import os
import sys
from tqdm import tqdm
from tensorboardX import SummaryWriter
import argparse
import logging
import time
import random
import numpy as np
import torch
import torch.optim as optim
from torchvision import transforms
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from dataloaders import utils
from networks.vnet import VNet
from utils import ramps, losses
from dataloaders.la_heart import *
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', type=str, default='LA', help='dataset_name')
parser.add_argument('--root_path', type=str, default='/***/data_set/LASet/data', help='Name of Experiment')
parser.add_argument('--exp', type=str, default='vnet', help='model_name')
parser.add_argument('--model', type=str, default='UAMT', help='model_name')
parser.add_argument('--max_iterations', type=int, default=6000, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=4, help='batch_size per gpu')
parser.add_argument('--labeled_bs', type=int, default=2, help='labeled_batch_size per gpu')
parser.add_argument('--labelnum', type=int, default=25, help='trained samples')
parser.add_argument('--max_samples', type=int, default=123, help='all samples')
parser.add_argument('--base_lr', type=float, default=0.01, help='maximum epoch number to train')
parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
parser.add_argument('--seed', type=int, default=1337, help='random seed')
parser.add_argument('--gpu', type=str, default='2', help='GPU to use')
### costs
parser.add_argument('--ema_decay', type=float, default=0.99, help='ema_decay')
parser.add_argument('--consistency_type', type=str, default="mse", help='consistency_type')
parser.add_argument('--consistency', type=float, default=0.1, help='consistency')
parser.add_argument('--consistency_rampup', type=float, default=40.0, help='consistency_rampup')
args = parser.parse_args()
num_classes = 2
patch_size = (112, 112, 80)
snapshot_path = "model/{}_{}_{}_labeled/{}".format(args.dataset_name, args.exp, args.labelnum, args.model)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
batch_size = args.batch_size * len(args.gpu.split(','))
max_iterations = args.max_iterations
base_lr = args.base_lr
labeled_bs = args.labeled_bs
if args.deterministic:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def cal_dice(output, target, eps=1e-3):
output = torch.argmax(output,dim=1)
inter = torch.sum(output * target) + eps
union = torch.sum(output) + torch.sum(target) + eps * 2
dice = 2 * inter / union
return dice
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
if __name__ == "__main__":
# make logger file
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
logging.basicConfig(filename=snapshot_path + "/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
def create_model(ema=False):
# Network definition
net = VNet(n_channels=1, n_classes=num_classes, normalization='batchnorm', has_dropout=True)
model = net.cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
db_train = LAHeart(base_dir=args.root_path,
split='train',
transform = transforms.Compose([
RandomRotFlip(),
RandomCrop(patch_size),
ToTensor(),
]))
db_test = LAHeart(base_dir=args.root_path,
split='test',
transform = transforms.Compose([
CenterCrop(patch_size),
ToTensor()
]))
labeled_idxs = list(range(args.labelnum))
unlabeled_idxs = list(range( args.labelnum, args.max_samples))
batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, batch_size, batch_size-labeled_bs)
def worker_init_fn(worker_id):
random.seed(args.seed+worker_id)
trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn)
test_loader = DataLoader(db_test, batch_size=1,shuffle=False, num_workers=4, pin_memory=True)
model.train()
ema_model.train()
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
if args.consistency_type == 'mse':
consistency_criterion = losses.softmax_mse_loss
elif args.consistency_type == 'kl':
consistency_criterion = losses.softmax_kl_loss
else:
assert False, args.consistency_type
writer = SummaryWriter(snapshot_path+'/log')
logging.info("{} itertations per epoch".format(len(trainloader)))
iter_num = 0
best_dice = 0
max_epoch = max_iterations//len(trainloader)+1
lr_ = base_lr
model.train()
for epoch_num in tqdm(range(max_epoch), ncols=70):
time1 = time.time()
for i_batch, sampled_batch in enumerate(trainloader):
time2 = time.time()
# print('fetch data cost {}'.format(time2-time1))
volume_batch, label_batch = sampled_batch['image'], sampled_batch['label']
volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda()
unlabeled_volume_batch = volume_batch[labeled_bs:]
noise = torch.clamp(torch.randn_like(unlabeled_volume_batch) * 0.1, -0.2, 0.2)
ema_inputs = unlabeled_volume_batch + noise
outputs = model(volume_batch)
with torch.no_grad():
ema_output = ema_model(ema_inputs)
T = 8
volume_batch_r = unlabeled_volume_batch.repeat(2, 1, 1, 1, 1)
stride = volume_batch_r.shape[0] // 2
preds = torch.zeros([stride * T, 2, 112, 112, 80]).cuda()
for i in range(T//2):
ema_inputs = volume_batch_r + torch.clamp(torch.randn_like(volume_batch_r) * 0.1, -0.2, 0.2)
with torch.no_grad():
preds[2 * stride * i:2 * stride * (i + 1)] = ema_model(ema_inputs)
preds = F.softmax(preds, dim=1)
preds = preds.reshape(T, stride, 2, 112, 112, 80)
preds = torch.mean(preds, dim=0) #(batch, 2, 112,112,80)
uncertainty = -1.0*torch.sum(preds*torch.log(preds + 1e-6), dim=1, keepdim=True) #(batch, 1, 112,112,80)
## calculate the loss
loss_seg = F.cross_entropy(outputs[:labeled_bs], label_batch[:labeled_bs])
outputs_soft = F.softmax(outputs, dim=1)
loss_seg_dice = losses.dice_loss(outputs_soft[:labeled_bs, 1, :, :, :], label_batch[:labeled_bs] == 1)
supervised_loss = 0.5*(loss_seg+loss_seg_dice)
consistency_weight = get_current_consistency_weight(iter_num//150)
consistency_dist = consistency_criterion(outputs[labeled_bs:], ema_output) #(batch, 2, 112,112,80)
threshold = (0.75+0.25*ramps.sigmoid_rampup(iter_num, max_iterations))*np.log(2)
mask = (uncertainty<threshold).float()
consistency_dist = torch.sum(mask*consistency_dist)/(2*torch.sum(mask)+1e-16)
consistency_loss = consistency_weight * consistency_dist
loss = supervised_loss + consistency_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
update_ema_variables(model, ema_model, args.ema_decay, iter_num)
iter_num = iter_num + 1
writer.add_scalar('uncertainty/mean', uncertainty[0,0].mean(), iter_num)
writer.add_scalar('uncertainty/max', uncertainty[0,0].max(), iter_num)
writer.add_scalar('uncertainty/min', uncertainty[0,0].min(), iter_num)
writer.add_scalar('uncertainty/mask_per', torch.sum(mask)/mask.numel(), iter_num)
writer.add_scalar('uncertainty/threshold', threshold, iter_num)
writer.add_scalar('lr', lr_, iter_num)
writer.add_scalar('loss/loss', loss, iter_num)
writer.add_scalar('loss/loss_seg', loss_seg, iter_num)
writer.add_scalar('loss/loss_seg_dice', loss_seg_dice, iter_num)
writer.add_scalar('train/consistency_loss', consistency_loss, iter_num)
writer.add_scalar('train/consistency_weight', consistency_weight, iter_num)
writer.add_scalar('train/consistency_dist', consistency_dist, iter_num)
logging.info('iteration %d : loss : %f cons_dist: %f, loss_weight: %f' %
(iter_num, loss.item(), consistency_dist.item(), consistency_weight))
if iter_num % 50 == 0:
image = volume_batch[0, 0:1, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/Image', grid_image, iter_num)
# image = outputs_soft[0, 3:4, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
image = torch.max(outputs_soft[0, :, :, :, 20:61:10], 0)[1].permute(2, 0, 1).data.cpu().numpy()
image = utils.decode_seg_map_sequence(image)
grid_image = make_grid(image, 5, normalize=False)
writer.add_image('train/Predicted_label', grid_image, iter_num)
image = label_batch[0, :, :, 20:61:10].permute(2, 0, 1)
grid_image = make_grid(utils.decode_seg_map_sequence(image.data.cpu().numpy()), 5, normalize=False)
writer.add_image('train/Groundtruth_label', grid_image, iter_num)
image = uncertainty[0, 0:1, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/uncertainty', grid_image, iter_num)
mask2 = (uncertainty > threshold).float()
image = mask2[0, 0:1, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('train/mask', grid_image, iter_num)
#####
image = volume_batch[-1, 0:1, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
grid_image = make_grid(image, 5, normalize=True)
writer.add_image('unlabel/Image', grid_image, iter_num)
# image = outputs_soft[-1, 3:4, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1)
image = torch.max(outputs_soft[-1, :, :, :, 20:61:10], 0)[1].permute(2, 0, 1).data.cpu().numpy()
image = utils.decode_seg_map_sequence(image)
grid_image = make_grid(image, 5, normalize=False)
writer.add_image('unlabel/Predicted_label', grid_image, iter_num)
image = label_batch[-1, :, :, 20:61:10].permute(2, 0, 1)
grid_image = make_grid(utils.decode_seg_map_sequence(image.data.cpu().numpy()), 5, normalize=False)
writer.add_image('unlabel/Groundtruth_label', grid_image, iter_num)
## change lr
if iter_num % 2500 == 0:
lr_ = base_lr * 0.1 ** (iter_num // 2500)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
if iter_num >= 800 and iter_num % 200 == 0:
model.eval()
with torch.no_grad():
dice_sample = 0
for sampled_batch in test_loader:
img, lbl = sampled_batch['image'].cuda(), sampled_batch['label'].cuda()
outputs = model(img)
dice_once = cal_dice(outputs,lbl)
dice_sample += dice_once
dice_sample = dice_sample / len(test_loader)
print('Average center dice:{:.3f}'.format(dice_sample))
if dice_sample > best_dice:
best_dice = dice_sample
save_mode_path = os.path.join(snapshot_path, 'iter_{}_dice_{}.pth'.format(iter_num, best_dice))
save_best_path = os.path.join(snapshot_path,'{}_best_model.pth'.format(args.model))
torch.save(model.state_dict(), save_mode_path)
torch.save(model.state_dict(), save_best_path)
logging.info("save best model to {}".format(save_mode_path))
writer.add_scalar('Var_dice/Dice', dice_sample, iter_num)
writer.add_scalar('Var_dice/Best_dice', best_dice, iter_num)
model.train()
if iter_num >= max_iterations:
break
time1 = time.time()
if iter_num >= max_iterations:
break
save_mode_path = os.path.join(snapshot_path, 'iter_'+str(max_iterations)+'.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
writer.close()