--- a +++ b/networks/unet_urpc.py @@ -0,0 +1,163 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +class UnetDsv3(nn.Module): + def __init__(self, in_size, out_size, scale_factor): + super(UnetDsv3, self).__init__() + self.dsv = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size=1, stride=1, padding=0), + nn.Upsample(scale_factor=scale_factor, mode='trilinear'), ) + + def forward(self, input): + return self.dsv(input) + + +class UnetUp3_CT(nn.Module): + def __init__(self, in_size, out_size, is_batchnorm=True): + super(UnetUp3_CT, self).__init__() + self.conv = UnetConv3(in_size + out_size, out_size, is_batchnorm, kernel_size=(3,3,3), padding_size=(1,1,1)) + self.up = nn.Upsample(scale_factor=(2, 2, 2), mode='trilinear') + + def forward(self, inputs1, inputs2): + outputs2 = self.up(inputs2) + offset = outputs2.size()[2] - inputs1.size()[2] + padding = 2 * [offset // 2, offset // 2, 0] + outputs1 = F.pad(inputs1, padding) + return self.conv(torch.cat([outputs1, outputs2], 1)) + + +class UnetUp3(nn.Module): + def __init__(self, in_size, out_size, is_deconv, is_batchnorm=True): + super(UnetUp3, self).__init__() + if is_deconv: + self.conv = UnetConv3(in_size, out_size, is_batchnorm) + self.up = nn.ConvTranspose3d(in_size, out_size, kernel_size=(4,4,1), stride=(2,2,1), padding=(1,1,0)) + else: + self.conv = UnetConv3(in_size+out_size, out_size, is_batchnorm) + self.up = nn.Upsample(scale_factor=(2, 2, 1), mode='trilinear') + + def forward(self, inputs1, inputs2): + outputs2 = self.up(inputs2) + offset = outputs2.size()[2] - inputs1.size()[2] + padding = 2 * [offset // 2, offset // 2, 0] + outputs1 = F.pad(inputs1, padding) + return self.conv(torch.cat([outputs1, outputs2], 1)) + + +class UnetConv3(nn.Module): + def __init__(self, in_size, out_size, is_batchnorm, kernel_size=(3,3,1), padding_size=(1,1,0), init_stride=(1,1,1)): + super(UnetConv3, self).__init__() + + if is_batchnorm: + self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size), + nn.InstanceNorm3d(out_size), + nn.ReLU(inplace=True),) + self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size), + nn.InstanceNorm3d(out_size), + nn.ReLU(inplace=True),) + else: + self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size), + nn.ReLU(inplace=True),) + self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size), + nn.ReLU(inplace=True),) + + + def forward(self, inputs): + outputs = self.conv1(inputs) + outputs = self.conv2(outputs) + return outputs + + +class unet_3D_dv_semi(nn.Module): + + def __init__(self, feature_scale=4, n_classes=21, is_deconv=True, in_channels=3, is_batchnorm=True): + super(unet_3D_dv_semi, self).__init__() + self.is_deconv = is_deconv + self.in_channels = in_channels + self.is_batchnorm = is_batchnorm + self.feature_scale = feature_scale + + filters = [64, 128, 256, 512, 1024] + filters = [int(x / self.feature_scale) for x in filters] + + # downsampling + self.conv1 = UnetConv3(self.in_channels, filters[0], self.is_batchnorm, kernel_size=( + 3, 3, 3), padding_size=(1, 1, 1)) + self.maxpool1 = nn.MaxPool3d(kernel_size=(2, 2, 2)) + + self.conv2 = UnetConv3(filters[0], filters[1], self.is_batchnorm, kernel_size=( + 3, 3, 3), padding_size=(1, 1, 1)) + self.maxpool2 = nn.MaxPool3d(kernel_size=(2, 2, 2)) + + self.conv3 = UnetConv3(filters[1], filters[2], self.is_batchnorm, kernel_size=( + 3, 3, 3), padding_size=(1, 1, 1)) + self.maxpool3 = nn.MaxPool3d(kernel_size=(2, 2, 2)) + + self.conv4 = UnetConv3(filters[2], filters[3], self.is_batchnorm, kernel_size=( + 3, 3, 3), padding_size=(1, 1, 1)) + self.maxpool4 = nn.MaxPool3d(kernel_size=(2, 2, 2)) + + self.center = UnetConv3(filters[3], filters[4], self.is_batchnorm, kernel_size=( + 3, 3, 3), padding_size=(1, 1, 1)) + + # upsampling + self.up_concat4 = UnetUp3_CT(filters[4], filters[3], is_batchnorm) + self.up_concat3 = UnetUp3_CT(filters[3], filters[2], is_batchnorm) + self.up_concat2 = UnetUp3_CT(filters[2], filters[1], is_batchnorm) + self.up_concat1 = UnetUp3_CT(filters[1], filters[0], is_batchnorm) + + # deep supervision + self.dsv4 = UnetDsv3( + in_size=filters[3], out_size=n_classes, scale_factor=8) + self.dsv3 = UnetDsv3( + in_size=filters[2], out_size=n_classes, scale_factor=4) + self.dsv2 = UnetDsv3( + in_size=filters[1], out_size=n_classes, scale_factor=2) + self.dsv1 = nn.Conv3d( + in_channels=filters[0], out_channels=n_classes, kernel_size=1) + + self.dropout1 = nn.Dropout3d(p=0.5) + self.dropout2 = nn.Dropout3d(p=0.3) + self.dropout3 = nn.Dropout3d(p=0.2) + self.dropout4 = nn.Dropout3d(p=0.1) + + def forward(self, inputs): + conv1 = self.conv1(inputs) + maxpool1 = self.maxpool1(conv1) + + conv2 = self.conv2(maxpool1) + maxpool2 = self.maxpool2(conv2) + + conv3 = self.conv3(maxpool2) + maxpool3 = self.maxpool3(conv3) + + conv4 = self.conv4(maxpool3) + maxpool4 = self.maxpool4(conv4) + + center = self.center(maxpool4) + + up4 = self.up_concat4(conv4, center) + up4 = self.dropout1(up4) + + up3 = self.up_concat3(conv3, up4) + up3 = self.dropout2(up3) + + up2 = self.up_concat2(conv2, up3) + up2 = self.dropout3(up2) + + up1 = self.up_concat1(conv1, up2) + up1 = self.dropout4(up1) + + # Deep Supervision + dsv4 = self.dsv4(up4) + dsv3 = self.dsv3(up3) + dsv2 = self.dsv2(up2) + dsv1 = self.dsv1(up1) + + return dsv1, dsv2, dsv3, dsv4 + + @staticmethod + def apply_argmax_softmax(pred): + log_p = F.softmax(pred, dim=1) + + return log_p \ No newline at end of file