\n3Z/kqiQPT7Ijyd1J3l7f9BB3P6gUuKqqq6uqOk8pPADA4BMrAsDgWlVyqJQynvmD/V9VVfWRJKmq\n6p6qqmarqppL8r+zVA58Z5LTl939tCTf7t6QAQBoErEiAAy21axWVpK8N8ktVVX98bLtJy+72S8m\nuWnh+48meWEpZVMp5WFJzk7yf7o3ZAAAmkKsCACDb2wVt3lSkhcn+Wop5caFbb+d5EWllB2ZLwO+\nI8krk6Sqqq+VUj6c5OYkM0ku77T6BAAAA02sCAAD7ohL2fdkEJYnBYD1spQ9Q0+sCADr15Wl7AEA\nAAAYXpJDAAAAAC0mOQQAAADQYpJDAAAAAC22mtXKeuF7SfYsfGXjPSj2da/Y171jX/eG/dw7q93X\nZ2z0QKABxIq95bO+d+zr3rGve8N+7p2uxoqNWK0sSUopu6y20hv2de/Y171jX/eG/dw79jUcyHui\nd+zr3rGve8e+7g37uXe6va9NKwMAAABoMckhAAAAgBZrUnLo6n4PoEXs696xr3vHvu4N+7l37Gs4\nkPdE79jXvWNf94593Rv2c+90dV83pucQAAAAAL3XpMohAAAAAHpMcggAAACgxRqRHCqlPKuUclsp\n5fZSyhv6PZ5hUkq5o5Ty1VLKjaWUXQvbHlBK+XQp5f8ufD2h3+McRKWUa0op3y2l3LRs2yH3bZl3\n5cJr/CullMf2b+SD5zD7+ndLKXctvLZvLKVcuOz/3riwr28rpVzQn1EPplLK6aWUfyql3FJK+Vop\n5dUL2722u6jDfva6hkMQK24cseLGESv2jlixd8SKvdGPWLHvyaFSymiS/yfJs5P8WJIXlVJ+rL+j\nGjrnV1W1o6qq8xZ+fkOS66uqOjvJ9Qs/s3bvS/KsFdsOt2+fneTshX+XJbmqR2McFu/Lwfs6Sf5k\n4bW9o6qqTyTJwufHC5P8+MJ93rXwOcPqzCT5H1VVPSbJTye5fGGfem131+H2c+J1DQcQK/aEWHFj\nvC9ixV55X8SKvSJW7I2ex4p9Tw4leVyS26uq+o+qqqaS7ExycZ/HNOwuTvIXC9//RZLn9nEsA6uq\nqn9J8v0Vmw+3by9O8pfVvC8kOb6UcnJvRjr4DrOvD+fiJDurqtpfVdU3k9ye+c8ZVqGqqrurqvry\nwvc/THJLklPjtd1VHfbz4Xhd02Zixd4TK3aBWLF3xIq9I1bsjX7Eik1IDp2aZPeyn+9M5yfN2lRJ\n/qGU8qVSymUL206qquruZP5Fl+TEvo1u+Bxu33qdb4xfXyhPvWZZybt93SWllDOT/GSSL8Zre8Os\n2M+J1zWs5PW/scSKveV42luOqRtIrNgbvYoVm5AcKofYVvV8FMPrSVVVPTbz5XyXl1Ke2u8BtZTX\nefddleThSXYkuTvJ2xe229ddUErZluRvk/xmVVX3d7rpIbbZ36t0iP3sdQ0H8/rfWGLFZvA67z7H\n1A0kVuyNXsaK/387d6waVRTEYfz7Y9RC7AQbLVLYWwo2qSzsLAQtNIiFRXwCG1srX0C0UyGFwRSi\nr2AaQaOtSAgknY2VcSzuLkbZbczuvbt7v19zd+9uMQwDZxjOObMwHNoBzh/6fg7Y7SiWhVNVu4Pn\nPrBBs7Vsb7iVb/Dc7y7ChTMut9b5hFXVXlUdVNUv4Al/tk2a6yNKcpxmEXpeVa8Gr63tCRuVZ+ta\nGsn6nyJ7xda5nrbENXV67BXb0XavOAvDoS3gQpLlJCdoLlHa7DimhZDkVJLTw8/AFeATTX5XB39b\nBV53E+FCGpfbTeD24Lb+S8D34bZL/Z9/zipfo6ltaHJ9I8nJJMs0l9+9bzu+eZUkwFPgS1U9PvST\ntT1B4/JsXUsj2StOib1iJ1xPW+KaOh32iu3ooldcOlrIR1dVP5PcB94Bx4BnVbXdcViL4iyw0dQV\nS8CLqnqbZAtYT3IX+AZc7zDGuZXkJbACnEmyAzwEHjE6t2+AqzQXg/0A7rQe8Bwbk+uVJBdptkt+\nBe4BVNV2knXgM80t/2tVddBF3HPqMnAL+Jjkw+DdA6ztSRuX55vWtfQ3e8WpslecInvF9tgrtspe\nsR2t94qp8rifJEmSJElSX83CsTJJkiRJkiR1xOGQJEmSJElSjzkckiRJkiRJ6jGHQ5IkSZIkST3m\ncEiSJEmSJKnHHA5JkiRJkiT1mMMhSZIkSZKkHvsNqPwHglYLgXIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd87d4d68>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuQZVddN/zv6um55IZxQggxCY6Y\noObBGCBQKC+Xh1cCBMqABRgKI1GpYBVWgT4ioFVCUWUpBUqJF0rQkGAZJJQIFEbBNwZF8FESk4KQ\nCAaSkITcCUmYzK171vtH9+7b9PR0z5z7+nyqUt2955zT6+zeOed3vvu31yq11gAAAADQpqlhDwAA\nAACA4REOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANCwvoVDpZQXlVK+\nVkq5uZTy1n79HgAAxo9aEQBGR6m19v5BS9mU5OtJXpDkjiRfSvLqWuuNPf9lAACMFbUiAIyW6T49\n7jOS3Fxr/WaSlFL+Jsn5SVZ9wy+l9D6hAoA23F9rPXHYg4ANUisCwIDUWsuhbtOvy8pOSXL7kp/v\nmN+2oJRycSnlmlLKNX0aAwC04LZhDwAOg1oRAEZIvzqHVkullp3xqbV+IMkHEmeDAAAao1YEgBHS\nr86hO5KctuTnU5N8u0+/CwCA8aJWBIAR0q9w6EtJziil/FApZUuSC5J8qk+/CwCA8aJWBIAR0pfL\nymqtM6WUX03ymSSbklxSa/1qP34XAADjRa0IAKOlL0vZb3gQriMHgMN1ba31nGEPAvpJrQgAh2+Y\nq5UBAAAAMAaEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA\n0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgE\nAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4\nBAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEjJRSSkopB3wPAABAfwiHAAAAABo2fSR3LqXcmuSRJLNJZmqt55RStif5aJIdSW5N8qpa\n64NHNkxg0nQdQVNTU8t+npmZWbhNrTVJ8qQnPSlJ8uCDcy8l9913X5LkrLPOys6dO5Mk999/f5Lk\noYceSpI8+clPTpLccMMNSZLTTz89xx57bJLk+uuvT5Js2rQpSTI7O9vbJwdAErUiAIyLXnQO/e9a\n69m11nPmf35rkqtqrWckuWr+ZwAA2qRWBIARd0SdQwdxfpLnzX9/WZLPJXlLH34PMGamp6cXOoN+\n+qd/Okly9dVXJ0m++MUvJkme/vSnJ0keeeSRHHfccUkWO4h6Nf/Q7t27kyRHHXVUksXupf379/fk\n8QFYk1oR6JmuTuwV813SqiPtHKpJPltKubaUcvH8tpNqrXclyfzXxx3h7wAAYDypFQFgDBxp59Cz\naq3fLqU8Lsk/lVL+e713nC8QLj7kDYGx051x2bx5c5LFDp33vOc9ed3rXpck2bVrV5K5bqJkcf6f\nTtc1tPTxOmt1Eq38t9Vu2/2u7t+uvPLKJMlLXvKSbN26NUmyZ8+eVR8HgA1RKwKHbRj112q/UzcR\nLTiizqFa67fnv96b5O+SPCPJPaWUk5Nk/uu9B7nvB2qt5yy5/hwAgAmiVgSA8VAON40tpRyTZKrW\n+sj89/+U5J1J/t8kD9Raf7+U8tYk22utv3mIx3JKHibIMccckyQ54YQTkiS33XZbkrmVyLpOoWFa\n2U3UdQlt3bo1F188d5L6gx/8YJJky5YtSZK9e/cOepiwXtf68MwoUisCGzUundo6iRg3tdZDHrRH\nEg49MXNngJK5y9Mur7X+binlhCRXJHlCkm8leWWt9TuHeKzxeBUA1tRN7NxNMv2c5zxnmMM5LPv2\n7UuyeEncE57whCTJ7bffnsTk1Ywk4RAjSa0IrNe4hEIHIyxi1K0nHDrsU/i11m8m+YlVtj+QuTNC\nAAA0Sq0IAOPjsDuHejoIZ4NgoozC68qR6jqDuk6hu+++O0ly8sknJ5mbSHtmZmY4g4PldA4x8dSK\nMHkmoV5cSQcRo2o9nUNHupQ9AAAAAGNMOAQcllJKSinZsmVLtmzZkh/90R9NrXXV/8bR1NTUQtdQ\nkmzfvj3bt29feE5/8Rd/sfBvRx99dI4++uhs27Yt27ZtG8ZwAQDGwjjXh4cy7vUvbRMOAQAAADTM\nnEPAYek6ZI477rgkyb333nvAEvGTZOVz27NnT7Zu3brsNq985SuTJJ/+9KeTJLt37164TXf/vXv3\nDmS8NMWcQ0w8tSKMv1H43DkqJrFWZrSZcwgAAACANekcAo7IKLyGjIrZ2dkki/tkeno6N954Y5Lk\nuc99bpLkwQcfXHbbTinFvuRw6Rxi4qkVYfypcw5NRxH9onMIAAAAgDVND3sAwHj693//9yRzc+8k\nOWD+nRZt2rRp2c+zs7P5kR/5kSTJfffdt+p9vvKVryRJzjrrrAP+bcuWLUnMUwQAjC8dQ+u3cl/p\nJGKQXFYGrMv09FyWvH///iQHXhbF4emCny4IWuqP/uiPkiTvfve7kyR33nnnQgjXhXJd0TAKr+UM\njcvKmHhqRRhfapTBESZxMC4rAwAAAGBNOoeADek6hroOou5SKmcqDs9qr8Hdvty9e3eSxX199NFH\n59nPfnaS5N/+7d+SLHZ0zczM9H2sjCydQ0w8tSKMn1H4nNk69TkdnUMAAAAArEnnELAhXReLMxGj\nwd+B6ByiAWpFGD+j8DmTOepFdA4BAAAAsCZL2QPr8pKXvGTYQ2CJbo6hlWflvvjFL+ZZz3pWkhyw\nshkAAO1ZWi/qIuJgdA4BAAAANEznELCmLVu2JEm+8Y1vJHG2YVR0q8R1Z4K6v8vTnva0hW2/+Zu/\nmSR597vfnWSxk2jv3r3L7gsAQBtW1o7QMSE1sC6j8FrBxnQhUBfwdV9nZ2eTLE4uztgzITUTT60I\n40XdOD6ERG0wITUAAAAAa3JZGbAu3/ve95Ikxx577JBHwnp1nULd2bv7778/SfJ93/d9SZKpqSnd\nQwAADVvZ5aWTqF06hwAAAAAapnMIWBcdQ+OrOwN01FFHJVk+EaHl7gEA6NRadQ81SucQAAAAQMN0\nDgE0YvPmzUkWVymrteZXfuVXkiQf/vCHkyS7d+9e+DcAANpjufs26RwCAAAAaFgZhbPDpZThDwJY\n1dTUXIY8MzOTZPFMQredydDNKbVr164ksYrZeLm21nrOsAcB/aRWhPEyCp8x6R0dROOv1nrIP6JP\ndwAAAAANM+cQsKaVnUJ79+5d9jPjbXZ2Nkly0003JUme8IQnDHM4AACMGHMQtUE4BGxIN6kxk2HT\npk1Jksc//vFJkgceeCBJcsIJJwxtTAAAjB4h0WRz6h8AAACgYTqHgDWtPEPwD//wD0mSF73oRcu2\nM96mp+feDrZt25YkecELXpAkueqqq0xODQDAAh1Ek0nnEAAAAEDDLGUPbEh3hkA3yWRbORE5I81S\n9kw8tSKMl1H4jMlg6B4aD5ayBwAAAGBN5hwCNkQnSRu6zrBaqzNCAACsyvxDk8OnPAAAAICG6RwC\nNqRb1YrJtmnTpiTJvn378oUvfCFJ8qxnPWuYQwIAxkQpxbxDjdFBNP50DgEAAAA0TAsAsCHOBrRl\neno6Z511VpJkx44dSZJbb711eAMCAGBk6SAaX5ayBw5L99rhDaA93d+6+zoK7yONs5Q9E0+tCONH\nfUDiM8KosJQ9AAAAAGtyWRmwISsnpHY2oD3dmcCrr746SfL85z8/SbJly5bs27dv2W0AAGiXqwzG\nh84hAAAAgIbpHALWpUv7uyXOac/KMz8/9VM/dcD2rVu3Jkn27t277N8AAGjX0ppQF9Fo0jkEAAAA\n0DCdQ8C6dGn/nj17kiSXXXZZkuQ1r3lNkgPnImLyrDzL03UJ7d+/P8ncMbKyw2x2dnaAIwQAYNSZ\nh2g06RwCAAAAaFgZhfkgSinDHwSwIdu3b0+S3HfffUmSqSlZM8n999+fJDnxxBOHPJKmXFtrPWfY\ng4B+UivC+BqFz5uMJp1Dg1NrPeTOdh0IcFh27dqVJPn85z+fJHnuc587zOEwIh7zmMckSf7qr/4q\nSXLhhRcOczgAAIwol5eNFqf6AQAAABrmsjLgiHQdQ5/73OeGOxBGSjdx+f/8z/8kSX78x398mMOZ\ndC4rY+KpFWF8jcLnTcaDDqL+Wc9lZTqHAAAAABqmcwg4It0S9vv27XPdMAeYmZlJkhxzzDFJlh8n\n9IzOISaeWhHGn/d/1sPniP7QOQQAAADAmqxWBhyR2dnZJHMp/9LvIVnsLOvmICqlZPPmzUnmuogA\nAKDjSoTh0TkEAAAA0DCdQ0DPTE3Jm1muO/uzd+/ehZ8/+tGPJkle97rXJUl27ty57LYAwOTpOkG8\n37MeOogGzyc5AAAAgIZZrQzoienp6VxxxRVJkvPOOy9JsnXr1mEOiRGy2tmfpz/96UmS66+/Psni\nymZsmNXKmHhqRZgco/D5k/Gjg+jIrGe1MuEQ0HPdJUTdxMOwFm/2R0w4xMRTK8LkGYXPoYwv9ePG\nWMoeAAAAgDUJh4CemZ6ezvT0dG655Zbccsstwx4OY+K6667LddddN+xhAABAs4RDAAAAAA2zlD3Q\nM92EwnfeeWeS5ElPetIwh8OYOPPMM5Mkv/d7v5ck+Z3f+Z0kyb59+4Y2JgAAaInOIQAAAICGWa0M\n6Ll3vOMdSZLf/u3fTjI3FxGsl9UnNsxqZUw8tSJMrlH4PMr4US9ujNXKAAAAAFiTziGgb3bu3Jkk\nOfroo4c8EsbJW9/61iTJu971riGPZGzoHGLiqRVhco3C51HGk+6h9VtP55BwCOib3//930+SvOUt\nbxnySBgnt912W5Jkx44dwx3I+BAOMfHUijDZRuEzKeNLSHRoLisDAAAAYE1miQV6bvPmzUmSl7/8\n5UMeCeOkO2t44oknJkkuuuiiXH755UmSvXv3Dm1cAAAw6XQOAQAAADTMnENA35x77rlJks985jND\nHgnjaHZ2NqeffnqSxXmIRuE9awSZc4iJp1aEyeb9nV4yB9GBzDkEAAAAwJrMOQT0Tbfa1OzsbJJk\n06ZNQxwN4+i6665LkpxyyilJkkcffXSYwwEA+qDr9NBBBMOjcwgAAACgYeYcAvqm6xT67ne/myQ5\n9thjhzkcxtipp56aJLn77ruTLHajkcScQzRArQhtGIXPpow/cw4dyJxDAAAAAKxJ5xDQc1NTc7nz\n/v37kzgLRO84E7QqnUNMPLUitEXtSC+oGxetp3PIhNRAz3Wh0LZt24Y8EiZFd0xdeumlSZKLLrpo\neIMBAGDk1VoFRBvgsjIAAACAhh3ysrJSyiVJXprk3lrrk+e3bU/y0SQ7ktya5FW11gfLXCz3R0nO\nS/Jokotqrf91yEFoFYaJ1CX1z3/+85Mkn/3sZxcuOYMj4SzQMi4rY6jUikCvuayMXlEzzunVhNSX\nJnnRim1vTXJVrfWMJFfN/5wkL05yxvx/Fyd5/3oHCwDAWLo0akUAGGvrmpC6lLIjyaeXnA36WpLn\n1VrvKqWcnORztdYfKaX8+fz3H1l5u0M8vmgYGuAsEEeqO4a6s0DOBiXROcQIUCsCvaRmpFfUinP6\nuZT9Sd2b+PzXx81vPyXJ7Utud8f8tgOUUi4upVxTSrnmMMcAAMBoUisCwBjp9eQfq6VRq8a+tdYP\n1FrPcbYTJt9RRx2Vo446KldcccWwh8KE2L17d3bv3p3zzz9/2EMBNkatCMDA1Fp1oq3T4YZD98y3\nCGf+673z2+9IctqS252a5NuHPzwAAMaQWhEAxsjhhkOfSvLa+e9fm+STS7b/QpnzzCQPHeoacmDy\n7dq1K7t27coFF1yQD33oQ/nQhz407CExpkopKaVk27Zt2bZtWz7xiU8Me0jA6tSKADBG1rOU/UeS\nPC/JY5Pck+TtST6R5IokT0jyrSSvrLV+Z3550j/J3IoVjyb5xVrrIa8TN8kgtOe00+ZOHH/rW98a\n8kgYZ7Ozs5mZmUmSPO5xc1OaPPzww8Mc0jCYkJqhUisCveYyIHqt9Ymp1zMh9bpWK+s3b/jQHuEQ\nvSAcSiIcogFqRWjLKHxGZbIIh4RDwJgYhdcixk+t9YBl7buvDR1TwiEmnloR2tLQezgD1mpI1M+l\n7AEAAACYANPDHgDQpi6137JlS5Lk4x//eJLkZ3/2Z4c2JsZPKSWPPPLIsm3ONgIAwMboHAIAAABo\nmDmHgJEwNTWXVc/Ozg55JIyrSy65JEnyy7/8y0MeycCZc4iJp1aEtozCZ1QmW2tzD5lzCAAAAIA1\n6RwCRsLWrVuTJJ/73OeSJM985jOHOBrG2bHHHpsk2blz55BHMjA6h5h4akVoyyh8RmWy6Rw6kM4h\nAAAAgIbpHAJGygte8IIkyWc/+9khj4Rx0b2PdWeAWjsTFJ1DNECtCG0ahc+qTKbW6sX1dA4Jh4CR\n0L1Ad69Jo/DaxHjpjpnt27cnSR566KFl2yeYcIiJp1aEtjXwXs6ACYcO5LIyAAAAgIZND3sAANAL\n3RmgBx98cNnPAACw1MppCdA5BAAAANA0nUPASHAtOUdq5Rmgk08+OUly1113DW1MAAAwDnQOAQAA\nADRM5xAwUo4//vgkyY033pgzzzxzyKNhnOkYAoDxpKMcBk/nEAAAAEDDdA4BI2X37t1JomuIDevm\nGurONp599tlJkuuvv35oYwIANm7lezrQfzqHAAAAABpWRiGNLaUMfxDAUHVniKam5jLrmZmZYQ6H\nMda9rz344INJkh/4gR9IkuzZs2doY+qza2ut5wx7ENBPakVoyyh8RqUN3WeQSVdrPeQTdVkZ0Hfd\ni+6WLVsO+gG9KwJmZ2cHNi4mU3csXXnllUmSTZs2DXM4AAAw8lxWBgAAANAwnUNAz3WdQps3b06S\nPP7xj0+SPPGJT8wtt9ySJLntttuSLHZ1dB1DH/3oR5PMXQK0devWwQ2aidEdf//4j/+47GcAAGB1\nOocAAAAAGmZCaqDvuteZ/fv3L0w4fTDdnES6hjhc3fHWdQx1x9LevXuHNqY+MyE1E0+tCG0Yhc+m\ntKWVDvP1TEitcwgAAACgYeYcAnpu27ZtSZILLrggyWLHxpYtWxZus3///iQ5oJNIxxC98o1vfCPJ\n4nE3wZ1DAABwRHQOAQAAADTMnENAz3XdP9dcc02S5MlPfvIwh0PjGriW3JxDTDy1IrRhFD6b0qZJ\nrxfXM+eQy8qAnuuWpf/d3/3dJMlHPvKRYQ4HAIAx0H1AFxLB4LmsDAAAAKBhOoeAnpuZmUmSnHzy\nyUMeCS1bedaxlOJMJACMMO/TMDw6hwAAAAAapnMI6JuHH3542EOgYSvPPjobCQAAq9M5BAAAANAw\nnUNA31x11VVJkt27dydJtm3bNszh0IiuQ2hqyvkPAABYD5UzAAAAQMN0DgE9V0pJktx6661JdAwx\nXJs2bUqS7N+/37xDADDCuhrS+zUMns4hAAAAgIbpHAJ6ztkeRsEJJ5yQZLFzaHZ2dpjDAQDWSQcR\ng9IdawiHgAFY+ga/f//+ZdtW3gaOVHcsPfaxj02SPPTQQ8McDgBwmJbWh4Ii6C+XlQEAAAA0TOcQ\n0Dfd2Z6tW7cu/LzyrM++ffuSJJs3b162vdaqm4jD8r3vfS9J8vWvf33IIwEAekHXEPSfziEAAACA\nhukcAvqmO8uze/fuJMnU1NQB3UB79+5NkuzZsyfJ8i6jlY+zloNNXDjp3UetPd/VdPtgZmYmyeKx\nBABMhtXqG91E0Fs6hwAAAAAapnMIGJj9+/cvnPmZmprLprds2bLsNuecc06S5MYbb8wZZ5yRJHnG\nM56RJHnhC1+YJHnBC16QJHnMYx6Td77znUmS973vfUmSe+65J8niGaZx7qTpzogtfQ4PP/xwkuTP\n/uzPkiSvetWrkiRPfOITk8x1Yq3cp5Ou2z/dvFXdKmXdMdatkAcATI5e1Xg6kNo0zp8R+kXnEAAA\nAEDDyigkpaWU4Q8CGKiVaX33WrS026Obf2jTpk2r3nZ2dnbh9t3cRd3j/vzP/3yS5JJLLln2uKNq\n6Wvxyn2xa9euJMmb3/zm/Omf/mmSA1eC6+Z1esc73pG3v/3tgxn0iOie+yc/+ckkyWte85okc8dH\nI66ttZ4z7EFAP6kVgX4Zhc/DDE6rHUO11kM+ceEQMDZWTjpdSjngDf3FL35xkuTKK69Mkuzbty/J\n4iVHo2r37t2Znp670nflWI877rgkySOPPLKw7WATcG/bti1f/vKXkyQ7duxY9fEmVatv9hEO0QC1\nItAvo/B5uNcOVhNN4nPdqFbrxfWEQ6N9Kh0AAACAvtI5BIy8g3XJPPDAA9m+fXuSxcvKxm0y5u6S\nqA9/+MN5/etfn+Tgz3ejusuqRv2SusPRTTI9NTV1wCV2DS5lr3OIiadWBPplFD4PH47D6YAZ1+fa\nC612DHV0DgEAAACwJkvZAyPv6KOPTpKce+65SZJ3vetdSbLQNZSM7rw6XffOzp07kyR33313kuTX\nf/3XkyR///d/n2T5pNtHelanm7uoe8xJPEvUdUOdcMIJC3/7rnsMAGCpSaiFetH5stp8nZOu9Y6h\njdA5BAAAANAwnUPASFma7ndnNq677rokyRlnnLGu+42Syy67LEny3ve+N0lyww03rHq7bg6dXui6\nlY466qgkyXve854kyW/8xm8s+12rzUW0dCW4Ufa9730vSfKd73xnyCMBAEbNJHXH9Lom69XcluNg\n1OvZUaNzCAAAAKBhVisDRtYovD4djq5b6KKLLlqY96fr5hnG2ZpuBbduFa8vf/nLSZKzzjrroPdZ\n2sk0CquddWO/5JJLkiS/9mu/lmRunqFxPU56yGplTDy1InAok1oPDKP7ZVL2pc6hRVYrAwAAAGBN\nOoeAkbJ169YkydOe9rR84QtfGPJo1qfrCupWCdu2bVuSZPfu3UMbU7I4nu7rauPpOptOPfXUJMlt\nt92WZPkZo3379iVZPPvSPd4wOAO0Kp1DTDy1InAwo/B5ttfGsd4Zpb/DOO6/fltP55AJqYGR0l0+\nNC7BUHLgm+FGQqFuGfZ9+/b15JKzTZs2LYRV27dvT5Lcc889h7zf3XffnST5/Oc/n2T5m+qTnvSk\nJHOBXZJcfvnly+776KOPJpm7/KwLxjorn8tG3qxnZmYWgqjjjjsuyegEbwAA/TLIBUI2UneuNZ5D\njXUQ4ZFQ6Mi4rAwAAACgYS4rA0ZCN2nyO9/5ziTJm970poVLzEbdrl27kiSvetWrkiRXX311kmTn\nzp0599xzkyxervW1r30tSfKyl70sSXL88ccnSS699NKFfdC9LneXc23EOeecky996UvL7t9136zn\nbMrKjpxt27YtPK+Pfexjq96ney4/93M/lwsuuGDV23TdTLOzswvP82CWni1bOfbucUbhvWuEuKyM\niadWBFZqpRbodTdMv/bb4YyzV2PRMXRoJqQGAAAAYE06h4ChWjnPzii8Jh2umZmZJIvLwE9NTS1s\nW9kB000EvfS2T3nKU5Ikt99+e5LkgQceWPb4U1NTB+yn7nG739OP/bfyOTz2sY9ddXzT09MLv7/r\n8FnpgQceWJgL6VCcBVo3nUNMPLUi0BnnWrHfDlY7DXOfbbSeW+9Y1Ykbo3MIAAAAgDXpHAKGqkv9\nu1Woum6Uo446amhjGoalnTZdV1G3ctstt9ySJPmxH/uxhdu86U1vSpL867/+a5Lk2muvTbJ8ha9e\nW9rllCzOtXTCCScs+3mp7u/bfd2/f//CGaGVHUkr77N169aFfcCadA4x8dSKQGcUPr+ycb3uINI5\ntDE6hwAAAABYk84hYChWzjX04IMPJkmOPvroJDnkilYt6bpnaq0LXTZdl85xxx03tHF1PvjBDyZJ\nLr744rzrXe9KkrzlLW9Zdpvu7z09Pb2witqb3/zmJIt/+8svvzzJYhfV3r17nR1cH51DTDy1ItBR\nG4w/XT+Dt57OIeEQMBK65def9rSnJfGmMU527959wLY/+ZM/SbIYAHVKKQedTHvpbRLF3wYIh5h4\nakVAXTB51PuD47IyAAAAANakcwgYCaPwWkTvdH/PK664IklywQUXDHM4k07nEBNPrQioFSeXDqL+\n0zkEAAAAwJp0DgFD1S3bvnLeGSbL9ddfnyR5ylOeMuSRTCSdQ0w8tSIwCp9b6Q+dQ/2ncwgAAACA\nNU0PewBA27qzQPfdd1+S5MQTTxzmcOiTJz7xicMeAgAwxqxmOrm6v6kOouHSOQQAAADQMJ1DwFB0\nZwb279+fRMfQpOrmknrooYeGPBIAAOBgdA4BAAAANEznEDAUK68Xv/nmm5Mkp59++jCGQ491f9+u\nM6wzNTV1wDYAAGC4LGUPjJSlr0kmpxtfK/923VfhUF9Yyp6Jp1YEVhqFz7H0lpq/fyxlDwAAAMCa\nDhkOlVIuKaXcW0q5Ycm2d5RS7iylXD//33lL/u1tpZSbSylfK6W8sF8DByZDKSWllGzevDmbN2/O\nueeem3PPPTdJsm/fvuzbt28sGJrvAAATL0lEQVTII+RwdH/XlZzlg8mjVgSA8beezqFLk7xole3v\nrbWePf/flUlSSjkzyQVJ/tf8ff6slLKpV4MFAGDkXBq1IgCMtUNOSF1r/ddSyo51Pt75Sf6m1ron\nyS2llJuTPCPJvx/2CIGJ1nWSdEue/8u//EuSuc6TW2+9NUnygz/4g0kWJzeemnJF7Kjbs2dPkuRj\nH/tYkmR6eu7tpvs7A5NDrQgMQ9ehrCsZeuNIPmH9ainly/OtxN8/v+2UJLcvuc0d89sOUEq5uJRy\nTSnlmiMYAwAAo0mtCABj4nDDofcn+eEkZye5K8kfzG9fbQbsVaPcWusHaq3nWGEFSObO+tRas3fv\n3uzduzdTU1PZsWNHduzYkZNOOiknnXRSpqamMjU1tXBbXSija+vWrdm6dWsuvPDCXHjhhZmZmfH3\ngraoFYGB6OY5PNh8h4w+f7vRcFjhUK31nlrrbK11f5IPZq4dOJk7+3PakpuemuTbRzZEAADGiVoR\nAMbLYYVDpZSTl/z48iTd6hSfSnJBKWVrKeWHkpyR5D+PbIhAi7r5hZLku9/9br773e8unFXoOoh+\n6Zd+aeE2e/bsWZjnpiVdF1X331q3GYTZ2dnMzs7mFa94RV7xilcsdBABbVErAsOyspNIRwqszyEn\npC6lfCTJ85I8tpRyR5K3J3leKeXszLUB35rk9UlSa/1qKeWKJDcmmUnyhlrrbH+GDgDAsKkVAWD8\nlVGY3b2UMvxBACPrYKtRbN26daFb6KqrrkqS3HPPPUmSV7/61UmS3bt3J5lb4WzLli3LHmetM0nr\nuc0wzc7OfZbatGl0VoCenZ1dGM+o7rcJda05WZh0akWgH0bhs3DL1IuDU2s95M4WDgEToVvevnuT\n6cKTLiT68z//8xx33HEbfty1LtXqflev39i637kyoFr6O9/4xjcmSf74j/84yfKQqLtfd2net771\nrSTJaactneajd+Nc+vyPP/74JMmjjz6aZHHp+lF4r5lgwiEmnloRGAXqmd4QCg3eesKhI1nKHgAA\nAIAxp3MImEgrL2+amZnJ6aefniS5+eabkyQnnnhikix0FH3zm9/M2Wefvew2d911V5Lk2GOPTZK8\n7W1vS5Kcd955efazn73q7967d+/C911H0/T09MI4ln7dtm3bwm27bc973vOWfX3Zy16WJPmZn/mZ\nhfGsfLz1+NKXvpQkeepTn7psbL3ymMc8Jo888khPH5N10TnExFMrApOiV5+/+9V90898QMfQ8Ogc\nAgAAAGBNOocAlujOaGzevDnJYgfSyk6fmZmZ7Nq1a9XHeOlLX5okOf300xcmwe4mzv7v//7vJMln\nPvOZA+53zDHHJFmcL2nl/ElLO5I28lxWvs53P+/Zs6cny8x//etfT5L8xE/8xMIE4AyUziEmnloR\naMHKmm1YnTb9ygh0Dg2PziEAAAAA1jQ97AEAjJLuTMnBunT27duXZO7Mx8E6cz796U8fcL9ufp9u\nBbHO0sfYuXPnEYz8QCvH1c1T1P3Of/7nf85zn/vcZePbiK4b6hOf+ESSA58bAADrNyqdNSvH0YtO\nolF5bhycziEAAACAhplzCKBRU1NTC/MZHQlngobOnENMPLUiwPDoHBp/65lzyGVlAI3avHlzzjjj\njCTJDTfckCSrTlDdFQTdZWPdJWjPec5zlt2nu8wMAIDJcbCpFJgsLisDAAAAaJjOIYBG7du3Ly99\n6UuTLE7AvVrnUHe2aNOmTct+BgCAtagbx4fOIQAAAICGmZAaoFGllIVrx2dmZpIsdget5rLLLkuS\nXHTRRX0fGxtiQmomnloRYPg2kh3oGBot65mQWucQAAAAQMPMOQTQqPV0Du3duzdvf/vbkyTvfe97\nBztAAADGio6h8aVzCAAAAKBh5hwCaEx3RqfWutA5tGfPniTJ9PRcQ+nSDiJngEaeOYeYeGpFgOFb\nKztQL442cw4BAAAAsCZzDgE07NFHH02yeLbnoYceSpKccMIJC7fpuoj279+fZGMrVQAAMLl0DE0O\n4RBAY5aGO9/5zneSJKeeemqS5Oijjz7g9rOzs4MZGAAAY0MwNFlcVgYAAADQMJ1DAA37yZ/8ySTJ\nHXfcMeSRAAAwynQKTTadQwAAAAAN0zkE0LA777xz2EMAAACGTOcQAAAAQMN0DgE0zLL0AACAziEA\nAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIh\nAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHC\nIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBh\nwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACg\nYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAA\noGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAA\nAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGjYIcOh\nUspppZSrSyk3lVK+Wkp54/z27aWUfyql/M/81++f315KKe8rpdxcSvlyKeWp/X4SAAAMh1oRAMbf\nejqHZpL8n1rrjyV5ZpI3lFLOTPLWJFfVWs9IctX8z0ny4iRnzP93cZL393zUAACMCrUiAIy5Q4ZD\ntda7aq3/Nf/9I0luSnJKkvOTXDZ/s8uSvGz++/OTfLjO+b9Jji+lnNzzkQMAMHRqRQAYfxuac6iU\nsiPJU5L8R5KTaq13JXNFQZLHzd/slCS3L7nbHfPbVj7WxaWUa0op12x82AAAjBq1IgCMp+n13rCU\ncmySv03yplrrw6WUg950lW31gA21fiDJB+Yf+4B/BwBgfKgVAWB8ratzqJSyOXNv9n9da/34/OZ7\nuhbg+a/3zm+/I8lpS+5+apJv92a4AACMGrUiAIy39axWVpL8ZZKbaq1/uOSfPpXktfPfvzbJJ5ds\n/4X5lSiemeShrqUYAIDJolYEgPFXal27S7eU8v8k+XySryTZP7/5tzJ3LfkVSZ6Q5FtJXllr/c58\ngfAnSV6U5NEkv1hrXfNaca3CAHDYrq21njPsQdAutSIAjLZa60Gv9e4cMhwaBG/4AHDYhENMPLUi\nABy+9YRDG1qtDAAAAIDJIhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAA\noGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAA\nAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAI\nAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhw\nCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiY\ncAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABo\nmHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAA\naJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAA\nAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIA\nAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGjYIcOhUspppZSrSyk3lVK+Wkp54/z2d5RS\n7iylXD//33lL7vO2UsrNpZSvlVJe2M8nAADA8KgVAWD8lVrr2jco5eQkJ9da/6uUclySa5O8LMmr\nknyv1vqeFbc/M8lHkjwjyQ8k+f+SPKnWOrvG71h7EADAwVxbaz1n2IOgXWpFABhttdZyqNscsnOo\n1npXrfW/5r9/JMlNSU5Z4y7nJ/mbWuueWustSW7O3Js/AAATRq0IAONvQ3MOlVJ2JHlKkv+Y3/Sr\npZQvl1IuKaV8//y2U5LcvuRud2SVAqGUcnEp5ZpSyjUbHjUAACNHrQgA42nd4VAp5dgkf5vkTbXW\nh5O8P8kPJzk7yV1J/qC76Sp3P6AVuNb6gVrrOVrhAQDGn1oRAMbXusKhUsrmzL3Z/3Wt9eNJUmu9\np9Y6W2vdn+SDWWwHviPJaUvufmqSb/duyAAAjBK1IgCMt/WsVlaS/GWSm2qtf7hk+8lLbvbyJDfM\nf/+pJBeUUraWUn4oyRlJ/rN3QwYAYFSoFQFg/E2v4zbPSnJhkq+UUq6f3/ZbSV5dSjk7c23AtyZ5\nfZLUWr9aSrkiyY1JZpK8Ya3VJwAAGGtqRQAYc4dcyn4gg7A8KQAcLkvZM/HUigBw+HqylD0AAAAA\nk0s4BAAAANAw4RAAAABAw4RDAAAAAA1bz2plg3B/kp3zX+m/x8a+HhT7enDs68Gwnwdnvfv6B/s9\nEBgBasXB8lo/OPb14NjXg2E/D05Pa8WRWK0sSUop11htZTDs68GxrwfHvh4M+3lw7GtYzv8Tg2Nf\nD459PTj29WDYz4PT633tsjIAAACAhgmHAAAAABo2SuHQB4Y9gIbY14NjXw+OfT0Y9vPg2NewnP8n\nBse+Hhz7enDs68Gwnwenp/t6ZOYcAgAAAGDwRqlzCAAAAIABEw4BAAAANGwkwqFSyotKKV8rpdxc\nSnnrsMczSUopt5ZSvlJKub6Ucs38tu2llH8qpfzP/NfvH/Y4x1Ep5ZJSyr2llBuWbFt135Y575s/\nxr9cSnnq8EY+fg6yr99RSrlz/ti+vpRy3pJ/e9v8vv5aKeWFwxn1eCqlnFZKubqUclMp5aullDfO\nb3ds99Aa+9lxDatQK/aPWrF/1IqDo1YcHLXiYAyjVhx6OFRK2ZTkT5O8OMmZSV5dSjlzuKOaOP+7\n1np2rfWc+Z/fmuSqWusZSa6a/5mNuzTJi1ZsO9i+fXGSM+b/uzjJ+wc0xklxaQ7c10ny3vlj++xa\n65VJMv/6cUGS/zV/nz+bf51hfWaS/J9a648leWaSN8zvU8d2bx1sPyeOa1hGrTgQasX+uDRqxUG5\nNGrFQVErDsbAa8Whh0NJnpHk5lrrN2ute5P8TZLzhzymSXd+ksvmv78sycuGOJaxVWv91yTfWbH5\nYPv2/CQfrnP+b5LjSyknD2ak4+8g+/pgzk/yN7XWPbXWW5LcnLnXGdah1npXrfW/5r9/JMlNSU6J\nY7un1tjPB+O4pmVqxcFTK/aAWnFw1IqDo1YcjGHUiqMQDp2S5PYlP9+RtZ80G1OTfLaUcm0p5eL5\nbSfVWu9K5g66JI8b2ugmz8H2reO8P351vj31kiUt7/Z1j5RSdiR5SpL/iGO7b1bs58RxDSs5/vtL\nrThY3k8Hy3tqH6kVB2NQteIohENllW114KOYXM+qtT41c+18byilPGfYA2qU47z33p/kh5OcneSu\nJH8wv92+7oFSyrFJ/jbJm2qtD69101W22d/rtMp+dlzDgRz//aVWHA2O897zntpHasXBGGStOArh\n0B1JTlvy86lJvj2ksUycWuu357/em+TvMtdadk/Xyjf/9d7hjXDiHGzfOs57rNZ6T611tta6P8kH\ns9g2aV8foVLK5sy9Cf11rfXj85sd2z222n52XMOqHP99pFYcOO+nA+I9tX/UioMx6FpxFMKhLyU5\no5TyQ6WULZmbROlTQx7TRCilHFNKOa77Psm5SW7I3P597fzNXpvkk8MZ4UQ62L79VJJfmJ+t/5lJ\nHuraLjk8K65Vfnnmju1kbl9fUErZWkr5ocxNfvefgx7fuCqllCR/meSmWusfLvknx3YPHWw/O65h\nVWrFPlErDoX30wHxntofasXBGEatOH1kQz5ytdaZUsqvJvlMkk1JLqm1fnXIw5oUJyX5u7njKtNJ\nLq+1/mMp5UtJriil/HKSbyV55RDHOLZKKR9J8rwkjy2l3JHk7Ul+P6vv2yuTnJe5icEeTfKLAx/w\nGDvIvn5eKeXszLVL3prk9UlSa/1qKeWKJDdmbpb/N9RaZ4cx7jH1rCQXJvlKKeX6+W2/Fcd2rx1s\nP7/acQ3LqRX7Sq3YR2rFwVErDpRacTAGXiuWWl3uBwAAANCqUbisDAAAAIAhEQ4BAAAANEw4BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0LD/H5Z5f0z4ZzoSAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd870d7b8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAH01JREFUeJzt3W+opnd95/HPd/6cSaxCta7ZbBJW\nKdmlKUIaggihixW2jYEy+sAaH2i2BKbUBCL4RC1tpA9KKWtL1VU20pAEWm0givNAq2no0kf+SSRo\nYjbboZnVMSGhGGrdNokz89sH577HMzNnzpw5f+4/5/t6weGcc8113+c3F9fM+Z33+d3XVWOMAAAA\nANDTvnkPAAAAAID5EYcAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAa27U4\nVFU3V9XTVXWsqj68W18HAIDlY64IAIujxhg7/6RV+5P8nyT/NcmJJN9K8t4xxvd2/IsBALBUzBUB\nYLEc2KXnfUuSY2OMf0ySqvp8ksNJ1v2GX1U7X6gAoId/GmP8u3kPAi6RuSIAzMgYoy62z269rOyq\nJD9Y8/mJybYzqupIVT1aVY/u0hgAoIP/O+8BwBaYKwLAAtmtlUPrVamzfuMzxrgnyT2J3wYBADRj\nrggAC2S3Vg6dSHLNms+vTvLsLn0tAACWi7kiACyQ3YpD30pybVW9qapWktya5OgufS0AAJaLuSIA\nLJBdeVnZGONkVd2Z5KtJ9ie5d4zx5G58LQAAlou5IgAsll25lf0lD8LryAFgqx4bY9w470HAbjJX\nBICtm+fdygAAAABYAuIQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQ\nAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAA\nAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAA\nAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAA\nQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABA\nY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj\n4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPi\nEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQ\nAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAA\nAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAAAEBj4hAAAABAY+IQAAAAQGPiEAAA\nAEBjB7bz4Ko6nuRfkpxKcnKMcWNVvS7JXyd5Y5LjSX5rjPHi9oYJAMCyMVcEgOWwEyuHfm2Mcf0Y\n48bJ5x9O8sgY49okj0w+BwCgJ3NFAFhwu/GyssNJ7p98fH+Sd+7C1wAAYDmZKwLAgtluHBpJvlZV\nj1XVkcm2K8YYzyXJ5P0btvk1AABYTuaKALAEtnXNoSQ3jTGerao3JHm4qv73Zh84mSAcueiOAAAs\nK3NFAFgC21o5NMZ4dvL+hSRfTPKWJM9X1ZVJMnn/wgUee88Y48Y1rz8HAGAPMVcEgOWw5ThUVT9X\nVa+Zfpzk15M8keRoktsmu92W5EvbHSQAAMvFXBEAlsd2XlZ2RZIvVtX0ef5qjPE3VfWtJA9W1e1J\nvp/k3dsfJgAAS8ZcEQCWRI0x5j2GVNX8BwEAy+kxL7thrzNXBICtG2PUxfbZjVvZAwAAALAkxCEA\nAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAA\nAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAA\ngMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACA\nxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDG\nxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbE\nIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQh\nAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEA\nAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAA\nAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAA\ngMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGLhqHqure\nqnqhqp5Ys+11VfVwVf3D5P1rJ9urqj5RVceq6jtVdcNuDh4AgPkyVwSA5beZlUP3Jbn5nG0fTvLI\nGOPaJI9MPk+SdyS5dvJ2JMlndmaYAAAsqPtirggAS+2icWiM8fdJfnTO5sNJ7p98fH+Sd67Z/sBY\n9fUkP19VV+7UYAEAWCzmigCw/LZ6zaErxhjPJcnk/Rsm269K8oM1+52YbDtPVR2pqker6tEtjgEA\ngMVkrggAS+TADj9frbNtrLfjGOOeJPckSVWtuw8AAHuKuSIALKCtrhx6froEePL+hcn2E0muWbPf\n1Ume3frwAABYQuaKALBEthqHjia5bfLxbUm+tGb7+yd3onhrkn+eLikGAKANc0UAWCIXfVlZVX0u\nyduSvL6qTiS5O8kfJ3mwqm5P8v0k757s/uUktyQ5luRfk/z2LowZAIAFYa4IAMuvxpj/S7i9jhwA\ntuyxMcaN8x4E7CZzRQDYujHGetf8O8tWX1YGAAAAwB4gDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEA\nAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAA\nADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAA\nNCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0\nJg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQm\nDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYO\nAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4B\nAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEA\nAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAA\nADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADQmDgEAAAA0Jg4BAAAA\nNCYOAQAAADQmDgEAAAA0Jg4BAAAANCYOAQAAADR20ThUVfdW1QtV9cSabR+rqh9W1eOTt1vW/NlH\nqupYVT1dVb+xWwMHAGD+zBUBYPltZuXQfUluXmf7n40xrp+8fTlJquq6JLcm+eXJYz5dVft3arAA\nACyc+2KuCABL7aJxaIzx90l+tMnnO5zk82OMl8cYzyQ5luQt2xgfAAALzFwRAJbfdq45dGdVfWey\nlPi1k21XJfnBmn1OTLadp6qOVNWjVfXoNsYAAMBiMlcEgCWx1Tj0mSS/mOT6JM8l+fhke62z71jv\nCcYY94wxbhxj3LjFMQAAsJjMFQFgiWwpDo0xnh9jnBpjnE7y2fxsOfCJJNes2fXqJM9ub4gAACwT\nc0UAWC5bikNVdeWaT9+VZHp3iqNJbq2qQ1X1piTXJvnm9oYIAMAyMVcEgOVy4GI7VNXnkrwtyeur\n6kSSu5O8raquz+oy4ONJfidJxhhPVtWDSb6X5GSSO8YYp3Zn6AAAzJu5IgAsvxpj3Zd5z3YQVfMf\nBAAsp8dck4W9zlwRALZujLHeNf/Osp27lQEAAACw5MQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAA\ngMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACA\nxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDG\nxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbE\nIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQh\nAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEA\nAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAA\nAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAA\ngMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhAAAAgMbEIQAAAIDGxCEAAACA\nxsQhAAAAgMbEIQAAAIDGxCEAAACAxsQhFlZVpapy2WWX5bLLLjvvzw8dOnTBxwAAAACbIw4BAAAA\nNCYOsbDGGBlj5MUXX8yLL76Y48eP5/jx42e233333ec9ZmVlJSsrK2c+n64k2r9//yyHDgDAHjGd\ne577BrCXiEMAAAAAjdUiVO+qmv8gWAjT6wWtrKzkAx/4QJLkT/7kT876s+kqoJdffvm86w7deuut\nSZIXX3wxSfK1r30tSXL48OEzH//bv/3bbv4VAGbtsTHGjfMeBOwmc0UuZKOfZbZ7HcrN/JzkWpfA\nMhhjXPQ/KyuHAAAAABqzcoiFdSnn5nTfV155JUly+vTpJMnll1+eZHWV0e/93u8lST7+8Y8nSfbt\nW22jBw8ePLMPwBKycog9z1yRC9nqzzIXW/Ezxjizz6V8DSuJgEW0mZVD4hALazvn5vSxa79B/+Qn\nP0mSPPzww0mSP/qjP0qS/MIv/EKS5Ktf/eqZYDR93PT9yZMnz3r+qnIhQmBRiEPseeaKXMiizcfE\nIWAReVkZAAAAABu66MqhqromyQNJ/n2S00nuGWP8eVW9LslfJ3ljkuNJfmuM8WKt5vI/T3JLkn9N\n8t/GGN++yNdYrOTP3B06dChXXnllkuSZZ57Z0eeevvRs+nKyn/70p0lWL4J97NixJMl1112XJPn9\n3//9JMkf/MEfnPUcKysrZ55nK0uOp7bzWIAJK4eYK3NFFsG851JWDAGLbKdWDp1M8qExxi8leWuS\nO6rquiQfTvLIGOPaJI9MPk+SdyS5dvJ2JMlntjB2AACWg7kiACy5S77mUFV9KcmnJm9vG2M8V1VX\nJvlfY4z/XFX/c/Lx5yb7Pz3db4Pn9NsgLmh6jk6v+3PgwIEdeb71fsMz/Rr79+9P8rNVRocOHUry\ns1VGv/mbv3nm+kRf+cpXzhrX2nGee62iC1lZWTnz3OeOb96/CQMWnpVDLBRzReZlnnMmK4eARbbj\n1xyqqjcm+ZUk30hyxfSb+OT9Gya7XZXkB2sedmKy7dznOlJVj1bVo5cyBgAAFpO5IgAsp00vwaiq\nVyd5KMkHxxg/3qCOr/cH52X8McY9Se6ZPLffBnFBO72CZqPf7Jy7Kmm6YmhquqLo6NGjZ1YFvepV\nr0py/sqmU6dOnRnzxVY7Pfjgg3nPe95z1raVlZUkycsvv7zhYwFgEZgrMm/zXHW9nWtPAiyCTa0c\nqqqDWf1m/5djjC9MNj8/WSKcyfsXJttPJLlmzcOvTvLszgwXAIBFY64IAMvtonFockeJv0jy1Bjj\nT9f80dEkt00+vi3Jl9Zsf3+temuSf97oNeRwMQcPHszBgwfz9re/PW9/+9vnOpZ9+/Zl3759WVlZ\nyeWXX57LL7/8zJ8dOHDgrBVC+/fvP2/b1OnTp3P69Okznx8+fDhjjLPe7rrrrtx11127+xcCgG0y\nV2TRVNVSrMo5d+53qW8AO2kzLyu7Kcn7kny3qh6fbPtokj9O8mBV3Z7k+0nePfmzL2f11qTHsnp7\n0t/e0REDALBIzBUBYMld8t3KdmUQXkfOJZjeHezmm2/e8M5jy2SMcd7fYXqtoel1j9785jfniSee\nSJJcdtllSZKXXnopyfl3SgNacbcy9jxzRbZiEX7OmYdlnxcDO28zdysTh1g6Bw8eTLJ6W/np+btX\nItFm3X333UmSP/zDP0ySXHHFFUmS559//sw+06g0jUznBiVgzxCH2PPMFdmORfh5Z966zJGB9e34\nrewBAAAA2FusHGJP2M55vIyrjqargaa3u9/M2D/xiU8kST70oQ8l8RI02EOsHGLPM1dkJyzCzz2L\napnmwcCls3IIAAAAgA1ZOcRSW3v9oWRzvxF65ZVXkvxs1c0yrhw69+85Hftm/i433XRTkuTrX/96\nTp8+vUsjBGbIyiH2PHNFdtoi/Ay06JZpbgxszMohAAAAADZk5RBL7UIrZs49r1dWVs6sGLrzzjuT\nJJ/61KfO2vfll18+c4evvejUqVNJksceeyxJ8qu/+qtnjgmw1KwcYs8zV2QeFuHnpHmycgj2DiuH\nAAAAANiQlUO0UFVnfvszvdbQ9G5d0+vufPrTn87v/u7vnvW46bWMptc22gv2799/5mPXHII9wcoh\n9jxzRRbBIvzcNEtWDsHesZmVQ+IQTBw6dOjMLeJf9apXJUkefvjhJMkNN9yQJLnssssu+jyLfoHr\nRR0XsGXiEHueuSKLaBF+jtpJ5oiwd3lZGQAAAAAbsnII1jF96dX0/Sc/+ckkyZEjR5Ksvtxs+lKz\n6Wqj6cWsd+ulaGv/rU4vJD39Gvv2nd15r7766vzwhz/c0a8PLCwrh9jzzBVZFovws9WlsFoIerBy\nCAAAAIANWTkEmzBdFTRdJbTW7bffniR54oknkiSf/exnkyRvfvObz+wzvY382otBb8XRo0eTJA88\n8ECS5KGHHjrreadfZ9++fWcuNj39jdAi/FsHdoWVQ+x55orsBfOai1kdBFg5BAAAAMCGrByCbZre\nwWy6amf6b+rkyZNn9pleE2gzt46fXkdoeu2itc69rtG5z2eVELRk5RB7nrkiAGydlUMAAAAAbOjA\nvAcAy+6ll1666D6bWTE0td6Koan1rnm0lhVDAAAAXCorhwAAAAAaE4cAAAAAGhOHAAAAABoThwAA\nAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAA\nABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAA\nGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAa\nE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoT\nhwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOH\nAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cA\nAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAAAAAaE4cAAAAAGhOHAAAAABoThwAA\nAAAaE4cAAAAAGhOHAAAAABoThwAAAAAau2gcqqprqurvquqpqnqyqu6abP9YVf2wqh6fvN2y5jEf\nqapjVfV0Vf3Gbv4FAACYH3NFAFh+NcbYeIeqK5NcOcb4dlW9JsljSd6Z5LeS/GSM8d/P2f+6JJ9L\n8pYk/yHJ3yb5T2OMUxt8jY0HAQBcyGNjjBvnPQj6MlcEgMU2xqiL7XPRlUNjjOfGGN+efPwvSZ5K\nctUGDzmc5PNjjJfHGM8kOZbVb/4AAOwx5ooAsPwu6ZpDVfXGJL+S5BuTTXdW1Xeq6t6qeu1k21VJ\nfrDmYSeyzgShqo5U1aNV9egljxoAgIVjrggAy2nTcaiqXp3koSQfHGP8OMlnkvxikuuTPJfk49Nd\n13n4eUuBxxj3jDFutBQeAGD5mSsCwPLaVByqqoNZ/Wb/l2OMLyTJGOP5McapMcbpJJ/Nz5YDn0hy\nzZqHX53k2Z0bMgAAi8RcEQCW22buVlZJ/iLJU2OMP12z/co1u70ryROTj48mubWqDlXVm5Jcm+Sb\nOzdkAAAWhbkiACy/A5vY56Yk70vy3ap6fLLto0neW1XXZ3UZ8PEkv5MkY4wnq+rBJN9LcjLJHRvd\nfQIAgKVmrggAS+6it7KfySDcnhQAtsqt7NnzzBUBYOt25Fb2AAAAAOxd4hAAAABAY+IQAAAAQGPi\nEAAAAEBjm7lb2Sz8U5L/N3nP7nt9HOtZcaxnx7GeDcd5djZ7rP/jbg8EFoC54mz5v352HOvZcaxn\nw3GenR2dKy7E3cqSpKoedbeV2XCsZ8exnh3HejYc59lxrOFs/k3MjmM9O4717DjWs+E4z85OH2sv\nKwMAAABoTBwCAAAAaGyR4tA98x5AI4717DjWs+NYz4bjPDuONZzNv4nZcaxnx7GeHcd6Nhzn2dnR\nY70w1xwCAAAAYPYWaeUQAAAAADMmDgEAAAA0thBxqKpurqqnq+pYVX143uPZS6rqeFV9t6oer6pH\nJ9teV1UPV9U/TN6/dt7jXEZVdW9VvVBVT6zZtu6xrVWfmJzj36mqG+Y38uVzgWP9sar64eTcfryq\nblnzZx+ZHOunq+o35jPq5VRV11TV31XVU1X1ZFXdNdnu3N5BGxxn5zWsw1xx95gr7h5zxdkxV5wd\nc8XZmMdcce5xqKr2J/kfSd6R5Lok762q6+Y7qj3n18YY148xbpx8/uEkj4wxrk3yyORzLt19SW4+\nZ9uFju07klw7eTuS5DMzGuNecV/OP9ZJ8meTc/v6McaXk2Ty/8etSX558phPT/6fYXNOJvnQGOOX\nkrw1yR2TY+rc3lkXOs6J8xrOYq44E+aKu+O+mCvOyn0xV5wVc8XZmPlcce5xKMlbkhwbY/zjGOOV\nJJ9PcnjOY9rrDie5f/Lx/UneOcexLK0xxt8n+dE5my90bA8neWCs+nqSn6+qK2cz0uV3gWN9IYeT\nfH6M8fIY45kkx7L6/wybMMZ4bozx7cnH/5LkqSRXxbm9ozY4zhfivKYzc8XZM1fcAeaKs2OuODvm\nirMxj7niIsShq5L8YM3nJ7LxX5pLM5J8raoeq6ojk21XjDGeS1ZPuiRvmNvo9p4LHVvn+e64c7I8\n9d41S94d6x1SVW9M8itJvhHn9q455zgnzms4l/N/d5krzpbvp7Ple+ouMlecjVnNFRchDtU628bM\nR7F33TTGuCGry/nuqKr/Mu8BNeU833mfSfKLSa5P8lySj0+2O9Y7oKpeneShJB8cY/x4o13X2eZ4\nb9I6x9l5Dedz/u8uc8XF4Dzfeb6n7iJzxdmY5VxxEeLQiSTXrPn86iTPzmkse84Y49nJ+xeSfDGr\nS8ueny7lm7x/YX4j3HMudGyd5ztsjPH8GOPUGON0ks/mZ8smHettqqqDWf0m9JdjjC9MNju3d9h6\nx9l5Dety/u8ic8WZ8/10RnxP3T3mirMx67niIsShbyW5tqreVFUrWb2I0tE5j2lPqKqfq6rXTD9O\n8utJnsjq8b1tstttSb40nxHuSRc6tkeTvH9ytf63Jvnn6bJLtuac1yq/K6vndrJ6rG+tqkNV9aas\nXvzum7Me37KqqkryF0meGmP86Zo/cm7voAsdZ+c1rMtccZeYK86F76cz4nvq7jBXnI15zBUPbG/I\n2zfGOFlVdyb5apL9Se4dYzw552HtFVck+eLqeZUDSf5qjPE3VfWtJA9W1e1Jvp/k3XMc49Kqqs8l\neVuS11fViSR3J/njrH9sv5zklqxeGOxfk/z2zAe8xC5wrN9WVddndbnk8SS/kyRjjCer6sEk38vq\nVf7vGGOcmse4l9RNSd6X5LtV9fhk20fj3N5pFzrO73Vew9nMFXeVueIuMlecHXPFmTJXnI2ZzxVr\nDC/3AwAAAOhqEV5WBgAAAMCciEMAAAAAjYlDAAAAAI2JQwAAAACNiUMAAAAAjYlDAAAAAI2JQwAA\nAACN/X/GaLRTLi4RVwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd8605ac8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHzJJREFUeJzt3U+IrXeZJ/DvM17bRSuoOIZMkhlF\n7kDbmyhBBIfBXkwb3UQXNnHRBhHiIoJCb6IbXfZitEFmOhAxJIKtE1AxC+luJwjOxj83EjQxk/bS\nZsw1IaFxUGcEh8TfLOqUqXtvnaq6Vee857zn+XygOKfeOqfqd3/3rXofvr/nfd8aYwQAAACAnv7V\npgcAAAAAwOYIhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjawuHqurW\nqnqyqi5W1d3r+jkAAMyPWhEAtkeNMVb/TateluSfkvynJJeS/CDJB8YYP1n5DwMAYFbUigCwXc6t\n6fu+LcnFMcY/J0lVfSXJbUkOPeBX1eoTKgDo4V/GGP9604OAa6RWBICJjDHquNes67SyG5I8feDz\nS4ttf1BVd1bVhaq6sKYxAEAH/2vTA4BTUCsCwBZZV+fQYanUZSs+Y4x7k9ybWA0CAGhGrQgAW2Rd\nnUOXktx04PMbkzyzpp8FAMC8qBUBYIusKxz6QZLzVfXGqvqjJLcneWhNPwsAgHlRKwLAFlnLaWVj\njBeq6qNJ/iHJy5LcN8Z4fB0/CwCAeVErAsB2Wcut7K95EM4jB4DTemSMccumBwHrpFYEgNPb5N3K\nAAAAAJgB4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0Jhw\nCAAAAKAx4RAAAABAY+c2PQBgGmOMtXzfqjrxzzrstQAAzMdJa0p1H8yLziEAAACAxnQO0d66OmqS\n1ayYrHN8q3At49u2f4sVLQBgmVXXLZusOzZRg+3S/EEHOocAAAAAGtM5xE7Zts6UbRsPl9v//7ES\nBQA9bLI2UxeezSbnT61IB8IhZssBlrNyoAeA3aNGZNUsKNKB08oAAAAAGjtT51BVPZXkN0leTPLC\nGOOWqnptkv+W5A1JnkryF2OM/322YbJrrOiwSVZ9AKahVmTV1JAA67GKzqE/G2PcPMa4ZfH53Uke\nHmOcT/Lw4nMAAHpSKwLAllvHaWW3JXlg8fyBJO9dw89gRsYYV30AAG2pFTkRNSTboqp0nrPzzhoO\njST/WFWPVNWdi23XjTGeTZLF4+vP+DMAAJgntSIAzMBZ71b2jjHGM1X1+iTfqqr/edI3LgqEO499\nIbNldYdtY8UHYHJqRY6lZmSbqR/p4kydQ2OMZxaPzyf5epK3JXmuqq5PksXj80vee+8Y45YD558D\nALBD1IoAMA+nDoeq6o+r6lX7z5P8eZLHkjyU5I7Fy+5I8o2zDpJ5cE4428yqD8C01Ioso2ZkDlxn\niG7OclrZdUm+vviFOZfk78YYf19VP0jyYFV9OMnPk7z/7MNkWzmgs+0c1AE2Rq2IWpHZUTvSVW3D\nH+yq2vwgOJVt2H/gKA7wNPCI027YdWrF+VIrMjdqR3bRGOPYHfusF6SmGQd4AAAOo05kzoRCdHfW\nW9kDAAAAMGM6hziWVSDmyOoPAKyXGhFgd+gcAgAAAGhM5xBLWQ1ijnQMAcB6qA0BdpfOIQAAAIDG\ndA41ZvUHAIDjqBnZZbrOYY/OIQAAAIDGdA41Y+WHXWXVBwDOTq0I0JNwqAkHegAAllEr0pHFRXiJ\n08oAAAAAGtM5tKOs/gAAcBT1IgD7dA4BAAAANKZzaAdZBaIT54oDwMmoEQFYRucQAAAAQGM6h3aA\nVSAAAJZRK8LldJ7D1XQOAQAAADSmc2jGrAIBALCMWhGAkxIOzZADPezREgwAl1MnAnAaTisDAAAA\naEzn0IxYCQIA4DDqRADOQucQAAAAQGM6h2bCahC8xLWGAGCPGhFOTg0Jy+kcAgAAAGhM59CWsxoE\nAMCV1IhwcjqG4Hg6hwAAAAAa0zm0ZawCAQCwjFoRTk7HEJycziEAAACAxnQObQmrQAAAHEadCNdG\nxxBcO+HQBjnQAwCwjFoRgKk4rQwAAACgMZ1DG2AVCACAZdSKcHpOKYPT0TkEAAAA0JjOIWA2rAQB\nsMt0DMHpqRPhbHQOAQAAADSmc2hCVoPgdKwEAQAArI/OIQAAAIDGdA5NQMcQnI6OIQA6UCvC6akX\nYTV0DgEAAAA0JhwCAAAAaMxpZQAAsCFOKYPTcToZrJbOIQAAAIDGdA6tkZUgOD2rQQAAXEmNCOuh\ncwgAAACgMeEQAAAAQGPCIQAAAIDGXHMIAAAm5tqUAGwTnUMAAAAAjQmH1sRqEAAAADAHTisDAICJ\nWECEs9n/HXJLe1gtnUMAAAAAjekcWjGrQQAAAMCc6BwCAAAAaEw4BAAAANCYcAgAAACgMdccAgCA\nNXNdSlgtdy2D1dI5BAAAANCYcAgAAACgMeEQAAAAQGPCIWAruTYDAADANIRDAAAAAI0JhwAAAAAa\nEw4BAAAwS2MMlyOAFRAOAQAAADQmHAIAAABoTDgEAAAA0JhwCNhaziEHAABYP+EQAAAAQGPCIQAA\nAIDGzm16ALvCqS8AAADAHOkcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDsEFV\nlara9DAAAABoTDgEAAAA0JhwCLaA7iEAAAA2RTgEAAAA0Ni5TQ9g7sYYmx4CM3JUh9D+1+xTALA7\nHNdhGvu/azry4XSEQ7Bllh3QFJcAAD2cJuBQKwJn4bQyAAAAgMaODYeq6r6qer6qHjuw7bVV9a2q\n+uni8TWL7VVVn6uqi1X1o6p66zoHD3Mzxlj6cZz9294f/OjipHMEwPTUirB+J6mFutaJwGqcpHPo\n/iS3XrHt7iQPjzHOJ3l48XmSvDvJ+cXHnUnuWc0wAQDYUvdHrQgAs3ZsODTG+E6SX16x+bYkDyye\nP5DkvQe2f3Hs+W6SV1fV9asaLOyy03THHNZNtIurRbv4bwLYFWpFWL1lHean7ToHOM5przl03Rjj\n2SRZPL5+sf2GJE8feN2lxbarVNWdVXWhqi6ccgwAAGwntSIAzMiq71Z2WCx9aKw9xrg3yb1JUlWz\nu5iI65+wLlfuW6dd7bnyffZZALZAm1oR1u1aasYOd8PVIQVnc9rOoef2W4AXj88vtl9KctOB192Y\n5JnTDw8AgBlSKwLAjJw2HHooyR2L53ck+caB7R9c3Ini7Ul+td9SDJzOqu7UtevXJQJgq6gVYWLX\neifcpM/1K4HjHXtaWVV9Ock7k7yuqi4l+VSSv07yYFV9OMnPk7x/8fJvJnlPkotJfpvkQ2sYM7R0\n8CC/qgO2U88AOCu14nKOq2zSWWvHudSJgixYjdqGX/I5nke+DfNGX+s6CG7rfu2gD0d6ZIxxy6YH\nAes0x1ox2d7jKv2sopba1v1ZnQjHG2Mc+4uy6gtSAxNY1UWrr7RtK0QO9gAAZ7eK2vHgezZdIybq\nRFi1015zCAAAAIAdoHMIdsBhqzerWE056nuse8XIahAAwHqctXZc9topOorUiLAeOocAAAAAGtM5\nBDtq2crNuq5PdNTPPO33AwBgGsfVcSep1dbZda5WhPXSOQQAAADQmM4haGZd1yda5fcBAGC77NeQ\np6331Imw3XQOAQAAADSmcwi4qpvIyg4AAIc5WDeqGWF36BwCrjLGmORWpAAAzJeaEXaHcAgAAACg\nMeEQsJSVIAAAjqODCOZPOAQAAADQmHAIOJKVIAAAgN0mHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAA\nAABAY8IhAAAAgMaEQwAAAACNCYdOqapSVZseBgAAW0qtCMBcCIcAAAAAGhMOAQAAADQmHAIAAABo\n7NymBwAAAMB8ub4WzJ/OIQAAAIDGdA4BR7ISBAAAsNt0DgEAAAA0JhwCAIA1qSpduABsPeHQGTng\nAwAAAHMmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAKyZ61QCsM2EQwAAAACNndv0AHbF/krQGGPD\nI4HVscIJAMAyakXYHTqHAAAAABoTDgEAwERcewiAbSQcAgAAAGjMNYdWzLWH2AVWNAEAWEatCLtH\n5xAAAAAnIhiC3SQcAgAAAGjMaWXAH1gJAoBpuBQBANtE5xAAAABAYzqHAB1DAAAcSb0Iu03nEAAA\nAEBjOoegKas/AAAso1aEXnQOAQAAADSmc2hNqsrdJ9hKVoEAALiSGhF6Ew5BEw74AAAcpD4E9jmt\nDAAAAKAxnUOwo6wEAQBwGHUicCWdQwAAAACNCYfWqKqk8myE/Q4AAICTEg4BAAAANOaaQ7ADdAoB\nAHAcNSOwjM4hAAAAgMZ0DsEaLVudGWOs9fsDAPNQVSurC5i3k9R1p9lX1IvASegcAgAAAGhM5xBs\ngBUcAACSa6sL9197sINIXQmsgnBoAof9EWf3OVADALDMWWpFdSawak4rAwAAAGhMOAQAABtUVTpB\nANgo4RAAAABAY645NCHXHurByh8AAABzonMIAAAAoDGdQwAAsAV0mfegyxzYRjqHAAAAABrTObQB\nVoV2k1UgAACWUSsC20znEAAAAEBjwiEAAACAxpxWBmekRRgAWCWXINg96kVg2+kcAgAAAGhM59AG\nWRWaNytAAAAcRb0IzIXOIQAAAIDGhENwClaBAAAA2BXCIQAAAIDGXHMIAAC2kOtTzpcuc2BudA4B\nAAAANCYc2gJWFuajqvx/AQAAsFOcVrYltA0DAHAYdeJ8WEQE5krnEAAAAEBjx4ZDVXVfVT1fVY8d\n2PbpqvpFVT26+HjPga99oqouVtWTVfWudQ0cpuR0MgA4nFpxOmqR7aVWBObuJJ1D9ye59ZDtfzPG\nuHnx8c0kqao3J7k9yZ8u3vO3VfWyVQ0WAICtc3/UigAwa8eGQ2OM7yT55Qm/321JvjLG+N0Y42dJ\nLiZ52xnG145Vh+3i/wMAjqZWpDO1IrArznLNoY9W1Y8WrcSvWWy7IcnTB15zabHtKlV1Z1VdqKoL\nZxgDAADbSa0IADNx2nDoniRvSnJzkmeTfGax/bDY/NDbKowx7h1j3DLGuOWUYwAAYDupFddEp8r2\n8P8A7JJThUNjjOfGGC+OMX6f5PN5qR34UpKbDrz0xiTPnG2IAADMiVoRAOblVOFQVV1/4NP3Jdm/\nO8VDSW6vqldU1RuTnE/y/bMNsSerQptl/gHg9NSK66dWAWCVzh33gqr6cpJ3JnldVV1K8qkk76yq\nm7PXBvxUko8kyRjj8ap6MMlPkryQ5K4xxovrGToAAJumVgSA+asxDj3Ne9pBVG1+EFtuG/6fOrES\nB8zII67Jwq5TKx5PrTgddSIwN2OMY/9wHds5xHaoKgf9CTjYAwBztF/DqBfXR50I7LKz3MoeAAAA\ngJnTOQQLVoMAALiSGhHoQOcQAAAAQGPCoRlxy1IAAI6iVlwdtTfQiXAIAAAAoDHXHKI9K0IAwC5x\n5zIArpXOIQAAAIDGhEMz5PxnAABYH7U20I3TymZMy/DZOOgDALtMrQjASekcAgAAAGhM59AOsCoE\nAMAyasWT01kOdKVzCAAAAKAxnUM7xKrQyVgRAgA6urIGUjMCsE/nEAAAAEBjwqEdpDMGAIDjqBlf\nUlXmA2hNOAQAAADQmGsO7SjnlF/NahAAwOXUjAAkOocAAAAAWtM51ET3VSFdQwAAx3P3W4CehENN\nHQxLHPwBADioS61oARFgj9PKAAAAABrTOcROtw9bDQIAOJvulycA6EDnEAAAAEBjOof4g11aFdIx\nBACwHrtQM6oVAS6ncwgAAACgMZ1DLDXHu1RYBQIAmNYca0YALqdzCAAAAKAxnUOcyLKOnG1ZHdIx\nBACwedt+PSI1I8DhhEOcyVEH2HUVAw7qAADzsIla8SQ/G4DLOa0MAAAAoDGdQ6yN1RoAAJZRKwJs\nD51DAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACA\nxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACA\nxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACA\nxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACA\nxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACA\nxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACA\nxoRDAAAAAI0JhwAAAAAaOzYcqqqbqurbVfVEVT1eVR9bbH9tVX2rqn66eHzNYntV1eeq6mJV/aiq\n3rrufwQAAJuhVgSA+TtJ59ALSf5qjPEnSd6e5K6qenOSu5M8PMY4n+ThxedJ8u4k5xcfdya5Z+Wj\nBgBgW6gVAWDmjg2HxhjPjjF+uHj+myRPJLkhyW1JHli87IEk7108vy3JF8ee7yZ5dVVdv/KRAwCw\ncWpFAJi/a7rmUFW9IclbknwvyXVjjGeTvaIgyesXL7shydMH3nZpse3K73VnVV2oqgvXPmwAALaN\nWhEA5uncSV9YVa9M8tUkHx9j/Lqqlr70kG3jqg1j3Jvk3sX3vurrAADMh1oRAObrRJ1DVfXy7B3s\nvzTG+Npi83P7LcCLx+cX2y8luenA229M8sxqhgsAwLZRKwLAvJ3kbmWV5AtJnhhjfPbAlx5Kcsfi\n+R1JvnFg+wcXd6J4e5Jf7bcUAwCwW9SKADB/NcbRXbpV9R+S/I8kP07y+8XmT2bvXPIHk/zbJD9P\n8v4xxi8XBcJ/SXJrkt8m+dAY48hzxbUKA8CpPTLGuGXTg6AvtSIAbLcxxtJzvfcdGw5NwQEfAE5N\nOMTOUysCwOmdJBy6pruVAQAAALBbhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjR0bDlXVTVX17ap6oqoer6qPLbZ/uqp+UVWPLj7e\nc+A9n6iqi1X1ZFW9a53/AAAANketCADzV2OMo19QdX2S68cYP6yqVyV5JMl7k/xFkv8zxvjPV7z+\nzUm+nORtSf5Nkv+e5N+PMV484mccPQgAYJlHxhi3bHoQ9KVWBIDtNsao415zbOfQGOPZMcYPF89/\nk+SJJDcc8ZbbknxljPG7McbPklzM3sEfAIAdo1YEgPm7pmsOVdUbkrwlyfcWmz5aVT+qqvuq6jWL\nbTckefrA2y7lkAKhqu6sqgtVdeGaRw0AwNZRKwLAPJ04HKqqVyb5apKPjzF+neSeJG9KcnOSZ5N8\nZv+lh7z9qlbgMca9Y4xbtMIDAMyfWhEA5utE4VBVvTx7B/svjTG+liRjjOfGGC+OMX6f5PN5qR34\nUpKbDrz9xiTPrG7IAABsE7UiAMzbSe5WVkm+kOSJMcZnD2y//sDL3pfkscXzh5LcXlWvqKo3Jjmf\n5PurGzIAANtCrQgA83fuBK95R5K/TPLjqnp0se2TST5QVTdnrw34qSQfSZIxxuNV9WCSnyR5Icld\nR919AgCAWVMrAsDMHXsr+0kG4fakAHBabmXPzlMrAsDpreRW9gAAAADsLuEQAAAAQGPCIQAAAIDG\nhEMAAAAAjZ3kbmVT+Jck/3fxyPq9LuZ6KuZ6OuZ6GuZ5Oied63+37oHAFlArTsvf+umY6+mY62mY\n5+mstFbciruVJUlVXXC3lWmY6+mY6+mY62mY5+mYa7ic34npmOvpmOvpmOtpmOfprHqunVYGAAAA\n0JhwCAAAAKCxbQqH7t30ABox19Mx19Mx19Mwz9Mx13A5vxPTMdfTMdfTMdfTMM/TWelcb801hwAA\nAACY3jZ1DgEAAAAwMeEQAAAAQGNbEQ5V1a1V9WRVXayquzc9nl1SVU9V1Y+r6tGqurDY9tqq+lZV\n/XTx+JpNj3OOquq+qnq+qh47sO3Qua09n1vs4z+qqrdubuTzs2SuP11Vv1js249W1XsOfO0Ti7l+\nsqretZlRz1NV3VRV366qJ6rq8ar62GK7fXuFjphn+zUcQq24PmrF9VErTketOB214jQ2UStuPByq\nqpcl+a9J3p3kzUk+UFVv3uyods6fjTFuHmPcsvj87iQPjzHOJ3l48TnX7v4kt16xbdncvjvJ+cXH\nnUnumWiMu+L+XD3XSfI3i3375jHGN5Nk8ffj9iR/unjP3y7+znAyLyT5qzHGnyR5e5K7FnNq316t\nZfOc2K/hMmrFSagV1+P+qBWncn/UilNRK05j8lpx4+FQkrcluTjG+Ocxxv9L8pUkt214TLvutiQP\nLJ4/kOS9GxzLbI0xvpPkl1dsXja3tyX54tjz3SSvrqrrpxnp/C2Z62VuS/KVMcbvxhg/S3Ixe39n\nOIExxrNjjB8unv8myRNJboh9e6WOmOdl7Nd0placnlpxBdSK01ErTketOI1N1IrbEA7dkOTpA59f\nytH/aK7NSPKPVfVIVd252HbdGOPZZG+nS/L6jY1u9yybW/v5enx00Z5634GWd3O9IlX1hiRvSfK9\n2LfX5op5TuzXcCX7/3qpFafleDotx9Q1UitOY6pacRvCoTpk25h8FLvrHWOMt2avne+uqvqPmx5Q\nU/bz1bsnyZuS3Jzk2SSfWWw31ytQVa9M8tUkHx9j/Pqolx6yzXyf0CHzbL+Gq9n/10utuB3s56vn\nmLpGasVpTFkrbkM4dCnJTQc+vzHJMxsay84ZYzyzeHw+ydez11r23H4r3+Lx+c2NcOcsm1v7+YqN\nMZ4bY7w4xvh9ks/npbZJc31GVfXy7B2EvjTG+Npis317xQ6bZ/s1HMr+v0Zqxck5nk7EMXV91IrT\nmLpW3IZw6AdJzlfVG6vqj7J3EaWHNjymnVBVf1xVr9p/nuTPkzyWvfm9Y/GyO5J8YzMj3EnL5vah\nJB9cXK3/7Ul+td92yelcca7y+7K3byd7c317Vb2iqt6YvYvffX/q8c1VVVWSLyR5Yozx2QNfsm+v\n0LJ5tl/DodSKa6JW3AjH04k4pq6HWnEam6gVz51tyGc3xnihqj6a5B+SvCzJfWOMxzc8rF1xXZKv\n7+1XOZfk78YYf19VP0jyYFV9OMnPk7x/g2Ocrar6cpJ3JnldVV1K8qkkf53D5/abSd6TvQuD/TbJ\nhyYf8Iwtmet3VtXN2WuXfCrJR5JkjPF4VT2Y5CfZu8r/XWOMFzcx7pl6R5K/TPLjqnp0se2TsW+v\n2rJ5/oD9Gi6nVlwrteIaqRWno1aclFpxGpPXijWG0/0AAAAAutqG08oAAAAA2BDhEAAAAEBjwiEA\nAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGjs/wNdBofblyYIXQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd84b8978>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+Mp2ddN/r3tTu7221LoS2ClS5t\nlR58eKoW2SBQc1JjwZaoRQhaYioHjdVQkhIxHjREyDGQp4ISniCVok0h+AA14qEaPTxQeOSIQGlL\nA1TsoUIpZQuFUvpzd2dn5jp/zPeenZmdnZmd/f6+Xq9kMzP33POda++5Z76f7/v+3NdVaq0BAAAA\noE3bRj0AAAAAAEZHOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAwwYW\nDpVSLi6l3FlKuauU8vpBfR8AACaPWhEAxkeptfb/QUvZnuT/S/LCJPcm+XySV9Ra/73v3wwAgImi\nVgSA8TIzoMd9bpK7aq1fS5JSygeTXJpkzSf8Ukr/EyoAaMP3aq0/NOpBwDFSKwLAkNRay0b7DOq2\nsqcl+eayj+/tbVtSSrmilHJLKeWWAY0BAFrwjVEPALZArQgAY2RQnUNrpVIrrvjUWq9Ncm3iahAA\nQGPUigAwRgbVOXRvkj3LPj4zyb4BfS8AACaLWhEAxsigwqHPJzm3lHJOKWVnksuS3Dig7wUAwGRR\nKwLAGBnIbWW11rlSymuSfDTJ9iTX1VrvGMT3AgBgsqgVAWC8DGQp+2MehPvIAWCrbq217h31IGCQ\n1IoAsHWjXK0MAAAAgAkgHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACg\nYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAA\noGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAA\nAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgA\nAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaNjMqAcAjM7MzOKfgG3bFnPi2dnZI/YppSRJaq0bPl63\nb2f11yz//GYeDwAAgMHTOQQAAADQMJ1DMIE26ubZuXNntm/fvmJbt++BAweWtl155ZVJkgcffDBJ\ncu655yZJ3vzmNy/tu9kOnxNPPDGPP/74uvus9Vg7d+5MkszPz694u9yxdC8BAABwbHQOAQAAADSs\njMOV+FLK6AcBY6qbD2hhYWFpjqC5ubkV+5xwwglJktNPP33pa17wghckSV784hcnSS655JIkyQ/9\n0A8tfd2hQ4eSJDt27FjxeI8++miSZPfu3UtdO904Ol2Hz8LCQpJk//79OeWUU475//fWt741SfKG\nN7whSXLaaaclSb797W8fsW83hu7v1jj8/YIxcGutde+oBwGDpFaE0RmXemv13JbA5tVaN/wFEg7B\nGJiZmTki8Fmt1pp3v/vdSZKXvexlSbJ069ipp556xP5daHM0q8OeUelCpu7/0o1727Ztefjhh5Nk\nKXT6wQ9+kCT5+Z//+STJbbfddsTjuQWNBgmHmHpqRdi81msgIRIcaTPh0Hi8OgQAAABgJHQOwYCU\nUo64crNr164kycGDB1dsf9/73pfLL7983cebm5tbuhLSddt0kzlPo1rrUa/8PPTQQ0mSxx9/PNde\ne22S5E1vetOKfXQQ0RCdQ0w9tSKspL7ZGl1FtErnEAAAAADr0jkEA7J8HqGXvOQlSbK01PtHP/rR\nJIev+szOzi51Fa22/HfU1Y4jdXMUdcf25JNPTpKcddZZSZJ9+/YlWTx23QTcMGV0DjH11Iq0Zhxe\no7VCfU0LdA4BAAAAsC6dQ7BFq68ydL9LT3ziE5MszovTbevmCDrasvD034EDB5Ik+/fvT5K86EUv\nyi233DLKIcGg6Bxi6qkVmWbj8HqMw3QSMY10DgEAAACwLp1DsAU7d+7M7OxskuTqq69Oklx66aVJ\nkmc+85lL+3UdQ9u3bx/yCFnt8ccfz4knnpgkuf7665Mkv/mbv5nkcCfXwsKCq3dMIp1DTD21ItNE\nrTEZdBAxTTbTOSQcgp61lp7vnhR27NiRJEuB0Nve9ra87nWvS3L4tqUuYOgmljaR9OTw82HCCYeY\nempFJtU4vNbi+KgTmQZuKwMAAABgXTOjHgCMs4svvjhJ8tWvfnXF24MHDy7ts3v37jW/1lWGyXHe\neeclSb785S+PeCQAwCTTKTR93A1AK3QOAQAAADTMnEOwzDj8PjB8XSfY29/+9rzxjW9Mcnh+KZgA\n5hxi6qkVGUfqxnbpIGLSmHMIAAAAgHXpHKIJy9P97pzvVhXrukb+7d/+Lc9//vOHPzjGiitBTCCd\nQ0w9tSLjYBxeNzFe1I1MCp1DAAAAAKzLamU0YceOHUfMIXPVVVclSa6++uokK1cgoy3dlcCFhYWl\n90866aQkyaFDh5Ikc3NzK/YFAKab53ygJTqHAAAAABqmc4iptH379iTJ/Px8kuQZz3hG7rjjjhX7\nrO4k6uYgoj3d/eLbt29fOmcee+yxFZ8DANqhawhojXCIqbI6FHrkkUeSJCeffPLSk3z3Yn/nzp0j\nGCHjrjuHutvJAIDpJwxiK1a/voBJ5rYyAAAAgIbpHGKqfPjDH06S/PIv/3KSld0fEn06R7vKMzs7\nu9RRtmPHjhWf6/Z1ZREApofndY6H1xdME51DAAAAAA3TOcTE2rlz59Kk0t1Vn9XL0c/MOMU5UtdR\n1nUJvfOd70ySnHXWWUtdZ7t3706iYwgAponnc/pBxxDTSOcQAAAAQMO0VTAxtm1bzDIXFhaSJKef\nfnr27duX5HAnyOrl6KX6dBYWFpbOoQceeCBJ8iM/8iNJDneYdavcJcn+/fuHPEIAYJB0DXG8vLZg\nmukcAgAAAGiYziEmRtcx9K1vfSvJYtdHt231ylLQ6brKduzYkTPPPDPJ4XOo6ySam5sbzeAAgIHR\nKUS/6BiiBcIhxsryyX9POOGEJMmBAweWtiUrl6fvXtzTrtXL0neTkne3GL761a9OkvzVX/3V0gTU\nnS5cBAAmnzCIfhII0RqvrAEAAAAapnOIsdJNDHzo0KFcdNFFSZJ/+Id/SHK4I2R19wdt624J624t\n/NjHPpYk+aVf+qUkKycpX951BgBMD11D9IuOIVqlcwgAAACgYTqHGAtdQt91dtRaj5gPZvUy9VBr\nXeoY6s6h1fNQdR1n3f4AwOTyXE6/6RSCRTqHAAAAABqmc4iR6ro+uo6hL37xi0ufsxIZRzM7O5tk\ncf6p888/P8nh88UKZAAwPXQKMQi6heBIXn0DAAAANEznEAPXJfPdnEEHDhzIO97xjiTJt7/97STJ\nW97yliQr54eB1Q4cOJAkef3rX58kecc73rF0XukYAoDpomuIftEpBBvTOQQAAADQsDIOiXwpZfSD\nYGC6uWBOOumkJMnDDz+8NGfM9u3bV7yFtXRzUt12221Jkhe84AVJdAtBz6211r2jHgQMklqxDePw\nuoTpomMIFtVaN/xlEA4xNONwrjGZ5ufnkxyewNy5BCsIh5h6asXp5nmdfhMKwUqbCYfcVgYAAADQ\nsOOakLqUcneSR5LMJ5mrte4tpZyW5ENJzk5yd5JfrbU+eHzDZBJ0Cf3qqz+f+tSnRjEcJlytNfv3\n70+SXHDBBUkO3344Nzc3snEBsHlqRWDYdA3B1vSjc+jnaq3nL2tpf32Sm2qt5ya5qfcxAABtUisC\nwJgbxFL2lya5sPf+e5P8ryT/5wC+D2NmdedQ99by9GxFKSVf+9rXkiS33377iEcDQB+pFRtnjiEG\nQccQHJ/j7RyqSf5nKeXWUsoVvW1PrbXelyS9t085zu8BAMBkUisCwAQ43s6hC2qt+0opT0nysVLK\nf2z2C3sFwhUb7sjE6JYV764GdcvV79y5c2RjYnLNz8/n6quvHvUwADg+akVgoHQMQX8cV+dQrXVf\n7+39Sf4+yXOTfKeUckaS9N7ef5SvvbbWutfyuwAA00mtCACTYcudQ6WUk5Jsq7U+0nv/RUn+ryQ3\nJnllkv/We/uRfgyU8XfFFSsv7ukY4ngcPHgw73//+0c9DAC2SK0IAJOjbHVCuFLKj2bxClCyGDL9\nj1rrm0sppye5IcnTk9yT5OW11u9v8FhmpZswqyeffuITn5h77rknSXLKKaeMbFxMl+48W32+ASvc\nqrOCcaRWZC2ey+k3t5XBxmqtG/6ibDkc6idP+JNHOMQwCIdgU4RDTD214vTwXE6/CYdgY5sJhwax\nlD0NWP3E/tKXvnQpFOo+5w81/aKQBABgOa81oL+Odyl7AAAAACaYziGOybZti3ni6mXr5+bmlvaR\n4tNvbisDgMnmORxgvOkcAgAAAGiYziGOSdcxdOedd67YPjPjVAIAYCUdQwCTQecQAAAAQMO0e3BM\n/uRP/iRJsmfPnhGPBACAcaNTCGAy6RwCAAAAaFgZh3S/lDL6QbCu5zznOUmST33qU0mSE088cZTD\noRHdKmVWK4N13Vpr3TvqQcAgqRUnh+dqhsUKybB5tdYNf2HcVsaGnvzkJ+fmm29OcngpexgmhSYA\njD/P1wCTyyt9AAAAgIbpHOIIXXfQT/7kTyZJvvCFL4xyOAAAjDEdQwCTT+cQAAAAQMNMSM3SZG47\nduxIkszOziZZeRWoe9/EbwyT8w02xYTUTD214ngah9cRoF6EjW1mQmqdQwAAAAANM+cQ2b59e5Ij\nO4bm5uaSJDMzMxJ5hm5+fn7UQwAA1qBjCGD66BwCAAAAaJjOIZY6hFZfBZqZcXowOt15CQCMBx1D\nANPLq/9GlVKye/fuJMnHP/7xJIdv4+luM6M9Bw8eTJLs2rXrqPt0oU13ngzqlsP5+fmcfvrpSZIH\nHnhgIN8DANiYUAhg+rmtDAAAAKBhOocas3zZ+qc85SlJkuc///mjHBJjoOsY+tu//dskyeWXX37U\nfe+4444kydlnn50kOfHEEwcypm3btuWqq65Kkrz5zW9eMU4AAEgOd7ZZQAeOj84hAAAAgIaVcbiH\nuJQy+kE0Ytu2xTzw1FNPzfe+970Rj4ZxcyxXXJ7xjGckSb761a8OajhLTjjhhCQ6h+Aobq217h31\nIGCQ1IqjMw6vFRg/q2vGcTpPlo9t9bh0F9GqWuuGJ7/OIQAAAICGmXOoMV3n0L59+7KwsLBiG+3q\nOnK6c6E7N9Zz1113JVm55Hw/VzCrteaaa6454nsAAIM3Tp0gjJe16rxx6CTazLiAo5MKAAAAADRM\n51Bj3v/+9ydJdu7cOeKRMA4OHDiQJPnFX/zFJJvrGOquwHRdQjt27Ehy/FeIVq80UUrJlVdeeVyP\nCQDAdNIVBP2lcwgAAACgYTqHptzMzOKP+KUvfWmS5CUveckoh8OY6VYBu+mmmzb9NV2HTzcPUHfV\n5s4778wzn/nMLY9l9dWfT3ziE0sdbrOzs1t+XABg88w1RD+UUgZ2LukYgsEQDk257gX8hz70oRGP\nhGl3zz335Oyzz06S7Nq1a8uPs/y2tfn5+X4MDQCA43SsoUy3f79CIqEQDJbbygAAAAAapnNoSnW3\nk11++eUjHgnjqtbatyXnk+RFL3rR0vtdx083afVa+3ff+9ChQ0kWb0tbTtcQAAyP28kYR7qFYHh0\nDgEAAAA0rIzDVYJSyugHMaXG4efLeFpYWMi2bYv5cD+uymzbti0LCwtJju28+73f+70kydvf/vbj\nHgM06tZa695RDwIGSa04OGpFNksXD0yuWuuGv8A6hwAAAAAaZs6hKbJ8lafvfve7Ix4N467rGkqS\nk046KUny2GOPbfnxFhYWsmPHjiSHz8WTTz45SfLoo48e9euOZ2UzAAAAjp/OIQAAAICG6RyaIt09\n43Nzc3nSk5404tEwCd773vcmSQ4ePNiXx+tWHuus1zHU6df3BgCOjfmGAOjoHAIAAABomM6hKdLN\n83LzzTcvXQmyqgDrOe+885IsdpsBAADQJuHQFOkCob17rWjMxubm5nLVVVeNehgAwJC5nYxj4WIz\ntMFtZQAAAAAN0zk0Bbrlw1/96lcnSWZnZ7Nz585RDokJcODAgbzwhS9Mknz6058e8WgAAAAYFZ1D\nAAAAAA0r43DPcSll9IOYYLt3706SPP744yMeCZPk0UcfzROe8IRRDwM4frfWWk02x1RTK/bHONT9\nTB5zDsHkq7Vu+IuscwgAAACgYeYcmmBdir9///4Rj4RJ9O53v3vUQwAAAGAM6BwCAAAAaJjOoQnW\n3Tf+4z/+40mSBx98MEly6qmnjmxMjL8DBw4kSd7ylreMeCQAAIwrcw1BW4RDU+A//uM/kiQnnHDC\niEfCOJufn0+SfPe7302SPPTQQ0tP+iaoBAAAaJfbygAAAAAapnNoiszM+HFydF130N69e4/YBgAA\nidvJoFU6hwAAAAAaptVkiuzYsWPUQ2CMdZ1lDzzwQJLDcxABAADQNp1DAAAAAA3TOQRTbmFhIUny\n1re+NYmOIQAAAFbSOQQAAADQMJ1DMOUOHTqUJLnooouSHF6BwkplAAAAJDqHAAAAAJqmc2iC6QBh\nM7ZtW8yA9+zZM+KRAAAAMI6EQzDltm/fvuLjLkwspQgWAQBYYXmtCLTDbWUAAAAADdM5NMG6VH/n\nzp1Jkp/5mZ9Jknz2s5+V9LOku61s3759SQ5fBdqxY8fSZNU6iABg+pmSAICj0TkEAAAA0DCdQ1Ng\ndnY2SXLSSSeNeCSMs5/4iZ9IkiwsLCRxHzkAAEe3usNM7QjTTecQAAAAQMPKONxzXEoZ/SCmSK01\nc3NzSQ6vVCXppzM/P58kednLXpZ//ud/TnK4+wyYSLfWWveOehAwSGrF/hqH+p/J5XUFTJ5a64a/\nuDqHAAAAABqmc2gKdOl91yW0vHMI1nPBBRckST7/+c8nydLqZcBE0TnE1FMrDsY4vA5g8ugcgsmz\nmc4h4dCU+tznPpck+amf+qkkya5du0Y5HMbcGWeckST59re/nSTZtm2xqbCbvBoYa8Ihpp5acTDG\n4XUAk0lABJPFbWUAAAAArEvn0JQbh58v46nWetSrPpdddlmS5EMf+tBSF1G3bzehNTA2dA4x9dSK\ng6NWpB90EsF40zkEAAAAwLp0Dk2pbo6h3//930+S/PEf/3GSZOfOnSMbE5OjW9p++fnSXRGamZlJ\ncriDaBz+hkDjdA4x9dSKg+N5nH7SQQTjSecQAAAAAOvSOdSI7ufcvZXqs1XOHRg7OoeYemrFwRuH\n1wRMD/UijBedQwAAAACsa2bUA2CwurmHnv3sZydJvvCFLyRJDh06tDR3jGSfzTh48GCS5E//9E+T\nJH/wB38wyuEAAH3U1YM6iOiH5eeR1xowGXQOAQAAADTMnEONWH01aBx+7kymAwcOJEluv/32JMnz\nn//8UQ4HMOcQDVArDp9akX7ROQSjt5k5h4RDjdm2bbFZ7Oabb85znvOcEY+GaXDdddclSX7rt34r\n27dvT5IsLCwkUVjCkAiHmHpqxeHzHE6/CYlgdExIDQAAAMC6NuwcKqVcl+QXk9xfaz2vt+20JB9K\ncnaSu5P8aq31wbIYB78jyYuTPJ7k/6i13rbhIFwNGrqTTjopv/u7v5skedvb3pbkcLdH110Ex+rM\nM89MkjzwwANJDt+CBgyUziFGSq04/XQR0U86iGD4+tU5dH2Si1dte32Sm2qt5ya5qfdxklyS5Nze\nvyuSXLPZwQIAMJGuj1oRACbapuYcKqWcneQfl10NujPJhbXW+0opZyT5X7XWZ5ZS3t17/wOr99vg\n8V2OGIFumfsf/uEfTpLcfffdKz7fnRvSfY7VvffemyTZs2fPiu2lFFcfof90DjFyasU2eA6nn7zG\ngOEZ5JxDT+2exHtvn9Lb/rQk31y23729bUcopVxRSrmllHLLFscAAMB4UisCwASZ6fPjrZVGrXmJ\nodZ6bZJrE1eDRuXgwYNJkm984xtJkqc//elJknvuuSeJNJ+t6+Ye+vrXv54kOeecc5K44giAWnGS\ndbWh53P6wV0KMF622jn0nV6LcHpv7+9tvzfJ8vtIzkyyb+vDAwBgAqkVAWCCbDUcujHJK3vvvzLJ\nR5Zt/42y6HlJHtroHnLGx3333Zf77rsvF154YS688MKl7a4OjVat9YifwcGDB3Pw4MHs378/+/fv\nz9zcXObm5kY0wqPbs2dP9uzZk4suuigXXXTRmvuUUlwxApg+asUp5rmbfvJaA8bDZpay/0CSC5M8\nOcl3krwxyf+d5IYkT09yT5KX11q/31ue9J1ZXLHi8SSvqrVueJ+4VuHxMjOzeLdhFzZ86Utfynnn\nnbdiH22gw9P9HGZmZpZu07rvvsU6uptE/B//8R+TJH/5l3+ZJDnllFPG6mf06KOPJkk+85nP5NWv\nfnWS5K677lqxz7Zti1n1wsLCcAcHk8+E1IyUWhEv7sfLVmq/Uf8Mx6FehWm2mQmpN5xzqNb6iqN8\n6ufX2LcmuXLjoQEAMA3UigAw+Ta1lP3AB+Fq0FhZb7LBcThfWrXWFZXVP6vlXV+f/vSnkyQveMEL\nkiSzs7NJkp07dw58rKst72Lq3p+fn09yeMwf/ehHkySXXHLJiq8BNqRziKmnVpwcnr+Hr19dN+Pw\ns9NBBIMxyKXsAQAAAJgCOofYlK7b5MQTT0ySPPjggys+v7CwsJT0S/yPXa116bgdPHgwSbJr164k\nh4/nzMzMhpNOL+8kWj2Hz2//9m8nSa699to+j35rjjYn0rH8f4EkOodogFpx8ozDa4xpN6iae5x+\ndl5XQH/oHAIAAABgXRtOSA1JcujQoSTJww8/nOTIFP/73/9+du/eneTIjhc2dujQoaXurG7Fsde+\n9rVJkhNOOCHJ4Y6i9Sy/0rN61a/3vOc9SZKnP/3pSZI3vOENxznq47N6vqSuS+iRRx5JkjzhCU8Y\nzcAAgOO2ug4cp26UaTDIOnu9+UeHbZxW34Vpp3MIAAAAoGHmHKJvunNp9Zw5Ev8jdV093bxAd911\nV84999wkyY4dO5Ic7tbqt+57fvCDH8yll16aZDQrmG2klDJWV65gjJlziKmnVpwunteP3Sjq6HH7\nOXktAVtnziEAAAAA1mXOIfqmS/Of97znJUk+85nPJElmZ2eTHO4k4nD3zpOe9KQkyUMPPbR0/AbV\nMdTpupYef/zxI+YlGifbt2/P/Pz8qIcBAPSZzuDNG2W3jJ8TtMVtZQzcj/7ojyZJ/vM//zNJMj8/\nvxSOdKaxTXRhYWEpfOlCji4g624h+8Y3vpFk8IHQ0YzD73+nCxF/7dd+LUly4403jnV4BWPEbWVM\nPbViG8apLhmVcayJx+XnMo7HBiaF28oAAAAAWJfOIQZurZbU1edd11mzffv2pc+P49WBrsOn1rrU\n1dKNc/Vtc+9617uWlo1/7LHHkiSXXXZZkiOXpx/V7+E4/P6vNo4/dxhzOoeYemrFNo1jnTII4177\njMPPYdyPEYw7nUMAAAAArMuE1Azc6qsN27Zty4knnpgk2b9/f5Lk537u55Ikn/jEJ5KsvDrQff0w\nrxis/p7dOH/wgx8kSR5++OF87GMfS7I4N06SpY+7ZeEXFhYyNze35uMfOHBgQCOfHKuP8Q033JAk\nmZlZ/LN0tGMHALRhvdpvHLpZjtWkdb9M4jEGtk7nEAAAAEDDzDnEWOjmGurmHjrrrLOWVvL69V//\n9STJ+9///hVf8+ijjy51IK1e/Wwt3bnedaTs2LFjw68555xzkiR33333muNd6/HHfYWt5XNAjeL3\nv5u3qTv+RzvGwKaZc4ipp1ZkM0ZR10xaN9CxGJPXiaMeAkwFcw4BAAAAsC6dQ4y9rkunm4umW+Hr\nlFNOyate9aokyf3335/k8CpgL3/5y5Mk//Iv/7L0+e5xTj/99CTJ1VdfveH37uYPmp2dPf7/yJjo\n/k8XX3xxPvCBDyTJUgfW8Vr996S72tP9zHbt2pXXvOY1SZK/+Iu/WDGeaTrGMGQ6h5h6akUYvlG+\nTtQxBP2lcwgAAACAdekcYuJ08wutNbdPd5Wh26eb12b5ymHdOb96tazlvwurr1aMw+9Jv/Xr/9TN\nIbT88bpuoM7HP/7xJMkLX/jC7Nq1K8nhbqK1jj9wTHQOMfXUijA6g67RdAnB4G2mc8hS9kyc9SZ8\n7p68uomtu7frWesJr4WgYnZ2dik868eT8ic/+cl85CMfSZJcc801Kz63/PG7UKjTwrEGAGiN0Acm\ni9vKAAAAABqmcwgasfp2vNW3fiVrTyjdTRTd3ZZ32mmnJUme/exnJ0k++9nPJlm8ha+7QtRNHr76\nVj4AACbLVqYA0DUEk0fnEAAAAEDDdA5BI7qOoe3btydJ/vVf/zU/+7M/myR59NFHkyQnnHBCksOd\nP0nylre8JUlyzz33JDk8Z1DXMdTpJqYGAKAtOoVg8ukcAgAAAGiYpeyhUbt3787+/fs33K+bm6ib\newgYO5ayZ+qpFQFg6zazlL3OIQAAAICGmXMIGrWZrqFExxAAAMC00zkEAAAA0DDhEAAAAEDDhEMA\nAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RD\nAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOE\nQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDD\nhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABA\nw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAA\nQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAA\nAEDDhEMAAAAADRMOAQAAADRrmLn0AAAPLElEQVRMOAQAAADQsA3DoVLKdaWU+0spX1627U2llG+V\nUm7v/Xvxss/9YSnlrlLKnaWUXxjUwAEAGD21IgBMvs10Dl2f5OI1tr+91np+798/JUkp5VlJLkvy\nX3tf865SyvZ+DRYAgLFzfdSKADDRNgyHaq2fSvL9TT7epUk+WGs9WGv9epK7kjz3OMYHAMAYUysC\nwOQ7njmHXlNK+WKvlfjU3ranJfnmsn3u7W07QinlilLKLaWUW45jDAAAjCe1IgBMiK2GQ9ck+bEk\n5ye5L8mf9baXNfataz1ArfXaWuveWuveLY4BAIDxpFYEgAmypXCo1vqdWut8rXUhyXtyuB343iR7\nlu16ZpJ9xzdEAAAmiVoRACbLlsKhUsoZyz78lSTd6hQ3JrmslLKrlHJOknOT3Hx8QwQAYJKoFQFg\nssxstEMp5QNJLkzy5FLKvUnemOTCUsr5WWwDvjvJ7yRJrfWOUsoNSf49yVySK2ut84MZOgAAo6ZW\nBIDJV2pd8zbv4Q6ilNEPAgAm063mZGHaqRUBYOtqrWvN+bfC8axWBgAAAMCEEw4BAAAANEw4BAAA\nANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQA\nAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgE\nAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4\nBAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRM\nOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0\nTDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAA\nNEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRsw3ColLKnlPLJUspXSil3lFKu6m0/rZTysVLKV3tvT+1tL6WU/15KuauU8sVSyk8P+j8B\nAMBoqBUBYPJtpnNoLsnraq3/JcnzklxZSnlWktcnuanWem6Sm3ofJ8klSc7t/bsiyTV9HzUAAONC\nrQgAE27DcKjWel+t9bbe+48k+UqSpyW5NMl7e7u9N8lLeu9fmuR9ddFnkzyplHJG30cOAMDIqRUB\nYPId05xDpZSzkzw7yeeSPLXWel+yWBQkeUpvt6cl+eayL7u3t231Y11RSrmllHLLsQ8bAIBxo1YE\ngMk0s9kdSyknJ/m7JK+ttT5cSjnqrmtsq0dsqPXaJNf2HvuIzwMAMDnUigAwuTbVOVRK2ZHFJ/u/\nqbV+uLf5O10LcO/t/b3t9ybZs+zLz0yyrz/DBQBg3KgVAWCybWa1spLkr5N8pdb658s+dWOSV/be\nf2WSjyzb/hu9lSiel+ShrqUYAIDpolYEgMlXal2/S7eU8rNJ/t8kX0qy0Nv8R1m8l/yGJE9Pck+S\nl9dav98rEN6Z5OIkjyd5Va113XvFtQoDwJbdWmvdO+pB0C61IgCMt1rrUe/17mwYDg2DJ3wA2DLh\nEFNPrQgAW7eZcOiYVisDAAAAYLoIhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABom\nHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAa\nJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAA\nGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAA\nABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAA\nAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcA\nAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmH\nAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJ\nhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICG\nCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACA\nhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGrZhOFRK2VNK+WQp5SullDtKKVf1\ntr+plPKtUsrtvX8vXvY1f1hKuauUcmcp5RcG+R8AAGB01IoAMPlKrXX9HUo5I8kZtdbbSilPSHJr\nkpck+dUkj9Za37Zq/2cl+UCS5yb5kSQfT/K/1Vrn1/ke6w8CADiaW2ute0c9CNqlVgSA8VZrLRvt\ns2HnUK31vlrrbb33H0nylSRPW+dLLk3ywVrrwVrr15PclcUnfwAApoxaEQAm3zHNOVRKOTvJs5N8\nrrfpNaWUL5ZSriulnNrb9rQk31z2ZfdmjQKhlHJFKeWWUsotxzxqAADGjloRACbTpsOhUsrJSf4u\nyWtrrQ8nuSbJjyU5P8l9Sf6s23WNLz+iFbjWem2tda9WeACAyadWBIDJtalwqJSyI4tP9n9Ta/1w\nktRav1Nrna+1LiR5Tw63A9+bZM+yLz8zyb7+DRkAgHGiVgSAybaZ1cpKkr9O8pVa658v237Gst1+\nJcmXe+/fmOSyUsquUso5Sc5NcnP/hgwAwLhQKwLA5JvZxD4XJLk8yZdKKbf3tv1RkleUUs7PYhvw\n3Ul+J0lqrXeUUm5I8u9J5pJcud7qEwAATDS1IgBMuA2Xsh/KICxPCgBbZSl7pp5aEQC2ri9L2QMA\nAAAwvYRDAAAAAA0TDgEAAAA0TDgEAAAA0LDNrFY2DN9L8ljvLYP35DjWw+JYD49jPRyO8/Bs9lif\nNeiBwBhQKw6Xv/XD41gPj2M9HI7z8PS1VhyL1cqSpJRyi9VWhsOxHh7Hengc6+FwnIfHsYaV/E4M\nj2M9PI718DjWw+E4D0+/j7XbygAAAAAaJhwCAAAAaNg4hUPXjnoADXGsh8exHh7Hejgc5+FxrGEl\nvxPD41gPj2M9PI71cDjOw9PXYz02cw4BAAAAMHzj1DkEAAAAwJAJhwAAAAAaNhbhUCnl4lLKnaWU\nu0oprx/1eKZJKeXuUsqXSim3l1Ju6W07rZTysVLKV3tvTx31OCdRKeW6Usr9pZQvL9u25rEti/57\n7xz/Yinlp0c38slzlGP9plLKt3rn9u2llBcv+9wf9o71naWUXxjNqCdTKWVPKeWTpZSvlFLuKKVc\n1dvu3O6jdY6z8xrWoFYcHLXi4KgVh0etODxqxeEYRa048nColLI9yV8kuSTJs5K8opTyrNGOaur8\nXK31/Frr3t7Hr09yU6313CQ39T7m2F2f5OJV2452bC9Jcm7v3xVJrhnSGKfF9TnyWCfJ23vn9vm1\n1n9Kkt7fj8uS/Nfe17yr93eGzZlL8rpa639J8rwkV/aOqXO7v452nBPnNaygVhwKteJgXB+14rBc\nH7XisKgVh2PoteLIw6Ekz01yV631a7XW2SQfTHLpiMc07S5N8t7e++9N8pIRjmVi1Vo/leT7qzYf\n7dhemuR9ddFnkzyplHLGcEY6+Y5yrI/m0iQfrLUerLV+PcldWfw7wybUWu+rtd7We/+RJF9J8rQ4\nt/tqneN8NM5rWqZWHD61Yh+oFYdHrTg8asXhGEWtOA7h0NOSfHPZx/dm/f80x6Ym+Z+llFtLKVf0\ntj211npfsnjSJXnKyEY3fY52bJ3ng/GaXnvqdcta3h3rPimlnJ3k2Uk+F+f2wKw6zonzGlZz/g+W\nWnG4PJ8Ol+fUAVIrDsewasVxCIfKGtvq0EcxvS6otf50Ftv5riyl/O+jHlCjnOf9d02SH0tyfpL7\nkvxZb7tj3QellJOT/F2S19ZaH15v1zW2Od6btMZxdl7DkZz/g6VWHA/O8/7znDpAasXhGGatOA7h\n0L1J9iz7+Mwk+0Y0lqlTa93Xe3t/kr/PYmvZd7pWvt7b+0c3wqlztGPrPO+zWut3aq3ztdaFJO/J\n4bZJx/o4lVJ2ZPFJ6G9qrR/ubXZu99lax9l5DWty/g+QWnHoPJ8OiefUwVErDsewa8VxCIc+n+Tc\nUso5pZSdWZxE6cYRj2kqlFJOKqU8oXs/yYuSfDmLx/eVvd1emeQjoxnhVDrasb0xyW/0Zut/XpKH\nurZLtmbVvcq/ksVzO1k81peVUnaVUs7J4uR3Nw97fJOqlFKS/HWSr9Ra/3zZp5zbfXS04+y8hjWp\nFQdErTgSnk+HxHPqYKgVh2MUteLM8Q35+NVa50opr0ny0STbk1xXa71jxMOaFk9N8veL51VmkvyP\nWuv/U0r5fJIbSim/leSeJC8f4RgnVinlA0kuTPLkUsq9Sd6Y5L9l7WP7T0lenMWJwR5P8qqhD3iC\nHeVYX1hKOT+L7ZJ3J/mdJKm13lFKuSHJv2dxlv8ra63zoxj3hLogyeVJvlRKub237Y/i3O63ox3n\nVzivYSW14kCpFQdIrTg8asWhUisOx9BrxVKr2/0AAAAAWjUOt5UBAAAAMCLCIQAAAICGCYcAAAAA\nGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAa9v8DLbZ6KMOnry4AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd83be438>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+MpnV9L/z3Z38NK2wA5WgAQa3h\nKcdD6oJEMcanHNKeI7YJ2NRTTIqkMQ82kVajzaM1adq0sak+1JO06TGlOUZJeoqm2NQm5miLNoa2\nUMFQhUrL1lJZIVLg6IKwu7Mz3+ePue/d2dnd2dnZmfvX9/VKNjP3NfeP733tNXN/rvf1ub5XtdYC\nAAAAQJ+2jHsAAAAAAIyPcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACA\njm1aOFRVb6mqf6qqPVX1oc16HQAApo9aEQAmR7XWNv5Jq7Ym+eckP5lkb5KvJXlHa+0fN/zFAACY\nKmpFAJgs2zbpeV+fZE9r7dtJUlV3JLkuyXE/8Ktq4xMqAOjDU621/zDuQcApUisCwIi01upk99ms\n08ouTPLYstt7B8sOq6qbq+q+qrpvk8YAAD34t3EPANZBrQgAE2SzOoeOl0oddcSntXZbktsSR4MA\nADqjVgSACbJZnUN7k1y07PbLkzy+Sa8FAMB0USsCwATZrHDoa0kuqapXVdWOJDck+fwmvRYAANNF\nrQgAE2RTTitrrR2qqluSfDHJ1iSfbK09tBmvBQDAdFErAsBk2ZRL2Z/yIJxHDgDrdX9r7cpxDwI2\nk1oRANZvnFcrAwAAAGAKCIcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA\n6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAA\nAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIA\nAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwC\nAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYc\nAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADom\nHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6\nJhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAA\nOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAA\nADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAA\nAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjm07nQdX1aNJnk2ykORQa+3Kqnpxks8keWWSR5P8t9ba\n/zm9YQIAMG3UigAwHTaic+g/t9Z2t9auHNz+UJK7WmuXJLlrcBsAgD6pFQFgwm3GaWXXJfn04PtP\nJ7l+E14DAIDppFYEgAlzuuFQS/Klqrq/qm4eLHtZa+2JJBl8felpvgYAANNJrQgAU+C05hxK8qbW\n2uNV9dIkf1lVD6/1gYMC4eaT3hEAgGmlVgSAKXBanUOttccHX59M8mdJXp/ke1V1fpIMvj55gsfe\n1lq7ctn55wAAzBC1IgBMh3WHQ1V1ZlXtGn6f5L8keTDJ55PcNLjbTUn+/HQHCQDAdFErAsD0OJ3T\nyl6W5M+qavg8/6u19r+r6mtJPltV70rynSRvP/1hAgAwZdSKADAlqrU27jGkqsY/CACYTvc77YZZ\np1YEgPVrrdXJ7rMZl7IHAAAAYEoIhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADom\nHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6\nJhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAA\nOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAA\nADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAA\nAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcA\nAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmH\nAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4J\nhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICO\nCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACA\njgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOnbScKiqPllVT1bVg8uWvbiq/rKq\nHhl8PXewvKrq96pqT1V9o6qu2MzBAwAwXmpFAJh+a+kc+lSSt6xY9qEkd7XWLkly1+B2klyb5JLB\nv5uTfGJjhgkAwIT6VNSKADDVThoOtda+muSZFYuvS/LpwfefTnL9suW3tyX3JDmnqs7fqMECADBZ\n1IoAMP3WO+fQy1prTyTJ4OtLB8svTPLYsvvtHSw7RlXdXFX3VdV96xwDAACTSa0IAFNk2wY/Xx1n\nWTveHVtrtyW5LUmq6rj3AQBgpqgVAWACrbdz6HvDFuDB1ycHy/cmuWjZ/V6e5PH1Dw8AgCmkVgSA\nKbLecOjzSW4afH9Tkj9ftvydgytRXJXkB8OWYgAAuqFWBIApctLTyqrqT5JcneS8qtqb5NeT/E6S\nz1bVu5J8J8nbB3f/QpK3JtmT5Pkkv7AJYwYAYEKoFQFg+lVr4z+F23nkALBu97fWrhz3IGAzqRUB\nYP1aa8eb8+8o6z2tDAAAAIAZIBwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAI\nAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6Jhw\nCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiY\ncAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADo\nmHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA\n6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAA\nAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAADYZK21tNbGPQyA4xIOAQAAAHRs27gHAAAAMIt0\nCgHTQucQAAAAQMeEQ7BBqipVNe5hAAAwwcw9BEwi4RAAAABAx8w5BBtk+/btSZKDBw+OeSQAAEy6\nld1DOtCBcdI5BAAAANAx4RCsw9atW3P22Wfn7LPPPnze+MUXX5yLL7748H22bPHrBQAAwOSz9woA\nAADQMeEQrMPb3/72PPPMM3nmmWeysLCQhYWFPPLII3nkkUfy9NNP5+mnn87i4mK2bduWbdtM7QUA\nAMDkstcKa7B169Ykye23354kuf766w+fNrZyMsFdu3YdXr5z584kR04xG05WPZxw0GVMAQBmz3pq\nvNaaSamBsdE5BAAAANCxmoTOhaoa/yBgFcPOoUOHDq3r8TfccEOS5DOf+UySI5e9n5+f34DRAZ27\nv7V25bgHAZtJrci0Od19LB1EwEZqrZ30j4rOIQAAAICO6RyCNRgevfnTP/3TJMnP/MzPnNLjhx1H\nw8mpzzvvvCTJ008/vVFDBPqlc4iZp1Zk2mzUPpYOImAj6BwCAAAAYFWuVgZrMLza2DnnnLOuxw87\nhhYXF5MkTz31VJIjR4N27Nhx+EpmAABMp40+K2P4fDqIgM2mcwgAAACgY8IhWIOFhYUsLCzkmmuu\nyTXXXLPu56mqVFUOHjyYgwcPprWW1lo++tGPbuBoAQAAYO1MSA2nYKN+X1a2CL/wwgu5+uqrkyT3\n339/kqVACmANTEjNzFMrMuk2e5/KaWXA6TAhNQAAAACr0jkEq9i6dWuSI108o/h9GU5+PQm/m8BU\n0DnEzFMrMulGXbfpJAJOhc4hAAAAAFblUvawimHH0L59+5Ik8/PzSZYuTb/RR2wOHTqU5Mjl7r/+\n9a8nSV73uted1vMOx7naEa3t27cfNYbVLpuqowkAYMm46qLW2qZ3D618b7qVYLbpHAIAAADomM4h\nOI65ubkkyate9aokya5duzb9NbdtO/rX8bLLLkuSfOc730mSXHzxxYfHdeDAgZM+34m6gY7nve99\nb5LkFa94RZLkAx/4wDGPOZXX3ixr6YICABiFcdcjq3V6n87zjer1gMmicwgAAACgY65WBqsY/n6M\n40jJ8DUPHjyYZKlz5/LLL0+SPPDAA0mOvZracHw7duzI7t27kyRf/epXj3reYUfR8vsPX2vYZbT8\nPkMrX3t4n5WP3Uwr3+9ll12WBx988Lg/g464WhkzT63IJJqE/ajjWU+9eqrvZdK7h8yXBEdztTIA\nAAAAVqVzCJYZzqtzyy23JEl++7d/O8lSJ864Lb8qxXDenzPOOCNJsmXLUs47vNLZ8P7Lv27UEZPh\na99zzz1JkquvvvqoMawcx0Z63/velyS59dZbkyx1Cy3vrFo+js0aA0wgnUPMPLUik2QS9p9O1Ynq\nwGl5L6dSx67lPekkojdr6RwyITUsMwwWXvva1yaZjFBoaPmH2HCcww+/L33pS0mSF73oRUmSz33u\nc4dDk41+D8PXfuMb33jUGO65554899xzSZK//uu/TpL81V/9VZLk3nvvPeXX2bVrVz7zmc8kSa69\n9tokRwKf5eti5alxX/ziF5Mkb3nLW5JMxkTaAADjNC0h0Ils9PiXP5+gCJY4rQwAAACgYyc9rayq\nPpnkp5M82Vq7bLDsN5L8P0n+fXC3D7fWvjD42a8meVeShSS/3Fr74kkHoVWYCTPpR1dOdKrY/v37\nkyxNFj2coHmUhq8/nJx6OIadO3ee8nM9++yzOeuss5KsfkRn5boYdggNO4Y++MEPJkl+//d/Py+8\n8MIpjwOmgNPKGCu1Ir2Y9PqQ06ODiFm2URNSfyrJW46z/L+31nYP/g0/7F+T5IYk/2nwmP9RVaPf\nQwUAYFQ+FbUiAEy1k8451Fr7alW9co3Pd12SO1prB5L8a1XtSfL6JH+37hHCGMzPzyc5/iXdJ8GJ\njmwMJ6gel1N5/ZNNlL1r1641Pc/Kxw87hoY++tGPJlmah2nPnj1rHh8Aa6NWZNbpGOrDRl/EBabN\n6cw5dEtVfaOqPllV5w6WXZjksWX32TtYdoyqurmq7quq+05jDAAATCa1IgBMifWGQ59I8uoku5M8\nkeR3B8uPF7MeN2pvrd3WWrvSPAlMokOHDh2eN4fNUVUjOTKzuLiYxcXFPPLII4eXbdu2Ldu2uVgj\nwCZSKwJTqbWmW4wurSscaq19r7W20FpbTPJHWWoHTpaO/ly07K4vT/L46Q0RAIBpolYEgOmyrnCo\nqs5fdvNtSR4cfP/5JDdU1VxVvSrJJUn+/vSGCKNz1VVX5aqrrsrCwkIWFhbGPRw2wJYtW7Jly5bD\nR4Faa4c7h4Y/A2BjqRWBaaeDiN6c9LyKqvqTJFcnOa+q9ib59SRXV9XuLLUBP5rk3UnSWnuoqj6b\n5B+THEryntaaPWwAgBmlVgSA6VeTkIZW1fgHAUn+5m/+JklyxRVXJBn/1b/YOK21Y+Y4cjUKZsT9\n5mRh1qkVGadJ2F9ifNSLzILW2kk3ZOEQ3Rr+od+6dWuSpUmoJ+H3gc23uLiYJLn11luTJB/84AeT\nLG0TtgGmkHCImadWZBKoEfolIGLarSUcMtkGAAAAQMd0DsHAgQMHDk9OPOwmcpSgD3v37k2S/MiP\n/Ejm5+fHPBo4ZTqHmHlqRcZpEvaXmAz2DZhWOocAAAAAWJVwCAZ27Nhx+BLnVeXIQEcuuOCCXHDB\nBfnYxz6WnTt3ZufOneMeEgAAE8bl7ZllwiEAAACAjplziG7Nzc0lSV73utclOXIZe/r2Ez/xE0mS\nu+66a8wjgTUz5xAzT63IOE3C/hKTyZkGTAtzDgEAAACwKp1DdG8SfgeYHMPt4Q/+4A+SJL/0S780\nzuHAWugcYuapFRkntSIno4OISbeWziHhEN160YtelCT593//96Nuw3I+7JkCwiFmnlqRcZiE/SSm\ni7qRSeW0MgAAAABWtW3cA4BR2759e5Lkt37rt5IkW7bISDnW8Gjh8KsjQQAArKa1pmZkatkrBgAA\nAOiYOYfozkte8pIkyVNPPTXmkTDJhn8bDxw4kCT5yZ/8ySTJ3XffPbYxwQmYc4iZp1ZkHCZhP4np\npYOISWLOIQAAAABWpXOIbuzatStJsm/fvqOWm1OGU3HdddclSf7iL/7CEUUmhc4hZp5akXGYpM/5\nYZ06SWNibexjMAl0DgEAAACwKp1DdGFubi7z8/NJkoWFhSQ6hjg9thsmiM4hZp5akVGbhH2k5VbW\nHcvHd7KaZNLeS6/UjoyTziEAAAAAViUcYqbNzc1lbm4uP/uzP5uFhYWj/sF6HDp0KIcOHcrDDz88\n7qEAABustTYRnTZVddS/1X4OsBGcVkYXJmE7Z7bMz8/nvPPOS5I8++yzSWxnjI3Typh5akU22yR8\nhm9m0DMJ748lAj3GwWllAAAAAKxq27gHABtpy5alvHNxcTHJkaMk+/fvzxlnnDG2cTF7tm/fnh/8\n4AdJjhwBcplZAOBUbXYniboEWAudQwAAAAAd0znETBkeebn++uuTLHUMJUsTU8NGaq1lfn7+8PeJ\nc8gBYBJNaueMuqFPrTX/90wknUMAAAAAHXO1MmbSE088kSQ599xzk+gcYnMM/34OO4juuOOOJMlN\nN900tjHRJVcrY+apFVmPSdjPWc2oukcmfT30SOcQo+ZqZQAAAACsSucQU2fr1q1Jlo6CnHXWWUmS\nffv2JUl+9Ed/NEny8MMPj2dwdO25555LkuzatWvMI6EzOoeYeWpF1mMS9nNWo3MIHUSMylo6h0xI\nzdRZWFhIcvwPOh9+jNPOnTuTJB//+MeTJO9///vHORwAYAIJBIBJ5LQyAAAAgI45rYypc/bZZydJ\nvv/97x9e5lLiTKKdO3dm//794x4Gs89pZcw8tSLrMQn7OcuNq06dtPXAsezDsNlMSA0AAADAqsw5\nxNTYvn17kuTSSy895mfSdibByg42XUMAMP3WUmeeqDtHjQpMC51DAAAAAB3TOcTU2LJlKcscdmO0\n1hyNYaLYHgGgT8MawDyYwLTSOQQAAADQMZ1DTI35+fkkyZvf/OYkOoeYfMu30ZVHFAGAzbERn7Xr\nrTEnqTZVcwCnQucQAAAAQMdqEhLlqhr/IJh4wyMx559/fpLku9/97jiHAyc0/Ls6Pz+fubm5MY+G\nDtzfWrty3IOAzaRW5FSMs3NokkzCfh5rMwvbG5OttXbSjcxpZUyN4Qecy4Mz6YYf8Dt27Mju3buT\nJA888MA4hwQA3ej9VO5e3zdwepxWBgAAANAxnUNMnQsuuGDcQ4A1e/7558c9BABgjZzeA/RK5xAA\nAABAx0xIzdRqrR0+p9pRHibVww8/nCS58sql+YJ/+MMfjnM4zCYTUjPz1Iqsx2bt50xq3TkJ+3Ws\nz6RuU8yOtUxIrXMIAAAAoGPmHGLqvOIVr0iSLC4uZssW+SaT7dJLL02iYwgAZsXyDh0dH8CssGcN\nAAAA0DGdQ0yN4ZGZf/u3f0sSXUMAAJzQsHac9bl4Zv39AaMhHGJqDD/4hEJMk4WFhSTJGWeckSTZ\nv3//OIcDAABwDHvZAAAAAB0TDjG13vnOd+bgwYM5ePDguIcCJ/TlL385X/7yl7Nt27Zs26ZZEwBm\nSWtt1X+b/fxOKQM2inAIAAAAoGM1CWlzVY1/EEylSdh+YaXhdllVueSSS5Ikjz32WJLkwIEDYxsX\nM+v+1tqV4x4EbCa1IhthHHXjRl3qXs072zZqO4ETaa2ddCPTOQQAAADQMeEQU6uqcuedd+bOO+90\nzjUTpaoOHwE655xzcs455+TAgQO6hgCgM6c7N5AaFxgV4RAAAABAx1w6h6nVWss73vGOJMmTTz6Z\nZKlLAybJc889N+4hAABZ6uwdZxfO8jkJASaNziEAAACAjukcYmpVVebn55Mkf/d3f5ckueaaa5Ik\nc3NzYxsX/RoeEVxYWEiytI0+/PDD4xwSALDMsGtnEjqIQBcZk8Sl7Jkp3/zmN5Mkl156aZJk2zb5\nJ+NTVYe3wWFgNAl/c5k5LmXPzFMrstF8HjNOQiFGzaXsAQAAAFiVtgpmyhVXXJEkOXjwYBIT/zFa\nw0vV33333UmWtrtDhw6Nc0gAwHFMwullAJNE5xAAAABAx8w5xEwZzu8y7Na49957kyS7d+/Ojh07\nxjYu+qJTjREz5xAzT63IZpuEfSL6oE5kHMw5BAAAAMCqzDnETBleEWroDW94Q5LkYx/7WH75l385\nicvcs/H279+fJHn/+9+f5Mg2NpyDCACYbOYgYrPpGGLS6RwCAAAA6Jg5h+jGP//zPydJLrnkkiTJ\n4uJikmTLFhkpp+fcc89Nknz/+98f80jolDmHmHlqRcZhEvaTmH46hpgEa5lzSDhEF7Zs2XI4DHrJ\nS16SJHnqqaeSHJm8ejiZNazV/Px8kpjsnHETDjHz1IqM0yTsLzF9hEJMEhNSAwAAALAq4RBdGHYN\nJcm+ffuyb9++VFWqKjfeeGNuvPHGJEsTCC+fRLi15mgRx/WVr3wlZ555Zs4888zDy4bbFAAwO4af\n7z7nWQvbCdNKOAQAAADQMXMO0Z2VlypdftnxO+64I0nycz/3c0mOzCmzffv2UQ+TMRtuH8Ovw4nL\n3/jGNyZJHnzwwTz33HPjGRwczZxDzDy1IpNoEvajmCw6hphU5hwCAAAAYFU6h2CZ4RXLhlcwe/rp\np5MkL37xi5McOULkqMDsG849NewsG17l7tlnn02ytI1Mwt9PiM4hOqBWZNKpCfpm34BJp3MIAAAA\ngFVtG/cAYJIMO4aG88sMu0Ve/epXJ0n27NmTZGkuIvMQzbZhx5AjQQDAyayc05I+qBOZJTqHAAAA\nADomHILjWFxczOLi4uHbjz32WB577LFUVaoqv/Irv3L4Z/v378/+/fvTWnO0aIZcfvnlufzyy7Nj\nx47s2LFj3MMBAKbAsFYc/mO2+P9llpmQGtZgZavw3Nzc4QmLh8uGp6QNJ7Vm8r3wwgtJkq1btyZJ\n7rnnnvz4j/94kiP/jwsLC0m0iTPRTEjNzFMrMu3UEdNNEMS0MyE1AAAAAKs6aThUVRdV1Veq6ltV\n9VBVvXew/MVV9ZdV9cjg67mD5VVVv1dVe6rqG1V1xWa/CdhsK08ZG3YNJdpLJ93y/7vh9/Pz85mf\nn89HPvKRfOQjH8nc3Fzm5uYOdw0lSx1DCwsLThcEOAm1IpycWnF6+T+jF2vpHDqU5AOttf+Y5Kok\n76mq1yT5UJK7WmuXJLlrcDtJrk1yyeDfzUk+seGjBgBgUqgVAWDKnXRylNbaE0meGHz/bFV9K8mF\nSa5LcvXgbp9O8tdJPjhYfntbOtR+T1WdU1XnD54HZs5wbprh1yuvXJr642tf+9rYxrQWrbXDR0L2\n79+fJDnjjDNOeP/hBN3DuZWef/75JMk555yTJDl48OBYJm4edvWsPKozHOcPf/jDJMlDDz2Ud7/7\n3UmSBx98MMmRuYZWe14AVqdWhFPjsvfAJDqlOYeq6pVJLk9yb5KXDT/EB19fOrjbhUkeW/awvYNl\nK5/r5qq6r6ruO/VhAwAwadSKADCd1nxZpao6K8mdSd7XWtu3yrmXx/vBMbF4a+22JLcNnltsztQa\nXs1q6Bvf+EaSpaNCwyNCwzmK5ubmkhx7pGijz2Ve3hU09NxzzyVJzjrrrGNe8+d//ueTJHfeeeea\nX2PYZTTsOvrN3/zN/Nqv/VqSY9/v8Qw7kbZsOXlGPXy+4WudeeaZSZbW/fA1nn322STJhz/84STJ\nxRdfnCS59dZbkyRPPvnkCccAwOlTK8KpmdYOorXUrdP2npYzxxC9WlPnUFVtz9KH/R+31j43WPy9\nqjp/8PPzkwz3vPYmuWjZw1+e5PGNGS4AAJNGrQgA061OlurWUnT66STPtNbet2z5/5fk6dba71TV\nh5K8uLX2/1bVTyW5Jclbk7whye+11l5/kteY3mgZVhgebdi+fXsOHjyYJPmHf/iHJMmP/diPHXXf\nYdfRanPfrGblfDvDeXaG8x8lycMPP5wkufbaa5Mkjz766DHPM5wraDje9dixY8fhxz/wwANJkte+\n9rVHjWv52P7lX/4lyZGOpuE6uOyyyw6Pe/h8P/3TP50keetb35ok+cM//MPDzzd8X3/7t3+bJPnB\nD35w3PEt7+SCGXN/a+3KcQ+CfqkVYeNMYq2yUZ00s/zeYNK11k66sa/ltLI3JbkxyTer6oHBsg8n\n+Z0kn62qdyX5TpK3D372hSx92O9J8nySXzjFcQMAMD3UigAw5U7aOTSSQTgaxIxaeS75sENn5VXC\nFhcX1zT3zsm8+c1vTpLcffeE09kXAAAKN0lEQVTdhzt0ht1Jo/hdX/l+h/MSPfbY0ryjb3jDG/Lt\nb387ydq6lVY+3/FuT8LfMBgznUPMPLUivdqoOkeHDPRtozqHgHVa+YE+DEK2b9+e5MgH9dve9rbD\nEyZfeOHSBVte//qlDvuf+qmfSpL84i/+4uFTrm6//fYkRyZhHj7f8tO3RhkKDa18reEYLrjggiTJ\n/Pz84Z8t/3655QHQyuc72W0AgFki1AFG5fRbFQAAAACYWk4rgzFYeXrU1q1bD59WNpyYeXh72A3U\nWjum22ZaL4EKbCinlTHz1IoAsH5rOa1M5xAAAABAx8w5BGNwvLl5hvPznGgunrU8DwAAAJwqnUMA\nAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RD\nAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeE\nQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDH\nhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABA\nx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAA\nQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAA\nAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAA\nAABAx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQ\nAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHh\nEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdO2k4VFUXVdVXqupbVfVQ\nVb13sPw3quq7VfXA4N9blz3mV6tqT1X9U1X91818AwAAjI9aEQCmX7XWVr9D1flJzm+tfb2qdiW5\nP8n1Sf5bkudaa7euuP9rkvxJktcnuSDJXyX5v1prC6u8xuqDAABO5P7W2pXjHgT9UisCwGRrrdXJ\n7nPSzqHW2hOtta8Pvn82ybeSXLjKQ65Lckdr7UBr7V+T7MnShz8AADNGrQgA0++U5hyqqlcmuTzJ\nvYNFt1TVN6rqk1V17mDZhUkeW/awvTlOgVBVN1fVfVV13ymPGgCAiaNWBIDptOZwqKrOSnJnkve1\n1vYl+USSVyfZneSJJL87vOtxHn5MK3Br7bbW2pVa4QEApp9aEQCm15rCoaranqUP+z9urX0uSVpr\n32utLbTWFpP8UY60A+9NctGyh788yeMbN2QAACaJWhEApttarlZWSf5nkm+11j6+bPn5y+72tiQP\nDr7/fJIbqmquql6V5JIkf79xQwYAYFKoFQFg+m1bw33elOTGJN+sqgcGyz6c5B1VtTtLbcCPJnl3\nkrTWHqqqzyb5xySHkrxntatPAAAw1dSKADDlTnop+5EMwuVJAWC9XMqemadWBID125BL2QMAAAAw\nu4RDAAAAAB0TDgEAAAB0TDgEAAAA0LG1XK1sFJ5K8sPBVzbfebGuR8W6Hh3rejSs59FZ67p+xWYP\nBCaAWnG0/K0fHet6dKzr0bCeR2dDa8WJuFpZklTVfa62MhrW9ehY16NjXY+G9Tw61jUcze/E6FjX\no2Ndj451PRrW8+hs9Lp2WhkAAABAx4RDAAAAAB2bpHDotnEPoCPW9ehY16NjXY+G9Tw61jUcze/E\n6FjXo2Ndj451PRrW8+hs6LqemDmHAAAAABi9SeocAgAAAGDEhEMAAAAAHZuIcKiq3lJV/1RVe6rq\nQ+Mezyypqker6ptV9UBV3TdY9uKq+suqemTw9dxxj3MaVdUnq+rJqnpw2bLjrtta8nuDbfwbVXXF\n+EY+fU6wrn+jqr472LYfqKq3LvvZrw7W9T9V1X8dz6inU1VdVFVfqapvVdVDVfXewXLb9gZaZT3b\nruE41IqbR624edSKo6NWHB214miMo1YcezhUVVuT/EGSa5O8Jsk7quo14x3VzPnPrbXdrbUrB7c/\nlOSu1tolSe4a3ObUfSrJW1YsO9G6vTbJJYN/Nyf5xIjGOCs+lWPXdZL898G2vbu19oUkGfz9uCHJ\nfxo85n8M/s6wNoeSfKC19h+TXJXkPYN1atveWCdaz4ntGo6iVhwJteLm+FTUiqPyqagVR0WtOBoj\nrxXHHg4leX2SPa21b7fWDia5I8l1Yx7TrLsuyacH3386yfVjHMvUaq19NckzKxafaN1el+T2tuSe\nJOdU1fmjGen0O8G6PpHrktzRWjvQWvvXJHuy9HeGNWitPdFa+/rg+2eTfCvJhbFtb6hV1vOJ2K7p\nmVpx9NSKG0CtODpqxdFRK47GOGrFSQiHLkzy2LLbe7P6m+bUtCRfqqr7q+rmwbKXtdaeSJY2uiQv\nHdvoZs+J1q3tfHPcMmhP/eSylnfreoNU1SuTXJ7k3ti2N82K9ZzYrmEl2//mUiuOls/T0fKZuonU\niqMxqlpxEsKhOs6yNvJRzK43tdauyFI733uq6v8e94A6ZTvfeJ9I8uoku5M8keR3B8ut6w1QVWcl\nuTPJ+1pr+1a763GWWd9rdJz1bLuGY9n+N5dacTLYzjeez9RNpFYcjVHWipMQDu1NctGy2y9P8viY\nxjJzWmuPD74+meTPstRa9r1hK9/g65PjG+HMOdG6tZ1vsNba91prC621xSR/lCNtk9b1aaqq7Vn6\nEPrj1trnBott2xvseOvZdg3HZfvfRGrFkfN5OiI+UzePWnE0Rl0rTkI49LUkl1TVq6pqR5YmUfr8\nmMc0E6rqzKraNfw+yX9J8mCW1u9Ng7vdlOTPxzPCmXSidfv5JO8czNZ/VZIfDNsuWZ8V5yq/LUvb\ndrK0rm+oqrmqelWWJr/7+1GPb1pVVSX5n0m+1Vr7+LIf2bY30InWs+0ajkutuEnUimPh83REfKZu\nDrXiaIyjVtx2ekM+fa21Q1V1S5IvJtma5JOttYfGPKxZ8bIkf7a0XWVbkv/VWvvfVfW1JJ+tqncl\n+U6St49xjFOrqv4kydVJzquqvUl+Pcnv5Pjr9gtJ3pqlicGeT/ILIx/wFDvBur66qnZnqV3y0STv\nTpLW2kNV9dkk/5ilWf7f01pbGMe4p9SbktyY5JtV9cBg2Ydj295oJ1rP77Bdw9HUiptKrbiJ1Iqj\no1YcKbXiaIy8VqzWnO4HAAAA0KtJOK0MAAAAgDERDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAA\nHRMOAQAAAHRMOAQAAADQsf8flbKiwUj+8JkAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd83a7dd8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3WuMZOV5J/D/MzM9wwBObJY1xlyM\nN2YlO6sYRwg7YROZrDa+rUWsxA4ovsYR+WBLSUS0IfmSaKWVIvkS28raERYEcAIECXDsTbR2FjmK\noyixwUG28azXKLAwATEK4IAHmEvPux+6aqZnpnu6Z7rr+v5+UquqT5+qfvv06a6n/uc576nWWgAA\nAADo05ZJDwAAAACAyREOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANCx\nkYVDVfXmqvpuVT1YVdeN6vsAADB71IoAMD2qtbb5T1q1Ncn/TfKfk+xO8vUkV7fWvrPp3wwAgJmi\nVgSA6bJtRM97WZIHW2v/lCRVdXuSK5Os+IJfVZufUAFAH/6ltfZvJz0IOElqRQAYk9ZarbXOqE4r\nOy/Jo8s+3z1YdlhVXVNV91bVvSMaAwD04P9NegBwCtSKADBFRtU5tFIqddQRn9ba9UmuTxwNAgDo\njFoRAKbIqDqHdie5YNnn5yd5bETfCwCA2aJWBIApMqpw6OtJLq6qV1bV9iRXJfnCiL4XAACzRa0I\nAFNkJKeVtdYOVtWHk3wpydYkN7bWHhjF9wIAYLaoFQFguozkUvYnPQjnkQPAqbqvtXbppAcBo6RW\nBIBTN8mrlQEAAAAwA4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRM\nOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEAAAB0\nTDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAA\ndEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAA\nAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEA\nAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4B\nAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0TDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMO\nAQAAAHRMOAQAAADQMeEQAAAAQMeEQwAAAAAdEw4BAAAAdEw4BAAAANAx4RAAAABAx4RDAAAAAB0T\nDgEAAAB0TDgEAAAA0DHhEAAAAEDHhEMAAAAAHRMOAQAAAHRMOAQAAADQMeEQzJCqSlWta72TfQwA\nAAB9Eg4BAAAAdGzbpAcAPRp28rTWDn8+vL+arVu3ZufOnUmSH/zgBydcd/lznX766UmSF154IUmy\nsLCQJNm2bdvh5xmO54wzzkiSPPfcc0mSQ4cOrTpmAAAA5oPOIQAAAICO6RyCTba8w2bLlqX8dfv2\n7UetM+ziGWqt5Td+4zeSJH/xF3+RJLnqqquSJD//8z+fJPmxH/uxw+t/9atfTZL81E/91LrHNewC\nOnDgQJLk7rvvPvw9hg4ePJgk+eVf/uUkyec+97mjxggAwOhMQ71lrkrok84hAAAAgI7VlKTTkx8E\nnMCxR1BW6gpaXFxMcqQzZ7lrr702SfLRj350xefft2/f4ccN5wTasWPHKY+3tbahoz7Dn+X555/P\nmWeeedTXPvGJTyRJrrvuuiRLcyElR+YpAsbuvtbapZMeBIySWpFZMw3vsaaFTiSYvNbamn+IOocA\nAAAAOqZzCDboN3/zN5MkH/nIR45avri4mP379yc5csRk2A200tXKZsVwXqJt25amLHvkkUeSJK94\nxSsmNibonM4h5p5akWk0De+jZsEs1bkwr3QOAQAAAHBCrlYGAwsLC4fn+3n++eeTHLka2BVXXJEk\nec973pMkueiii7Jv374kR+bcOdaWLVuyc+fOE37PWTySMuwYGrrwwgsPLx92FQEAzAsdQtNhtd/D\nLNbTMI2EQ3Shqo47hevYF5gLL7wwd955Z5Lkta997ZrPefrpp6/5PefRsdvx6aefTrIUkgmHAIB5\nIBDaPCezLddTPx9by6/0/PNah8MoOa0MAAAAoGMb6hyqqoeTPJtkMcnB1tqlVXVWkj9LclGSh5O8\nq7X29MaGCRuz/IjCLbfckiT5iZ/4iSRHTos6cODA4cvSs7pjO4cuu+yyJDl8mh0ADKkVmRU6hSZn\nvV0+J9MNNIsXfYFJ24zOoStaa5csu1LKdUnuaa1dnOSewecAAPRJrQgAU24Ucw5dmeSNg/s3J/nr\nJL81gu8Dqzr2XOSPfvSjufbaa5Mcfyn2oeFk1Kxs2Bm0Y8eOo24dkQHgJKkVmTidQuM3iZpRBxGs\n30Y7h1qSL1fVfVV1zWDZOa21x5NkcPvSDX4PAABmk1oRAGbARjuHLm+tPVZVL03yV1X1f9b7wEGB\ncM2aK8IJnHbaaUmW5gtKkte//vVH3X784x9PkiwuLh5+zLEdQ6zPsZ1Cw8/NNQTACagVmSo6hsZv\nVF07q12BeBzfG+bRhjqHWmuPDW73JLk7yWVJnqiqc5NkcLtnlcde31q7dNn55wAAzBG1IgDMhlNu\noaiqM5Jsaa09O7j/s0n+W5IvJHlfkt8f3P75ZgwUjrVt27acf/75SZLvfe97J1x369at4xjSXPvk\nJz+ZJNmyZSlT1jEEwImoFZk2uobGa1xdOyt1EOkYgpNXp/pPsqr+XZaOACVLIdOtrbX/XlX/Jskd\nSS5M8kiSd7bWnlrjufynZk3D08HOPffcJMnll1+e2267bZJD6sKxE/kNTyfbv3//xMYEHOU+nRVM\nI7UikyYMmhzhDEyX1tqaf5Sn3DnUWvunJK9dYfmTSf7TqT4vAACzT60IALPDzLxMveFpTB/84AeT\nJH/0R380yeF059gjP8PJvwEAppGOob611nQuwSnY6KXsAQAAAJhhpzzn0KYOwnnkrGBhYSHJkU6V\np59+Okny4he/eGJj6tGxcw79zM/8TJLkK1/5ysTGBBzFnEPMPbUi6zEN72tYonMHpst65hzSOQQA\nAADQMZ1DTKUdO3YcvlT6cB8dfj68Whbjtbi4mCT5u7/7uyTJFVdccdRyYGJ0DjH31IqsZRre03CE\nziGYLjqHAAAAADghnUNMleE8Q2effXYee+yxJMnBgweTJNu2ubjeNNm6dWuS5NChQxMeCXRP5xBz\nT63IaqbhvQwr0z0E00PnEAAAAAAnpBWDiRgeSTj2aM8v/MIvJEluvfXWw1/TMTSdzjzzzCTJM888\nM+GRAAC90TEEsLm862YqfO5zn0uSvPvd757wSFjLrl27kiR79+6d8EgAgN4IhQBGw2llAAAAAB0z\nITUT9dBDDyVJzjvvvCRHJqRm+plkEKaGCamZe2pFpuE9C6dGzQiTZ0JqAAAAAE7InEOM3fbt27N/\n//4kyctf/vIkOoYAADiejiGA8dA5BAAAANAxnUOMzfB841e/+tW5//77kzgaNIuuuuqqJEe6vQ4c\nODDJ4QAAc0qdONvMNQSzRecQAAAAQMd0DjE2w6M/X/ziFw8vc0Rh9jz55JNJdAwBALAyNT7MHpey\nZ2SGLwrbti1lkIuLi0mSvXv35rTTTpvYuNiYHTt2JMnhScWBiXMpe+aeWrEv0/D+hI0RDsF0cSl7\nAAAAAE7IaWWM3PD0o+FRIEeDZsuhQ4eSJLfeemuS5ODBg5McDgAwp9SIAJOjcwgAAACgY+YcYtMN\nzzEe7lvPPPNMkiNz1SwsLDgPeQb98A//cJIjv09gaphziLmnVuzDNLwvYXOo9WG6mHMIAAAAgBMy\n5xCbbuvWrUmSu+66K0myffv2o26ZLbt3706iYwgAGA0dQwCTp3MIAAAAoGM6h9g0W7YsZY1vetOb\nkiRvf/vbJzkcNsGhQ4fyK7/yK0mOn0sKAGAj1BTzx1xDMLt0DgEAAAB0zNXK2HRPPvlkkuSss86a\n8EjYqEOHDh2eQwqYWq5WxtxTK86naXgfwubSOQTTaT1XK3NaGRsyfAHYunVrdu7cmSQ57bTTJjkk\nNtFwUnEAgM0iFAKYPk4rAwAAAOiYziE2ZNg5dPDgQZc6n0N79uyZ9BAAAJhyTieD2adzCAAAAKBj\nOofYkIWFhSTJCy+8kP379x+1zBGE2TX8Xf7t3/5ttmxZypAPHTo0ySEBAHPAfEPzRb0P80PnEAAA\nAEDHdA6xIZdccsnh+9u3b5/gSNgMw6N527Yt/Wu47bbbJjkcAGBO6BgCmG46hwAAAAA6pnOIk7J1\n69YkyeLiYpLk7rvvnuRw2GTD88adPw4AwGrUijB/dA4BAAAAdEznECdleJRgeN74vn37JjkcNtnz\nzz+fJPmlX/qlJEudYsMuMQCAk2WuIYDZUNPwD7uqJj8I1mU4AfU//uM/TngkjJJWYZgp97XWLp30\nIGCU1IqzZxreYzAa6kSYPa21Nf9wnVYGAAAA0DGnlXFSPvWpT016CIzA8NSxt7/97UctrypH/gAA\nAOacziEAAACAjplziJPy3HPPJUl27tw54ZGwGYZ//8OJqM8444xJDgc4NeYcYu6pFWfHNLy3YDTM\nNQSzy5xDAAAAAJyQOYdY0/bt2/Otb33r8H3mx/AI0Omnnz7hkQAAADApOocAAAAAOmbOIdZlGvYT\nRm/YGXbw4MEkfu8wI8w5xNxTK84GdcN8M+cQzK71zDnktDLW9Ja3vOXwpc63bt064dEwCh/72MeS\nHHnRV9wBAJAIhaAXTisDAAAA6JjTyljV8LLmDz/8cM4+++wJj4bN1lo7fCTIESGYaU4rY+6pFWfD\nNLyvYPOoD2F+uJQ9AAAAACdkziFWtXfv3iQucz6vHA0CADaDjiGA2adzCAAAAKBjOodY086dOyc9\nBEbEVcoAAADQOQQAAADQMZ1DrGnv3r2Hr1xmnprZN+wOqqo8++yzRy0DAKBv6n3ok84hAAAAgI7V\nNHQMVNXkB8Fh27YtNZS96lWvSpLs2rVrksNhhBwZgrlwX2vt0kkPAkZJrTjdpuH9BBunLoT51Vpb\n8w/caWUc5+DBg0mOhEKLi4vZunXrJIfEJhgWbocOHUqSfO1rXzs82fgLL7xw1DoAAAD0w2llAAAA\nAB1zWhnH2b59e5Lks5/9bJLkve997ySHwyZZPhH18ltg5jmtjLmnVpxO0/A+gs2jNoT5tZ7TynQO\nAQAAAHTMnEMcZ//+/UmSCy+8cMIjYTMM55AaTjR+/vnnJ1nqEDtw4EASR/4AAAB6pnMIAAAAoGM6\nhzjOmWeemST56Z/+6QmPhM0w7BxaWFhIkuzYsSPJkQ4xAAAA+qZzCAAAAKBjOoc4zg9+8IMkyZYt\nssNZNpxH6E/+5E+OWr5v375JDAcAAIAp5VL2rGq4b7TWXNpyhr3sZS9LkjzxxBMTHgkwIi5lz9xT\nK06naXgfweZR78P8cil7AAAAAE7IaWWsyVGE2XPgwIEsLi4mSZ588skJjwYAgGmm3gd0DgEAAAB0\nTDjEqlprziWfMcPf2YMPPpidO3dm586dWVxcPNxFBAAAVXXUB4BwCAAAAKBj5hzisOFRg2G30J49\ne5Ik55xzzsTGxPocOHAgSbKwsJAkufzyyw9/TfcXAACJuYWA1ekcAgAAAOiYcIjjDM89vuGGG3LD\nDTdMejicwL59+7Jv374sLCxkYWHh8O/uueeem/TQAIA5Z76a2eF3BaxFOAQAAADQsZqG+UiqavKD\n4DgXXnhhkuShhx7Kli1yxGkynGPoqaeeSpK87GUvS3JkzqHh14Eu3Ndau3TSg4BRUitOt2l4P8Hq\ndAwBrbU1/xGYkJpVPfLII0kiGJpCd955Z5Lk6quvTnLkRV8oBABAIhQCTo53/QAAAAAdW7NzqKpu\nTPJfkuxprf2HwbKzkvxZkouSPJzkXa21p2spnv5kkrcmeS7J+1tr3xjN0Bm1M8444/D9gwcPJkm2\nbt2axJGIzTJsw17P9vz85z+fL3/5y0mSz3zmMyMdFwCsl1qRYR3j9LLJUp8DG7GezqGbkrz5mGXX\nJbmntXZxknsGnyfJW5JcPPi4Jol3sAAA8+2mqBUBYKat2TnUWvubqrromMVXJnnj4P7NSf46yW8N\nlt/Slg4b/H1Vvbiqzm2tPb5ZA2Z8hvPXVFX3R4LW0+Ez7K5aXFxMstRltW3b0p/Y/v37V3ye7du3\nH/c8hw4dSpJ8/etfT5LcfvvtSZJPfOITa44PAMZNrQiToVMI2EynOufQOcMX8cHtSwfLz0vy6LL1\ndg+WHaeqrqmqe6vq3lMcAwAA00mtCAAzZLOvVrZSfL1iS0Nr7fok1ycuTzqtht0uO3bsyEte8pIk\nydNPP53k5ObKmXbDDqmFhYV88YtfTJJcfvnlSZKzzjoryco/55NPPplkaS6gJPmhH/qhJMkv/uIv\nJkne9ra35bWvfW2S5LLLLkuSvOMd70iSvPvd706S3HLLLUmW5nfau3fvZv5YADCN1IpzTLf56MxD\nzQ1Mt1PtHHqiqs5NksHtnsHy3UkuWLbe+UkeO/XhAQAwg9SKADBDaj3p/uA88v+57AoUH0nyZGvt\n96vquiRntdb+a1W9LcmHs3QFitcn+VRr7bJ1PL9DDDNiuL8cu9/M8tGMu+66K0nygQ98IM8880yS\nZOfOnUmO/JwvvPBCkmTLlqU8dTgv0EpWWme4fY792on+/lz5A1in+1prl056EPRNrciQumVts1w3\nM92OPbtjns72YGNaa2vuBGuGQ1V1W5YmFDw7yRNJfjfJ55PckeTCJI8keWdr7anB5Un/MEtXrHgu\nyQdaa2ueJ+4Ff/rt2LEjyZFTp/bs2XOi1afOvn37Dv8Mwwmeh5eF/+M//uN1P89KgY0QB5gw4RAT\npVZkJeqio3lzDkzSesKh9Vyt7OpVvvSfVli3JfnQ2kMDAGAeqBUBYPZt9oTUzKl9+/YlSb7//e8n\nSd71rnclSe64446JjWklw9O1hpNMD7uFdu3alde97nUbfv6VjoI5MgYAcDSd1Ut0DDFq65mmAtbj\nVCekBgAAAGAOrGtC6pEPwnnkM+vGG29MsnRp9oWFhbF///379ydJtm/fftTym2++OUny/ve/P0my\nbdu2HDx4MIkjWcDcMecQc0+tOPt6rbt0bgDTYD1zDukcAgAAAOiYziE2xaOPPprzzz8/yZF5f4aX\nbR+V/fv3H+4YOvaozLCLaTj3EMAc0znE3FMrzr4pec+x7nU3Ol4dQ8A00TkEAAAAwAm5Whmb4oIL\nLsiLXvSiJMmnP/3pJEvzECVHrnQ2vHLYyRo+fmj4PN///vdzzjnnJFmaUyjJ4XmFhrcAAEze8k6a\ncXURbaR752THq1MImHU6hwAAAAA6Zs4hRu7qq69Oktx6663Hfe3BBx9MkrzqVa9Kktxyyy1Jkp/8\nyZ/M2WefnSS56qqrkiRf+tKXjnrs9u3bD1+tDKBj5hxi7qkV59tmvR/RvQOwsvXMOSQcYuSGL9Sn\nn356kmTv3r3HrTOcWHp4+/zzz2dxcfGoZcPJpadhnwWYIsIh5p5aEQBOnQmpAQAAADghE1IzcsNO\nn5U6hoZdRcPTw1Y6TcypYwAAADA6OocAAAAAOqZziIkyfxAAAABMls4hAAAAgI4JhwAAAAA6JhwC\nAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYc\nAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADom\nHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6\nJhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAA\nOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAA\nADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAA\nAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcA\nAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmH\nAAAAADomHAIAAADomHAIAAAAoGNrhkNVdWNV7amqby9b9ntV9c9Vdf/g463LvvbbVfVgVX23qt40\nqoEDADB5akUAmH3r6Ry6KcmbV1j+B621SwYff5kkVfWaJFcl+dHBYz5dVVs3a7AAAEydm6JWBICZ\ntmY41Fr7myRPrfP5rkxye2ttX2vtoSQPJrlsA+MDAGCKqRUBYPZtZM6hD1fVNwetxC8ZLDsvyaPL\n1tk9WHacqrqmqu6tqns3MAYAAKaTWhEAZsSphkOfSfIjSS5J8niSjw2W1wrrtpWeoLV2fWvt0tba\npac4BgAAppNaEQBmyCmFQ621J1pri621Q0k+myPtwLuTXLBs1fOTPLaxIQIAMEvUigAwW04pHKqq\nc5d9+o4kw6tTfCHJVVW1o6pemeTiJF/b2BABAJglakUAmC3b1lqhqm5L8sYkZ1fV7iS/m+SNVXVJ\nltqAH07yq0nSWnugqu5I8p0kB5N8qLW2OJqhAwAwaWpFAJh91dqKp3mPdxBVkx8EAMym+8zJwrxT\nKwLAqWutrTTn31E2crUyAAAAAGaccAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBj\nwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACg\nY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAA\noGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAA\nAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgA\nAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAI\nAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6Jhw\nCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiY\ncAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADo\nmHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA\n6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGNrhkNVdUFVfaWqdlXVA1X1a4Pl\nZ1XVX1XV9wa3Lxksr6r6VFU9WFXfrKofH/UPAQDAZKgVAWD2radz6GCSa1trr07yhiQfqqrXJLku\nyT2ttYuT3DP4PEnekuTiwcc1ST6z6aMGAGBaqBUBYMatGQ611h5vrX1jcP/ZJLuSnJfkyiQ3D1a7\nOcnPDe5fmeSWtuTvk7y4qs7d9JEDADBxakUAmH0nNedQVV2U5HVJ/iHJOa21x5OloiDJSwernZfk\n0WUP2z1YduxzXVNV91bVvSc/bAAApo1aEQBm07b1rlhVZya5M8mvt9aeqapVV11hWTtuQWvXJ7l+\n8NzHfR0AgNmhVgSA2bWuzqGqWsjSi/2fttbuGix+YtgCPLjdM1i+O8kFyx5+fpLHNme4AABMG7Ui\nAMy29VytrJLckGRXa+3jy770hSTvG9x/X5I/X7b8vYMrUbwhyb8OW4oBAJgvakUAmH3V2om7dKvq\nPyb5apJvJTk0WPw7WTqX/I4kFyZ5JMk7W2tPDQqEP0zy5iTPJflAa+2E54prFQaAU3Zfa+3SSQ+C\nfqkVAWC6tdZWPdd7aM1waBy84APAKRMOMffUigBw6tYTDp3U1coAAAAAmC/CIQAAAICOCYcAAAAA\nOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAA\nADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAA\nAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcA\nAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmH\nAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4J\nhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICO\nCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACA\njgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAAAICOCYcAAAAAOiYcAgAAAOiYcAgAAACgY8IhAAAA\ngI4JhwAAAAA6JhwCAAAA6JhwCAAAAKBjwiEAAACAjgmHAAAAADomHAIAAADomHAIAAAAoGPCIQAA\nAICOCYcAAAAAOiYcAgAAAOjRoKNvAAAHL0lEQVSYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA\n6JhwCAAAAKBjwiEAAACAjq0ZDlXVBVX1laraVVUPVNWvDZb/XlX9c1XdP/h467LH/HZVPVhV362q\nN43yBwAAYHLUigAw+6q1duIVqs5Ncm5r7RtV9aIk9yX5uSTvSvKD1tpHj1n/NUluS3JZkpcn+d9J\n/n1rbfEE3+PEgwAAVnNfa+3SSQ+CfqkVAWC6tdZqrXXW7BxqrT3eWvvG4P6zSXYlOe8ED7kyye2t\ntX2ttYeSPJilF38AAOaMWhEAZt9JzTlUVRcleV2Sfxgs+nBVfbOqbqyqlwyWnZfk0WUP250VCoSq\nuqaq7q2qe0961AAATB21IgDMpnWHQ1V1ZpI7k/x6a+2ZJJ9J8iNJLknyeJKPDVdd4eHHtQK31q5v\nrV2qFR4AYPapFQFgdq0rHKqqhSy92P9pa+2uJGmtPdFaW2ytHUry2RxpB96d5IJlDz8/yWObN2QA\nAKaJWhEAZtt6rlZWSW5Isqu19vFly89dtto7knx7cP8LSa6qqh1V9cokFyf52uYNGQCAaaFWBIDZ\nt20d61ye5D1JvlVV9w+W/U6Sq6vqkiy1AT+c5FeTpLX2QFXdkeQ7SQ4m+dCJrj4BAMBMUysCwIxb\n81L2YxmEy5MCwKlyKXvmnloRAE7dplzKHgAAAID5JRwCAAAA6JhwCAAAAKBjwiEAAACAjq3namXj\n8C9J9g5uGb2zY1uPi209Prb1eNjO47Pebf2KUQ8EpoBacbz8rx8f23p8bOvxsJ3HZ1Nrxam4WlmS\nVNW9rrYyHrb1+NjW42Nbj4ftPD62NRzN38T42NbjY1uPj209Hrbz+Gz2tnZaGQAAAEDHhEMAAAAA\nHZumcOj6SQ+gI7b1+NjW42Nbj4ftPD62NRzN38T42NbjY1uPj209Hrbz+Gzqtp6aOYcAAAAAGL9p\n6hwCAAAAYMyEQwAAAAAdm4pwqKreXFXfraoHq+q6SY9nnlTVw1X1raq6v6ruHSw7q6r+qqq+N7h9\nyaTHOYuq6saq2lNV3162bMVtW0s+NdjHv1lVPz65kc+eVbb171XVPw/27fur6q3Lvvbbg2393ap6\n02RGPZuq6oKq+kpV7aqqB6rq1wbL7dub6ATb2X4NK1Arjo5acXTUiuOjVhwfteJ4TKJWnHg4VFVb\nk/yPJG9J8pokV1fVayY7qrlzRWvtktbapYPPr0tyT2vt4iT3DD7n5N2U5M3HLFtt274lycWDj2uS\nfGZMY5wXN+X4bZ0kfzDYty9prf1lkgz+f1yV5EcHj/n04P8M63MwybWttVcneUOSDw22qX17c622\nnRP7NRxFrTgWasXRuClqxXG5KWrFcVErjsfYa8WJh0NJLkvyYGvtn1pr+5PcnuTKCY9p3l2Z5ObB\n/ZuT/NwExzKzWmt/k+SpYxavtm2vTHJLW/L3SV5cVeeOZ6Szb5VtvZork9zeWtvXWnsoyYNZ+j/D\nOrTWHm+tfWNw/9kku5KcF/v2pjrBdl6N/ZqeqRXHT624CdSK46NWHB+14nhMolachnDovCSPLvt8\nd078Q3NyWpIvV9V9VXXNYNk5rbXHk6WdLslLJza6+bPatrWfj8aHB+2pNy5rebetN0lVXZTkdUn+\nIfbtkTlmOyf2aziW/X+01Irj5fV0vLymjpBacTzGVStOQzhUKyxrYx/F/Lq8tfbjWWrn+1BV/fSk\nB9Qp+/nm+0ySH0lySZLHk3xssNy23gRVdWaSO5P8emvtmROtusIy23udVtjO9ms4nv1/tNSK08F+\nvvm8po6QWnE8xlkrTkM4tDvJBcs+Pz/JYxMay9xprT02uN2T5O4stZY9MWzlG9zumdwI585q29Z+\nvslaa0+01hZba4eSfDZH2iZt6w2qqoUsvQj9aWvtrsFi+/YmW2k7269hRfb/EVIrjp3X0zHxmjo6\nasXxGHetOA3h0NeTXFxVr6yq7VmaROkLEx7TXKiqM6rqRcP7SX42ybeztH3fN1jtfUn+fDIjnEur\nbdsvJHnvYLb+NyT512HbJafmmHOV35GlfTtZ2tZXVdWOqnpllia/+9q4xzerqqqS3JBkV2vt48u+\nZN/eRKttZ/s1rEitOCJqxYnwejomXlNHQ604HpOoFbdtbMgb11o7WFUfTvKlJFuT3Nhae2DCw5oX\n5yS5e2m/yrYkt7bW/ldVfT3JHVX1wSSPJHnnBMc4s6rqtiRvTHJ2Ve1O8rtJfj8rb9u/TPLWLE0M\n9lySD4x9wDNslW39xqq6JEvtkg8n+dUkaa09UFV3JPlOlmb5/1BrbXES455Rlyd5T5JvVdX9g2W/\nE/v2ZlttO19tv4ajqRVHSq04QmrF8VErjpVacTzGXitWa073AwAAAOjVNJxWBgAAAMCECIcAAAAA\nOiYcAgAAAOiYcAgAAACgY8IhAAAAgI4JhwAAAAA6JhwCAAAA6Nj/B3P+e81d3OSCAAAAAElFTkSu\nQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd82eb198>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHrBJREFUeJzt3U+obWeZJ+Df28ZyUAoqtiGdpFuR\n21DWJEoQwaaxBl1GJ9GBRRyUQYQ4iKBQk+hEhzVoLZDuCkQMiWBpB1TMQKrKDoI98c+NBE1MW17K\ntLkmJBQ2ardgk/j14OyjJzfn3z1n77XX2u/zwGHvs87e53znu+ue9fL73rVWjTECAAAAQE//atsD\nAAAAAGB7hEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgAAACgsY2FQ1V1S1X9\nuKouVdVdm/o5AAAsj1oRAOajxhjr/6ZVL0nyT0n+U5LLSb6X5H1jjB+t/YcBALAoakUAmJdrNvR9\n35Lk0hjjn5Okqr6U5NYkhx7wq2r9CRUA9PAvY4x/ve1BwFVSKwLARMYYddJrNnVa2fVJnjzw+eXV\ntt+rqjuq6mJVXdzQGACgg/+17QHAGagVAWBGNtU5dFgq9YIVnzHGPUnuSawGAQA0o1YEgBnZVOfQ\n5SQ3Hvj8hiRPbehnAQCwLGpFAJiRTYVD30tyoapeX1V/lOS2JA9u6GcBALAsakUAmJGNnFY2xniu\nqj6c5B+SvCTJvWOMxzbxswAAWBa1IgDMy0ZuZX/Vg3AeOQCc1cNjjJu3PQjYJLUiAJzdNu9WBgAA\nAMACCIcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAA\nAACNXXOeN1fVE0l+neT5JM+NMW6uqlcn+W9JXpfkiSR/Mcb43+cbJgAAS6NWBIBlWEfn0J+NMW4a\nY9y8+vyuJA+NMS4keWj1OQAAPakVAWDmNnFa2a1J7l89vz/JuzfwMwAAWCa1IgDMzHnDoZHkH6vq\n4aq6Y7Xt2jHG00myenztOX8GAADLpFYEgAU41zWHkrxtjPFUVb02yTeq6n+e9o2rAuGOE18IAMBS\nqRUBYAHO1Tk0xnhq9fhskq8meUuSZ6rquiRZPT57xHvvGWPcfOD8cwAAdohaEQCW4czhUFX9cVW9\nYv95kj9P8miSB5PcvnrZ7Um+dt5BAgCwLGpFAFiO85xWdm2Sr1bV/vf5uzHG31fV95I8UFUfTPKz\nJO89/zABAFgYtSIALESNMbY9hlTV9gcBAMv0sNNu2HVqRQA4uzFGnfSaTdzKHgAAAICFEA4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAA\nNCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxq7Z9gAAAADoaYwx+c+sqsl/Jsyd\nziEAAACAxnQOAb+3jZWbTbMyBABwvF2sAY9ztb+vepIOhEOwo7od5I9y2DxczQH+yvfvv1dRAQAs\nnXrxdOYwT2pJNs1pZQAAAACN6RwC2jnP6s9Z33vS+6wGAQBTO2tHNNM76t9IDcm66BwCAAAAaEzn\nEOyoo1YRrAzN08F/FytAAMCUDtYeasVlUUOyLjqHAAAAABrTOQTNWBmaP+eUAwDbcmW9oV5cjqPu\nsgunoXMIAAAAoDGdQ9CY6xIti3PKAYCp6SRarv1/K3Ujp6FzCAAAAKAxnUPAi7gu0dH252bb82Il\nCADYBnXi8ug+5zSEQ8CxtBK/0Nx+fxceBAC2RZ24PBYYOYrTygAAAAAa0zkEXBUrRHuqapa/+xjD\nShAAsBVOOVsOHURcSecQAAAAQGM6h4BzmcsFmvkDK0EAwLZ17zZfSo2sbmSfziEAAACAxnQOAWtx\n2GrD3FdKzmvuK0JWggCAuejeSTR36kZ0DgEAAAA0pnMI2JiO3URzZCUIAJibLnc2m3un+ZXc+bYv\nnUMAAAAAjQmHgElVldWILRljLGbVCgDoQ304L2rGnpxWBmzFUi9KeFjhssR24cRpZgDAvCy1PtxV\nasZedA4BAAAANCYcAmZBO/H0rMYBAHOmPpwHp5n1IBwCAAAAaMw1h4BZWdr1e5JljfVKziUHAOau\nqhZbby113PSjcwgAAACgMZ1DwCwd7GSZ64rLXMd1FjqIAIA5W2J3+a5RL+42nUMAAAAAjekcAmZv\nTitFcxgDAEBXc6oLjzP38Z2HDqLdJBwCFuPKA9AuH3S3xcEeAFgCdeH2jTHUjDvEaWUAAAAAjQmH\ngMWyUrE5YwwrcAAA0IRwCAAAAKAx4RCwaFWlgwgAoDk14XboNt8dwiEAAACAxoRDwE6wWrQZVoIA\ngCVRD26HDqLlEw4BAAAANCYcAuBYVoIAgCXRUQ5XTzgEAAAA0JhwCNgpVooAAGA7dJwvl3AIgFNx\nsAcAlsSi4faoG5dHOAQAAADQmHAIgKtiJQgAWBIdRHAy4RAAAABAY8IhYCdZIQIA4CD14fR0nC+H\ncAgAAACgMeEQAGdiJQgAWCIdRNNTM86fcAgAAACgMeEQsNOsDG2eDiIAAFg24RDQgoAIAICD1IfT\nsqA4b8IhAAAAgMaEQwCshZUgAABYJuEQAAAAQGPCIQAAAFpy85LpufbQPAmHAAAAABoTDgFtWBna\nPCtBAMASqRPpTjgEAAAA0JhwCGjHyhAAAIdRJ9KVcAgAAACgMeEQ0JaVIQAADqNO3DzXqpwX4RDQ\nnoP/+jnYAwDAcgiHAAAAABo7MRyqqnur6tmqevTAtldX1Teq6ierx1ettldVfaaqLlXVD6rqzZsc\nPAAA26VWBHaZ7nK6OE3n0H1Jbrli211JHhpjXEjy0OrzJHlnkgurjzuS3L2eYQIAMFP3Ra0IAIt2\nYjg0xvhWkl9csfnWJPevnt+f5N0Htn9+7Pl2kldW1XXrGiwAAPOiVgTgPFyrch7Oes2ha8cYTyfJ\n6vG1q+3XJ3nywOsur7a9SFXdUVUXq+riGccAAMA8qRUBYEGuWfP3O+yEzEMjwDHGPUnuSZKqEhMC\nW1dVVi3WbH8+na8PrKgVgcXZr2PUieyys3YOPbPfArx6fHa1/XKSGw+87oYkT519eAAALJBaEQAW\n5Kzh0INJbl89vz3J1w5sf//qThRvTfLL/ZZiAADaUCsCwIKceFpZVX0xyduTvKaqLif5RJK/TvJA\nVX0wyc+SvHf18q8neVeSS0l+k+QDGxgzwMZoGwa4OmpFoAt14maNMVyKYItqDju288iBuZnD38Zd\n4kC/UQ+PMW7e9iBgk9SKwJyoEzdHzbgZY4wTJ/asp5UBAAAAsAOEQwAAAACNCYcADlFV2lrXaIyh\nBRsA2AnqRHaRcAgAAACgMeEQwDGsDAEAcBh1IrtEOAQAAADQmHAI4BSsDK2H6w4BALtGnbg+rlO5\nPcIhAAAAgMaEQwBXwcoQAACHUSOyZNdsewAAS3Sag7+WWACAXq6sEdWDZ7M/bwK36egcAgAAAGhM\n5xDAhhy20mH1yEoQANDHWeod9SLboHMIAAAAoDHhEAAAAMyEG6CwDcIhAAAAgMaEQwBsxRjDOfUA\nABxJvTgd4RAAAABAY+5WBjABKx4AAJyGupFt0DkEAAAA0JjOIYANsvIDAMBpqBuPtj837uK2OcIh\ngA1xgD8dB3sAoDM1I3PgtDIAAACAxnQOAayZ1R8AAGBJdA4BAAAANKZzCAAAACam25w50TkEAAAA\n0JjOIYA1sfoDAMBJ1Ixn5y63m6NzCAAAAKAxnUMABxy1kmN1AgAA2FXCIYCV41p8r/yasGj9tAkD\nAHN2mtPBTqpjnFLGXDmtDAAAAKAxnUNAe2dZwRlj6HABAGjgampF3eYslc4hAAAAgMZ0DgGckWvk\nAABwHNcYYil0DgEAAAA0pnMI4Jyu7CCyQgQAsBvUdXShcwgAAACgMZ1DAGt28BpEVpsAAIC50zkE\nAAAA0JhwCGhrjLHWzp51fz8AAODF1Nzr57QygDVzsAIA2A1VpbajBZ1DAAAAAI0JhwCYFafnAQDA\ntIRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhENBWVaWqtj0MAACA\nrRIOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAI7gOpV0IBwCAAAAaEw4BLRnNQgAAOhMOAQAAADQ\nmHAIAAAAoDHhEAAAAEBjwiGAFdcdAgDgKK5TyS4TDgEc4KAPAMBx1IvsIuEQAAAAQGPCIYBDWBEC\nAAC6EA4BAAAANHbNtgcAMGf73UNjjC2PBACAObmyy1y9yJLpHAIAAABoTDgEcAquQQQAwHHUiiyZ\ncAgAAACgMdccArgKrkEEAMBRXIeIpRIOAZzBwQO/gz4AAIexsMhSOK0MAAAAoDGdQwDnpH14vVzM\nEQDYNbrOmTudQwAAAACN6RwCWDMrQwAAHEXXOXOkcwgAAACgMZ1DABtkZQgAgOOoF6+ea1Sun84h\nAAAAgMZ0DgFMyMoQAADHcf1KtkHnEAAAAEBjOocAtsjKEAAAR9F1zlSEQwAz0f3g78KCAADH26+X\nutWJ+9SLm+O0MgAAAIDGTgyHqureqnq2qh49sO2TVfXzqnpk9fGuA1/7WFVdqqofV9U7NjVwgF1X\nVVZHgNlTKwJMT53Iup2mc+i+JLccsv1vxhg3rT6+niRV9cYktyX509V7/raqXrKuwQIAMDv3Ra0I\nAIt2Yjg0xvhWkl+c8vvdmuRLY4zfjjF+muRSkrecY3wA7VkZAuZMrQiwPft1olqR8zrPNYc+XFU/\nWLUSv2q17fokTx54zeXVthepqjuq6mJVXTzHGAAAmCe1IgAsxFnDobuTvCHJTUmeTvKp1fbD4spD\nL6M+xrhnjHHzGOPmM44BoBUrQ8CCqBUBJqZO5DzOFA6NMZ4ZYzw/xvhdks/mD+3Al5PceOClNyR5\n6nxDBABgSdSKALAsZwqHquq6A5++J8n+3SkeTHJbVb2sql6f5EKS755viABcycoQMGdqRYDtOdht\nviv14i79LnN1zUkvqKovJnl7ktdU1eUkn0jy9qq6KXttwE8k+VCSjDEeq6oHkvwoyXNJ7hxjPL+Z\noQMAsG1qRQBYvhrj0NO8px1E1fYHAbBgc/hbfl5Wg87sYddkYdepFQHOb8n1ojrxfMYYJ07gee5W\nBsBMLLnVdsljBwBYCvUWxxEOAQAAADQmHALYIVaEAAA4io5tjiIcAgAAAGjsxLuVAbAsV64GLfni\ngwAA9KXLaTo6hwAAAAAa0zkEsOP2V1zm1kFkJQgAYDvmWh+yPTqHAAAAABrTOQTQxFxWiHQMAQDM\nw1yvValenJ5wCKCZgwfbuRQAAABsnzqxL6eVAQAAADQmHAJorKombdvVIgwAsAxT14lsl3AIAAAA\noDHXHAJgNherBgBgXqasE3UqbY/OIQAAAIDGdA4BAAAAx5rrbe9ZD51DAAAAAI3pHALg9za1IuT8\ncQCA3VJVa+0eUi9ul84hAAAAgMaEQwAcyQoOAABHqSr14o5wWhkAxzrPqWaKBQCA3adeXD6dQwAA\nAACN6RwC4KqcZmXIChAAQF/7teBxHUTqxXnROQQAAADQmM4hAM7Fqg8AAIdRJy6HziEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRD\nAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxk4M\nh6rqxqr6ZlU9XlWPVdVHVttfXVXfqKqfrB5ftdpeVfWZqrpUVT+oqjdv+pcAAGA71IoAsHyn6Rx6\nLslfjTH+JMlbk9xZVW9McleSh8YYF5I8tPo8Sd6Z5MLq444kd6991AAAzIVaEQAW7sRwaIzx9Bjj\n+6vnv07yeJLrk9ya5P7Vy+5P8u7V81uTfH7s+XaSV1bVdWsfOQAAW6dWBIDlu6prDlXV65K8Kcl3\nklw7xng62SsKkrx29bLrkzx54G2XV9uu/F53VNXFqrp49cMGAGBu1IoAsEzXnPaFVfXyJF9O8tEx\nxq+q6siXHrJtvGjDGPckuWf1vV/0dQAAlkOtCADLdarOoap6afYO9l8YY3xltfmZ/Rbg1eOzq+2X\nk9x44O03JHlqPcMFAGBu1IoAsGynuVtZJflcksfHGJ8+8KUHk9y+en57kq8d2P7+1Z0o3prkl/st\nxQAA7Ba1IgAsX41xfJduVf2HJP8jyQ+T/G61+ePZO5f8gST/NsnPkrx3jPGLVYHwX5LckuQ3ST4w\nxjj2XHGtwgBwZg+PMW7e9iDoS60IAPM2xjjyXO99J4ZDU3DAB4AzEw6x89SKAHB2pwmHrupuZQAA\nAADsFuEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCYcAgA\nAACgMeEQAAAAQGMnhkNVdWNVfbOqHq+qx6rqI6vtn6yqn1fVI6uPdx14z8eq6lJV/biq3rHJXwAA\ngO1RKwLA8tUY4/gXVF2X5Loxxver6hVJHk7y7iR/keT/jDH+8xWvf2OSLyZ5S5J/k+S/J/n3Y4zn\nj/kZxw8CADjKw2OMm7c9CPpSKwLAvI0x6qTXnNg5NMZ4eozx/dXzXyd5PMn1x7zl1iRfGmP8dozx\n0ySXsnfwBwBgx6gVAWD5ruqaQ1X1uiRvSvKd1aYPV9UPqureqnrVatv1SZ488LbLOaRAqKo7qupi\nVV286lEDADA7akUAWKZTh0NV9fIkX07y0THGr5LcneQNSW5K8nSST+2/9JC3v6gVeIxxzxjjZq3w\nAADLp1YEgOU6VThUVS/N3sH+C2OMryTJGOOZMcbzY4zfJfls/tAOfDnJjQfefkOSp9Y3ZAAA5kSt\nCADLdpq7lVWSzyV5fIzx6QPbrzvwsvckeXT1/MEkt1XVy6rq9UkuJPnu+oYMAMBcqBUBYPmuOcVr\n3pbkL5P8sKoeWW37eJL3VdVN2WsDfiLJh5JkjPFYVT2Q5EdJnkty53F3nwAAYNHUigCwcCfeyn6S\nQbg9KQCclVvZs/PUigBwdmu5lT0AAAAAu0s4BAAAANCYcAgAAACgMeEQAAAAQGOnuVvZFP4lyf9d\nPbJ5r4m5noq5no65noZ5ns5p5/rfbXogMANqxWn5Wz8dcz0dcz0N8zydtdaKs7hbWZJU1UV3W5mG\nuZ6OuZ6OuZ6GeZ6OuYYX8n9iOuZ6OuZ6OuZ6GuZ5Ouuea6eVAQAAADQmHAIAAABobE7h0D3bHkAj\n5no65no65noa5nk65hpeyP+J6Zjr6Zjr6ZjraZjn6ax1rmdzzSEAAAAApjenziEAAAAAJiYcAgAA\nAGhsFuFQVd1SVT+uqktVdde2x7NLquqJqvphVT1SVRdX215dVd+oqp+sHl+17XEuUVXdW1XPVtWj\nB7YdOre15zOrffwHVfXm7Y18eY6Y609W1c9X+/YjVfWuA1/72Gquf1xV79jOqJepqm6sqm9W1eNV\n9VhVfWS13b69RsfMs/0aDqFW3By14uaoFaejVpyOWnEa26gVtx4OVdVLkvzXJO9M8sYk76uqN253\nVDvnz8YYN40xbl59fleSh8YYF5I8tPqcq3dfkluu2HbU3L4zyYXVxx1J7p5ojLvivrx4rpPkb1b7\n9k1jjK8nyervx21J/nT1nr9d/Z3hdJ5L8ldjjD9J8tYkd67m1L69XkfNc2K/hhdQK05CrbgZ90Wt\nOJX7olacilpxGpPXilsPh5K8JcmlMcY/jzH+X5IvJbl1y2PadbcmuX/1/P4k797iWBZrjPGtJL+4\nYvNRc3trks+PPd9O8sqqum6akS7fEXN9lFuTfGmM8dsxxk+TXMre3xlOYYzx9Bjj+6vnv07yeJLr\nY99eq2Pm+Sj2azpTK05PrbgGasXpqBWno1acxjZqxTmEQ9cnefLA55dz/C/N1RlJ/rGqHq6qO1bb\nrh1jPJ3s7XRJXru10e2eo+bWfr4ZH161p957oOXdXK9JVb0uyZuSfCf27Y25Yp4T+zVcyf6/WWrF\naTmeTssxdYPUitOYqlacQzhUh2wbk49id71tjPHm7LXz3VlV/3HbA2rKfr5+dyd5Q5Kbkjyd5FOr\n7eZ6Darq5Um+nOSjY4xfHffSQ7aZ71M6ZJ7t1/Bi9v/NUivOg/18/RxTN0itOI0pa8U5hEOXk9x4\n4PMbkjy1pbHsnDHGU6vHZ5N8NXutZc/st/KtHp/d3gh3zlFzaz9fszHGM2OM58cYv0vy2fyhbdJc\nn1NVvTR7B6EvjDG+stps316zw+bZfg2Hsv9vkFpxco6nE3FM3Ry14jSmrhXnEA59L8mFqnp9Vf1R\n9i6i9OCWx7QTquqPq+oV+8+T/HmSR7M3v7evXnZ7kq9tZ4Q76ai5fTDJ+1dX639rkl/ut11yNlec\nq/ye7O3byd5c31ZVL6uq12fv4nffnXp8S1VVleRzSR4fY3z6wJfs22t01Dzbr+FQasUNUStuhePp\nRBxTN0OtOI1t1IrXnG/I5zfGeK6qPpzkH5K8JMm9Y4zHtjysXXFtkq/u7Ve5JsnfjTH+vqq+l+SB\nqvpgkp8lee8Wx7hYVfXFJG9P8pqqupzkE0n+OofP7deTvCt7Fwb7TZIPTD7gBTtirt9eVTdlr13y\niSQfSpIxxmNV9UCSH2XvKv93jjGe38a4F+ptSf4yyQ+r6pHVto/Hvr1uR83z++zX8EJqxY1SK26Q\nWnE6asVJqRWnMXmtWGM43Q8AAACgqzmcVgYAAADAlgiHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAA\nANCYcAgAAACgMeEQAAAAQGP/HwMZnIMKGtsZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd8215f98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3W2QZVddP/rvmp7ueciEBOVKxRAu\nuRgxQbigkaKAuhCu1ySKjqkyKXghUaFiUSiCvOFBSrBU9F88KVG4wSD8SwERicSraDRKgVUIJJIK\nhIf8UxBNSAzEJGSSmZ6Z7l73Rffu6Znp7unp6XPOPmd9PlVT3b37PKze58w5v/Pdv71WqbUGAAAA\ngDZtG/UAAAAAABgd4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRtY\nOFRKuaSU8vVSyh2llNcN6n4AABg/akUA6I9Sa936Gy1lKsntSf6fJHcn+UKSl9Rav7LldwYAwFhR\nKwJAv2wf0O0+K8kdtdZvJEkp5SNJ9iZZ9Q2/lLL1CRUAtOH+Wuv/NupBwElSKwLAkNRay4kuM6jT\nys5OcteKn+9e2raslHJVKeWmUspNAxoDALTgP0Y9ANgEtSIA9MigOodWS6WOOuJTa70myTWJo0EA\nAI1RKwJAjwyqc+juJOes+PkJSe4Z0H0BADBe1IoA0CODCoe+kOS8Usq5pZSZJC9Ocv2A7gsAgPGi\nVgSAHhnIaWW11rlSyq8k+YckU0neX2u9bRD3BQDAeFErAkC/DGQp+5MehPPIAWCzbq61XjjqQcAg\nqRUBYPNGuVoZAAAAAGNAOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABA\nw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAA\nQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAA\nAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAA\nAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQ\nAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDh\nEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw\n4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQcp5SS\nUsoJtwEAADD+hEMAAAAADds+6gEA/bNnz54kyb59+5a3TU9PJ0kOHz581GW77YcOHVreNjU1lSSZ\nn5/f8H12XUm11k2MGAAAgM3SOQQAAADQMJ1D0Jj/+I//SJI88YlPXPMyf//3f58kueSSS5a3XXrp\npUmSX/iFX0iSvPjFL06SvPCFL0ySPPaxj82HP/zhJMkzn/nMJMlNN9204XF1HUM7duxIstiJtFpX\nEgAAW69P3dvmuYTh0zkEAAAA0LDSh4S4lDL6QcAE2bZtWxYWFpIcfxSo275t27bl3x0738/KozXd\n5bu5hrqfd+3addT2gwcPLs9V1M011M09dDI+8pGPJEle8pKX5HnPe16S5F//9V+TJNu3bz9qnCcz\npxFMsJtrrReOehAwSGpFGIw+fBY8VbqM4MRqrSf8jyIcggmyMuTp/m/Pzc0lORKsnKrVAqRu+2be\nnFeGVcliyJQsnl527Ni/+MUvJjlyKttDDz20fBpadz1okHCIiadWhMHow2fBQRAYwdE2Eg45rQwA\nAACgYSakhgkyMzOTJLnmmmuWT/faqo6hzlpHYjZ7hKbrGOp0f0Ny/Nh/+Id/OEny4IMPLm97//vf\nnyR52ctetqn7BwBozaR2DHXW+vt0FMHadA4BAAAANMycQzCB+vD/elhWzlGUJKeffnqS5JFHHjlq\n+6FDh9acgBvGnDmHmHhqRdhaaqAjdBPRAnMOAQAAALAucw7BhFprVbFJs3KOoiTZt2/fUT//2Z/9\nWZLk53/+54+7zrErnJVSHEkDACaeLuojjt0Hk147w1p0DgEAAAA0zJxDMIH+6Z/+Kc95znOSJLt2\n7RrxaEbr2DmJkuQ1r3lNkuRd73rXUZfdtm1bFhYWhjc42BrmHGLiqRVhMPrwWbDvdBIxCcw5BAAA\nAMC6dA7BhOo6Zqanp5O0e9RjtbmXVusm6i7TbTt2PiLoMZ1DTDy1IgxGHz4LjpNW62nG30Y6h0xI\nDRNoenq6+VCos9rff2wo1J1KVmvN61//+iTJ7/3e7yVZPNVs5WUAACaFialPjsmrmWROKwMAAABo\n2CmdVlZKuTPJviTzSeZqrReWUr4nyV8keVKSO5NcUWt98AS3I6qGATl8+HCSZGpqKokjHCfSnU7W\n7afdu3cnSebn55PEaWf0kdPK6C21IowHnUNbQ51NXw1rQuqLaq3PWFGYvi7JjbXW85LcuPQzAABt\nUisCQM8N4rSyvUk+uPT9B5P87ADuA1jHyqMW27dvz/bt2zM/P7/c/cLaduzYcdScRHNzc5mbm0ut\nNbXWvPWtb81b3/rW7Nq1K9u2bcu2bdtSSnGkCGDj1IrAROrqRZ1YjKNTDYdqkhtKKTeXUq5a2vb4\nWuu9SbL09ftO8T4AABhPakUAGAOnulrZc2ut95RSvi/JP5ZSvrbRKy4VCFed8ILASVt5tOLcc89N\nktx+++2jGs5Y6lZ7O9ZrXvOaJMkFF1yQSy+9NMlid1ZyZH4nAJapFYEmWdmMcXNKnUO11nuWvn47\nyXVJnpXkvlLKWUmy9PXba1z3mlrrhSbRBACYTGpFABgPmw6HSimnlVJO775P8hNJvpzk+iRXLl3s\nyiSfONVBAievmwfnwQcfzIMPPpiXv/zlefnLXz7qYY2NE80jdNFFF+WBBx7IAw88kPPPPz/nn3/+\nEEcH0H9qRRgfuloGz1xE9N2ml7IvpfwfWTwClCyenvahWuvvlFK+N8lHkzwxyX8mubzW+sAJbsv/\nEhiQbdsWM+AnPvGJSZI77rhjebtCYPNqrcdN8H3FFVckSa677rrVrgKDYil7ekmtCONFcDE8anCG\nbSNL2W96zqFa6zeS/J+rbP/vJP/3Zm8XAIDxp1YEgPGx6c6hLR2Eo0EwNH34Pz+pDh48mCS54YYb\nkiSXXXbZ8u8WFhaS2P8MhM4hJp5aEQZPjTJ8OogYlo10Dp3qUvYAAAAAjDGdQ9CI0047LUny4z/+\n40mSv/7rvx7lcCbaI488kiS57bbbcvHFFydJ9u/fnySZm5tL4ugcW0rnEBNPrQjDo0YZPh1EDJrO\nIQAAAADWpXMIGjE1NZUkOeuss5Ikd9111yiH04TDhw8vzzV0+umnJznyOMzOzo5sXEwcnUNMPLUi\nDE8fPh+2SgcRg6JzCAAAAIB1bXope2C8zM/PJ0keffTRJItz33RdLI5SDMb27duXO4cOHTqUJPm5\nn/u5JMknPvGJJEfmIAIAoG1d15banFHQOQQAAADQMHMOQSO6IxDd//k+/N9vmSNCbCFzDjHx1Iow\nfGrF0VMvslXMOQQsq7Ue9Sb/hCc8YYSj4djHAwAAVurqRTUjwyAcAgAAAGiYcAga9a1vfWvUQyBH\njgidccYZox4KAAA9pYOIQRMOAQAAADTMUvYAPfDQQw/l2muvTZK8/OUvT5Js27aY3y8sLIxsXABA\nm45dzIR+sNw9g6JzCAAAAKBhlrKHhh27rL0jEKN16NChJMnMzEwSjwcbZil7Jp5aEUanD58XWZ+a\nkROxlD0AAAAA6zLnEDTsqU99apLklltuSZJMT0+PcjjN6zqGOt2Rule84hVJkve+971DHxMA0DZz\nD/WfswDYCk4rg4Y95jGPSZL84A/+YJLkC1/4wiiHwwnMz89n+3aZPsdxWhkTT60Io9eHz42cHGER\nHaeVAQAAALAuh6ChYQ8//HCS5P7770+y2JmSHFlC3dGGfimlaBsGAEbC6WXjR93IydA5BAAAANAw\nnUPQsO4owp133pkkmZqaSpLMzc0liflteqbr6EqSgwcPJkl27NiR5Mhj13V/AQBAooOIjdE5BAAA\nANAwbQHQsGPPGXcu+fjoHqNjjwTt3LlzuavI4wgAQKfWqnuINekcAgAAAGiYcAhIKSWllGzbtu2o\neW3or5mZmczMzGRhYSELCwuZnZ3N7OxsLrjggkxPT2d6enrUQwQAoGdqrbrLWZVPgQAAAAANK31I\nDUspox8EkNNPPz1J8qIXvShJ8qEPfWiUw2EDutfwhYWFJIurljmXvDk311ovHPUgYJDUitAvffgM\nydZQN7ah1nrCB9qE1MCy/fv3J0luv/32JCatGwfd49MtZZ8kf/u3f5sk+amf+qmRjAkAABgvTisD\nAAAAaJjOIWDZ/Px8kuTRRx9Nkhw8eDA7duxIouV0nLzwhS9MkvyP//E/kiRvfOMbkySHDx8e2ZgA\ngMnR1YVOLxt/3WOo1kfnEAAAAEDDTEgNrKkPrw9s3ne/+90kybOf/ewkyde+9rVRDofBMSE1E0+t\nCP2kVpw8Oogm00YmpNY5BAAAANAwnUPAmvrw+sCp27dvX5LkMY95zIhHwoDoHGLiqRWhn9SKk0n3\n0OTROQQAAADAuoRDwJqe/OQnZ3Z2NrOzs6MeCqdgZmYmMzMz+c53vpPvfOc7ox4OAADQM8IhAAAA\ngIZtH/UAgP6Znp5Okjz96U/P9u1eJsbdzMxMkuRxj3tckuQP/uAPkiRveMMbsn///iTmDAAAYFFX\nF5p7qC0mpAbW1YfXCAbjaU97Wr785S+PehicOhNSM/HUitBv6sXJJiQafyakBgAAAGBdzhcB1nT6\n6afnm9/8ZpLk3HPPHfFo2CoLCwtJki996UuOBAEAADqHAAAAAFpmziFgTdPT0znjjDOSJP/1X/+V\nJJmamhrlkNgCKycZvP/++5Mc6Qx75JFHRjYuNs2cQ0w8tSL0Wx8+UzJ4Os7HlzmHAAAAAFiXOYeA\nNR0+fDhXX311EkeEJsnKoz579uxJomMIAID1WeJ+sukcAgAAAGiYziFgXbfffnuS5NChQ0mS7du9\nbEySnTt3JnEkCAAAWqZzCFjXDTfckBtuuCFTU1Mmo55g8/PzmZ+fz1ve8pa85S1vyfT0dKanp0c9\nLAAAeqbWasqJCSQcAgAAAGiYpeyBNZVSlo8K9OG1guH50R/90STJF7/4RY99/1nKnomnVoR+Uyu0\ny5QE48FS9gAAAACsy8yywJpKKfmHf/iHJMmBAweSJLt27RrlkBiSm2++Ocni4z07Ozvi0QAAfdZ1\nj+gggvGlcwgAAACgYeYcAjbk4MGDSZKZmZkRj4Rh6B7vbql7es2cQ0w8tSKMhz58tmQ0zD3Ub+Yc\nAgAAAGBd5hwC1lRKyY4dO5LoGGpN97jPzs7mjDPOSJIcOnQoiaOCAAAwaXQOAQAAADRM5xCwplrr\nmitVzc/PJ0m2bVvMmJ1nPFm67qAdO3Yszz8EAABMJuEQsK4LL1yc5/ahhx5Kkpx55plJkuuvvz5J\nsnfv3iTjFQ51gVcXbDll7ngrH8/77rsvSXL22WcnSebm5kYyJgAA+qk7sDhOnwk4mtPKAAAAABpm\nKXtgXVNTU0mOdIt0rxkXXXRRkuRTn/rU8vZxOVLwtKc9LUmye/fuJMnnPve5JOP1NwxT1zl07rnn\nJkkOHDgwyuFwPEvZM/HUijBe+vAZk9FQS/eTpewBAAAAWJfOIWBDLr744iTJddddl+TIUufdvD1b\n7eDBg3n729+eJHnVq16VJDnttNOSnNwRiYcffjhJ8ulPfzo//dM/neT4MXeTa8/Pzy93SnG8br93\n+29hYWGUw+EInUNMPLUijJc+fMbcrNXqzHH+e0ZFB1G/6BwCAAAAYF06h4CTMszXjFtuuSVJ8qu/\n+qtJks985jNH/f7gwYPLHUyHDh1KcmQ+nDPOOCNJ8u53vzvJke6j1ZxzzjlJFuceevzjH59kcB1R\nk8CRoN7ROcTEUyvCeOnDZ8yNOpm6Zpz+rlFTL/aLziEAAAAA1rV91AMAxssrXvGKJMkf/uEfJkmm\np6cHdl9PecpTkiQve9nLkhx/BOJNb3pTnvrUpyZJ9u3blyT52te+liTL8xWtp7u9Bx54IEly2WWX\nLXcn6Rw6ojtK5ggQADAOBlWzdLerg4hJ5LQyYFO6145BBgfH3vax97Fz587lSZG708pOxb59+7Jr\n164kMTH1OkxM3TtOK2PiqRVh/Izqc+YgD2b14bPzuHFwsR+cVgYAAADAupxWBmzKsW21CwsLa3b4\nnOp9dF1Bb3zjG5Mkv/M7v5NkcULqrbRnz54tvb1JMz8/nyR57nOfmyT5whe+kGRrurYAgMniFCwY\nLzqHAAAAABpmziFgU2ZmZpIc6RqptQ5t4uKtvv33vve9SZIrr7wyO3fu3NLbnkSzs7NJkjPPPDPJ\n1ndwcdLMOcTEUyvC+Br2581BzoPJyTPnUD+YcwgAAACAdZlzCNiUrmOoW7GqlLJ8VKXrJNmxY8do\nBncC3RGMZz3rWUmSl73sZUmS7du9JG7E3NxcEnMNAQAndmzniC4c6CedQwAAAAANc5gcOCULCwtJ\nkqmpqeUjQ+94xzuSJK95zWuS5KTmIjpw4ECS5N/+7d/yvOc976jf3XrrrUmOdPh0HSwnqxvP7//+\n7x91e2zM4cOHkyQ/9mM/liT5/Oc/P8rhAABjxCpmbRnWnKScOp1DAAAAAA2zWhmw5Xbv3p0k2bt3\nb5LkQx/60PLvTjQf0cqjC11nUNfZc8YZZyRJHn300STJ/Pz8psbXrbT227/920mSV73qVeuOidU5\nAtQbVitj4qkVoQ1b8dnUamX9pG4crY2sVuZcCmDL7d+/P0ny8Y9/PMnRbwa/9Vu/lSR505vedNR1\nusmNu+Cm1rp8+lIXDj388MNbMr5uPE972tOSCIU2q9tvlrIHALbCWgHCRsIZ4QOcGqeVAQAAADTs\nhKeVlVLen+RFSb5da/3hpW3fk+QvkjwpyZ1Jrqi1PlgW49o/SPKTSfYn+YVa67+fcBBahWEirTbh\n4FrdJtdff32S5LOf/WyS5M4778xDDz2UJPnkJz850HFqFT45XZfXmWeemeTIJOKMjNPKGCm1IjDp\n1IqnTmfXaG3ktLKNdA59IMklx2x7XZIba63nJblx6eckuTTJeUv/rkryno0OFgCAsfSBqBUBYKxt\naELqUsqTkvx/K44GfT3JC2qt95ZSzkryqVrrU0op/+/S9x8+9nInuH1RLDRq27bFjHp6ejrJkfmF\nDh48uOml6k+Wo0Eb0+2nbiLw7jFj5HQOMXJqRWCSqRVPnc6h0dqqzqHVPL57E1/6+n1L289OcteK\ny929tO04pZSrSik3lVJu2uQYAADoJ7UiAIyRrV6tbLU0atWYtdZ6TZJrEkeDoGULCwtJjsxBNMyV\nr3bu3JkkueGGG5IkP/ETPzG0+x5H3RGfqampJEe6vjrdYwmwDrUiMHZWm0cTJs1mO4fuW2oRztLX\nby9tvzvJOSsu94Qk92x+eAAAjCG1IgCMkc2GQ9cnuXLp+yuTfGLF9peWRc9O8t0TnUMOMCqzs7OZ\nnZ3NxRdfnIsvvnjUwxkbc3NzmZuby/Of//w8//nPz/T0tPmHgGOpFQFgjGxkKfsPJ3lBkscluS/J\nbyb56yQfTfLEJP+Z5PJa6wNLy5NencUVK/Yn+cVa6wnPE9cqDPTB93//9+drX/takuT0008f8Wj6\np3u/6FqrTSzYGyakZqTUikBrnF528tSNo7WRCak3tFrZoHnDB/pAOLQ+4VBvCYeYeGpFoE/68Bl6\n3KgbR2sj4dBWT0gNMLbuueeeiQqFjg1zTpU3dQAAmEybnXMIAAAAgAmgcwhghXFdqnRubi7J4vLy\n3RLzhw8fTpLMzMyMbFwAAJNmXOvFUdB5Pj50DgEAAAA0TOcQwApd1013lKPryJmamhrZmFZz4MCB\nJMmuXbuSJB/72MeSJO9617vyuc99LknyN3/zN0mSF73oRUmShYWFJEf+xpN18ODBJMlrX/vaJMmO\nHTuSJIcOHUri6BkA0JZju2LUQowznUMAAAAADbOUPcAKJzqHvNteaz3usoM+p7rWujyP0A033JAk\n+Zmf+ZkkyfT09PIYusts377YHNp19rzzne9Mkrz61a8+pXE4d7x3LGXPxFMrAuOiD5+vj7WR2m1Q\n41Y39sNGlrLXOQQAAADQMJ1DABtwbJfQytfObi6ebg6eYXjzm9+cJPnd3/3dJMn8/HySxfmEunmS\nTmSzr/+nnXZakmT//v2buj5bTucQE0+tCIybPnzO7pxs985Wjl3nUD9spHNIOASwSd2pXN/5zneS\nJGecccbQ7vuRRx5JkvzzP/9zkmTv3r1Jkssvvzx/+Zd/uaHbeO1rX5u3ve1tJ33f3uR7RzjExFMr\nAuOqD5+317NeXbcVY1c39oPTygAAAABYl84hgE3qjoScc845SZLbbrstSbJnz56hjaGbbHpmZmb5\n5z/5kz9Jkrzyla9c9Tpdx1OS5cmr13sv6E6bu/baa5Mkv/7rv37UdkZO5xATT60IjKs+fN4+Gat1\n+mzmb9Ax1C86hwAAAABYl84hgFPUdeJ0XTzDnKC6ew1feXRmdnY2SbJz585Vr3P99dcnWZynqJtc\n+tFHHz3q9rqOopVdRo4A9ZbOISaeWhEYd3343H2yjq39TuZvUDf2i84hAAAAANalcwjgFB27zP3H\nPvaxJMlll12WbdtGn8Ef213UdTjt378/z33uc5MkX/nKV5Ic6RS68847kyTf+73fu9xF9LznPS9J\ncuuttx51u4ycziEmnloRmBSTXj/pGOonnUMAAAAArEvnEMCA1FpXnRNo1Loxzc/PL4/r8ssvT5Jc\nd911R132s5/97HLH0NTUVJIjnUf0hs4hJp5aEZgkffgMPih9qnk5QucQAAAAAOvSOQQwQN1r7Nzc\nXJJk+/btoxzOmroV1j7zmc8kSS699NIkycLCQhYWFkY2LjZE5xATT60ITKI+fBbfKjqG+m0jnUPC\nIYAh6MNr7Ubs27cvyZFJtX/pl35plMNhY4RDTDy1IjDJxqVOXI9wqN+cVgYAAADAunQOAQxIKWV5\nEufutLLuNbc7VasPS92vdOwE2o4CjQWdQ0w8tSIwyfrwmXyz1IrjQecQAAAAAOvq58yoABOg1rrc\nMdTpjq709QhRt0z9q1/96iTJjh07lrf1dcwAAOOs7/UhbdA5BAAAANAwcw4BjFAfXoNX4/zxsWLO\nISaeWhFoSV/rw9WoGceDOYcAAAAAWJdwCGAESikppeS0007LaaedlgMHDox6SEfpxuVoEADAcHV1\nIgyTCakBRqBrF96/f3+SZNeuXaMcznEeffTRUQ8BAKBppZRen2ImwJosOocAAAAAGqZzCGCEpqam\nkiT3339/Hve4x41sHHNzc0mSt73tbUkWl7BPkoMHD45sTAAArbPMPcOicwgAAACgYZayB+iB6enp\nPPDAA0mSPXv2DP3+5+fnkyTbtm076itjwVL2TDy1IsCiPnx+75hzaHxYyh4AAACAdZlzCKAHDh8+\nPNJunW7uo2uvvTaJOYcAAKAlOocAAAAAGqZzCKAHdu3alVtuuSVJ8pznPGdo99udt951CN17771J\nnEMOANBHfVi9TJ04mXQOAQAAADRM5xBADywsLOT+++8f2f1PT08nSd73vvclSWZnZ0c2FgAAYLgs\nZQ/QA6WU5fbgUbwud/d51llnJUn++7//O0kyNzc39LFw0ixlz8RTKwIczWllnAxL2QMAAACwLuEQ\nQA+sdvSn1jrwo0LdfczOzmZ2djYvfelL89KXvjTz8/OZn58f6H0DAAD9IBwCAAAAaJg5hwB6oJSS\nXbt2JUn+9E//NElyxRVXDPQ+a605dOhQkuTOO+9MkvzQD/3QQO+TgTDnEBNPrQhwNHMOcTLMOQQA\nAADAuixlD9ADtdYcOHAgSfLQQw8lSQ4fPpzkyDLzW62Ukh07diQ50jHUHQnqQ1cpAACrU7Ox1XQO\nAQAAADTMnEMAPdW9PndfB3F+d9edtHfv3iTJDTfckCRWKhsv5hxi4qkVAVY3zM/z5hoaXxuZc8hp\nZQA9N6g34gMHDuSP/uiPkiSf/OQnB3IfAABA/zmtDAAAAKBhOocAeqpbZn779sWX6m3btjbPn5qa\nyrnnnrultwkAwPCUUkxKzZbQOQQAAADQMBNSA/TUVVddlSR55zvfmSTZvXv3ltzuwsJCksVOpLPP\nPjtJct999yUxEfWYMiE1E0+tCLC2YX2mNyH1+NrIhNQ6hwAAAAAapnMIoOcG+TrtCNBE0DnExFMr\nAqxt0J/p1YvjT+cQAAAAAOuyWhlAz/3xH/9xksU5iLqVyzajO6rUrYJ23XXXZWZm5qhtAABAe3QO\nAQAAADRM5xBAz339619PkszOzmbPnj2bvp3ufPEdO3YkSV7ykpc4hxwAgFWpE9tiQmqAnnvKU56S\nJPniF7+YXbt2bdntesOfGCakZuKpFQFObKs/26sVJ4cJqQEAAABYl84hgJ7rjtosLCwM5HYZezqH\nmHhqRYAT26rP9mrEyaNzCAAAAIB1mZAaoOcGdf54KWXLbxsAgPGla6hdOocAAAAAGqZzCKCnuiM3\np9rd081VNDc3d9R2XUMAAECicwgAAACgaTqHAHqq6+zpOohuvfXWnH/++UmS6enpDd/O/Px8kuTi\niy9OkszMzCRJDh8+rHsIAAAQDgH03e7du5Mkn//85/P0pz/9pK/fBUmf+tSntnJYAABMCBNR47Qy\nAAAAgIaVPpxSUEoZ/SAAeu5kX68PHTqUJLnrrruSJE95ylOSHDnNjIlxc631wlEPAgZJrQhwYqfy\n2V7n0GSrtZ7wAdY5BAAAANAwcw4B9Fx3JOfgwYPZvn3xZXtqamrNy3dL13eX/YEf+IEkybZtjgcA\nAADH80kBAAAAoGHCIYCem5mp/LkCAAAQ3UlEQVSZyczMTN785jdnfn7+hHMGzc3NZW5uLpdcckku\nueSS5esvLCwsdxUBAEApxXxDJBEOAQAAADTNamUAPTc9PZ0kuf322/OkJz1pw9dzFKgZVitj4qkV\nAU5sM5/t1YttsFoZAAAAAOuyWhlAzx0+fDhJcu65557wiNDc3Fy+8Y1vJDmyOpl5hgAAJl/XBdSH\ns4MYP8IhgJ7r3uivvvrqHDhwIEmyc+fOo37XmZqaykUXXZREOAQAwOqcTsaxnFYGAAAA0LAThkOl\nlPeXUr5dSvnyim1vLqV8q5Ryy9K/n1zxu9eXUu4opXy9lHLxoAYO0Ipaa2qt+Yu/+Ivl79dadrSU\nknvuuSf33HPP8pL2AIOkVgSA8beRzqEPJLlkle3vrLU+Y+nf3yVJKeWCJC9O8tSl6/xxKWVqqwYL\nAEDvfCBqRQAYaycMh2qtn07ywAZvb2+Sj9RaD9Zav5nkjiTPOoXxAbDk05/+dHbv3p3du3cvb+s6\niQ4ePJiDBw/mYx/7WGZmZjIzMzPCkQItUSsCwPg7lTmHfqWUcutSK/Fjl7adneSuFZe5e2nbcUop\nV5VSbiql3HQKYwAAoJ/UigAwJjYbDr0nyZOTPCPJvUnevrR9tSnPV11Hr9Z6Ta31wlrrhZscA0Dz\nurmHduzYkR07duTyyy/P4cOHc/jw4VEPDWibWhGgh9aatxI2FQ7VWu+rtc7XWheSvC9H2oHvTnLO\nios+Ick9pzZEAADGiVoRAMbLpsKhUspZK368LEm3OsX1SV5cStlRSjk3yXlJPn9qQwRo2/T0dKan\np3PFFVfk0KFDOXTo0LqX7+YhAhgVtSJA/+gYYj3bT3SBUsqHk7wgyeNKKXcn+c0kLyilPCOLbcB3\nJvnlJKm13lZK+WiSrySZS/LKWuv8YIYOAMCoqRUBYPyVPhxdLqWMfhAAPdUd5VnZEdR9nZ2dTZK8\n6U1vSpJcffXVy51FfXh9ZyhuNicLk06tCLBxa9WAOofaVWs94YN/ws4hAEZrtTf4LhS68cYbkyRv\nf/vbj7sMAADARpzKUvYAAAAAjDmdQwBjYmpqKu9+97uTJL/xG7+RJHn44YdHOSQAAHpm5ZQEK3+G\n9egcAgAAAGiYCakBxsjOnTuTHJlzCGJCahqgVgSAzdvIhNQ6hwAAAAAaZs4hgDGiYwgAANhqOocA\nAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmH\nAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJ\nhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICG\nCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACA\nhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAA\ngIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAA\nAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIhAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEA\nAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYcIh\nAAAAgIYJhwAAAAAaJhwCAAAAaJhwCAAAAKBhwiEAAACAhgmHAAAAABomHAIAAABomHAIAAAAoGHC\nIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACgYScMh0op55RS/qWU8tVSym2llF9b2v49pZR/LKX8\nr6Wvj13aXkopf1hKuaOUcmsp5UcG/UcAADAaakUAGH8b6RyaS/LaWuv5SZ6d5JWllAuSvC7JjbXW\n85LcuPRzklya5Lylf1clec+WjxoAgL5QKwLAmDthOFRrvbfW+u9L3+9L8tUkZyfZm+SDSxf7YJKf\nXfp+b5L/WRf9W5IzSylnbfnIAQAYObUiAIy/k5pzqJTypCTPTPK5JI+vtd6bLBYFSb5v6WJnJ7lr\nxdXuXtp27G1dVUq5qZRy08kPGwCAvlErAsB42r7RC5ZS9iT5qySvrrU+XEpZ86KrbKvHbaj1miTX\nLN32cb8HAGB8qBUBYHxtqHOolDKdxTf7P6+1fnxp831dC/DS128vbb87yTkrrv6EJPdszXABAOgb\ntSIAjLeNrFZWklyb5Ku11nes+NX1Sa5c+v7KJJ9Ysf2lSytRPDvJd7uWYgAAJotaEQDGX6l1/S7d\nUsrzknwmyZeSLCxtfkMWzyX/aJInJvnPJJfXWh9YKhCuTnJJkv1JfrHWuu654lqFAWDTbq61Xjjq\nQdAutSIA9Futdc1zvTsnDIeGwRs+AGyacIiJp1YEgM3bSDh0UquVAQAAADBZhEMAAAAADRMOAQAA\nADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEA\nAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4B\nAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMO\nAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0T\nDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAAN\nEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAA\nDRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAA\nAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMAAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAA\nAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RDAAAAAA0TDgEAAAA0TDgEAAAA0DDhEAAAAEDDhEMA\nAAAADRMOAQAAADRMOAQAAADQMOEQAAAAQMOEQwAAAAANEw4BAAAANEw4BAAAANAw4RAAAABAw4RD\nAAAAAA07YThUSjmnlPIvpZSvllJuK6X82tL2N5dSvlVKuWXp30+uuM7rSyl3lFK+Xkq5eJB/AAAA\no6NWBIDxV2qt61+glLOSnFVr/fdSyulJbk7ys0muSPJIrfVtx1z+giQfTvKsJN+f5J+S/GCtdX6d\n+1h/EADAWm6utV446kHQLrUiAPRbrbWc6DIn7Byqtd5ba/33pe/3JflqkrPXucreJB+ptR6stX4z\nyR1ZfPMHAGDCqBUBYPyd1JxDpZQnJXlmks8tbfqVUsqtpZT3l1Ieu7Tt7CR3rbja3VmlQCilXFVK\nuamUctNJjxoAgN5RKwLAeNpwOFRK2ZPkr5K8utb6cJL3JHlykmckuTfJ27uLrnL141qBa63X1Fov\n1AoPADD+1IoAML42FA6VUqaz+Gb/57XWjydJrfW+Wut8rXUhyftypB347iTnrLj6E5Lcs3VDBgCg\nT9SKADDeNrJaWUlybZKv1lrfsWL7WSsudlmSLy99f32SF5dSdpRSzk1yXpLPb92QAQDoC7UiAIy/\n7Ru4zHOT/HySL5VSblna9oYkLymlPCOLbcB3JvnlJKm13lZK+WiSrySZS/LK9VafAABgrKkVAWDM\nnXAp+6EMwvKkALBZlrJn4qkVAWDztmQpewAAAAAml3AIAAAAoGHCIQAAAICGCYcAAAAAGraR1cqG\n4f4kjy59ZfAeF/t6WOzr4bGvh8N+Hp6N7uv/fdADgR5QKw6X1/rhsa+Hx74eDvt5eLa0VuzFamVJ\nUkq5yWorw2FfD499PTz29XDYz8NjX8PR/J8YHvt6eOzr4bGvh8N+Hp6t3tdOKwMAAABomHAIAAAA\noGF9CoeuGfUAGmJfD499PTz29XDYz8NjX8PR/J8YHvt6eOzr4bGvh8N+Hp4t3de9mXMIAAAAgOHr\nU+cQAAAAAEMmHAIAAABoWC/CoVLKJaWUr5dS7iilvG7U45kkpZQ7SylfKqXcUkq5aWnb95RS/rGU\n8r+Wvj521OMcR6WU95dSvl1K+fKKbavu27LoD5ee47eWUn5kdCMfP2vs6zeXUr619Ny+pZTykyt+\n9/qlff31UsrFoxn1eCqlnFNK+ZdSyldLKbeVUn5tabvn9hZaZz97XsMq1IqDo1YcHLXi8KgVh0et\nOByjqBVHHg6VUqaS/FGSS5NckOQlpZQLRjuqiXNRrfUZtdYLl35+XZIba63nJblx6WdO3geSXHLM\ntrX27aVJzlv6d1WS9wxpjJPiAzl+XyfJO5ee28+otf5dkiy9frw4yVOXrvPHS68zbMxcktfWWs9P\n8uwkr1zap57bW2ut/Zx4XsNR1IpDoVYcjA9ErTgsH4hacVjUisMx9Fpx5OFQkmcluaPW+o1a66Ek\nH0myd8RjmnR7k3xw6fsPJvnZEY5lbNVaP53kgWM2r7Vv9yb5n3XRvyU5s5Ry1nBGOv7W2Ndr2Zvk\nI7XWg7XWbya5I4uvM2xArfXeWuu/L32/L8lXk5wdz+0ttc5+XovnNS1TKw6fWnELqBWHR604PGrF\n4RhFrdiHcOjsJHet+PnurP9Hc3JqkhtKKTeXUq5a2vb4Wuu9yeKTLsn3jWx0k2etfet5Phi/stSe\n+v4VLe/29RYppTwpyTOTfC6e2wNzzH5OPK/hWJ7/g6VWHC7vp8PlPXWA1IrDMaxasQ/hUFllWx36\nKCbXc2utP5LFdr5XllL+r1EPqFGe51vvPUmenOQZSe5N8val7fb1Fiil7EnyV0leXWt9eL2LrrLN\n/t6gVfaz5zUcz/N/sNSK/eB5vvW8pw6QWnE4hlkr9iEcujvJOSt+fkKSe0Y0lolTa71n6eu3k1yX\nxday+7pWvqWv3x7dCCfOWvvW83yL1Vrvq7XO11oXkrwvR9om7etTVEqZzuKb0J/XWj++tNlze4ut\ntp89r2FVnv8DpFYcOu+nQ+I9dXDUisMx7FqxD+HQF5KcV0o5t5Qyk8VJlK4f8ZgmQinltFLK6d33\nSX4iyZezuH+vXLrYlUk+MZoRTqS19u31SV66NFv/s5N8t2u7ZHOOOVf5siw+t5PFff3iUsqOUsq5\nWZz87vPDHt+4KqWUJNcm+Wqt9R0rfuW5vYXW2s+e17AqteKAqBVHwvvpkHhPHQy14nCMolbcfmpD\nPnW11rlSyq8k+YckU0neX2u9bcTDmhSPT3Ld4vMq25N8qNb696WULyT5aCnlZUn+M8nlIxzj2Cql\nfDjJC5I8rpRyd5LfTPJ7WX3f/l2Sn8zixGD7k/zi0Ac8xtbY1y8opTwji+2Sdyb55SSptd5WSvlo\nkq9kcZb/V9Za50cx7jH13CQ/n+RLpZRblra9IZ7bW22t/fwSz2s4mlpxoNSKA6RWHB614lCpFYdj\n6LViqdXpfgAAAACt6sNpZQAAAACMiHAIAAAAoGHCIQAAAICGCYcAAAAAGiYcAgAAAGiYcAgAAACg\nYcIhAAAAgIb9/zXifRZcwiEFAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd815b518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3W/IpfV5J/DvNTPOmMRCE9wE17ir\nLbOQlIIJQxAStvbFpolQtIUsptCKFCzEQAN9k/RN0hclLWxbWnYbOiFWC42u0ITMC/snK02TQtqq\nqcQYk600JhkVbXBJjTrj/Pnti+ccfWacP88885y/1+cDw3nOPfc598+ft8+5/J7r/t01xggAAAAA\nPe1a9AAAAAAAWBzhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhsZuFQ\nVb2vqr5dVY9X1UdndRwAAFaPWhEAlkeNMXb+Tat2J/m/Sf5bksNJHkjywTHGN3f8YAAArBS1IgAs\nlz0zet93JXl8jPGvSVJV9yS5MckZP/CraucTKgDo4QdjjP+w6EHABVIrAsCcjDHqfPvM6rKyK5N8\nf9Pzw5Ntr6iq26rqwap6cEZjAIAOvrvoAcA2qBUBYInMqnPoTKnUKd/4jDEOJjmY+DYIAKAZtSIA\nLJFZdQ4dTnLVpudvTfLUjI4FAMBqUSsCwBKZVTj0QJL9VXVNVe1NcnOSQzM6FgAAq0WtCABLZCaX\nlY0xjlfVh5P8dZLdSe4YYzw6i2MBALBa1IoAsFxmciv7Cx6E68gBYLseGmMcWPQgYJbUigCwfYu8\nWxkAAAAAK0A4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaEw4BAAAANCYcAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0\nJhwCAAAAaGzPxby4qp5I8nySE0mOjzEOVNWbkvzvJFcneSLJfx9j/L+LGyYAAKtGrQgAq2EnOod+\ndoxx7RjjwOT5R5PcP8bYn+T+yXMAAHpSKwLAkpvFZWU3Jrlr8vNdSW6awTEAAFhNakUAWDIXGw6N\nJH9TVQ9V1W2TbW8ZYzydJJPHN1/kMQAAWE1qRQBYARe15lCSd48xnqqqNyf5YlV9a6svnBQIt513\nRwAAVpVaEQBWwEV1Do0xnpo8Ppvk80neleSZqroiSSaPz57ltQfHGAc2XX8OAMAaUSsCwGrYdjhU\nVW+oqh+b/pzkvUm+keRQklsmu92S5AsXO0gAAFaLWhEAVsfFXFb2liSfr6rp+3x2jPFXVfVAknur\n6leTfC/JBy5+mAAArBi1IgCsiBpjLHoMqarFDwIAVtNDLrth3akVAWD7xhh1vn1mcSt7AAAAAFaE\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgMeEQAAAAQGPCIQAAAIDGhEMAAAAAjQmHAAAAABoTDgEAAAA0JhwCAAAAaEw4BAAAANCY\ncAgAAACgsfOGQ1V1R1U9W1Xf2LTtTVX1xar6l8njGyfbq6r+qKoer6qvV9U7Zzl4AAAWS60IAKtv\nK51DdyZ532nbPprk/jHG/iT3T54nyfuT7J/8uS3Jp3ZmmAAALKk7o1YEgJV23nBojPHlJM+dtvnG\nJHdNfr4ryU2btv/Z2PAPSX68qq7YqcECALBc1IoAsPq2u+bQW8YYTyfJ5PHNk+1XJvn+pv0OT7a9\nRlXdVlUPVtWD2xwDAADLSa0IACtkzw6/X51h2zjTjmOMg0kOJklVnXEfAADWiloRAJbQdjuHnpm2\nAE8en51sP5zkqk37vTXJU9sfHgAAK0itCAArZLvh0KEkt0x+viXJFzZt/5XJnSiuS/LDaUsxAABt\nqBUBYIWc97Kyqro7yfVJLq+qw0k+nuR3ktxbVb+a5HtJPjDZ/b4kNyR5PMmLSW6dwZgBAFgSakUA\nWH01xuIv4XYdOQBs20NjjAOLHgTMkloRALZvjHGmNf9Osd3LygAAAABYA8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADQmHAIAAABoTDgEAAAA0JhwCAAAAKAx4RAAAABAY8IhAAAAgMaEQwAAAACN\nCYcAAAAAGhMOAQAAADS2Z9EDAGA97Nq1K7t37z5l27FjxxY0GgAAYKt0DgEAAAA0JhwC4KLs3bs3\ne/fuzf79+/Pcc8/lueeeW/SQAACACyAcAgAAAGisxhiLHkOqavGDAOCijDFeWWPokksuSZI88cQT\nSZK3ve1tSZIjR44sZGxr7qExxoFFDwJmSa0IsD5OzyCqakEj6WOMcd5J1jkEAAAA0Ji7lQGwLfv2\n7UuSfOhDH0qycWeyacfQ1NVXX51ExxAAQHdnu2ppul0H0WLpHAIAAABozJpDAFyUrXyO+CZopqw5\nxNpTKwKsNvXiYllzCAAAAIBzsuYQANvypS99KUly9OjRJK+uQZS8+u3QiRMn5j4uAACWwzJcqcTW\nuKwMgHOatvju3r07SXL8+PEk5/6wP31hwc2Py/C5s2ZcVsbaUysCrKYLqftcVjY7LisDAAAA4JzO\nGw5V1R1V9WxVfWPTtk9U1ZNV9fDkzw2b/u5jVfV4VX27qn5uVgMHYL6OHz+e48ePZ4yRMcZrnm9W\nVb79gSbUigDsBN3li7WVzqE7k7zvDNv/YIxx7eTPfUlSVW9PcnOSn5q85o+ravdODRYAgKVzZ9SK\nALDSzhsOjTG+nOS5Lb7fjUnuGWMcHWN8J8njSd51EeMDYMFO7ww6efJkTp48mT179mTPnj1n7BI6\nUzfRdDuwXtSKAJzubLUgy+ti1hz6cFV9fdJK/MbJtiuTfH/TPocn216jqm6rqger6sGLGAMAAMtJ\nrQgAK2K74dCnkvxkkmuTPJ3k9ybbz7TAxBnjwjHGwTHGAXdYAVhu+/bty759+3Ldddfluuuuy65d\nu7Jr17k/Pqw5BO2pFQFghWwrHBpjPDPGODHGOJnk03m1Hfhwkqs27frWJE9d3BABAFglakUAWC3b\nCoeq6opNT38hyfTuFIeS3FxV+6rqmiT7k/zTxQ0RgEWpqhw9ejRHjx7NV7/61Xz1q19d9JCAFaBW\nBIDVsud8O1TV3UmuT3J5VR1O8vEk11fVtdloA34iya8lyRjj0aq6N8k3kxxPcvsY48Rshg4AwKKp\nFQFg9dUyrCBeVYsfBADntJ3Pix/96EdJkp//+Z9Pkvzd3/2dO1fsvIesycK6UysCrIaLrfOsWTkb\nY4zzTux5O4cA6Gvv3r35rd/6rSTJ0aNHk2wsUL1Vl1xySZLkS1/6UpJk165dwiEAAFgyF3MrewAA\nAABWnMvKAHiNaUvvGOOiOn1OnNhYSmTPnj2vvO8yfO6sGZeVsfbUigDLbafqO5eVzcZWLivTOQQA\nAADQmDWHAHjFdD2hyy67LEnyne98J0eOHEmSXHrppRf8fi+99FKS5GMf+1iS5Hd/93d1DgEArAl1\n3frQOQQAAADQmM4hAPK6170uSXLTTTclST772c8m2VgzaNeu7X+PMF1r6L777kviOnIAgHWha2i9\n6BwCAAAAaMzdygAau+SSS5Ikf/Inf5IkufXWW3fkfaefLceOHUvy6lpGu3btysmTJ3fkGLzC3cpY\ne2pFgOUxywxBl/lsbOVuZS4rA2jsnnvuSZL84i/+4kzefxo+TS3DFxIAAGzdvOo3wdBiuawMAAAA\noDGXlQE0Mf02ZtrNc/nll+fJJ5+cybGmny3TY25+XIbPnTXjsjLWnloRYHF0Dq2+rVxWpnMIAAAA\noDFrDgE0Mf3W5+WXX06SPPnkk68sDn0xt6vfzhgAAFhu6rZedA4BAAAANKZzCKCJ6e3kf+mXfilJ\ncvz48ezZM5uPAdeMAwDA6tA5BAAAANCYziGAJo4ePZokueOOO2Z+rOk16gcPHkyS7N69O0ly4sSJ\nmR8bAIDts9ZQTzqHAAAAABrTOQTAjpveEe0nfuInkuSVu6IBAMBm1qpcDsIhgCY+/elPJ0leeuml\nJMnrXve6mR1revnYe9/73pkdAwAA2BkuKwMAAABorJZhsamqWvwgAJp48cUXk8y2c2hKm/BcPDTG\nOLDoQcAsqRUB5mfeGYF6cfbGGOedZJ1DAAAAAI1ZcwhgzU1vI3/o0KEks/12ZvpN0/XXX58k2bt3\nb5JXF6gGAACWj84hAAAAgMZ0DgGsuemdw2644YaZH2t6y/qrr746SfKVr3xl5scEAGBnzHO9IWsN\nLRedQwAAAACNuVsZwJqarjU07Rya9e/7kydPZteuje8cfBM0V+5WxtpTKwLMh86h9bSVu5W5rAxg\nTU1Doeeffz5JcuzYsSTJnj0bv/p3+gN5jJHvfve7SZJ9+/YlSY4ePbqjxwAAYOctQ9MIi+WyMgAA\nAIDGdA4BrKm77rorSXLZZZfN5Xi7d+/OT//0Tyfx7RMAAGfmcrLlpHMIAAAAoDELUgOsqXn/fj98\n+HCuuuqquR6TJBakpgG1IsDOWmQOoHNo/rayILXOIQAAAIDGrDkEsEb27duXj3zkI0mSl19+OUmy\nd+/emR5zepwXX3xxpscBAGB16RhabjqHAAAAABqz5hDAmlnU7/WqeuUboWX4bGnEmkOsPbUiwMVb\ndH2mc2hxrDkEAAAAwDlZcwhgTU2/HZrVtzRHjhxJkhw8eDDJxtpG0/WHAABgStfQ8nNZGcCaOXny\n5CnPZ/VhPF2A+g1veMNM3p8tc1kZa0+tCHDx3L6+L5eVAQAAAHBOLisDWCMPP/xwjh07lmT2t7B/\n/etfP9P3BwAA5kPnEAAAAEBjOocA1sjNN9+cf/7nf57LsR555JEkr6459MILL8zluAAArAZrDa0O\nnUMAAAAAjekcAlgjhw4dmtuxPvShDyVJTpw4MbdjAgCwPVW10DuWsdx0DgEAAAA0pnMIYI384Ac/\nyP79+3f0PaffME07hPbs2fjo+Pu///sdPQ4AALM1XQNo1h1E1hpaPcIhgDVy6aWX7vh7Tj/cp6HQ\nrl27Tnk+DY20KQMAwGpyWRkAAABAYzqHAFbQtJtn9+7dSZLjx48nSd7xjnfM7Jg//OEPk7zaITQ9\nJgAAsNp0DgEAAAA0pnMIYAWd3r2z+fm0m2inFgI8evRokuThhx/ekfcDAACWi84hAAAAgMZ0DgGs\nsPe85z2nPJ/eQWwn7du3L0ly/fXX7/h7AwAwP25hz9noHAIAAABoTOcQwAqadvMcOXJkwSMBAGAV\nzLpriNWmcwgAAACgMZ1DACtoegexBx54YKbHOXbsWD7+8Y8nSfbu3Zskefnll2d6TAAAVou1hlaf\ncAhghUwXnP7DP/zDJK8GNdPgZqf927/9Wz75yU/O5L0BAJg9l5OxFS4rAwAAAGhM5xDACtm1ayPT\nn1XH0LFjx5K8etnalVdeuaPvDwDA+nA52frQOQQAAADQWC3D9YdVtfhBAKyQi/ndPX3tmb7p+fKX\nv5wk+Zmf+Zkkye7du3PixIltH4u5eGiMcWDRg4BZUisCXLhZ/b++bqHVM8Y47780nUMAAAAAjVlz\nCGBFVNVrvgE6VxfQud5n6nOf+1yS5Ld/+7eTJN/61rdO2VfXEABAbzqFetA5BAAAANCYziGAFfKX\nf/mXSZIjR44kSS699NKz7nvy5Mkkr97hbOqTn/xkko1uoZdeeumUfX0zBABAoi7sxoLUACvohRde\nSJK8/vWvP+s+TzzxRJLkmmuuSbKxuHTiUrE1ZEFq1p5aEeDCXcj/6wuC1psFqQEAAAA4J5eVAayI\nzQtSn6tj6DOf+UyS5Pbbbz9l+/TSMQAAetMpxOl0DgEAAAA0pnMIYEVsvm78T//0T5Mkt956a5Lk\n7rvvTpJ84hOfyFNPPZUkOXr06FlfDwBAL7qFOBedQwAAAACNuVsZwAras+fUxs/jx4+/8vP0W6Fl\n+P3OXLhbGWtPrQgA2+duZQAAAACckzWHAFbQ5k6h0+kYAgAALoTOIQAAAIDGhEMAAAAAjQmHAAAA\nABoTDgEAAAA0dt5wqKquqqq/rarHqurRqvr1yfY3VdUXq+pfJo9vnGyvqvqjqnq8qr5eVe+c9T8E\nAACLoVYEgNW3lc6h40l+Y4zxtiTXJbm9qt6e5KNJ7h9j7E9y/+R5krw/yf7Jn9uSfGrHRw0AwLJQ\nKwLAijtvODTGeHqM8bXJz88neSzJlUluTHLXZLe7ktw0+fnGJH82NvxDkh+vqit2fOQAACycWhEA\nVt8FrTlUVVcneUeSf0zyljHG08lGUZDkzZPdrkzy/U0vOzzZdvp73VZVD1bVgxc+bAAAlo1aEQBW\n056t7lhVlyX5iyQfGWP8e1WdddczbBuv2TDGwSQHJ+/9mr8HAGB1qBUBYHVtqXOoqi7Jxof9n48x\nPjfZ/My0BXjy+Oxk++EkV216+VuTPLUzwwUAYNmoFQFgtW3lbmWV5DNJHhtj/P6mvzqU5JbJz7ck\n+cKm7b8yuRPFdUl+OG0pBgBgvagVAWD11Rjn7tKtqvck+UqSR5KcnGz+zWxcS35vkv+U5HtJPjDG\neG5SIPzPJO9L8mKSW8cY57xWXKswAGzbQ2OMA4seBH2pFQFguY0xznqt99R5w6F58IEPANsmHGLt\nqRUBYPu2Eg5d0N3KAAAAAFgvwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxoRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQA\nAADQmHAIAAAAoDHhEAAAAEBjwiEAAACAxs4bDlXVVVX1t1X1WFU9WlW/Ptn+iap6sqoenvy5YdNr\nPlZVj1fVt6vq52b5DwAAwOKoFQFg9dUY49w7VF2R5Ioxxteq6seSPJTkpiT/PcmPxhj/47T9357k\n7iTvSvIfk/yfJP9ljHHiHMc49yAAgLN5aIxxYNGDoC+1IgAstzFGnW+f83YOjTGeHmN8bfLz80ke\nS3LlOV5yY5J7xhhHxxjfSfJ4Nj78AQBYM2pFAFh9F7TmUFVdneQdSf5xsunDVfX1qrqjqt442XZl\nku9vetnhnKFAqKrbqurBqnrwgkcNAMDSUSsCwGracjhUVZcl+YskHxlj/HuSTyX5ySTXJnk6ye9N\ndz3Dy1/TCjzGODjGOKAVHgBg9akVAWB1bSkcqqpLsvFh/+djjM8lyRjjmTHGiTHGySSfzqvtwIeT\nXLXp5W9N8tTODRkAgGWiVgSA1baVu5VVks8keWyM8fubtl+xabdfSPKNyc+HktxcVfuq6pok+5P8\n084NGQCAZaFWBIDVt2cL+7w7yS8neaSqHp5s+80kH6yqa7PRBvxEkl9LkjHGo1V1b5JvJjme5PZz\n3X0CAICVplYEgBV33lvZz2UQbk8KANvlVvasPbUiAGzfjtzKHgAAAID1JRwCAAAAaEw4BAAAANCY\ncAgAAACgsa3crWwefpDkhckjs3d5zPW8mOv5MdfzYZ7nZ6tz/Z9nPRBYAmrF+fK7fn7M9fyY6/kw\nz/Ozo7XiUtytLEmq6kF3W5kPcz0/5np+zPV8mOf5MddwKv9NzI+5nh9zPT/mej7M8/zs9Fy7rAwA\nAACgMeEQAAAAQGPLFA4dXPQAGjHX82Ou58dcz4d5nh9zDafy38T8mOv5MdfzY67nwzzPz47O9dKs\nOQQAAADA/C1T5xAAAAAAcyYcAgAAAGhsKcKhqnpfVX27qh6vqo8uejzrpKqeqKpHqurhqnpwsu1N\nVfXFqvqXyeMbFz3OVVRVd1TVs1X1jU3bzji3teGPJuf416vqnYsb+eo5y1x/oqqenJzbD1fVDZv+\n7mOTuf52Vf3cYka9mqrqqqr626p6rKoerapfn2x3bu+gc8yz8xrOQK04O2rF2VErzo9acX7UivOx\niFpx4eFQVe1O8r+SvD/J25N8sKrevthRrZ2fHWNcO8Y4MHn+0ST3jzH2J7l/8pwLd2eS95227Wxz\n+/4k+yd/bkvyqTmNcV3cmdfOdZL8weTcvnaMcV+STH5/3Jzkpyav+ePJ7xm25niS3xhjvC3JdUlu\nn8ypc3tnnW2eE+c1nEKtOBdqxdm4M2rFebkzasV5USvOx9xrxYWHQ0neleTxMca/jjFeTnJPkhsX\nPKZ1d2OSuyY/35XkpgWOZWWNMb6c5LnTNp9tbm9M8mdjwz8k+fGqumI+I119Z5nrs7kxyT1jjKNj\njO8keTwbv2fYgjHG02OMr01+fj7JY0mujHN7R51jns/GeU1nasX5UyvuALXi/KgV50etOB+LqBWX\nIRy6Msn3Nz0/nHP/Q3NhRpK/qaqHquq2yba3jDGeTjZOuiRvXtjo1s/Z5tZ5PhsfnrSn3rGp5d1c\n75CqujrJO5L8Y5zbM3PaPCfOazid83+21Irz5fN0vnymzpBacT7mVSsuQzhUZ9g25j6K9fXuMcY7\ns9HOd3tV/ddFD6gp5/nO+1SSn0xybZKnk/zeZLu53gFVdVmSv0jykTHGv59r1zNsM99bdIZ5dl7D\nazn/Z0utuByc5zvPZ+oMqRXnY5614jKEQ4eTXLXp+VuTPLWgsaydMcZTk8dnk3w+G61lz0xb+SaP\nzy5uhGvnbHPrPN9hY4xnxhgnxhgnk3w6r7ZNmuuLVFWXZOND6M/HGJ+bbHZu77AzzbPzGs7I+T9D\nasW583k6Jz5TZ0etOB/zrhV/YMwUAAABeklEQVSXIRx6IMn+qrqmqvZmYxGlQwse01qoqjdU1Y9N\nf07y3iTfyMb83jLZ7ZYkX1jMCNfS2eb2UJJfmazWf12SH07bLtme065V/oVsnNvJxlzfXFX7quqa\nbCx+90/zHt+qqqpK8pkkj40xfn/TXzm3d9DZ5tl5DWekVpwRteJC+DydE5+ps6FWnI9F1Ip7Lm7I\nF2+McbyqPpzkr5PsTnLHGOPRBQ9rXbwlyec3zqvsSfLZMcZfVdUDSe6tql9N8r0kH1jgGFdWVd2d\n5Pokl1fV4SQfT/I7OfPc3pfkhmwsDPZiklvnPuAVdpa5vr6qrs1Gu+QTSX4tScYYj1bVvUm+mY1V\n/m8fY5xYxLhX1LuT/HKSR6rq4cm234xze6edbZ4/6LyGU6kVZ0qtOENqxflRK86VWnE+5l4r1hgu\n9wMAAADoahkuKwMAAABgQYRDAAAAAI0JhwAAAAAaEw4BAAAANCYcAgAAAGhMOAQAAADQmHAIAAAA\noLH/D6ZWG82VAOQpAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2fd808e048>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAHzCAYAAAC6+n3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAG45JREFUeJzt3U+o5WeZJ/DvM8Z20QoqjiGTZEaR\nGmh7E6UQwWFIL6aNbkoXNnHRBhHKRQSF3kQ3uuzFaIPMdCBiSATbTEDFLKS7nSA4G/9UJGhixrFo\nM6ZMSGgc1BnBIfGZxT01XpNbdW/de8/f5/OByznnrd+5971vfqnz5Jvn9/6quwMAAADATP9i3RMA\nAAAAYH2EQwAAAACDCYcAAAAABhMOAQAAAAwmHAIAAAAYTDgEAAAAMJhwCAAAAGCwpYVDVXVbVf24\nqi5W1V3L+jkAAGwftSIAbI7q7tP/plUvS/I/kvyHJJeSfC/J+7v7R6f+wwAA2CpqRQDYLNct6fu+\nLcnF7v6nJKmqB5KcS3LgB35VnX5CBQAz/HN3/8t1TwKukVoRAFaku+uwY5Z1WdmNSZ7a9/rSYuz/\nq6rzVXWhqi4saQ4AMMH/XPcE4BjUigCwQZbVOXRQKvUH/8enu+9Jck/i/wYBAAyjVgSADbKszqFL\nSW7e9/qmJE8v6WcBALBd1IoAsEGWFQ59L8mZqnpjVf1RktuTPLSknwUAwHZRKwLABlnKZWXd/XxV\nfSTJPyR5WZJ7u/vxZfwsAAC2i1oRADbLUm5lf82TcB05ABzXI919dt2TgGVSKwLA8a3zbmUAAAAA\nbAHhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAA\nYLDrTvLmqnoyya+TvJDk+e4+W1WvTfJfkrwhyZNJ/qK7/9fJpgkAwLZRKwLAdjiNzqE/6+5buvvs\n4vVdSR7u7jNJHl68BgBgJrUiAGy4ZVxWdi7J/Yvn9yd5zxJ+BgAA20mtCAAb5qThUCf5x6p6pKrO\nL8au7+5nkmTx+PoT/gwAALaTWhEAtsCJ9hxK8o7ufrqqXp/kG1X134/6xkWBcP7QAwEA2FZqRQDY\nAifqHOrupxePzyX5apK3JXm2qm5IksXjc1d47z3dfXbf9ecAAOwQtSIAbIdjh0NV9cdV9arLz5P8\neZLHkjyU5I7FYXck+dpJJwkAwHZRKwLA9jjJZWXXJ/lqVV3+Pn/X3X9fVd9L8mBVfSjJz5K87+TT\nBABgy6gVAWBLVHevew6pqvVPAgC20yMuu2HXqRUB4Pi6uw47Zhm3sgcAAABgSwiHAAAAAAYTDgEA\nAAAMJhwCAAAAGEw4BAAAADCYcAgAAABgMOEQAAAAwGDCIQAAAIDBhEMAAAAAgwmHAAAAAAYTDgEA\nAAAMJhwCAAAAGEw4BAAAADCYcAgAAABgMOEQAAAAwGDCIQAAAIDBhEMAAAAAgwmHAAAAAAYTDgEA\nAAAMJhwCAAAAGEw4BAAAADCYcAgAAABgMOEQAAAAwGDCIQAAAIDBhEMAAAAAgwmHAAAAAAYTDgEA\nAAAMJhwCAAAAGEw4BAAAADCYcAgAAABgMOEQAAAAwGDCIQAAAIDBhEMAAAAAgwmHAAAAAAYTDgEA\nAAAMJhwCAAAAGEw4BAAAADCYcAgAAABgMOEQAAAAwGDXrXsCcBLdfeB4Va14JgAAALCdhENsjSsF\nQVc7VkgEAAAAV+eyMgAAAIDBdA6xsa6lUwgAAAA4Hp1DAAAAAIPpHGKjnHa3kL2HAAAA4Op0DgEA\nAAAMpnOIjWB/IQAAAFgPnUMAAAAAg+kcYq10DAEAAMB6CYdYOYEQAAAAbA6XlQEAAAAMpnOIlVlH\nx5Bb2AMAAMDV6RwCAAAAGEw4xE7rbnscAQAAwFUIhwAAAAAGs+cQS6NjBwAAADafziEAAACAwXQO\nsdPcrQwAAACuTucQAAAAwGA6hzh19hoCAACA7SEc4tQIhQAAAGD7uKwMAAAAYDDhEKdC1xAAAABs\nJ+EQAAAAwGDCIQAAAIDBhEMAAAAAg7lbGcdijyEAAADYDTqHAAAAAAYTDgEAAAAM5rIyronLyQAA\nAGC36BwCAAAAGEznEEeiYwgAAAB2k84hAAAAgMGEQwAAAACDCYcAAAAABhMOcSj7DQEAAMDuEg4B\nAAAADCYcAgAAABhMOAQAAAAw2HXrngCby15DAAAAsPuEQ7yEUAgAAADmcFkZAAAAwGCHhkNVdW9V\nPVdVj+0be21VfaOqfrJ4fM1ivKrqs1V1sap+UFVvXebk4TDdrRMKAJZIrQgA2+8onUP3JbntRWN3\nJXm4u88keXjxOkneleTM4ut8krtPZ5oAAGyo+6JWBICtdmg41N3fSvKLFw2fS3L/4vn9Sd6zb/wL\nvefbSV5dVTec1mRZLl02AMC1UisCwPY77p5D13f3M0myeHz9YvzGJE/tO+7SYuwlqup8VV2oqgvH\nnAMAAJtJrQgAW+S071ZWB4wd2IrS3fckuSdJqkq7CgDA7lMrAsAGOm7n0LOXW4AXj88txi8luXnf\ncTclefr40wMAYAupFQFgixw3HHooyR2L53ck+dq+8Q8s7kTx9iS/vNxSzOaasNfQrv9+ALBh1IoA\nsEUOvaysqr6U5NYkr6uqS0k+meSvkzxYVR9K8rMk71sc/vUk705yMclvknxwCXPmlEwLTC7/vlUH\ndbQDAMehVgSA7VebEBC4jnw9NuGf/ToIh4Ad80h3n133JGCZ1IoAcHzdfeh/BB/3sjIAAAAAdoBw\nCAAAAGAw4dBQUy8pS2ZswA0AAABHJRwCAAAAGEw4xFg6iAAAAEA4BAAAADCacAgAAABgMOEQAAAA\nwGDCIQAAAIDBhEOMZ2NqAAAAJhMOAQAAAAwmHAIAAAAYTDgEAAAAMNh1654Aq2VvHQAAAGA/nUMA\nAAAAgwmHAAAAAAYTDgEAAAAMZs+hIew1BAAAABxE5xAAAADAYDqHGK+q1j0FAAAAWBudQwAAAACD\nCYcAAAAABnNZ2Y6zETUAAABwNTqHAAAAAAYTDgEAAAAMJhwCAAAAGMyeQ4zlFvYAAACgcwgAAABg\nNOEQAAAAwGAuK9tRbmF/ZS4nAwAAgN/TOQQAAAAwmHAIAAAAYDDhEAAAAMBg9hxiDHsNAQAAwEvp\nHAIAAAAYTDi0g9ypDAAAADgq4RAAAADAYMIhRrDfEAAAABxMOAQAAAAwmHAIAAAAYDC3smenuZwM\nAAAArk7nEAAAAMBgwiEAAACAwYRDAAAAAIPZc2iHdPe6p7Ax7DUEAAAAR6NzCAAAAGAw4RAAAADA\nYMIhAAAAgMHsOcROsdcQAAAAXBudQwAAAACDCYcAAAAABnNZGTvB5WQAAABwPDqHAAAAAAbTOcRW\n0zEEAAAAJ6NzCAAAAGAw4RAAAADAYMIhAAAAgMGEQzukqkbtwTPpdwUAAIBlEQ4BAAAADOZuZWwd\nHUMAAABwenQOAQAAAAwmHAIAAAAYzGVlbA2XkwEAAMDp0zkEAAAAMJhwCAAAAGAw4RAAAADAYPYc\nYuPZawgAAACWR+cQAAAAwGA6h9hYOoYAAABg+XQOAQAAAAwmHAIAAAAYTDgEAAAAMJhwCAAAAGAw\n4RAbyWbUAAAAsBrCIQAAAIDB3MqejaJjCAAAAFZL5xAAAADAYMKhHaT7BgAAADgq4RAAAADAYPYc\nYiPodgIAAID1EA6xVkIhAAAAWC+XlQEAAAAMdmg4VFX3VtVzVfXYvrFPVdXPq+rRxde79/3Zx6vq\nYlX9uKreuayJc3VVpSsHAFg6tSIAbL+jdA7dl+S2A8b/prtvWXx9PUmq6s1Jbk/yp4v3/G1Vvey0\nJgsAwMa5L2pFANhqh4ZD3f2tJL844vc7l+SB7v5td/80ycUkbzvB/NhROpsAYDeoFQFg+51kz6GP\nVNUPFq3Er1mM3ZjkqX3HXFqMvURVna+qC1V14QRzAABgM6kVAWBLHDccujvJm5LckuSZJJ9ejB/U\nCtIHfYPuvqe7z3b32WPOgS2lYwgAdp5aEQC2yLHCoe5+trtf6O7fJflcft8OfCnJzfsOvSnJ0yeb\nIgAA20StCADb5VjhUFXdsO/le5NcvjvFQ0lur6pXVNUbk5xJ8t2TTZGT2KS9fTZpLgDA8qgVAWC7\nXHfYAVX1pSS3JnldVV1K8skkt1bVLdlrA34yyYeTpLsfr6oHk/woyfNJ7uzuF5YzdQAA1k2tCADb\nr7oPvMx7tZOoWv8kdtyG/HNe9xQAdtEj9mRh16kVAeD4uvvQ/xg/tHMITkooBAAAAJvrJLeyBwAA\nAGDL6Rwa4nL3ziovL9MxBAAAAJtP5xAAAADAYMIhAAAAgMGEQwAAAACD2XNomFXsPWSvIQAAANge\nOocAAAAABtM5xKnRMQQAAADbR+fQUKcd5AiGAAAAYDsJhwAAAAAGc1kZJ6JjCAAAALabziEAAACA\nwXQODXaS29rrGAIAAIDdoHMIAAAAYDCdQ1yxC+hyR5EuIQAAANhdOocAAAAABtM5xBXpGAIAAIDd\np3MIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\nmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAAAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAw\n2KHhUFXdXFXfrKonqurxqvroYvy1VfWNqvrJ4vE1i/Gqqs9W1cWq+kFVvXXZvwQAAOuhVgSA7XeU\nzqHnk/xVd/9JkrcnubOq3pzkriQPd/eZJA8vXifJu5KcWXydT3L3qc8aAIBNoVYEgC13aDjU3c90\n9/cXz3+d5IkkNyY5l+T+xWH3J3nP4vm5JF/oPd9O8uqquuHUZw4AwNqpFQFg+13TnkNV9YYkb0ny\nnSTXd/czyV5RkOT1i8NuTPLUvrddWoy9+Hudr6oLVXXh2qcNAMCmUSsCwHa67qgHVtUrk3w5yce6\n+1dVdcVDDxjrlwx035PknsX3fsmfAwCwPdSKALC9jtQ5VFUvz96H/Re7+yuL4WcvtwAvHp9bjF9K\ncvO+t9+U5OnTmS4AAJtGrQgA2+0odyurJJ9P8kR3f2bfHz2U5I7F8zuSfG3f+AcWd6J4e5JfXm4p\nBgBgt6gVAWD7VffVu3Sr6t8l+W9Jfpjkd4vhT2TvWvIHk/zrJD9L8r7u/sWiQPhPSW5L8pskH+zu\nq14rrlUYAI7tke4+u+5JMJdaEQA2W3df8Vrvyw4Nh1bBBz4AHJtwiJ2nVgSA4ztKOHRNdysDAAAA\nYLcIhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGEw4BAAAADCYcAgAAABhMOAQAAAAwmHAIAAAAYDDhEAAAAMBgwiEAAACAwYRDAAAA\nAIMJhwAAAAAGOzQcqqqbq+qbVfVEVT1eVR9djH+qqn5eVY8uvt697z0fr6qLVfXjqnrnMn8BAADW\nR60IANuvuvvqB1TdkOSG7v5+Vb0qySNJ3pPkL5L87+7+jy86/s1JvpTkbUn+VZL/muTfdvcLV/kZ\nV58EAHAlj3T32XVPgrnUigCw2bq7Djvm0M6h7n6mu7+/eP7rJE8kufEqbzmX5IHu/m13/zTJxex9\n+AMAsGPUigCw/a5pz6GqekOStyT5zmLoI1X1g6q6t6pesxi7MclT+952KQcUCFV1vqouVNWFa541\nAAAbR60IANvpyOFQVb0yyZeTfKy7f5Xk7iRvSnJLkmeSfPryoQe8/SWtwN19T3ef1QoPALD91IoA\nsL2OFA5V1cuz92H/xe7+SpJ097Pd/UJ3/y7J5/L7duBLSW7e9/abkjx9elMGAGCTqBUBYLsd5W5l\nleTzSZ7o7s/sG79h32HvTfLY4vlDSW6vqldU1RuTnEny3dObMgAAm0KtCADb77ojHPOOJH+Z5IdV\n9ehi7BNJ3l9Vt2SvDfjJJB9Oku5+vKoeTPKjJM8nufNqd58AAGCrqRUBYMsdeiv7lUzC7UkB4Ljc\nyp6dp1YEgOM7lVvZAwAAALC7hEMAAAAAgwmHAAAAAAYTDgEAAAAMdpS7la3CPyf5P4tHlu91sdar\nYq1Xx1qvhnVenaOu9b9Z9kRgA6gVV8vf9atjrVfHWq+GdV6dU60VN+JuZUlSVRfcbWU1rPXqWOvV\nsdarYZ1Xx1rDH/LvxOpY69Wx1qtjrVfDOq/Oaa+1y8oAAAAABhMOAQAAAAy2SeHQPeuewCDWenWs\n9epY69WwzqtjreEP+Xdidaz16ljr1bHWq2GdV+dU13pj9hwCAAAAYPU2qXMIAAAAgBUTDgEAAAAM\nthHhUFXdVlU/rqqLVXXXuuezS6rqyar6YVU9WlUXFmOvrapvVNVPFo+vWfc8t1FV3VtVz1XVY/vG\nDlzb2vPZxTn+g6p66/pmvn2usNafqqqfL87tR6vq3fv+7OOLtf5xVb1zPbPeTlV1c1V9s6qeqKrH\nq+qji3Hn9im6yjo7r+EAasXlUSsuj1pxddSKq6NWXI111IprD4eq6mVJ/nOSdyV5c5L3V9Wb1zur\nnfNn3X1Ld59dvL4rycPdfSbJw4vXXLv7ktz2orErre27kpxZfJ1PcveK5rgr7stL1zpJ/mZxbt/S\n3V9PksXfH7cn+dPFe/528fcMR/N8kr/q7j9J8vYkdy7W1Ll9uq60zonzGv6AWnEl1IrLcV/Uiqty\nX9SKq6JWXI2V14prD4eSvC3Jxe7+p+7+v0keSHJuzXPadeeS3L94fn+S96xxLluru7+V5BcvGr7S\n2p5L8oXe8+0kr66qG1Yz0+13hbW+knNJHuju33b3T5NczN7fMxxBdz/T3d9fPP91kieS3Bjn9qm6\nyjpfifOaydSKq6dWPAVqxdVRK66OWnE11lErbkI4dGOSp/a9vpSr/9Jcm07yj1X1SFWdX4xd393P\nJHsnXZLXr212u+dKa+s8X46PLNpT793X8m6tT0lVvSHJW5J8J87tpXnROifOa3gx5/9yqRVXy+fp\navlMXSK14mqsqlbchHCoDhjrlc9id72ju9+avXa+O6vq3697QkM5z0/f3UnelOSWJM8k+fRi3Fqf\ngqp6ZZIvJ/lYd//qaoceMGa9j+iAdXZew0s5/5dLrbgZnOenz2fqEqkVV2OVteImhEOXkty87/VN\nSZ5e01x2Tnc/vXh8LslXs9da9uzlVr7F43Prm+HOudLaOs9PWXc/290vdPfvknwuv2+btNYnVFUv\nz96H0Be7+yuLYef2KTtonZ3XcCDn/xKpFVfO5+mK+ExdHrXiaqy6VtyEcOh7Sc5U1Rur6o+yt4nS\nQ2ue006oqj+uqlddfp7kz5M8lr31vWNx2B1JvraeGe6kK63tQ0k+sNit/+1Jfnm57ZLjedG1yu/N\n3rmd7K317VX1iqp6Y/Y2v/vuque3raqqknw+yRPd/Zl9f+TcPkVXWmfnNRxIrbgkasW18Hm6Ij5T\nl0OtuBrrqBWvO9mUT667n6+qjyT5hyQvS3Jvdz++5mntiuuTfHXvvMp1Sf6uu/++qr6X5MGq+lCS\nnyV53xrnuLWq6ktJbk3yuqq6lOSTSf46B6/t15O8O3sbg/0myQdXPuEtdoW1vrWqbsleu+STST6c\nJN39eFU9mORH2dvl/87ufmEd895S70jyl0l+WFWPLsY+Eef2abvSOr/feQ1/SK24VGrFJVIrro5a\ncaXUiqux8lqxul3uBwAAADDVJlxWBgAAAMCaCIcAAAAABhMOAQAAAAwmHAIAAAAYTDgEAAAAMJhw\nCAAAAGAw4RAAAADAYP8P8KyXvxE3Ww8AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6e2ef84f4748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for i in range(1, 5, 1):\n",
" ## Dataset for prediction\n",
" x, y = valid_gen.__getitem__(i)\n",
" result = model.predict(x)\n",
" result = result > 0.4\n",
" \n",
" for i in range(len(result)):\n",
" fig = plt.figure(figsize=(20,20))\n",
" fig.subplots_adjust(hspace=0.4, wspace=0.4)\n",
"\n",
" ax = fig.add_subplot(1, 2, 1)\n",
" ax.imshow(np.reshape(y[i]*255, (image_size, image_size)), cmap=\"gray\")\n",
"# ax.imshow(x[i])\n",
" ax = fig.add_subplot(1, 2, 2)\n",
" ax.imshow(np.reshape(result[i]*255, (image_size, image_size)), cmap=\"gray\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}