import os
import argparse
import torch
from networks.unet_urpc import unet_3D_dv_semi
from utils.test_patch import test_all_case
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', type=str, default='LA', help='dataset_name')
parser.add_argument('--root_path', type=str, default='/***/data_set/LASet/data/', help='Name of Experiment')
parser.add_argument('--exp', type=str, default='vnet', help='exp_name')
parser.add_argument('--model', type=str, default='URPC', help='model_name')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use')
parser.add_argument('--detail', type=int, default=1, help='print metrics for every samples?')
parser.add_argument('--labelnum', type=int, default=25, help='labeled data')
parser.add_argument('--nms', type=int, default=0, help='apply NMS post-procssing?')
FLAGS = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
test_save_path = 'predictions/URPC/'
num_classes = 2
patch_size = (112, 112, 80)
FLAGS.root_path = FLAGS.root_path
with open(FLAGS.root_path + '/../test.list', 'r') as f:
image_list = f.readlines()
image_list = [FLAGS.root_path + item.replace('\n', '') + "/mri_norm2.h5" for item in image_list]
if not os.path.exists(test_save_path):
os.makedirs(test_save_path)
print(test_save_path)
def test_calculate_metric():
net = unet_3D_dv_semi(n_classes=num_classes, in_channels=1).cuda()
save_mode_path = 'model/LA_vnet_25_labeled/URPC/URPC_best_model.pth'
net.load_state_dict(torch.load(save_mode_path), strict=False) # False
print("init weight from {}".format(save_mode_path))
net.eval()
avg_metric = test_all_case(FLAGS.model, 1, net, image_list, num_classes=num_classes,
patch_size=(112, 112, 80), stride_xy=18, stride_z=4,
save_result=False, test_save_path=test_save_path,
metric_detail=FLAGS.detail, nms=FLAGS.nms)
return avg_metric
if __name__ == '__main__':
metric = test_calculate_metric()
print(metric)