[903821]: / train.py

Download this file

141 lines (115 with data), 5.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import torch
import argparse
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from torchvision import transforms
from networks.vnet import VNet
from loss import Loss,cal_dice
from dataloaders.la_heart import LAHeart, RandomCrop, CenterCrop, RandomRotFlip, ToTensor
def train_loop(model, optimizer, criterion, train_loader, device):
model.train()
running_loss = 0
pbar = tqdm(train_loader)
dice_train = 0
for sampled_batch in pbar:
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.to(device), label_batch.to(device)
# print(volume_batch.shape,label_batch.shape)
outputs = model(volume_batch)
# print(outputs.shape)
loss = criterion(outputs, label_batch)
dice = cal_dice(outputs, label_batch)
dice_train += dice.item()
pbar.set_postfix(loss="{:.3f}".format(loss.item()), dice="{:.3f}".format(dice.item()))
running_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = running_loss / len(train_loader)
dice = dice_train / len(train_loader)
return {'loss': loss, 'dice': dice}
def eval_loop(model, criterion, valid_loader, device):
model.eval()
running_loss = 0
pbar = tqdm(valid_loader)
dice_valid = 0
with torch.no_grad():
for sampled_batch in pbar:
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.to(device), label_batch.to(device)
outputs = model(volume_batch)
loss = criterion(outputs, label_batch)
dice = cal_dice(outputs, label_batch)
running_loss += loss.item()
dice_valid += dice.item()
pbar.set_postfix(loss="{:.3f}".format(loss.item()), dice="{:.3f}".format(dice.item()))
loss = running_loss / len(valid_loader)
dice = dice_valid / len(valid_loader)
return {'loss': loss, 'dice': dice}
def train(args, model, optimizer, criterion, train_loader, valid_loader, epochs,
device, train_log, loss_min=999.0):
for e in range(epochs):
# train for epoch
train_metrics = train_loop(model, optimizer, criterion, train_loader, device)
valid_metrics = eval_loop(model, criterion, valid_loader, device)
# eval for epoch
info1 = "Epoch:[{}/{}] train_loss: {:.3f} valid_loss: {:.3f}".format(e + 1, epochs, train_metrics["loss"],
valid_metrics['loss'])
info2 = "train_dice: {:.3f} valid_dice: {:.3f}".format(train_metrics['dice'], valid_metrics['dice'])
print(info1 + '\n' + info2)
with open(train_log, 'a') as f:
f.write(info1 + '\n' + info2 + '\n')
if valid_metrics['loss'] < loss_min:
loss_min = valid_metrics['loss']
torch.save(model.state_dict(), args.save_path)
print("Finished Training!")
def main(args):
torch.manual_seed(args.seed) # 为CPU设置种子用于生成随机数,以使得结果是确定的
torch.cuda.manual_seed_all(args.seed) # 为所有的GPU设置种子,以使得结果是确定的
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# data info
db_train = LAHeart(base_dir=args.train_path,
split='train',
transform=transforms.Compose([
RandomRotFlip(),
RandomCrop(args.patch_size),
ToTensor(),
]))
db_test = LAHeart(base_dir=args.train_path,
split='test',
transform=transforms.Compose([
CenterCrop(args.patch_size),
ToTensor()
]))
print('Using {} images for training, {} images for testing.'.format(len(db_train), len(db_test)))
trainloader = DataLoader(db_train, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True,
drop_last=True)
testloader = DataLoader(db_test, batch_size=1, num_workers=4, pin_memory=True)
model = VNet(n_channels=1,n_classes=args.num_classes, normalization='batchnorm', has_dropout=True).to(device)
criterion = Loss(n_classes=args.num_classes).to(device)
optimizer = optim.SGD(model.parameters(), momentum=0.9, lr=args.lr, weight_decay=1e-4)
# 加载训练模型
if os.path.exists(args.weight_path):
weight_dict = torch.load(args.weight_path, map_location=device)
model.load_state_dict(weight_dict)
print('Successfully loading checkpoint.')
train(args, model, optimizer, criterion, trainloader, testloader, args.epochs, device, train_log=args.train_log)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num_classes', type=int, default=2)
parser.add_argument('--seed', type=int, default=21)
parser.add_argument('--epochs', type=int, default=160)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--patch_size', type=float, default=(112, 112, 80))
parser.add_argument('--train_path', type=str, default='/***data_set/LASet/data')
parser.add_argument('--train_log', type=str, default='results/VNet_sup.txt')
parser.add_argument('--weight_path', type=str, default='results/VNet_sup.pth') # 加载
parser.add_argument('--save_path', type=str, default='results/VNet_sup.pth') # 保存
args = parser.parse_args()
main(args)