[903821]: / utils / test_patch.py

Download this file

241 lines (213 with data), 10.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import h5py
import math
import nibabel as nib
import numpy as np
from medpy import metric
import torch
import torch.nn.functional as F
from tqdm import tqdm
from skimage.measure import label
def getLargestCC(segmentation):
labels = label(segmentation)
assert( labels.max() != 0 ) # assume at least 1 CC
largestCC = labels == np.argmax(np.bincount(labels.flat)[1:])+1
return largestCC
def var_all_case(model, num_classes, patch_size=(112, 112, 80), stride_xy=18, stride_z=4, dataset_name="LA"):
if dataset_name == "LA":
p = '/data/omnisky/postgraduate/Yb/data_set/LASet'
with open(p+'/test.list', 'r') as f:
image_list = f.readlines()
image_list = [p+"/2018LA_Seg_Training Set/" + item.replace('\n', '') + "/mri_norm2.h5" for item in image_list]
elif dataset_name == "Pancreas_CT":
with open('./data/Pancreas/test.list', 'r') as f:
image_list = f.readlines()
image_list = ["./data/Pancreas/Pancreas_h5/" + item.replace('\n', '') + "_norm.h5" for item in image_list]
loader = tqdm(image_list)
total_dice = 0.0
for image_path in loader:
h5f = h5py.File(image_path, 'r')
image = h5f['image'][:]
label = h5f['label'][:]
prediction, score_map = test_single_case_first_output(model, image, stride_xy, stride_z, patch_size, num_classes=num_classes)
if np.sum(prediction)==0:
dice = 0
else:
dice = metric.binary.dc(prediction, label)
total_dice += dice
avg_dice = total_dice / len(image_list)
print('average metric is {}'.format(avg_dice))
return avg_dice
def test_all_case(model_name, num_outputs, model, image_list, num_classes, patch_size=(112, 112, 80), stride_xy=18, stride_z=4, save_result=True, test_save_path=None, preproc_fn=None, metric_detail=1, nms=0):
loader = tqdm(image_list) if not metric_detail else image_list
ith = 0
total_metric = 0.0
total_metric_average = 0.0
for image_path in loader:
h5f = h5py.File(image_path, 'r')
image = h5f['image'][:]
label = h5f['label'][:]
if preproc_fn is not None:
image = preproc_fn(image)
prediction, score_map = test_single_case_first_output(model, image, stride_xy, stride_z, patch_size, num_classes=num_classes)
if num_outputs > 1:
prediction_average, score_map_average = test_single_case_average_output(model, image, stride_xy, stride_z, patch_size, num_classes=num_classes)
if nms:
prediction = getLargestCC(prediction)
if num_outputs > 1:
prediction_average = getLargestCC(prediction_average)
if np.sum(prediction)==0:
single_metric = (0,0,0,0)
if num_outputs > 1:
single_metric_average = (0,0,0,0)
else:
single_metric = calculate_metric_percase(prediction, label[:])
if num_outputs > 1:
single_metric_average = calculate_metric_percase(prediction_average, label[:])
if metric_detail:
print('%02d,\t%.5f, %.5f, %.5f, %.5f' % (ith, single_metric[0], single_metric[1], single_metric[2], single_metric[3]))
if num_outputs > 1:
print('%02d,\t%.5f, %.5f, %.5f, %.5f' % (ith, single_metric_average[0], single_metric_average[1], single_metric_average[2], single_metric_average[3]))
total_metric += np.asarray(single_metric)
if num_outputs > 1:
total_metric_average += np.asarray(single_metric_average)
if save_result:
nib.save(nib.Nifti1Image(prediction.astype(np.float32), np.eye(4)), test_save_path + "%02d_pred.nii.gz" % ith)
nib.save(nib.Nifti1Image(score_map[0].astype(np.float32), np.eye(4)), test_save_path + "%02d_scores.nii.gz" % ith)
if num_outputs > 1:
nib.save(nib.Nifti1Image(prediction_average.astype(np.float32), np.eye(4)), test_save_path + "%02d_pred_average.nii.gz" % ith)
nib.save(nib.Nifti1Image(score_map_average[0].astype(np.float32), np.eye(4)), test_save_path + "%02d_scores_average.nii.gz" % ith)
nib.save(nib.Nifti1Image(image[:].astype(np.float32), np.eye(4)), test_save_path + "%02d_img.nii.gz" % ith)
nib.save(nib.Nifti1Image(label[:].astype(np.float32), np.eye(4)), test_save_path + "%02d_gt.nii.gz" % ith)
ith += 1
avg_metric = total_metric / len(image_list)
print('average metric is decoder 1 {}'.format(avg_metric))
if num_outputs > 1:
avg_metric_average = total_metric_average / len(image_list)
print('average metric of all decoders is {}'.format(avg_metric_average))
with open(test_save_path+'../{}_performance.txt'.format(model_name), 'w') as f:
f.writelines('average metric of decoder 1 is {} \n'.format(avg_metric))
if num_outputs > 1:
f.writelines('average metric of all decoders is {} \n'.format(avg_metric_average))
return avg_metric
def test_single_case_first_output(model, image, stride_xy, stride_z, patch_size, num_classes=1):
w, h, d = image.shape
# if the size of image is less than patch_size, then padding it
add_pad = False
if w < patch_size[0]:
w_pad = patch_size[0]-w
add_pad = True
else:
w_pad = 0
if h < patch_size[1]:
h_pad = patch_size[1]-h
add_pad = True
else:
h_pad = 0
if d < patch_size[2]:
d_pad = patch_size[2]-d
add_pad = True
else:
d_pad = 0
wl_pad, wr_pad = w_pad//2,w_pad-w_pad//2
hl_pad, hr_pad = h_pad//2,h_pad-h_pad//2
dl_pad, dr_pad = d_pad//2,d_pad-d_pad//2
if add_pad:
image = np.pad(image, [(wl_pad,wr_pad),(hl_pad,hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0)
ww,hh,dd = image.shape
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1
# print("{}, {}, {}".format(sx, sy, sz))
score_map = np.zeros((num_classes, ) + image.shape).astype(np.float32)
cnt = np.zeros(image.shape).astype(np.float32)
for x in range(0, sx):
xs = min(stride_xy*x, ww-patch_size[0])
for y in range(0, sy):
ys = min(stride_xy * y,hh-patch_size[1])
for z in range(0, sz):
zs = min(stride_z * z, dd-patch_size[2])
test_patch = image[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]]
test_patch = np.expand_dims(np.expand_dims(test_patch,axis=0),axis=0).astype(np.float32)
test_patch = torch.from_numpy(test_patch).cuda()
with torch.no_grad():
y = model(test_patch)
if len(y) > 1:
y = y[0]
y = F.softmax(y, dim=1)
y = y.cpu().data.numpy()
y = y[0,1,:,:,:]
score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
= score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + y
cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
= cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + 1
score_map = score_map/np.expand_dims(cnt,axis=0)
label_map = (score_map[0]>0.5).astype(np.int)
if add_pad:
label_map = label_map[wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
score_map = score_map[:,wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
return label_map, score_map
def test_single_case_average_output(net, image, stride_xy, stride_z, patch_size, num_classes=1):
w, h, d = image.shape
# if the size of image is less than patch_size, then padding it
add_pad = False
if w < patch_size[0]:
w_pad = patch_size[0]-w
add_pad = True
else:
w_pad = 0
if h < patch_size[1]:
h_pad = patch_size[1]-h
add_pad = True
else:
h_pad = 0
if d < patch_size[2]:
d_pad = patch_size[2]-d
add_pad = True
else:
d_pad = 0
wl_pad, wr_pad = w_pad//2,w_pad-w_pad//2
hl_pad, hr_pad = h_pad//2,h_pad-h_pad//2
dl_pad, dr_pad = d_pad//2,d_pad-d_pad//2
if add_pad:
image = np.pad(image, [(wl_pad,wr_pad),(hl_pad,hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0)
ww,hh,dd = image.shape
sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1
sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1
sz = math.ceil((dd - patch_size[2]) / stride_z) + 1
# print("{}, {}, {}".format(sx, sy, sz))
score_map = np.zeros((num_classes, ) + image.shape).astype(np.float32)
cnt = np.zeros(image.shape).astype(np.float32)
for x in range(0, sx):
xs = min(stride_xy*x, ww-patch_size[0])
for y in range(0, sy):
ys = min(stride_xy * y,hh-patch_size[1])
for z in range(0, sz):
zs = min(stride_z * z, dd-patch_size[2])
test_patch = image[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]]
test_patch = np.expand_dims(np.expand_dims(test_patch,axis=0),axis=0).astype(np.float32)
test_patch = torch.from_numpy(test_patch).cuda()
with torch.no_grad():
y_logit = net(test_patch)
num_outputs = len(y_logit)
y=torch.zeros(y_logit[0].shape).cuda()
for idx in range(num_outputs):
y += y_logit[idx]
y/=num_outputs
y = y.cpu().data.numpy()
y = y[0,1,:,:,:]
score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
= score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + y
cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \
= cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + 1
score_map = score_map/np.expand_dims(cnt,axis=0)
label_map = (score_map[0]>0.5).astype(np.int)
if add_pad:
label_map = label_map[wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
score_map = score_map[:,wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d]
return label_map, score_map
def calculate_metric_percase(pred, gt):
dice = metric.binary.dc(pred, gt)
jc = metric.binary.jc(pred, gt)
hd = metric.binary.hd95(pred, gt)
asd = metric.binary.asd(pred, gt)
return dice, jc, hd, asd