--- a +++ b/combinedDeepLearningActiveContour/functions/sparseAutoencoderCost.m @@ -0,0 +1,111 @@ +function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ... + lambda, sparsityParam, beta, data) +% visibleSize: the number of input units (probably 64) +% hiddenSize: the number of hidden units (probably 25) +% lambda: weight decay parameter +% sparsityParam: The desired average activation for the hidden units (denoted in the lecture +% notes by the greek alphabet rho, which looks like a lower-case "p"). +% beta: weight of sparsity penalty term +% data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example. + +% The input theta is a vector (because minFunc expects the parameters to be a vector). +% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this +% follows the notation convention of the lecture notes. + +W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); +W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize); +b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); +b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end); + +% Cost and gradient variables (your code needs to compute these values). +% Here, we initialize them to zeros. +cost = 0; +W1grad = zeros(size(W1)); +W2grad = zeros(size(W2)); +b1grad = zeros(size(b1)); +b2grad = zeros(size(b2)); + +%% ---------- YOUR CODE HERE -------------------------------------- +% Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder, +% and the corresponding gradients W1grad, W2grad, b1grad, b2grad. +% +% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation. +% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions +% as b1, etc. Your code should set W1grad to be the partial derivative of J_sparse(W,b) with +% respect to W1. I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) +% with respect to the input parameter W1(i,j). Thus, W1grad should be equal to the term +% [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 +% of the lecture notes (and similarly for W2grad, b1grad, b2grad). +% +% Stated differently, if we were using batch gradient descent to optimize the parameters, +% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. +% + +% input data +x=data; +% for autoencoder output y is equal to x +y=x; + +% length of training data +m=size(x,2); + +% Vectorized implementation of forward propagation +z2 = W1 * x + repmat(b1,1,m); +a2 = sigmoid(z2); +z3 = W2 * a2 + repmat(b2,1,m); +h = sigmoid(z3); + +% squared error term +hmy=h-y; +J_sq=sum(sum(hmy.*hmy))/(2*m); + +% weight decay term +J_wd=lambda/(2)*(trace(W1'*W1)+trace(W2'*W2)); + +% sparsity penalty +rho=sparsityParam; +rho_hat=mean(a2,2); +KL=rho.*log(rho./rho_hat)+(1-rho).*log((1-rho)./(1-rho_hat)); +J_sp=beta*sum(KL); + +% cost= J_[squared_error]+J_[weight_decay]+J_[sparsity_penalty] +cost=J_sq+J_wd+J_sp; + +% gradient +a1=x; +delta3 = -(y - h) .* fprime(z3); +sparsity_delta = - rho ./ rho_hat + (1 - rho) ./ (1 - rho_hat); +sd_mat=repmat(sparsity_delta,1,m); +delta2 = (W2'*delta3+beta*sd_mat) .* fprime(z2); + +W2grad = delta3*a2'/m+lambda*W2; +W1grad = delta2*a1'/m+lambda*W1; + +b2grad = delta3 * ones(m,1)/m; +b1grad = delta2* ones(m,1)/m; + +%------------------------------------------------------------------- +% After computing the cost and gradient, we will convert the gradients back +% to a vector format (suitable for minFunc). Specifically, we will unroll +% your gradient matrices into a vector. +grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; + +end + +%------------------------------------------------------------------- +% Here's an implementation of the sigmoid function, which you may find useful +% in your computation of the costs and the gradients. This inputs a (row or +% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). + +function sigm = sigmoid(x) + sigm = 1 ./ (1 + exp(-x)); +end + +% derivative of sigmoid function +% also we can implement it using: f'(x)= f(x)(1-f(x)) if f(x)=sigmoid +function fp = fprime(x) + + fp = exp(-x) ./ (1 + exp(-x)).^2; +end + +