import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch
class conv_block(nn.Module):
"""
Convolution Block
"""
def __init__(self, in_ch, out_ch):
super(conv_block, self).__init__()
self.conv = nn.Sequential(
nn.Conv3d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm3d(out_ch),
nn.ReLU(inplace=True),
nn.Conv3d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm3d(out_ch),
nn.ReLU(inplace=True))
def forward(self, x):
x = self.conv(x)
return x
class up_conv(nn.Module):
"""
Up Convolution Block
"""
def __init__(self, in_ch, out_ch):
super(up_conv, self).__init__()
self.up = nn.Sequential(
nn.Upsample(scale_factor=2,mode='trilinear'),
nn.Conv3d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm3d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.up(x)
return x
class AttentionBlock(nn.Module):
def __init__(self, in_channels, skip_channels, mid_channels):
super(AttentionBlock, self).__init__()
self.W_skip = nn.Sequential(nn.Conv3d(skip_channels, mid_channels, kernel_size=1),
nn.BatchNorm3d(mid_channels))
self.W_x = nn.Sequential(nn.Conv3d(in_channels, mid_channels, kernel_size=1),
nn.BatchNorm3d(mid_channels))
self.psi = nn.Sequential(nn.Conv3d(mid_channels, 1, kernel_size=1),
nn.BatchNorm3d(1),
nn.Sigmoid())
def forward(self, x_skip, x):
x_skip = self.W_skip(x_skip)
x = self.W_x(x)
out = self.psi(nn.ReLU(inplace=True)(x_skip + x))
return out * x_skip
class AttentionUp(nn.Module):
def __init__(self, in_ch, out_ch):
super(AttentionUp, self).__init__()
self.attention = AttentionBlock(in_ch, out_ch, out_ch)
self.conv1 = conv_block(in_ch+out_ch, out_ch)
def forward(self, x, x_skip):
# note : x_skip is the skip connection and x is the input from the previous block
x = nn.functional.interpolate(x, x_skip.shape[2:], mode='trilinear', align_corners=False)
x_attention = self.attention(x_skip, x)
# stack their channels to feed to both convolution blocks
x = torch.cat((x, x_attention), dim=1)
x = self.conv1(x)
return x
class AttentionUNet(nn.Module):
def __init__(self, in_ch=3, out_ch=1):
super(AttentionUNet, self).__init__()
n1 = 16
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16]
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
self.Maxpool4 = nn.MaxPool3d(kernel_size=(2,2,1), stride=(2,2,1))
self.Conv1 = conv_block(in_ch, filters[0])
self.Conv2 = conv_block(filters[0], filters[1])
self.Conv3 = conv_block(filters[1], filters[2])
self.Conv4 = conv_block(filters[2], filters[3])
self.Conv5 = conv_block(filters[3], filters[4])
self.Up_conv5 = AttentionUp(filters[4], filters[3])
self.Up_conv4 = AttentionUp(filters[3], filters[2])
self.Up_conv3 = AttentionUp(filters[2], filters[1])
self.Up_conv2 = AttentionUp(filters[1], filters[0])
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
def forward(self, x):
e1 = self.Conv1(x)
e2 = self.Maxpool1(e1)
e2 = self.Conv2(e2)
e3 = self.Maxpool2(e2)
e3 = self.Conv3(e3)
e4 = self.Maxpool3(e3)
e4 = self.Conv4(e4)
e5 = self.Maxpool4(e4)
e5 = self.Conv5(e5)
d4 = self.Up_conv5(e5,e4)
d3 = self.Up_conv4(d4,e3)
d2 = self.Up_conv3(d3,e2)
d1 = self.Up_conv2(d2,e1)
out = self.Conv(d1)
return out
if __name__ == '__main__':
x = torch.randn(2,1,96,96,48)
model = AttentionUNet(in_ch=1,out_ch=2)
y = model(x)
print(y.shape)