a b/networks/unet_urpc.py
1
import torch
2
import torch.nn as nn
3
import torch.nn.functional as F
4
5
class UnetDsv3(nn.Module):
6
    def __init__(self, in_size, out_size, scale_factor):
7
        super(UnetDsv3, self).__init__()
8
        self.dsv = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size=1, stride=1, padding=0),
9
                                 nn.Upsample(scale_factor=scale_factor, mode='trilinear'), )
10
11
    def forward(self, input):
12
        return self.dsv(input)
13
    
14
    
15
class UnetUp3_CT(nn.Module):
16
    def __init__(self, in_size, out_size, is_batchnorm=True):
17
        super(UnetUp3_CT, self).__init__()
18
        self.conv = UnetConv3(in_size + out_size, out_size, is_batchnorm, kernel_size=(3,3,3), padding_size=(1,1,1))
19
        self.up = nn.Upsample(scale_factor=(2, 2, 2), mode='trilinear')
20
21
    def forward(self, inputs1, inputs2):
22
        outputs2 = self.up(inputs2)
23
        offset = outputs2.size()[2] - inputs1.size()[2]
24
        padding = 2 * [offset // 2, offset // 2, 0]
25
        outputs1 = F.pad(inputs1, padding)
26
        return self.conv(torch.cat([outputs1, outputs2], 1))
27
    
28
    
29
class UnetUp3(nn.Module):
30
    def __init__(self, in_size, out_size, is_deconv, is_batchnorm=True):
31
        super(UnetUp3, self).__init__()
32
        if is_deconv:
33
            self.conv = UnetConv3(in_size, out_size, is_batchnorm)
34
            self.up = nn.ConvTranspose3d(in_size, out_size, kernel_size=(4,4,1), stride=(2,2,1), padding=(1,1,0))
35
        else:
36
            self.conv = UnetConv3(in_size+out_size, out_size, is_batchnorm)
37
            self.up = nn.Upsample(scale_factor=(2, 2, 1), mode='trilinear')
38
39
    def forward(self, inputs1, inputs2):
40
        outputs2 = self.up(inputs2)
41
        offset = outputs2.size()[2] - inputs1.size()[2]
42
        padding = 2 * [offset // 2, offset // 2, 0]
43
        outputs1 = F.pad(inputs1, padding)
44
        return self.conv(torch.cat([outputs1, outputs2], 1))
45
    
46
    
47
class UnetConv3(nn.Module):
48
    def __init__(self, in_size, out_size, is_batchnorm, kernel_size=(3,3,1), padding_size=(1,1,0), init_stride=(1,1,1)):
49
        super(UnetConv3, self).__init__()
50
51
        if is_batchnorm:
52
            self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size),
53
                                       nn.InstanceNorm3d(out_size),
54
                                       nn.ReLU(inplace=True),)
55
            self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size),
56
                                       nn.InstanceNorm3d(out_size),
57
                                       nn.ReLU(inplace=True),)
58
        else:
59
            self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size),
60
                                       nn.ReLU(inplace=True),)
61
            self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size),
62
                                       nn.ReLU(inplace=True),)
63
64
65
    def forward(self, inputs):
66
        outputs = self.conv1(inputs)
67
        outputs = self.conv2(outputs)
68
        return outputs
69
    
70
    
71
class unet_3D_dv_semi(nn.Module):
72
73
    def __init__(self, feature_scale=4, n_classes=21, is_deconv=True, in_channels=3, is_batchnorm=True):
74
        super(unet_3D_dv_semi, self).__init__()
75
        self.is_deconv = is_deconv
76
        self.in_channels = in_channels
77
        self.is_batchnorm = is_batchnorm
78
        self.feature_scale = feature_scale
79
80
        filters = [64, 128, 256, 512, 1024]
81
        filters = [int(x / self.feature_scale) for x in filters]
82
83
        # downsampling
84
        self.conv1 = UnetConv3(self.in_channels, filters[0], self.is_batchnorm, kernel_size=(
85
            3, 3, 3), padding_size=(1, 1, 1))
86
        self.maxpool1 = nn.MaxPool3d(kernel_size=(2, 2, 2))
87
88
        self.conv2 = UnetConv3(filters[0], filters[1], self.is_batchnorm, kernel_size=(
89
            3, 3, 3), padding_size=(1, 1, 1))
90
        self.maxpool2 = nn.MaxPool3d(kernel_size=(2, 2, 2))
91
92
        self.conv3 = UnetConv3(filters[1], filters[2], self.is_batchnorm, kernel_size=(
93
            3, 3, 3), padding_size=(1, 1, 1))
94
        self.maxpool3 = nn.MaxPool3d(kernel_size=(2, 2, 2))
95
96
        self.conv4 = UnetConv3(filters[2], filters[3], self.is_batchnorm, kernel_size=(
97
            3, 3, 3), padding_size=(1, 1, 1))
98
        self.maxpool4 = nn.MaxPool3d(kernel_size=(2, 2, 2))
99
100
        self.center = UnetConv3(filters[3], filters[4], self.is_batchnorm, kernel_size=(
101
            3, 3, 3), padding_size=(1, 1, 1))
102
103
        # upsampling
104
        self.up_concat4 = UnetUp3_CT(filters[4], filters[3], is_batchnorm)
105
        self.up_concat3 = UnetUp3_CT(filters[3], filters[2], is_batchnorm)
106
        self.up_concat2 = UnetUp3_CT(filters[2], filters[1], is_batchnorm)
107
        self.up_concat1 = UnetUp3_CT(filters[1], filters[0], is_batchnorm)
108
109
        # deep supervision
110
        self.dsv4 = UnetDsv3(
111
            in_size=filters[3], out_size=n_classes, scale_factor=8)
112
        self.dsv3 = UnetDsv3(
113
            in_size=filters[2], out_size=n_classes, scale_factor=4)
114
        self.dsv2 = UnetDsv3(
115
            in_size=filters[1], out_size=n_classes, scale_factor=2)
116
        self.dsv1 = nn.Conv3d(
117
            in_channels=filters[0], out_channels=n_classes, kernel_size=1)
118
119
        self.dropout1 = nn.Dropout3d(p=0.5)
120
        self.dropout2 = nn.Dropout3d(p=0.3)
121
        self.dropout3 = nn.Dropout3d(p=0.2)
122
        self.dropout4 = nn.Dropout3d(p=0.1)
123
124
    def forward(self, inputs):
125
        conv1 = self.conv1(inputs)
126
        maxpool1 = self.maxpool1(conv1)
127
128
        conv2 = self.conv2(maxpool1)
129
        maxpool2 = self.maxpool2(conv2)
130
131
        conv3 = self.conv3(maxpool2)
132
        maxpool3 = self.maxpool3(conv3)
133
134
        conv4 = self.conv4(maxpool3)
135
        maxpool4 = self.maxpool4(conv4)
136
137
        center = self.center(maxpool4)
138
139
        up4 = self.up_concat4(conv4, center)
140
        up4 = self.dropout1(up4)
141
142
        up3 = self.up_concat3(conv3, up4)
143
        up3 = self.dropout2(up3)
144
145
        up2 = self.up_concat2(conv2, up3)
146
        up2 = self.dropout3(up2)
147
148
        up1 = self.up_concat1(conv1, up2)
149
        up1 = self.dropout4(up1)
150
151
        # Deep Supervision
152
        dsv4 = self.dsv4(up4)
153
        dsv3 = self.dsv3(up3)
154
        dsv2 = self.dsv2(up2)
155
        dsv1 = self.dsv1(up1)
156
157
        return dsv1, dsv2, dsv3, dsv4
158
159
    @staticmethod
160
    def apply_argmax_softmax(pred):
161
        log_p = F.softmax(pred, dim=1)
162
163
        return log_p