|
a |
|
b/networks/unet_urpc.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.nn.functional as F |
|
|
4 |
|
|
|
5 |
class UnetDsv3(nn.Module): |
|
|
6 |
def __init__(self, in_size, out_size, scale_factor): |
|
|
7 |
super(UnetDsv3, self).__init__() |
|
|
8 |
self.dsv = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size=1, stride=1, padding=0), |
|
|
9 |
nn.Upsample(scale_factor=scale_factor, mode='trilinear'), ) |
|
|
10 |
|
|
|
11 |
def forward(self, input): |
|
|
12 |
return self.dsv(input) |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
class UnetUp3_CT(nn.Module): |
|
|
16 |
def __init__(self, in_size, out_size, is_batchnorm=True): |
|
|
17 |
super(UnetUp3_CT, self).__init__() |
|
|
18 |
self.conv = UnetConv3(in_size + out_size, out_size, is_batchnorm, kernel_size=(3,3,3), padding_size=(1,1,1)) |
|
|
19 |
self.up = nn.Upsample(scale_factor=(2, 2, 2), mode='trilinear') |
|
|
20 |
|
|
|
21 |
def forward(self, inputs1, inputs2): |
|
|
22 |
outputs2 = self.up(inputs2) |
|
|
23 |
offset = outputs2.size()[2] - inputs1.size()[2] |
|
|
24 |
padding = 2 * [offset // 2, offset // 2, 0] |
|
|
25 |
outputs1 = F.pad(inputs1, padding) |
|
|
26 |
return self.conv(torch.cat([outputs1, outputs2], 1)) |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
class UnetUp3(nn.Module): |
|
|
30 |
def __init__(self, in_size, out_size, is_deconv, is_batchnorm=True): |
|
|
31 |
super(UnetUp3, self).__init__() |
|
|
32 |
if is_deconv: |
|
|
33 |
self.conv = UnetConv3(in_size, out_size, is_batchnorm) |
|
|
34 |
self.up = nn.ConvTranspose3d(in_size, out_size, kernel_size=(4,4,1), stride=(2,2,1), padding=(1,1,0)) |
|
|
35 |
else: |
|
|
36 |
self.conv = UnetConv3(in_size+out_size, out_size, is_batchnorm) |
|
|
37 |
self.up = nn.Upsample(scale_factor=(2, 2, 1), mode='trilinear') |
|
|
38 |
|
|
|
39 |
def forward(self, inputs1, inputs2): |
|
|
40 |
outputs2 = self.up(inputs2) |
|
|
41 |
offset = outputs2.size()[2] - inputs1.size()[2] |
|
|
42 |
padding = 2 * [offset // 2, offset // 2, 0] |
|
|
43 |
outputs1 = F.pad(inputs1, padding) |
|
|
44 |
return self.conv(torch.cat([outputs1, outputs2], 1)) |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
class UnetConv3(nn.Module): |
|
|
48 |
def __init__(self, in_size, out_size, is_batchnorm, kernel_size=(3,3,1), padding_size=(1,1,0), init_stride=(1,1,1)): |
|
|
49 |
super(UnetConv3, self).__init__() |
|
|
50 |
|
|
|
51 |
if is_batchnorm: |
|
|
52 |
self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size), |
|
|
53 |
nn.InstanceNorm3d(out_size), |
|
|
54 |
nn.ReLU(inplace=True),) |
|
|
55 |
self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size), |
|
|
56 |
nn.InstanceNorm3d(out_size), |
|
|
57 |
nn.ReLU(inplace=True),) |
|
|
58 |
else: |
|
|
59 |
self.conv1 = nn.Sequential(nn.Conv3d(in_size, out_size, kernel_size, init_stride, padding_size), |
|
|
60 |
nn.ReLU(inplace=True),) |
|
|
61 |
self.conv2 = nn.Sequential(nn.Conv3d(out_size, out_size, kernel_size, 1, padding_size), |
|
|
62 |
nn.ReLU(inplace=True),) |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def forward(self, inputs): |
|
|
66 |
outputs = self.conv1(inputs) |
|
|
67 |
outputs = self.conv2(outputs) |
|
|
68 |
return outputs |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
class unet_3D_dv_semi(nn.Module): |
|
|
72 |
|
|
|
73 |
def __init__(self, feature_scale=4, n_classes=21, is_deconv=True, in_channels=3, is_batchnorm=True): |
|
|
74 |
super(unet_3D_dv_semi, self).__init__() |
|
|
75 |
self.is_deconv = is_deconv |
|
|
76 |
self.in_channels = in_channels |
|
|
77 |
self.is_batchnorm = is_batchnorm |
|
|
78 |
self.feature_scale = feature_scale |
|
|
79 |
|
|
|
80 |
filters = [64, 128, 256, 512, 1024] |
|
|
81 |
filters = [int(x / self.feature_scale) for x in filters] |
|
|
82 |
|
|
|
83 |
# downsampling |
|
|
84 |
self.conv1 = UnetConv3(self.in_channels, filters[0], self.is_batchnorm, kernel_size=( |
|
|
85 |
3, 3, 3), padding_size=(1, 1, 1)) |
|
|
86 |
self.maxpool1 = nn.MaxPool3d(kernel_size=(2, 2, 2)) |
|
|
87 |
|
|
|
88 |
self.conv2 = UnetConv3(filters[0], filters[1], self.is_batchnorm, kernel_size=( |
|
|
89 |
3, 3, 3), padding_size=(1, 1, 1)) |
|
|
90 |
self.maxpool2 = nn.MaxPool3d(kernel_size=(2, 2, 2)) |
|
|
91 |
|
|
|
92 |
self.conv3 = UnetConv3(filters[1], filters[2], self.is_batchnorm, kernel_size=( |
|
|
93 |
3, 3, 3), padding_size=(1, 1, 1)) |
|
|
94 |
self.maxpool3 = nn.MaxPool3d(kernel_size=(2, 2, 2)) |
|
|
95 |
|
|
|
96 |
self.conv4 = UnetConv3(filters[2], filters[3], self.is_batchnorm, kernel_size=( |
|
|
97 |
3, 3, 3), padding_size=(1, 1, 1)) |
|
|
98 |
self.maxpool4 = nn.MaxPool3d(kernel_size=(2, 2, 2)) |
|
|
99 |
|
|
|
100 |
self.center = UnetConv3(filters[3], filters[4], self.is_batchnorm, kernel_size=( |
|
|
101 |
3, 3, 3), padding_size=(1, 1, 1)) |
|
|
102 |
|
|
|
103 |
# upsampling |
|
|
104 |
self.up_concat4 = UnetUp3_CT(filters[4], filters[3], is_batchnorm) |
|
|
105 |
self.up_concat3 = UnetUp3_CT(filters[3], filters[2], is_batchnorm) |
|
|
106 |
self.up_concat2 = UnetUp3_CT(filters[2], filters[1], is_batchnorm) |
|
|
107 |
self.up_concat1 = UnetUp3_CT(filters[1], filters[0], is_batchnorm) |
|
|
108 |
|
|
|
109 |
# deep supervision |
|
|
110 |
self.dsv4 = UnetDsv3( |
|
|
111 |
in_size=filters[3], out_size=n_classes, scale_factor=8) |
|
|
112 |
self.dsv3 = UnetDsv3( |
|
|
113 |
in_size=filters[2], out_size=n_classes, scale_factor=4) |
|
|
114 |
self.dsv2 = UnetDsv3( |
|
|
115 |
in_size=filters[1], out_size=n_classes, scale_factor=2) |
|
|
116 |
self.dsv1 = nn.Conv3d( |
|
|
117 |
in_channels=filters[0], out_channels=n_classes, kernel_size=1) |
|
|
118 |
|
|
|
119 |
self.dropout1 = nn.Dropout3d(p=0.5) |
|
|
120 |
self.dropout2 = nn.Dropout3d(p=0.3) |
|
|
121 |
self.dropout3 = nn.Dropout3d(p=0.2) |
|
|
122 |
self.dropout4 = nn.Dropout3d(p=0.1) |
|
|
123 |
|
|
|
124 |
def forward(self, inputs): |
|
|
125 |
conv1 = self.conv1(inputs) |
|
|
126 |
maxpool1 = self.maxpool1(conv1) |
|
|
127 |
|
|
|
128 |
conv2 = self.conv2(maxpool1) |
|
|
129 |
maxpool2 = self.maxpool2(conv2) |
|
|
130 |
|
|
|
131 |
conv3 = self.conv3(maxpool2) |
|
|
132 |
maxpool3 = self.maxpool3(conv3) |
|
|
133 |
|
|
|
134 |
conv4 = self.conv4(maxpool3) |
|
|
135 |
maxpool4 = self.maxpool4(conv4) |
|
|
136 |
|
|
|
137 |
center = self.center(maxpool4) |
|
|
138 |
|
|
|
139 |
up4 = self.up_concat4(conv4, center) |
|
|
140 |
up4 = self.dropout1(up4) |
|
|
141 |
|
|
|
142 |
up3 = self.up_concat3(conv3, up4) |
|
|
143 |
up3 = self.dropout2(up3) |
|
|
144 |
|
|
|
145 |
up2 = self.up_concat2(conv2, up3) |
|
|
146 |
up2 = self.dropout3(up2) |
|
|
147 |
|
|
|
148 |
up1 = self.up_concat1(conv1, up2) |
|
|
149 |
up1 = self.dropout4(up1) |
|
|
150 |
|
|
|
151 |
# Deep Supervision |
|
|
152 |
dsv4 = self.dsv4(up4) |
|
|
153 |
dsv3 = self.dsv3(up3) |
|
|
154 |
dsv2 = self.dsv2(up2) |
|
|
155 |
dsv1 = self.dsv1(up1) |
|
|
156 |
|
|
|
157 |
return dsv1, dsv2, dsv3, dsv4 |
|
|
158 |
|
|
|
159 |
@staticmethod |
|
|
160 |
def apply_argmax_softmax(pred): |
|
|
161 |
log_p = F.softmax(pred, dim=1) |
|
|
162 |
|
|
|
163 |
return log_p |