%% shape prior using stacked autoencoder
clc;
clear all;
close all;
addpath('functions');
%% STEP 0:
% parameters
patchsize = 40;
visibleSize = patchsize*patchsize; % number of input units
hiddenSizeL1 = 100; % number of hidden units
hiddenSizeL2=100;
sparsityParam1 = 0.01; % desired average activation of the hidden units.
sparsityParam2=0.01;
lambda = 3e-3; % weight decay parameter
beta = 3; % weight of sparsity penalty term
outputSize=visibleSize; % number of output units
%%======================================================================
%% STEP 1: laod training inputs and labels from mat files
load matFiles/training_dataES;
train_input=sampleIMAGES(t_Iroi,patchsize);
train_labels=sampleIMAGES(t_yLV,patchsize);
%% train sparse Auto Encoder 1
% Randomly initialize the parameters
saeTheta1 = initializeParameters(hiddenSizeL1, visibleSize);
% Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = 400; % Maximum number of iterations of L-BFGS to run
options.display = 'on';
[sae1OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
visibleSize, hiddenSizeL1, ...
lambda, sparsityParam1, ...
beta, train_input), ...
saeTheta1, options);
%% STEP 5: Visualization of AE1
W1 = reshape(sae1OptTheta(1:hiddenSizeL1*visibleSize), hiddenSizeL1, visibleSize);
display_network(W1', 12);
%% compute activations from layer 1
[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
visibleSize, train_input);
%% train sparse Auto Encoder 2
% Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);
[sae2OptTheta, costL2] = minFunc( @(p) sparseAutoencoderCost(p, ...
hiddenSizeL1, hiddenSizeL2, ...
lambda, sparsityParam2, ...
beta, sae1Features), ...
sae2Theta, options);
%% compute activation from layer 2
[sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
hiddenSizeL1, sae1Features);
%% train multi outputs logstic regression
lambda_mr=1e-4;
options_mr.maxIter = 100;
trainLabels=train_labels;
mrModel = mrTrain(hiddenSizeL2, outputSize, lambda_mr, ...
sae2Features, trainLabels, options_mr);
saeMultRegOptTheta = mrModel.optTheta(:);
%% fine tuning
% Initialize the stack using the parameters learned
stack = cell(2,1);
inputSize=visibleSize;
stack{1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ...
hiddenSizeL1, inputSize);
stack{1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ...
hiddenSizeL2, hiddenSizeL1);
stack{2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);
% Initialize the parameters for the deep model
[stackparams, netconfig] = stack2params(stack);
stackedAETheta = [ saeMultRegOptTheta ; stackparams ];
[stackedAEOptTheta, loss] = minFunc( @(x) stackedAECost(x, ...
inputSize, hiddenSizeL2, outputSize, netconfig, ...
lambda, train_input, train_labels), ...
stackedAETheta, options);
%% test
% load test data
load matFiles/validation_dataES;
testI=t_Iroi;
test_input=sampleIMAGES(testI,patchsize);
[pred_yLV] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
outputSize, netconfig, test_input);
% the final output is a mask of LV segmentation
yLVhr=reshape(pred_yLV,patchsize,patchsize,[]);
% scale to image size
scale=size(t_Iroi,1)/patchsize;
Mroi=100;
for k=1:size(yLVhr,3)
y1=yLVhr(:,:,k);
yLV_h=imresize(y1,scale);
end
%% dispaly segmentation
for k=1:30
I1=testI(:,:,k);
figure(1)
subplot(5,6,k)
imagesc(I1);
colormap(gray);hold on
contour(yLV_h,[0 0],'r','LineWidth',2);
contour(t_yLV,[0 0],'g','LineWidth',2);
end
% one title for all subplots
set(gcf,'NextPlot','add');
axes;
h = title(['HiddenSize=',num2str(hiddenSizeL1),' sparsity=',num2str(sparsityParam1)]);
set(gca,'Visible','off');
set(h,'Visible','on');
%% save results
filename=['DLconfigure/LV_ES_V',num2str(patchsize),'_H',num2str(hiddenSizeL1),'_rho_',num2str(sparsityParam1*100),'div100'];
%save (filename);