Diff of /train_URPC.py [000000] .. [903821]

Switch to side-by-side view

--- a
+++ b/train_URPC.py
@@ -0,0 +1,251 @@
+import os
+import sys
+from tqdm import tqdm
+from tensorboardX import SummaryWriter
+import shutil
+import argparse
+import logging
+import time
+import random
+import numpy as np
+
+import torch
+import torch.nn as nn
+import torch.optim as optim
+from torchvision import transforms
+import torch.nn.functional as F
+import torch.backends.cudnn as cudnn
+from torch.utils.data import DataLoader
+
+from networks.unet_urpc import unet_3D_dv_semi
+from utils import ramps, losses
+from dataloaders.la_heart import *
+
+
+parser = argparse.ArgumentParser()
+parser.add_argument('--dataset_name', type=str,  default='LA', help='dataset_name')
+parser.add_argument('--root_path', type=str, default='/***/data_set/LASet/data', help='Name of Experiment')
+parser.add_argument('--exp', type=str,  default='vnet', help='exp_name')
+parser.add_argument('--model', type=str,  default='URPC', help='model_name')
+parser.add_argument('--max_iterations', type=int,  default=6000, help='maximum epoch number to train')
+parser.add_argument('--batch_size', type=int, default=4, help='batch_size per gpu')
+parser.add_argument('--labeled_bs', type=int, default=2, help='labeled_batch_size per gpu')
+parser.add_argument('--labelnum', type=int,  default=25, help='trained samples')
+parser.add_argument('--max_samples', type=int, default=123, help='all samples')
+parser.add_argument('--base_lr', type=float,  default=0.01, help='maximum epoch number to train')
+parser.add_argument('--deterministic', type=int,  default=1, help='whether use deterministic training')
+parser.add_argument('--seed', type=int,  default=1337, help='random seed')
+parser.add_argument('--gpu', type=str,  default='0', help='GPU to use')
+### costs
+parser.add_argument('--ema_decay', type=float,  default=0.99, help='ema_decay')
+parser.add_argument('--consistency_type', type=str,  default="mse", help='consistency_type')
+parser.add_argument('--consistency', type=float,  default=0.1, help='consistency')
+parser.add_argument('--consistency_rampup', type=float,  default=40.0, help='consistency_rampup')
+args = parser.parse_args()
+
+num_classes = 2
+patch_size = (112, 112, 80)
+snapshot_path = "model/{}_{}_{}_labeled/{}".format(args.dataset_name, args.exp, args.labelnum, args.model)
+
+os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
+batch_size = args.batch_size * len(args.gpu.split(','))
+max_iterations = args.max_iterations
+base_lr = args.base_lr
+labeled_bs = args.labeled_bs
+
+if args.deterministic:
+    cudnn.benchmark = False
+    cudnn.deterministic = True
+    random.seed(args.seed)
+    np.random.seed(args.seed)
+    torch.manual_seed(args.seed)
+    torch.cuda.manual_seed(args.seed)
+
+
+def cal_dice(output, target, eps=1e-3):
+    output = torch.argmax(output,dim=1)
+    inter = torch.sum(output * target) + eps
+    union = torch.sum(output) + torch.sum(target) + eps * 2
+    dice = 2 * inter / union
+    return dice
+
+
+def get_current_consistency_weight(epoch):
+    # Consistency ramp-up from https://arxiv.org/abs/1610.02242
+    return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
+
+
+if __name__ == "__main__":
+    if not os.path.exists(snapshot_path):
+        os.makedirs(snapshot_path)
+
+    logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO,
+                        format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
+    logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
+    logging.info(str(args))
+        
+    model = unet_3D_dv_semi(n_classes=num_classes, in_channels=1).cuda()
+    db_train = LAHeart(base_dir=args.root_path,
+                       split='train',
+                       transform=transforms.Compose([
+                           RandomRotFlip(),
+                           RandomCrop(patch_size),
+                           ToTensor(),
+                       ]))
+    db_test = LAHeart(base_dir=args.root_path,
+                      split='test',
+                      transform=transforms.Compose([
+                          CenterCrop(patch_size),
+                          ToTensor()
+                      ]))
+    
+    labeled_idxs = list(range(args.labelnum))
+    unlabeled_idxs = list(range(args.labelnum, args.max_samples))
+    batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, batch_size, batch_size-labeled_bs)
+    def worker_init_fn(worker_id):
+        random.seed(args.seed+worker_id)
+    trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)
+    test_loader = DataLoader(db_test, batch_size=1,shuffle=False, num_workers=4, pin_memory=True)
+    
+    model.train()
+    optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
+
+    ce_loss = nn.CrossEntropyLoss()
+    dice_loss = losses.DiceLoss(num_classes)
+    kl_distance = nn.KLDivLoss(reduction='none')
+
+    writer = SummaryWriter(snapshot_path+'/log')
+    logging.info("{} itertations per epoch".format(len(trainloader)))
+
+    iter_num = 0
+    best_dice = 0
+    max_epoch = max_iterations//len(trainloader)+1
+    model.train()
+    for epoch_num in tqdm(range(max_epoch), ncols=70):
+        time1 = time.time()
+        for i_batch, sampled_batch in enumerate(trainloader):
+            time2 = time.time()
+            # print('fetch data cost {}'.format(time2-time1))
+            volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
+            volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
+            unlabeled_volume_batch = volume_batch[labeled_bs:]
+
+            outputs_aux1, outputs_aux2, outputs_aux3, outputs_aux4,  = model(volume_batch)
+            outputs_aux1_soft = torch.softmax(outputs_aux1, dim=1)
+            outputs_aux2_soft = torch.softmax(outputs_aux2, dim=1)
+            outputs_aux3_soft = torch.softmax(outputs_aux3, dim=1)
+            outputs_aux4_soft = torch.softmax(outputs_aux4, dim=1)
+
+            loss_ce_aux1 = ce_loss(outputs_aux1[:args.labeled_bs],
+                                   label_batch[:args.labeled_bs])
+            loss_ce_aux2 = ce_loss(outputs_aux2[:args.labeled_bs],
+                                   label_batch[:args.labeled_bs])
+            loss_ce_aux3 = ce_loss(outputs_aux3[:args.labeled_bs],
+                                   label_batch[:args.labeled_bs])
+            loss_ce_aux4 = ce_loss(outputs_aux4[:args.labeled_bs],
+                                   label_batch[:args.labeled_bs])
+
+            loss_dice_aux1 = dice_loss(
+                outputs_aux1_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
+            loss_dice_aux2 = dice_loss(
+                outputs_aux2_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
+            loss_dice_aux3 = dice_loss(
+                outputs_aux3_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
+            loss_dice_aux4 = dice_loss(
+                outputs_aux4_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1))
+
+            supervised_loss = (loss_ce_aux1+loss_ce_aux2+loss_ce_aux3+loss_ce_aux4 +
+                               loss_dice_aux1+loss_dice_aux2+loss_dice_aux3+loss_dice_aux4)/8
+
+            preds = (outputs_aux1_soft +
+                     outputs_aux2_soft+outputs_aux3_soft+outputs_aux4_soft)/4
+
+            variance_aux1 = torch.sum(kl_distance(
+                torch.log(outputs_aux1_soft[args.labeled_bs:]), preds[args.labeled_bs:]), dim=1, keepdim=True)
+            exp_variance_aux1 = torch.exp(-variance_aux1)
+
+            variance_aux2 = torch.sum(kl_distance(
+                torch.log(outputs_aux2_soft[args.labeled_bs:]), preds[args.labeled_bs:]), dim=1, keepdim=True)
+            exp_variance_aux2 = torch.exp(-variance_aux2)
+
+            variance_aux3 = torch.sum(kl_distance(
+                torch.log(outputs_aux3_soft[args.labeled_bs:]), preds[args.labeled_bs:]), dim=1, keepdim=True)
+            exp_variance_aux3 = torch.exp(-variance_aux3)
+
+            variance_aux4 = torch.sum(kl_distance(
+                torch.log(outputs_aux4_soft[args.labeled_bs:]), preds[args.labeled_bs:]), dim=1, keepdim=True)
+            exp_variance_aux4 = torch.exp(-variance_aux4)
+
+            consistency_dist_aux1 = (
+                preds[args.labeled_bs:] - outputs_aux1_soft[args.labeled_bs:]) ** 2
+            consistency_loss_aux1 = torch.mean(
+                consistency_dist_aux1 * exp_variance_aux1) / (torch.mean(exp_variance_aux1) + 1e-8) + torch.mean(variance_aux1)
+
+            consistency_dist_aux2 = (
+                preds[args.labeled_bs:] - outputs_aux2_soft[args.labeled_bs:]) ** 2
+            consistency_loss_aux2 = torch.mean(
+                consistency_dist_aux2 * exp_variance_aux2) / (torch.mean(exp_variance_aux2) + 1e-8) + torch.mean(variance_aux2)
+
+            consistency_dist_aux3 = (
+                preds[args.labeled_bs:] - outputs_aux3_soft[args.labeled_bs:]) ** 2
+            consistency_loss_aux3 = torch.mean(
+                consistency_dist_aux3 * exp_variance_aux3) / (torch.mean(exp_variance_aux3) + 1e-8) + torch.mean(variance_aux3)
+
+            consistency_dist_aux4 = (
+                preds[args.labeled_bs:] - outputs_aux4_soft[args.labeled_bs:]) ** 2
+            consistency_loss_aux4 = torch.mean(
+                consistency_dist_aux4 * exp_variance_aux4) / (torch.mean(exp_variance_aux4) + 1e-8) + torch.mean(variance_aux4)
+
+            consistency_loss = (consistency_loss_aux1 +
+                                consistency_loss_aux2 + consistency_loss_aux3 + consistency_loss_aux4) / 4
+            consistency_weight = get_current_consistency_weight(iter_num//150)
+            loss = supervised_loss + consistency_weight * consistency_loss
+            optimizer.zero_grad()
+            loss.backward()
+            optimizer.step()
+
+            iter_num = iter_num + 1
+            writer.add_scalar('info/total_loss', loss, iter_num)
+            writer.add_scalar('info/supervised_loss',
+                              supervised_loss, iter_num)
+            writer.add_scalar('info/consistency_loss',
+                              consistency_loss, iter_num)
+            writer.add_scalar('info/consistency_weight',
+                              consistency_weight, iter_num)
+
+            logging.info(
+                'iteration %d : loss : %f, supervised_loss: %f' %
+                (iter_num, loss.item(), supervised_loss.item()))
+
+            if iter_num >= 800 and iter_num % 200 == 0:
+                model.eval()
+                with torch.no_grad():
+                    dice_sample = 0
+                    for sampled_batch in test_loader:
+                        img, lbl = sampled_batch['image'].cuda(), sampled_batch['label'].cuda()
+                        outputs = model(img)
+                        dice_once = cal_dice(outputs[0],lbl)
+                        dice_sample += dice_once
+                    dice_sample = dice_sample / len(test_loader)
+                    print('Average center dice:{:.3f}'.format(dice_sample))
+                    
+                if dice_sample > best_dice:
+                    best_dice = dice_sample
+                    save_mode_path = os.path.join(snapshot_path, 'iter_{}_dice_{}.pth'.format(iter_num, best_dice))
+                    save_best_path = os.path.join(snapshot_path, '{}_best_model.pth'.format(args.model))
+                    torch.save(model.state_dict(), save_mode_path)
+                    torch.save(model.state_dict(), save_best_path)
+                    logging.info("save best model to {}".format(save_mode_path))
+                writer.add_scalar('Var_dice/Dice', dice_sample, iter_num)
+                writer.add_scalar('Var_dice/Best_dice', best_dice, iter_num)
+                model.train()
+
+            if iter_num >= max_iterations:
+                break
+            time1 = time.time()
+        if iter_num >= max_iterations:
+            break
+    save_mode_path = os.path.join(snapshot_path, 'iter_'+str(max_iterations)+'.pth')
+    torch.save(model.state_dict(), save_mode_path)
+    logging.info("save model to {}".format(save_mode_path))
+    writer.close()