|
a |
|
b/combinedDeepLearningActiveContour/sortDataES.m |
|
|
1 |
% read mat files and store them as a 3D matrix for further processing |
|
|
2 |
clc |
|
|
3 |
close all |
|
|
4 |
clear all |
|
|
5 |
%% |
|
|
6 |
%imset='training'; |
|
|
7 |
imset='validation'; |
|
|
8 |
%imset='online'; |
|
|
9 |
|
|
|
10 |
folder=['matFiles/',imset,'/ES/']; |
|
|
11 |
D=dir([folder,'\*.mat']); |
|
|
12 |
numpatients = length(D(not([D.isdir]))); |
|
|
13 |
|
|
|
14 |
t_I=[]; |
|
|
15 |
t_yROI=[]; |
|
|
16 |
t_Iroi=[]; |
|
|
17 |
t_yLV=[]; |
|
|
18 |
t_contours=[]; |
|
|
19 |
t_centers=[]; |
|
|
20 |
t_LV_cont_names=[]; |
|
|
21 |
t_MC_cont_names=[]; |
|
|
22 |
for k=1:numpatients |
|
|
23 |
imgname=['matFiles/',imset,'/ES/ES_P',num2str(k)]; |
|
|
24 |
% yname=['matFiles/',imset,'/yROI_ED',num2str(k)]; |
|
|
25 |
load (imgname); |
|
|
26 |
% load (yname); |
|
|
27 |
t_I=cat(3,t_I,I); |
|
|
28 |
t_yROI=cat(3,t_yROI,yROI); |
|
|
29 |
t_Iroi=cat(3,t_Iroi,Iroi); |
|
|
30 |
t_yLV=cat(3,t_yLV,yLV); |
|
|
31 |
t_contours=[t_contours,contours(1:size(I,3))]; |
|
|
32 |
t_centers=[t_centers,contour_center(1:size(I,3))]; |
|
|
33 |
slice_per_patient(k)=size(I,3); |
|
|
34 |
t_LV_cont_names=[t_LV_cont_names;LV_contours_names]; |
|
|
35 |
end |
|
|
36 |
|
|
|
37 |
filename=['matFiles/',imset,'_dataES']; |
|
|
38 |
|
|
|
39 |
save (filename,'t_I','t_yROI','t_Iroi','t_yLV','t_contours','t_centers','numpatients',... |
|
|
40 |
'slice_per_patient','t_LV_cont_names'); |
|
|
41 |
|
|
|
42 |
display('file has been saved') |