--- a +++ b/train_dtc.py @@ -0,0 +1,218 @@ +import os +import sys +from tqdm import tqdm +from tensorboardX import SummaryWriter +import argparse +import logging +import time +import random +import numpy as np + +import torch +import torch.optim as optim +from torchvision import transforms +import torch.nn.functional as F +import torch.backends.cudnn as cudnn +import torch.nn as nn +from torch.nn import BCEWithLogitsLoss, MSELoss +from torch.utils.data import DataLoader + +from networks.vnet_sdf import VNet +from utils import ramps, losses +from dataloaders.la_heart import * +from dataloaders.utils import compute_sdf + +parser = argparse.ArgumentParser() +parser.add_argument('--dataset_name', type=str, default='LA', help='dataset_name') +parser.add_argument('--root_path', type=str, default='/data/omnisky/postgraduate/Yb/data_set/LASet/data', help='Name of Experiment') +parser.add_argument('--exp', type=str, default='vnet', help='model_name') +parser.add_argument('--model', type=str, default='DTC', help='model_name') +parser.add_argument('--max_iterations', type=int, default=6000, help='maximum epoch number to train') +parser.add_argument('--batch_size', type=int, default=4, help='batch_size per gpu') +parser.add_argument('--labeled_bs', type=int, default=2, help='labeled_batch_size per gpu') +parser.add_argument('--base_lr', type=float, default=0.01, help='maximum epoch number to train') +parser.add_argument('--D_lr', type=float, default=1e-4, help='maximum discriminator learning rate to train') +parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training') +parser.add_argument('--labelnum', type=int, default=25, help='num of labeled samples') +parser.add_argument('--max_samples', type=int, default=123, help='all samples') +parser.add_argument('--seed', type=int, default=1337, help='random seed') +parser.add_argument('--consistency_weight', type=float, default=0.1, help='balance factor to control supervised loss and consistency loss') +parser.add_argument('--gpu', type=str, default='1', help='GPU to use') +parser.add_argument('--beta', type=float, default=0.3, help='balance factor to control regional and sdm loss') +parser.add_argument('--gamma', type=float, default=0.5, help='balance factor to control supervised and consistency loss') +# costs +parser.add_argument('--consistency', type=float, default=1.0, help='consistency') +parser.add_argument('--consistency_rampup', type=float, default=40.0, help='consistency_rampup') +args = parser.parse_args() + +train_data_path = args.root_path +snapshot_path = "model/{}_{}_{}_labeled/{}".format(args.dataset_name, args.exp, args.labelnum, args.model) + +os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu +batch_size = args.batch_size * len(args.gpu.split(',')) +max_iterations = args.max_iterations +base_lr = args.base_lr +labeled_bs = args.labeled_bs + +if not args.deterministic: + cudnn.benchmark = True + cudnn.deterministic = False +else: + cudnn.benchmark = False # True # + cudnn.deterministic = True # False # +random.seed(args.seed) +np.random.seed(args.seed) +torch.manual_seed(args.seed) +torch.cuda.manual_seed(args.seed) + +num_classes = 2 +patch_size = (112, 112, 80) + +def cal_dice(output, target, eps=1e-3): + output = torch.sigmoid(output) + output = (output>0.5).float() + output = torch.squeeze(output) + inter = torch.sum(output * target) + eps + union = torch.sum(output) + torch.sum(target) + eps * 2 + dice = 2 * inter / union + return dice + +def get_current_consistency_weight(epoch): + # Consistency ramp-up from https://arxiv.org/abs/1610.02242 + return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup) + + +if __name__ == "__main__": + # make logger file + if not os.path.exists(snapshot_path): + os.makedirs(snapshot_path) + + logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO, + format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S') + logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) + logging.info(str(args)) + + def create_model(ema=False): + # Network definition + net = VNet(n_channels=1, n_classes=num_classes-1, + normalization='batchnorm', has_dropout=True) + model = net.cuda() + if ema: + for param in model.parameters(): + param.detach_() + return model + + model = create_model() + + db_train = LAHeart(base_dir=train_data_path, + split='train', # train/val split + transform=transforms.Compose([ + RandomRotFlip(), + RandomCrop(patch_size), + ToTensor(), + ])) + db_test = LAHeart(base_dir=args.root_path, + split='test', + transform=transforms.Compose([ + CenterCrop(patch_size), + ToTensor() + ])) + labeled_idxs = list(range(args.labelnum)) + unlabeled_idxs = list(range(args.labelnum, args.max_samples)) + batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, batch_size, batch_size-labeled_bs) + + def worker_init_fn(worker_id): + random.seed(args.seed+worker_id) + trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn) + test_loader = DataLoader(db_test, batch_size=1,shuffle=False, num_workers=4, pin_memory=True) + + model.train() + + optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001) + ce_loss = BCEWithLogitsLoss() + mse_loss = MSELoss() + + writer = SummaryWriter(snapshot_path+'/log') + logging.info("{} itertations per epoch".format(len(trainloader))) + + iter_num = 0 + max_epoch = max_iterations//len(trainloader)+1 + lr_ = base_lr + best_dice = 0.0 + iterator = tqdm(range(max_epoch), ncols=70) + for epoch_num in iterator: + time1 = time.time() + for i_batch, sampled_batch in enumerate(trainloader): + time2 = time.time() + # print('fetch data cost {}'.format(time2-time1)) + volume_batch, label_batch = sampled_batch['image'], sampled_batch['label'] + volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda() + + outputs_tanh, outputs = model(volume_batch) + outputs_soft = torch.sigmoid(outputs) + + # calculate the loss + with torch.no_grad(): + gt_dis = compute_sdf(label_batch[:].cpu().numpy(), outputs[:labeled_bs, 0, ...].shape) + gt_dis = torch.from_numpy(gt_dis).float().cuda() + loss_sdf = mse_loss(outputs_tanh[:labeled_bs, 0, ...], gt_dis) + loss_seg = ce_loss(outputs[:labeled_bs, 0, ...], label_batch[:labeled_bs].float()) + loss_seg_dice = losses.dice_loss(outputs_soft[:labeled_bs, 0, :, :, :], label_batch[:labeled_bs] == 1) + supervised_loss = loss_seg_dice + args.beta * loss_sdf + + # unsupervised loss + dis_to_mask = torch.sigmoid(-1500*outputs_tanh) + consistency_loss = torch.mean((dis_to_mask - outputs_soft) ** 2) + consistency_weight = get_current_consistency_weight(iter_num//150) + + loss = supervised_loss + consistency_weight * consistency_loss + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + iter_num = iter_num + 1 + writer.add_scalar('lr', lr_, iter_num) + writer.add_scalar('loss/loss', loss, iter_num) + writer.add_scalar('loss/loss_seg', loss_seg, iter_num) + writer.add_scalar('loss/loss_dice', loss_seg_dice, iter_num) + writer.add_scalar('loss/loss_hausdorff', loss_sdf, iter_num) + writer.add_scalar('loss/consistency_weight', consistency_weight, iter_num) + writer.add_scalar('loss/consistency_loss', consistency_loss, iter_num) + + logging.info('iteration %d : loss : %f, loss_consis: %f, loss_haus: %f, loss_seg: %f, loss_dice: %f' % + (iter_num, loss.item(), consistency_loss.item(), loss_sdf.item(), loss_seg.item(), loss_seg_dice.item())) + writer.add_scalar('loss/loss', loss, iter_num) + # logging.info('iteration %d : loss : %f' % (iter_num, loss.item())) + + if iter_num >= 800 and iter_num % 200 == 0: + model.eval() + with torch.no_grad(): + dice_sample = 0 + for sampled_batch in test_loader: + img, lbl = sampled_batch['image'].cuda(), sampled_batch['label'].cuda() + _, outputs = model(img) + dice_once = cal_dice(outputs,lbl) + print(dice_once) + dice_sample += dice_once + dice_sample = dice_sample / len(test_loader) + print('Average center dice:{:.3f}'.format(dice_sample)) + + if dice_sample > best_dice: + best_dice = dice_sample + save_mode_path = os.path.join(snapshot_path, 'iter_{}_dice_{}.pth'.format(iter_num, best_dice)) + save_best_path = os.path.join(snapshot_path, '{}_best_model.pth'.format(args.model)) + torch.save(model.state_dict(), save_mode_path) + torch.save(model.state_dict(), save_best_path) + logging.info("save best model to {}".format(save_mode_path)) + writer.add_scalar('Var_dice/Dice', dice_sample, iter_num) + writer.add_scalar('Var_dice/Best_dice', best_dice, iter_num) + model.train() + + if iter_num >= max_iterations: + break + time1 = time.time() + if iter_num >= max_iterations: + iterator.close() + break + writer.close()