|
a |
|
b/combinedDeepLearningActiveContour/minFunc/example_minFunc.m |
|
|
1 |
% Runs various limited-memory solvers on 2D rosenbrock function for 25 |
|
|
2 |
% function evaluations |
|
|
3 |
maxFunEvals = 25; |
|
|
4 |
|
|
|
5 |
fprintf('Result after %d evaluations of limited-memory solvers on 2D rosenbrock:\n',maxFunEvals); |
|
|
6 |
|
|
|
7 |
fprintf('---------------------------------------\n'); |
|
|
8 |
fprintf('x1 = %.4f, x2 = %.4f (starting point)\n',0,0); |
|
|
9 |
fprintf('x1 = %.4f, x2 = %.4f (optimal solution)\n',1,1); |
|
|
10 |
fprintf('---------------------------------------\n'); |
|
|
11 |
|
|
|
12 |
if exist('minimize') == 2 |
|
|
13 |
% Minimize.m - conjugate gradient method |
|
|
14 |
x = minimize([0 0]', 'rosenbrock', -maxFunEvals); |
|
|
15 |
fprintf('x1 = %.4f, x2 = %.4f (minimize.m by C. Rasmussen)\n',x(1),x(2)); |
|
|
16 |
end |
|
|
17 |
|
|
|
18 |
options = []; |
|
|
19 |
options.display = 'none'; |
|
|
20 |
options.maxFunEvals = maxFunEvals; |
|
|
21 |
|
|
|
22 |
% Steepest Descent |
|
|
23 |
options.Method = 'sd'; |
|
|
24 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
25 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with steepest descent)\n',x(1),x(2)); |
|
|
26 |
|
|
|
27 |
% Cyclic Steepest Descent |
|
|
28 |
options.Method = 'csd'; |
|
|
29 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
30 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with cyclic steepest descent)\n',x(1),x(2)); |
|
|
31 |
|
|
|
32 |
% Barzilai & Borwein |
|
|
33 |
options.Method = 'bb'; |
|
|
34 |
options.bbType = 1; |
|
|
35 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
36 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with spectral gradient descent)\n',x(1),x(2)); |
|
|
37 |
|
|
|
38 |
% Hessian-Free Newton |
|
|
39 |
options.Method = 'newton0'; |
|
|
40 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
41 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with Hessian-free Newton)\n',x(1),x(2)); |
|
|
42 |
|
|
|
43 |
% Hessian-Free Newton w/ L-BFGS preconditioner |
|
|
44 |
options.Method = 'pnewton0'; |
|
|
45 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
46 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with preconditioned Hessian-free Newton)\n',x(1),x(2)); |
|
|
47 |
|
|
|
48 |
% Conjugate Gradient |
|
|
49 |
options.Method = 'cg'; |
|
|
50 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
51 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with conjugate gradient)\n',x(1),x(2)); |
|
|
52 |
|
|
|
53 |
% Scaled conjugate Gradient |
|
|
54 |
options.Method = 'scg'; |
|
|
55 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
56 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with scaled conjugate gradient)\n',x(1),x(2)); |
|
|
57 |
|
|
|
58 |
% Preconditioned Conjugate Gradient |
|
|
59 |
options.Method = 'pcg'; |
|
|
60 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
61 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with preconditioned conjugate gradient)\n',x(1),x(2)); |
|
|
62 |
|
|
|
63 |
% Default: L-BFGS (default) |
|
|
64 |
options.Method = 'lbfgs'; |
|
|
65 |
x = minFunc(@rosenbrock,[0 0]',options); |
|
|
66 |
fprintf('x1 = %.4f, x2 = %.4f (minFunc with limited-memory BFGS - default)\n',x(1),x(2)); |
|
|
67 |
|
|
|
68 |
fprintf('---------------------------------------\n'); |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
|
75 |
|