|
a |
|
b/combinedDeepLearningActiveContour/minFunc/minFunc.m |
|
|
1 |
function [x,f,exitflag,output] = minFunc(funObj,x0,options,varargin) |
|
|
2 |
% minFunc(funObj,x0,options,varargin) |
|
|
3 |
% |
|
|
4 |
% Unconstrained optimizer using a line search strategy |
|
|
5 |
% |
|
|
6 |
% Uses an interface very similar to fminunc |
|
|
7 |
% (it doesn't support all of the optimization toolbox options, |
|
|
8 |
% but supports many other options). |
|
|
9 |
% |
|
|
10 |
% It computes descent directions using one of ('Method'): |
|
|
11 |
% - 'sd': Steepest Descent |
|
|
12 |
% (no previous information used, not recommended) |
|
|
13 |
% - 'csd': Cyclic Steepest Descent |
|
|
14 |
% (uses previous step length for a fixed length cycle) |
|
|
15 |
% - 'bb': Barzilai and Borwein Gradient |
|
|
16 |
% (uses only previous step) |
|
|
17 |
% - 'cg': Non-Linear Conjugate Gradient |
|
|
18 |
% (uses only previous step and a vector beta) |
|
|
19 |
% - 'scg': Scaled Non-Linear Conjugate Gradient |
|
|
20 |
% (uses previous step and a vector beta, |
|
|
21 |
% and Hessian-vector products to initialize line search) |
|
|
22 |
% - 'pcg': Preconditionined Non-Linear Conjugate Gradient |
|
|
23 |
% (uses only previous step and a vector beta, preconditioned version) |
|
|
24 |
% - 'lbfgs': Quasi-Newton with Limited-Memory BFGS Updating |
|
|
25 |
% (default: uses a predetermined nunber of previous steps to form a |
|
|
26 |
% low-rank Hessian approximation) |
|
|
27 |
% - 'newton0': Hessian-Free Newton |
|
|
28 |
% (numerically computes Hessian-Vector products) |
|
|
29 |
% - 'pnewton0': Preconditioned Hessian-Free Newton |
|
|
30 |
% (numerically computes Hessian-Vector products, preconditioned |
|
|
31 |
% version) |
|
|
32 |
% - 'qnewton': Quasi-Newton Hessian approximation |
|
|
33 |
% (uses dense Hessian approximation) |
|
|
34 |
% - 'mnewton': Newton's method with Hessian calculation after every |
|
|
35 |
% user-specified number of iterations |
|
|
36 |
% (needs user-supplied Hessian matrix) |
|
|
37 |
% - 'newton': Newton's method with Hessian calculation every iteration |
|
|
38 |
% (needs user-supplied Hessian matrix) |
|
|
39 |
% - 'tensor': Tensor |
|
|
40 |
% (needs user-supplied Hessian matrix and Tensor of 3rd partial derivatives) |
|
|
41 |
% |
|
|
42 |
% Several line search strategies are available for finding a step length satisfying |
|
|
43 |
% the termination criteria ('LS'): |
|
|
44 |
% - 0: Backtrack w/ Step Size Halving |
|
|
45 |
% - 1: Backtrack w/ Quadratic/Cubic Interpolation from new function values |
|
|
46 |
% - 2: Backtrack w/ Cubic Interpolation from new function + gradient |
|
|
47 |
% values (default for 'bb' and 'sd') |
|
|
48 |
% - 3: Bracketing w/ Step Size Doubling and Bisection |
|
|
49 |
% - 4: Bracketing w/ Cubic Interpolation/Extrapolation with function + |
|
|
50 |
% gradient values (default for all except 'bb' and 'sd') |
|
|
51 |
% - 5: Bracketing w/ Mixed Quadratic/Cubic Interpolation/Extrapolation |
|
|
52 |
% - 6: Use Matlab Optimization Toolbox's line search |
|
|
53 |
% (requires Matlab's linesearch.m to be added to the path) |
|
|
54 |
% |
|
|
55 |
% Above, the first three find a point satisfying the Armijo conditions, |
|
|
56 |
% while the last four search for find a point satisfying the Wolfe |
|
|
57 |
% conditions. If the objective function overflows, it is recommended |
|
|
58 |
% to use one of the first 3. |
|
|
59 |
% The first three can be used to perform a non-monotone |
|
|
60 |
% linesearch by changing the option 'Fref'. |
|
|
61 |
% |
|
|
62 |
% Several strategies for choosing the initial step size are avaiable ('LS_init'): |
|
|
63 |
% - 0: Always try an initial step length of 1 (default for all except 'cg' and 'sd') |
|
|
64 |
% (t = 1) |
|
|
65 |
% - 1: Use a step similar to the previous step (default for 'cg' and 'sd') |
|
|
66 |
% (t = t_old*min(2,g'd/g_old'd_old)) |
|
|
67 |
% - 2: Quadratic Initialization using previous function value and new |
|
|
68 |
% function value/gradient (use this if steps tend to be very long) |
|
|
69 |
% (t = min(1,2*(f-f_old)/g)) |
|
|
70 |
% - 3: The minimum between 1 and twice the previous step length |
|
|
71 |
% (t = min(1,2*t) |
|
|
72 |
% - 4: The scaled conjugate gradient step length (may accelerate |
|
|
73 |
% conjugate gradient methods, but requires a Hessian-vector product) |
|
|
74 |
% (t = g'd/d'Hd) |
|
|
75 |
% |
|
|
76 |
% Inputs: |
|
|
77 |
% funObj is a function handle |
|
|
78 |
% x0 is a starting vector; |
|
|
79 |
% options is a struct containing parameters |
|
|
80 |
% (defaults are used for non-existent or blank fields) |
|
|
81 |
% all other arguments are passed to funObj |
|
|
82 |
% |
|
|
83 |
% Outputs: |
|
|
84 |
% x is the minimum value found |
|
|
85 |
% f is the function value at the minimum found |
|
|
86 |
% exitflag returns an exit condition |
|
|
87 |
% output returns a structure with other information |
|
|
88 |
% |
|
|
89 |
% Supported Input Options |
|
|
90 |
% Display - Level of display [ off | final | (iter) | full | excessive ] |
|
|
91 |
% MaxFunEvals - Maximum number of function evaluations allowed (1000) |
|
|
92 |
% MaxIter - Maximum number of iterations allowed (500) |
|
|
93 |
% TolFun - Termination tolerance on the first-order optimality (1e-5) |
|
|
94 |
% TolX - Termination tolerance on progress in terms of function/parameter changes (1e-9) |
|
|
95 |
% Method - [ sd | csd | bb | cg | scg | pcg | {lbfgs} | newton0 | pnewton0 | |
|
|
96 |
% qnewton | mnewton | newton | tensor ] |
|
|
97 |
% c1 - Sufficient Decrease for Armijo condition (1e-4) |
|
|
98 |
% c2 - Curvature Decrease for Wolfe conditions (.2 for cg methods, .9 otherwise) |
|
|
99 |
% LS_init - Line Search Initialization -see above (2 for cg/sd, 4 for scg, 0 otherwise) |
|
|
100 |
% LS - Line Search type -see above (2 for bb, 4 otherwise) |
|
|
101 |
% Fref - Setting this to a positive integer greater than 1 |
|
|
102 |
% will use non-monotone Armijo objective in the line search. |
|
|
103 |
% (20 for bb, 10 for csd, 1 for all others) |
|
|
104 |
% numDiff - compute derivative numerically |
|
|
105 |
% (default: 0) (this option has a different effect for 'newton', see below) |
|
|
106 |
% useComplex - if 1, use complex differentials when computing numerical derivatives |
|
|
107 |
% to get very accurate values (default: 0) |
|
|
108 |
% DerivativeCheck - if 'on', computes derivatives numerically at initial |
|
|
109 |
% point and compares to user-supplied derivative (default: 'off') |
|
|
110 |
% outputFcn - function to run after each iteration (default: []). It |
|
|
111 |
% should have the following interface: |
|
|
112 |
% outputFcn(x,infoStruct,state,varargin{:}) |
|
|
113 |
% useMex - where applicable, use mex files to speed things up (default: 1) |
|
|
114 |
% |
|
|
115 |
% Method-specific input options: |
|
|
116 |
% newton: |
|
|
117 |
% HessianModify - type of Hessian modification for direct solvers to |
|
|
118 |
% use if the Hessian is not positive definite (default: 0) |
|
|
119 |
% 0: Minimum Euclidean norm s.t. eigenvalues sufficiently large |
|
|
120 |
% (requires eigenvalues on iterations where matrix is not pd) |
|
|
121 |
% 1: Start with (1/2)*||A||_F and increment until Cholesky succeeds |
|
|
122 |
% (an approximation to method 0, does not require eigenvalues) |
|
|
123 |
% 2: Modified LDL factorization |
|
|
124 |
% (only 1 generalized Cholesky factorization done and no eigenvalues required) |
|
|
125 |
% 3: Modified Spectral Decomposition |
|
|
126 |
% (requires eigenvalues) |
|
|
127 |
% 4: Modified Symmetric Indefinite Factorization |
|
|
128 |
% 5: Uses the eigenvector of the smallest eigenvalue as negative |
|
|
129 |
% curvature direction |
|
|
130 |
% cgSolve - use conjugate gradient instead of direct solver (default: 0) |
|
|
131 |
% 0: Direct Solver |
|
|
132 |
% 1: Conjugate Gradient |
|
|
133 |
% 2: Conjugate Gradient with Diagonal Preconditioner |
|
|
134 |
% 3: Conjugate Gradient with LBFGS Preconditioner |
|
|
135 |
% x: Conjugate Graident with Symmetric Successive Over Relaxation |
|
|
136 |
% Preconditioner with parameter x |
|
|
137 |
% (where x is a real number in the range [0,2]) |
|
|
138 |
% x: Conjugate Gradient with Incomplete Cholesky Preconditioner |
|
|
139 |
% with drop tolerance -x |
|
|
140 |
% (where x is a real negative number) |
|
|
141 |
% numDiff - compute Hessian numerically |
|
|
142 |
% (default: 0, done with complex differentials if useComplex = 1) |
|
|
143 |
% LS_saveHessiancomp - when on, only computes the Hessian at the |
|
|
144 |
% first and last iteration of the line search (default: 1) |
|
|
145 |
% mnewton: |
|
|
146 |
% HessianIter - number of iterations to use same Hessian (default: 5) |
|
|
147 |
% qnewton: |
|
|
148 |
% initialHessType - scale initial Hessian approximation (default: 1) |
|
|
149 |
% qnUpdate - type of quasi-Newton update (default: 3): |
|
|
150 |
% 0: BFGS |
|
|
151 |
% 1: SR1 (when it is positive-definite, otherwise BFGS) |
|
|
152 |
% 2: Hoshino |
|
|
153 |
% 3: Self-Scaling BFGS |
|
|
154 |
% 4: Oren's Self-Scaling Variable Metric method |
|
|
155 |
% 5: McCormick-Huang asymmetric update |
|
|
156 |
% Damped - use damped BFGS update (default: 1) |
|
|
157 |
% newton0/pnewton0: |
|
|
158 |
% HvFunc - user-supplied function that returns Hessian-vector products |
|
|
159 |
% (by default, these are computed numerically using autoHv) |
|
|
160 |
% HvFunc should have the following interface: HvFunc(v,x,varargin{:}) |
|
|
161 |
% useComplex - use a complex perturbation to get high accuracy |
|
|
162 |
% Hessian-vector products (default: 0) |
|
|
163 |
% (the increased accuracy can make the method much more efficient, |
|
|
164 |
% but gradient code must properly support complex inputs) |
|
|
165 |
% useNegCurv - a negative curvature direction is used as the descent |
|
|
166 |
% direction if one is encountered during the cg iterations |
|
|
167 |
% (default: 1) |
|
|
168 |
% precFunc (for pnewton0 only) - user-supplied preconditioner |
|
|
169 |
% (by default, an L-BFGS preconditioner is used) |
|
|
170 |
% precFunc should have the following interfact: |
|
|
171 |
% precFunc(v,x,varargin{:}) |
|
|
172 |
% lbfgs: |
|
|
173 |
% Corr - number of corrections to store in memory (default: 100) |
|
|
174 |
% (higher numbers converge faster but use more memory) |
|
|
175 |
% Damped - use damped update (default: 0) |
|
|
176 |
% pcg: |
|
|
177 |
% cgUpdate - type of update (default: 2) |
|
|
178 |
% cg/scg/pcg: |
|
|
179 |
% cgUpdate - type of update (default for cg/scg: 2, default for pcg: 1) |
|
|
180 |
% 0: Fletcher Reeves |
|
|
181 |
% 1: Polak-Ribiere |
|
|
182 |
% 2: Hestenes-Stiefel (not supported for pcg) |
|
|
183 |
% 3: Gilbert-Nocedal |
|
|
184 |
% HvFunc (for scg only)- user-supplied function that returns Hessian-vector |
|
|
185 |
% products |
|
|
186 |
% (by default, these are computed numerically using autoHv) |
|
|
187 |
% HvFunc should have the following interface: |
|
|
188 |
% HvFunc(v,x,varargin{:}) |
|
|
189 |
% precFunc (for pcg only) - user-supplied preconditioner |
|
|
190 |
% (by default, an L-BFGS preconditioner is used) |
|
|
191 |
% precFunc should have the following interfact: |
|
|
192 |
% precFunc(v,x,varargin{:}) |
|
|
193 |
% bb: |
|
|
194 |
% bbType - type of bb step (default: 1) |
|
|
195 |
% 0: min_alpha ||delta_x - alpha delta_g||_2 |
|
|
196 |
% 1: min_alpha ||alpha delta_x - delta_g||_2 |
|
|
197 |
% 2: Conic BB |
|
|
198 |
% 3: Gradient method with retards |
|
|
199 |
% csd: |
|
|
200 |
% cycle - length of cycle (default: 3) |
|
|
201 |
% |
|
|
202 |
% Supported Output Options |
|
|
203 |
% iterations - number of iterations taken |
|
|
204 |
% funcCount - number of function evaluations |
|
|
205 |
% algorithm - algorithm used |
|
|
206 |
% firstorderopt - first-order optimality |
|
|
207 |
% message - exit message |
|
|
208 |
% trace.funccount - function evaluations after each iteration |
|
|
209 |
% trace.fval - function value after each iteration |
|
|
210 |
% |
|
|
211 |
% Author: Mark Schmidt (2006) |
|
|
212 |
% Web: http://www.cs.ubc.ca/~schmidtm |
|
|
213 |
% |
|
|
214 |
% Sources (in order of how much the source material contributes): |
|
|
215 |
% J. Nocedal and S.J. Wright. 1999. "Numerical Optimization". Springer Verlag. |
|
|
216 |
% R. Fletcher. 1987. "Practical Methods of Optimization". Wiley. |
|
|
217 |
% J. Demmel. 1997. "Applied Linear Algebra. SIAM. |
|
|
218 |
% R. Barret, M. Berry, T. Chan, J. Demmel, J. Dongarra, V. Eijkhout, R. |
|
|
219 |
% Pozo, C. Romine, and H. Van der Vost. 1994. "Templates for the Solution of |
|
|
220 |
% Linear Systems: Building Blocks for Iterative Methods". SIAM. |
|
|
221 |
% J. More and D. Thuente. "Line search algorithms with guaranteed |
|
|
222 |
% sufficient decrease". ACM Trans. Math. Softw. vol 20, 286-307, 1994. |
|
|
223 |
% M. Raydan. "The Barzilai and Borwein gradient method for the large |
|
|
224 |
% scale unconstrained minimization problem". SIAM J. Optim., 7, 26-33, |
|
|
225 |
% (1997). |
|
|
226 |
% "Mathematical Optimization". The Computational Science Education |
|
|
227 |
% Project. 1995. |
|
|
228 |
% C. Kelley. 1999. "Iterative Methods for Optimization". Frontiers in |
|
|
229 |
% Applied Mathematics. SIAM. |
|
|
230 |
|
|
|
231 |
if nargin < 3 |
|
|
232 |
options = []; |
|
|
233 |
end |
|
|
234 |
|
|
|
235 |
% Get Parameters |
|
|
236 |
[verbose,verboseI,debug,doPlot,maxFunEvals,maxIter,tolFun,tolX,method,... |
|
|
237 |
corrections,c1,c2,LS_init,LS,cgSolve,qnUpdate,cgUpdate,initialHessType,... |
|
|
238 |
HessianModify,Fref,useComplex,numDiff,LS_saveHessianComp,... |
|
|
239 |
DerivativeCheck,Damped,HvFunc,bbType,cycle,... |
|
|
240 |
HessianIter,outputFcn,useMex,useNegCurv,precFunc] = ... |
|
|
241 |
minFunc_processInputOptions(options); |
|
|
242 |
|
|
|
243 |
if isfield(options, 'logfile') |
|
|
244 |
logfile = options.logfile; |
|
|
245 |
else |
|
|
246 |
logfile = []; |
|
|
247 |
end |
|
|
248 |
|
|
|
249 |
% Constants |
|
|
250 |
SD = 0; |
|
|
251 |
CSD = 1; |
|
|
252 |
BB = 2; |
|
|
253 |
CG = 3; |
|
|
254 |
PCG = 4; |
|
|
255 |
LBFGS = 5; |
|
|
256 |
QNEWTON = 6; |
|
|
257 |
NEWTON0 = 7; |
|
|
258 |
NEWTON = 8; |
|
|
259 |
TENSOR = 9; |
|
|
260 |
|
|
|
261 |
% Initialize |
|
|
262 |
p = length(x0); |
|
|
263 |
d = zeros(p,1); |
|
|
264 |
x = x0; |
|
|
265 |
t = 1; |
|
|
266 |
|
|
|
267 |
% If necessary, form numerical differentiation functions |
|
|
268 |
funEvalMultiplier = 1; |
|
|
269 |
if numDiff && method ~= TENSOR |
|
|
270 |
varargin(3:end+2) = varargin(1:end); |
|
|
271 |
varargin{1} = useComplex; |
|
|
272 |
varargin{2} = funObj; |
|
|
273 |
if method ~= NEWTON |
|
|
274 |
if debug |
|
|
275 |
if useComplex |
|
|
276 |
fprintf('Using complex differentials for gradient computation\n'); |
|
|
277 |
else |
|
|
278 |
fprintf('Using finite differences for gradient computation\n'); |
|
|
279 |
end |
|
|
280 |
end |
|
|
281 |
funObj = @autoGrad; |
|
|
282 |
else |
|
|
283 |
if debug |
|
|
284 |
if useComplex |
|
|
285 |
fprintf('Using complex differentials for gradient computation\n'); |
|
|
286 |
else |
|
|
287 |
fprintf('Using finite differences for gradient computation\n'); |
|
|
288 |
end |
|
|
289 |
end |
|
|
290 |
funObj = @autoHess; |
|
|
291 |
end |
|
|
292 |
|
|
|
293 |
if method == NEWTON0 && useComplex == 1 |
|
|
294 |
if debug |
|
|
295 |
fprintf('Turning off the use of complex differentials\n'); |
|
|
296 |
end |
|
|
297 |
useComplex = 0; |
|
|
298 |
end |
|
|
299 |
|
|
|
300 |
if useComplex |
|
|
301 |
funEvalMultiplier = p; |
|
|
302 |
else |
|
|
303 |
funEvalMultiplier = p+1; |
|
|
304 |
end |
|
|
305 |
end |
|
|
306 |
|
|
|
307 |
% Evaluate Initial Point |
|
|
308 |
if method < NEWTON |
|
|
309 |
[f,g] = feval(funObj, x, varargin{:}); |
|
|
310 |
else |
|
|
311 |
[f,g,H] = feval(funObj, x, varargin{:}); |
|
|
312 |
computeHessian = 1; |
|
|
313 |
end |
|
|
314 |
funEvals = 1; |
|
|
315 |
|
|
|
316 |
if strcmp(DerivativeCheck,'on') |
|
|
317 |
if numDiff |
|
|
318 |
fprintf('Can not do derivative checking when numDiff is 1\n'); |
|
|
319 |
end |
|
|
320 |
% Check provided gradient/hessian function using numerical derivatives |
|
|
321 |
fprintf('Checking Gradient:\n'); |
|
|
322 |
[f2,g2] = autoGrad(x,useComplex,funObj,varargin{:}); |
|
|
323 |
|
|
|
324 |
fprintf('Max difference between user and numerical gradient: %f\n',max(abs(g-g2))); |
|
|
325 |
if max(abs(g-g2)) > 1e-4 |
|
|
326 |
fprintf('User NumDif:\n'); |
|
|
327 |
[g g2] |
|
|
328 |
diff = abs(g-g2) |
|
|
329 |
pause; |
|
|
330 |
end |
|
|
331 |
|
|
|
332 |
if method >= NEWTON |
|
|
333 |
fprintf('Check Hessian:\n'); |
|
|
334 |
[f2,g2,H2] = autoHess(x,useComplex,funObj,varargin{:}); |
|
|
335 |
|
|
|
336 |
fprintf('Max difference between user and numerical hessian: %f\n',max(abs(H(:)-H2(:)))); |
|
|
337 |
if max(abs(H(:)-H2(:))) > 1e-4 |
|
|
338 |
H |
|
|
339 |
H2 |
|
|
340 |
diff = abs(H-H2) |
|
|
341 |
pause; |
|
|
342 |
end |
|
|
343 |
end |
|
|
344 |
end |
|
|
345 |
|
|
|
346 |
% Output Log |
|
|
347 |
if verboseI |
|
|
348 |
fprintf('%10s %10s %15s %15s %15s\n','Iteration','FunEvals','Step Length','Function Val','Opt Cond'); |
|
|
349 |
end |
|
|
350 |
|
|
|
351 |
if logfile |
|
|
352 |
fid = fopen(logfile, 'a'); |
|
|
353 |
if (fid > 0) |
|
|
354 |
fprintf(fid, '-- %10s %10s %15s %15s %15s\n','Iteration','FunEvals','Step Length','Function Val','Opt Cond'); |
|
|
355 |
fclose(fid); |
|
|
356 |
end |
|
|
357 |
end |
|
|
358 |
|
|
|
359 |
% Output Function |
|
|
360 |
if ~isempty(outputFcn) |
|
|
361 |
callOutput(outputFcn,x,'init',0,funEvals,f,[],[],g,[],sum(abs(g)),varargin{:}); |
|
|
362 |
end |
|
|
363 |
|
|
|
364 |
% Initialize Trace |
|
|
365 |
trace.fval = f; |
|
|
366 |
trace.funcCount = funEvals; |
|
|
367 |
|
|
|
368 |
% Check optimality of initial point |
|
|
369 |
if sum(abs(g)) <= tolFun |
|
|
370 |
exitflag=1; |
|
|
371 |
msg = 'Optimality Condition below TolFun'; |
|
|
372 |
if verbose |
|
|
373 |
fprintf('%s\n',msg); |
|
|
374 |
end |
|
|
375 |
if nargout > 3 |
|
|
376 |
output = struct('iterations',0,'funcCount',1,... |
|
|
377 |
'algorithm',method,'firstorderopt',sum(abs(g)),'message',msg,'trace',trace); |
|
|
378 |
end |
|
|
379 |
return; |
|
|
380 |
end |
|
|
381 |
|
|
|
382 |
% Perform up to a maximum of 'maxIter' descent steps: |
|
|
383 |
for i = 1:maxIter |
|
|
384 |
|
|
|
385 |
% ****************** COMPUTE DESCENT DIRECTION ***************** |
|
|
386 |
|
|
|
387 |
switch method |
|
|
388 |
case SD % Steepest Descent |
|
|
389 |
d = -g; |
|
|
390 |
|
|
|
391 |
case CSD % Cyclic Steepest Descent |
|
|
392 |
|
|
|
393 |
if mod(i,cycle) == 1 % Use Steepest Descent |
|
|
394 |
alpha = 1; |
|
|
395 |
LS_init = 2; |
|
|
396 |
LS = 4; % Precise Line Search |
|
|
397 |
elseif mod(i,cycle) == mod(1+1,cycle) % Use Previous Step |
|
|
398 |
alpha = t; |
|
|
399 |
LS_init = 0; |
|
|
400 |
LS = 2; % Non-monotonic line search |
|
|
401 |
end |
|
|
402 |
d = -alpha*g; |
|
|
403 |
|
|
|
404 |
case BB % Steepest Descent with Barzilai and Borwein Step Length |
|
|
405 |
|
|
|
406 |
if i == 1 |
|
|
407 |
d = -g; |
|
|
408 |
else |
|
|
409 |
y = g-g_old; |
|
|
410 |
s = t*d; |
|
|
411 |
if bbType == 0 |
|
|
412 |
yy = y'*y; |
|
|
413 |
alpha = (s'*y)/(yy); |
|
|
414 |
if alpha <= 1e-10 || alpha > 1e10 |
|
|
415 |
alpha = 1; |
|
|
416 |
end |
|
|
417 |
elseif bbType == 1 |
|
|
418 |
sy = s'*y; |
|
|
419 |
alpha = (s'*s)/sy; |
|
|
420 |
if alpha <= 1e-10 || alpha > 1e10 |
|
|
421 |
alpha = 1; |
|
|
422 |
end |
|
|
423 |
elseif bbType == 2 % Conic Interpolation ('Modified BB') |
|
|
424 |
sy = s'*y; |
|
|
425 |
ss = s'*s; |
|
|
426 |
alpha = ss/sy; |
|
|
427 |
if alpha <= 1e-10 || alpha > 1e10 |
|
|
428 |
alpha = 1; |
|
|
429 |
end |
|
|
430 |
alphaConic = ss/(6*(myF_old - f) + 4*g'*s + 2*g_old'*s); |
|
|
431 |
if alphaConic > .001*alpha && alphaConic < 1000*alpha |
|
|
432 |
alpha = alphaConic; |
|
|
433 |
end |
|
|
434 |
elseif bbType == 3 % Gradient Method with retards (bb type 1, random selection of previous step) |
|
|
435 |
sy = s'*y; |
|
|
436 |
alpha = (s'*s)/sy; |
|
|
437 |
if alpha <= 1e-10 || alpha > 1e10 |
|
|
438 |
alpha = 1; |
|
|
439 |
end |
|
|
440 |
v(1+mod(i-2,5)) = alpha; |
|
|
441 |
alpha = v(ceil(rand*length(v))); |
|
|
442 |
end |
|
|
443 |
d = -alpha*g; |
|
|
444 |
end |
|
|
445 |
g_old = g; |
|
|
446 |
myF_old = f; |
|
|
447 |
|
|
|
448 |
|
|
|
449 |
case CG % Non-Linear Conjugate Gradient |
|
|
450 |
|
|
|
451 |
if i == 1 |
|
|
452 |
d = -g; % Initially use steepest descent direction |
|
|
453 |
else |
|
|
454 |
gtgo = g'*g_old; |
|
|
455 |
gotgo = g_old'*g_old; |
|
|
456 |
|
|
|
457 |
if cgUpdate == 0 |
|
|
458 |
% Fletcher-Reeves |
|
|
459 |
beta = (g'*g)/(gotgo); |
|
|
460 |
elseif cgUpdate == 1 |
|
|
461 |
% Polak-Ribiere |
|
|
462 |
beta = (g'*(g-g_old)) /(gotgo); |
|
|
463 |
elseif cgUpdate == 2 |
|
|
464 |
% Hestenes-Stiefel |
|
|
465 |
beta = (g'*(g-g_old))/((g-g_old)'*d); |
|
|
466 |
else |
|
|
467 |
% Gilbert-Nocedal |
|
|
468 |
beta_FR = (g'*(g-g_old)) /(gotgo); |
|
|
469 |
beta_PR = (g'*g-gtgo)/(gotgo); |
|
|
470 |
beta = max(-beta_FR,min(beta_PR,beta_FR)); |
|
|
471 |
end |
|
|
472 |
|
|
|
473 |
d = -g + beta*d; |
|
|
474 |
|
|
|
475 |
% Restart if not a direction of sufficient descent |
|
|
476 |
if g'*d > -tolX |
|
|
477 |
if debug |
|
|
478 |
fprintf('Restarting CG\n'); |
|
|
479 |
end |
|
|
480 |
beta = 0; |
|
|
481 |
d = -g; |
|
|
482 |
end |
|
|
483 |
|
|
|
484 |
% Old restart rule: |
|
|
485 |
%if beta < 0 || abs(gtgo)/(gotgo) >= 0.1 || g'*d >= 0 |
|
|
486 |
|
|
|
487 |
end |
|
|
488 |
g_old = g; |
|
|
489 |
|
|
|
490 |
case PCG % Preconditioned Non-Linear Conjugate Gradient |
|
|
491 |
|
|
|
492 |
% Apply preconditioner to negative gradient |
|
|
493 |
if isempty(precFunc) |
|
|
494 |
% Use L-BFGS Preconditioner |
|
|
495 |
if i == 1 |
|
|
496 |
old_dirs = zeros(length(g),0); |
|
|
497 |
old_stps = zeros(length(g),0); |
|
|
498 |
Hdiag = 1; |
|
|
499 |
s = -g; |
|
|
500 |
else |
|
|
501 |
[old_dirs,old_stps,Hdiag] = lbfgsUpdate(g-g_old,t*d,corrections,debug,old_dirs,old_stps,Hdiag); |
|
|
502 |
|
|
|
503 |
if useMex |
|
|
504 |
s = lbfgsC(-g,old_dirs,old_stps,Hdiag); |
|
|
505 |
else |
|
|
506 |
s = lbfgs(-g,old_dirs,old_stps,Hdiag); |
|
|
507 |
end |
|
|
508 |
end |
|
|
509 |
else % User-supplied preconditioner |
|
|
510 |
s = precFunc(-g,x,varargin{:}); |
|
|
511 |
end |
|
|
512 |
|
|
|
513 |
if i == 1 |
|
|
514 |
d = s; |
|
|
515 |
else |
|
|
516 |
|
|
|
517 |
if cgUpdate == 0 |
|
|
518 |
% Preconditioned Fletcher-Reeves |
|
|
519 |
beta = (g'*s)/(g_old'*s_old); |
|
|
520 |
elseif cgUpdate < 3 |
|
|
521 |
% Preconditioned Polak-Ribiere |
|
|
522 |
beta = (g'*(s-s_old))/(g_old'*s_old); |
|
|
523 |
else |
|
|
524 |
% Preconditioned Gilbert-Nocedal |
|
|
525 |
beta_FR = (g'*s)/(g_old'*s_old); |
|
|
526 |
beta_PR = (g'*(s-s_old))/(g_old'*s_old); |
|
|
527 |
beta = max(-beta_FR,min(beta_PR,beta_FR)); |
|
|
528 |
end |
|
|
529 |
d = s + beta*d; |
|
|
530 |
|
|
|
531 |
if g'*d > -tolX |
|
|
532 |
if debug |
|
|
533 |
fprintf('Restarting CG\n'); |
|
|
534 |
end |
|
|
535 |
beta = 0; |
|
|
536 |
d = s; |
|
|
537 |
end |
|
|
538 |
|
|
|
539 |
end |
|
|
540 |
g_old = g; |
|
|
541 |
s_old = s; |
|
|
542 |
case LBFGS % L-BFGS |
|
|
543 |
|
|
|
544 |
% Update the direction and step sizes |
|
|
545 |
|
|
|
546 |
if i == 1 |
|
|
547 |
d = -g; % Initially use steepest descent direction |
|
|
548 |
old_dirs = zeros(length(g),0); |
|
|
549 |
old_stps = zeros(length(d),0); |
|
|
550 |
Hdiag = 1; |
|
|
551 |
else |
|
|
552 |
if Damped |
|
|
553 |
[old_dirs,old_stps,Hdiag] = dampedUpdate(g-g_old,t*d,corrections,debug,old_dirs,old_stps,Hdiag); |
|
|
554 |
else |
|
|
555 |
[old_dirs,old_stps,Hdiag] = lbfgsUpdate(g-g_old,t*d,corrections,debug,old_dirs,old_stps,Hdiag); |
|
|
556 |
end |
|
|
557 |
|
|
|
558 |
if useMex |
|
|
559 |
d = lbfgsC(-g,old_dirs,old_stps,Hdiag); |
|
|
560 |
else |
|
|
561 |
d = lbfgs(-g,old_dirs,old_stps,Hdiag); |
|
|
562 |
end |
|
|
563 |
end |
|
|
564 |
g_old = g; |
|
|
565 |
|
|
|
566 |
case QNEWTON % Use quasi-Newton Hessian approximation |
|
|
567 |
|
|
|
568 |
if i == 1 |
|
|
569 |
d = -g; |
|
|
570 |
else |
|
|
571 |
% Compute difference vectors |
|
|
572 |
y = g-g_old; |
|
|
573 |
s = t*d; |
|
|
574 |
|
|
|
575 |
if i == 2 |
|
|
576 |
% Make initial Hessian approximation |
|
|
577 |
if initialHessType == 0 |
|
|
578 |
% Identity |
|
|
579 |
if qnUpdate <= 1 |
|
|
580 |
R = eye(length(g)); |
|
|
581 |
else |
|
|
582 |
H = eye(length(g)); |
|
|
583 |
end |
|
|
584 |
else |
|
|
585 |
% Scaled Identity |
|
|
586 |
if debug |
|
|
587 |
fprintf('Scaling Initial Hessian Approximation\n'); |
|
|
588 |
end |
|
|
589 |
if qnUpdate <= 1 |
|
|
590 |
% Use Cholesky of Hessian approximation |
|
|
591 |
R = sqrt((y'*y)/(y'*s))*eye(length(g)); |
|
|
592 |
else |
|
|
593 |
% Use Inverse of Hessian approximation |
|
|
594 |
H = eye(length(g))*(y'*s)/(y'*y); |
|
|
595 |
end |
|
|
596 |
end |
|
|
597 |
end |
|
|
598 |
|
|
|
599 |
if qnUpdate == 0 % Use BFGS updates |
|
|
600 |
Bs = R'*(R*s); |
|
|
601 |
if Damped |
|
|
602 |
eta = .02; |
|
|
603 |
if y'*s < eta*s'*Bs |
|
|
604 |
if debug |
|
|
605 |
fprintf('Damped Update\n'); |
|
|
606 |
end |
|
|
607 |
theta = min(max(0,((1-eta)*s'*Bs)/(s'*Bs - y'*s)),1); |
|
|
608 |
y = theta*y + (1-theta)*Bs; |
|
|
609 |
end |
|
|
610 |
R = cholupdate(cholupdate(R,y/sqrt(y'*s)),Bs/sqrt(s'*Bs),'-'); |
|
|
611 |
else |
|
|
612 |
if y'*s > 1e-10 |
|
|
613 |
R = cholupdate(cholupdate(R,y/sqrt(y'*s)),Bs/sqrt(s'*Bs),'-'); |
|
|
614 |
else |
|
|
615 |
if debug |
|
|
616 |
fprintf('Skipping Update\n'); |
|
|
617 |
end |
|
|
618 |
end |
|
|
619 |
end |
|
|
620 |
elseif qnUpdate == 1 % Perform SR1 Update if it maintains positive-definiteness |
|
|
621 |
|
|
|
622 |
Bs = R'*(R*s); |
|
|
623 |
ymBs = y-Bs; |
|
|
624 |
if abs(s'*ymBs) >= norm(s)*norm(ymBs)*1e-8 && (s-((R\(R'\y))))'*y > 1e-10 |
|
|
625 |
R = cholupdate(R,-ymBs/sqrt(ymBs'*s),'-'); |
|
|
626 |
else |
|
|
627 |
if debug |
|
|
628 |
fprintf('SR1 not positive-definite, doing BFGS Update\n'); |
|
|
629 |
end |
|
|
630 |
if Damped |
|
|
631 |
eta = .02; |
|
|
632 |
if y'*s < eta*s'*Bs |
|
|
633 |
if debug |
|
|
634 |
fprintf('Damped Update\n'); |
|
|
635 |
end |
|
|
636 |
theta = min(max(0,((1-eta)*s'*Bs)/(s'*Bs - y'*s)),1); |
|
|
637 |
y = theta*y + (1-theta)*Bs; |
|
|
638 |
end |
|
|
639 |
R = cholupdate(cholupdate(R,y/sqrt(y'*s)),Bs/sqrt(s'*Bs),'-'); |
|
|
640 |
else |
|
|
641 |
if y'*s > 1e-10 |
|
|
642 |
R = cholupdate(cholupdate(R,y/sqrt(y'*s)),Bs/sqrt(s'*Bs),'-'); |
|
|
643 |
else |
|
|
644 |
if debug |
|
|
645 |
fprintf('Skipping Update\n'); |
|
|
646 |
end |
|
|
647 |
end |
|
|
648 |
end |
|
|
649 |
end |
|
|
650 |
elseif qnUpdate == 2 % Use Hoshino update |
|
|
651 |
v = sqrt(y'*H*y)*(s/(s'*y) - (H*y)/(y'*H*y)); |
|
|
652 |
phi = 1/(1 + (y'*H*y)/(s'*y)); |
|
|
653 |
H = H + (s*s')/(s'*y) - (H*y*y'*H)/(y'*H*y) + phi*v*v'; |
|
|
654 |
|
|
|
655 |
elseif qnUpdate == 3 % Self-Scaling BFGS update |
|
|
656 |
ys = y'*s; |
|
|
657 |
Hy = H*y; |
|
|
658 |
yHy = y'*Hy; |
|
|
659 |
gamma = ys/yHy; |
|
|
660 |
v = sqrt(yHy)*(s/ys - Hy/yHy); |
|
|
661 |
H = gamma*(H - Hy*Hy'/yHy + v*v') + (s*s')/ys; |
|
|
662 |
elseif qnUpdate == 4 % Oren's Self-Scaling Variable Metric update |
|
|
663 |
|
|
|
664 |
% Oren's method |
|
|
665 |
if (s'*y)/(y'*H*y) > 1 |
|
|
666 |
phi = 1; % BFGS |
|
|
667 |
omega = 0; |
|
|
668 |
elseif (s'*(H\s))/(s'*y) < 1 |
|
|
669 |
phi = 0; % DFP |
|
|
670 |
omega = 1; |
|
|
671 |
else |
|
|
672 |
phi = (s'*y)*(y'*H*y-s'*y)/((s'*(H\s))*(y'*H*y)-(s'*y)^2); |
|
|
673 |
omega = phi; |
|
|
674 |
end |
|
|
675 |
|
|
|
676 |
gamma = (1-omega)*(s'*y)/(y'*H*y) + omega*(s'*(H\s))/(s'*y); |
|
|
677 |
v = sqrt(y'*H*y)*(s/(s'*y) - (H*y)/(y'*H*y)); |
|
|
678 |
H = gamma*(H - (H*y*y'*H)/(y'*H*y) + phi*v*v') + (s*s')/(s'*y); |
|
|
679 |
|
|
|
680 |
elseif qnUpdate == 5 % McCormick-Huang asymmetric update |
|
|
681 |
theta = 1; |
|
|
682 |
phi = 0; |
|
|
683 |
psi = 1; |
|
|
684 |
omega = 0; |
|
|
685 |
t1 = s*(theta*s + phi*H'*y)'; |
|
|
686 |
t2 = (theta*s + phi*H'*y)'*y; |
|
|
687 |
t3 = H*y*(psi*s + omega*H'*y)'; |
|
|
688 |
t4 = (psi*s + omega*H'*y)'*y; |
|
|
689 |
H = H + t1/t2 - t3/t4; |
|
|
690 |
end |
|
|
691 |
|
|
|
692 |
if qnUpdate <= 1 |
|
|
693 |
d = -R\(R'\g); |
|
|
694 |
else |
|
|
695 |
d = -H*g; |
|
|
696 |
end |
|
|
697 |
|
|
|
698 |
end |
|
|
699 |
g_old = g; |
|
|
700 |
|
|
|
701 |
case NEWTON0 % Hessian-Free Newton |
|
|
702 |
|
|
|
703 |
cgMaxIter = min(p,maxFunEvals-funEvals); |
|
|
704 |
cgForce = min(0.5,sqrt(norm(g)))*norm(g); |
|
|
705 |
|
|
|
706 |
% Set-up preconditioner |
|
|
707 |
precondFunc = []; |
|
|
708 |
precondArgs = []; |
|
|
709 |
if cgSolve == 1 |
|
|
710 |
if isempty(precFunc) % Apply L-BFGS preconditioner |
|
|
711 |
if i == 1 |
|
|
712 |
old_dirs = zeros(length(g),0); |
|
|
713 |
old_stps = zeros(length(g),0); |
|
|
714 |
Hdiag = 1; |
|
|
715 |
else |
|
|
716 |
[old_dirs,old_stps,Hdiag] = lbfgsUpdate(g-g_old,t*d,corrections,debug,old_dirs,old_stps,Hdiag); |
|
|
717 |
if useMex |
|
|
718 |
precondFunc = @lbfgsC; |
|
|
719 |
else |
|
|
720 |
precondFunc = @lbfgs; |
|
|
721 |
end |
|
|
722 |
precondArgs = {old_dirs,old_stps,Hdiag}; |
|
|
723 |
end |
|
|
724 |
g_old = g; |
|
|
725 |
else |
|
|
726 |
% Apply user-defined preconditioner |
|
|
727 |
precondFunc = precFunc; |
|
|
728 |
precondArgs = {x,varargin{:}}; |
|
|
729 |
end |
|
|
730 |
end |
|
|
731 |
|
|
|
732 |
% Solve Newton system using cg and hessian-vector products |
|
|
733 |
if isempty(HvFunc) |
|
|
734 |
% No user-supplied Hessian-vector function, |
|
|
735 |
% use automatic differentiation |
|
|
736 |
HvFun = @autoHv; |
|
|
737 |
HvArgs = {x,g,useComplex,funObj,varargin{:}}; |
|
|
738 |
else |
|
|
739 |
% Use user-supplid Hessian-vector function |
|
|
740 |
HvFun = HvFunc; |
|
|
741 |
HvArgs = {x,varargin{:}}; |
|
|
742 |
end |
|
|
743 |
|
|
|
744 |
if useNegCurv |
|
|
745 |
[d,cgIter,cgRes,negCurv] = conjGrad([],-g,cgForce,cgMaxIter,debug,precondFunc,precondArgs,HvFun,HvArgs); |
|
|
746 |
else |
|
|
747 |
[d,cgIter,cgRes] = conjGrad([],-g,cgForce,cgMaxIter,debug,precondFunc,precondArgs,HvFun,HvArgs); |
|
|
748 |
end |
|
|
749 |
|
|
|
750 |
funEvals = funEvals+cgIter; |
|
|
751 |
if debug |
|
|
752 |
fprintf('newtonCG stopped on iteration %d w/ residual %.5e\n',cgIter,cgRes); |
|
|
753 |
|
|
|
754 |
end |
|
|
755 |
|
|
|
756 |
if useNegCurv |
|
|
757 |
if ~isempty(negCurv) |
|
|
758 |
%if debug |
|
|
759 |
fprintf('Using negative curvature direction\n'); |
|
|
760 |
%end |
|
|
761 |
d = negCurv/norm(negCurv); |
|
|
762 |
d = d/sum(abs(g)); |
|
|
763 |
end |
|
|
764 |
end |
|
|
765 |
|
|
|
766 |
case NEWTON % Newton search direction |
|
|
767 |
|
|
|
768 |
if cgSolve == 0 |
|
|
769 |
if HessianModify == 0 |
|
|
770 |
% Attempt to perform a Cholesky factorization of the Hessian |
|
|
771 |
[R,posDef] = chol(H); |
|
|
772 |
|
|
|
773 |
% If the Cholesky factorization was successful, then the Hessian is |
|
|
774 |
% positive definite, solve the system |
|
|
775 |
if posDef == 0 |
|
|
776 |
d = -R\(R'\g); |
|
|
777 |
|
|
|
778 |
else |
|
|
779 |
% otherwise, adjust the Hessian to be positive definite based on the |
|
|
780 |
% minimum eigenvalue, and solve with QR |
|
|
781 |
% (expensive, we don't want to do this very much) |
|
|
782 |
if debug |
|
|
783 |
fprintf('Adjusting Hessian\n'); |
|
|
784 |
end |
|
|
785 |
H = H + eye(length(g)) * max(0,1e-12 - min(real(eig(H)))); |
|
|
786 |
d = -H\g; |
|
|
787 |
end |
|
|
788 |
elseif HessianModify == 1 |
|
|
789 |
% Modified Incomplete Cholesky |
|
|
790 |
R = mcholinc(H,debug); |
|
|
791 |
d = -R\(R'\g); |
|
|
792 |
elseif HessianModify == 2 |
|
|
793 |
% Modified Generalized Cholesky |
|
|
794 |
if useMex |
|
|
795 |
[L D perm] = mcholC(H); |
|
|
796 |
else |
|
|
797 |
[L D perm] = mchol(H); |
|
|
798 |
end |
|
|
799 |
d(perm) = -L' \ ((D.^-1).*(L \ g(perm))); |
|
|
800 |
|
|
|
801 |
elseif HessianModify == 3 |
|
|
802 |
% Modified Spectral Decomposition |
|
|
803 |
[V,D] = eig((H+H')/2); |
|
|
804 |
D = diag(D); |
|
|
805 |
D = max(abs(D),max(max(abs(D)),1)*1e-12); |
|
|
806 |
d = -V*((V'*g)./D); |
|
|
807 |
elseif HessianModify == 4 |
|
|
808 |
% Modified Symmetric Indefinite Factorization |
|
|
809 |
[L,D,perm] = ldl(H,'vector'); |
|
|
810 |
[blockPos junk] = find(triu(D,1)); |
|
|
811 |
for diagInd = setdiff(setdiff(1:p,blockPos),blockPos+1) |
|
|
812 |
if D(diagInd,diagInd) < 1e-12 |
|
|
813 |
D(diagInd,diagInd) = 1e-12; |
|
|
814 |
end |
|
|
815 |
end |
|
|
816 |
for blockInd = blockPos' |
|
|
817 |
block = D(blockInd:blockInd+1,blockInd:blockInd+1); |
|
|
818 |
block_a = block(1); |
|
|
819 |
block_b = block(2); |
|
|
820 |
block_d = block(4); |
|
|
821 |
lambda = (block_a+block_d)/2 - sqrt(4*block_b^2 + (block_a - block_d)^2)/2; |
|
|
822 |
D(blockInd:blockInd+1,blockInd:blockInd+1) = block+eye(2)*(lambda+1e-12); |
|
|
823 |
end |
|
|
824 |
d(perm) = -L' \ (D \ (L \ g(perm))); |
|
|
825 |
else |
|
|
826 |
% Take Newton step if Hessian is pd, |
|
|
827 |
% otherwise take a step with negative curvature |
|
|
828 |
[R,posDef] = chol(H); |
|
|
829 |
if posDef == 0 |
|
|
830 |
d = -R\(R'\g); |
|
|
831 |
else |
|
|
832 |
if debug |
|
|
833 |
fprintf('Taking Direction of Negative Curvature\n'); |
|
|
834 |
end |
|
|
835 |
[V,D] = eig(H); |
|
|
836 |
u = V(:,1); |
|
|
837 |
d = -sign(u'*g)*u; |
|
|
838 |
end |
|
|
839 |
end |
|
|
840 |
|
|
|
841 |
else |
|
|
842 |
% Solve with Conjugate Gradient |
|
|
843 |
cgMaxIter = p; |
|
|
844 |
cgForce = min(0.5,sqrt(norm(g)))*norm(g); |
|
|
845 |
|
|
|
846 |
% Select Preconditioner |
|
|
847 |
if cgSolve == 1 |
|
|
848 |
% No preconditioner |
|
|
849 |
precondFunc = []; |
|
|
850 |
precondArgs = []; |
|
|
851 |
elseif cgSolve == 2 |
|
|
852 |
% Diagonal preconditioner |
|
|
853 |
precDiag = diag(H); |
|
|
854 |
precDiag(precDiag < 1e-12) = 1e-12 - min(precDiag); |
|
|
855 |
precondFunc = @precondDiag; |
|
|
856 |
precondArgs = {precDiag.^-1}; |
|
|
857 |
elseif cgSolve == 3 |
|
|
858 |
% L-BFGS preconditioner |
|
|
859 |
if i == 1 |
|
|
860 |
old_dirs = zeros(length(g),0); |
|
|
861 |
old_stps = zeros(length(g),0); |
|
|
862 |
Hdiag = 1; |
|
|
863 |
else |
|
|
864 |
[old_dirs,old_stps,Hdiag] = lbfgsUpdate(g-g_old,t*d,corrections,debug,old_dirs,old_stps,Hdiag); |
|
|
865 |
end |
|
|
866 |
g_old = g; |
|
|
867 |
if useMex |
|
|
868 |
precondFunc = @lbfgsC; |
|
|
869 |
else |
|
|
870 |
precondFunc = @lbfgs; |
|
|
871 |
end |
|
|
872 |
precondArgs = {old_dirs,old_stps,Hdiag}; |
|
|
873 |
elseif cgSolve > 0 |
|
|
874 |
% Symmetric Successive Overelaxation Preconditioner |
|
|
875 |
omega = cgSolve; |
|
|
876 |
D = diag(H); |
|
|
877 |
D(D < 1e-12) = 1e-12 - min(D); |
|
|
878 |
precDiag = (omega/(2-omega))*D.^-1; |
|
|
879 |
precTriu = diag(D/omega) + triu(H,1); |
|
|
880 |
precondFunc = @precondTriuDiag; |
|
|
881 |
precondArgs = {precTriu,precDiag.^-1}; |
|
|
882 |
else |
|
|
883 |
% Incomplete Cholesky Preconditioner |
|
|
884 |
opts.droptol = -cgSolve; |
|
|
885 |
opts.rdiag = 1; |
|
|
886 |
R = cholinc(sparse(H),opts); |
|
|
887 |
if min(diag(R)) < 1e-12 |
|
|
888 |
R = cholinc(sparse(H + eye*(1e-12 - min(diag(R)))),opts); |
|
|
889 |
end |
|
|
890 |
precondFunc = @precondTriu; |
|
|
891 |
precondArgs = {R}; |
|
|
892 |
end |
|
|
893 |
|
|
|
894 |
% Run cg with the appropriate preconditioner |
|
|
895 |
if isempty(HvFunc) |
|
|
896 |
% No user-supplied Hessian-vector function |
|
|
897 |
[d,cgIter,cgRes] = conjGrad(H,-g,cgForce,cgMaxIter,debug,precondFunc,precondArgs); |
|
|
898 |
else |
|
|
899 |
% Use user-supplied Hessian-vector function |
|
|
900 |
[d,cgIter,cgRes] = conjGrad(H,-g,cgForce,cgMaxIter,debug,precondFunc,precondArgs,HvFunc,{x,varargin{:}}); |
|
|
901 |
end |
|
|
902 |
if debug |
|
|
903 |
fprintf('CG stopped after %d iterations w/ residual %.5e\n',cgIter,cgRes); |
|
|
904 |
%funEvals = funEvals + cgIter; |
|
|
905 |
end |
|
|
906 |
end |
|
|
907 |
|
|
|
908 |
case TENSOR % Tensor Method |
|
|
909 |
|
|
|
910 |
if numDiff |
|
|
911 |
% Compute 3rd-order Tensor Numerically |
|
|
912 |
[junk1 junk2 junk3 T] = autoTensor(x,useComplex,funObj,varargin{:}); |
|
|
913 |
else |
|
|
914 |
% Use user-supplied 3rd-derivative Tensor |
|
|
915 |
[junk1 junk2 junk3 T] = feval(funObj, x, varargin{:}); |
|
|
916 |
end |
|
|
917 |
options_sub.Method = 'newton'; |
|
|
918 |
options_sub.Display = 'none'; |
|
|
919 |
options_sub.TolX = tolX; |
|
|
920 |
options_sub.TolFun = tolFun; |
|
|
921 |
d = minFunc(@taylorModel,zeros(p,1),options_sub,f,g,H,T); |
|
|
922 |
|
|
|
923 |
if any(abs(d) > 1e5) || all(abs(d) < 1e-5) || g'*d > -tolX |
|
|
924 |
if debug |
|
|
925 |
fprintf('Using 2nd-Order Step\n'); |
|
|
926 |
end |
|
|
927 |
[V,D] = eig((H+H')/2); |
|
|
928 |
D = diag(D); |
|
|
929 |
D = max(abs(D),max(max(abs(D)),1)*1e-12); |
|
|
930 |
d = -V*((V'*g)./D); |
|
|
931 |
else |
|
|
932 |
if debug |
|
|
933 |
fprintf('Using 3rd-Order Step\n'); |
|
|
934 |
end |
|
|
935 |
end |
|
|
936 |
end |
|
|
937 |
|
|
|
938 |
if ~isLegal(d) |
|
|
939 |
fprintf('Step direction is illegal!\n'); |
|
|
940 |
pause; |
|
|
941 |
return |
|
|
942 |
end |
|
|
943 |
|
|
|
944 |
% ****************** COMPUTE STEP LENGTH ************************ |
|
|
945 |
|
|
|
946 |
% Directional Derivative |
|
|
947 |
gtd = g'*d; |
|
|
948 |
|
|
|
949 |
% Check that progress can be made along direction |
|
|
950 |
if gtd > -tolX |
|
|
951 |
exitflag=2; |
|
|
952 |
msg = 'Directional Derivative below TolX'; |
|
|
953 |
break; |
|
|
954 |
end |
|
|
955 |
|
|
|
956 |
% Select Initial Guess |
|
|
957 |
if i == 1 |
|
|
958 |
if method < NEWTON0 |
|
|
959 |
t = min(1,1/sum(abs(g))); |
|
|
960 |
else |
|
|
961 |
t = 1; |
|
|
962 |
end |
|
|
963 |
else |
|
|
964 |
if LS_init == 0 |
|
|
965 |
% Newton step |
|
|
966 |
t = 1; |
|
|
967 |
elseif LS_init == 1 |
|
|
968 |
% Close to previous step length |
|
|
969 |
t = t*min(2,(gtd_old)/(gtd)); |
|
|
970 |
elseif LS_init == 2 |
|
|
971 |
% Quadratic Initialization based on {f,g} and previous f |
|
|
972 |
t = min(1,2*(f-f_old)/(gtd)); |
|
|
973 |
elseif LS_init == 3 |
|
|
974 |
% Double previous step length |
|
|
975 |
t = min(1,t*2); |
|
|
976 |
elseif LS_init == 4 |
|
|
977 |
% Scaled step length if possible |
|
|
978 |
if isempty(HvFunc) |
|
|
979 |
% No user-supplied Hessian-vector function, |
|
|
980 |
% use automatic differentiation |
|
|
981 |
dHd = d'*autoHv(d,x,g,0,funObj,varargin{:}); |
|
|
982 |
else |
|
|
983 |
% Use user-supplid Hessian-vector function |
|
|
984 |
dHd = d'*HvFunc(d,x,varargin{:}); |
|
|
985 |
end |
|
|
986 |
|
|
|
987 |
funEvals = funEvals + 1; |
|
|
988 |
if dHd > 0 |
|
|
989 |
t = -gtd/(dHd); |
|
|
990 |
else |
|
|
991 |
t = min(1,2*(f-f_old)/(gtd)); |
|
|
992 |
end |
|
|
993 |
end |
|
|
994 |
|
|
|
995 |
if t <= 0 |
|
|
996 |
t = 1; |
|
|
997 |
end |
|
|
998 |
end |
|
|
999 |
f_old = f; |
|
|
1000 |
gtd_old = gtd; |
|
|
1001 |
|
|
|
1002 |
% Compute reference fr if using non-monotone objective |
|
|
1003 |
if Fref == 1 |
|
|
1004 |
fr = f; |
|
|
1005 |
else |
|
|
1006 |
if i == 1 |
|
|
1007 |
old_fvals = repmat(-inf,[Fref 1]); |
|
|
1008 |
end |
|
|
1009 |
|
|
|
1010 |
if i <= Fref |
|
|
1011 |
old_fvals(i) = f; |
|
|
1012 |
else |
|
|
1013 |
old_fvals = [old_fvals(2:end);f]; |
|
|
1014 |
end |
|
|
1015 |
fr = max(old_fvals); |
|
|
1016 |
end |
|
|
1017 |
|
|
|
1018 |
computeHessian = 0; |
|
|
1019 |
if method >= NEWTON |
|
|
1020 |
if HessianIter == 1 |
|
|
1021 |
computeHessian = 1; |
|
|
1022 |
elseif i > 1 && mod(i-1,HessianIter) == 0 |
|
|
1023 |
computeHessian = 1; |
|
|
1024 |
end |
|
|
1025 |
end |
|
|
1026 |
|
|
|
1027 |
% Line Search |
|
|
1028 |
f_old = f; |
|
|
1029 |
if LS < 3 % Use Armijo Bactracking |
|
|
1030 |
% Perform Backtracking line search |
|
|
1031 |
if computeHessian |
|
|
1032 |
[t,x,f,g,LSfunEvals,H] = ArmijoBacktrack(x,t,d,f,fr,g,gtd,c1,LS,tolX,debug,doPlot,LS_saveHessianComp,funObj,varargin{:}); |
|
|
1033 |
else |
|
|
1034 |
[t,x,f,g,LSfunEvals] = ArmijoBacktrack(x,t,d,f,fr,g,gtd,c1,LS,tolX,debug,doPlot,1,funObj,varargin{:}); |
|
|
1035 |
end |
|
|
1036 |
funEvals = funEvals + LSfunEvals; |
|
|
1037 |
|
|
|
1038 |
elseif LS < 6 |
|
|
1039 |
% Find Point satisfying Wolfe |
|
|
1040 |
|
|
|
1041 |
if computeHessian |
|
|
1042 |
[t,f,g,LSfunEvals,H] = WolfeLineSearch(x,t,d,f,g,gtd,c1,c2,LS,25,tolX,debug,doPlot,LS_saveHessianComp,funObj,varargin{:}); |
|
|
1043 |
else |
|
|
1044 |
[t,f,g,LSfunEvals] = WolfeLineSearch(x,t,d,f,g,gtd,c1,c2,LS,25,tolX,debug,doPlot,1,funObj,varargin{:}); |
|
|
1045 |
end |
|
|
1046 |
funEvals = funEvals + LSfunEvals; |
|
|
1047 |
x = x + t*d; |
|
|
1048 |
|
|
|
1049 |
else |
|
|
1050 |
% Use Matlab optim toolbox line search |
|
|
1051 |
[t,f_new,fPrime_new,g_new,LSexitFlag,LSiter]=... |
|
|
1052 |
lineSearch({'fungrad',[],funObj},x,p,1,p,d,f,gtd,t,c1,c2,-inf,maxFunEvals-funEvals,... |
|
|
1053 |
tolX,[],[],[],varargin{:}); |
|
|
1054 |
funEvals = funEvals + LSiter; |
|
|
1055 |
if isempty(t) |
|
|
1056 |
exitflag = -2; |
|
|
1057 |
msg = 'Matlab LineSearch failed'; |
|
|
1058 |
break; |
|
|
1059 |
end |
|
|
1060 |
|
|
|
1061 |
if method >= NEWTON |
|
|
1062 |
[f_new,g_new,H] = funObj(x + t*d,varargin{:}); |
|
|
1063 |
funEvals = funEvals + 1; |
|
|
1064 |
end |
|
|
1065 |
x = x + t*d; |
|
|
1066 |
f = f_new; |
|
|
1067 |
g = g_new; |
|
|
1068 |
end |
|
|
1069 |
|
|
|
1070 |
% Output iteration information |
|
|
1071 |
if verboseI |
|
|
1072 |
fprintf('%10d %10d %15.5e %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,t,f,sum(abs(g))); |
|
|
1073 |
end |
|
|
1074 |
|
|
|
1075 |
if logfile |
|
|
1076 |
fid = fopen(logfile, 'a'); |
|
|
1077 |
if (fid > 0) |
|
|
1078 |
fprintf(fid, '-- %10d %10d %15.5e %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,t,f,sum(abs(g))); |
|
|
1079 |
fclose(fid); |
|
|
1080 |
end |
|
|
1081 |
end |
|
|
1082 |
|
|
|
1083 |
|
|
|
1084 |
% Output Function |
|
|
1085 |
if ~isempty(outputFcn) |
|
|
1086 |
callOutput(outputFcn,x,'iter',i,funEvals,f,t,gtd,g,d,sum(abs(g)),varargin{:}); |
|
|
1087 |
end |
|
|
1088 |
|
|
|
1089 |
% Update Trace |
|
|
1090 |
trace.fval(end+1,1) = f; |
|
|
1091 |
trace.funcCount(end+1,1) = funEvals; |
|
|
1092 |
|
|
|
1093 |
% Check Optimality Condition |
|
|
1094 |
if sum(abs(g)) <= tolFun |
|
|
1095 |
exitflag=1; |
|
|
1096 |
msg = 'Optimality Condition below TolFun'; |
|
|
1097 |
break; |
|
|
1098 |
end |
|
|
1099 |
|
|
|
1100 |
% ******************* Check for lack of progress ******************* |
|
|
1101 |
|
|
|
1102 |
if sum(abs(t*d)) <= tolX |
|
|
1103 |
exitflag=2; |
|
|
1104 |
msg = 'Step Size below TolX'; |
|
|
1105 |
break; |
|
|
1106 |
end |
|
|
1107 |
|
|
|
1108 |
|
|
|
1109 |
if abs(f-f_old) < tolX |
|
|
1110 |
exitflag=2; |
|
|
1111 |
msg = 'Function Value changing by less than TolX'; |
|
|
1112 |
break; |
|
|
1113 |
end |
|
|
1114 |
|
|
|
1115 |
% ******** Check for going over iteration/evaluation limit ******************* |
|
|
1116 |
|
|
|
1117 |
if funEvals*funEvalMultiplier > maxFunEvals |
|
|
1118 |
exitflag = 0; |
|
|
1119 |
msg = 'Exceeded Maximum Number of Function Evaluations'; |
|
|
1120 |
break; |
|
|
1121 |
end |
|
|
1122 |
|
|
|
1123 |
if i == maxIter |
|
|
1124 |
exitflag = 0; |
|
|
1125 |
msg='Exceeded Maximum Number of Iterations'; |
|
|
1126 |
break; |
|
|
1127 |
end |
|
|
1128 |
|
|
|
1129 |
end |
|
|
1130 |
|
|
|
1131 |
if verbose |
|
|
1132 |
fprintf('%s\n',msg); |
|
|
1133 |
end |
|
|
1134 |
if nargout > 3 |
|
|
1135 |
output = struct('iterations',i,'funcCount',funEvals*funEvalMultiplier,... |
|
|
1136 |
'algorithm',method,'firstorderopt',sum(abs(g)),'message',msg,'trace',trace); |
|
|
1137 |
end |
|
|
1138 |
|
|
|
1139 |
% Output Function |
|
|
1140 |
if ~isempty(outputFcn) |
|
|
1141 |
callOutput(outputFcn,x,'done',i,funEvals,f,t,gtd,g,d,sum(abs(g)),varargin{:}); |
|
|
1142 |
end |
|
|
1143 |
|
|
|
1144 |
end |
|
|
1145 |
|