Download this file

34 lines (24 with data), 1.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function [pred] = mrPredict(mrModel, data)
% mrModel - model trained using mrTrain
% data - the N x M input matrix, where each column data(:, i) corresponds to
% a single test set
%
% Your code should produce the prediction matrix
% pred, where pred(i) is argmax_c P(y(c) | x(i)).
% Unroll the parameters from theta
theta = mrModel.optTheta; % this provides a numClasses x inputSize matrix
pred = zeros(1, size(data, 2));
%% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute pred using theta assuming that the labels start
% from 1.
z=theta*data;
pred=sigmoid(z)>.5;
% ---------------------------------------------------------------------
end
%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients. This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)).
function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end