import torch
import torch.nn as nn
import torch.nn.functional as F
class UnetDsv3(nn.Module):
def __init__(self, in_size, out_size, scale_factor):
super(UnetDsv3, self).__init__()
self.dsv = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size=1, stride=1, padding=0),
nn.Upsample(scale_factor=scale_factor, mode='trilinear'), )
def forward(self, input):
return self.dsv(input)
class UnetUp3_CT(nn.Module):
def __init__(self, in_size, out_size, is_batchnorm=True):
super(UnetUp3_CT, self).__init__()
self.conv = UnetConv3(in_size + out_size, out_size, is_batchnorm, kernel_size=(3,3,3), padding_size=(1,1,1))
self.up = nn.Upsample(scale_factor=(2, 2, 2), mode='trilinear')
def forward(self, inputs1, inputs2):
outputs2 = self.up(inputs2)
offset = outputs2.size()[2] - inputs1.size()[2]
padding = 2 * [offset // 2, offset // 2, 0]
outputs1 = F.pad(inputs1, padding)
return self.conv(torch.cat([outputs1, outputs2], 1))
class UnetUp3(nn.Module):
def __init__(self, in_size, out_size, is_deconv, is_batchnorm=True):
super(UnetUp3, self).__init__()
if is_deconv:
self.conv = UnetConv3(in_size, out_size, is_batchnorm)
self.up = nn.ConvTranspose3d(in_size, out_size, kernel_size=(4,4,1), stride=(2,2,1), padding=(1,1,0))
else:
self.conv = UnetConv3(in_size+out_size, out_size, is_batchnorm)
self.up = nn.Upsample(scale_factor=(2, 2, 1), mode='trilinear')
def forward(self, inputs1, inputs2):
outputs2 = self.up(inputs2)
offset = outputs2.size()[2] - inputs1.size()[2]
padding = 2 * [offset // 2, offset // 2, 0]
outputs1 = F.pad(inputs1, padding)
return self.conv(torch.cat([outputs1, outputs2], 1))
class UnetConv3(nn.Module):
def __init__(self, in_size, out_size, is_batchnorm, kernel_size=(3,3,1), padding_size=(1,1,0), init_stride=(1,1,1)):
super(UnetConv3, self).__init__()
if is_batchnorm:
self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size),
nn.InstanceNorm3d(out_size),
nn.ReLU(inplace=True),)
self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size),
nn.InstanceNorm3d(out_size),
nn.ReLU(inplace=True),)
else:
self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size),
nn.ReLU(inplace=True),)
self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size),
nn.ReLU(inplace=True),)
def forward(self, inputs):
outputs = self.conv1(inputs)
outputs = self.conv2(outputs)
return outputs
class unet_3D_dv_semi(nn.Module):
def __init__(self, feature_scale=4, n_classes=21, is_deconv=True, in_channels=3, is_batchnorm=True):
super(unet_3D_dv_semi, self).__init__()
self.is_deconv = is_deconv
self.in_channels = in_channels
self.is_batchnorm = is_batchnorm
self.feature_scale = feature_scale
filters = [64, 128, 256, 512, 1024]
filters = [int(x / self.feature_scale) for x in filters]
# downsampling
self.conv1 = UnetConv3(self.in_channels, filters[0], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool1 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.conv2 = UnetConv3(filters[0], filters[1], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool2 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.conv3 = UnetConv3(filters[1], filters[2], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool3 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.conv4 = UnetConv3(filters[2], filters[3], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
self.maxpool4 = nn.MaxPool3d(kernel_size=(2, 2, 2))
self.center = UnetConv3(filters[3], filters[4], self.is_batchnorm, kernel_size=(
3, 3, 3), padding_size=(1, 1, 1))
# upsampling
self.up_concat4 = UnetUp3_CT(filters[4], filters[3], is_batchnorm)
self.up_concat3 = UnetUp3_CT(filters[3], filters[2], is_batchnorm)
self.up_concat2 = UnetUp3_CT(filters[2], filters[1], is_batchnorm)
self.up_concat1 = UnetUp3_CT(filters[1], filters[0], is_batchnorm)
# deep supervision
self.dsv4 = UnetDsv3(
in_size=filters[3], out_size=n_classes, scale_factor=8)
self.dsv3 = UnetDsv3(
in_size=filters[2], out_size=n_classes, scale_factor=4)
self.dsv2 = UnetDsv3(
in_size=filters[1], out_size=n_classes, scale_factor=2)
self.dsv1 = nn.Conv3d(
in_channels=filters[0], out_channels=n_classes, kernel_size=1)
self.dropout1 = nn.Dropout3d(p=0.5)
self.dropout2 = nn.Dropout3d(p=0.3)
self.dropout3 = nn.Dropout3d(p=0.2)
self.dropout4 = nn.Dropout3d(p=0.1)
def forward(self, inputs):
conv1 = self.conv1(inputs)
maxpool1 = self.maxpool1(conv1)
conv2 = self.conv2(maxpool1)
maxpool2 = self.maxpool2(conv2)
conv3 = self.conv3(maxpool2)
maxpool3 = self.maxpool3(conv3)
conv4 = self.conv4(maxpool3)
maxpool4 = self.maxpool4(conv4)
center = self.center(maxpool4)
up4 = self.up_concat4(conv4, center)
up4 = self.dropout1(up4)
up3 = self.up_concat3(conv3, up4)
up3 = self.dropout2(up3)
up2 = self.up_concat2(conv2, up3)
up2 = self.dropout3(up2)
up1 = self.up_concat1(conv1, up2)
up1 = self.dropout4(up1)
# Deep Supervision
dsv4 = self.dsv4(up4)
dsv3 = self.dsv3(up3)
dsv2 = self.dsv2(up2)
dsv1 = self.dsv1(up1)
return dsv1, dsv2, dsv3, dsv4
@staticmethod
def apply_argmax_softmax(pred):
log_p = F.softmax(pred, dim=1)
return log_p