|
a |
|
b/combinedDeepLearningActiveContour/functions/smoothn.m |
|
|
1 |
function [z,s,exitflag] = smoothn(varargin) |
|
|
2 |
|
|
|
3 |
%SMOOTHN Robust spline smoothing for 1-D to N-D data. |
|
|
4 |
% SMOOTHN provides a fast, automatized and robust discretized spline |
|
|
5 |
% smoothing for data of arbitrary dimension. |
|
|
6 |
% |
|
|
7 |
% Z = SMOOTHN(Y) automatically smoothes the uniformly-sampled array Y. Y |
|
|
8 |
% can be any N-D noisy array (time series, images, 3D data,...). Non |
|
|
9 |
% finite data (NaN or Inf) are treated as missing values. |
|
|
10 |
% |
|
|
11 |
% Z = SMOOTHN(Y,S) smoothes the array Y using the smoothing parameter S. |
|
|
12 |
% S must be a real positive scalar. The larger S is, the smoother the |
|
|
13 |
% output will be. If the smoothing parameter S is omitted (see previous |
|
|
14 |
% option) or empty (i.e. S = []), it is automatically determined by |
|
|
15 |
% minimizing the generalized cross-validation (GCV) score. |
|
|
16 |
% |
|
|
17 |
% Z = SMOOTHN(Y,W) or Z = SMOOTHN(Y,W,S) smoothes Y using a weighting |
|
|
18 |
% array W of positive values, that must have the same size as Y. Note |
|
|
19 |
% that a nil weight corresponds to a missing value. |
|
|
20 |
% |
|
|
21 |
% If you want to smooth a vector field or multicomponent data, Y must be |
|
|
22 |
% a cell array. For example, if you need to smooth a 3-D vectorial flow |
|
|
23 |
% (Vx,Vy,Vz), use Y = {Vx,Vy,Vz}. The output Z is also a cell array which |
|
|
24 |
% contains the smoothed components. See examples 5 to 8 below. |
|
|
25 |
% |
|
|
26 |
% [Z,S] = SMOOTHN(...) also returns the calculated value for the |
|
|
27 |
% smoothness parameter S so that you can fine-tune the smoothing |
|
|
28 |
% subsequently if needed. |
|
|
29 |
% |
|
|
30 |
% |
|
|
31 |
% 1) ROBUST smoothing |
|
|
32 |
% ------------------- |
|
|
33 |
% Z = SMOOTHN(...,'robust') carries out a robust smoothing that minimizes |
|
|
34 |
% the influence of outlying data. |
|
|
35 |
% |
|
|
36 |
% An iteration process is used with the 'ROBUST' option, or in the |
|
|
37 |
% presence of weighted and/or missing values. Z = SMOOTHN(...,OPTIONS) |
|
|
38 |
% smoothes with the termination parameters specified in the structure |
|
|
39 |
% OPTIONS. OPTIONS is a structure of optional parameters that change the |
|
|
40 |
% default smoothing properties. It must be last input argument. |
|
|
41 |
% --- |
|
|
42 |
% The structure OPTIONS can contain the following fields: |
|
|
43 |
% ----------------- |
|
|
44 |
% OPTIONS.TolZ: Termination tolerance on Z (default = 1e-3), |
|
|
45 |
% OPTIONS.TolZ must be in ]0,1[ |
|
|
46 |
% OPTIONS.MaxIter: Maximum number of iterations allowed |
|
|
47 |
% (default = 100) |
|
|
48 |
% OPTIONS.Initial: Initial value for the iterative process |
|
|
49 |
% (default = original data, Y) |
|
|
50 |
% OPTIONS.Weight: Weight function for robust smoothing: |
|
|
51 |
% 'bisquare' (default), 'talworth' or 'cauchy' |
|
|
52 |
% ----------------- |
|
|
53 |
% |
|
|
54 |
% [Z,S,EXITFLAG] = SMOOTHN(...) returns a boolean value EXITFLAG that |
|
|
55 |
% describes the exit condition of SMOOTHN: |
|
|
56 |
% 1 SMOOTHN converged. |
|
|
57 |
% 0 Maximum number of iterations was reached. |
|
|
58 |
% |
|
|
59 |
% |
|
|
60 |
% 2) Different spacing increments |
|
|
61 |
% ------------------------------- |
|
|
62 |
% SMOOTHN, by default, assumes that the spacing increments are constant |
|
|
63 |
% and equal in all the directions (i.e. dx = dy = dz = ...). This means |
|
|
64 |
% that the smoothness parameter is also similar for each direction. If |
|
|
65 |
% the increments differ from one direction to the other, it can be useful |
|
|
66 |
% to adapt these smoothness parameters. You can thus use the following |
|
|
67 |
% field in OPTIONS: |
|
|
68 |
% OPTIONS.Spacing' = [d1 d2 d3...], |
|
|
69 |
% where dI represents the spacing between points in the Ith dimension. |
|
|
70 |
% |
|
|
71 |
% Important note: d1 is the spacing increment for the first |
|
|
72 |
% non-singleton dimension (i.e. the vertical direction for matrices). |
|
|
73 |
% |
|
|
74 |
% |
|
|
75 |
% 3) REFERENCES (please refer to the two following papers) |
|
|
76 |
% ------------- |
|
|
77 |
% 1) Garcia D, Robust smoothing of gridded data in one and higher |
|
|
78 |
% dimensions with missing values. Computational Statistics & Data |
|
|
79 |
% Analysis, 2010;54:1167-1178. |
|
|
80 |
% <a |
|
|
81 |
% href="matlab:web('http://www.biomecardio.com/pageshtm/publi/csda10.pdf')">PDF download</a> |
|
|
82 |
% 2) Garcia D, A fast all-in-one method for automated post-processing of |
|
|
83 |
% PIV data. Exp Fluids, 2011;50:1247-1259. |
|
|
84 |
% <a |
|
|
85 |
% href="matlab:web('http://www.biomecardio.com/pageshtm/publi/media11.pdf')">PDF download</a> |
|
|
86 |
% |
|
|
87 |
% |
|
|
88 |
% EXAMPLES: |
|
|
89 |
% -------- |
|
|
90 |
% %--- Example #1: smooth a curve --- |
|
|
91 |
% x = linspace(0,100,2^8); |
|
|
92 |
% y = cos(x/10)+(x/50).^2 + randn(size(x))/10; |
|
|
93 |
% y([70 75 80]) = [5.5 5 6]; |
|
|
94 |
% z = smoothn(y); % Regular smoothing |
|
|
95 |
% zr = smoothn(y,'robust'); % Robust smoothing |
|
|
96 |
% subplot(121), plot(x,y,'r.',x,z,'k','LineWidth',2) |
|
|
97 |
% axis square, title('Regular smoothing') |
|
|
98 |
% subplot(122), plot(x,y,'r.',x,zr,'k','LineWidth',2) |
|
|
99 |
% axis square, title('Robust smoothing') |
|
|
100 |
% |
|
|
101 |
% %--- Example #2: smooth a surface --- |
|
|
102 |
% xp = 0:.02:1; |
|
|
103 |
% [x,y] = meshgrid(xp); |
|
|
104 |
% f = exp(x+y) + sin((x-2*y)*3); |
|
|
105 |
% fn = f + randn(size(f))*0.5; |
|
|
106 |
% fs = smoothn(fn); |
|
|
107 |
% subplot(121), surf(xp,xp,fn), zlim([0 8]), axis square |
|
|
108 |
% subplot(122), surf(xp,xp,fs), zlim([0 8]), axis square |
|
|
109 |
% |
|
|
110 |
% %--- Example #3: smooth an image with missing data --- |
|
|
111 |
% n = 256; |
|
|
112 |
% y0 = peaks(n); |
|
|
113 |
% y = y0 + randn(size(y0))*2; |
|
|
114 |
% I = randperm(n^2); |
|
|
115 |
% y(I(1:n^2*0.5)) = NaN; % lose 1/2 of data |
|
|
116 |
% y(40:90,140:190) = NaN; % create a hole |
|
|
117 |
% z = smoothn(y); % smooth data |
|
|
118 |
% subplot(2,2,1:2), imagesc(y), axis equal off |
|
|
119 |
% title('Noisy corrupt data') |
|
|
120 |
% subplot(223), imagesc(z), axis equal off |
|
|
121 |
% title('Recovered data ...') |
|
|
122 |
% subplot(224), imagesc(y0), axis equal off |
|
|
123 |
% title('... compared with the actual data') |
|
|
124 |
% |
|
|
125 |
% %--- Example #4: smooth volumetric data --- |
|
|
126 |
% [x,y,z] = meshgrid(-2:.2:2); |
|
|
127 |
% xslice = [-0.8,1]; yslice = 2; zslice = [-2,0]; |
|
|
128 |
% vn = x.*exp(-x.^2-y.^2-z.^2) + randn(size(x))*0.06; |
|
|
129 |
% subplot(121), slice(x,y,z,vn,xslice,yslice,zslice,'cubic') |
|
|
130 |
% title('Noisy data') |
|
|
131 |
% v = smoothn(vn); |
|
|
132 |
% subplot(122), slice(x,y,z,v,xslice,yslice,zslice,'cubic') |
|
|
133 |
% title('Smoothed data') |
|
|
134 |
% |
|
|
135 |
% %--- Example #5: smooth a cardioid --- |
|
|
136 |
% t = linspace(0,2*pi,1000); |
|
|
137 |
% x = 2*cos(t).*(1-cos(t)) + randn(size(t))*0.1; |
|
|
138 |
% y = 2*sin(t).*(1-cos(t)) + randn(size(t))*0.1; |
|
|
139 |
% z = smoothn({x,y}); |
|
|
140 |
% plot(x,y,'r.',z{1},z{2},'k','linewidth',2) |
|
|
141 |
% axis equal tight |
|
|
142 |
% |
|
|
143 |
% %--- Example #6: smooth a 3-D parametric curve --- |
|
|
144 |
% t = linspace(0,6*pi,1000); |
|
|
145 |
% x = sin(t) + 0.1*randn(size(t)); |
|
|
146 |
% y = cos(t) + 0.1*randn(size(t)); |
|
|
147 |
% z = t + 0.1*randn(size(t)); |
|
|
148 |
% u = smoothn({x,y,z}); |
|
|
149 |
% plot3(x,y,z,'r.',u{1},u{2},u{3},'k','linewidth',2) |
|
|
150 |
% axis tight square |
|
|
151 |
% |
|
|
152 |
% %--- Example #7: smooth a 2-D vector field --- |
|
|
153 |
% [x,y] = meshgrid(linspace(0,1,24)); |
|
|
154 |
% Vx = cos(2*pi*x+pi/2).*cos(2*pi*y); |
|
|
155 |
% Vy = sin(2*pi*x+pi/2).*sin(2*pi*y); |
|
|
156 |
% Vx = Vx + sqrt(0.05)*randn(24,24); % adding Gaussian noise |
|
|
157 |
% Vy = Vy + sqrt(0.05)*randn(24,24); % adding Gaussian noise |
|
|
158 |
% I = randperm(numel(Vx)); |
|
|
159 |
% Vx(I(1:30)) = (rand(30,1)-0.5)*5; % adding outliers |
|
|
160 |
% Vy(I(1:30)) = (rand(30,1)-0.5)*5; % adding outliers |
|
|
161 |
% Vx(I(31:60)) = NaN; % missing values |
|
|
162 |
% Vy(I(31:60)) = NaN; % missing values |
|
|
163 |
% Vs = smoothn({Vx,Vy},'robust'); % automatic smoothing |
|
|
164 |
% subplot(121), quiver(x,y,Vx,Vy,2.5), axis square |
|
|
165 |
% title('Noisy velocity field') |
|
|
166 |
% subplot(122), quiver(x,y,Vs{1},Vs{2}), axis square |
|
|
167 |
% title('Smoothed velocity field') |
|
|
168 |
% |
|
|
169 |
% %--- Example #8: smooth a 3-D vector field --- |
|
|
170 |
% load wind % original 3-D flow |
|
|
171 |
% % -- Create noisy data |
|
|
172 |
% % Gaussian noise |
|
|
173 |
% un = u + randn(size(u))*8; |
|
|
174 |
% vn = v + randn(size(v))*8; |
|
|
175 |
% wn = w + randn(size(w))*8; |
|
|
176 |
% % Add some outliers |
|
|
177 |
% I = randperm(numel(u)) < numel(u)*0.025; |
|
|
178 |
% un(I) = (rand(1,nnz(I))-0.5)*200; |
|
|
179 |
% vn(I) = (rand(1,nnz(I))-0.5)*200; |
|
|
180 |
% wn(I) = (rand(1,nnz(I))-0.5)*200; |
|
|
181 |
% % -- Visualize the noisy flow (see CONEPLOT documentation) |
|
|
182 |
% figure, title('Noisy 3-D vectorial flow') |
|
|
183 |
% xmin = min(x(:)); xmax = max(x(:)); |
|
|
184 |
% ymin = min(y(:)); ymax = max(y(:)); |
|
|
185 |
% zmin = min(z(:)); |
|
|
186 |
% daspect([2,2,1]) |
|
|
187 |
% xrange = linspace(xmin,xmax,8); |
|
|
188 |
% yrange = linspace(ymin,ymax,8); |
|
|
189 |
% zrange = 3:4:15; |
|
|
190 |
% [cx cy cz] = meshgrid(xrange,yrange,zrange); |
|
|
191 |
% k = 0.1; |
|
|
192 |
% hcones = coneplot(x,y,z,un*k,vn*k,wn*k,cx,cy,cz,0); |
|
|
193 |
% set(hcones,'FaceColor','red','EdgeColor','none') |
|
|
194 |
% hold on |
|
|
195 |
% wind_speed = sqrt(un.^2 + vn.^2 + wn.^2); |
|
|
196 |
% hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin); |
|
|
197 |
% set(hsurfaces,'FaceColor','interp','EdgeColor','none') |
|
|
198 |
% hold off |
|
|
199 |
% axis tight; view(30,40); axis off |
|
|
200 |
% camproj perspective; camzoom(1.5) |
|
|
201 |
% camlight right; lighting phong |
|
|
202 |
% set(hsurfaces,'AmbientStrength',.6) |
|
|
203 |
% set(hcones,'DiffuseStrength',.8) |
|
|
204 |
% % -- Smooth the noisy flow |
|
|
205 |
% Vs = smoothn({un,vn,wn},'robust'); |
|
|
206 |
% % -- Display the result |
|
|
207 |
% figure, title('3-D flow smoothed by SMOOTHN') |
|
|
208 |
% daspect([2,2,1]) |
|
|
209 |
% hcones = coneplot(x,y,z,Vs{1}*k,Vs{2}*k,Vs{3}*k,cx,cy,cz,0); |
|
|
210 |
% set(hcones,'FaceColor','red','EdgeColor','none') |
|
|
211 |
% hold on |
|
|
212 |
% wind_speed = sqrt(Vs{1}.^2 + Vs{2}.^2 + Vs{3}.^2); |
|
|
213 |
% hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin); |
|
|
214 |
% set(hsurfaces,'FaceColor','interp','EdgeColor','none') |
|
|
215 |
% hold off |
|
|
216 |
% axis tight; view(30,40); axis off |
|
|
217 |
% camproj perspective; camzoom(1.5) |
|
|
218 |
% camlight right; lighting phong |
|
|
219 |
% set(hsurfaces,'AmbientStrength',.6) |
|
|
220 |
% set(hcones,'DiffuseStrength',.8) |
|
|
221 |
% |
|
|
222 |
% See also SMOOTH1Q, DCTN, IDCTN. |
|
|
223 |
% |
|
|
224 |
% -- Damien Garcia -- 2009/03, revised 2014/10 |
|
|
225 |
% website: <a |
|
|
226 |
% href="matlab:web('http://www.biomecardio.com')">www.BiomeCardio.com</a> |
|
|
227 |
|
|
|
228 |
%% Check input arguments |
|
|
229 |
error(nargchk(1,5,nargin)); |
|
|
230 |
OPTIONS = struct; |
|
|
231 |
NArgIn = nargin; |
|
|
232 |
if isstruct(varargin{end}) % SMOOTHN(...,OPTIONS) |
|
|
233 |
OPTIONS = varargin{end}; |
|
|
234 |
NArgIn = NArgIn-1; |
|
|
235 |
end |
|
|
236 |
idx = cellfun(@ischar,varargin); |
|
|
237 |
if any(idx) % SMOOTHN(...,'robust',...) |
|
|
238 |
assert(sum(idx)==1 && strcmpi(varargin{idx},'robust'),... |
|
|
239 |
'Wrong syntax. Read the help text for instructions.') |
|
|
240 |
isrobust = true; |
|
|
241 |
assert(find(idx)==NArgIn,... |
|
|
242 |
'Wrong syntax. Read the help text for instructions.') |
|
|
243 |
NArgIn = NArgIn-1; |
|
|
244 |
else |
|
|
245 |
isrobust = false; |
|
|
246 |
end |
|
|
247 |
|
|
|
248 |
%% Test & prepare the variables |
|
|
249 |
%--- |
|
|
250 |
% y = array to be smoothed |
|
|
251 |
y = varargin{1}; |
|
|
252 |
if ~iscell(y), y = {y}; end |
|
|
253 |
sizy = size(y{1}); |
|
|
254 |
ny = numel(y); % number of y components |
|
|
255 |
for i = 1:ny |
|
|
256 |
assert(isequal(sizy,size(y{i})),... |
|
|
257 |
'Data arrays in Y must have the same size.') |
|
|
258 |
y{i} = double(y{i}); |
|
|
259 |
end |
|
|
260 |
noe = prod(sizy); % number of elements |
|
|
261 |
if noe==1, z = y{1}; s = []; exitflag = true; return, end |
|
|
262 |
%--- |
|
|
263 |
% Smoothness parameter and weights |
|
|
264 |
W = ones(sizy); |
|
|
265 |
s = []; |
|
|
266 |
if NArgIn==2 |
|
|
267 |
if isempty(varargin{2}) || isscalar(varargin{2}) % smoothn(y,s) |
|
|
268 |
s = varargin{2}; % smoothness parameter |
|
|
269 |
else % smoothn(y,W) |
|
|
270 |
W = varargin{2}; % weight array |
|
|
271 |
end |
|
|
272 |
elseif NArgIn==3 % smoothn(y,W,s) |
|
|
273 |
W = varargin{2}; % weight array |
|
|
274 |
s = varargin{3}; % smoothness parameter |
|
|
275 |
end |
|
|
276 |
assert(isnumeric(W),'W must be a numeric array') |
|
|
277 |
assert(isnumeric(s),'S must be a numeric scalar') |
|
|
278 |
assert(isequal(size(W),sizy),... |
|
|
279 |
'Arrays for data and weights (Y and W) must have same size.') |
|
|
280 |
assert(isempty(s) || (isscalar(s) && s>0),... |
|
|
281 |
'The smoothing parameter S must be a scalar >0') |
|
|
282 |
%--- |
|
|
283 |
% Field names in the structure OPTIONS |
|
|
284 |
OptionNames = fieldnames(OPTIONS); |
|
|
285 |
idx = ismember(OptionNames,... |
|
|
286 |
{'TolZ','MaxIter','Initial','Weight','Spacing','Order'}); |
|
|
287 |
assert(all(idx),... |
|
|
288 |
['''' OptionNames{find(~idx,1)} ''' is not a valid field name for OPTIONS.']) |
|
|
289 |
%--- |
|
|
290 |
% "Maximal number of iterations" criterion |
|
|
291 |
if ~ismember('MaxIter',OptionNames) |
|
|
292 |
OPTIONS.MaxIter = 100; % default value for MaxIter |
|
|
293 |
end |
|
|
294 |
assert(isnumeric(OPTIONS.MaxIter) && isscalar(OPTIONS.MaxIter) &&... |
|
|
295 |
OPTIONS.MaxIter>=1 && OPTIONS.MaxIter==round(OPTIONS.MaxIter),... |
|
|
296 |
'OPTIONS.MaxIter must be an integer >=1') |
|
|
297 |
%--- |
|
|
298 |
% "Tolerance on smoothed output" criterion |
|
|
299 |
if ~ismember('TolZ',OptionNames) |
|
|
300 |
OPTIONS.TolZ = 1e-3; % default value for TolZ |
|
|
301 |
end |
|
|
302 |
assert(isnumeric(OPTIONS.TolZ) && isscalar(OPTIONS.TolZ) &&... |
|
|
303 |
OPTIONS.TolZ>0 && OPTIONS.TolZ<1,'OPTIONS.TolZ must be in ]0,1[') |
|
|
304 |
%--- |
|
|
305 |
% "Initial Guess" criterion |
|
|
306 |
if ~ismember('Initial',OptionNames) |
|
|
307 |
isinitial = false; |
|
|
308 |
else |
|
|
309 |
isinitial = true; |
|
|
310 |
z0 = OPTIONS.Initial; |
|
|
311 |
if ~iscell(z0), z0 = {z0}; end |
|
|
312 |
nz0 = numel(z0); % number of y components |
|
|
313 |
assert(nz0==ny,... |
|
|
314 |
'OPTIONS.Initial must contain a valid initial guess for Z') |
|
|
315 |
for i = 1:nz0 |
|
|
316 |
assert(isequal(sizy,size(z0{i})),... |
|
|
317 |
'OPTIONS.Initial must contain a valid initial guess for Z') |
|
|
318 |
z0{i} = double(z0{i}); |
|
|
319 |
end |
|
|
320 |
end |
|
|
321 |
%--- |
|
|
322 |
% "Weight function" criterion (for robust smoothing) |
|
|
323 |
if ~ismember('Weight',OptionNames) |
|
|
324 |
OPTIONS.Weight = 'bisquare'; % default weighting function |
|
|
325 |
else |
|
|
326 |
assert(ischar(OPTIONS.Weight),... |
|
|
327 |
'A valid weight function (OPTIONS.Weight) must be chosen') |
|
|
328 |
assert(any(ismember(lower(OPTIONS.Weight),... |
|
|
329 |
{'bisquare','talworth','cauchy'})),... |
|
|
330 |
'The weight function must be ''bisquare'', ''cauchy'' or '' talworth''.') |
|
|
331 |
end |
|
|
332 |
%--- |
|
|
333 |
% "Order" criterion (by default m = 2) |
|
|
334 |
% Note: m = 0 is of course not recommended! |
|
|
335 |
if ~ismember('Order',OptionNames) |
|
|
336 |
m = 2; % order |
|
|
337 |
else |
|
|
338 |
m = OPTIONS.Order; |
|
|
339 |
if ~ismember(m,0:2); |
|
|
340 |
error('MATLAB:smoothn:IncorrectOrder',... |
|
|
341 |
'The order (OPTIONS.order) must be 0, 1 or 2.') |
|
|
342 |
end |
|
|
343 |
end |
|
|
344 |
%--- |
|
|
345 |
% "Spacing" criterion |
|
|
346 |
d = ndims(y{1}); |
|
|
347 |
if ~ismember('Spacing',OptionNames) |
|
|
348 |
dI = ones(1,d); % spacing increment |
|
|
349 |
else |
|
|
350 |
dI = OPTIONS.Spacing; |
|
|
351 |
assert(isnumeric(dI) && length(dI)==d,... |
|
|
352 |
'A valid spacing (OPTIONS.Spacing) must be chosen') |
|
|
353 |
end |
|
|
354 |
dI = dI/max(dI); |
|
|
355 |
%--- |
|
|
356 |
% Weights. Zero weights are assigned to not finite values (Inf or NaN), |
|
|
357 |
% (Inf/NaN values = missing data). |
|
|
358 |
IsFinite = isfinite(y{1}); |
|
|
359 |
for i = 2:ny, IsFinite = IsFinite & isfinite(y{i}); end |
|
|
360 |
nof = nnz(IsFinite); % number of finite elements |
|
|
361 |
W = W.*IsFinite; |
|
|
362 |
assert(all(W(:)>=0),'Weights must all be >=0') |
|
|
363 |
W = W/max(W(:)); |
|
|
364 |
%--- |
|
|
365 |
% Weighted or missing data? |
|
|
366 |
isweighted = any(W(:)<1); |
|
|
367 |
%--- |
|
|
368 |
% Automatic smoothing? |
|
|
369 |
isauto = isempty(s); |
|
|
370 |
|
|
|
371 |
|
|
|
372 |
%% Create the Lambda tensor |
|
|
373 |
%--- |
|
|
374 |
% Lambda contains the eingenvalues of the difference matrix used in this |
|
|
375 |
% penalized least squares process (see CSDA paper for details) |
|
|
376 |
d = ndims(y{1}); |
|
|
377 |
Lambda = zeros(sizy); |
|
|
378 |
for i = 1:d |
|
|
379 |
siz0 = ones(1,d); |
|
|
380 |
siz0(i) = sizy(i); |
|
|
381 |
Lambda = bsxfun(@plus,Lambda,... |
|
|
382 |
(2-2*cos(pi*(reshape(1:sizy(i),siz0)-1)/sizy(i)))/dI(i)^2); |
|
|
383 |
end |
|
|
384 |
if ~isauto, Gamma = 1./(1+s*Lambda.^m); end |
|
|
385 |
|
|
|
386 |
%% Upper and lower bound for the smoothness parameter |
|
|
387 |
% The average leverage (h) is by definition in [0 1]. Weak smoothing occurs |
|
|
388 |
% if h is close to 1, while over-smoothing appears when h is near 0. Upper |
|
|
389 |
% and lower bounds for h are given to avoid under- or over-smoothing. See |
|
|
390 |
% equation relating h to the smoothness parameter for m = 2 (Equation #12 |
|
|
391 |
% in the referenced CSDA paper). |
|
|
392 |
N = sum(sizy~=1); % tensor rank of the y-array |
|
|
393 |
hMin = 1e-6; hMax = 0.99; |
|
|
394 |
if m==0 % Not recommended. For mathematical purpose only. |
|
|
395 |
sMinBnd = 1/hMax^(1/N)-1; |
|
|
396 |
sMaxBnd = 1/hMin^(1/N)-1; |
|
|
397 |
elseif m==1 |
|
|
398 |
sMinBnd = (1/hMax^(2/N)-1)/4; |
|
|
399 |
sMaxBnd = (1/hMin^(2/N)-1)/4; |
|
|
400 |
elseif m==2 |
|
|
401 |
sMinBnd = (((1+sqrt(1+8*hMax^(2/N)))/4/hMax^(2/N))^2-1)/16; |
|
|
402 |
sMaxBnd = (((1+sqrt(1+8*hMin^(2/N)))/4/hMin^(2/N))^2-1)/16; |
|
|
403 |
end |
|
|
404 |
|
|
|
405 |
%% Initialize before iterating |
|
|
406 |
%--- |
|
|
407 |
Wtot = W; |
|
|
408 |
%--- Initial conditions for z |
|
|
409 |
if isweighted |
|
|
410 |
%--- With weighted/missing data |
|
|
411 |
% An initial guess is provided to ensure faster convergence. For that |
|
|
412 |
% purpose, a nearest neighbor interpolation followed by a coarse |
|
|
413 |
% smoothing are performed. |
|
|
414 |
%--- |
|
|
415 |
if isinitial % an initial guess (z0) has been already given |
|
|
416 |
z = z0; |
|
|
417 |
else |
|
|
418 |
z = InitialGuess(y,IsFinite); |
|
|
419 |
end |
|
|
420 |
else |
|
|
421 |
z = cell(size(y)); |
|
|
422 |
for i = 1:ny, z{i} = zeros(sizy); end |
|
|
423 |
end |
|
|
424 |
%--- |
|
|
425 |
z0 = z; |
|
|
426 |
for i = 1:ny |
|
|
427 |
y{i}(~IsFinite) = 0; % arbitrary values for missing y-data |
|
|
428 |
end |
|
|
429 |
%--- |
|
|
430 |
tol = 1; |
|
|
431 |
RobustIterativeProcess = true; |
|
|
432 |
RobustStep = 1; |
|
|
433 |
nit = 0; |
|
|
434 |
DCTy = cell(1,ny); |
|
|
435 |
vec = @(x) x(:); |
|
|
436 |
%--- Error on p. Smoothness parameter s = 10^p |
|
|
437 |
errp = 0.1; |
|
|
438 |
opt = optimset('TolX',errp); |
|
|
439 |
%--- Relaxation factor RF: to speedup convergence |
|
|
440 |
RF = 1 + 0.75*isweighted; |
|
|
441 |
|
|
|
442 |
%% Main iterative process |
|
|
443 |
%--- |
|
|
444 |
while RobustIterativeProcess |
|
|
445 |
%--- "amount" of weights (see the function GCVscore) |
|
|
446 |
aow = sum(Wtot(:))/noe; % 0 < aow <= 1 |
|
|
447 |
%--- |
|
|
448 |
while tol>OPTIONS.TolZ && nit<OPTIONS.MaxIter |
|
|
449 |
nit = nit+1; |
|
|
450 |
for i = 1:ny |
|
|
451 |
DCTy{i} = dctn(Wtot.*(y{i}-z{i})+z{i}); |
|
|
452 |
end |
|
|
453 |
if isauto && ~rem(log2(nit),1) |
|
|
454 |
%--- |
|
|
455 |
% The generalized cross-validation (GCV) method is used. |
|
|
456 |
% We seek the smoothing parameter S that minimizes the GCV |
|
|
457 |
% score i.e. S = Argmin(GCVscore). |
|
|
458 |
% Because this process is time-consuming, it is performed from |
|
|
459 |
% time to time (when the step number - nit - is a power of 2) |
|
|
460 |
%--- |
|
|
461 |
fminbnd(@gcv,log10(sMinBnd),log10(sMaxBnd),opt); |
|
|
462 |
end |
|
|
463 |
for i = 1:ny |
|
|
464 |
z{i} = RF*idctn(Gamma.*DCTy{i}) + (1-RF)*z{i}; |
|
|
465 |
end |
|
|
466 |
|
|
|
467 |
% if no weighted/missing data => tol=0 (no iteration) |
|
|
468 |
tol = isweighted*norm(vec([z0{:}]-[z{:}]))/norm(vec([z{:}])); |
|
|
469 |
|
|
|
470 |
z0 = z; % re-initialization |
|
|
471 |
end |
|
|
472 |
exitflag = nit<OPTIONS.MaxIter; |
|
|
473 |
|
|
|
474 |
if isrobust %-- Robust Smoothing: iteratively re-weighted process |
|
|
475 |
%--- average leverage |
|
|
476 |
h = 1; |
|
|
477 |
for k = 1:N |
|
|
478 |
if m==0 % not recommended - only for numerical purpose |
|
|
479 |
h0 = 1/(1+s/dI(k)^(2^m)); |
|
|
480 |
elseif m==1 |
|
|
481 |
h0 = 1/sqrt(1+4*s/dI(k)^(2^m)); |
|
|
482 |
elseif m==2 |
|
|
483 |
h0 = sqrt(1+16*s/dI(k)^(2^m)); |
|
|
484 |
h0 = sqrt(1+h0)/sqrt(2)/h0; |
|
|
485 |
else |
|
|
486 |
error('m must be 0, 1 or 2.') |
|
|
487 |
end |
|
|
488 |
h = h*h0; |
|
|
489 |
end |
|
|
490 |
%--- take robust weights into account |
|
|
491 |
Wtot = W.*RobustWeights(y,z,IsFinite,h,OPTIONS.Weight); |
|
|
492 |
%--- re-initialize for another iterative weighted process |
|
|
493 |
isweighted = true; tol = 1; nit = 0; |
|
|
494 |
%--- |
|
|
495 |
RobustStep = RobustStep+1; |
|
|
496 |
RobustIterativeProcess = RobustStep<4; % 3 robust steps are enough. |
|
|
497 |
else |
|
|
498 |
RobustIterativeProcess = false; % stop the whole process |
|
|
499 |
end |
|
|
500 |
end |
|
|
501 |
|
|
|
502 |
%% Warning messages |
|
|
503 |
%--- |
|
|
504 |
if isauto |
|
|
505 |
if abs(log10(s)-log10(sMinBnd))<errp |
|
|
506 |
warning('MATLAB:smoothn:SLowerBound',... |
|
|
507 |
['S = ' num2str(s,'%.3e') ': the lower bound for S ',... |
|
|
508 |
'has been reached. Put S as an input variable if required.']) |
|
|
509 |
elseif abs(log10(s)-log10(sMaxBnd))<errp |
|
|
510 |
warning('MATLAB:smoothn:SUpperBound',... |
|
|
511 |
['S = ' num2str(s,'%.3e') ': the upper bound for S ',... |
|
|
512 |
'has been reached. Put S as an input variable if required.']) |
|
|
513 |
end |
|
|
514 |
end |
|
|
515 |
if nargout<3 && ~exitflag |
|
|
516 |
warning('MATLAB:smoothn:MaxIter',... |
|
|
517 |
['Maximum number of iterations (' int2str(OPTIONS.MaxIter) ') has been exceeded. ',... |
|
|
518 |
'Increase MaxIter option (OPTIONS.MaxIter) or decrease TolZ (OPTIONS.TolZ) value.']) |
|
|
519 |
end |
|
|
520 |
|
|
|
521 |
if numel(z)==1, z = z{:}; end |
|
|
522 |
|
|
|
523 |
|
|
|
524 |
%% GCV score |
|
|
525 |
%--- |
|
|
526 |
function GCVscore = gcv(p) |
|
|
527 |
% Search the smoothing parameter s that minimizes the GCV score |
|
|
528 |
%--- |
|
|
529 |
s = 10^p; |
|
|
530 |
Gamma = 1./(1+s*Lambda.^m); |
|
|
531 |
%--- RSS = Residual sum-of-squares |
|
|
532 |
RSS = 0; |
|
|
533 |
if aow>0.9 % aow = 1 means that all of the data are equally weighted |
|
|
534 |
% very much faster: does not require any inverse DCT |
|
|
535 |
for kk = 1:ny |
|
|
536 |
RSS = RSS + norm(DCTy{kk}(:).*(Gamma(:)-1))^2; |
|
|
537 |
end |
|
|
538 |
else |
|
|
539 |
% take account of the weights to calculate RSS: |
|
|
540 |
for kk = 1:ny |
|
|
541 |
yhat = idctn(Gamma.*DCTy{kk}); |
|
|
542 |
RSS = RSS + norm(sqrt(Wtot(IsFinite)).*... |
|
|
543 |
(y{kk}(IsFinite)-yhat(IsFinite)))^2; |
|
|
544 |
end |
|
|
545 |
end |
|
|
546 |
%--- |
|
|
547 |
TrH = sum(Gamma(:)); |
|
|
548 |
GCVscore = RSS/nof/(1-TrH/noe)^2; |
|
|
549 |
end |
|
|
550 |
|
|
|
551 |
end |
|
|
552 |
|
|
|
553 |
function W = RobustWeights(y,z,I,h,wstr) |
|
|
554 |
% One seeks the weights for robust smoothing... |
|
|
555 |
ABS = @(x) sqrt(sum(abs(x).^2,2)); |
|
|
556 |
r = cellfun(@minus,y,z,'UniformOutput',0); % residuals |
|
|
557 |
r = cellfun(@(x) x(:),r,'UniformOutput',0); |
|
|
558 |
rI = cell2mat(cellfun(@(x) x(I),r,'UniformOutput',0)); |
|
|
559 |
MMED = median(rI); % marginal median |
|
|
560 |
AD = ABS(bsxfun(@minus,rI,MMED)); % absolute deviation |
|
|
561 |
MAD = median(AD); % median absolute deviation |
|
|
562 |
|
|
|
563 |
%-- Studentized residuals |
|
|
564 |
u = ABS(cell2mat(r))/(1.4826*MAD)/sqrt(1-h); |
|
|
565 |
u = reshape(u,size(I)); |
|
|
566 |
|
|
|
567 |
switch lower(wstr) |
|
|
568 |
case 'cauchy' |
|
|
569 |
c = 2.385; W = 1./(1+(u/c).^2); % Cauchy weights |
|
|
570 |
case 'talworth' |
|
|
571 |
c = 2.795; W = u<c; % Talworth weights |
|
|
572 |
case 'bisquare' |
|
|
573 |
c = 4.685; W = (1-(u/c).^2).^2.*((u/c)<1); % bisquare weights |
|
|
574 |
otherwise |
|
|
575 |
error('MATLAB:smoothn:IncorrectWeights',... |
|
|
576 |
'A valid weighting function must be chosen') |
|
|
577 |
end |
|
|
578 |
W(isnan(W)) = 0; |
|
|
579 |
|
|
|
580 |
% NOTE: |
|
|
581 |
% ---- |
|
|
582 |
% The RobustWeights subfunction looks complicated since we work with cell |
|
|
583 |
% arrays. For better clarity, here is how it would look like without the |
|
|
584 |
% use of cells. Much more readable, isn't it? |
|
|
585 |
% |
|
|
586 |
% function W = RobustWeights(y,z,I,h) |
|
|
587 |
% % weights for robust smoothing. |
|
|
588 |
% r = y-z; % residuals |
|
|
589 |
% MAD = median(abs(r(I)-median(r(I)))); % median absolute deviation |
|
|
590 |
% u = abs(r/(1.4826*MAD)/sqrt(1-h)); % studentized residuals |
|
|
591 |
% c = 4.685; W = (1-(u/c).^2).^2.*((u/c)<1); % bisquare weights |
|
|
592 |
% W(isnan(W)) = 0; |
|
|
593 |
% end |
|
|
594 |
|
|
|
595 |
end |
|
|
596 |
|
|
|
597 |
%% Initial Guess with weighted/missing data |
|
|
598 |
function z = InitialGuess(y,I) |
|
|
599 |
ny = numel(y); |
|
|
600 |
%-- nearest neighbor interpolation (in case of missing values) |
|
|
601 |
if any(~I(:)) |
|
|
602 |
z = cell(size(y)); |
|
|
603 |
if license('test','image_toolbox') |
|
|
604 |
for i = 1:ny |
|
|
605 |
[z{i},L] = bwdist(I); |
|
|
606 |
z{i} = y{i}; |
|
|
607 |
z{i}(~I) = y{i}(L(~I)); |
|
|
608 |
end |
|
|
609 |
else |
|
|
610 |
% If BWDIST does not exist, NaN values are all replaced with the |
|
|
611 |
% same scalar. The initial guess is not optimal and a warning |
|
|
612 |
% message thus appears. |
|
|
613 |
z = y; |
|
|
614 |
for i = 1:ny |
|
|
615 |
z{i}(~I) = mean(y{i}(I)); |
|
|
616 |
end |
|
|
617 |
warning('MATLAB:smoothn:InitialGuess',... |
|
|
618 |
['BWDIST (Image Processing Toolbox) does not exist. ',... |
|
|
619 |
'The initial guess may not be optimal; additional',... |
|
|
620 |
' iterations can thus be required to ensure complete',... |
|
|
621 |
' convergence. Increase ''MaxIter'' criterion if necessary.']) |
|
|
622 |
end |
|
|
623 |
else |
|
|
624 |
z = y; |
|
|
625 |
end |
|
|
626 |
%-- coarse fast smoothing using one-tenth of the DCT coefficients |
|
|
627 |
siz = size(z{1}); |
|
|
628 |
z = cellfun(@(x) dctn(x),z,'UniformOutput',0); |
|
|
629 |
for k = 1:ndims(z{1}) |
|
|
630 |
for i = 1:ny |
|
|
631 |
z{i}(ceil(siz(k)/10)+1:end,:) = 0; |
|
|
632 |
z{i} = reshape(z{i},circshift(siz,[0 1-k])); |
|
|
633 |
z{i} = shiftdim(z{i},1); |
|
|
634 |
end |
|
|
635 |
end |
|
|
636 |
z = cellfun(@(x) idctn(x),z,'UniformOutput',0); |
|
|
637 |
end |
|
|
638 |
|
|
|
639 |
%% DCTN |
|
|
640 |
function y = dctn(y) |
|
|
641 |
|
|
|
642 |
%DCTN N-D discrete cosine transform. |
|
|
643 |
% Y = DCTN(X) returns the discrete cosine transform of X. The array Y is |
|
|
644 |
% the same size as X and contains the discrete cosine transform |
|
|
645 |
% coefficients. This transform can be inverted using IDCTN. |
|
|
646 |
% |
|
|
647 |
% Reference |
|
|
648 |
% --------- |
|
|
649 |
% Narasimha M. et al, On the computation of the discrete cosine |
|
|
650 |
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936. |
|
|
651 |
% |
|
|
652 |
% Example |
|
|
653 |
% ------- |
|
|
654 |
% RGB = imread('autumn.tif'); |
|
|
655 |
% I = rgb2gray(RGB); |
|
|
656 |
% J = dctn(I); |
|
|
657 |
% imshow(log(abs(J)),[]), colormap(jet), colorbar |
|
|
658 |
% |
|
|
659 |
% The commands below set values less than magnitude 10 in the DCT matrix |
|
|
660 |
% to zero, then reconstruct the image using the inverse DCT. |
|
|
661 |
% |
|
|
662 |
% J(abs(J)<10) = 0; |
|
|
663 |
% K = idctn(J); |
|
|
664 |
% figure, imshow(I) |
|
|
665 |
% figure, imshow(K,[0 255]) |
|
|
666 |
% |
|
|
667 |
% -- Damien Garcia -- 2008/06, revised 2011/11 |
|
|
668 |
% -- www.BiomeCardio.com -- |
|
|
669 |
|
|
|
670 |
y = double(y); |
|
|
671 |
sizy = size(y); |
|
|
672 |
y = squeeze(y); |
|
|
673 |
dimy = ndims(y); |
|
|
674 |
|
|
|
675 |
% Some modifications are required if Y is a vector |
|
|
676 |
if isvector(y) |
|
|
677 |
dimy = 1; |
|
|
678 |
if size(y,1)==1, y = y.'; end |
|
|
679 |
end |
|
|
680 |
|
|
|
681 |
% Weighting vectors |
|
|
682 |
w = cell(1,dimy); |
|
|
683 |
for dim = 1:dimy |
|
|
684 |
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim); |
|
|
685 |
w{dim} = exp(1i*(0:n-1)'*pi/2/n); |
|
|
686 |
end |
|
|
687 |
|
|
|
688 |
% --- DCT algorithm --- |
|
|
689 |
if ~isreal(y) |
|
|
690 |
y = complex(dctn(real(y)),dctn(imag(y))); |
|
|
691 |
else |
|
|
692 |
for dim = 1:dimy |
|
|
693 |
siz = size(y); |
|
|
694 |
n = siz(1); |
|
|
695 |
y = y([1:2:n 2*floor(n/2):-2:2],:); |
|
|
696 |
y = reshape(y,n,[]); |
|
|
697 |
y = y*sqrt(2*n); |
|
|
698 |
y = ifft(y,[],1); |
|
|
699 |
y = bsxfun(@times,y,w{dim}); |
|
|
700 |
y = real(y); |
|
|
701 |
y(1,:) = y(1,:)/sqrt(2); |
|
|
702 |
y = reshape(y,siz); |
|
|
703 |
y = shiftdim(y,1); |
|
|
704 |
end |
|
|
705 |
end |
|
|
706 |
|
|
|
707 |
y = reshape(y,sizy); |
|
|
708 |
|
|
|
709 |
end |
|
|
710 |
|
|
|
711 |
%% IDCTN |
|
|
712 |
function y = idctn(y) |
|
|
713 |
|
|
|
714 |
%IDCTN N-D inverse discrete cosine transform. |
|
|
715 |
% X = IDCTN(Y) inverts the N-D DCT transform, returning the original |
|
|
716 |
% array if Y was obtained using Y = DCTN(X). |
|
|
717 |
% |
|
|
718 |
% Reference |
|
|
719 |
% --------- |
|
|
720 |
% Narasimha M. et al, On the computation of the discrete cosine |
|
|
721 |
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936. |
|
|
722 |
% |
|
|
723 |
% Example |
|
|
724 |
% ------- |
|
|
725 |
% RGB = imread('autumn.tif'); |
|
|
726 |
% I = rgb2gray(RGB); |
|
|
727 |
% J = dctn(I); |
|
|
728 |
% imshow(log(abs(J)),[]), colormap(jet), colorbar |
|
|
729 |
% |
|
|
730 |
% The commands below set values less than magnitude 10 in the DCT matrix |
|
|
731 |
% to zero, then reconstruct the image using the inverse DCT. |
|
|
732 |
% |
|
|
733 |
% J(abs(J)<10) = 0; |
|
|
734 |
% K = idctn(J); |
|
|
735 |
% figure, imshow(I) |
|
|
736 |
% figure, imshow(K,[0 255]) |
|
|
737 |
% |
|
|
738 |
% See also DCTN, IDSTN, IDCT, IDCT2, IDCT3. |
|
|
739 |
% |
|
|
740 |
% -- Damien Garcia -- 2009/04, revised 2011/11 |
|
|
741 |
% -- www.BiomeCardio.com -- |
|
|
742 |
|
|
|
743 |
y = double(y); |
|
|
744 |
sizy = size(y); |
|
|
745 |
y = squeeze(y); |
|
|
746 |
dimy = ndims(y); |
|
|
747 |
|
|
|
748 |
% Some modifications are required if Y is a vector |
|
|
749 |
if isvector(y) |
|
|
750 |
dimy = 1; |
|
|
751 |
if size(y,1)==1 |
|
|
752 |
y = y.'; |
|
|
753 |
end |
|
|
754 |
end |
|
|
755 |
|
|
|
756 |
% Weighing vectors |
|
|
757 |
w = cell(1,dimy); |
|
|
758 |
for dim = 1:dimy |
|
|
759 |
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim); |
|
|
760 |
w{dim} = exp(1i*(0:n-1)'*pi/2/n); |
|
|
761 |
end |
|
|
762 |
|
|
|
763 |
% --- IDCT algorithm --- |
|
|
764 |
if ~isreal(y) |
|
|
765 |
y = complex(idctn(real(y)),idctn(imag(y))); |
|
|
766 |
else |
|
|
767 |
for dim = 1:dimy |
|
|
768 |
siz = size(y); |
|
|
769 |
n = siz(1); |
|
|
770 |
y = reshape(y,n,[]); |
|
|
771 |
y = bsxfun(@times,y,w{dim}); |
|
|
772 |
y(1,:) = y(1,:)/sqrt(2); |
|
|
773 |
y = ifft(y,[],1); |
|
|
774 |
y = real(y*sqrt(2*n)); |
|
|
775 |
I = (1:n)*0.5+0.5; |
|
|
776 |
I(2:2:end) = n-I(1:2:end-1)+1; |
|
|
777 |
y = y(I,:); |
|
|
778 |
y = reshape(y,siz); |
|
|
779 |
y = shiftdim(y,1); |
|
|
780 |
end |
|
|
781 |
end |
|
|
782 |
|
|
|
783 |
y = reshape(y,sizy); |
|
|
784 |
|
|
|
785 |
end |
|
|
786 |
|
|
|
787 |
|
|
|
788 |
%% ----------------------------------------------- |
|
|
789 |
% Simplified SMOOTHN function for better clarity. |
|
|
790 |
% ----------------------------------------------- |
|
|
791 |
% The following function works with scalar and complex N-D arrays. |
|
|
792 |
|
|
|
793 |
%{ |
|
|
794 |
function z = ezsmoothn(y) |
|
|
795 |
|
|
|
796 |
sizy = size(y); |
|
|
797 |
n = prod(sizy); |
|
|
798 |
N = sum(sizy~=1); |
|
|
799 |
|
|
|
800 |
Lambda = zeros(sizy); |
|
|
801 |
d = ndims(y); |
|
|
802 |
for i = 1:d |
|
|
803 |
siz0 = ones(1,d); |
|
|
804 |
siz0(i) = sizy(i); |
|
|
805 |
Lambda = bsxfun(@plus,Lambda,... |
|
|
806 |
2-2*cos(pi*(reshape(1:sizy(i),siz0)-1)/sizy(i))); |
|
|
807 |
end |
|
|
808 |
|
|
|
809 |
W = ones(sizy); |
|
|
810 |
zz = y; |
|
|
811 |
for k = 1:4 |
|
|
812 |
tol = Inf; |
|
|
813 |
while tol>1e-3 |
|
|
814 |
DCTy = dctn(W.*(y-zz)+zz); |
|
|
815 |
fminbnd(@GCVscore,-10,30); |
|
|
816 |
tol = norm(zz(:)-z(:))/norm(z(:)); |
|
|
817 |
zz = z; |
|
|
818 |
end |
|
|
819 |
tmp = sqrt(1+16*s); |
|
|
820 |
h = (sqrt(1+tmp)/sqrt(2)/tmp)^N; |
|
|
821 |
W = bisquare(y-z,h); |
|
|
822 |
end |
|
|
823 |
function GCVs = GCVscore(p) |
|
|
824 |
s = 10^p; |
|
|
825 |
Gamma = 1./(1+s*Lambda.^2); |
|
|
826 |
z = idctn(Gamma.*DCTy); |
|
|
827 |
RSS = norm(sqrt(W(:)).*(y(:)-z(:)))^2; |
|
|
828 |
TrH = sum(Gamma(:)); |
|
|
829 |
GCVs = RSS/n/(1-TrH/n)^2; |
|
|
830 |
end |
|
|
831 |
end |
|
|
832 |
|
|
|
833 |
function W = bisquare(r,h) |
|
|
834 |
MAD = median(abs(r(:)-median(r(:)))); |
|
|
835 |
u = abs(r/(1.4826*MAD)/sqrt(1-h)); |
|
|
836 |
W = (1-(u/4.685).^2).^2.*((u/4.685)<1); |
|
|
837 |
end |
|
|
838 |
|
|
|
839 |
%} |