[088209]: / combinedDeepLearningActiveContour / functions / computeNumericalGradient.m

Download this file

36 lines (31 with data), 1.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function numgrad = computeNumericalGradient(J, theta)
% numgrad = computeNumericalGradient(J, theta)
% theta: a vector of parameters
% J: a function that outputs a real-number. Calling y = J(theta) will return the
% function value at theta.
% Initialize numgrad with zeros
numgrad = zeros(size(theta));
%% ---------- YOUR CODE HERE --------------------------------------
% Instructions:
% Implement numerical gradient checking, and return the result in numgrad.
% (See Section 2.3 of the lecture notes.)
% You should write code so that numgrad(i) is (the numerical approximation to) the
% partial derivative of J with respect to the i-th input argument, evaluated at theta.
% I.e., numgrad(i) should be the (approximately) the partial derivative of J with
% respect to theta(i).
%
% Hint: You will probably want to compute the elements of numgrad one at a time.
EPSILON=1e-4;
N=length(theta);
In=eye(N);
for k=1:N
if mod(k,100)==0
k
end;
e_i=In(:,k);
theta_ip=theta+EPSILON*e_i;
theta_im=theta-EPSILON*e_i;
numgrad(k)=(J(theta_ip)-J(theta_im))/(2*EPSILON);
end
%% ---------------------------------------------------------------
end