|
a |
|
b/combinedDeepLearningActiveContour/functions/sampleIMAGES.m |
|
|
1 |
function patches = sampleIMAGES(IMAGES,patchsize,norm_ena) |
|
|
2 |
% sampleIMAGES |
|
|
3 |
% inputs |
|
|
4 |
% numpatches: for example 1E4 |
|
|
5 |
% patchsize% for example 8*8 |
|
|
6 |
% IMAGES: images in a 3D matrix |
|
|
7 |
% output |
|
|
8 |
% patches % a vector of randomly chosen patches |
|
|
9 |
if nargin==2 |
|
|
10 |
norm_ena=1; |
|
|
11 |
end |
|
|
12 |
visibleSize = patchsize*patchsize; % number of input units |
|
|
13 |
|
|
|
14 |
% get size and number of images |
|
|
15 |
[xn, yn, zn]=size(IMAGES); |
|
|
16 |
|
|
|
17 |
scale=patchsize/xn; |
|
|
18 |
imgs = imresize(IMAGES, scale); |
|
|
19 |
patches=(reshape(imgs,visibleSize,zn)); |
|
|
20 |
|
|
|
21 |
%% --------------------------------------------------------------- |
|
|
22 |
% For the autoencoder to work well we need to normalize the data |
|
|
23 |
% Specifically, since the output of the network is bounded between [0,1] |
|
|
24 |
% (due to the sigmoid activation function), we have to make sure |
|
|
25 |
% the range of pixel values is also bounded between [0,1] |
|
|
26 |
if norm_ena==1 |
|
|
27 |
patches = normalizeData(patches); |
|
|
28 |
end |
|
|
29 |
end |
|
|
30 |
|
|
|
31 |
%% --------------------------------------------------------------- |
|
|
32 |
function patches = normalizeData(patches) |
|
|
33 |
|
|
|
34 |
% Squash data to [0.1, 0.9] since we use sigmoid as the activation |
|
|
35 |
% function in the output layer |
|
|
36 |
|
|
|
37 |
% Remove DC (mean of images). |
|
|
38 |
patches = bsxfun(@minus, patches, mean(patches)); |
|
|
39 |
|
|
|
40 |
% Truncate to +/-3 standard deviations and scale to -1 to 1 |
|
|
41 |
pstd = 3 * std(patches(:)); |
|
|
42 |
patches = max(min(patches, pstd), -pstd) / pstd; |
|
|
43 |
|
|
|
44 |
% Rescale from [-1,1] to [0.1,0.9] |
|
|
45 |
patches = (patches + 1) * 0.4 + 0.1; |
|
|
46 |
|
|
|
47 |
end |