[903821]: / networks / unet_urpc.py

Download this file

163 lines (125 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn as nn
import torch.nn.functional as F
class UnetDsv3(nn.Module):
def __init__(self, in_size, out_size, scale_factor):
super(UnetDsv3, self).__init__()
self.dsv = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size=1, stride=1, padding=0),
nn.Upsample(scale_factor=scale_factor, mode='trilinear'), )
def forward(self, input):
return self.dsv(input)
class UnetUp3_CT(nn.Module):
def __init__(self, in_size, out_size, is_batchnorm=True):
super(UnetUp3_CT, self).__init__()
self.conv = UnetConv3(in_size + out_size, out_size, is_batchnorm, kernel_size=(3,3,3), padding_size=(1,1,1))
self.up = nn.Upsample(scale_factor=(2, 2, 2), mode='trilinear')
def forward(self, inputs1, inputs2):
outputs2 = self.up(inputs2)
offset = outputs2.size()[2] - inputs1.size()[2]
padding = 2 * [offset // 2, offset // 2, 0]
outputs1 = F.pad(inputs1, padding)
return self.conv(torch.cat([outputs1, outputs2], 1))
class UnetUp3(nn.Module):
def __init__(self, in_size, out_size, is_deconv, is_batchnorm=True):
super(UnetUp3, self).__init__()
if is_deconv:
self.conv = UnetConv3(in_size, out_size, is_batchnorm)
self.up = nn.ConvTranspose3d(in_size, out_size, kernel_size=(4,4,1), stride=(2,2,1), padding=(1,1,0))
else:
self.conv = UnetConv3(in_size+out_size, out_size, is_batchnorm)
self.up = nn.Upsample(scale_factor=(2, 2, 1), mode='trilinear')
def forward(self, inputs1, inputs2):
outputs2 = self.up(inputs2)
offset = outputs2.size()[2] - inputs1.size()[2]
padding = 2 * [offset // 2, offset // 2, 0]
outputs1 = F.pad(inputs1, padding)
return self.conv(torch.cat([outputs1, outputs2], 1))
class UnetConv3(nn.Module):
def __init__(self, in_size, out_size, is_batchnorm, kernel_size=(3,3,1), padding_size=(1,1,0), init_stride=(1,1,1)):
super(UnetConv3, self).__init__()
if is_batchnorm:
self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size),
nn.InstanceNorm3d(out_size),
nn.ReLU(inplace=True),)
self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size),
nn.InstanceNorm3d(out_size),
nn.ReLU(inplace=True),)
else:
self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size),
nn.ReLU(inplace=True),)
self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size),
nn.ReLU(inplace=True),)
def forward(self, inputs):
outputs = self.conv1(inputs)
outputs = self.conv2(outputs)
return outputs
class unet_3D_dv_semi(nn.Module):
def __init__(self, feature_scale=4, n_classes=21, is_deconv=True, in_channels=3, is_batchnorm=True):
super(unet_3D_dv_semi, self).__init__()
self.is_deconv = is_deconv
self.in_channels = in_channels
self.is_batchnorm = is_batchnorm
self.feature_scale = feature_scale
filters = [64, 128, 256, 512, 1024]
filters = [int(x / self.feature_scale) for x in filters]
# downsampling
self.conv1 = UnetConv3(self.in_channels, filters[0], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool1 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.conv2 = UnetConv3(filters[0], filters[1], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool2 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.conv3 = UnetConv3(filters[1], filters[2], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool3 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.conv4 = UnetConv3(filters[2], filters[3], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool4 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.center = UnetConv3(filters[3], filters[4], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
# upsampling
self.up_concat4 = UnetUp3_CT(filters[4], filters[3], is_batchnorm)
self.up_concat3 = UnetUp3_CT(filters[3], filters[2], is_batchnorm)
self.up_concat2 = UnetUp3_CT(filters[2], filters[1], is_batchnorm)
self.up_concat1 = UnetUp3_CT(filters[1], filters[0], is_batchnorm)
# deep supervision
self.dsv4 = UnetDsv3(
in_size=filters[3], out_size=n_classes, scale_factor=8)
self.dsv3 = UnetDsv3(
in_size=filters[2], out_size=n_classes, scale_factor=4)
self.dsv2 = UnetDsv3(
in_size=filters[1], out_size=n_classes, scale_factor=2)
self.dsv1 = nn.Conv3d(
in_channels=filters[0], out_channels=n_classes, kernel_size=1)
self.dropout1 = nn.Dropout3d(p=0.5)
self.dropout2 = nn.Dropout3d(p=0.3)
self.dropout3 = nn.Dropout3d(p=0.2)
self.dropout4 = nn.Dropout3d(p=0.1)
def forward(self, inputs):
conv1 = self.conv1(inputs)
maxpool1 = self.maxpool1(conv1)
conv2 = self.conv2(maxpool1)
maxpool2 = self.maxpool2(conv2)
conv3 = self.conv3(maxpool2)
maxpool3 = self.maxpool3(conv3)
conv4 = self.conv4(maxpool3)
maxpool4 = self.maxpool4(conv4)
center = self.center(maxpool4)
up4 = self.up_concat4(conv4, center)
up4 = self.dropout1(up4)
up3 = self.up_concat3(conv3, up4)
up3 = self.dropout2(up3)
up2 = self.up_concat2(conv2, up3)
up2 = self.dropout3(up2)
up1 = self.up_concat1(conv1, up2)
up1 = self.dropout4(up1)
# Deep Supervision
dsv4 = self.dsv4(up4)
dsv3 = self.dsv3(up3)
dsv2 = self.dsv2(up2)
dsv1 = self.dsv1(up1)
return dsv1, dsv2, dsv3, dsv4
@staticmethod
def apply_argmax_softmax(pred):
log_p = F.softmax(pred, dim=1)
return log_p