Download this file

6227 lines (6226 with data), 565.8 kB

[21:11:46.921] Namespace(base_lr=0.01, batch_size=4, consistency=0.1, consistency_rampup=40.0, consistency_type='mse', dataset_name='LA', deterministic=1, ema_decay=0.99, exp='vnet', gpu='2', labeled_bs=2, labelnum=25, max_iterations=10000, max_samples=123, model='UAMT', root_path='/data/omnisky/postgraduate/Yb/data_set/LASet/', seed=1337)
[21:12:22.585] Namespace(base_lr=0.01, batch_size=4, consistency=0.1, consistency_rampup=40.0, consistency_type='mse', dataset_name='LA', deterministic=1, ema_decay=0.99, exp='vnet', gpu='2', labeled_bs=2, labelnum=25, max_iterations=10000, max_samples=123, model='UAMT', root_path='/data/omnisky/postgraduate/Yb/data_set/LASet/data', seed=1337)
[21:12:25.376] 12 itertations per epoch
[21:12:27.742] iteration 1 : loss : 0.648542 cons_dist: 0.140832, loss_weight: 0.000674
[21:12:28.614] iteration 2 : loss : 0.704431 cons_dist: 0.054942, loss_weight: 0.000674
[21:12:29.486] iteration 3 : loss : 0.690068 cons_dist: 0.052918, loss_weight: 0.000674
[21:12:30.354] iteration 4 : loss : 0.736409 cons_dist: 0.026143, loss_weight: 0.000674
[21:12:31.226] iteration 5 : loss : 0.581076 cons_dist: 0.044107, loss_weight: 0.000674
[21:12:32.100] iteration 6 : loss : 0.595807 cons_dist: 0.236979, loss_weight: 0.000674
[21:12:32.975] iteration 7 : loss : 0.600372 cons_dist: 0.049813, loss_weight: 0.000674
[21:12:33.850] iteration 8 : loss : 0.546738 cons_dist: 0.112363, loss_weight: 0.000674
[21:12:34.724] iteration 9 : loss : 0.604670 cons_dist: 0.041596, loss_weight: 0.000674
[21:12:35.600] iteration 10 : loss : 0.516904 cons_dist: 0.019995, loss_weight: 0.000674
[21:12:36.475] iteration 11 : loss : 0.553437 cons_dist: 0.037849, loss_weight: 0.000674
[21:12:37.351] iteration 12 : loss : 0.520342 cons_dist: 0.065029, loss_weight: 0.000674
[21:12:39.025] iteration 13 : loss : 0.582556 cons_dist: 0.052344, loss_weight: 0.000674
[21:12:39.903] iteration 14 : loss : 0.551169 cons_dist: 0.032346, loss_weight: 0.000674
[21:12:40.781] iteration 15 : loss : 0.498622 cons_dist: 0.018312, loss_weight: 0.000674
[21:12:41.661] iteration 16 : loss : 0.501305 cons_dist: 0.005622, loss_weight: 0.000674
[21:12:42.540] iteration 17 : loss : 0.442567 cons_dist: 0.020151, loss_weight: 0.000674
[21:12:43.420] iteration 18 : loss : 0.515569 cons_dist: 0.029576, loss_weight: 0.000674
[21:12:44.302] iteration 19 : loss : 0.551293 cons_dist: 0.025837, loss_weight: 0.000674
[21:12:45.182] iteration 20 : loss : 0.450365 cons_dist: 0.008303, loss_weight: 0.000674
[21:12:46.065] iteration 21 : loss : 0.439911 cons_dist: 0.023766, loss_weight: 0.000674
[21:12:46.948] iteration 22 : loss : 0.435875 cons_dist: 0.005439, loss_weight: 0.000674
[21:12:47.830] iteration 23 : loss : 0.487135 cons_dist: 0.014018, loss_weight: 0.000674
[21:12:48.714] iteration 24 : loss : 0.452061 cons_dist: 0.021328, loss_weight: 0.000674
[21:12:50.183] iteration 25 : loss : 0.501935 cons_dist: 0.027278, loss_weight: 0.000674
[21:12:51.069] iteration 26 : loss : 0.397952 cons_dist: 0.017207, loss_weight: 0.000674
[21:12:51.955] iteration 27 : loss : 0.456956 cons_dist: 0.011297, loss_weight: 0.000674
[21:12:52.842] iteration 28 : loss : 0.473589 cons_dist: 0.013128, loss_weight: 0.000674
[21:12:53.728] iteration 29 : loss : 0.487968 cons_dist: 0.010010, loss_weight: 0.000674
[21:12:54.614] iteration 30 : loss : 0.425875 cons_dist: 0.060590, loss_weight: 0.000674
[21:12:55.503] iteration 31 : loss : 0.419187 cons_dist: 0.009608, loss_weight: 0.000674
[21:12:56.391] iteration 32 : loss : 0.518090 cons_dist: 0.020822, loss_weight: 0.000674
[21:12:57.280] iteration 33 : loss : 0.456088 cons_dist: 0.014673, loss_weight: 0.000674
[21:12:58.167] iteration 34 : loss : 0.438300 cons_dist: 0.019251, loss_weight: 0.000674
[21:12:59.058] iteration 35 : loss : 0.455787 cons_dist: 0.068680, loss_weight: 0.000674
[21:12:59.954] iteration 36 : loss : 0.545167 cons_dist: 0.009735, loss_weight: 0.000674
[21:13:01.464] iteration 37 : loss : 0.454859 cons_dist: 0.006982, loss_weight: 0.000674
[21:13:02.357] iteration 38 : loss : 0.436033 cons_dist: 0.011832, loss_weight: 0.000674
[21:13:03.251] iteration 39 : loss : 0.432409 cons_dist: 0.025442, loss_weight: 0.000674
[21:13:04.145] iteration 40 : loss : 0.474781 cons_dist: 0.004746, loss_weight: 0.000674
[21:13:05.039] iteration 41 : loss : 0.457629 cons_dist: 0.053005, loss_weight: 0.000674
[21:13:05.932] iteration 42 : loss : 0.456997 cons_dist: 0.006788, loss_weight: 0.000674
[21:13:06.824] iteration 43 : loss : 0.475390 cons_dist: 0.010660, loss_weight: 0.000674
[21:13:07.721] iteration 44 : loss : 0.449720 cons_dist: 0.024242, loss_weight: 0.000674
[21:13:08.616] iteration 45 : loss : 0.494820 cons_dist: 0.007570, loss_weight: 0.000674
[21:13:09.514] iteration 46 : loss : 0.412307 cons_dist: 0.018490, loss_weight: 0.000674
[21:13:10.409] iteration 47 : loss : 0.447382 cons_dist: 0.018121, loss_weight: 0.000674
[21:13:11.308] iteration 48 : loss : 0.420057 cons_dist: 0.021691, loss_weight: 0.000674
[21:13:12.807] iteration 49 : loss : 0.408956 cons_dist: 0.006806, loss_weight: 0.000674
[21:13:13.704] iteration 50 : loss : 0.369990 cons_dist: 0.025185, loss_weight: 0.000674
[21:13:14.778] iteration 51 : loss : 0.453634 cons_dist: 0.012732, loss_weight: 0.000674
[21:13:15.675] iteration 52 : loss : 0.377737 cons_dist: 0.036755, loss_weight: 0.000674
[21:13:16.573] iteration 53 : loss : 0.397010 cons_dist: 0.014919, loss_weight: 0.000674
[21:13:17.471] iteration 54 : loss : 0.428455 cons_dist: 0.008550, loss_weight: 0.000674
[21:13:18.370] iteration 55 : loss : 0.448024 cons_dist: 0.010972, loss_weight: 0.000674
[21:13:19.269] iteration 56 : loss : 0.373758 cons_dist: 0.006022, loss_weight: 0.000674
[21:13:20.171] iteration 57 : loss : 0.371650 cons_dist: 0.009407, loss_weight: 0.000674
[21:13:21.073] iteration 58 : loss : 0.490588 cons_dist: 0.008914, loss_weight: 0.000674
[21:13:21.974] iteration 59 : loss : 0.343715 cons_dist: 0.006409, loss_weight: 0.000674
[21:13:22.874] iteration 60 : loss : 0.378810 cons_dist: 0.013785, loss_weight: 0.000674
[21:13:24.383] iteration 61 : loss : 0.328357 cons_dist: 0.006639, loss_weight: 0.000674
[21:13:25.284] iteration 62 : loss : 0.428902 cons_dist: 0.012055, loss_weight: 0.000674
[21:13:26.189] iteration 63 : loss : 0.364261 cons_dist: 0.006114, loss_weight: 0.000674
[21:13:27.091] iteration 64 : loss : 0.439105 cons_dist: 0.005515, loss_weight: 0.000674
[21:13:27.995] iteration 65 : loss : 0.461661 cons_dist: 0.008205, loss_weight: 0.000674
[21:13:28.898] iteration 66 : loss : 0.330841 cons_dist: 0.022321, loss_weight: 0.000674
[21:13:29.800] iteration 67 : loss : 0.439627 cons_dist: 0.005798, loss_weight: 0.000674
[21:13:30.702] iteration 68 : loss : 0.377568 cons_dist: 0.009565, loss_weight: 0.000674
[21:13:31.605] iteration 69 : loss : 0.370938 cons_dist: 0.007238, loss_weight: 0.000674
[21:13:32.508] iteration 70 : loss : 0.347366 cons_dist: 0.019318, loss_weight: 0.000674
[21:13:33.417] iteration 71 : loss : 0.402048 cons_dist: 0.016178, loss_weight: 0.000674
[21:13:34.324] iteration 72 : loss : 0.357973 cons_dist: 0.012554, loss_weight: 0.000674
[21:13:35.820] iteration 73 : loss : 0.347301 cons_dist: 0.011809, loss_weight: 0.000674
[21:13:36.729] iteration 74 : loss : 0.366963 cons_dist: 0.021272, loss_weight: 0.000674
[21:13:37.636] iteration 75 : loss : 0.339743 cons_dist: 0.006514, loss_weight: 0.000674
[21:13:38.546] iteration 76 : loss : 0.345881 cons_dist: 0.006009, loss_weight: 0.000674
[21:13:39.458] iteration 77 : loss : 0.380914 cons_dist: 0.028596, loss_weight: 0.000674
[21:13:40.366] iteration 78 : loss : 0.297098 cons_dist: 0.009291, loss_weight: 0.000674
[21:13:41.275] iteration 79 : loss : 0.402916 cons_dist: 0.007215, loss_weight: 0.000674
[21:13:42.181] iteration 80 : loss : 0.460659 cons_dist: 0.012401, loss_weight: 0.000674
[21:13:43.091] iteration 81 : loss : 0.337765 cons_dist: 0.011427, loss_weight: 0.000674
[21:13:44.000] iteration 82 : loss : 0.258074 cons_dist: 0.008826, loss_weight: 0.000674
[21:13:44.909] iteration 83 : loss : 0.391324 cons_dist: 0.007737, loss_weight: 0.000674
[21:13:45.819] iteration 84 : loss : 0.327330 cons_dist: 0.034608, loss_weight: 0.000674
[21:13:47.383] iteration 85 : loss : 0.370420 cons_dist: 0.004712, loss_weight: 0.000674
[21:13:48.295] iteration 86 : loss : 0.353032 cons_dist: 0.002942, loss_weight: 0.000674
[21:13:49.206] iteration 87 : loss : 0.374598 cons_dist: 0.006168, loss_weight: 0.000674
[21:13:50.115] iteration 88 : loss : 0.421398 cons_dist: 0.010514, loss_weight: 0.000674
[21:13:51.026] iteration 89 : loss : 0.324114 cons_dist: 0.016334, loss_weight: 0.000674
[21:13:51.936] iteration 90 : loss : 0.381909 cons_dist: 0.007920, loss_weight: 0.000674
[21:13:52.845] iteration 91 : loss : 0.257426 cons_dist: 0.019951, loss_weight: 0.000674
[21:13:53.756] iteration 92 : loss : 0.430056 cons_dist: 0.005994, loss_weight: 0.000674
[21:13:54.667] iteration 93 : loss : 0.351819 cons_dist: 0.024240, loss_weight: 0.000674
[21:13:55.578] iteration 94 : loss : 0.395780 cons_dist: 0.013762, loss_weight: 0.000674
[21:13:56.491] iteration 95 : loss : 0.341006 cons_dist: 0.015578, loss_weight: 0.000674
[21:13:57.402] iteration 96 : loss : 0.337590 cons_dist: 0.007903, loss_weight: 0.000674
[21:13:58.963] iteration 97 : loss : 0.308080 cons_dist: 0.014759, loss_weight: 0.000674
[21:13:59.875] iteration 98 : loss : 0.309140 cons_dist: 0.015326, loss_weight: 0.000674
[21:14:00.787] iteration 99 : loss : 0.244284 cons_dist: 0.007306, loss_weight: 0.000674
[21:14:01.700] iteration 100 : loss : 0.283642 cons_dist: 0.012420, loss_weight: 0.000674
[21:14:02.786] iteration 101 : loss : 0.324721 cons_dist: 0.014762, loss_weight: 0.000674
[21:14:03.698] iteration 102 : loss : 0.219460 cons_dist: 0.006680, loss_weight: 0.000674
[21:14:04.611] iteration 103 : loss : 0.353454 cons_dist: 0.024067, loss_weight: 0.000674
[21:14:05.524] iteration 104 : loss : 0.414067 cons_dist: 0.025992, loss_weight: 0.000674
[21:14:06.437] iteration 105 : loss : 0.277092 cons_dist: 0.005100, loss_weight: 0.000674
[21:14:07.348] iteration 106 : loss : 0.275348 cons_dist: 0.003900, loss_weight: 0.000674
[21:14:08.264] iteration 107 : loss : 0.348449 cons_dist: 0.007121, loss_weight: 0.000674
[21:14:09.181] iteration 108 : loss : 0.263212 cons_dist: 0.012191, loss_weight: 0.000674
[21:14:10.732] iteration 109 : loss : 0.318484 cons_dist: 0.008586, loss_weight: 0.000674
[21:14:11.647] iteration 110 : loss : 0.313599 cons_dist: 0.006466, loss_weight: 0.000674
[21:14:12.563] iteration 111 : loss : 0.320970 cons_dist: 0.006801, loss_weight: 0.000674
[21:14:13.479] iteration 112 : loss : 0.270258 cons_dist: 0.016750, loss_weight: 0.000674
[21:14:14.396] iteration 113 : loss : 0.405213 cons_dist: 0.008821, loss_weight: 0.000674
[21:14:15.312] iteration 114 : loss : 0.439265 cons_dist: 0.009309, loss_weight: 0.000674
[21:14:16.228] iteration 115 : loss : 0.297053 cons_dist: 0.026008, loss_weight: 0.000674
[21:14:17.148] iteration 116 : loss : 0.316136 cons_dist: 0.019912, loss_weight: 0.000674
[21:14:18.065] iteration 117 : loss : 0.286191 cons_dist: 0.008664, loss_weight: 0.000674
[21:14:18.988] iteration 118 : loss : 0.354992 cons_dist: 0.015972, loss_weight: 0.000674
[21:14:19.904] iteration 119 : loss : 0.276550 cons_dist: 0.006537, loss_weight: 0.000674
[21:14:20.822] iteration 120 : loss : 0.368199 cons_dist: 0.038794, loss_weight: 0.000674
[21:14:22.422] iteration 121 : loss : 0.280178 cons_dist: 0.015011, loss_weight: 0.000674
[21:14:23.339] iteration 122 : loss : 0.336500 cons_dist: 0.002453, loss_weight: 0.000674
[21:14:24.256] iteration 123 : loss : 0.218809 cons_dist: 0.009878, loss_weight: 0.000674
[21:14:25.174] iteration 124 : loss : 0.284921 cons_dist: 0.013838, loss_weight: 0.000674
[21:14:26.092] iteration 125 : loss : 0.240936 cons_dist: 0.002934, loss_weight: 0.000674
[21:14:27.010] iteration 126 : loss : 0.360628 cons_dist: 0.011063, loss_weight: 0.000674
[21:14:27.927] iteration 127 : loss : 0.342434 cons_dist: 0.006966, loss_weight: 0.000674
[21:14:28.845] iteration 128 : loss : 0.304046 cons_dist: 0.027067, loss_weight: 0.000674
[21:14:29.763] iteration 129 : loss : 0.212269 cons_dist: 0.006113, loss_weight: 0.000674
[21:14:30.680] iteration 130 : loss : 0.218396 cons_dist: 0.004997, loss_weight: 0.000674
[21:14:31.599] iteration 131 : loss : 0.298322 cons_dist: 0.017041, loss_weight: 0.000674
[21:14:32.516] iteration 132 : loss : 0.221328 cons_dist: 0.038099, loss_weight: 0.000674
[21:14:34.104] iteration 133 : loss : 0.347840 cons_dist: 0.014198, loss_weight: 0.000674
[21:14:35.021] iteration 134 : loss : 0.317802 cons_dist: 0.014023, loss_weight: 0.000674
[21:14:35.938] iteration 135 : loss : 0.308694 cons_dist: 0.021842, loss_weight: 0.000674
[21:14:36.855] iteration 136 : loss : 0.343702 cons_dist: 0.026349, loss_weight: 0.000674
[21:14:37.773] iteration 137 : loss : 0.329706 cons_dist: 0.006343, loss_weight: 0.000674
[21:14:38.690] iteration 138 : loss : 0.224349 cons_dist: 0.008695, loss_weight: 0.000674
[21:14:39.608] iteration 139 : loss : 0.273163 cons_dist: 0.010974, loss_weight: 0.000674
[21:14:40.524] iteration 140 : loss : 0.267678 cons_dist: 0.016401, loss_weight: 0.000674
[21:14:41.441] iteration 141 : loss : 0.227507 cons_dist: 0.005352, loss_weight: 0.000674
[21:14:42.358] iteration 142 : loss : 0.231663 cons_dist: 0.003717, loss_weight: 0.000674
[21:14:43.274] iteration 143 : loss : 0.217737 cons_dist: 0.033966, loss_weight: 0.000674
[21:14:44.191] iteration 144 : loss : 0.237032 cons_dist: 0.003317, loss_weight: 0.000674
[21:14:45.802] iteration 145 : loss : 0.330256 cons_dist: 0.007182, loss_weight: 0.000674
[21:14:46.717] iteration 146 : loss : 0.291344 cons_dist: 0.003033, loss_weight: 0.000674
[21:14:47.631] iteration 147 : loss : 0.423387 cons_dist: 0.013090, loss_weight: 0.000674
[21:14:48.547] iteration 148 : loss : 0.289815 cons_dist: 0.012576, loss_weight: 0.000674
[21:14:49.463] iteration 149 : loss : 0.312756 cons_dist: 0.012696, loss_weight: 0.000674
[21:14:50.378] iteration 150 : loss : 0.301778 cons_dist: 0.040294, loss_weight: 0.000674
[21:14:51.459] iteration 151 : loss : 0.278110 cons_dist: 0.005085, loss_weight: 0.000862
[21:14:52.375] iteration 152 : loss : 0.277137 cons_dist: 0.004965, loss_weight: 0.000862
[21:14:53.291] iteration 153 : loss : 0.196810 cons_dist: 0.007656, loss_weight: 0.000862
[21:14:54.208] iteration 154 : loss : 0.202449 cons_dist: 0.011744, loss_weight: 0.000862
[21:14:55.123] iteration 155 : loss : 0.202080 cons_dist: 0.006304, loss_weight: 0.000862
[21:14:56.039] iteration 156 : loss : 0.361938 cons_dist: 0.014435, loss_weight: 0.000862
[21:14:57.625] iteration 157 : loss : 0.300569 cons_dist: 0.013067, loss_weight: 0.000862
[21:14:58.539] iteration 158 : loss : 0.170821 cons_dist: 0.009669, loss_weight: 0.000862
[21:14:59.455] iteration 159 : loss : 0.254005 cons_dist: 0.004764, loss_weight: 0.000862
[21:15:00.372] iteration 160 : loss : 0.244606 cons_dist: 0.017648, loss_weight: 0.000862
[21:15:01.288] iteration 161 : loss : 0.255204 cons_dist: 0.010099, loss_weight: 0.000862
[21:15:02.204] iteration 162 : loss : 0.266641 cons_dist: 0.004956, loss_weight: 0.000862
[21:15:03.119] iteration 163 : loss : 0.571387 cons_dist: 0.009187, loss_weight: 0.000862
[21:15:04.039] iteration 164 : loss : 0.299720 cons_dist: 0.008005, loss_weight: 0.000862
[21:15:04.955] iteration 165 : loss : 0.262078 cons_dist: 0.016950, loss_weight: 0.000862
[21:15:05.871] iteration 166 : loss : 0.210052 cons_dist: 0.010185, loss_weight: 0.000862
[21:15:06.787] iteration 167 : loss : 0.268220 cons_dist: 0.005091, loss_weight: 0.000862
[21:15:07.707] iteration 168 : loss : 0.238122 cons_dist: 0.007417, loss_weight: 0.000862
[21:15:09.307] iteration 169 : loss : 0.289678 cons_dist: 0.003980, loss_weight: 0.000862
[21:15:10.225] iteration 170 : loss : 0.318199 cons_dist: 0.009681, loss_weight: 0.000862
[21:15:11.141] iteration 171 : loss : 0.353698 cons_dist: 0.004087, loss_weight: 0.000862
[21:15:12.060] iteration 172 : loss : 0.361137 cons_dist: 0.002753, loss_weight: 0.000862
[21:15:12.977] iteration 173 : loss : 0.267192 cons_dist: 0.036362, loss_weight: 0.000862
[21:15:13.893] iteration 174 : loss : 0.208882 cons_dist: 0.004661, loss_weight: 0.000862
[21:15:14.809] iteration 175 : loss : 0.303367 cons_dist: 0.026437, loss_weight: 0.000862
[21:15:15.726] iteration 176 : loss : 0.298978 cons_dist: 0.010218, loss_weight: 0.000862
[21:15:16.641] iteration 177 : loss : 0.187040 cons_dist: 0.008271, loss_weight: 0.000862
[21:15:17.556] iteration 178 : loss : 0.368015 cons_dist: 0.021149, loss_weight: 0.000862
[21:15:18.472] iteration 179 : loss : 0.394025 cons_dist: 0.044306, loss_weight: 0.000862
[21:15:19.386] iteration 180 : loss : 0.234953 cons_dist: 0.011783, loss_weight: 0.000862
[21:15:20.928] iteration 181 : loss : 0.351634 cons_dist: 0.013572, loss_weight: 0.000862
[21:15:21.845] iteration 182 : loss : 0.313495 cons_dist: 0.007971, loss_weight: 0.000862
[21:15:22.763] iteration 183 : loss : 0.163773 cons_dist: 0.008212, loss_weight: 0.000862
[21:15:23.680] iteration 184 : loss : 0.328981 cons_dist: 0.011413, loss_weight: 0.000862
[21:15:24.596] iteration 185 : loss : 0.227494 cons_dist: 0.008852, loss_weight: 0.000862
[21:15:25.511] iteration 186 : loss : 0.370896 cons_dist: 0.018053, loss_weight: 0.000862
[21:15:26.427] iteration 187 : loss : 0.219473 cons_dist: 0.009425, loss_weight: 0.000862
[21:15:27.346] iteration 188 : loss : 0.276759 cons_dist: 0.014392, loss_weight: 0.000862
[21:15:28.263] iteration 189 : loss : 0.418147 cons_dist: 0.012078, loss_weight: 0.000862
[21:15:29.180] iteration 190 : loss : 0.279209 cons_dist: 0.018019, loss_weight: 0.000862
[21:15:30.097] iteration 191 : loss : 0.257290 cons_dist: 0.007191, loss_weight: 0.000862
[21:15:31.014] iteration 192 : loss : 0.329463 cons_dist: 0.009472, loss_weight: 0.000862
[21:15:32.504] iteration 193 : loss : 0.206841 cons_dist: 0.010354, loss_weight: 0.000862
[21:15:33.420] iteration 194 : loss : 0.222712 cons_dist: 0.010435, loss_weight: 0.000862
[21:15:34.338] iteration 195 : loss : 0.281778 cons_dist: 0.009260, loss_weight: 0.000862
[21:15:35.255] iteration 196 : loss : 0.212851 cons_dist: 0.007714, loss_weight: 0.000862
[21:15:36.172] iteration 197 : loss : 0.329750 cons_dist: 0.033276, loss_weight: 0.000862
[21:15:37.087] iteration 198 : loss : 0.370829 cons_dist: 0.006065, loss_weight: 0.000862
[21:15:38.003] iteration 199 : loss : 0.250873 cons_dist: 0.004941, loss_weight: 0.000862
[21:15:38.919] iteration 200 : loss : 0.216382 cons_dist: 0.011884, loss_weight: 0.000862
[21:15:40.024] iteration 201 : loss : 0.217611 cons_dist: 0.005254, loss_weight: 0.000862
[21:15:40.938] iteration 202 : loss : 0.215510 cons_dist: 0.017095, loss_weight: 0.000862
[21:15:41.852] iteration 203 : loss : 0.183847 cons_dist: 0.014644, loss_weight: 0.000862
[21:15:42.768] iteration 204 : loss : 0.309039 cons_dist: 0.008769, loss_weight: 0.000862
[21:15:44.243] iteration 205 : loss : 0.377183 cons_dist: 0.016166, loss_weight: 0.000862
[21:15:45.160] iteration 206 : loss : 0.214671 cons_dist: 0.005806, loss_weight: 0.000862
[21:15:46.075] iteration 207 : loss : 0.383033 cons_dist: 0.007845, loss_weight: 0.000862
[21:15:59.145] Namespace(base_lr=0.01, batch_size=4, consistency=0.1, consistency_rampup=40.0, consistency_type='mse', dataset_name='LA', deterministic=1, ema_decay=0.99, exp='vnet', gpu='2', labeled_bs=2, labelnum=25, max_iterations=6000, max_samples=123, model='UAMT', root_path='/data/omnisky/postgraduate/Yb/data_set/LASet/data', seed=1337)
[21:16:01.941] 12 itertations per epoch
[21:16:03.789] iteration 1 : loss : 0.648542 cons_dist: 0.140832, loss_weight: 0.000674
[21:16:04.692] iteration 2 : loss : 0.704431 cons_dist: 0.054942, loss_weight: 0.000674
[21:16:05.595] iteration 3 : loss : 0.690068 cons_dist: 0.052918, loss_weight: 0.000674
[21:16:06.498] iteration 4 : loss : 0.736409 cons_dist: 0.026143, loss_weight: 0.000674
[21:16:07.401] iteration 5 : loss : 0.581076 cons_dist: 0.044105, loss_weight: 0.000674
[21:16:08.306] iteration 6 : loss : 0.595807 cons_dist: 0.237005, loss_weight: 0.000674
[21:16:09.209] iteration 7 : loss : 0.600371 cons_dist: 0.049812, loss_weight: 0.000674
[21:16:10.109] iteration 8 : loss : 0.546735 cons_dist: 0.112361, loss_weight: 0.000674
[21:16:11.013] iteration 9 : loss : 0.604671 cons_dist: 0.041595, loss_weight: 0.000674
[21:16:11.918] iteration 10 : loss : 0.516899 cons_dist: 0.020011, loss_weight: 0.000674
[21:16:12.823] iteration 11 : loss : 0.553472 cons_dist: 0.037880, loss_weight: 0.000674
[21:16:13.729] iteration 12 : loss : 0.520413 cons_dist: 0.065050, loss_weight: 0.000674
[21:16:15.300] iteration 13 : loss : 0.582322 cons_dist: 0.052440, loss_weight: 0.000674
[21:16:16.205] iteration 14 : loss : 0.551276 cons_dist: 0.032363, loss_weight: 0.000674
[21:16:17.112] iteration 15 : loss : 0.498399 cons_dist: 0.018341, loss_weight: 0.000674
[21:16:18.021] iteration 16 : loss : 0.501232 cons_dist: 0.005638, loss_weight: 0.000674
[21:16:18.928] iteration 17 : loss : 0.442589 cons_dist: 0.020131, loss_weight: 0.000674
[21:16:19.837] iteration 18 : loss : 0.515542 cons_dist: 0.029578, loss_weight: 0.000674
[21:16:20.747] iteration 19 : loss : 0.551481 cons_dist: 0.025846, loss_weight: 0.000674
[21:16:21.655] iteration 20 : loss : 0.450543 cons_dist: 0.008360, loss_weight: 0.000674
[21:16:22.564] iteration 21 : loss : 0.439827 cons_dist: 0.023664, loss_weight: 0.000674
[21:16:23.474] iteration 22 : loss : 0.435838 cons_dist: 0.005410, loss_weight: 0.000674
[21:16:24.383] iteration 23 : loss : 0.487228 cons_dist: 0.014092, loss_weight: 0.000674
[21:16:25.293] iteration 24 : loss : 0.452716 cons_dist: 0.021236, loss_weight: 0.000674
[21:16:26.858] iteration 25 : loss : 0.501833 cons_dist: 0.027295, loss_weight: 0.000674
[21:16:27.768] iteration 26 : loss : 0.398055 cons_dist: 0.017240, loss_weight: 0.000674
[21:16:28.680] iteration 27 : loss : 0.457036 cons_dist: 0.011286, loss_weight: 0.000674
[21:16:29.592] iteration 28 : loss : 0.473997 cons_dist: 0.013027, loss_weight: 0.000674
[21:16:30.503] iteration 29 : loss : 0.488569 cons_dist: 0.009915, loss_weight: 0.000674
[21:16:31.417] iteration 30 : loss : 0.425228 cons_dist: 0.060460, loss_weight: 0.000674
[21:16:32.327] iteration 31 : loss : 0.420664 cons_dist: 0.009518, loss_weight: 0.000674
[21:16:33.239] iteration 32 : loss : 0.518222 cons_dist: 0.020816, loss_weight: 0.000674
[21:16:34.153] iteration 33 : loss : 0.456392 cons_dist: 0.014444, loss_weight: 0.000674
[21:16:35.067] iteration 34 : loss : 0.438768 cons_dist: 0.019215, loss_weight: 0.000674
[21:16:35.979] iteration 35 : loss : 0.456359 cons_dist: 0.068703, loss_weight: 0.000674
[21:16:36.892] iteration 36 : loss : 0.545465 cons_dist: 0.009648, loss_weight: 0.000674
[21:16:38.582] iteration 37 : loss : 0.455009 cons_dist: 0.006937, loss_weight: 0.000674
[21:16:39.497] iteration 38 : loss : 0.435719 cons_dist: 0.012212, loss_weight: 0.000674
[21:16:40.411] iteration 39 : loss : 0.433689 cons_dist: 0.025623, loss_weight: 0.000674
[21:16:41.327] iteration 40 : loss : 0.474023 cons_dist: 0.004730, loss_weight: 0.000674
[21:16:42.244] iteration 41 : loss : 0.457947 cons_dist: 0.053389, loss_weight: 0.000674
[21:16:43.157] iteration 42 : loss : 0.457455 cons_dist: 0.006794, loss_weight: 0.000674
[21:16:44.071] iteration 43 : loss : 0.476204 cons_dist: 0.010618, loss_weight: 0.000674
[21:16:44.988] iteration 44 : loss : 0.451971 cons_dist: 0.023985, loss_weight: 0.000674
[21:16:45.907] iteration 45 : loss : 0.495878 cons_dist: 0.007464, loss_weight: 0.000674
[21:16:46.825] iteration 46 : loss : 0.414137 cons_dist: 0.018457, loss_weight: 0.000674
[21:16:47.742] iteration 47 : loss : 0.449795 cons_dist: 0.017971, loss_weight: 0.000674
[21:16:48.661] iteration 48 : loss : 0.422281 cons_dist: 0.021805, loss_weight: 0.000674
[21:16:50.235] iteration 49 : loss : 0.410665 cons_dist: 0.006670, loss_weight: 0.000674
[21:16:51.153] iteration 50 : loss : 0.376002 cons_dist: 0.025657, loss_weight: 0.000674
[21:16:52.246] iteration 51 : loss : 0.455825 cons_dist: 0.012807, loss_weight: 0.000674
[21:16:53.163] iteration 52 : loss : 0.376592 cons_dist: 0.037640, loss_weight: 0.000674
[21:16:54.080] iteration 53 : loss : 0.399169 cons_dist: 0.015082, loss_weight: 0.000674
[21:16:54.997] iteration 54 : loss : 0.429304 cons_dist: 0.008698, loss_weight: 0.000674
[21:16:55.915] iteration 55 : loss : 0.450789 cons_dist: 0.011161, loss_weight: 0.000674
[21:16:56.835] iteration 56 : loss : 0.373909 cons_dist: 0.006040, loss_weight: 0.000674
[21:16:57.754] iteration 57 : loss : 0.381872 cons_dist: 0.009008, loss_weight: 0.000674
[21:16:58.672] iteration 58 : loss : 0.466782 cons_dist: 0.008175, loss_weight: 0.000674
[21:16:59.591] iteration 59 : loss : 0.345131 cons_dist: 0.006038, loss_weight: 0.000674
[21:17:00.509] iteration 60 : loss : 0.382589 cons_dist: 0.013892, loss_weight: 0.000674
[21:17:01.997] iteration 61 : loss : 0.328947 cons_dist: 0.006592, loss_weight: 0.000674
[21:17:02.915] iteration 62 : loss : 0.428891 cons_dist: 0.012341, loss_weight: 0.000674
[21:17:03.835] iteration 63 : loss : 0.364683 cons_dist: 0.006525, loss_weight: 0.000674
[21:17:04.754] iteration 64 : loss : 0.446116 cons_dist: 0.005474, loss_weight: 0.000674
[21:17:05.673] iteration 65 : loss : 0.470226 cons_dist: 0.008304, loss_weight: 0.000674
[21:17:06.594] iteration 66 : loss : 0.329993 cons_dist: 0.021851, loss_weight: 0.000674
[21:17:07.513] iteration 67 : loss : 0.446510 cons_dist: 0.006129, loss_weight: 0.000674
[21:17:08.431] iteration 68 : loss : 0.388380 cons_dist: 0.009718, loss_weight: 0.000674
[21:17:09.349] iteration 69 : loss : 0.379021 cons_dist: 0.007776, loss_weight: 0.000674
[21:17:10.266] iteration 70 : loss : 0.356035 cons_dist: 0.021214, loss_weight: 0.000674
[21:17:11.184] iteration 71 : loss : 0.412810 cons_dist: 0.017251, loss_weight: 0.000674
[21:17:12.101] iteration 72 : loss : 0.362282 cons_dist: 0.012938, loss_weight: 0.000674
[21:17:13.602] iteration 73 : loss : 0.362507 cons_dist: 0.010801, loss_weight: 0.000674
[21:17:14.519] iteration 74 : loss : 0.367128 cons_dist: 0.018131, loss_weight: 0.000674
[21:17:15.436] iteration 75 : loss : 0.342346 cons_dist: 0.006665, loss_weight: 0.000674
[21:17:16.354] iteration 76 : loss : 0.365659 cons_dist: 0.005618, loss_weight: 0.000674
[21:17:17.271] iteration 77 : loss : 0.370913 cons_dist: 0.027217, loss_weight: 0.000674
[21:17:18.188] iteration 78 : loss : 0.314717 cons_dist: 0.008442, loss_weight: 0.000674
[21:17:19.105] iteration 79 : loss : 0.441786 cons_dist: 0.007530, loss_weight: 0.000674
[21:17:20.022] iteration 80 : loss : 0.457276 cons_dist: 0.012290, loss_weight: 0.000674
[21:17:20.938] iteration 81 : loss : 0.341694 cons_dist: 0.011030, loss_weight: 0.000674
[21:17:21.856] iteration 82 : loss : 0.258601 cons_dist: 0.008325, loss_weight: 0.000674
[21:17:22.775] iteration 83 : loss : 0.437703 cons_dist: 0.008204, loss_weight: 0.000674
[21:17:23.695] iteration 84 : loss : 0.381282 cons_dist: 0.033344, loss_weight: 0.000674
[21:17:25.194] iteration 85 : loss : 0.348473 cons_dist: 0.006062, loss_weight: 0.000674
[21:17:26.112] iteration 86 : loss : 0.385723 cons_dist: 0.004716, loss_weight: 0.000674
[21:17:27.028] iteration 87 : loss : 0.342710 cons_dist: 0.006255, loss_weight: 0.000674
[21:17:27.945] iteration 88 : loss : 0.430922 cons_dist: 0.009522, loss_weight: 0.000674
[21:17:28.860] iteration 89 : loss : 0.341191 cons_dist: 0.017693, loss_weight: 0.000674
[21:17:29.776] iteration 90 : loss : 0.369692 cons_dist: 0.008201, loss_weight: 0.000674
[21:17:30.693] iteration 91 : loss : 0.253626 cons_dist: 0.018003, loss_weight: 0.000674
[21:17:31.610] iteration 92 : loss : 0.398151 cons_dist: 0.006551, loss_weight: 0.000674
[21:17:32.529] iteration 93 : loss : 0.300007 cons_dist: 0.023212, loss_weight: 0.000674
[21:17:33.446] iteration 94 : loss : 0.412054 cons_dist: 0.013432, loss_weight: 0.000674
[21:17:34.364] iteration 95 : loss : 0.365795 cons_dist: 0.024077, loss_weight: 0.000674
[21:17:35.281] iteration 96 : loss : 0.335754 cons_dist: 0.007754, loss_weight: 0.000674
[21:17:36.838] iteration 97 : loss : 0.338187 cons_dist: 0.014640, loss_weight: 0.000674
[21:17:37.756] iteration 98 : loss : 0.313925 cons_dist: 0.014950, loss_weight: 0.000674
[21:17:38.675] iteration 99 : loss : 0.252150 cons_dist: 0.005941, loss_weight: 0.000674
[21:17:39.593] iteration 100 : loss : 0.301270 cons_dist: 0.013077, loss_weight: 0.000674
[21:17:40.706] iteration 101 : loss : 0.403752 cons_dist: 0.014184, loss_weight: 0.000674
[21:17:41.625] iteration 102 : loss : 0.312157 cons_dist: 0.005674, loss_weight: 0.000674
[21:17:42.543] iteration 103 : loss : 0.223258 cons_dist: 0.026718, loss_weight: 0.000674
[21:17:43.462] iteration 104 : loss : 0.511337 cons_dist: 0.028056, loss_weight: 0.000674
[21:17:44.380] iteration 105 : loss : 0.253118 cons_dist: 0.004973, loss_weight: 0.000674
[21:17:45.298] iteration 106 : loss : 0.258630 cons_dist: 0.004179, loss_weight: 0.000674
[21:17:46.216] iteration 107 : loss : 0.380824 cons_dist: 0.006969, loss_weight: 0.000674
[21:17:47.133] iteration 108 : loss : 0.258740 cons_dist: 0.007708, loss_weight: 0.000674
[21:17:48.608] iteration 109 : loss : 0.319240 cons_dist: 0.008561, loss_weight: 0.000674
[21:17:49.526] iteration 110 : loss : 0.328295 cons_dist: 0.006385, loss_weight: 0.000674
[21:17:50.442] iteration 111 : loss : 0.311911 cons_dist: 0.007798, loss_weight: 0.000674
[21:17:51.357] iteration 112 : loss : 0.288863 cons_dist: 0.016344, loss_weight: 0.000674
[21:17:52.273] iteration 113 : loss : 0.386781 cons_dist: 0.009322, loss_weight: 0.000674
[21:17:53.190] iteration 114 : loss : 0.423124 cons_dist: 0.008599, loss_weight: 0.000674
[21:17:54.107] iteration 115 : loss : 0.311738 cons_dist: 0.021912, loss_weight: 0.000674
[21:17:55.023] iteration 116 : loss : 0.313429 cons_dist: 0.010344, loss_weight: 0.000674
[21:17:55.938] iteration 117 : loss : 0.280046 cons_dist: 0.008873, loss_weight: 0.000674
[21:17:56.855] iteration 118 : loss : 0.318729 cons_dist: 0.016493, loss_weight: 0.000674
[21:17:57.771] iteration 119 : loss : 0.260098 cons_dist: 0.005846, loss_weight: 0.000674
[21:17:58.687] iteration 120 : loss : 0.375498 cons_dist: 0.040625, loss_weight: 0.000674
[21:18:00.282] iteration 121 : loss : 0.283226 cons_dist: 0.015630, loss_weight: 0.000674
[21:18:01.200] iteration 122 : loss : 0.341288 cons_dist: 0.003247, loss_weight: 0.000674
[21:18:02.118] iteration 123 : loss : 0.217568 cons_dist: 0.009749, loss_weight: 0.000674
[21:18:03.035] iteration 124 : loss : 0.219030 cons_dist: 0.012359, loss_weight: 0.000674
[21:18:03.952] iteration 125 : loss : 0.277891 cons_dist: 0.006644, loss_weight: 0.000674
[21:18:04.870] iteration 126 : loss : 0.332144 cons_dist: 0.010554, loss_weight: 0.000674
[21:18:05.787] iteration 127 : loss : 0.365931 cons_dist: 0.006186, loss_weight: 0.000674
[21:18:06.704] iteration 128 : loss : 0.288740 cons_dist: 0.029035, loss_weight: 0.000674
[21:18:07.622] iteration 129 : loss : 0.250972 cons_dist: 0.005671, loss_weight: 0.000674
[21:18:08.539] iteration 130 : loss : 0.200628 cons_dist: 0.005710, loss_weight: 0.000674
[21:18:09.457] iteration 131 : loss : 0.288121 cons_dist: 0.011660, loss_weight: 0.000674
[21:18:10.373] iteration 132 : loss : 0.197909 cons_dist: 0.024178, loss_weight: 0.000674
[21:18:12.025] iteration 133 : loss : 0.321956 cons_dist: 0.009368, loss_weight: 0.000674
[21:18:12.938] iteration 134 : loss : 0.358201 cons_dist: 0.014557, loss_weight: 0.000674
[21:18:13.856] iteration 135 : loss : 0.354457 cons_dist: 0.023090, loss_weight: 0.000674
[21:18:14.774] iteration 136 : loss : 0.353482 cons_dist: 0.028283, loss_weight: 0.000674
[21:18:15.690] iteration 137 : loss : 0.311520 cons_dist: 0.005252, loss_weight: 0.000674
[21:18:16.607] iteration 138 : loss : 0.218245 cons_dist: 0.006089, loss_weight: 0.000674
[21:18:17.525] iteration 139 : loss : 0.282943 cons_dist: 0.013038, loss_weight: 0.000674
[21:18:18.443] iteration 140 : loss : 0.317514 cons_dist: 0.016325, loss_weight: 0.000674
[21:18:19.360] iteration 141 : loss : 0.291398 cons_dist: 0.009664, loss_weight: 0.000674
[21:18:20.278] iteration 142 : loss : 0.258749 cons_dist: 0.004305, loss_weight: 0.000674
[21:18:21.195] iteration 143 : loss : 0.260544 cons_dist: 0.034564, loss_weight: 0.000674
[21:18:22.113] iteration 144 : loss : 0.267166 cons_dist: 0.003548, loss_weight: 0.000674
[21:18:23.634] iteration 145 : loss : 0.375179 cons_dist: 0.003800, loss_weight: 0.000674
[21:18:24.550] iteration 146 : loss : 0.303896 cons_dist: 0.003429, loss_weight: 0.000674
[21:18:25.467] iteration 147 : loss : 0.348525 cons_dist: 0.008029, loss_weight: 0.000674
[21:18:26.383] iteration 148 : loss : 0.329676 cons_dist: 0.012566, loss_weight: 0.000674
[21:18:27.299] iteration 149 : loss : 0.299297 cons_dist: 0.008051, loss_weight: 0.000674
[21:18:28.215] iteration 150 : loss : 0.320577 cons_dist: 0.035271, loss_weight: 0.000674
[21:18:29.305] iteration 151 : loss : 0.286013 cons_dist: 0.008184, loss_weight: 0.000862
[21:18:30.222] iteration 152 : loss : 0.282981 cons_dist: 0.005174, loss_weight: 0.000862
[21:18:31.138] iteration 153 : loss : 0.301396 cons_dist: 0.006931, loss_weight: 0.000862
[21:18:32.056] iteration 154 : loss : 0.285457 cons_dist: 0.019578, loss_weight: 0.000862
[21:18:32.973] iteration 155 : loss : 0.225427 cons_dist: 0.006702, loss_weight: 0.000862
[21:18:33.892] iteration 156 : loss : 0.339869 cons_dist: 0.015374, loss_weight: 0.000862
[21:18:35.497] iteration 157 : loss : 0.274482 cons_dist: 0.013599, loss_weight: 0.000862
[21:18:36.412] iteration 158 : loss : 0.218407 cons_dist: 0.008438, loss_weight: 0.000862
[21:18:37.327] iteration 159 : loss : 0.309279 cons_dist: 0.005047, loss_weight: 0.000862
[21:18:38.241] iteration 160 : loss : 0.300567 cons_dist: 0.015304, loss_weight: 0.000862
[21:18:39.154] iteration 161 : loss : 0.285458 cons_dist: 0.008384, loss_weight: 0.000862
[21:18:40.069] iteration 162 : loss : 0.425569 cons_dist: 0.005835, loss_weight: 0.000862
[21:18:40.983] iteration 163 : loss : 0.294711 cons_dist: 0.008144, loss_weight: 0.000862
[21:18:41.895] iteration 164 : loss : 0.327667 cons_dist: 0.006567, loss_weight: 0.000862
[21:18:42.809] iteration 165 : loss : 0.270697 cons_dist: 0.012410, loss_weight: 0.000862
[21:18:43.723] iteration 166 : loss : 0.257355 cons_dist: 0.011840, loss_weight: 0.000862
[21:18:44.636] iteration 167 : loss : 0.267328 cons_dist: 0.006789, loss_weight: 0.000862
[21:18:45.551] iteration 168 : loss : 0.267098 cons_dist: 0.006671, loss_weight: 0.000862
[21:18:47.179] iteration 169 : loss : 0.291874 cons_dist: 0.004010, loss_weight: 0.000862
[21:18:48.094] iteration 170 : loss : 0.354835 cons_dist: 0.008205, loss_weight: 0.000862
[21:18:49.006] iteration 171 : loss : 0.395373 cons_dist: 0.004927, loss_weight: 0.000862
[21:18:49.919] iteration 172 : loss : 0.334329 cons_dist: 0.002293, loss_weight: 0.000862
[21:18:50.833] iteration 173 : loss : 0.266273 cons_dist: 0.034020, loss_weight: 0.000862
[21:18:51.748] iteration 174 : loss : 0.205987 cons_dist: 0.003969, loss_weight: 0.000862
[21:18:52.663] iteration 175 : loss : 0.335476 cons_dist: 0.026827, loss_weight: 0.000862
[21:18:53.577] iteration 176 : loss : 0.261195 cons_dist: 0.007738, loss_weight: 0.000862
[21:18:54.492] iteration 177 : loss : 0.225732 cons_dist: 0.006310, loss_weight: 0.000862
[21:18:55.406] iteration 178 : loss : 0.376655 cons_dist: 0.008746, loss_weight: 0.000862
[21:18:56.321] iteration 179 : loss : 0.356108 cons_dist: 0.034032, loss_weight: 0.000862
[21:18:57.235] iteration 180 : loss : 0.230567 cons_dist: 0.008955, loss_weight: 0.000862
[21:18:58.828] iteration 181 : loss : 0.281260 cons_dist: 0.024218, loss_weight: 0.000862
[21:18:59.743] iteration 182 : loss : 0.391416 cons_dist: 0.005815, loss_weight: 0.000862
[21:19:00.658] iteration 183 : loss : 0.209374 cons_dist: 0.012746, loss_weight: 0.000862
[21:19:01.572] iteration 184 : loss : 0.404136 cons_dist: 0.010015, loss_weight: 0.000862
[21:19:02.486] iteration 185 : loss : 0.202154 cons_dist: 0.008062, loss_weight: 0.000862
[21:19:03.399] iteration 186 : loss : 0.294442 cons_dist: 0.006893, loss_weight: 0.000862
[21:19:04.314] iteration 187 : loss : 0.181776 cons_dist: 0.007031, loss_weight: 0.000862
[21:19:05.228] iteration 188 : loss : 0.252519 cons_dist: 0.012891, loss_weight: 0.000862
[21:19:06.143] iteration 189 : loss : 0.340335 cons_dist: 0.008617, loss_weight: 0.000862
[21:19:07.057] iteration 190 : loss : 0.380701 cons_dist: 0.015346, loss_weight: 0.000862
[21:19:07.970] iteration 191 : loss : 0.246409 cons_dist: 0.007334, loss_weight: 0.000862
[21:19:08.884] iteration 192 : loss : 0.284350 cons_dist: 0.010998, loss_weight: 0.000862
[21:19:10.450] iteration 193 : loss : 0.198961 cons_dist: 0.010388, loss_weight: 0.000862
[21:19:11.364] iteration 194 : loss : 0.247543 cons_dist: 0.009646, loss_weight: 0.000862
[21:19:12.281] iteration 195 : loss : 0.330596 cons_dist: 0.023105, loss_weight: 0.000862
[21:19:13.196] iteration 196 : loss : 0.230417 cons_dist: 0.006320, loss_weight: 0.000862
[21:19:14.111] iteration 197 : loss : 0.346387 cons_dist: 0.037088, loss_weight: 0.000862
[21:19:15.026] iteration 198 : loss : 0.306813 cons_dist: 0.006877, loss_weight: 0.000862
[21:19:15.940] iteration 199 : loss : 0.265043 cons_dist: 0.007263, loss_weight: 0.000862
[21:19:16.854] iteration 200 : loss : 0.244010 cons_dist: 0.015217, loss_weight: 0.000862
[21:19:17.947] iteration 201 : loss : 0.277631 cons_dist: 0.007994, loss_weight: 0.000862
[21:19:18.860] iteration 202 : loss : 0.214573 cons_dist: 0.019592, loss_weight: 0.000862
[21:19:19.774] iteration 203 : loss : 0.174418 cons_dist: 0.020090, loss_weight: 0.000862
[21:19:20.690] iteration 204 : loss : 0.316833 cons_dist: 0.008233, loss_weight: 0.000862
[21:19:22.256] iteration 205 : loss : 0.425903 cons_dist: 0.019884, loss_weight: 0.000862
[21:19:23.170] iteration 206 : loss : 0.206039 cons_dist: 0.007087, loss_weight: 0.000862
[21:19:24.085] iteration 207 : loss : 0.347695 cons_dist: 0.012410, loss_weight: 0.000862
[21:19:24.999] iteration 208 : loss : 0.289139 cons_dist: 0.004284, loss_weight: 0.000862
[21:19:25.911] iteration 209 : loss : 0.227630 cons_dist: 0.025392, loss_weight: 0.000862
[21:19:26.824] iteration 210 : loss : 0.228909 cons_dist: 0.007258, loss_weight: 0.000862
[21:19:27.737] iteration 211 : loss : 0.242927 cons_dist: 0.005548, loss_weight: 0.000862
[21:19:28.652] iteration 212 : loss : 0.190553 cons_dist: 0.012634, loss_weight: 0.000862
[21:19:29.566] iteration 213 : loss : 0.301223 cons_dist: 0.010064, loss_weight: 0.000862
[21:19:30.479] iteration 214 : loss : 0.165436 cons_dist: 0.005421, loss_weight: 0.000862
[21:19:31.391] iteration 215 : loss : 0.235117 cons_dist: 0.016908, loss_weight: 0.000862
[21:19:32.306] iteration 216 : loss : 0.289500 cons_dist: 0.014971, loss_weight: 0.000862
[21:19:33.919] iteration 217 : loss : 0.201596 cons_dist: 0.020624, loss_weight: 0.000862
[21:19:34.828] iteration 218 : loss : 0.278586 cons_dist: 0.012272, loss_weight: 0.000862
[21:19:35.743] iteration 219 : loss : 0.216760 cons_dist: 0.009268, loss_weight: 0.000862
[21:19:36.657] iteration 220 : loss : 0.353773 cons_dist: 0.013231, loss_weight: 0.000862
[21:19:37.571] iteration 221 : loss : 0.268461 cons_dist: 0.015240, loss_weight: 0.000862
[21:19:38.487] iteration 222 : loss : 0.193277 cons_dist: 0.012102, loss_weight: 0.000862
[21:19:39.401] iteration 223 : loss : 0.218681 cons_dist: 0.008474, loss_weight: 0.000862
[21:19:40.315] iteration 224 : loss : 0.209468 cons_dist: 0.006475, loss_weight: 0.000862
[21:19:41.228] iteration 225 : loss : 0.171630 cons_dist: 0.008710, loss_weight: 0.000862
[21:19:42.142] iteration 226 : loss : 0.261228 cons_dist: 0.034195, loss_weight: 0.000862
[21:19:43.062] iteration 227 : loss : 0.261932 cons_dist: 0.003288, loss_weight: 0.000862
[21:19:43.980] iteration 228 : loss : 0.143369 cons_dist: 0.002854, loss_weight: 0.000862
[21:19:45.442] iteration 229 : loss : 0.225410 cons_dist: 0.018544, loss_weight: 0.000862
[21:19:46.355] iteration 230 : loss : 0.184143 cons_dist: 0.009453, loss_weight: 0.000862
[21:19:47.268] iteration 231 : loss : 0.346731 cons_dist: 0.004599, loss_weight: 0.000862
[21:19:48.183] iteration 232 : loss : 0.238307 cons_dist: 0.020800, loss_weight: 0.000862
[21:19:49.098] iteration 233 : loss : 0.254615 cons_dist: 0.017477, loss_weight: 0.000862
[21:19:50.012] iteration 234 : loss : 0.188698 cons_dist: 0.015565, loss_weight: 0.000862
[21:19:50.925] iteration 235 : loss : 0.190635 cons_dist: 0.011795, loss_weight: 0.000862
[21:19:51.839] iteration 236 : loss : 0.213077 cons_dist: 0.006461, loss_weight: 0.000862
[21:19:52.753] iteration 237 : loss : 0.197756 cons_dist: 0.009163, loss_weight: 0.000862
[21:19:53.669] iteration 238 : loss : 0.253814 cons_dist: 0.016401, loss_weight: 0.000862
[21:19:54.583] iteration 239 : loss : 0.228349 cons_dist: 0.004729, loss_weight: 0.000862
[21:19:55.496] iteration 240 : loss : 0.183011 cons_dist: 0.004411, loss_weight: 0.000862
[21:19:56.986] iteration 241 : loss : 0.162771 cons_dist: 0.008429, loss_weight: 0.000862
[21:19:57.900] iteration 242 : loss : 0.191547 cons_dist: 0.004651, loss_weight: 0.000862
[21:19:58.814] iteration 243 : loss : 0.184469 cons_dist: 0.004906, loss_weight: 0.000862
[21:19:59.729] iteration 244 : loss : 0.199575 cons_dist: 0.031875, loss_weight: 0.000862
[21:20:00.644] iteration 245 : loss : 0.269083 cons_dist: 0.025315, loss_weight: 0.000862
[21:20:01.558] iteration 246 : loss : 0.211026 cons_dist: 0.009818, loss_weight: 0.000862
[21:20:02.472] iteration 247 : loss : 0.203688 cons_dist: 0.012059, loss_weight: 0.000862
[21:20:03.386] iteration 248 : loss : 0.297842 cons_dist: 0.008899, loss_weight: 0.000862
[21:20:04.299] iteration 249 : loss : 0.158925 cons_dist: 0.007134, loss_weight: 0.000862
[21:20:05.213] iteration 250 : loss : 0.183129 cons_dist: 0.008442, loss_weight: 0.000862
[21:20:06.318] iteration 251 : loss : 0.224133 cons_dist: 0.011416, loss_weight: 0.000862
[21:20:07.232] iteration 252 : loss : 0.278232 cons_dist: 0.005247, loss_weight: 0.000862
[21:20:08.773] iteration 253 : loss : 0.138293 cons_dist: 0.014519, loss_weight: 0.000862
[21:20:09.686] iteration 254 : loss : 0.189892 cons_dist: 0.004320, loss_weight: 0.000862
[21:20:10.600] iteration 255 : loss : 0.178229 cons_dist: 0.002400, loss_weight: 0.000862
[21:20:11.513] iteration 256 : loss : 0.199496 cons_dist: 0.010086, loss_weight: 0.000862
[21:20:12.425] iteration 257 : loss : 0.195957 cons_dist: 0.006989, loss_weight: 0.000862
[21:20:13.339] iteration 258 : loss : 0.297005 cons_dist: 0.009303, loss_weight: 0.000862
[21:20:14.257] iteration 259 : loss : 0.187200 cons_dist: 0.028849, loss_weight: 0.000862
[21:20:15.171] iteration 260 : loss : 0.210122 cons_dist: 0.003972, loss_weight: 0.000862
[21:20:16.084] iteration 261 : loss : 0.192434 cons_dist: 0.015042, loss_weight: 0.000862
[21:20:16.999] iteration 262 : loss : 0.211409 cons_dist: 0.003983, loss_weight: 0.000862
[21:20:17.913] iteration 263 : loss : 0.300142 cons_dist: 0.004832, loss_weight: 0.000862
[21:20:18.826] iteration 264 : loss : 0.235471 cons_dist: 0.007350, loss_weight: 0.000862
[21:20:20.312] iteration 265 : loss : 0.193062 cons_dist: 0.004994, loss_weight: 0.000862
[21:20:21.225] iteration 266 : loss : 0.174903 cons_dist: 0.008263, loss_weight: 0.000862
[21:20:22.140] iteration 267 : loss : 0.227706 cons_dist: 0.007129, loss_weight: 0.000862
[21:20:23.054] iteration 268 : loss : 0.284754 cons_dist: 0.008446, loss_weight: 0.000862
[21:20:23.969] iteration 269 : loss : 0.174962 cons_dist: 0.004062, loss_weight: 0.000862
[21:20:24.914] iteration 270 : loss : 0.244946 cons_dist: 0.021578, loss_weight: 0.000862
[21:20:25.827] iteration 271 : loss : 0.219022 cons_dist: 0.047778, loss_weight: 0.000862
[21:20:26.743] iteration 272 : loss : 0.149830 cons_dist: 0.020725, loss_weight: 0.000862
[21:20:27.658] iteration 273 : loss : 0.190791 cons_dist: 0.006632, loss_weight: 0.000862
[21:20:28.572] iteration 274 : loss : 0.221809 cons_dist: 0.014379, loss_weight: 0.000862
[21:20:29.488] iteration 275 : loss : 0.197546 cons_dist: 0.004698, loss_weight: 0.000862
[21:20:30.401] iteration 276 : loss : 0.236152 cons_dist: 0.003337, loss_weight: 0.000862
[21:20:31.902] iteration 277 : loss : 0.259689 cons_dist: 0.008059, loss_weight: 0.000862
[21:20:32.816] iteration 278 : loss : 0.117010 cons_dist: 0.003885, loss_weight: 0.000862
[21:20:33.731] iteration 279 : loss : 0.115773 cons_dist: 0.006753, loss_weight: 0.000862
[21:20:34.645] iteration 280 : loss : 0.196233 cons_dist: 0.023902, loss_weight: 0.000862
[21:20:35.558] iteration 281 : loss : 0.159979 cons_dist: 0.016375, loss_weight: 0.000862
[21:20:36.471] iteration 282 : loss : 0.184429 cons_dist: 0.008909, loss_weight: 0.000862
[21:20:37.386] iteration 283 : loss : 0.219311 cons_dist: 0.023944, loss_weight: 0.000862
[21:20:38.304] iteration 284 : loss : 0.251843 cons_dist: 0.005040, loss_weight: 0.000862
[21:20:39.219] iteration 285 : loss : 0.155251 cons_dist: 0.007486, loss_weight: 0.000862
[21:20:40.133] iteration 286 : loss : 0.137763 cons_dist: 0.011592, loss_weight: 0.000862
[21:20:41.046] iteration 287 : loss : 0.229867 cons_dist: 0.007997, loss_weight: 0.000862
[21:20:41.960] iteration 288 : loss : 0.176526 cons_dist: 0.005055, loss_weight: 0.000862
[21:20:43.478] iteration 289 : loss : 0.132788 cons_dist: 0.007068, loss_weight: 0.000862
[21:20:44.393] iteration 290 : loss : 0.263154 cons_dist: 0.007349, loss_weight: 0.000862
[21:20:45.308] iteration 291 : loss : 0.171335 cons_dist: 0.014944, loss_weight: 0.000862
[21:20:46.224] iteration 292 : loss : 0.133241 cons_dist: 0.012936, loss_weight: 0.000862
[21:20:47.135] iteration 293 : loss : 0.217450 cons_dist: 0.013002, loss_weight: 0.000862
[21:20:48.048] iteration 294 : loss : 0.159069 cons_dist: 0.007883, loss_weight: 0.000862
[21:20:48.962] iteration 295 : loss : 0.138799 cons_dist: 0.011002, loss_weight: 0.000862
[21:20:49.877] iteration 296 : loss : 0.153236 cons_dist: 0.008006, loss_weight: 0.000862
[21:20:50.793] iteration 297 : loss : 0.161016 cons_dist: 0.016187, loss_weight: 0.000862
[21:20:51.708] iteration 298 : loss : 0.330117 cons_dist: 0.008789, loss_weight: 0.000862
[21:20:52.624] iteration 299 : loss : 0.176334 cons_dist: 0.012007, loss_weight: 0.000862
[21:20:53.542] iteration 300 : loss : 0.126935 cons_dist: 0.023616, loss_weight: 0.000862
[21:20:55.269] iteration 301 : loss : 0.169052 cons_dist: 0.006002, loss_weight: 0.001097
[21:20:56.181] iteration 302 : loss : 0.189443 cons_dist: 0.010584, loss_weight: 0.001097
[21:20:57.096] iteration 303 : loss : 0.190332 cons_dist: 0.006986, loss_weight: 0.001097
[21:20:58.010] iteration 304 : loss : 0.153619 cons_dist: 0.008285, loss_weight: 0.001097
[21:20:58.924] iteration 305 : loss : 0.183294 cons_dist: 0.022830, loss_weight: 0.001097
[21:20:59.839] iteration 306 : loss : 0.163582 cons_dist: 0.007035, loss_weight: 0.001097
[21:21:00.756] iteration 307 : loss : 0.318032 cons_dist: 0.004466, loss_weight: 0.001097
[21:21:01.670] iteration 308 : loss : 0.242935 cons_dist: 0.015104, loss_weight: 0.001097
[21:21:02.584] iteration 309 : loss : 0.226803 cons_dist: 0.019218, loss_weight: 0.001097
[21:21:03.498] iteration 310 : loss : 0.155752 cons_dist: 0.039032, loss_weight: 0.001097
[21:21:04.413] iteration 311 : loss : 0.241108 cons_dist: 0.021228, loss_weight: 0.001097
[21:21:05.327] iteration 312 : loss : 0.474786 cons_dist: 0.021088, loss_weight: 0.001097
[21:21:06.819] iteration 313 : loss : 0.394313 cons_dist: 0.007770, loss_weight: 0.001097
[21:21:07.733] iteration 314 : loss : 0.349851 cons_dist: 0.015324, loss_weight: 0.001097
[21:21:08.649] iteration 315 : loss : 0.167643 cons_dist: 0.009738, loss_weight: 0.001097
[21:21:09.566] iteration 316 : loss : 0.191889 cons_dist: 0.002418, loss_weight: 0.001097
[21:21:10.479] iteration 317 : loss : 0.155553 cons_dist: 0.005096, loss_weight: 0.001097
[21:21:11.392] iteration 318 : loss : 0.180745 cons_dist: 0.021986, loss_weight: 0.001097
[21:21:12.307] iteration 319 : loss : 0.199140 cons_dist: 0.014335, loss_weight: 0.001097
[21:21:13.222] iteration 320 : loss : 0.152266 cons_dist: 0.025995, loss_weight: 0.001097
[21:21:14.138] iteration 321 : loss : 0.125960 cons_dist: 0.004197, loss_weight: 0.001097
[21:21:15.052] iteration 322 : loss : 0.212672 cons_dist: 0.015485, loss_weight: 0.001097
[21:21:15.965] iteration 323 : loss : 0.259845 cons_dist: 0.008563, loss_weight: 0.001097
[21:21:16.880] iteration 324 : loss : 0.249815 cons_dist: 0.009091, loss_weight: 0.001097
[21:21:18.508] iteration 325 : loss : 0.200294 cons_dist: 0.013590, loss_weight: 0.001097
[21:21:19.422] iteration 326 : loss : 0.227642 cons_dist: 0.007335, loss_weight: 0.001097
[21:21:20.338] iteration 327 : loss : 0.192908 cons_dist: 0.003929, loss_weight: 0.001097
[21:21:21.253] iteration 328 : loss : 0.213338 cons_dist: 0.015724, loss_weight: 0.001097
[21:21:22.167] iteration 329 : loss : 0.183042 cons_dist: 0.009620, loss_weight: 0.001097
[21:21:23.079] iteration 330 : loss : 0.191527 cons_dist: 0.015131, loss_weight: 0.001097
[21:21:23.995] iteration 331 : loss : 0.154084 cons_dist: 0.016292, loss_weight: 0.001097
[21:21:24.908] iteration 332 : loss : 0.338773 cons_dist: 0.013566, loss_weight: 0.001097
[21:21:25.821] iteration 333 : loss : 0.191787 cons_dist: 0.006782, loss_weight: 0.001097
[21:21:26.736] iteration 334 : loss : 0.321259 cons_dist: 0.009885, loss_weight: 0.001097
[21:21:27.651] iteration 335 : loss : 0.325801 cons_dist: 0.013000, loss_weight: 0.001097
[21:21:28.566] iteration 336 : loss : 0.142103 cons_dist: 0.011787, loss_weight: 0.001097
[21:21:30.190] iteration 337 : loss : 0.221959 cons_dist: 0.002254, loss_weight: 0.001097
[21:21:31.103] iteration 338 : loss : 0.148989 cons_dist: 0.009735, loss_weight: 0.001097
[21:21:32.018] iteration 339 : loss : 0.274394 cons_dist: 0.022921, loss_weight: 0.001097
[21:21:32.932] iteration 340 : loss : 0.151916 cons_dist: 0.009509, loss_weight: 0.001097
[21:21:33.845] iteration 341 : loss : 0.232585 cons_dist: 0.014901, loss_weight: 0.001097
[21:21:34.761] iteration 342 : loss : 0.125834 cons_dist: 0.006907, loss_weight: 0.001097
[21:21:35.676] iteration 343 : loss : 0.163506 cons_dist: 0.017585, loss_weight: 0.001097
[21:21:36.591] iteration 344 : loss : 0.175108 cons_dist: 0.013507, loss_weight: 0.001097
[21:21:37.505] iteration 345 : loss : 0.143779 cons_dist: 0.007211, loss_weight: 0.001097
[21:21:38.424] iteration 346 : loss : 0.267152 cons_dist: 0.009307, loss_weight: 0.001097
[21:21:39.339] iteration 347 : loss : 0.132866 cons_dist: 0.014142, loss_weight: 0.001097
[21:21:40.252] iteration 348 : loss : 0.207282 cons_dist: 0.004925, loss_weight: 0.001097
[21:21:41.866] iteration 349 : loss : 0.254782 cons_dist: 0.011202, loss_weight: 0.001097
[21:21:42.781] iteration 350 : loss : 0.168121 cons_dist: 0.005723, loss_weight: 0.001097
[21:21:43.871] iteration 351 : loss : 0.138735 cons_dist: 0.003297, loss_weight: 0.001097
[21:21:44.784] iteration 352 : loss : 0.138004 cons_dist: 0.010610, loss_weight: 0.001097
[21:21:45.751] iteration 353 : loss : 0.127859 cons_dist: 0.003669, loss_weight: 0.001097
[21:21:46.664] iteration 354 : loss : 0.174468 cons_dist: 0.005936, loss_weight: 0.001097
[21:21:47.577] iteration 355 : loss : 0.132310 cons_dist: 0.003059, loss_weight: 0.001097
[21:21:48.491] iteration 356 : loss : 0.180704 cons_dist: 0.026971, loss_weight: 0.001097
[21:21:49.406] iteration 357 : loss : 0.241077 cons_dist: 0.003626, loss_weight: 0.001097
[21:21:50.321] iteration 358 : loss : 0.186056 cons_dist: 0.006404, loss_weight: 0.001097
[21:21:51.237] iteration 359 : loss : 0.150591 cons_dist: 0.014704, loss_weight: 0.001097
[21:21:52.151] iteration 360 : loss : 0.142245 cons_dist: 0.019298, loss_weight: 0.001097
[21:21:53.733] iteration 361 : loss : 0.220956 cons_dist: 0.015990, loss_weight: 0.001097
[21:21:54.647] iteration 362 : loss : 0.144902 cons_dist: 0.017051, loss_weight: 0.001097
[21:21:55.561] iteration 363 : loss : 0.318486 cons_dist: 0.036248, loss_weight: 0.001097
[21:21:56.477] iteration 364 : loss : 0.278674 cons_dist: 0.038485, loss_weight: 0.001097
[21:21:57.393] iteration 365 : loss : 0.177715 cons_dist: 0.013593, loss_weight: 0.001097
[21:21:58.306] iteration 366 : loss : 0.216674 cons_dist: 0.007947, loss_weight: 0.001097
[21:21:59.219] iteration 367 : loss : 0.107040 cons_dist: 0.007919, loss_weight: 0.001097
[21:22:00.133] iteration 368 : loss : 0.120106 cons_dist: 0.002991, loss_weight: 0.001097
[21:22:01.048] iteration 369 : loss : 0.200645 cons_dist: 0.004334, loss_weight: 0.001097
[21:22:01.972] iteration 370 : loss : 0.157059 cons_dist: 0.014219, loss_weight: 0.001097
[21:22:02.886] iteration 371 : loss : 0.130766 cons_dist: 0.006154, loss_weight: 0.001097
[21:22:03.798] iteration 372 : loss : 0.211366 cons_dist: 0.010690, loss_weight: 0.001097
[21:22:05.291] iteration 373 : loss : 0.219734 cons_dist: 0.009532, loss_weight: 0.001097
[21:22:06.204] iteration 374 : loss : 0.265859 cons_dist: 0.003966, loss_weight: 0.001097
[21:22:07.119] iteration 375 : loss : 0.161431 cons_dist: 0.004767, loss_weight: 0.001097
[21:22:08.034] iteration 376 : loss : 0.129884 cons_dist: 0.007377, loss_weight: 0.001097
[21:22:08.950] iteration 377 : loss : 0.206212 cons_dist: 0.019879, loss_weight: 0.001097
[21:22:09.865] iteration 378 : loss : 0.130888 cons_dist: 0.040249, loss_weight: 0.001097
[21:22:10.779] iteration 379 : loss : 0.119271 cons_dist: 0.006631, loss_weight: 0.001097
[21:22:11.696] iteration 380 : loss : 0.120553 cons_dist: 0.007093, loss_weight: 0.001097
[21:22:12.609] iteration 381 : loss : 0.357818 cons_dist: 0.021602, loss_weight: 0.001097
[21:22:13.524] iteration 382 : loss : 0.162830 cons_dist: 0.019470, loss_weight: 0.001097
[21:22:14.461] iteration 383 : loss : 0.182245 cons_dist: 0.009803, loss_weight: 0.001097
[21:22:15.375] iteration 384 : loss : 0.178253 cons_dist: 0.006986, loss_weight: 0.001097
[21:22:16.940] iteration 385 : loss : 0.146047 cons_dist: 0.003645, loss_weight: 0.001097
[21:22:17.854] iteration 386 : loss : 0.179722 cons_dist: 0.016517, loss_weight: 0.001097
[21:22:18.768] iteration 387 : loss : 0.229060 cons_dist: 0.004806, loss_weight: 0.001097
[21:22:19.681] iteration 388 : loss : 0.185662 cons_dist: 0.008173, loss_weight: 0.001097
[21:22:20.596] iteration 389 : loss : 0.108490 cons_dist: 0.014580, loss_weight: 0.001097
[21:22:21.512] iteration 390 : loss : 0.148077 cons_dist: 0.025197, loss_weight: 0.001097
[21:22:22.427] iteration 391 : loss : 0.120324 cons_dist: 0.024900, loss_weight: 0.001097
[21:22:23.341] iteration 392 : loss : 0.093387 cons_dist: 0.007968, loss_weight: 0.001097
[21:22:24.255] iteration 393 : loss : 0.164725 cons_dist: 0.019444, loss_weight: 0.001097
[21:22:25.169] iteration 394 : loss : 0.116585 cons_dist: 0.029608, loss_weight: 0.001097
[21:22:26.083] iteration 395 : loss : 0.193354 cons_dist: 0.022121, loss_weight: 0.001097
[21:22:26.997] iteration 396 : loss : 0.136720 cons_dist: 0.014416, loss_weight: 0.001097
[21:22:28.551] iteration 397 : loss : 0.194216 cons_dist: 0.016623, loss_weight: 0.001097
[21:22:29.465] iteration 398 : loss : 0.164318 cons_dist: 0.008074, loss_weight: 0.001097
[21:22:30.379] iteration 399 : loss : 0.145563 cons_dist: 0.004391, loss_weight: 0.001097
[21:22:31.293] iteration 400 : loss : 0.157015 cons_dist: 0.006421, loss_weight: 0.001097
[21:22:32.385] iteration 401 : loss : 0.305459 cons_dist: 0.009548, loss_weight: 0.001097
[21:22:33.300] iteration 402 : loss : 0.169284 cons_dist: 0.008489, loss_weight: 0.001097
[21:22:34.215] iteration 403 : loss : 0.141210 cons_dist: 0.012999, loss_weight: 0.001097
[21:22:35.129] iteration 404 : loss : 0.092810 cons_dist: 0.011439, loss_weight: 0.001097
[21:22:36.043] iteration 405 : loss : 0.107279 cons_dist: 0.020680, loss_weight: 0.001097
[21:22:36.957] iteration 406 : loss : 0.184931 cons_dist: 0.003640, loss_weight: 0.001097
[21:22:37.872] iteration 407 : loss : 0.164482 cons_dist: 0.022800, loss_weight: 0.001097
[21:22:38.784] iteration 408 : loss : 0.363508 cons_dist: 0.006397, loss_weight: 0.001097
[21:22:40.285] iteration 409 : loss : 0.119469 cons_dist: 0.016448, loss_weight: 0.001097
[21:22:41.200] iteration 410 : loss : 0.183346 cons_dist: 0.005947, loss_weight: 0.001097
[21:22:42.115] iteration 411 : loss : 0.229565 cons_dist: 0.006280, loss_weight: 0.001097
[21:22:43.031] iteration 412 : loss : 0.147418 cons_dist: 0.002056, loss_weight: 0.001097
[21:22:43.945] iteration 413 : loss : 0.158165 cons_dist: 0.018176, loss_weight: 0.001097
[21:22:44.858] iteration 414 : loss : 0.315331 cons_dist: 0.046170, loss_weight: 0.001097
[21:22:45.772] iteration 415 : loss : 0.263696 cons_dist: 0.002842, loss_weight: 0.001097
[21:22:46.685] iteration 416 : loss : 0.114642 cons_dist: 0.003296, loss_weight: 0.001097
[21:22:47.599] iteration 417 : loss : 0.131911 cons_dist: 0.017424, loss_weight: 0.001097
[21:22:48.514] iteration 418 : loss : 0.224999 cons_dist: 0.006805, loss_weight: 0.001097
[21:22:49.429] iteration 419 : loss : 0.204477 cons_dist: 0.009582, loss_weight: 0.001097
[21:22:50.343] iteration 420 : loss : 0.120460 cons_dist: 0.007926, loss_weight: 0.001097
[21:22:51.951] iteration 421 : loss : 0.118222 cons_dist: 0.022192, loss_weight: 0.001097
[21:22:52.866] iteration 422 : loss : 0.130575 cons_dist: 0.020170, loss_weight: 0.001097
[21:22:53.783] iteration 423 : loss : 0.150056 cons_dist: 0.035991, loss_weight: 0.001097
[21:22:54.697] iteration 424 : loss : 0.113669 cons_dist: 0.007926, loss_weight: 0.001097
[21:22:55.610] iteration 425 : loss : 0.150223 cons_dist: 0.013889, loss_weight: 0.001097
[21:22:56.524] iteration 426 : loss : 0.127589 cons_dist: 0.005835, loss_weight: 0.001097
[21:22:57.438] iteration 427 : loss : 0.194662 cons_dist: 0.025959, loss_weight: 0.001097
[21:22:58.353] iteration 428 : loss : 0.231518 cons_dist: 0.004074, loss_weight: 0.001097
[21:22:59.266] iteration 429 : loss : 0.137725 cons_dist: 0.008830, loss_weight: 0.001097
[21:23:00.181] iteration 430 : loss : 0.111346 cons_dist: 0.004835, loss_weight: 0.001097
[21:23:01.094] iteration 431 : loss : 0.131903 cons_dist: 0.011529, loss_weight: 0.001097
[21:23:02.008] iteration 432 : loss : 0.115266 cons_dist: 0.006094, loss_weight: 0.001097
[21:23:03.549] iteration 433 : loss : 0.142974 cons_dist: 0.008178, loss_weight: 0.001097
[21:23:04.463] iteration 434 : loss : 0.125560 cons_dist: 0.003973, loss_weight: 0.001097
[21:23:05.377] iteration 435 : loss : 0.159856 cons_dist: 0.008081, loss_weight: 0.001097
[21:23:06.293] iteration 436 : loss : 0.191700 cons_dist: 0.004171, loss_weight: 0.001097
[21:23:07.208] iteration 437 : loss : 0.177796 cons_dist: 0.006288, loss_weight: 0.001097
[21:23:08.122] iteration 438 : loss : 0.109052 cons_dist: 0.003110, loss_weight: 0.001097
[21:23:09.035] iteration 439 : loss : 0.152246 cons_dist: 0.003222, loss_weight: 0.001097
[21:23:09.947] iteration 440 : loss : 0.162262 cons_dist: 0.005553, loss_weight: 0.001097
[21:23:10.861] iteration 441 : loss : 0.128434 cons_dist: 0.017519, loss_weight: 0.001097
[21:23:11.775] iteration 442 : loss : 0.104092 cons_dist: 0.005874, loss_weight: 0.001097
[21:23:12.690] iteration 443 : loss : 0.109703 cons_dist: 0.007810, loss_weight: 0.001097
[21:23:13.603] iteration 444 : loss : 0.117109 cons_dist: 0.005777, loss_weight: 0.001097
[21:23:15.165] iteration 445 : loss : 0.094610 cons_dist: 0.014258, loss_weight: 0.001097
[21:23:16.079] iteration 446 : loss : 0.165982 cons_dist: 0.014545, loss_weight: 0.001097
[21:23:16.994] iteration 447 : loss : 0.247455 cons_dist: 0.030395, loss_weight: 0.001097
[21:23:17.909] iteration 448 : loss : 0.129530 cons_dist: 0.003222, loss_weight: 0.001097
[21:23:18.824] iteration 449 : loss : 0.216316 cons_dist: 0.034271, loss_weight: 0.001097
[21:23:19.736] iteration 450 : loss : 0.171775 cons_dist: 0.032267, loss_weight: 0.001097
[21:23:20.831] iteration 451 : loss : 0.142785 cons_dist: 0.009377, loss_weight: 0.001387
[21:23:21.745] iteration 452 : loss : 0.156486 cons_dist: 0.006666, loss_weight: 0.001387
[21:23:22.661] iteration 453 : loss : 0.152101 cons_dist: 0.008283, loss_weight: 0.001387
[21:23:23.576] iteration 454 : loss : 0.237209 cons_dist: 0.009606, loss_weight: 0.001387
[21:23:24.489] iteration 455 : loss : 0.248835 cons_dist: 0.007056, loss_weight: 0.001387
[21:23:25.401] iteration 456 : loss : 0.141579 cons_dist: 0.004574, loss_weight: 0.001387
[21:23:26.973] iteration 457 : loss : 0.257480 cons_dist: 0.006035, loss_weight: 0.001387
[21:23:27.890] iteration 458 : loss : 0.108111 cons_dist: 0.009765, loss_weight: 0.001387
[21:23:28.806] iteration 459 : loss : 0.147829 cons_dist: 0.008154, loss_weight: 0.001387
[21:23:29.723] iteration 460 : loss : 0.151400 cons_dist: 0.010818, loss_weight: 0.001387
[21:23:30.639] iteration 461 : loss : 0.112654 cons_dist: 0.029390, loss_weight: 0.001387
[21:23:31.555] iteration 462 : loss : 0.132460 cons_dist: 0.010329, loss_weight: 0.001387
[21:23:32.471] iteration 463 : loss : 0.278417 cons_dist: 0.008367, loss_weight: 0.001387
[21:23:33.389] iteration 464 : loss : 0.154392 cons_dist: 0.006683, loss_weight: 0.001387
[21:23:34.305] iteration 465 : loss : 0.150999 cons_dist: 0.047136, loss_weight: 0.001387
[21:23:35.223] iteration 466 : loss : 0.221871 cons_dist: 0.006997, loss_weight: 0.001387
[21:23:36.139] iteration 467 : loss : 0.209331 cons_dist: 0.003188, loss_weight: 0.001387
[21:23:37.055] iteration 468 : loss : 0.216644 cons_dist: 0.005181, loss_weight: 0.001387
[21:23:38.606] iteration 469 : loss : 0.168860 cons_dist: 0.003556, loss_weight: 0.001387
[21:23:39.523] iteration 470 : loss : 0.167982 cons_dist: 0.004069, loss_weight: 0.001387
[21:23:40.440] iteration 471 : loss : 0.122121 cons_dist: 0.002729, loss_weight: 0.001387
[21:23:41.356] iteration 472 : loss : 0.141358 cons_dist: 0.011056, loss_weight: 0.001387
[21:23:42.274] iteration 473 : loss : 0.137598 cons_dist: 0.010541, loss_weight: 0.001387
[21:23:43.190] iteration 474 : loss : 0.144652 cons_dist: 0.019735, loss_weight: 0.001387
[21:23:44.107] iteration 475 : loss : 0.196904 cons_dist: 0.006807, loss_weight: 0.001387
[21:23:45.023] iteration 476 : loss : 0.133705 cons_dist: 0.004291, loss_weight: 0.001387
[21:23:45.940] iteration 477 : loss : 0.150015 cons_dist: 0.010546, loss_weight: 0.001387
[21:23:46.857] iteration 478 : loss : 0.160728 cons_dist: 0.006590, loss_weight: 0.001387
[21:23:47.773] iteration 479 : loss : 0.153666 cons_dist: 0.020042, loss_weight: 0.001387
[21:23:48.690] iteration 480 : loss : 0.100376 cons_dist: 0.008324, loss_weight: 0.001387
[21:23:50.286] iteration 481 : loss : 0.152001 cons_dist: 0.003971, loss_weight: 0.001387
[21:23:51.199] iteration 482 : loss : 0.172396 cons_dist: 0.007605, loss_weight: 0.001387
[21:23:52.111] iteration 483 : loss : 0.121519 cons_dist: 0.007159, loss_weight: 0.001387
[21:23:53.024] iteration 484 : loss : 0.112782 cons_dist: 0.007349, loss_weight: 0.001387
[21:23:53.937] iteration 485 : loss : 0.152796 cons_dist: 0.007018, loss_weight: 0.001387
[21:23:54.852] iteration 486 : loss : 0.115523 cons_dist: 0.006030, loss_weight: 0.001387
[21:23:55.767] iteration 487 : loss : 0.105041 cons_dist: 0.023334, loss_weight: 0.001387
[21:23:56.681] iteration 488 : loss : 0.126785 cons_dist: 0.009169, loss_weight: 0.001387
[21:23:57.596] iteration 489 : loss : 0.103715 cons_dist: 0.012225, loss_weight: 0.001387
[21:23:58.510] iteration 490 : loss : 0.117038 cons_dist: 0.009479, loss_weight: 0.001387
[21:23:59.423] iteration 491 : loss : 0.129138 cons_dist: 0.008764, loss_weight: 0.001387
[21:24:00.336] iteration 492 : loss : 0.123672 cons_dist: 0.003882, loss_weight: 0.001387
[21:24:02.006] iteration 493 : loss : 0.143285 cons_dist: 0.009655, loss_weight: 0.001387
[21:24:02.919] iteration 494 : loss : 0.085073 cons_dist: 0.008057, loss_weight: 0.001387
[21:24:03.834] iteration 495 : loss : 0.091751 cons_dist: 0.003445, loss_weight: 0.001387
[21:24:04.749] iteration 496 : loss : 0.134460 cons_dist: 0.009053, loss_weight: 0.001387
[21:24:05.663] iteration 497 : loss : 0.166077 cons_dist: 0.007684, loss_weight: 0.001387
[21:24:06.577] iteration 498 : loss : 0.127681 cons_dist: 0.006655, loss_weight: 0.001387
[21:24:07.490] iteration 499 : loss : 0.185538 cons_dist: 0.020113, loss_weight: 0.001387
[21:24:08.403] iteration 500 : loss : 0.165258 cons_dist: 0.007629, loss_weight: 0.001387
[21:24:09.499] iteration 501 : loss : 0.145896 cons_dist: 0.008178, loss_weight: 0.001387
[21:24:10.414] iteration 502 : loss : 0.203932 cons_dist: 0.030771, loss_weight: 0.001387
[21:24:11.329] iteration 503 : loss : 0.103902 cons_dist: 0.013587, loss_weight: 0.001387
[21:24:12.244] iteration 504 : loss : 0.168806 cons_dist: 0.008831, loss_weight: 0.001387
[21:24:13.764] iteration 505 : loss : 0.140015 cons_dist: 0.006629, loss_weight: 0.001387
[21:24:14.677] iteration 506 : loss : 0.119402 cons_dist: 0.005460, loss_weight: 0.001387
[21:24:15.593] iteration 507 : loss : 0.107248 cons_dist: 0.003792, loss_weight: 0.001387
[21:24:16.508] iteration 508 : loss : 0.123110 cons_dist: 0.009105, loss_weight: 0.001387
[21:24:17.422] iteration 509 : loss : 0.113568 cons_dist: 0.004221, loss_weight: 0.001387
[21:24:18.340] iteration 510 : loss : 0.116123 cons_dist: 0.004949, loss_weight: 0.001387
[21:24:19.254] iteration 511 : loss : 0.117974 cons_dist: 0.009329, loss_weight: 0.001387
[21:24:20.167] iteration 512 : loss : 0.114153 cons_dist: 0.008703, loss_weight: 0.001387
[21:24:21.082] iteration 513 : loss : 0.100757 cons_dist: 0.013793, loss_weight: 0.001387
[21:24:21.997] iteration 514 : loss : 0.161565 cons_dist: 0.003964, loss_weight: 0.001387
[21:24:22.911] iteration 515 : loss : 0.137642 cons_dist: 0.003140, loss_weight: 0.001387
[21:24:23.824] iteration 516 : loss : 0.120008 cons_dist: 0.020629, loss_weight: 0.001387
[21:24:25.346] iteration 517 : loss : 0.269270 cons_dist: 0.002247, loss_weight: 0.001387
[21:24:26.261] iteration 518 : loss : 0.327308 cons_dist: 0.012491, loss_weight: 0.001387
[21:24:27.176] iteration 519 : loss : 0.072011 cons_dist: 0.004863, loss_weight: 0.001387
[21:24:28.090] iteration 520 : loss : 0.109094 cons_dist: 0.018372, loss_weight: 0.001387
[21:24:29.005] iteration 521 : loss : 0.169115 cons_dist: 0.001912, loss_weight: 0.001387
[21:24:29.918] iteration 522 : loss : 0.115706 cons_dist: 0.013712, loss_weight: 0.001387
[21:24:30.834] iteration 523 : loss : 0.100664 cons_dist: 0.005087, loss_weight: 0.001387
[21:24:31.750] iteration 524 : loss : 0.123236 cons_dist: 0.002460, loss_weight: 0.001387
[21:24:32.665] iteration 525 : loss : 0.113280 cons_dist: 0.007712, loss_weight: 0.001387
[21:24:33.587] iteration 526 : loss : 0.210397 cons_dist: 0.003548, loss_weight: 0.001387
[21:24:34.502] iteration 527 : loss : 0.135891 cons_dist: 0.010038, loss_weight: 0.001387
[21:24:35.416] iteration 528 : loss : 0.109988 cons_dist: 0.001306, loss_weight: 0.001387
[21:24:36.887] iteration 529 : loss : 0.105629 cons_dist: 0.006390, loss_weight: 0.001387
[21:24:37.801] iteration 530 : loss : 0.224398 cons_dist: 0.005550, loss_weight: 0.001387
[21:24:38.716] iteration 531 : loss : 0.104583 cons_dist: 0.013888, loss_weight: 0.001387
[21:24:39.629] iteration 532 : loss : 0.098562 cons_dist: 0.003723, loss_weight: 0.001387
[21:24:40.543] iteration 533 : loss : 0.109425 cons_dist: 0.001672, loss_weight: 0.001387
[21:24:41.457] iteration 534 : loss : 0.133995 cons_dist: 0.013856, loss_weight: 0.001387
[21:24:42.372] iteration 535 : loss : 0.197272 cons_dist: 0.017508, loss_weight: 0.001387
[21:24:43.286] iteration 536 : loss : 0.091922 cons_dist: 0.005416, loss_weight: 0.001387
[21:24:44.200] iteration 537 : loss : 0.099343 cons_dist: 0.007623, loss_weight: 0.001387
[21:24:45.113] iteration 538 : loss : 0.130315 cons_dist: 0.005224, loss_weight: 0.001387
[21:24:46.026] iteration 539 : loss : 0.093770 cons_dist: 0.008143, loss_weight: 0.001387
[21:24:46.940] iteration 540 : loss : 0.088046 cons_dist: 0.004292, loss_weight: 0.001387
[21:24:48.542] iteration 541 : loss : 0.115650 cons_dist: 0.002198, loss_weight: 0.001387
[21:24:49.458] iteration 542 : loss : 0.118286 cons_dist: 0.003487, loss_weight: 0.001387
[21:24:50.373] iteration 543 : loss : 0.179246 cons_dist: 0.003989, loss_weight: 0.001387
[21:24:51.286] iteration 544 : loss : 0.234002 cons_dist: 0.006237, loss_weight: 0.001387
[21:24:52.200] iteration 545 : loss : 0.175381 cons_dist: 0.008229, loss_weight: 0.001387
[21:24:53.114] iteration 546 : loss : 0.102056 cons_dist: 0.009294, loss_weight: 0.001387
[21:24:54.030] iteration 547 : loss : 0.149660 cons_dist: 0.017552, loss_weight: 0.001387
[21:24:54.946] iteration 548 : loss : 0.154766 cons_dist: 0.002902, loss_weight: 0.001387
[21:24:55.860] iteration 549 : loss : 0.194683 cons_dist: 0.010779, loss_weight: 0.001387
[21:24:56.774] iteration 550 : loss : 0.103920 cons_dist: 0.002851, loss_weight: 0.001387
[21:24:57.866] iteration 551 : loss : 0.089611 cons_dist: 0.007291, loss_weight: 0.001387
[21:24:58.780] iteration 552 : loss : 0.083918 cons_dist: 0.003567, loss_weight: 0.001387
[21:25:00.390] iteration 553 : loss : 0.164810 cons_dist: 0.012439, loss_weight: 0.001387
[21:25:01.303] iteration 554 : loss : 0.109679 cons_dist: 0.011017, loss_weight: 0.001387
[21:25:02.218] iteration 555 : loss : 0.080356 cons_dist: 0.003459, loss_weight: 0.001387
[21:25:03.132] iteration 556 : loss : 0.082892 cons_dist: 0.002038, loss_weight: 0.001387
[21:25:04.047] iteration 557 : loss : 0.105395 cons_dist: 0.019740, loss_weight: 0.001387
[21:25:04.962] iteration 558 : loss : 0.136548 cons_dist: 0.006896, loss_weight: 0.001387
[21:25:05.875] iteration 559 : loss : 0.165124 cons_dist: 0.005403, loss_weight: 0.001387
[21:25:06.788] iteration 560 : loss : 0.154553 cons_dist: 0.009308, loss_weight: 0.001387
[21:25:07.703] iteration 561 : loss : 0.166558 cons_dist: 0.005490, loss_weight: 0.001387
[21:25:08.619] iteration 562 : loss : 0.207410 cons_dist: 0.005187, loss_weight: 0.001387
[21:25:09.537] iteration 563 : loss : 0.096543 cons_dist: 0.004949, loss_weight: 0.001387
[21:25:10.454] iteration 564 : loss : 0.225396 cons_dist: 0.016915, loss_weight: 0.001387
[21:25:11.985] iteration 565 : loss : 0.106287 cons_dist: 0.005202, loss_weight: 0.001387
[21:25:12.901] iteration 566 : loss : 0.089405 cons_dist: 0.004036, loss_weight: 0.001387
[21:25:13.817] iteration 567 : loss : 0.083459 cons_dist: 0.024692, loss_weight: 0.001387
[21:25:14.737] iteration 568 : loss : 0.130448 cons_dist: 0.022879, loss_weight: 0.001387
[21:25:15.654] iteration 569 : loss : 0.118361 cons_dist: 0.007386, loss_weight: 0.001387
[21:25:16.570] iteration 570 : loss : 0.149505 cons_dist: 0.025517, loss_weight: 0.001387
[21:25:17.486] iteration 571 : loss : 0.106593 cons_dist: 0.004482, loss_weight: 0.001387
[21:25:18.403] iteration 572 : loss : 0.101181 cons_dist: 0.004276, loss_weight: 0.001387
[21:25:19.319] iteration 573 : loss : 0.113339 cons_dist: 0.002149, loss_weight: 0.001387
[21:25:20.234] iteration 574 : loss : 0.100510 cons_dist: 0.005673, loss_weight: 0.001387
[21:25:21.149] iteration 575 : loss : 0.112363 cons_dist: 0.004663, loss_weight: 0.001387
[21:25:22.064] iteration 576 : loss : 0.064500 cons_dist: 0.001970, loss_weight: 0.001387
[21:25:23.561] iteration 577 : loss : 0.173665 cons_dist: 0.012996, loss_weight: 0.001387
[21:25:24.478] iteration 578 : loss : 0.102084 cons_dist: 0.009556, loss_weight: 0.001387
[21:25:25.393] iteration 579 : loss : 0.124455 cons_dist: 0.011056, loss_weight: 0.001387
[21:25:26.308] iteration 580 : loss : 0.103077 cons_dist: 0.010012, loss_weight: 0.001387
[21:25:27.223] iteration 581 : loss : 0.125862 cons_dist: 0.003037, loss_weight: 0.001387
[21:25:28.138] iteration 582 : loss : 0.105522 cons_dist: 0.007021, loss_weight: 0.001387
[21:25:29.053] iteration 583 : loss : 0.145765 cons_dist: 0.009659, loss_weight: 0.001387
[21:25:29.970] iteration 584 : loss : 0.103654 cons_dist: 0.004767, loss_weight: 0.001387
[21:25:30.886] iteration 585 : loss : 0.127644 cons_dist: 0.007167, loss_weight: 0.001387
[21:25:31.802] iteration 586 : loss : 0.091481 cons_dist: 0.010393, loss_weight: 0.001387
[21:25:32.718] iteration 587 : loss : 0.073018 cons_dist: 0.011133, loss_weight: 0.001387
[21:25:33.634] iteration 588 : loss : 0.110129 cons_dist: 0.010081, loss_weight: 0.001387
[21:25:35.248] iteration 589 : loss : 0.148747 cons_dist: 0.007721, loss_weight: 0.001387
[21:25:36.166] iteration 590 : loss : 0.071089 cons_dist: 0.007440, loss_weight: 0.001387
[21:25:37.084] iteration 591 : loss : 0.112924 cons_dist: 0.000947, loss_weight: 0.001387
[21:25:38.002] iteration 592 : loss : 0.110970 cons_dist: 0.004754, loss_weight: 0.001387
[21:25:38.921] iteration 593 : loss : 0.088504 cons_dist: 0.004290, loss_weight: 0.001387
[21:25:39.840] iteration 594 : loss : 0.129114 cons_dist: 0.007359, loss_weight: 0.001387
[21:25:40.756] iteration 595 : loss : 0.118810 cons_dist: 0.008779, loss_weight: 0.001387
[21:25:41.674] iteration 596 : loss : 0.134928 cons_dist: 0.006221, loss_weight: 0.001387
[21:25:42.592] iteration 597 : loss : 0.193248 cons_dist: 0.001446, loss_weight: 0.001387
[21:25:43.511] iteration 598 : loss : 0.091583 cons_dist: 0.038562, loss_weight: 0.001387
[21:25:44.428] iteration 599 : loss : 0.082278 cons_dist: 0.002631, loss_weight: 0.001387
[21:25:45.348] iteration 600 : loss : 0.077315 cons_dist: 0.019045, loss_weight: 0.001387
[21:25:47.012] iteration 601 : loss : 0.104305 cons_dist: 0.003290, loss_weight: 0.001742
[21:25:47.930] iteration 602 : loss : 0.126223 cons_dist: 0.003289, loss_weight: 0.001742
[21:25:48.849] iteration 603 : loss : 0.107571 cons_dist: 0.002627, loss_weight: 0.001742
[21:25:49.767] iteration 604 : loss : 0.138616 cons_dist: 0.007653, loss_weight: 0.001742
[21:25:50.749] iteration 605 : loss : 0.110428 cons_dist: 0.002672, loss_weight: 0.001742
[21:25:51.667] iteration 606 : loss : 0.266127 cons_dist: 0.002397, loss_weight: 0.001742
[21:25:52.585] iteration 607 : loss : 0.169462 cons_dist: 0.004804, loss_weight: 0.001742
[21:25:53.503] iteration 608 : loss : 0.091467 cons_dist: 0.001829, loss_weight: 0.001742
[21:25:54.421] iteration 609 : loss : 0.483600 cons_dist: 0.002547, loss_weight: 0.001742
[21:25:55.340] iteration 610 : loss : 0.110331 cons_dist: 0.002828, loss_weight: 0.001742
[21:25:56.256] iteration 611 : loss : 0.099390 cons_dist: 0.049183, loss_weight: 0.001742
[21:25:57.174] iteration 612 : loss : 0.092096 cons_dist: 0.013707, loss_weight: 0.001742
[21:25:58.734] iteration 613 : loss : 0.115134 cons_dist: 0.013030, loss_weight: 0.001742
[21:25:59.652] iteration 614 : loss : 0.095022 cons_dist: 0.014886, loss_weight: 0.001742
[21:26:00.570] iteration 615 : loss : 0.213674 cons_dist: 0.009252, loss_weight: 0.001742
[21:26:01.488] iteration 616 : loss : 0.120974 cons_dist: 0.002158, loss_weight: 0.001742
[21:26:02.405] iteration 617 : loss : 0.098362 cons_dist: 0.002490, loss_weight: 0.001742
[21:26:03.322] iteration 618 : loss : 0.123539 cons_dist: 0.005728, loss_weight: 0.001742
[21:26:04.240] iteration 619 : loss : 0.215849 cons_dist: 0.006731, loss_weight: 0.001742
[21:26:05.157] iteration 620 : loss : 0.114394 cons_dist: 0.009068, loss_weight: 0.001742
[21:26:06.073] iteration 621 : loss : 0.092566 cons_dist: 0.003729, loss_weight: 0.001742
[21:26:06.992] iteration 622 : loss : 0.072308 cons_dist: 0.004595, loss_weight: 0.001742
[21:26:07.910] iteration 623 : loss : 0.195241 cons_dist: 0.005955, loss_weight: 0.001742
[21:26:08.829] iteration 624 : loss : 0.091678 cons_dist: 0.007109, loss_weight: 0.001742
[21:26:10.411] iteration 625 : loss : 0.123709 cons_dist: 0.003176, loss_weight: 0.001742
[21:26:11.328] iteration 626 : loss : 0.080579 cons_dist: 0.056161, loss_weight: 0.001742
[21:26:12.246] iteration 627 : loss : 0.089143 cons_dist: 0.003135, loss_weight: 0.001742
[21:26:13.163] iteration 628 : loss : 0.090906 cons_dist: 0.001349, loss_weight: 0.001742
[21:26:14.081] iteration 629 : loss : 0.118414 cons_dist: 0.003080, loss_weight: 0.001742
[21:26:14.998] iteration 630 : loss : 0.089253 cons_dist: 0.001413, loss_weight: 0.001742
[21:26:15.917] iteration 631 : loss : 0.104675 cons_dist: 0.005457, loss_weight: 0.001742
[21:26:16.834] iteration 632 : loss : 0.230318 cons_dist: 0.028908, loss_weight: 0.001742
[21:26:17.750] iteration 633 : loss : 0.112971 cons_dist: 0.006968, loss_weight: 0.001742
[21:26:18.668] iteration 634 : loss : 0.296055 cons_dist: 0.001434, loss_weight: 0.001742
[21:26:19.585] iteration 635 : loss : 0.186998 cons_dist: 0.022644, loss_weight: 0.001742
[21:26:20.502] iteration 636 : loss : 0.244179 cons_dist: 0.017693, loss_weight: 0.001742
[21:26:22.063] iteration 637 : loss : 0.075144 cons_dist: 0.004103, loss_weight: 0.001742
[21:26:22.981] iteration 638 : loss : 0.084552 cons_dist: 0.004714, loss_weight: 0.001742
[21:26:23.898] iteration 639 : loss : 0.101783 cons_dist: 0.009372, loss_weight: 0.001742
[21:26:24.815] iteration 640 : loss : 0.108634 cons_dist: 0.013373, loss_weight: 0.001742
[21:26:25.734] iteration 641 : loss : 0.136927 cons_dist: 0.004745, loss_weight: 0.001742
[21:26:26.651] iteration 642 : loss : 0.074509 cons_dist: 0.012371, loss_weight: 0.001742
[21:26:27.568] iteration 643 : loss : 0.103465 cons_dist: 0.005556, loss_weight: 0.001742
[21:26:28.486] iteration 644 : loss : 0.216462 cons_dist: 0.007039, loss_weight: 0.001742
[21:26:29.406] iteration 645 : loss : 0.101766 cons_dist: 0.010392, loss_weight: 0.001742
[21:26:30.324] iteration 646 : loss : 0.105625 cons_dist: 0.008487, loss_weight: 0.001742
[21:26:31.240] iteration 647 : loss : 0.205550 cons_dist: 0.022211, loss_weight: 0.001742
[21:26:32.158] iteration 648 : loss : 0.120759 cons_dist: 0.010744, loss_weight: 0.001742
[21:26:33.719] iteration 649 : loss : 0.143512 cons_dist: 0.006804, loss_weight: 0.001742
[21:26:34.634] iteration 650 : loss : 0.095122 cons_dist: 0.003520, loss_weight: 0.001742
[21:26:35.718] iteration 651 : loss : 0.138646 cons_dist: 0.054461, loss_weight: 0.001742
[21:26:36.635] iteration 652 : loss : 0.139798 cons_dist: 0.006108, loss_weight: 0.001742
[21:26:37.552] iteration 653 : loss : 0.115340 cons_dist: 0.008457, loss_weight: 0.001742
[21:26:38.466] iteration 654 : loss : 0.111651 cons_dist: 0.004199, loss_weight: 0.001742
[21:26:39.382] iteration 655 : loss : 0.117305 cons_dist: 0.005778, loss_weight: 0.001742
[21:26:40.298] iteration 656 : loss : 0.155481 cons_dist: 0.004757, loss_weight: 0.001742
[21:26:41.214] iteration 657 : loss : 0.154732 cons_dist: 0.003227, loss_weight: 0.001742
[21:26:42.131] iteration 658 : loss : 0.127773 cons_dist: 0.007065, loss_weight: 0.001742
[21:26:43.048] iteration 659 : loss : 0.097150 cons_dist: 0.004259, loss_weight: 0.001742
[21:26:43.984] iteration 660 : loss : 0.275484 cons_dist: 0.005858, loss_weight: 0.001742
[21:26:45.593] iteration 661 : loss : 0.083025 cons_dist: 0.014711, loss_weight: 0.001742
[21:26:46.511] iteration 662 : loss : 0.141724 cons_dist: 0.003577, loss_weight: 0.001742
[21:26:47.432] iteration 663 : loss : 0.160281 cons_dist: 0.004521, loss_weight: 0.001742
[21:26:48.349] iteration 664 : loss : 0.121955 cons_dist: 0.002429, loss_weight: 0.001742
[21:26:49.265] iteration 665 : loss : 0.096431 cons_dist: 0.006007, loss_weight: 0.001742
[21:26:50.183] iteration 666 : loss : 0.100854 cons_dist: 0.005328, loss_weight: 0.001742
[21:26:51.100] iteration 667 : loss : 0.093064 cons_dist: 0.002269, loss_weight: 0.001742
[21:26:52.016] iteration 668 : loss : 0.127737 cons_dist: 0.003751, loss_weight: 0.001742
[21:26:52.934] iteration 669 : loss : 0.151242 cons_dist: 0.007482, loss_weight: 0.001742
[21:26:53.851] iteration 670 : loss : 0.262348 cons_dist: 0.015075, loss_weight: 0.001742
[21:26:54.768] iteration 671 : loss : 0.143486 cons_dist: 0.004358, loss_weight: 0.001742
[21:26:55.686] iteration 672 : loss : 0.111706 cons_dist: 0.007019, loss_weight: 0.001742
[21:26:57.260] iteration 673 : loss : 0.130518 cons_dist: 0.008652, loss_weight: 0.001742
[21:26:58.175] iteration 674 : loss : 0.178316 cons_dist: 0.006012, loss_weight: 0.001742
[21:26:59.092] iteration 675 : loss : 0.214761 cons_dist: 0.019473, loss_weight: 0.001742
[21:27:00.006] iteration 676 : loss : 0.164937 cons_dist: 0.012750, loss_weight: 0.001742
[21:27:00.925] iteration 677 : loss : 0.168865 cons_dist: 0.004785, loss_weight: 0.001742
[21:27:01.841] iteration 678 : loss : 0.069769 cons_dist: 0.070612, loss_weight: 0.001742
[21:27:02.756] iteration 679 : loss : 0.130984 cons_dist: 0.006827, loss_weight: 0.001742
[21:27:03.672] iteration 680 : loss : 0.141293 cons_dist: 0.012324, loss_weight: 0.001742
[21:27:04.587] iteration 681 : loss : 0.077655 cons_dist: 0.022342, loss_weight: 0.001742
[21:27:05.503] iteration 682 : loss : 0.110857 cons_dist: 0.004566, loss_weight: 0.001742
[21:27:06.419] iteration 683 : loss : 0.243165 cons_dist: 0.028625, loss_weight: 0.001742
[21:27:07.336] iteration 684 : loss : 0.126879 cons_dist: 0.012677, loss_weight: 0.001742
[21:27:08.947] iteration 685 : loss : 0.093451 cons_dist: 0.003541, loss_weight: 0.001742
[21:27:09.863] iteration 686 : loss : 0.064516 cons_dist: 0.020327, loss_weight: 0.001742
[21:27:10.779] iteration 687 : loss : 0.137468 cons_dist: 0.006434, loss_weight: 0.001742
[21:27:11.695] iteration 688 : loss : 0.118180 cons_dist: 0.021917, loss_weight: 0.001742
[21:27:12.612] iteration 689 : loss : 0.147244 cons_dist: 0.039322, loss_weight: 0.001742
[21:27:13.529] iteration 690 : loss : 0.139527 cons_dist: 0.001547, loss_weight: 0.001742
[21:27:14.446] iteration 691 : loss : 0.118479 cons_dist: 0.003447, loss_weight: 0.001742
[21:27:15.364] iteration 692 : loss : 0.119484 cons_dist: 0.005341, loss_weight: 0.001742
[21:27:16.281] iteration 693 : loss : 0.152819 cons_dist: 0.014212, loss_weight: 0.001742
[21:27:17.198] iteration 694 : loss : 0.139903 cons_dist: 0.008170, loss_weight: 0.001742
[21:27:18.114] iteration 695 : loss : 0.139454 cons_dist: 0.003404, loss_weight: 0.001742
[21:27:19.032] iteration 696 : loss : 0.067956 cons_dist: 0.007441, loss_weight: 0.001742
[21:27:20.592] iteration 697 : loss : 0.146343 cons_dist: 0.003858, loss_weight: 0.001742
[21:27:21.510] iteration 698 : loss : 0.110450 cons_dist: 0.001986, loss_weight: 0.001742
[21:27:22.428] iteration 699 : loss : 0.223286 cons_dist: 0.017582, loss_weight: 0.001742
[21:27:23.346] iteration 700 : loss : 0.113490 cons_dist: 0.009165, loss_weight: 0.001742
[21:27:24.426] iteration 701 : loss : 0.092668 cons_dist: 0.007162, loss_weight: 0.001742
[21:27:25.343] iteration 702 : loss : 0.090839 cons_dist: 0.002993, loss_weight: 0.001742
[21:27:26.261] iteration 703 : loss : 0.108704 cons_dist: 0.005804, loss_weight: 0.001742
[21:27:27.179] iteration 704 : loss : 0.163733 cons_dist: 0.002651, loss_weight: 0.001742
[21:27:28.097] iteration 705 : loss : 0.122084 cons_dist: 0.010670, loss_weight: 0.001742
[21:27:29.015] iteration 706 : loss : 0.096643 cons_dist: 0.002802, loss_weight: 0.001742
[21:27:29.933] iteration 707 : loss : 0.146296 cons_dist: 0.004726, loss_weight: 0.001742
[21:27:30.851] iteration 708 : loss : 0.120242 cons_dist: 0.002079, loss_weight: 0.001742
[21:27:32.353] iteration 709 : loss : 0.117486 cons_dist: 0.030363, loss_weight: 0.001742
[21:27:33.271] iteration 710 : loss : 0.081767 cons_dist: 0.014528, loss_weight: 0.001742
[21:27:34.190] iteration 711 : loss : 0.091234 cons_dist: 0.002947, loss_weight: 0.001742
[21:27:35.107] iteration 712 : loss : 0.113532 cons_dist: 0.003711, loss_weight: 0.001742
[21:27:36.026] iteration 713 : loss : 0.102488 cons_dist: 0.011899, loss_weight: 0.001742
[21:27:36.943] iteration 714 : loss : 0.119227 cons_dist: 0.004180, loss_weight: 0.001742
[21:27:37.859] iteration 715 : loss : 0.142519 cons_dist: 0.003930, loss_weight: 0.001742
[21:27:38.776] iteration 716 : loss : 0.075568 cons_dist: 0.001566, loss_weight: 0.001742
[21:27:39.694] iteration 717 : loss : 0.217531 cons_dist: 0.005568, loss_weight: 0.001742
[21:27:40.611] iteration 718 : loss : 0.085726 cons_dist: 0.008060, loss_weight: 0.001742
[21:27:41.529] iteration 719 : loss : 0.156111 cons_dist: 0.061203, loss_weight: 0.001742
[21:27:42.447] iteration 720 : loss : 0.265364 cons_dist: 0.003781, loss_weight: 0.001742
[21:27:43.956] iteration 721 : loss : 0.132920 cons_dist: 0.006341, loss_weight: 0.001742
[21:27:44.872] iteration 722 : loss : 0.112866 cons_dist: 0.004864, loss_weight: 0.001742
[21:27:45.789] iteration 723 : loss : 0.229055 cons_dist: 0.004497, loss_weight: 0.001742
[21:27:46.706] iteration 724 : loss : 0.099940 cons_dist: 0.003347, loss_weight: 0.001742
[21:27:47.623] iteration 725 : loss : 0.107947 cons_dist: 0.005717, loss_weight: 0.001742
[21:27:48.541] iteration 726 : loss : 0.087721 cons_dist: 0.006168, loss_weight: 0.001742
[21:27:49.457] iteration 727 : loss : 0.127175 cons_dist: 0.008930, loss_weight: 0.001742
[21:27:50.375] iteration 728 : loss : 0.078668 cons_dist: 0.001477, loss_weight: 0.001742
[21:27:51.292] iteration 729 : loss : 0.076600 cons_dist: 0.006387, loss_weight: 0.001742
[21:27:52.211] iteration 730 : loss : 0.092464 cons_dist: 0.004338, loss_weight: 0.001742
[21:27:53.128] iteration 731 : loss : 0.173773 cons_dist: 0.001464, loss_weight: 0.001742
[21:27:54.045] iteration 732 : loss : 0.126432 cons_dist: 0.016400, loss_weight: 0.001742
[21:27:55.656] iteration 733 : loss : 0.095984 cons_dist: 0.002495, loss_weight: 0.001742
[21:27:56.574] iteration 734 : loss : 0.110523 cons_dist: 0.003154, loss_weight: 0.001742
[21:27:57.491] iteration 735 : loss : 0.094049 cons_dist: 0.008636, loss_weight: 0.001742
[21:27:58.410] iteration 736 : loss : 0.102677 cons_dist: 0.001801, loss_weight: 0.001742
[21:27:59.327] iteration 737 : loss : 0.192013 cons_dist: 0.026846, loss_weight: 0.001742
[21:28:00.245] iteration 738 : loss : 0.189347 cons_dist: 0.001833, loss_weight: 0.001742
[21:28:01.163] iteration 739 : loss : 0.090732 cons_dist: 0.005298, loss_weight: 0.001742
[21:28:02.081] iteration 740 : loss : 0.080769 cons_dist: 0.027498, loss_weight: 0.001742
[21:28:02.999] iteration 741 : loss : 0.147700 cons_dist: 0.007581, loss_weight: 0.001742
[21:28:03.916] iteration 742 : loss : 0.080359 cons_dist: 0.008447, loss_weight: 0.001742
[21:28:04.835] iteration 743 : loss : 0.248641 cons_dist: 0.005716, loss_weight: 0.001742
[21:28:05.753] iteration 744 : loss : 0.095861 cons_dist: 0.020003, loss_weight: 0.001742
[21:28:07.318] iteration 745 : loss : 0.105313 cons_dist: 0.014664, loss_weight: 0.001742
[21:28:08.233] iteration 746 : loss : 0.080769 cons_dist: 0.005525, loss_weight: 0.001742
[21:28:09.149] iteration 747 : loss : 0.153970 cons_dist: 0.002940, loss_weight: 0.001742
[21:28:10.064] iteration 748 : loss : 0.151486 cons_dist: 0.009370, loss_weight: 0.001742
[21:28:10.977] iteration 749 : loss : 0.089149 cons_dist: 0.014295, loss_weight: 0.001742
[21:28:11.891] iteration 750 : loss : 0.106222 cons_dist: 0.010135, loss_weight: 0.001742
[21:28:12.956] iteration 751 : loss : 0.144454 cons_dist: 0.003942, loss_weight: 0.002175
[21:28:13.870] iteration 752 : loss : 0.098597 cons_dist: 0.021196, loss_weight: 0.002175
[21:28:14.784] iteration 753 : loss : 0.091018 cons_dist: 0.006556, loss_weight: 0.002175
[21:28:15.698] iteration 754 : loss : 0.129965 cons_dist: 0.008469, loss_weight: 0.002175
[21:28:16.613] iteration 755 : loss : 0.163087 cons_dist: 0.002927, loss_weight: 0.002175
[21:28:17.529] iteration 756 : loss : 0.090633 cons_dist: 0.006014, loss_weight: 0.002175
[21:28:19.155] iteration 757 : loss : 0.191819 cons_dist: 0.011009, loss_weight: 0.002175
[21:28:20.072] iteration 758 : loss : 0.083599 cons_dist: 0.003923, loss_weight: 0.002175
[21:28:20.989] iteration 759 : loss : 0.083406 cons_dist: 0.007335, loss_weight: 0.002175
[21:28:21.905] iteration 760 : loss : 0.127038 cons_dist: 0.017044, loss_weight: 0.002175
[21:28:22.822] iteration 761 : loss : 0.146213 cons_dist: 0.005653, loss_weight: 0.002175
[21:28:23.737] iteration 762 : loss : 0.117737 cons_dist: 0.013920, loss_weight: 0.002175
[21:28:24.653] iteration 763 : loss : 0.121090 cons_dist: 0.008061, loss_weight: 0.002175
[21:28:25.568] iteration 764 : loss : 0.125223 cons_dist: 0.003207, loss_weight: 0.002175
[21:28:26.483] iteration 765 : loss : 0.083671 cons_dist: 0.002272, loss_weight: 0.002175
[21:28:27.398] iteration 766 : loss : 0.146318 cons_dist: 0.012766, loss_weight: 0.002175
[21:28:28.314] iteration 767 : loss : 0.091835 cons_dist: 0.002906, loss_weight: 0.002175
[21:28:29.230] iteration 768 : loss : 0.095633 cons_dist: 0.003112, loss_weight: 0.002175
[21:28:30.787] iteration 769 : loss : 0.121608 cons_dist: 0.002085, loss_weight: 0.002175
[21:28:31.704] iteration 770 : loss : 0.099509 cons_dist: 0.004512, loss_weight: 0.002175
[21:28:32.621] iteration 771 : loss : 0.079772 cons_dist: 0.016237, loss_weight: 0.002175
[21:28:33.537] iteration 772 : loss : 0.088489 cons_dist: 0.004922, loss_weight: 0.002175
[21:28:34.456] iteration 773 : loss : 0.109201 cons_dist: 0.004071, loss_weight: 0.002175
[21:28:35.372] iteration 774 : loss : 0.088928 cons_dist: 0.011817, loss_weight: 0.002175
[21:28:36.287] iteration 775 : loss : 0.091138 cons_dist: 0.004924, loss_weight: 0.002175
[21:28:37.202] iteration 776 : loss : 0.142490 cons_dist: 0.003140, loss_weight: 0.002175
[21:28:38.119] iteration 777 : loss : 0.150626 cons_dist: 0.002864, loss_weight: 0.002175
[21:28:39.035] iteration 778 : loss : 0.112904 cons_dist: 0.017552, loss_weight: 0.002175
[21:28:39.952] iteration 779 : loss : 0.168660 cons_dist: 0.002777, loss_weight: 0.002175
[21:28:40.868] iteration 780 : loss : 0.087475 cons_dist: 0.012589, loss_weight: 0.002175
[21:28:42.392] iteration 781 : loss : 0.087700 cons_dist: 0.002407, loss_weight: 0.002175
[21:28:43.310] iteration 782 : loss : 0.065729 cons_dist: 0.009402, loss_weight: 0.002175
[21:28:44.227] iteration 783 : loss : 0.116072 cons_dist: 0.002545, loss_weight: 0.002175
[21:28:45.145] iteration 784 : loss : 0.102453 cons_dist: 0.005686, loss_weight: 0.002175
[21:28:46.066] iteration 785 : loss : 0.091411 cons_dist: 0.008484, loss_weight: 0.002175
[21:28:46.983] iteration 786 : loss : 0.088579 cons_dist: 0.002280, loss_weight: 0.002175
[21:28:47.901] iteration 787 : loss : 0.078563 cons_dist: 0.003922, loss_weight: 0.002175
[21:28:48.818] iteration 788 : loss : 0.115322 cons_dist: 0.009749, loss_weight: 0.002175
[21:28:49.736] iteration 789 : loss : 0.102726 cons_dist: 0.010932, loss_weight: 0.002175
[21:28:50.653] iteration 790 : loss : 0.110574 cons_dist: 0.020817, loss_weight: 0.002175
[21:28:51.571] iteration 791 : loss : 0.093640 cons_dist: 0.002213, loss_weight: 0.002175
[21:28:52.491] iteration 792 : loss : 0.091172 cons_dist: 0.003627, loss_weight: 0.002175
[21:28:54.010] iteration 793 : loss : 0.057827 cons_dist: 0.003387, loss_weight: 0.002175
[21:28:54.929] iteration 794 : loss : 0.076240 cons_dist: 0.001713, loss_weight: 0.002175
[21:28:55.847] iteration 795 : loss : 0.075451 cons_dist: 0.001047, loss_weight: 0.002175
[21:28:56.764] iteration 796 : loss : 0.119472 cons_dist: 0.003996, loss_weight: 0.002175
[21:28:57.682] iteration 797 : loss : 0.075139 cons_dist: 0.024023, loss_weight: 0.002175
[21:28:58.601] iteration 798 : loss : 0.098857 cons_dist: 0.043189, loss_weight: 0.002175
[21:28:59.518] iteration 799 : loss : 0.164086 cons_dist: 0.004634, loss_weight: 0.002175
[21:29:00.436] iteration 800 : loss : 0.101248 cons_dist: 0.005320, loss_weight: 0.002175
[21:29:02.600] save best model to model/LA_vnet_25_labeled/UAMT/iter_800_dice_0.9022829532623291.pth
[21:29:03.516] iteration 801 : loss : 0.146556 cons_dist: 0.018975, loss_weight: 0.002175
[21:29:04.432] iteration 802 : loss : 0.155050 cons_dist: 0.005588, loss_weight: 0.002175
[21:29:05.349] iteration 803 : loss : 0.089172 cons_dist: 0.002896, loss_weight: 0.002175
[21:29:06.267] iteration 804 : loss : 0.072186 cons_dist: 0.003514, loss_weight: 0.002175
[21:29:07.867] iteration 805 : loss : 0.122809 cons_dist: 0.014433, loss_weight: 0.002175
[21:29:08.781] iteration 806 : loss : 0.080699 cons_dist: 0.003927, loss_weight: 0.002175
[21:29:09.695] iteration 807 : loss : 0.113320 cons_dist: 0.016041, loss_weight: 0.002175
[21:29:10.610] iteration 808 : loss : 0.065558 cons_dist: 0.004753, loss_weight: 0.002175
[21:29:11.526] iteration 809 : loss : 0.102379 cons_dist: 0.001607, loss_weight: 0.002175
[21:29:12.441] iteration 810 : loss : 0.078056 cons_dist: 0.011006, loss_weight: 0.002175
[21:29:13.357] iteration 811 : loss : 0.099054 cons_dist: 0.007760, loss_weight: 0.002175
[21:29:14.272] iteration 812 : loss : 0.102766 cons_dist: 0.004572, loss_weight: 0.002175
[21:29:15.188] iteration 813 : loss : 0.112238 cons_dist: 0.002325, loss_weight: 0.002175
[21:29:16.104] iteration 814 : loss : 0.088653 cons_dist: 0.025168, loss_weight: 0.002175
[21:29:17.019] iteration 815 : loss : 0.095880 cons_dist: 0.003509, loss_weight: 0.002175
[21:29:17.935] iteration 816 : loss : 0.087066 cons_dist: 0.010147, loss_weight: 0.002175
[21:29:19.498] iteration 817 : loss : 0.085518 cons_dist: 0.023428, loss_weight: 0.002175
[21:29:20.413] iteration 818 : loss : 0.085315 cons_dist: 0.010479, loss_weight: 0.002175
[21:29:21.327] iteration 819 : loss : 0.099448 cons_dist: 0.007299, loss_weight: 0.002175
[21:29:22.243] iteration 820 : loss : 0.072718 cons_dist: 0.007605, loss_weight: 0.002175
[21:29:23.158] iteration 821 : loss : 0.077650 cons_dist: 0.005488, loss_weight: 0.002175
[21:29:24.073] iteration 822 : loss : 0.070571 cons_dist: 0.001935, loss_weight: 0.002175
[21:29:24.990] iteration 823 : loss : 0.113080 cons_dist: 0.006304, loss_weight: 0.002175
[21:29:25.905] iteration 824 : loss : 0.105015 cons_dist: 0.001863, loss_weight: 0.002175
[21:29:26.821] iteration 825 : loss : 0.095454 cons_dist: 0.004556, loss_weight: 0.002175
[21:29:27.737] iteration 826 : loss : 0.089075 cons_dist: 0.015366, loss_weight: 0.002175
[21:29:28.651] iteration 827 : loss : 0.047053 cons_dist: 0.004336, loss_weight: 0.002175
[21:29:29.566] iteration 828 : loss : 0.115684 cons_dist: 0.002762, loss_weight: 0.002175
[21:29:31.062] iteration 829 : loss : 0.069728 cons_dist: 0.001579, loss_weight: 0.002175
[21:29:31.977] iteration 830 : loss : 0.058470 cons_dist: 0.012009, loss_weight: 0.002175
[21:29:32.892] iteration 831 : loss : 0.113175 cons_dist: 0.008093, loss_weight: 0.002175
[21:29:33.806] iteration 832 : loss : 0.083130 cons_dist: 0.001116, loss_weight: 0.002175
[21:29:34.721] iteration 833 : loss : 0.081296 cons_dist: 0.008877, loss_weight: 0.002175
[21:29:35.636] iteration 834 : loss : 0.091573 cons_dist: 0.002167, loss_weight: 0.002175
[21:29:36.551] iteration 835 : loss : 0.075879 cons_dist: 0.006283, loss_weight: 0.002175
[21:29:37.467] iteration 836 : loss : 0.105739 cons_dist: 0.015224, loss_weight: 0.002175
[21:29:38.384] iteration 837 : loss : 0.122611 cons_dist: 0.017934, loss_weight: 0.002175
[21:29:39.300] iteration 838 : loss : 0.126619 cons_dist: 0.003542, loss_weight: 0.002175
[21:29:40.216] iteration 839 : loss : 0.095793 cons_dist: 0.020931, loss_weight: 0.002175
[21:29:41.132] iteration 840 : loss : 0.078719 cons_dist: 0.012592, loss_weight: 0.002175
[21:29:42.703] iteration 841 : loss : 0.092053 cons_dist: 0.001043, loss_weight: 0.002175
[21:29:43.619] iteration 842 : loss : 0.081157 cons_dist: 0.001542, loss_weight: 0.002175
[21:29:44.535] iteration 843 : loss : 0.069582 cons_dist: 0.009758, loss_weight: 0.002175
[21:29:45.453] iteration 844 : loss : 0.106456 cons_dist: 0.003096, loss_weight: 0.002175
[21:29:46.371] iteration 845 : loss : 0.085374 cons_dist: 0.006391, loss_weight: 0.002175
[21:29:47.287] iteration 846 : loss : 0.075012 cons_dist: 0.004941, loss_weight: 0.002175
[21:29:48.203] iteration 847 : loss : 0.050086 cons_dist: 0.006774, loss_weight: 0.002175
[21:29:49.118] iteration 848 : loss : 0.096215 cons_dist: 0.011052, loss_weight: 0.002175
[21:29:50.032] iteration 849 : loss : 0.070000 cons_dist: 0.004704, loss_weight: 0.002175
[21:29:50.946] iteration 850 : loss : 0.073285 cons_dist: 0.006342, loss_weight: 0.002175
[21:29:52.022] iteration 851 : loss : 0.067502 cons_dist: 0.005189, loss_weight: 0.002175
[21:29:52.938] iteration 852 : loss : 0.093387 cons_dist: 0.006111, loss_weight: 0.002175
[21:29:54.536] iteration 853 : loss : 0.073729 cons_dist: 0.021357, loss_weight: 0.002175
[21:29:55.449] iteration 854 : loss : 0.113845 cons_dist: 0.017560, loss_weight: 0.002175
[21:29:56.363] iteration 855 : loss : 0.095590 cons_dist: 0.004839, loss_weight: 0.002175
[21:29:57.279] iteration 856 : loss : 0.084305 cons_dist: 0.002651, loss_weight: 0.002175
[21:29:58.195] iteration 857 : loss : 0.064626 cons_dist: 0.001924, loss_weight: 0.002175
[21:29:59.110] iteration 858 : loss : 0.070079 cons_dist: 0.069685, loss_weight: 0.002175
[21:30:00.026] iteration 859 : loss : 0.072256 cons_dist: 0.004821, loss_weight: 0.002175
[21:30:00.943] iteration 860 : loss : 0.110643 cons_dist: 0.010233, loss_weight: 0.002175
[21:30:01.860] iteration 861 : loss : 0.069647 cons_dist: 0.012866, loss_weight: 0.002175
[21:30:02.775] iteration 862 : loss : 0.088888 cons_dist: 0.005620, loss_weight: 0.002175
[21:30:03.690] iteration 863 : loss : 0.061114 cons_dist: 0.005025, loss_weight: 0.002175
[21:30:04.605] iteration 864 : loss : 0.146032 cons_dist: 0.002672, loss_weight: 0.002175
[21:30:06.159] iteration 865 : loss : 0.098853 cons_dist: 0.038040, loss_weight: 0.002175
[21:30:07.075] iteration 866 : loss : 0.097791 cons_dist: 0.003027, loss_weight: 0.002175
[21:30:07.990] iteration 867 : loss : 0.062248 cons_dist: 0.018067, loss_weight: 0.002175
[21:30:08.904] iteration 868 : loss : 0.115128 cons_dist: 0.002087, loss_weight: 0.002175
[21:30:09.820] iteration 869 : loss : 0.090527 cons_dist: 0.058941, loss_weight: 0.002175
[21:30:10.736] iteration 870 : loss : 0.078096 cons_dist: 0.002903, loss_weight: 0.002175
[21:30:11.652] iteration 871 : loss : 0.092748 cons_dist: 0.002191, loss_weight: 0.002175
[21:30:12.567] iteration 872 : loss : 0.105529 cons_dist: 0.007073, loss_weight: 0.002175
[21:30:13.482] iteration 873 : loss : 0.092715 cons_dist: 0.001472, loss_weight: 0.002175
[21:30:14.396] iteration 874 : loss : 0.135248 cons_dist: 0.010508, loss_weight: 0.002175
[21:30:15.313] iteration 875 : loss : 0.077711 cons_dist: 0.054425, loss_weight: 0.002175
[21:30:16.232] iteration 876 : loss : 0.090742 cons_dist: 0.002014, loss_weight: 0.002175
[21:30:17.772] iteration 877 : loss : 0.074592 cons_dist: 0.012142, loss_weight: 0.002175
[21:30:18.690] iteration 878 : loss : 0.075554 cons_dist: 0.001711, loss_weight: 0.002175
[21:30:19.608] iteration 879 : loss : 0.090401 cons_dist: 0.003259, loss_weight: 0.002175
[21:30:20.526] iteration 880 : loss : 0.156902 cons_dist: 0.004396, loss_weight: 0.002175
[21:30:21.446] iteration 881 : loss : 0.111023 cons_dist: 0.003080, loss_weight: 0.002175
[21:30:22.364] iteration 882 : loss : 0.105266 cons_dist: 0.004326, loss_weight: 0.002175
[21:30:23.281] iteration 883 : loss : 0.086642 cons_dist: 0.001164, loss_weight: 0.002175
[21:30:24.199] iteration 884 : loss : 0.064465 cons_dist: 0.009417, loss_weight: 0.002175
[21:30:25.118] iteration 885 : loss : 0.082436 cons_dist: 0.003805, loss_weight: 0.002175
[21:30:26.036] iteration 886 : loss : 0.082516 cons_dist: 0.025176, loss_weight: 0.002175
[21:30:26.952] iteration 887 : loss : 0.070852 cons_dist: 0.001059, loss_weight: 0.002175
[21:30:27.869] iteration 888 : loss : 0.081992 cons_dist: 0.005291, loss_weight: 0.002175
[21:30:29.437] iteration 889 : loss : 0.064358 cons_dist: 0.025629, loss_weight: 0.002175
[21:30:30.353] iteration 890 : loss : 0.069348 cons_dist: 0.012919, loss_weight: 0.002175
[21:30:31.269] iteration 891 : loss : 0.090989 cons_dist: 0.004170, loss_weight: 0.002175
[21:30:32.187] iteration 892 : loss : 0.080281 cons_dist: 0.003278, loss_weight: 0.002175
[21:30:33.104] iteration 893 : loss : 0.087938 cons_dist: 0.017960, loss_weight: 0.002175
[21:30:34.019] iteration 894 : loss : 0.129581 cons_dist: 0.003304, loss_weight: 0.002175
[21:30:34.937] iteration 895 : loss : 0.053318 cons_dist: 0.002608, loss_weight: 0.002175
[21:30:35.853] iteration 896 : loss : 0.060821 cons_dist: 0.002845, loss_weight: 0.002175
[21:30:36.769] iteration 897 : loss : 0.107532 cons_dist: 0.003070, loss_weight: 0.002175
[21:30:37.685] iteration 898 : loss : 0.127423 cons_dist: 0.002142, loss_weight: 0.002175
[21:30:38.601] iteration 899 : loss : 0.080228 cons_dist: 0.001504, loss_weight: 0.002175
[21:30:39.517] iteration 900 : loss : 0.081426 cons_dist: 0.006568, loss_weight: 0.002175
[21:30:41.271] iteration 901 : loss : 0.082705 cons_dist: 0.002344, loss_weight: 0.002698
[21:30:42.188] iteration 902 : loss : 0.190730 cons_dist: 0.011950, loss_weight: 0.002698
[21:30:43.108] iteration 903 : loss : 0.082288 cons_dist: 0.003226, loss_weight: 0.002698
[21:30:44.026] iteration 904 : loss : 0.113220 cons_dist: 0.005918, loss_weight: 0.002698
[21:30:44.944] iteration 905 : loss : 0.109302 cons_dist: 0.003898, loss_weight: 0.002698
[21:30:45.862] iteration 906 : loss : 0.077270 cons_dist: 0.001362, loss_weight: 0.002698
[21:30:46.780] iteration 907 : loss : 0.058543 cons_dist: 0.008083, loss_weight: 0.002698
[21:30:47.697] iteration 908 : loss : 0.095366 cons_dist: 0.006200, loss_weight: 0.002698
[21:30:48.615] iteration 909 : loss : 0.084709 cons_dist: 0.008033, loss_weight: 0.002698
[21:30:49.533] iteration 910 : loss : 0.064114 cons_dist: 0.002501, loss_weight: 0.002698
[21:30:50.450] iteration 911 : loss : 0.077940 cons_dist: 0.009875, loss_weight: 0.002698
[21:30:51.368] iteration 912 : loss : 0.100425 cons_dist: 0.002310, loss_weight: 0.002698
[21:30:53.017] iteration 913 : loss : 0.088018 cons_dist: 0.008308, loss_weight: 0.002698
[21:30:53.933] iteration 914 : loss : 0.117041 cons_dist: 0.015381, loss_weight: 0.002698
[21:30:54.850] iteration 915 : loss : 0.082399 cons_dist: 0.004893, loss_weight: 0.002698
[21:30:55.768] iteration 916 : loss : 0.075781 cons_dist: 0.002317, loss_weight: 0.002698
[21:30:56.685] iteration 917 : loss : 0.140133 cons_dist: 0.007012, loss_weight: 0.002698
[21:30:57.602] iteration 918 : loss : 0.090976 cons_dist: 0.009319, loss_weight: 0.002698
[21:30:58.519] iteration 919 : loss : 0.100724 cons_dist: 0.006915, loss_weight: 0.002698
[21:30:59.436] iteration 920 : loss : 0.080711 cons_dist: 0.014884, loss_weight: 0.002698
[21:31:00.353] iteration 921 : loss : 0.153386 cons_dist: 0.032744, loss_weight: 0.002698
[21:31:01.270] iteration 922 : loss : 0.080468 cons_dist: 0.018046, loss_weight: 0.002698
[21:31:02.188] iteration 923 : loss : 0.070480 cons_dist: 0.003911, loss_weight: 0.002698
[21:31:03.106] iteration 924 : loss : 0.072984 cons_dist: 0.007045, loss_weight: 0.002698
[21:31:04.770] iteration 925 : loss : 0.075410 cons_dist: 0.028945, loss_weight: 0.002698
[21:31:05.689] iteration 926 : loss : 0.126699 cons_dist: 0.004392, loss_weight: 0.002698
[21:31:06.608] iteration 927 : loss : 0.230669 cons_dist: 0.001736, loss_weight: 0.002698
[21:31:07.524] iteration 928 : loss : 0.106823 cons_dist: 0.006229, loss_weight: 0.002698
[21:31:08.441] iteration 929 : loss : 0.091090 cons_dist: 0.001756, loss_weight: 0.002698
[21:31:09.359] iteration 930 : loss : 0.131249 cons_dist: 0.024918, loss_weight: 0.002698
[21:31:10.275] iteration 931 : loss : 0.124164 cons_dist: 0.001857, loss_weight: 0.002698
[21:31:11.191] iteration 932 : loss : 0.053665 cons_dist: 0.003401, loss_weight: 0.002698
[21:31:12.108] iteration 933 : loss : 0.109633 cons_dist: 0.004189, loss_weight: 0.002698
[21:31:13.026] iteration 934 : loss : 0.127925 cons_dist: 0.006175, loss_weight: 0.002698
[21:31:13.947] iteration 935 : loss : 0.091369 cons_dist: 0.005548, loss_weight: 0.002698
[21:31:14.864] iteration 936 : loss : 0.084132 cons_dist: 0.013960, loss_weight: 0.002698
[21:31:16.418] iteration 937 : loss : 0.103876 cons_dist: 0.003821, loss_weight: 0.002698
[21:31:17.336] iteration 938 : loss : 0.080347 cons_dist: 0.002866, loss_weight: 0.002698
[21:31:18.254] iteration 939 : loss : 0.081812 cons_dist: 0.015125, loss_weight: 0.002698
[21:31:19.173] iteration 940 : loss : 0.046519 cons_dist: 0.011496, loss_weight: 0.002698
[21:31:20.091] iteration 941 : loss : 0.086155 cons_dist: 0.002558, loss_weight: 0.002698
[21:31:21.007] iteration 942 : loss : 0.133947 cons_dist: 0.006723, loss_weight: 0.002698
[21:31:21.926] iteration 943 : loss : 0.079148 cons_dist: 0.004303, loss_weight: 0.002698
[21:31:22.844] iteration 944 : loss : 0.074874 cons_dist: 0.001614, loss_weight: 0.002698
[21:31:23.761] iteration 945 : loss : 0.101095 cons_dist: 0.004771, loss_weight: 0.002698
[21:31:24.679] iteration 946 : loss : 0.068326 cons_dist: 0.002390, loss_weight: 0.002698
[21:31:25.598] iteration 947 : loss : 0.115617 cons_dist: 0.003474, loss_weight: 0.002698
[21:31:26.516] iteration 948 : loss : 0.068967 cons_dist: 0.006592, loss_weight: 0.002698
[21:31:28.073] iteration 949 : loss : 0.093187 cons_dist: 0.000989, loss_weight: 0.002698
[21:31:28.993] iteration 950 : loss : 0.165532 cons_dist: 0.001361, loss_weight: 0.002698
[21:31:30.057] iteration 951 : loss : 0.098284 cons_dist: 0.005230, loss_weight: 0.002698
[21:31:30.997] iteration 952 : loss : 0.117145 cons_dist: 0.001898, loss_weight: 0.002698
[21:31:31.912] iteration 953 : loss : 0.070714 cons_dist: 0.010559, loss_weight: 0.002698
[21:31:32.827] iteration 954 : loss : 0.076222 cons_dist: 0.001188, loss_weight: 0.002698
[21:31:33.744] iteration 955 : loss : 0.063659 cons_dist: 0.001563, loss_weight: 0.002698
[21:31:34.661] iteration 956 : loss : 0.092943 cons_dist: 0.003991, loss_weight: 0.002698
[21:31:35.576] iteration 957 : loss : 0.068728 cons_dist: 0.006770, loss_weight: 0.002698
[21:31:36.494] iteration 958 : loss : 0.065341 cons_dist: 0.005397, loss_weight: 0.002698
[21:31:37.411] iteration 959 : loss : 0.062617 cons_dist: 0.005114, loss_weight: 0.002698
[21:31:38.328] iteration 960 : loss : 0.110572 cons_dist: 0.009053, loss_weight: 0.002698
[21:31:39.923] iteration 961 : loss : 0.074394 cons_dist: 0.003964, loss_weight: 0.002698
[21:31:40.840] iteration 962 : loss : 0.075634 cons_dist: 0.040724, loss_weight: 0.002698
[21:31:41.757] iteration 963 : loss : 0.118694 cons_dist: 0.004396, loss_weight: 0.002698
[21:31:42.673] iteration 964 : loss : 0.076457 cons_dist: 0.004940, loss_weight: 0.002698
[21:31:43.589] iteration 965 : loss : 0.080398 cons_dist: 0.006961, loss_weight: 0.002698
[21:31:44.504] iteration 966 : loss : 0.057656 cons_dist: 0.002230, loss_weight: 0.002698
[21:31:45.420] iteration 967 : loss : 0.078779 cons_dist: 0.020875, loss_weight: 0.002698
[21:31:46.336] iteration 968 : loss : 0.053276 cons_dist: 0.008310, loss_weight: 0.002698
[21:31:47.252] iteration 969 : loss : 0.080022 cons_dist: 0.027555, loss_weight: 0.002698
[21:31:48.169] iteration 970 : loss : 0.061894 cons_dist: 0.001452, loss_weight: 0.002698
[21:31:49.086] iteration 971 : loss : 0.199982 cons_dist: 0.011796, loss_weight: 0.002698
[21:31:50.003] iteration 972 : loss : 0.050052 cons_dist: 0.003198, loss_weight: 0.002698
[21:31:51.499] iteration 973 : loss : 0.063004 cons_dist: 0.002236, loss_weight: 0.002698
[21:31:52.420] iteration 974 : loss : 0.110636 cons_dist: 0.004056, loss_weight: 0.002698
[21:31:53.339] iteration 975 : loss : 0.089348 cons_dist: 0.004690, loss_weight: 0.002698
[21:31:54.258] iteration 976 : loss : 0.081894 cons_dist: 0.005593, loss_weight: 0.002698
[21:31:55.175] iteration 977 : loss : 0.108573 cons_dist: 0.004051, loss_weight: 0.002698
[21:31:56.092] iteration 978 : loss : 0.083713 cons_dist: 0.002919, loss_weight: 0.002698
[21:31:57.012] iteration 979 : loss : 0.097736 cons_dist: 0.004950, loss_weight: 0.002698
[21:31:57.932] iteration 980 : loss : 0.109951 cons_dist: 0.010858, loss_weight: 0.002698
[21:31:58.850] iteration 981 : loss : 0.063939 cons_dist: 0.010061, loss_weight: 0.002698
[21:31:59.766] iteration 982 : loss : 0.075378 cons_dist: 0.002370, loss_weight: 0.002698
[21:32:00.682] iteration 983 : loss : 0.109219 cons_dist: 0.017422, loss_weight: 0.002698
[21:32:01.599] iteration 984 : loss : 0.109017 cons_dist: 0.004549, loss_weight: 0.002698
[21:32:03.310] iteration 985 : loss : 0.062827 cons_dist: 0.004878, loss_weight: 0.002698
[21:32:04.227] iteration 986 : loss : 0.098363 cons_dist: 0.002734, loss_weight: 0.002698
[21:32:05.142] iteration 987 : loss : 0.085784 cons_dist: 0.003863, loss_weight: 0.002698
[21:32:06.074] iteration 988 : loss : 0.194157 cons_dist: 0.006689, loss_weight: 0.002698
[21:32:06.992] iteration 989 : loss : 0.123347 cons_dist: 0.005860, loss_weight: 0.002698
[21:32:07.910] iteration 990 : loss : 0.101919 cons_dist: 0.002240, loss_weight: 0.002698
[21:32:08.827] iteration 991 : loss : 0.081947 cons_dist: 0.006813, loss_weight: 0.002698
[21:32:09.745] iteration 992 : loss : 0.058308 cons_dist: 0.003692, loss_weight: 0.002698
[21:32:10.662] iteration 993 : loss : 0.057693 cons_dist: 0.030292, loss_weight: 0.002698
[21:32:11.578] iteration 994 : loss : 0.067066 cons_dist: 0.002080, loss_weight: 0.002698
[21:32:12.495] iteration 995 : loss : 0.159391 cons_dist: 0.024157, loss_weight: 0.002698
[21:32:13.412] iteration 996 : loss : 0.081056 cons_dist: 0.012787, loss_weight: 0.002698
[21:32:15.043] iteration 997 : loss : 0.094366 cons_dist: 0.002035, loss_weight: 0.002698
[21:32:15.959] iteration 998 : loss : 0.112381 cons_dist: 0.008868, loss_weight: 0.002698
[21:32:16.877] iteration 999 : loss : 0.074081 cons_dist: 0.001777, loss_weight: 0.002698
[21:32:17.794] iteration 1000 : loss : 0.131656 cons_dist: 0.004290, loss_weight: 0.002698
[21:32:18.020] save model to model/LA_vnet_25_labeled/UAMT/iter_1000.pth
[21:32:20.113] iteration 1001 : loss : 0.076489 cons_dist: 0.005821, loss_weight: 0.002698
[21:32:21.031] iteration 1002 : loss : 0.071781 cons_dist: 0.002872, loss_weight: 0.002698
[21:32:21.946] iteration 1003 : loss : 0.104861 cons_dist: 0.008741, loss_weight: 0.002698
[21:32:22.863] iteration 1004 : loss : 0.112186 cons_dist: 0.004905, loss_weight: 0.002698
[21:32:23.779] iteration 1005 : loss : 0.325164 cons_dist: 0.005226, loss_weight: 0.002698
[21:32:24.694] iteration 1006 : loss : 0.079739 cons_dist: 0.027763, loss_weight: 0.002698
[21:32:25.611] iteration 1007 : loss : 0.068276 cons_dist: 0.002438, loss_weight: 0.002698
[21:32:26.531] iteration 1008 : loss : 0.105517 cons_dist: 0.015387, loss_weight: 0.002698
[21:32:28.053] iteration 1009 : loss : 0.090939 cons_dist: 0.003873, loss_weight: 0.002698
[21:32:28.971] iteration 1010 : loss : 0.078136 cons_dist: 0.001969, loss_weight: 0.002698
[21:32:29.890] iteration 1011 : loss : 0.110162 cons_dist: 0.002694, loss_weight: 0.002698
[21:32:30.807] iteration 1012 : loss : 0.085959 cons_dist: 0.016927, loss_weight: 0.002698
[21:32:31.725] iteration 1013 : loss : 0.087588 cons_dist: 0.043802, loss_weight: 0.002698
[21:32:32.643] iteration 1014 : loss : 0.083861 cons_dist: 0.006961, loss_weight: 0.002698
[21:32:33.561] iteration 1015 : loss : 0.097038 cons_dist: 0.002646, loss_weight: 0.002698
[21:32:34.479] iteration 1016 : loss : 0.118713 cons_dist: 0.003813, loss_weight: 0.002698
[21:32:35.398] iteration 1017 : loss : 0.073511 cons_dist: 0.012587, loss_weight: 0.002698
[21:32:36.316] iteration 1018 : loss : 0.108778 cons_dist: 0.002697, loss_weight: 0.002698
[21:32:37.233] iteration 1019 : loss : 0.173428 cons_dist: 0.004199, loss_weight: 0.002698
[21:32:38.151] iteration 1020 : loss : 0.079077 cons_dist: 0.012674, loss_weight: 0.002698
[21:32:39.676] iteration 1021 : loss : 0.080308 cons_dist: 0.025245, loss_weight: 0.002698
[21:32:40.593] iteration 1022 : loss : 0.063037 cons_dist: 0.005415, loss_weight: 0.002698
[21:32:41.510] iteration 1023 : loss : 0.062534 cons_dist: 0.008469, loss_weight: 0.002698
[21:32:42.428] iteration 1024 : loss : 0.092386 cons_dist: 0.002493, loss_weight: 0.002698
[21:32:43.347] iteration 1025 : loss : 0.102526 cons_dist: 0.002191, loss_weight: 0.002698
[21:32:44.262] iteration 1026 : loss : 0.066886 cons_dist: 0.007484, loss_weight: 0.002698
[21:32:45.179] iteration 1027 : loss : 0.073477 cons_dist: 0.001874, loss_weight: 0.002698
[21:32:46.095] iteration 1028 : loss : 0.068720 cons_dist: 0.001688, loss_weight: 0.002698
[21:32:47.013] iteration 1029 : loss : 0.089247 cons_dist: 0.001299, loss_weight: 0.002698
[21:32:47.931] iteration 1030 : loss : 0.163793 cons_dist: 0.001561, loss_weight: 0.002698
[21:32:48.847] iteration 1031 : loss : 0.059409 cons_dist: 0.004074, loss_weight: 0.002698
[21:32:49.764] iteration 1032 : loss : 0.092283 cons_dist: 0.005508, loss_weight: 0.002698
[21:32:51.449] iteration 1033 : loss : 0.059778 cons_dist: 0.003255, loss_weight: 0.002698
[21:32:52.364] iteration 1034 : loss : 0.076481 cons_dist: 0.010298, loss_weight: 0.002698
[21:32:53.280] iteration 1035 : loss : 0.131571 cons_dist: 0.001796, loss_weight: 0.002698
[21:32:54.200] iteration 1036 : loss : 0.067566 cons_dist: 0.019392, loss_weight: 0.002698
[21:32:55.116] iteration 1037 : loss : 0.077545 cons_dist: 0.008423, loss_weight: 0.002698
[21:32:56.033] iteration 1038 : loss : 0.053691 cons_dist: 0.002388, loss_weight: 0.002698
[21:32:56.949] iteration 1039 : loss : 0.080035 cons_dist: 0.004015, loss_weight: 0.002698
[21:32:57.865] iteration 1040 : loss : 0.076561 cons_dist: 0.002170, loss_weight: 0.002698
[21:32:58.782] iteration 1041 : loss : 0.093172 cons_dist: 0.004142, loss_weight: 0.002698
[21:32:59.698] iteration 1042 : loss : 0.078450 cons_dist: 0.003740, loss_weight: 0.002698
[21:33:00.615] iteration 1043 : loss : 0.059052 cons_dist: 0.003057, loss_weight: 0.002698
[21:33:01.533] iteration 1044 : loss : 0.115162 cons_dist: 0.004639, loss_weight: 0.002698
[21:33:03.176] iteration 1045 : loss : 0.051018 cons_dist: 0.004476, loss_weight: 0.002698
[21:33:04.094] iteration 1046 : loss : 0.060021 cons_dist: 0.015720, loss_weight: 0.002698
[21:33:05.013] iteration 1047 : loss : 0.074774 cons_dist: 0.008258, loss_weight: 0.002698
[21:33:05.931] iteration 1048 : loss : 0.059357 cons_dist: 0.002271, loss_weight: 0.002698
[21:33:06.847] iteration 1049 : loss : 0.087977 cons_dist: 0.014429, loss_weight: 0.002698
[21:33:07.764] iteration 1050 : loss : 0.084373 cons_dist: 0.001622, loss_weight: 0.002698
[21:33:08.853] iteration 1051 : loss : 0.087596 cons_dist: 0.004000, loss_weight: 0.003327
[21:33:09.769] iteration 1052 : loss : 0.109357 cons_dist: 0.002025, loss_weight: 0.003327
[21:33:10.687] iteration 1053 : loss : 0.053253 cons_dist: 0.000562, loss_weight: 0.003327
[21:33:11.605] iteration 1054 : loss : 0.076981 cons_dist: 0.005353, loss_weight: 0.003327
[21:33:12.524] iteration 1055 : loss : 0.066811 cons_dist: 0.000942, loss_weight: 0.003327
[21:33:13.444] iteration 1056 : loss : 0.065241 cons_dist: 0.002413, loss_weight: 0.003327
[21:33:14.978] iteration 1057 : loss : 0.075325 cons_dist: 0.001157, loss_weight: 0.003327
[21:33:15.894] iteration 1058 : loss : 0.077405 cons_dist: 0.001042, loss_weight: 0.003327
[21:33:16.811] iteration 1059 : loss : 0.088746 cons_dist: 0.005416, loss_weight: 0.003327
[21:33:17.728] iteration 1060 : loss : 0.109510 cons_dist: 0.002168, loss_weight: 0.003327
[21:33:18.645] iteration 1061 : loss : 0.100766 cons_dist: 0.002648, loss_weight: 0.003327
[21:33:19.563] iteration 1062 : loss : 0.046152 cons_dist: 0.001953, loss_weight: 0.003327
[21:33:20.480] iteration 1063 : loss : 0.087959 cons_dist: 0.003153, loss_weight: 0.003327
[21:33:21.399] iteration 1064 : loss : 0.069259 cons_dist: 0.004557, loss_weight: 0.003327
[21:33:22.316] iteration 1065 : loss : 0.171709 cons_dist: 0.001673, loss_weight: 0.003327
[21:33:23.233] iteration 1066 : loss : 0.089734 cons_dist: 0.001365, loss_weight: 0.003327
[21:33:24.151] iteration 1067 : loss : 0.080479 cons_dist: 0.000694, loss_weight: 0.003327
[21:33:25.070] iteration 1068 : loss : 0.116840 cons_dist: 0.001906, loss_weight: 0.003327
[21:33:26.739] iteration 1069 : loss : 0.097477 cons_dist: 0.005096, loss_weight: 0.003327
[21:33:27.656] iteration 1070 : loss : 0.127549 cons_dist: 0.001602, loss_weight: 0.003327
[21:33:28.572] iteration 1071 : loss : 0.097218 cons_dist: 0.001665, loss_weight: 0.003327
[21:33:29.489] iteration 1072 : loss : 0.089246 cons_dist: 0.001526, loss_weight: 0.003327
[21:33:30.406] iteration 1073 : loss : 0.053553 cons_dist: 0.002802, loss_weight: 0.003327
[21:33:31.323] iteration 1074 : loss : 0.063889 cons_dist: 0.002440, loss_weight: 0.003327
[21:33:32.244] iteration 1075 : loss : 0.135205 cons_dist: 0.003214, loss_weight: 0.003327
[21:33:33.160] iteration 1076 : loss : 0.086652 cons_dist: 0.005767, loss_weight: 0.003327
[21:33:34.078] iteration 1077 : loss : 0.085289 cons_dist: 0.003204, loss_weight: 0.003327
[21:33:34.995] iteration 1078 : loss : 0.060153 cons_dist: 0.002265, loss_weight: 0.003327
[21:33:35.913] iteration 1079 : loss : 0.060477 cons_dist: 0.002421, loss_weight: 0.003327
[21:33:36.831] iteration 1080 : loss : 0.074340 cons_dist: 0.004338, loss_weight: 0.003327
[21:33:38.381] iteration 1081 : loss : 0.067059 cons_dist: 0.000570, loss_weight: 0.003327
[21:33:39.298] iteration 1082 : loss : 0.079573 cons_dist: 0.009308, loss_weight: 0.003327
[21:33:40.215] iteration 1083 : loss : 0.077092 cons_dist: 0.001200, loss_weight: 0.003327
[21:33:41.133] iteration 1084 : loss : 0.073948 cons_dist: 0.008467, loss_weight: 0.003327
[21:33:42.085] iteration 1085 : loss : 0.051695 cons_dist: 0.008296, loss_weight: 0.003327
[21:33:43.003] iteration 1086 : loss : 0.068512 cons_dist: 0.010125, loss_weight: 0.003327
[21:33:43.922] iteration 1087 : loss : 0.190440 cons_dist: 0.001193, loss_weight: 0.003327
[21:33:44.839] iteration 1088 : loss : 0.074718 cons_dist: 0.000890, loss_weight: 0.003327
[21:33:45.758] iteration 1089 : loss : 0.086612 cons_dist: 0.002030, loss_weight: 0.003327
[21:33:46.676] iteration 1090 : loss : 0.069137 cons_dist: 0.003266, loss_weight: 0.003327
[21:33:47.592] iteration 1091 : loss : 0.063399 cons_dist: 0.034938, loss_weight: 0.003327
[21:33:48.508] iteration 1092 : loss : 0.079955 cons_dist: 0.008040, loss_weight: 0.003327
[21:33:49.988] iteration 1093 : loss : 0.060464 cons_dist: 0.000635, loss_weight: 0.003327
[21:33:50.906] iteration 1094 : loss : 0.052751 cons_dist: 0.004461, loss_weight: 0.003327
[21:33:51.825] iteration 1095 : loss : 0.063289 cons_dist: 0.001607, loss_weight: 0.003327
[21:33:52.743] iteration 1096 : loss : 0.063689 cons_dist: 0.029833, loss_weight: 0.003327
[21:33:53.660] iteration 1097 : loss : 0.054556 cons_dist: 0.006179, loss_weight: 0.003327
[21:33:54.578] iteration 1098 : loss : 0.079371 cons_dist: 0.007829, loss_weight: 0.003327
[21:33:55.496] iteration 1099 : loss : 0.057867 cons_dist: 0.004274, loss_weight: 0.003327
[21:33:56.413] iteration 1100 : loss : 0.082631 cons_dist: 0.001989, loss_weight: 0.003327
[21:33:57.492] iteration 1101 : loss : 0.091040 cons_dist: 0.000596, loss_weight: 0.003327
[21:33:58.409] iteration 1102 : loss : 0.052989 cons_dist: 0.008922, loss_weight: 0.003327
[21:33:59.326] iteration 1103 : loss : 0.051133 cons_dist: 0.001214, loss_weight: 0.003327
[21:34:00.244] iteration 1104 : loss : 0.080043 cons_dist: 0.010666, loss_weight: 0.003327
[21:34:01.831] iteration 1105 : loss : 0.056287 cons_dist: 0.003071, loss_weight: 0.003327
[21:34:02.749] iteration 1106 : loss : 0.088850 cons_dist: 0.002742, loss_weight: 0.003327
[21:34:03.665] iteration 1107 : loss : 0.057105 cons_dist: 0.007292, loss_weight: 0.003327
[21:34:04.583] iteration 1108 : loss : 0.067711 cons_dist: 0.004614, loss_weight: 0.003327
[21:34:05.499] iteration 1109 : loss : 0.060890 cons_dist: 0.001957, loss_weight: 0.003327
[21:34:06.415] iteration 1110 : loss : 0.086107 cons_dist: 0.018918, loss_weight: 0.003327
[21:34:07.333] iteration 1111 : loss : 0.075028 cons_dist: 0.010947, loss_weight: 0.003327
[21:34:08.250] iteration 1112 : loss : 0.064703 cons_dist: 0.003028, loss_weight: 0.003327
[21:34:09.169] iteration 1113 : loss : 0.091291 cons_dist: 0.001429, loss_weight: 0.003327
[21:34:10.086] iteration 1114 : loss : 0.083251 cons_dist: 0.002326, loss_weight: 0.003327
[21:34:11.004] iteration 1115 : loss : 0.102662 cons_dist: 0.005616, loss_weight: 0.003327
[21:34:11.925] iteration 1116 : loss : 0.047645 cons_dist: 0.005659, loss_weight: 0.003327
[21:34:13.432] iteration 1117 : loss : 0.089232 cons_dist: 0.011197, loss_weight: 0.003327
[21:34:14.348] iteration 1118 : loss : 0.053197 cons_dist: 0.003465, loss_weight: 0.003327
[21:34:15.264] iteration 1119 : loss : 0.062230 cons_dist: 0.002820, loss_weight: 0.003327
[21:34:16.181] iteration 1120 : loss : 0.061483 cons_dist: 0.011724, loss_weight: 0.003327
[21:34:17.098] iteration 1121 : loss : 0.099364 cons_dist: 0.000935, loss_weight: 0.003327
[21:34:18.016] iteration 1122 : loss : 0.092253 cons_dist: 0.002416, loss_weight: 0.003327
[21:34:18.932] iteration 1123 : loss : 0.093664 cons_dist: 0.003843, loss_weight: 0.003327
[21:34:19.851] iteration 1124 : loss : 0.082041 cons_dist: 0.002609, loss_weight: 0.003327
[21:34:20.767] iteration 1125 : loss : 0.076879 cons_dist: 0.001885, loss_weight: 0.003327
[21:34:21.684] iteration 1126 : loss : 0.067298 cons_dist: 0.001308, loss_weight: 0.003327
[21:34:22.600] iteration 1127 : loss : 0.089634 cons_dist: 0.009720, loss_weight: 0.003327
[21:34:23.516] iteration 1128 : loss : 0.082352 cons_dist: 0.000902, loss_weight: 0.003327
[21:34:25.040] iteration 1129 : loss : 0.087117 cons_dist: 0.004746, loss_weight: 0.003327
[21:34:25.959] iteration 1130 : loss : 0.078076 cons_dist: 0.009347, loss_weight: 0.003327
[21:34:26.876] iteration 1131 : loss : 0.060875 cons_dist: 0.001320, loss_weight: 0.003327
[21:34:27.793] iteration 1132 : loss : 0.153357 cons_dist: 0.002299, loss_weight: 0.003327
[21:34:28.711] iteration 1133 : loss : 0.072877 cons_dist: 0.002255, loss_weight: 0.003327
[21:34:29.629] iteration 1134 : loss : 0.057496 cons_dist: 0.001305, loss_weight: 0.003327
[21:34:30.545] iteration 1135 : loss : 0.057256 cons_dist: 0.002350, loss_weight: 0.003327
[21:34:31.464] iteration 1136 : loss : 0.087140 cons_dist: 0.002188, loss_weight: 0.003327
[21:34:32.381] iteration 1137 : loss : 0.081499 cons_dist: 0.003834, loss_weight: 0.003327
[21:34:33.299] iteration 1138 : loss : 0.095913 cons_dist: 0.001040, loss_weight: 0.003327
[21:34:34.216] iteration 1139 : loss : 0.078419 cons_dist: 0.007772, loss_weight: 0.003327
[21:34:35.133] iteration 1140 : loss : 0.092667 cons_dist: 0.004172, loss_weight: 0.003327
[21:34:36.719] iteration 1141 : loss : 0.117730 cons_dist: 0.000978, loss_weight: 0.003327
[21:34:37.638] iteration 1142 : loss : 0.082022 cons_dist: 0.001980, loss_weight: 0.003327
[21:34:38.556] iteration 1143 : loss : 0.063830 cons_dist: 0.017282, loss_weight: 0.003327
[21:34:39.474] iteration 1144 : loss : 0.087560 cons_dist: 0.011590, loss_weight: 0.003327
[21:34:40.391] iteration 1145 : loss : 0.068242 cons_dist: 0.006826, loss_weight: 0.003327
[21:34:41.309] iteration 1146 : loss : 0.090617 cons_dist: 0.001606, loss_weight: 0.003327
[21:34:42.227] iteration 1147 : loss : 0.060299 cons_dist: 0.004721, loss_weight: 0.003327
[21:34:43.144] iteration 1148 : loss : 0.090130 cons_dist: 0.004540, loss_weight: 0.003327
[21:34:44.063] iteration 1149 : loss : 0.078375 cons_dist: 0.057731, loss_weight: 0.003327
[21:34:44.981] iteration 1150 : loss : 0.053710 cons_dist: 0.011329, loss_weight: 0.003327
[21:34:46.062] iteration 1151 : loss : 0.097216 cons_dist: 0.002904, loss_weight: 0.003327
[21:34:46.981] iteration 1152 : loss : 0.091296 cons_dist: 0.013611, loss_weight: 0.003327
[21:34:48.546] iteration 1153 : loss : 0.087355 cons_dist: 0.003541, loss_weight: 0.003327
[21:34:49.464] iteration 1154 : loss : 0.113323 cons_dist: 0.004383, loss_weight: 0.003327
[21:34:50.382] iteration 1155 : loss : 0.065598 cons_dist: 0.005926, loss_weight: 0.003327
[21:34:51.300] iteration 1156 : loss : 0.105863 cons_dist: 0.008732, loss_weight: 0.003327
[21:34:52.218] iteration 1157 : loss : 0.116710 cons_dist: 0.002266, loss_weight: 0.003327
[21:34:53.136] iteration 1158 : loss : 0.060657 cons_dist: 0.003691, loss_weight: 0.003327
[21:34:54.053] iteration 1159 : loss : 0.087572 cons_dist: 0.014521, loss_weight: 0.003327
[21:34:54.971] iteration 1160 : loss : 0.055777 cons_dist: 0.002041, loss_weight: 0.003327
[21:34:55.889] iteration 1161 : loss : 0.075702 cons_dist: 0.001339, loss_weight: 0.003327
[21:34:56.808] iteration 1162 : loss : 0.064626 cons_dist: 0.001918, loss_weight: 0.003327
[21:34:57.725] iteration 1163 : loss : 0.064616 cons_dist: 0.002426, loss_weight: 0.003327
[21:34:58.644] iteration 1164 : loss : 0.069366 cons_dist: 0.008590, loss_weight: 0.003327
[21:35:00.236] iteration 1165 : loss : 0.062859 cons_dist: 0.004186, loss_weight: 0.003327
[21:35:01.152] iteration 1166 : loss : 0.055199 cons_dist: 0.002095, loss_weight: 0.003327
[21:35:02.067] iteration 1167 : loss : 0.069448 cons_dist: 0.014869, loss_weight: 0.003327
[21:35:02.984] iteration 1168 : loss : 0.068675 cons_dist: 0.017354, loss_weight: 0.003327
[21:35:03.900] iteration 1169 : loss : 0.091989 cons_dist: 0.001063, loss_weight: 0.003327
[21:35:04.816] iteration 1170 : loss : 0.057026 cons_dist: 0.000685, loss_weight: 0.003327
[21:35:05.732] iteration 1171 : loss : 0.064833 cons_dist: 0.006115, loss_weight: 0.003327
[21:35:06.648] iteration 1172 : loss : 0.080013 cons_dist: 0.002415, loss_weight: 0.003327
[21:35:07.567] iteration 1173 : loss : 0.081326 cons_dist: 0.001114, loss_weight: 0.003327
[21:35:08.484] iteration 1174 : loss : 0.061478 cons_dist: 0.014255, loss_weight: 0.003327
[21:35:09.401] iteration 1175 : loss : 0.084594 cons_dist: 0.004326, loss_weight: 0.003327
[21:35:10.317] iteration 1176 : loss : 0.066240 cons_dist: 0.006051, loss_weight: 0.003327
[21:35:11.891] iteration 1177 : loss : 0.091234 cons_dist: 0.003004, loss_weight: 0.003327
[21:35:12.807] iteration 1178 : loss : 0.071582 cons_dist: 0.000735, loss_weight: 0.003327
[21:35:13.723] iteration 1179 : loss : 0.087754 cons_dist: 0.001377, loss_weight: 0.003327
[21:35:14.640] iteration 1180 : loss : 0.082713 cons_dist: 0.000400, loss_weight: 0.003327
[21:35:15.556] iteration 1181 : loss : 0.059111 cons_dist: 0.014935, loss_weight: 0.003327
[21:35:16.472] iteration 1182 : loss : 0.052903 cons_dist: 0.010275, loss_weight: 0.003327
[21:35:17.389] iteration 1183 : loss : 0.052630 cons_dist: 0.007399, loss_weight: 0.003327
[21:35:18.305] iteration 1184 : loss : 0.079803 cons_dist: 0.001231, loss_weight: 0.003327
[21:35:19.221] iteration 1185 : loss : 0.067344 cons_dist: 0.004504, loss_weight: 0.003327
[21:35:20.137] iteration 1186 : loss : 0.087107 cons_dist: 0.006329, loss_weight: 0.003327
[21:35:21.053] iteration 1187 : loss : 0.073778 cons_dist: 0.004819, loss_weight: 0.003327
[21:35:21.969] iteration 1188 : loss : 0.066922 cons_dist: 0.001576, loss_weight: 0.003327
[21:35:23.486] iteration 1189 : loss : 0.045624 cons_dist: 0.004687, loss_weight: 0.003327
[21:35:24.402] iteration 1190 : loss : 0.087964 cons_dist: 0.005415, loss_weight: 0.003327
[21:35:25.318] iteration 1191 : loss : 0.053774 cons_dist: 0.003975, loss_weight: 0.003327
[21:35:26.235] iteration 1192 : loss : 0.054421 cons_dist: 0.001820, loss_weight: 0.003327
[21:35:27.151] iteration 1193 : loss : 0.070578 cons_dist: 0.003944, loss_weight: 0.003327
[21:35:28.070] iteration 1194 : loss : 0.053042 cons_dist: 0.007552, loss_weight: 0.003327
[21:35:28.986] iteration 1195 : loss : 0.083929 cons_dist: 0.000956, loss_weight: 0.003327
[21:35:29.903] iteration 1196 : loss : 0.079638 cons_dist: 0.001458, loss_weight: 0.003327
[21:35:30.818] iteration 1197 : loss : 0.055897 cons_dist: 0.002637, loss_weight: 0.003327
[21:35:31.736] iteration 1198 : loss : 0.078042 cons_dist: 0.005758, loss_weight: 0.003327
[21:35:32.652] iteration 1199 : loss : 0.058116 cons_dist: 0.003243, loss_weight: 0.003327
[21:35:33.570] iteration 1200 : loss : 0.047556 cons_dist: 0.001302, loss_weight: 0.003327
[21:35:35.155] save best model to model/LA_vnet_25_labeled/UAMT/iter_1200_dice_0.9147583842277527.pth
[21:35:36.763] iteration 1201 : loss : 0.069704 cons_dist: 0.000973, loss_weight: 0.004076
[21:35:37.677] iteration 1202 : loss : 0.055190 cons_dist: 0.002604, loss_weight: 0.004076
[21:35:38.591] iteration 1203 : loss : 0.064494 cons_dist: 0.006744, loss_weight: 0.004076
[21:35:39.507] iteration 1204 : loss : 0.079163 cons_dist: 0.007075, loss_weight: 0.004076
[21:35:40.421] iteration 1205 : loss : 0.081399 cons_dist: 0.009142, loss_weight: 0.004076
[21:35:41.337] iteration 1206 : loss : 0.067284 cons_dist: 0.001926, loss_weight: 0.004076
[21:35:42.252] iteration 1207 : loss : 0.064296 cons_dist: 0.001865, loss_weight: 0.004076
[21:35:43.166] iteration 1208 : loss : 0.067331 cons_dist: 0.000502, loss_weight: 0.004076
[21:35:44.080] iteration 1209 : loss : 0.070866 cons_dist: 0.005265, loss_weight: 0.004076
[21:35:44.996] iteration 1210 : loss : 0.068457 cons_dist: 0.000968, loss_weight: 0.004076
[21:35:45.911] iteration 1211 : loss : 0.062161 cons_dist: 0.005312, loss_weight: 0.004076
[21:35:46.826] iteration 1212 : loss : 0.071212 cons_dist: 0.002086, loss_weight: 0.004076
[21:35:48.437] iteration 1213 : loss : 0.058387 cons_dist: 0.005670, loss_weight: 0.004076
[21:35:49.353] iteration 1214 : loss : 0.052432 cons_dist: 0.001867, loss_weight: 0.004076
[21:35:50.270] iteration 1215 : loss : 0.055866 cons_dist: 0.001397, loss_weight: 0.004076
[21:35:51.188] iteration 1216 : loss : 0.084413 cons_dist: 0.003289, loss_weight: 0.004076
[21:35:52.103] iteration 1217 : loss : 0.063340 cons_dist: 0.001384, loss_weight: 0.004076
[21:35:53.019] iteration 1218 : loss : 0.062575 cons_dist: 0.002315, loss_weight: 0.004076
[21:35:53.933] iteration 1219 : loss : 0.056349 cons_dist: 0.003245, loss_weight: 0.004076
[21:35:54.848] iteration 1220 : loss : 0.049368 cons_dist: 0.000640, loss_weight: 0.004076
[21:35:55.763] iteration 1221 : loss : 0.077458 cons_dist: 0.003543, loss_weight: 0.004076
[21:35:56.678] iteration 1222 : loss : 0.080176 cons_dist: 0.001466, loss_weight: 0.004076
[21:35:57.594] iteration 1223 : loss : 0.161582 cons_dist: 0.005542, loss_weight: 0.004076
[21:35:58.510] iteration 1224 : loss : 0.052654 cons_dist: 0.001804, loss_weight: 0.004076
[21:36:00.159] iteration 1225 : loss : 0.057734 cons_dist: 0.004653, loss_weight: 0.004076
[21:36:01.080] iteration 1226 : loss : 0.070091 cons_dist: 0.001353, loss_weight: 0.004076
[21:36:01.996] iteration 1227 : loss : 0.061007 cons_dist: 0.004063, loss_weight: 0.004076
[21:36:02.912] iteration 1228 : loss : 0.059157 cons_dist: 0.001468, loss_weight: 0.004076
[21:36:03.828] iteration 1229 : loss : 0.056084 cons_dist: 0.013486, loss_weight: 0.004076
[21:36:04.744] iteration 1230 : loss : 0.066987 cons_dist: 0.002683, loss_weight: 0.004076
[21:36:05.659] iteration 1231 : loss : 0.055490 cons_dist: 0.009398, loss_weight: 0.004076
[21:36:06.577] iteration 1232 : loss : 0.049083 cons_dist: 0.021154, loss_weight: 0.004076
[21:36:07.493] iteration 1233 : loss : 0.093635 cons_dist: 0.003065, loss_weight: 0.004076
[21:36:08.410] iteration 1234 : loss : 0.102980 cons_dist: 0.003573, loss_weight: 0.004076
[21:36:09.326] iteration 1235 : loss : 0.082964 cons_dist: 0.008419, loss_weight: 0.004076
[21:36:10.241] iteration 1236 : loss : 0.075850 cons_dist: 0.017021, loss_weight: 0.004076
[21:36:11.891] iteration 1237 : loss : 0.070880 cons_dist: 0.002013, loss_weight: 0.004076
[21:36:12.807] iteration 1238 : loss : 0.051157 cons_dist: 0.001296, loss_weight: 0.004076
[21:36:13.724] iteration 1239 : loss : 0.057528 cons_dist: 0.010600, loss_weight: 0.004076
[21:36:14.640] iteration 1240 : loss : 0.097926 cons_dist: 0.011108, loss_weight: 0.004076
[21:36:15.556] iteration 1241 : loss : 0.047476 cons_dist: 0.001329, loss_weight: 0.004076
[21:36:16.473] iteration 1242 : loss : 0.115852 cons_dist: 0.005665, loss_weight: 0.004076
[21:36:17.390] iteration 1243 : loss : 0.089002 cons_dist: 0.019214, loss_weight: 0.004076
[21:36:18.306] iteration 1244 : loss : 0.057608 cons_dist: 0.044326, loss_weight: 0.004076
[21:36:19.222] iteration 1245 : loss : 0.063776 cons_dist: 0.001102, loss_weight: 0.004076
[21:36:20.136] iteration 1246 : loss : 0.087772 cons_dist: 0.000906, loss_weight: 0.004076
[21:36:21.051] iteration 1247 : loss : 0.050199 cons_dist: 0.001341, loss_weight: 0.004076
[21:36:21.965] iteration 1248 : loss : 0.070768 cons_dist: 0.009374, loss_weight: 0.004076
[21:36:23.470] iteration 1249 : loss : 0.120545 cons_dist: 0.005518, loss_weight: 0.004076
[21:36:24.385] iteration 1250 : loss : 0.049801 cons_dist: 0.000838, loss_weight: 0.004076
[21:36:25.466] iteration 1251 : loss : 0.068281 cons_dist: 0.006451, loss_weight: 0.004076
[21:36:26.381] iteration 1252 : loss : 0.182386 cons_dist: 0.012140, loss_weight: 0.004076
[21:36:27.297] iteration 1253 : loss : 0.081382 cons_dist: 0.001163, loss_weight: 0.004076
[21:36:28.213] iteration 1254 : loss : 0.080531 cons_dist: 0.005572, loss_weight: 0.004076
[21:36:29.129] iteration 1255 : loss : 0.070354 cons_dist: 0.014649, loss_weight: 0.004076
[21:36:30.045] iteration 1256 : loss : 0.073929 cons_dist: 0.001829, loss_weight: 0.004076
[21:36:30.961] iteration 1257 : loss : 0.061107 cons_dist: 0.002477, loss_weight: 0.004076
[21:36:31.876] iteration 1258 : loss : 0.046927 cons_dist: 0.006373, loss_weight: 0.004076
[21:36:32.791] iteration 1259 : loss : 0.068758 cons_dist: 0.002186, loss_weight: 0.004076
[21:36:33.704] iteration 1260 : loss : 0.070601 cons_dist: 0.001928, loss_weight: 0.004076
[21:36:35.266] iteration 1261 : loss : 0.064371 cons_dist: 0.010790, loss_weight: 0.004076
[21:36:36.180] iteration 1262 : loss : 0.043626 cons_dist: 0.004839, loss_weight: 0.004076
[21:36:37.095] iteration 1263 : loss : 0.047744 cons_dist: 0.009838, loss_weight: 0.004076
[21:36:38.011] iteration 1264 : loss : 0.047784 cons_dist: 0.005079, loss_weight: 0.004076
[21:36:38.926] iteration 1265 : loss : 0.064549 cons_dist: 0.001401, loss_weight: 0.004076
[21:36:39.843] iteration 1266 : loss : 0.074351 cons_dist: 0.002781, loss_weight: 0.004076
[21:36:40.759] iteration 1267 : loss : 0.063075 cons_dist: 0.011445, loss_weight: 0.004076
[21:36:41.675] iteration 1268 : loss : 0.077246 cons_dist: 0.002179, loss_weight: 0.004076
[21:36:42.590] iteration 1269 : loss : 0.167911 cons_dist: 0.002392, loss_weight: 0.004076
[21:36:43.507] iteration 1270 : loss : 0.077488 cons_dist: 0.001749, loss_weight: 0.004076
[21:36:44.422] iteration 1271 : loss : 0.068717 cons_dist: 0.002944, loss_weight: 0.004076
[21:36:45.337] iteration 1272 : loss : 0.080125 cons_dist: 0.003447, loss_weight: 0.004076
[21:36:46.870] iteration 1273 : loss : 0.076425 cons_dist: 0.003096, loss_weight: 0.004076
[21:36:47.786] iteration 1274 : loss : 0.063029 cons_dist: 0.003282, loss_weight: 0.004076
[21:36:48.701] iteration 1275 : loss : 0.088734 cons_dist: 0.004842, loss_weight: 0.004076
[21:36:49.618] iteration 1276 : loss : 0.047006 cons_dist: 0.001397, loss_weight: 0.004076
[21:36:50.534] iteration 1277 : loss : 0.049085 cons_dist: 0.000991, loss_weight: 0.004076
[21:36:51.450] iteration 1278 : loss : 0.057234 cons_dist: 0.006909, loss_weight: 0.004076
[21:36:52.365] iteration 1279 : loss : 0.066230 cons_dist: 0.002603, loss_weight: 0.004076
[21:36:53.281] iteration 1280 : loss : 0.065725 cons_dist: 0.001922, loss_weight: 0.004076
[21:36:54.197] iteration 1281 : loss : 0.108856 cons_dist: 0.000865, loss_weight: 0.004076
[21:36:55.114] iteration 1282 : loss : 0.064399 cons_dist: 0.000418, loss_weight: 0.004076
[21:36:56.032] iteration 1283 : loss : 0.125434 cons_dist: 0.005541, loss_weight: 0.004076
[21:36:56.952] iteration 1284 : loss : 0.044323 cons_dist: 0.001431, loss_weight: 0.004076
[21:36:58.478] iteration 1285 : loss : 0.057590 cons_dist: 0.004006, loss_weight: 0.004076
[21:36:59.394] iteration 1286 : loss : 0.104172 cons_dist: 0.011230, loss_weight: 0.004076
[21:37:00.311] iteration 1287 : loss : 0.055498 cons_dist: 0.003294, loss_weight: 0.004076
[21:37:01.228] iteration 1288 : loss : 0.064363 cons_dist: 0.001192, loss_weight: 0.004076
[21:37:02.145] iteration 1289 : loss : 0.077509 cons_dist: 0.004423, loss_weight: 0.004076
[21:37:03.063] iteration 1290 : loss : 0.074252 cons_dist: 0.004984, loss_weight: 0.004076
[21:37:03.980] iteration 1291 : loss : 0.066894 cons_dist: 0.009397, loss_weight: 0.004076
[21:37:04.897] iteration 1292 : loss : 0.090086 cons_dist: 0.002386, loss_weight: 0.004076
[21:37:05.819] iteration 1293 : loss : 0.141635 cons_dist: 0.002095, loss_weight: 0.004076
[21:37:06.737] iteration 1294 : loss : 0.067009 cons_dist: 0.001058, loss_weight: 0.004076
[21:37:07.655] iteration 1295 : loss : 0.060322 cons_dist: 0.000739, loss_weight: 0.004076
[21:37:08.572] iteration 1296 : loss : 0.113261 cons_dist: 0.001448, loss_weight: 0.004076
[21:37:10.191] iteration 1297 : loss : 0.055324 cons_dist: 0.002706, loss_weight: 0.004076
[21:37:11.107] iteration 1298 : loss : 0.052019 cons_dist: 0.003430, loss_weight: 0.004076
[21:37:12.025] iteration 1299 : loss : 0.059791 cons_dist: 0.001396, loss_weight: 0.004076
[21:37:12.944] iteration 1300 : loss : 0.090037 cons_dist: 0.005716, loss_weight: 0.004076
[21:37:14.020] iteration 1301 : loss : 0.071958 cons_dist: 0.041718, loss_weight: 0.004076
[21:37:14.938] iteration 1302 : loss : 0.065192 cons_dist: 0.001811, loss_weight: 0.004076
[21:37:15.855] iteration 1303 : loss : 0.105117 cons_dist: 0.009479, loss_weight: 0.004076
[21:37:16.772] iteration 1304 : loss : 0.185001 cons_dist: 0.006198, loss_weight: 0.004076
[21:37:17.690] iteration 1305 : loss : 0.149510 cons_dist: 0.005763, loss_weight: 0.004076
[21:37:18.609] iteration 1306 : loss : 0.076611 cons_dist: 0.003816, loss_weight: 0.004076
[21:37:19.526] iteration 1307 : loss : 0.074697 cons_dist: 0.005766, loss_weight: 0.004076
[21:37:20.444] iteration 1308 : loss : 0.100036 cons_dist: 0.003259, loss_weight: 0.004076
[21:37:22.019] iteration 1309 : loss : 0.102168 cons_dist: 0.005329, loss_weight: 0.004076
[21:37:22.938] iteration 1310 : loss : 0.064876 cons_dist: 0.000826, loss_weight: 0.004076
[21:37:23.856] iteration 1311 : loss : 0.056624 cons_dist: 0.001742, loss_weight: 0.004076
[21:37:24.774] iteration 1312 : loss : 0.088701 cons_dist: 0.004055, loss_weight: 0.004076
[21:37:25.692] iteration 1313 : loss : 0.047760 cons_dist: 0.003660, loss_weight: 0.004076
[21:37:26.609] iteration 1314 : loss : 0.048609 cons_dist: 0.006542, loss_weight: 0.004076
[21:37:27.527] iteration 1315 : loss : 0.055362 cons_dist: 0.002284, loss_weight: 0.004076
[21:37:28.445] iteration 1316 : loss : 0.079267 cons_dist: 0.003203, loss_weight: 0.004076
[21:37:29.361] iteration 1317 : loss : 0.042278 cons_dist: 0.004836, loss_weight: 0.004076
[21:37:30.277] iteration 1318 : loss : 0.055149 cons_dist: 0.002173, loss_weight: 0.004076
[21:37:31.193] iteration 1319 : loss : 0.069364 cons_dist: 0.002424, loss_weight: 0.004076
[21:37:32.111] iteration 1320 : loss : 0.058853 cons_dist: 0.006657, loss_weight: 0.004076
[21:37:33.671] iteration 1321 : loss : 0.093355 cons_dist: 0.001875, loss_weight: 0.004076
[21:37:34.587] iteration 1322 : loss : 0.072699 cons_dist: 0.007670, loss_weight: 0.004076
[21:37:35.503] iteration 1323 : loss : 0.060735 cons_dist: 0.007945, loss_weight: 0.004076
[21:37:36.421] iteration 1324 : loss : 0.083204 cons_dist: 0.019087, loss_weight: 0.004076
[21:37:37.336] iteration 1325 : loss : 0.059870 cons_dist: 0.003897, loss_weight: 0.004076
[21:37:38.251] iteration 1326 : loss : 0.187906 cons_dist: 0.006890, loss_weight: 0.004076
[21:37:39.169] iteration 1327 : loss : 0.069491 cons_dist: 0.002574, loss_weight: 0.004076
[21:37:40.085] iteration 1328 : loss : 0.054535 cons_dist: 0.000588, loss_weight: 0.004076
[21:37:41.003] iteration 1329 : loss : 0.045227 cons_dist: 0.001735, loss_weight: 0.004076
[21:37:41.919] iteration 1330 : loss : 0.221634 cons_dist: 0.003955, loss_weight: 0.004076
[21:37:42.837] iteration 1331 : loss : 0.048965 cons_dist: 0.001565, loss_weight: 0.004076
[21:37:43.754] iteration 1332 : loss : 0.091615 cons_dist: 0.077045, loss_weight: 0.004076
[21:37:45.264] iteration 1333 : loss : 0.072244 cons_dist: 0.002458, loss_weight: 0.004076
[21:37:46.180] iteration 1334 : loss : 0.059080 cons_dist: 0.012180, loss_weight: 0.004076
[21:37:47.096] iteration 1335 : loss : 0.048886 cons_dist: 0.005411, loss_weight: 0.004076
[21:37:48.013] iteration 1336 : loss : 0.076793 cons_dist: 0.000696, loss_weight: 0.004076
[21:37:48.929] iteration 1337 : loss : 0.093023 cons_dist: 0.004588, loss_weight: 0.004076
[21:37:49.849] iteration 1338 : loss : 0.251817 cons_dist: 0.006779, loss_weight: 0.004076
[21:37:50.767] iteration 1339 : loss : 0.064206 cons_dist: 0.002442, loss_weight: 0.004076
[21:37:51.683] iteration 1340 : loss : 0.050116 cons_dist: 0.001649, loss_weight: 0.004076
[21:37:52.598] iteration 1341 : loss : 0.069127 cons_dist: 0.001242, loss_weight: 0.004076
[21:37:53.515] iteration 1342 : loss : 0.074410 cons_dist: 0.001978, loss_weight: 0.004076
[21:37:54.432] iteration 1343 : loss : 0.068227 cons_dist: 0.002945, loss_weight: 0.004076
[21:37:55.349] iteration 1344 : loss : 0.056346 cons_dist: 0.001502, loss_weight: 0.004076
[21:37:56.861] iteration 1345 : loss : 0.072719 cons_dist: 0.004164, loss_weight: 0.004076
[21:37:57.779] iteration 1346 : loss : 0.073425 cons_dist: 0.025115, loss_weight: 0.004076
[21:37:58.697] iteration 1347 : loss : 0.054545 cons_dist: 0.000698, loss_weight: 0.004076
[21:37:59.615] iteration 1348 : loss : 0.066594 cons_dist: 0.002807, loss_weight: 0.004076
[21:38:00.533] iteration 1349 : loss : 0.062701 cons_dist: 0.007031, loss_weight: 0.004076
[21:38:01.451] iteration 1350 : loss : 0.065301 cons_dist: 0.001717, loss_weight: 0.004076
[21:38:02.529] iteration 1351 : loss : 0.079336 cons_dist: 0.001826, loss_weight: 0.004963
[21:38:03.446] iteration 1352 : loss : 0.070249 cons_dist: 0.005732, loss_weight: 0.004963
[21:38:04.362] iteration 1353 : loss : 0.052044 cons_dist: 0.003392, loss_weight: 0.004963
[21:38:05.278] iteration 1354 : loss : 0.059558 cons_dist: 0.002434, loss_weight: 0.004963
[21:38:06.195] iteration 1355 : loss : 0.068233 cons_dist: 0.008942, loss_weight: 0.004963
[21:38:07.111] iteration 1356 : loss : 0.082313 cons_dist: 0.000546, loss_weight: 0.004963
[21:38:08.677] iteration 1357 : loss : 0.075694 cons_dist: 0.002862, loss_weight: 0.004963
[21:38:09.594] iteration 1358 : loss : 0.064846 cons_dist: 0.002409, loss_weight: 0.004963
[21:38:10.511] iteration 1359 : loss : 0.089984 cons_dist: 0.002120, loss_weight: 0.004963
[21:38:11.429] iteration 1360 : loss : 0.098158 cons_dist: 0.001344, loss_weight: 0.004963
[21:38:12.348] iteration 1361 : loss : 0.064748 cons_dist: 0.002130, loss_weight: 0.004963
[21:38:13.267] iteration 1362 : loss : 0.082650 cons_dist: 0.001485, loss_weight: 0.004963
[21:38:14.184] iteration 1363 : loss : 0.075428 cons_dist: 0.016927, loss_weight: 0.004963
[21:38:15.101] iteration 1364 : loss : 0.055589 cons_dist: 0.003074, loss_weight: 0.004963
[21:38:16.021] iteration 1365 : loss : 0.079316 cons_dist: 0.004138, loss_weight: 0.004963
[21:38:16.938] iteration 1366 : loss : 0.069126 cons_dist: 0.005976, loss_weight: 0.004963
[21:38:17.856] iteration 1367 : loss : 0.069681 cons_dist: 0.010249, loss_weight: 0.004963
[21:38:18.773] iteration 1368 : loss : 0.092947 cons_dist: 0.004567, loss_weight: 0.004963
[21:38:20.397] iteration 1369 : loss : 0.099320 cons_dist: 0.000876, loss_weight: 0.004963
[21:38:21.312] iteration 1370 : loss : 0.055699 cons_dist: 0.008134, loss_weight: 0.004963
[21:38:22.229] iteration 1371 : loss : 0.096609 cons_dist: 0.002321, loss_weight: 0.004963
[21:38:23.145] iteration 1372 : loss : 0.062071 cons_dist: 0.002766, loss_weight: 0.004963
[21:38:24.061] iteration 1373 : loss : 0.069591 cons_dist: 0.002755, loss_weight: 0.004963
[21:38:24.976] iteration 1374 : loss : 0.140223 cons_dist: 0.005003, loss_weight: 0.004963
[21:38:25.893] iteration 1375 : loss : 0.074192 cons_dist: 0.001475, loss_weight: 0.004963
[21:38:26.811] iteration 1376 : loss : 0.061259 cons_dist: 0.003427, loss_weight: 0.004963
[21:38:27.727] iteration 1377 : loss : 0.090617 cons_dist: 0.024372, loss_weight: 0.004963
[21:38:28.644] iteration 1378 : loss : 0.056513 cons_dist: 0.002882, loss_weight: 0.004963
[21:38:29.561] iteration 1379 : loss : 0.091443 cons_dist: 0.002803, loss_weight: 0.004963
[21:38:30.478] iteration 1380 : loss : 0.059789 cons_dist: 0.002567, loss_weight: 0.004963
[21:38:32.102] iteration 1381 : loss : 0.079580 cons_dist: 0.009771, loss_weight: 0.004963
[21:38:33.020] iteration 1382 : loss : 0.057550 cons_dist: 0.008553, loss_weight: 0.004963
[21:38:33.938] iteration 1383 : loss : 0.058340 cons_dist: 0.002418, loss_weight: 0.004963
[21:38:34.856] iteration 1384 : loss : 0.107526 cons_dist: 0.002383, loss_weight: 0.004963
[21:38:35.773] iteration 1385 : loss : 0.125934 cons_dist: 0.002397, loss_weight: 0.004963
[21:38:36.691] iteration 1386 : loss : 0.060543 cons_dist: 0.007145, loss_weight: 0.004963
[21:38:37.608] iteration 1387 : loss : 0.057684 cons_dist: 0.001166, loss_weight: 0.004963
[21:38:38.526] iteration 1388 : loss : 0.070745 cons_dist: 0.008011, loss_weight: 0.004963
[21:38:39.444] iteration 1389 : loss : 0.066898 cons_dist: 0.002623, loss_weight: 0.004963
[21:38:40.362] iteration 1390 : loss : 0.053479 cons_dist: 0.000926, loss_weight: 0.004963
[21:38:41.280] iteration 1391 : loss : 0.058476 cons_dist: 0.002535, loss_weight: 0.004963
[21:38:42.198] iteration 1392 : loss : 0.046471 cons_dist: 0.017520, loss_weight: 0.004963
[21:38:43.783] iteration 1393 : loss : 0.061710 cons_dist: 0.055542, loss_weight: 0.004963
[21:38:44.700] iteration 1394 : loss : 0.057322 cons_dist: 0.012853, loss_weight: 0.004963
[21:38:45.617] iteration 1395 : loss : 0.073081 cons_dist: 0.001581, loss_weight: 0.004963
[21:38:46.535] iteration 1396 : loss : 0.123516 cons_dist: 0.004273, loss_weight: 0.004963
[21:38:47.453] iteration 1397 : loss : 0.079043 cons_dist: 0.002164, loss_weight: 0.004963
[21:38:48.369] iteration 1398 : loss : 0.057962 cons_dist: 0.007680, loss_weight: 0.004963
[21:38:49.287] iteration 1399 : loss : 0.081724 cons_dist: 0.004584, loss_weight: 0.004963
[21:38:50.203] iteration 1400 : loss : 0.068015 cons_dist: 0.011258, loss_weight: 0.004963
[21:38:51.748] save best model to model/LA_vnet_25_labeled/UAMT/iter_1400_dice_0.9175275564193726.pth
[21:38:52.667] iteration 1401 : loss : 0.048183 cons_dist: 0.005218, loss_weight: 0.004963
[21:38:53.585] iteration 1402 : loss : 0.103841 cons_dist: 0.002935, loss_weight: 0.004963
[21:38:54.502] iteration 1403 : loss : 0.100332 cons_dist: 0.001634, loss_weight: 0.004963
[21:38:55.420] iteration 1404 : loss : 0.063554 cons_dist: 0.001179, loss_weight: 0.004963
[21:38:57.116] iteration 1405 : loss : 0.047593 cons_dist: 0.000928, loss_weight: 0.004963
[21:38:58.030] iteration 1406 : loss : 0.084705 cons_dist: 0.002822, loss_weight: 0.004963
[21:38:58.946] iteration 1407 : loss : 0.047468 cons_dist: 0.003613, loss_weight: 0.004963
[21:38:59.862] iteration 1408 : loss : 0.064845 cons_dist: 0.004322, loss_weight: 0.004963
[21:39:00.777] iteration 1409 : loss : 0.051141 cons_dist: 0.005848, loss_weight: 0.004963
[21:39:01.693] iteration 1410 : loss : 0.070545 cons_dist: 0.004010, loss_weight: 0.004963
[21:39:02.607] iteration 1411 : loss : 0.100558 cons_dist: 0.003409, loss_weight: 0.004963
[21:39:03.521] iteration 1412 : loss : 0.084355 cons_dist: 0.002930, loss_weight: 0.004963
[21:39:04.435] iteration 1413 : loss : 0.092625 cons_dist: 0.001779, loss_weight: 0.004963
[21:39:05.349] iteration 1414 : loss : 0.070493 cons_dist: 0.001374, loss_weight: 0.004963
[21:39:06.264] iteration 1415 : loss : 0.097200 cons_dist: 0.003495, loss_weight: 0.004963
[21:39:07.179] iteration 1416 : loss : 0.074851 cons_dist: 0.009205, loss_weight: 0.004963
[21:39:08.796] iteration 1417 : loss : 0.041472 cons_dist: 0.006027, loss_weight: 0.004963
[21:39:09.711] iteration 1418 : loss : 0.074819 cons_dist: 0.001959, loss_weight: 0.004963
[21:39:10.627] iteration 1419 : loss : 0.067256 cons_dist: 0.003932, loss_weight: 0.004963
[21:39:11.542] iteration 1420 : loss : 0.048348 cons_dist: 0.000926, loss_weight: 0.004963
[21:39:12.457] iteration 1421 : loss : 0.045658 cons_dist: 0.001444, loss_weight: 0.004963
[21:39:13.372] iteration 1422 : loss : 0.069675 cons_dist: 0.002478, loss_weight: 0.004963
[21:39:14.287] iteration 1423 : loss : 0.064444 cons_dist: 0.002507, loss_weight: 0.004963
[21:39:15.200] iteration 1424 : loss : 0.071350 cons_dist: 0.002338, loss_weight: 0.004963
[21:39:16.117] iteration 1425 : loss : 0.098614 cons_dist: 0.034539, loss_weight: 0.004963
[21:39:17.032] iteration 1426 : loss : 0.088499 cons_dist: 0.003265, loss_weight: 0.004963
[21:39:17.948] iteration 1427 : loss : 0.050779 cons_dist: 0.006195, loss_weight: 0.004963
[21:39:18.865] iteration 1428 : loss : 0.070843 cons_dist: 0.000975, loss_weight: 0.004963
[21:39:20.490] iteration 1429 : loss : 0.056839 cons_dist: 0.001118, loss_weight: 0.004963
[21:39:21.406] iteration 1430 : loss : 0.078550 cons_dist: 0.007219, loss_weight: 0.004963
[21:39:22.321] iteration 1431 : loss : 0.066017 cons_dist: 0.000681, loss_weight: 0.004963
[21:39:23.237] iteration 1432 : loss : 0.054279 cons_dist: 0.005865, loss_weight: 0.004963
[21:39:24.155] iteration 1433 : loss : 0.097715 cons_dist: 0.001073, loss_weight: 0.004963
[21:39:25.068] iteration 1434 : loss : 0.063882 cons_dist: 0.003479, loss_weight: 0.004963
[21:39:25.983] iteration 1435 : loss : 0.079449 cons_dist: 0.002206, loss_weight: 0.004963
[21:39:26.898] iteration 1436 : loss : 0.059546 cons_dist: 0.015357, loss_weight: 0.004963
[21:39:27.813] iteration 1437 : loss : 0.061245 cons_dist: 0.001176, loss_weight: 0.004963
[21:39:28.729] iteration 1438 : loss : 0.071770 cons_dist: 0.001045, loss_weight: 0.004963
[21:39:29.646] iteration 1439 : loss : 0.068951 cons_dist: 0.001031, loss_weight: 0.004963
[21:39:30.565] iteration 1440 : loss : 0.078502 cons_dist: 0.014883, loss_weight: 0.004963
[21:39:32.198] iteration 1441 : loss : 0.101107 cons_dist: 0.008312, loss_weight: 0.004963
[21:39:33.113] iteration 1442 : loss : 0.063656 cons_dist: 0.001768, loss_weight: 0.004963
[21:39:34.029] iteration 1443 : loss : 0.118351 cons_dist: 0.002837, loss_weight: 0.004963
[21:39:34.946] iteration 1444 : loss : 0.062677 cons_dist: 0.005628, loss_weight: 0.004963
[21:39:35.861] iteration 1445 : loss : 0.057139 cons_dist: 0.001985, loss_weight: 0.004963
[21:39:36.778] iteration 1446 : loss : 0.065672 cons_dist: 0.001442, loss_weight: 0.004963
[21:39:37.693] iteration 1447 : loss : 0.064777 cons_dist: 0.000928, loss_weight: 0.004963
[21:39:38.609] iteration 1448 : loss : 0.048667 cons_dist: 0.002470, loss_weight: 0.004963
[21:39:39.526] iteration 1449 : loss : 0.052808 cons_dist: 0.000584, loss_weight: 0.004963
[21:39:40.442] iteration 1450 : loss : 0.074683 cons_dist: 0.002903, loss_weight: 0.004963
[21:39:41.527] iteration 1451 : loss : 0.049345 cons_dist: 0.003265, loss_weight: 0.004963
[21:39:42.442] iteration 1452 : loss : 0.090355 cons_dist: 0.005901, loss_weight: 0.004963
[21:39:44.019] iteration 1453 : loss : 0.065104 cons_dist: 0.002794, loss_weight: 0.004963
[21:39:44.933] iteration 1454 : loss : 0.067043 cons_dist: 0.006117, loss_weight: 0.004963
[21:39:45.848] iteration 1455 : loss : 0.055709 cons_dist: 0.003263, loss_weight: 0.004963
[21:39:46.763] iteration 1456 : loss : 0.065160 cons_dist: 0.004356, loss_weight: 0.004963
[21:39:47.678] iteration 1457 : loss : 0.082961 cons_dist: 0.002828, loss_weight: 0.004963
[21:39:48.596] iteration 1458 : loss : 0.057376 cons_dist: 0.021333, loss_weight: 0.004963
[21:39:49.511] iteration 1459 : loss : 0.040523 cons_dist: 0.012637, loss_weight: 0.004963
[21:39:50.426] iteration 1460 : loss : 0.057026 cons_dist: 0.002548, loss_weight: 0.004963
[21:39:51.341] iteration 1461 : loss : 0.054030 cons_dist: 0.000929, loss_weight: 0.004963
[21:39:52.258] iteration 1462 : loss : 0.076766 cons_dist: 0.004545, loss_weight: 0.004963
[21:39:53.175] iteration 1463 : loss : 0.043674 cons_dist: 0.000598, loss_weight: 0.004963
[21:39:54.092] iteration 1464 : loss : 0.056965 cons_dist: 0.004211, loss_weight: 0.004963
[21:39:55.676] iteration 1465 : loss : 0.057317 cons_dist: 0.001458, loss_weight: 0.004963
[21:39:56.590] iteration 1466 : loss : 0.090366 cons_dist: 0.001781, loss_weight: 0.004963
[21:39:57.504] iteration 1467 : loss : 0.081834 cons_dist: 0.023177, loss_weight: 0.004963
[21:39:58.419] iteration 1468 : loss : 0.054426 cons_dist: 0.001041, loss_weight: 0.004963
[21:39:59.334] iteration 1469 : loss : 0.065200 cons_dist: 0.000732, loss_weight: 0.004963
[21:40:00.249] iteration 1470 : loss : 0.049824 cons_dist: 0.010129, loss_weight: 0.004963
[21:40:01.165] iteration 1471 : loss : 0.063691 cons_dist: 0.002335, loss_weight: 0.004963
[21:40:02.080] iteration 1472 : loss : 0.061130 cons_dist: 0.001060, loss_weight: 0.004963
[21:40:02.996] iteration 1473 : loss : 0.067381 cons_dist: 0.005764, loss_weight: 0.004963
[21:40:03.908] iteration 1474 : loss : 0.051000 cons_dist: 0.009494, loss_weight: 0.004963
[21:40:04.824] iteration 1475 : loss : 0.051316 cons_dist: 0.001619, loss_weight: 0.004963
[21:40:05.741] iteration 1476 : loss : 0.073701 cons_dist: 0.007509, loss_weight: 0.004963
[21:40:07.318] iteration 1477 : loss : 0.046607 cons_dist: 0.048855, loss_weight: 0.004963
[21:40:08.239] iteration 1478 : loss : 0.062288 cons_dist: 0.001274, loss_weight: 0.004963
[21:40:09.157] iteration 1479 : loss : 0.050746 cons_dist: 0.033975, loss_weight: 0.004963
[21:40:10.074] iteration 1480 : loss : 0.062695 cons_dist: 0.002175, loss_weight: 0.004963
[21:40:10.992] iteration 1481 : loss : 0.074411 cons_dist: 0.014752, loss_weight: 0.004963
[21:40:11.910] iteration 1482 : loss : 0.067990 cons_dist: 0.002920, loss_weight: 0.004963
[21:40:12.828] iteration 1483 : loss : 0.070635 cons_dist: 0.011506, loss_weight: 0.004963
[21:40:13.744] iteration 1484 : loss : 0.054373 cons_dist: 0.006485, loss_weight: 0.004963
[21:40:14.661] iteration 1485 : loss : 0.073775 cons_dist: 0.005477, loss_weight: 0.004963
[21:40:15.579] iteration 1486 : loss : 0.047915 cons_dist: 0.008029, loss_weight: 0.004963
[21:40:16.496] iteration 1487 : loss : 0.047697 cons_dist: 0.016937, loss_weight: 0.004963
[21:40:17.414] iteration 1488 : loss : 0.105837 cons_dist: 0.001968, loss_weight: 0.004963
[21:40:18.922] iteration 1489 : loss : 0.066209 cons_dist: 0.001443, loss_weight: 0.004963
[21:40:19.842] iteration 1490 : loss : 0.067874 cons_dist: 0.055205, loss_weight: 0.004963
[21:40:20.761] iteration 1491 : loss : 0.052931 cons_dist: 0.001666, loss_weight: 0.004963
[21:40:21.679] iteration 1492 : loss : 0.072607 cons_dist: 0.003348, loss_weight: 0.004963
[21:40:22.596] iteration 1493 : loss : 0.045988 cons_dist: 0.005854, loss_weight: 0.004963
[21:40:23.514] iteration 1494 : loss : 0.064748 cons_dist: 0.003172, loss_weight: 0.004963
[21:40:24.432] iteration 1495 : loss : 0.055006 cons_dist: 0.004226, loss_weight: 0.004963
[21:40:25.349] iteration 1496 : loss : 0.072216 cons_dist: 0.002528, loss_weight: 0.004963
[21:40:26.270] iteration 1497 : loss : 0.080831 cons_dist: 0.000869, loss_weight: 0.004963
[21:40:27.188] iteration 1498 : loss : 0.064477 cons_dist: 0.039531, loss_weight: 0.004963
[21:40:28.105] iteration 1499 : loss : 0.072932 cons_dist: 0.032286, loss_weight: 0.004963
[21:40:29.023] iteration 1500 : loss : 0.062285 cons_dist: 0.003552, loss_weight: 0.004963
[21:40:30.748] iteration 1501 : loss : 0.049658 cons_dist: 0.000827, loss_weight: 0.006005
[21:40:31.666] iteration 1502 : loss : 0.062356 cons_dist: 0.015673, loss_weight: 0.006005
[21:40:32.582] iteration 1503 : loss : 0.055373 cons_dist: 0.001129, loss_weight: 0.006005
[21:40:33.500] iteration 1504 : loss : 0.096045 cons_dist: 0.001334, loss_weight: 0.006005
[21:40:34.417] iteration 1505 : loss : 0.055455 cons_dist: 0.001087, loss_weight: 0.006005
[21:40:35.332] iteration 1506 : loss : 0.057932 cons_dist: 0.005505, loss_weight: 0.006005
[21:40:36.250] iteration 1507 : loss : 0.075709 cons_dist: 0.001775, loss_weight: 0.006005
[21:40:37.166] iteration 1508 : loss : 0.127280 cons_dist: 0.007480, loss_weight: 0.006005
[21:40:38.083] iteration 1509 : loss : 0.054350 cons_dist: 0.000904, loss_weight: 0.006005
[21:40:39.000] iteration 1510 : loss : 0.086165 cons_dist: 0.006082, loss_weight: 0.006005
[21:40:39.917] iteration 1511 : loss : 0.062934 cons_dist: 0.004866, loss_weight: 0.006005
[21:40:40.834] iteration 1512 : loss : 0.074076 cons_dist: 0.001711, loss_weight: 0.006005
[21:40:42.424] iteration 1513 : loss : 0.059477 cons_dist: 0.002147, loss_weight: 0.006005
[21:40:43.340] iteration 1514 : loss : 0.064386 cons_dist: 0.003027, loss_weight: 0.006005
[21:40:44.256] iteration 1515 : loss : 0.052591 cons_dist: 0.007213, loss_weight: 0.006005
[21:40:45.172] iteration 1516 : loss : 0.084469 cons_dist: 0.003246, loss_weight: 0.006005
[21:40:46.090] iteration 1517 : loss : 0.051810 cons_dist: 0.002920, loss_weight: 0.006005
[21:40:47.007] iteration 1518 : loss : 0.061397 cons_dist: 0.015947, loss_weight: 0.006005
[21:40:47.925] iteration 1519 : loss : 0.072370 cons_dist: 0.008979, loss_weight: 0.006005
[21:40:48.841] iteration 1520 : loss : 0.061220 cons_dist: 0.017000, loss_weight: 0.006005
[21:40:49.758] iteration 1521 : loss : 0.050669 cons_dist: 0.005283, loss_weight: 0.006005
[21:40:50.676] iteration 1522 : loss : 0.071861 cons_dist: 0.001569, loss_weight: 0.006005
[21:40:51.594] iteration 1523 : loss : 0.088010 cons_dist: 0.008282, loss_weight: 0.006005
[21:40:52.512] iteration 1524 : loss : 0.061708 cons_dist: 0.006695, loss_weight: 0.006005
[21:40:54.004] iteration 1525 : loss : 0.063086 cons_dist: 0.004102, loss_weight: 0.006005
[21:40:54.920] iteration 1526 : loss : 0.044350 cons_dist: 0.014466, loss_weight: 0.006005
[21:40:55.836] iteration 1527 : loss : 0.078066 cons_dist: 0.007286, loss_weight: 0.006005
[21:40:56.752] iteration 1528 : loss : 0.053033 cons_dist: 0.001468, loss_weight: 0.006005
[21:40:57.669] iteration 1529 : loss : 0.066485 cons_dist: 0.060695, loss_weight: 0.006005
[21:40:58.586] iteration 1530 : loss : 0.081106 cons_dist: 0.009924, loss_weight: 0.006005
[21:40:59.502] iteration 1531 : loss : 0.052788 cons_dist: 0.004494, loss_weight: 0.006005
[21:41:00.420] iteration 1532 : loss : 0.052457 cons_dist: 0.004865, loss_weight: 0.006005
[21:41:01.338] iteration 1533 : loss : 0.095942 cons_dist: 0.003939, loss_weight: 0.006005
[21:41:02.256] iteration 1534 : loss : 0.072413 cons_dist: 0.005540, loss_weight: 0.006005
[21:41:03.174] iteration 1535 : loss : 0.080632 cons_dist: 0.005633, loss_weight: 0.006005
[21:41:04.091] iteration 1536 : loss : 0.048395 cons_dist: 0.001503, loss_weight: 0.006005
[21:41:05.703] iteration 1537 : loss : 0.047559 cons_dist: 0.003047, loss_weight: 0.006005
[21:41:06.617] iteration 1538 : loss : 0.082332 cons_dist: 0.001115, loss_weight: 0.006005
[21:41:07.534] iteration 1539 : loss : 0.043463 cons_dist: 0.008437, loss_weight: 0.006005
[21:41:08.450] iteration 1540 : loss : 0.055674 cons_dist: 0.004182, loss_weight: 0.006005
[21:41:09.366] iteration 1541 : loss : 0.065376 cons_dist: 0.004515, loss_weight: 0.006005
[21:41:10.281] iteration 1542 : loss : 0.056758 cons_dist: 0.005363, loss_weight: 0.006005
[21:41:11.197] iteration 1543 : loss : 0.048182 cons_dist: 0.001337, loss_weight: 0.006005
[21:41:12.120] iteration 1544 : loss : 0.066451 cons_dist: 0.002765, loss_weight: 0.006005
[21:41:13.037] iteration 1545 : loss : 0.061485 cons_dist: 0.018273, loss_weight: 0.006005
[21:41:13.961] iteration 1546 : loss : 0.077828 cons_dist: 0.018628, loss_weight: 0.006005
[21:41:14.878] iteration 1547 : loss : 0.080810 cons_dist: 0.007108, loss_weight: 0.006005
[21:41:15.797] iteration 1548 : loss : 0.105900 cons_dist: 0.001357, loss_weight: 0.006005
[21:41:17.444] iteration 1549 : loss : 0.070786 cons_dist: 0.005289, loss_weight: 0.006005
[21:41:18.362] iteration 1550 : loss : 0.054344 cons_dist: 0.002585, loss_weight: 0.006005
[21:41:19.453] iteration 1551 : loss : 0.067681 cons_dist: 0.003069, loss_weight: 0.006005
[21:41:20.375] iteration 1552 : loss : 0.068752 cons_dist: 0.000989, loss_weight: 0.006005
[21:41:21.293] iteration 1553 : loss : 0.054443 cons_dist: 0.000847, loss_weight: 0.006005
[21:41:22.210] iteration 1554 : loss : 0.059397 cons_dist: 0.000649, loss_weight: 0.006005
[21:41:23.128] iteration 1555 : loss : 0.042709 cons_dist: 0.001266, loss_weight: 0.006005
[21:41:24.048] iteration 1556 : loss : 0.053481 cons_dist: 0.000402, loss_weight: 0.006005
[21:41:24.966] iteration 1557 : loss : 0.087206 cons_dist: 0.003140, loss_weight: 0.006005
[21:41:25.884] iteration 1558 : loss : 0.046036 cons_dist: 0.001318, loss_weight: 0.006005
[21:41:26.802] iteration 1559 : loss : 0.061566 cons_dist: 0.002221, loss_weight: 0.006005
[21:41:27.720] iteration 1560 : loss : 0.071623 cons_dist: 0.001256, loss_weight: 0.006005
[21:41:29.334] iteration 1561 : loss : 0.054355 cons_dist: 0.001937, loss_weight: 0.006005
[21:41:30.251] iteration 1562 : loss : 0.052939 cons_dist: 0.016992, loss_weight: 0.006005
[21:41:31.168] iteration 1563 : loss : 0.073487 cons_dist: 0.001670, loss_weight: 0.006005
[21:41:32.086] iteration 1564 : loss : 0.046655 cons_dist: 0.012625, loss_weight: 0.006005
[21:41:33.003] iteration 1565 : loss : 0.065404 cons_dist: 0.002002, loss_weight: 0.006005
[21:41:33.920] iteration 1566 : loss : 0.050443 cons_dist: 0.005039, loss_weight: 0.006005
[21:41:34.839] iteration 1567 : loss : 0.062455 cons_dist: 0.008654, loss_weight: 0.006005
[21:41:35.757] iteration 1568 : loss : 0.064344 cons_dist: 0.002231, loss_weight: 0.006005
[21:41:36.675] iteration 1569 : loss : 0.050699 cons_dist: 0.002474, loss_weight: 0.006005
[21:41:37.592] iteration 1570 : loss : 0.086029 cons_dist: 0.008582, loss_weight: 0.006005
[21:41:38.510] iteration 1571 : loss : 0.055719 cons_dist: 0.003521, loss_weight: 0.006005
[21:41:39.429] iteration 1572 : loss : 0.104888 cons_dist: 0.001471, loss_weight: 0.006005
[21:41:41.048] iteration 1573 : loss : 0.052487 cons_dist: 0.001709, loss_weight: 0.006005
[21:41:41.964] iteration 1574 : loss : 0.065422 cons_dist: 0.006824, loss_weight: 0.006005
[21:41:42.880] iteration 1575 : loss : 0.063612 cons_dist: 0.009467, loss_weight: 0.006005
[21:41:43.796] iteration 1576 : loss : 0.049445 cons_dist: 0.005048, loss_weight: 0.006005
[21:41:44.710] iteration 1577 : loss : 0.060255 cons_dist: 0.000770, loss_weight: 0.006005
[21:41:45.628] iteration 1578 : loss : 0.050063 cons_dist: 0.001100, loss_weight: 0.006005
[21:41:46.545] iteration 1579 : loss : 0.050807 cons_dist: 0.007964, loss_weight: 0.006005
[21:41:47.461] iteration 1580 : loss : 0.064620 cons_dist: 0.007959, loss_weight: 0.006005
[21:41:48.378] iteration 1581 : loss : 0.045224 cons_dist: 0.001563, loss_weight: 0.006005
[21:41:49.297] iteration 1582 : loss : 0.086114 cons_dist: 0.003765, loss_weight: 0.006005
[21:41:50.213] iteration 1583 : loss : 0.051701 cons_dist: 0.001488, loss_weight: 0.006005
[21:41:51.129] iteration 1584 : loss : 0.057869 cons_dist: 0.001779, loss_weight: 0.006005
[21:41:52.678] iteration 1585 : loss : 0.053808 cons_dist: 0.006836, loss_weight: 0.006005
[21:41:53.594] iteration 1586 : loss : 0.065678 cons_dist: 0.009563, loss_weight: 0.006005
[21:41:54.510] iteration 1587 : loss : 0.041470 cons_dist: 0.001888, loss_weight: 0.006005
[21:41:55.427] iteration 1588 : loss : 0.084568 cons_dist: 0.001031, loss_weight: 0.006005
[21:41:56.343] iteration 1589 : loss : 0.050872 cons_dist: 0.001045, loss_weight: 0.006005
[21:41:57.259] iteration 1590 : loss : 0.054369 cons_dist: 0.003292, loss_weight: 0.006005
[21:41:58.175] iteration 1591 : loss : 0.058129 cons_dist: 0.002627, loss_weight: 0.006005
[21:41:59.090] iteration 1592 : loss : 0.039778 cons_dist: 0.001328, loss_weight: 0.006005
[21:42:00.006] iteration 1593 : loss : 0.047837 cons_dist: 0.000707, loss_weight: 0.006005
[21:42:00.922] iteration 1594 : loss : 0.061580 cons_dist: 0.001588, loss_weight: 0.006005
[21:42:01.838] iteration 1595 : loss : 0.084801 cons_dist: 0.002124, loss_weight: 0.006005
[21:42:02.754] iteration 1596 : loss : 0.044396 cons_dist: 0.001402, loss_weight: 0.006005
[21:42:04.278] iteration 1597 : loss : 0.091031 cons_dist: 0.002530, loss_weight: 0.006005
[21:42:05.195] iteration 1598 : loss : 0.057057 cons_dist: 0.002212, loss_weight: 0.006005
[21:42:06.111] iteration 1599 : loss : 0.047983 cons_dist: 0.001426, loss_weight: 0.006005
[21:42:07.029] iteration 1600 : loss : 0.086369 cons_dist: 0.002973, loss_weight: 0.006005
[21:42:09.283] iteration 1601 : loss : 0.045335 cons_dist: 0.008126, loss_weight: 0.006005
[21:42:10.199] iteration 1602 : loss : 0.206787 cons_dist: 0.000712, loss_weight: 0.006005
[21:42:11.116] iteration 1603 : loss : 0.073506 cons_dist: 0.003456, loss_weight: 0.006005
[21:42:12.035] iteration 1604 : loss : 0.060693 cons_dist: 0.004952, loss_weight: 0.006005
[21:42:12.952] iteration 1605 : loss : 0.083762 cons_dist: 0.003907, loss_weight: 0.006005
[21:42:13.871] iteration 1606 : loss : 0.062565 cons_dist: 0.002695, loss_weight: 0.006005
[21:42:14.788] iteration 1607 : loss : 0.047911 cons_dist: 0.005009, loss_weight: 0.006005
[21:42:15.708] iteration 1608 : loss : 0.053823 cons_dist: 0.001855, loss_weight: 0.006005
[21:42:17.241] iteration 1609 : loss : 0.110730 cons_dist: 0.001544, loss_weight: 0.006005
[21:42:18.169] iteration 1610 : loss : 0.050521 cons_dist: 0.002254, loss_weight: 0.006005
[21:42:19.085] iteration 1611 : loss : 0.060704 cons_dist: 0.006543, loss_weight: 0.006005
[21:42:20.001] iteration 1612 : loss : 0.061321 cons_dist: 0.004020, loss_weight: 0.006005
[21:42:20.917] iteration 1613 : loss : 0.034612 cons_dist: 0.002681, loss_weight: 0.006005
[21:42:21.834] iteration 1614 : loss : 0.046832 cons_dist: 0.003875, loss_weight: 0.006005
[21:42:22.750] iteration 1615 : loss : 0.046961 cons_dist: 0.006122, loss_weight: 0.006005
[21:42:23.667] iteration 1616 : loss : 0.068742 cons_dist: 0.003552, loss_weight: 0.006005
[21:42:24.585] iteration 1617 : loss : 0.068997 cons_dist: 0.000557, loss_weight: 0.006005
[21:42:25.503] iteration 1618 : loss : 0.060786 cons_dist: 0.001452, loss_weight: 0.006005
[21:42:26.420] iteration 1619 : loss : 0.074852 cons_dist: 0.006390, loss_weight: 0.006005
[21:42:27.339] iteration 1620 : loss : 0.046119 cons_dist: 0.007681, loss_weight: 0.006005
[21:42:28.936] iteration 1621 : loss : 0.068853 cons_dist: 0.004034, loss_weight: 0.006005
[21:42:29.853] iteration 1622 : loss : 0.043136 cons_dist: 0.003860, loss_weight: 0.006005
[21:42:30.772] iteration 1623 : loss : 0.049023 cons_dist: 0.002150, loss_weight: 0.006005
[21:42:31.689] iteration 1624 : loss : 0.065533 cons_dist: 0.008097, loss_weight: 0.006005
[21:42:32.606] iteration 1625 : loss : 0.056989 cons_dist: 0.038192, loss_weight: 0.006005
[21:42:33.525] iteration 1626 : loss : 0.076657 cons_dist: 0.005922, loss_weight: 0.006005
[21:42:34.443] iteration 1627 : loss : 0.058435 cons_dist: 0.011325, loss_weight: 0.006005
[21:42:35.362] iteration 1628 : loss : 0.061693 cons_dist: 0.002421, loss_weight: 0.006005
[21:42:36.281] iteration 1629 : loss : 0.041744 cons_dist: 0.002980, loss_weight: 0.006005
[21:42:37.198] iteration 1630 : loss : 0.048882 cons_dist: 0.004957, loss_weight: 0.006005
[21:42:38.114] iteration 1631 : loss : 0.043464 cons_dist: 0.008485, loss_weight: 0.006005
[21:42:39.032] iteration 1632 : loss : 0.059820 cons_dist: 0.015696, loss_weight: 0.006005
[21:42:40.650] iteration 1633 : loss : 0.093958 cons_dist: 0.001995, loss_weight: 0.006005
[21:42:41.565] iteration 1634 : loss : 0.071224 cons_dist: 0.003095, loss_weight: 0.006005
[21:42:42.482] iteration 1635 : loss : 0.053290 cons_dist: 0.015235, loss_weight: 0.006005
[21:42:43.399] iteration 1636 : loss : 0.073129 cons_dist: 0.016411, loss_weight: 0.006005
[21:42:44.315] iteration 1637 : loss : 0.045043 cons_dist: 0.002758, loss_weight: 0.006005
[21:42:45.233] iteration 1638 : loss : 0.075888 cons_dist: 0.002023, loss_weight: 0.006005
[21:42:46.148] iteration 1639 : loss : 0.062143 cons_dist: 0.000760, loss_weight: 0.006005
[21:42:47.064] iteration 1640 : loss : 0.044699 cons_dist: 0.001635, loss_weight: 0.006005
[21:42:47.980] iteration 1641 : loss : 0.048820 cons_dist: 0.004209, loss_weight: 0.006005
[21:42:48.896] iteration 1642 : loss : 0.060296 cons_dist: 0.007647, loss_weight: 0.006005
[21:42:49.813] iteration 1643 : loss : 0.091826 cons_dist: 0.008115, loss_weight: 0.006005
[21:42:50.729] iteration 1644 : loss : 0.052365 cons_dist: 0.000389, loss_weight: 0.006005
[21:42:52.370] iteration 1645 : loss : 0.054959 cons_dist: 0.002640, loss_weight: 0.006005
[21:42:53.287] iteration 1646 : loss : 0.048359 cons_dist: 0.000938, loss_weight: 0.006005
[21:42:54.206] iteration 1647 : loss : 0.066410 cons_dist: 0.004649, loss_weight: 0.006005
[21:42:55.124] iteration 1648 : loss : 0.104207 cons_dist: 0.001570, loss_weight: 0.006005
[21:42:56.041] iteration 1649 : loss : 0.050722 cons_dist: 0.005883, loss_weight: 0.006005
[21:42:56.958] iteration 1650 : loss : 0.067826 cons_dist: 0.005936, loss_weight: 0.006005
[21:42:58.042] iteration 1651 : loss : 0.051528 cons_dist: 0.001720, loss_weight: 0.007221
[21:42:58.958] iteration 1652 : loss : 0.056285 cons_dist: 0.004448, loss_weight: 0.007221
[21:42:59.874] iteration 1653 : loss : 0.052063 cons_dist: 0.005276, loss_weight: 0.007221
[21:43:00.790] iteration 1654 : loss : 0.096977 cons_dist: 0.003794, loss_weight: 0.007221
[21:43:01.707] iteration 1655 : loss : 0.052412 cons_dist: 0.000699, loss_weight: 0.007221
[21:43:02.625] iteration 1656 : loss : 0.055444 cons_dist: 0.003732, loss_weight: 0.007221
[21:43:04.237] iteration 1657 : loss : 0.066845 cons_dist: 0.007593, loss_weight: 0.007221
[21:43:05.153] iteration 1658 : loss : 0.084821 cons_dist: 0.002256, loss_weight: 0.007221
[21:43:06.069] iteration 1659 : loss : 0.045234 cons_dist: 0.014012, loss_weight: 0.007221
[21:43:06.986] iteration 1660 : loss : 0.054384 cons_dist: 0.003151, loss_weight: 0.007221
[21:43:07.902] iteration 1661 : loss : 0.049058 cons_dist: 0.002605, loss_weight: 0.007221
[21:43:08.819] iteration 1662 : loss : 0.075075 cons_dist: 0.008722, loss_weight: 0.007221
[21:43:09.736] iteration 1663 : loss : 0.059575 cons_dist: 0.001660, loss_weight: 0.007221
[21:43:10.654] iteration 1664 : loss : 0.046215 cons_dist: 0.004242, loss_weight: 0.007221
[21:43:11.625] iteration 1665 : loss : 0.059087 cons_dist: 0.004987, loss_weight: 0.007221
[21:43:12.544] iteration 1666 : loss : 0.062879 cons_dist: 0.037207, loss_weight: 0.007221
[21:43:13.461] iteration 1667 : loss : 0.058290 cons_dist: 0.001945, loss_weight: 0.007221
[21:43:14.382] iteration 1668 : loss : 0.054423 cons_dist: 0.001766, loss_weight: 0.007221
[21:43:15.893] iteration 1669 : loss : 0.051187 cons_dist: 0.002447, loss_weight: 0.007221
[21:43:16.809] iteration 1670 : loss : 0.068055 cons_dist: 0.006128, loss_weight: 0.007221
[21:43:17.725] iteration 1671 : loss : 0.114002 cons_dist: 0.008848, loss_weight: 0.007221
[21:43:18.642] iteration 1672 : loss : 0.046502 cons_dist: 0.022219, loss_weight: 0.007221
[21:43:19.558] iteration 1673 : loss : 0.050097 cons_dist: 0.003944, loss_weight: 0.007221
[21:43:20.475] iteration 1674 : loss : 0.067437 cons_dist: 0.007995, loss_weight: 0.007221
[21:43:21.391] iteration 1675 : loss : 0.063544 cons_dist: 0.002041, loss_weight: 0.007221
[21:43:22.308] iteration 1676 : loss : 0.073062 cons_dist: 0.001526, loss_weight: 0.007221
[21:43:23.225] iteration 1677 : loss : 0.045454 cons_dist: 0.009582, loss_weight: 0.007221
[21:43:24.142] iteration 1678 : loss : 0.110209 cons_dist: 0.001544, loss_weight: 0.007221
[21:43:25.059] iteration 1679 : loss : 0.050521 cons_dist: 0.001252, loss_weight: 0.007221
[21:43:25.976] iteration 1680 : loss : 0.047961 cons_dist: 0.009656, loss_weight: 0.007221
[21:43:27.561] iteration 1681 : loss : 0.047622 cons_dist: 0.001612, loss_weight: 0.007221
[21:43:28.478] iteration 1682 : loss : 0.051593 cons_dist: 0.005386, loss_weight: 0.007221
[21:43:29.395] iteration 1683 : loss : 0.072055 cons_dist: 0.001583, loss_weight: 0.007221
[21:43:30.315] iteration 1684 : loss : 0.090064 cons_dist: 0.016664, loss_weight: 0.007221
[21:43:31.231] iteration 1685 : loss : 0.071913 cons_dist: 0.010504, loss_weight: 0.007221
[21:43:32.147] iteration 1686 : loss : 0.058470 cons_dist: 0.054606, loss_weight: 0.007221
[21:43:33.063] iteration 1687 : loss : 0.099842 cons_dist: 0.002652, loss_weight: 0.007221
[21:43:33.980] iteration 1688 : loss : 0.079482 cons_dist: 0.009267, loss_weight: 0.007221
[21:43:34.897] iteration 1689 : loss : 0.063494 cons_dist: 0.003099, loss_weight: 0.007221
[21:43:35.814] iteration 1690 : loss : 0.061980 cons_dist: 0.003150, loss_weight: 0.007221
[21:43:36.730] iteration 1691 : loss : 0.078567 cons_dist: 0.008797, loss_weight: 0.007221
[21:43:37.647] iteration 1692 : loss : 0.051733 cons_dist: 0.002059, loss_weight: 0.007221
[21:43:39.149] iteration 1693 : loss : 0.059409 cons_dist: 0.002808, loss_weight: 0.007221
[21:43:40.067] iteration 1694 : loss : 0.051427 cons_dist: 0.004570, loss_weight: 0.007221
[21:43:40.985] iteration 1695 : loss : 0.049451 cons_dist: 0.004447, loss_weight: 0.007221
[21:43:41.904] iteration 1696 : loss : 0.069127 cons_dist: 0.003935, loss_weight: 0.007221
[21:43:42.822] iteration 1697 : loss : 0.071307 cons_dist: 0.014334, loss_weight: 0.007221
[21:43:43.739] iteration 1698 : loss : 0.054196 cons_dist: 0.004441, loss_weight: 0.007221
[21:43:44.659] iteration 1699 : loss : 0.066520 cons_dist: 0.001634, loss_weight: 0.007221
[21:43:45.577] iteration 1700 : loss : 0.069396 cons_dist: 0.012049, loss_weight: 0.007221
[21:43:46.660] iteration 1701 : loss : 0.071172 cons_dist: 0.003919, loss_weight: 0.007221
[21:43:47.578] iteration 1702 : loss : 0.052919 cons_dist: 0.002010, loss_weight: 0.007221
[21:43:48.496] iteration 1703 : loss : 0.047641 cons_dist: 0.002814, loss_weight: 0.007221
[21:43:49.413] iteration 1704 : loss : 0.067435 cons_dist: 0.005696, loss_weight: 0.007221
[21:43:50.995] iteration 1705 : loss : 0.049025 cons_dist: 0.002057, loss_weight: 0.007221
[21:43:51.913] iteration 1706 : loss : 0.066333 cons_dist: 0.001053, loss_weight: 0.007221
[21:43:52.831] iteration 1707 : loss : 0.059382 cons_dist: 0.002143, loss_weight: 0.007221
[21:43:53.749] iteration 1708 : loss : 0.057872 cons_dist: 0.031707, loss_weight: 0.007221
[21:43:54.667] iteration 1709 : loss : 0.066553 cons_dist: 0.005189, loss_weight: 0.007221
[21:43:55.586] iteration 1710 : loss : 0.087853 cons_dist: 0.001352, loss_weight: 0.007221
[21:43:56.503] iteration 1711 : loss : 0.064335 cons_dist: 0.008374, loss_weight: 0.007221
[21:43:57.420] iteration 1712 : loss : 0.052306 cons_dist: 0.001757, loss_weight: 0.007221
[21:43:58.338] iteration 1713 : loss : 0.061559 cons_dist: 0.002585, loss_weight: 0.007221
[21:43:59.256] iteration 1714 : loss : 0.071556 cons_dist: 0.001121, loss_weight: 0.007221
[21:44:00.174] iteration 1715 : loss : 0.075816 cons_dist: 0.003411, loss_weight: 0.007221
[21:44:01.092] iteration 1716 : loss : 0.060673 cons_dist: 0.004680, loss_weight: 0.007221
[21:44:02.585] iteration 1717 : loss : 0.077011 cons_dist: 0.004160, loss_weight: 0.007221
[21:44:03.504] iteration 1718 : loss : 0.047895 cons_dist: 0.003226, loss_weight: 0.007221
[21:44:04.421] iteration 1719 : loss : 0.057548 cons_dist: 0.001524, loss_weight: 0.007221
[21:44:05.337] iteration 1720 : loss : 0.078524 cons_dist: 0.002676, loss_weight: 0.007221
[21:44:06.252] iteration 1721 : loss : 0.072437 cons_dist: 0.002245, loss_weight: 0.007221
[21:44:07.168] iteration 1722 : loss : 0.081989 cons_dist: 0.000584, loss_weight: 0.007221
[21:44:08.085] iteration 1723 : loss : 0.066059 cons_dist: 0.002593, loss_weight: 0.007221
[21:44:09.045] iteration 1724 : loss : 0.059410 cons_dist: 0.031384, loss_weight: 0.007221
[21:44:09.962] iteration 1725 : loss : 0.065895 cons_dist: 0.004461, loss_weight: 0.007221
[21:44:10.878] iteration 1726 : loss : 0.057099 cons_dist: 0.000877, loss_weight: 0.007221
[21:44:11.794] iteration 1727 : loss : 0.042732 cons_dist: 0.005687, loss_weight: 0.007221
[21:44:12.710] iteration 1728 : loss : 0.051079 cons_dist: 0.002947, loss_weight: 0.007221
[21:44:14.340] iteration 1729 : loss : 0.073730 cons_dist: 0.006909, loss_weight: 0.007221
[21:44:15.256] iteration 1730 : loss : 0.058121 cons_dist: 0.004243, loss_weight: 0.007221
[21:44:16.172] iteration 1731 : loss : 0.080660 cons_dist: 0.000777, loss_weight: 0.007221
[21:44:17.087] iteration 1732 : loss : 0.047354 cons_dist: 0.001636, loss_weight: 0.007221
[21:44:18.004] iteration 1733 : loss : 0.038599 cons_dist: 0.001381, loss_weight: 0.007221
[21:44:18.920] iteration 1734 : loss : 0.049538 cons_dist: 0.002414, loss_weight: 0.007221
[21:44:19.837] iteration 1735 : loss : 0.046684 cons_dist: 0.002143, loss_weight: 0.007221
[21:44:20.754] iteration 1736 : loss : 0.075265 cons_dist: 0.034826, loss_weight: 0.007221
[21:44:21.670] iteration 1737 : loss : 0.049119 cons_dist: 0.006141, loss_weight: 0.007221
[21:44:22.586] iteration 1738 : loss : 0.049636 cons_dist: 0.001530, loss_weight: 0.007221
[21:44:23.503] iteration 1739 : loss : 0.065721 cons_dist: 0.044824, loss_weight: 0.007221
[21:44:24.422] iteration 1740 : loss : 0.073914 cons_dist: 0.013467, loss_weight: 0.007221
[21:44:26.073] iteration 1741 : loss : 0.048984 cons_dist: 0.010209, loss_weight: 0.007221
[21:44:26.990] iteration 1742 : loss : 0.077460 cons_dist: 0.005663, loss_weight: 0.007221
[21:44:27.906] iteration 1743 : loss : 0.056741 cons_dist: 0.045117, loss_weight: 0.007221
[21:44:28.823] iteration 1744 : loss : 0.054669 cons_dist: 0.001454, loss_weight: 0.007221
[21:44:29.738] iteration 1745 : loss : 0.058637 cons_dist: 0.004809, loss_weight: 0.007221
[21:44:30.653] iteration 1746 : loss : 0.056589 cons_dist: 0.022276, loss_weight: 0.007221
[21:44:31.571] iteration 1747 : loss : 0.043106 cons_dist: 0.001788, loss_weight: 0.007221
[21:44:32.488] iteration 1748 : loss : 0.072647 cons_dist: 0.002698, loss_weight: 0.007221
[21:44:33.403] iteration 1749 : loss : 0.065831 cons_dist: 0.008534, loss_weight: 0.007221
[21:44:34.318] iteration 1750 : loss : 0.066589 cons_dist: 0.003200, loss_weight: 0.007221
[21:44:35.412] iteration 1751 : loss : 0.068491 cons_dist: 0.030723, loss_weight: 0.007221
[21:44:36.330] iteration 1752 : loss : 0.080186 cons_dist: 0.040833, loss_weight: 0.007221
[21:44:38.005] iteration 1753 : loss : 0.055796 cons_dist: 0.001184, loss_weight: 0.007221
[21:44:38.922] iteration 1754 : loss : 0.072784 cons_dist: 0.002768, loss_weight: 0.007221
[21:44:39.838] iteration 1755 : loss : 0.056919 cons_dist: 0.006121, loss_weight: 0.007221
[21:44:40.754] iteration 1756 : loss : 0.062275 cons_dist: 0.001465, loss_weight: 0.007221
[21:44:41.670] iteration 1757 : loss : 0.069757 cons_dist: 0.005941, loss_weight: 0.007221
[21:44:42.587] iteration 1758 : loss : 0.059657 cons_dist: 0.005165, loss_weight: 0.007221
[21:44:43.504] iteration 1759 : loss : 0.052097 cons_dist: 0.005692, loss_weight: 0.007221
[21:44:44.422] iteration 1760 : loss : 0.108041 cons_dist: 0.002973, loss_weight: 0.007221
[21:44:45.339] iteration 1761 : loss : 0.053773 cons_dist: 0.001695, loss_weight: 0.007221
[21:44:46.256] iteration 1762 : loss : 0.048038 cons_dist: 0.002315, loss_weight: 0.007221
[21:44:47.174] iteration 1763 : loss : 0.070918 cons_dist: 0.001970, loss_weight: 0.007221
[21:44:48.092] iteration 1764 : loss : 0.055503 cons_dist: 0.000991, loss_weight: 0.007221
[21:44:49.659] iteration 1765 : loss : 0.045906 cons_dist: 0.000855, loss_weight: 0.007221
[21:44:50.578] iteration 1766 : loss : 0.041923 cons_dist: 0.008326, loss_weight: 0.007221
[21:44:51.496] iteration 1767 : loss : 0.049427 cons_dist: 0.001001, loss_weight: 0.007221
[21:44:52.415] iteration 1768 : loss : 0.077311 cons_dist: 0.001703, loss_weight: 0.007221
[21:44:53.333] iteration 1769 : loss : 0.077391 cons_dist: 0.004876, loss_weight: 0.007221
[21:44:54.251] iteration 1770 : loss : 0.081101 cons_dist: 0.002905, loss_weight: 0.007221
[21:44:55.168] iteration 1771 : loss : 0.043811 cons_dist: 0.007567, loss_weight: 0.007221
[21:44:56.085] iteration 1772 : loss : 0.049812 cons_dist: 0.009953, loss_weight: 0.007221
[21:44:57.003] iteration 1773 : loss : 0.079202 cons_dist: 0.014190, loss_weight: 0.007221
[21:44:57.920] iteration 1774 : loss : 0.099814 cons_dist: 0.002844, loss_weight: 0.007221
[21:44:58.839] iteration 1775 : loss : 0.072640 cons_dist: 0.001678, loss_weight: 0.007221
[21:44:59.756] iteration 1776 : loss : 0.070535 cons_dist: 0.003200, loss_weight: 0.007221
[21:45:01.379] iteration 1777 : loss : 0.056189 cons_dist: 0.009058, loss_weight: 0.007221
[21:45:02.296] iteration 1778 : loss : 0.051096 cons_dist: 0.006274, loss_weight: 0.007221
[21:45:03.213] iteration 1779 : loss : 0.060875 cons_dist: 0.003177, loss_weight: 0.007221
[21:45:04.131] iteration 1780 : loss : 0.054019 cons_dist: 0.006179, loss_weight: 0.007221
[21:45:05.048] iteration 1781 : loss : 0.076163 cons_dist: 0.001053, loss_weight: 0.007221
[21:45:05.965] iteration 1782 : loss : 0.058019 cons_dist: 0.003057, loss_weight: 0.007221
[21:45:06.883] iteration 1783 : loss : 0.050095 cons_dist: 0.003999, loss_weight: 0.007221
[21:45:07.800] iteration 1784 : loss : 0.075549 cons_dist: 0.002147, loss_weight: 0.007221
[21:45:08.718] iteration 1785 : loss : 0.068221 cons_dist: 0.000995, loss_weight: 0.007221
[21:45:09.637] iteration 1786 : loss : 0.051547 cons_dist: 0.001567, loss_weight: 0.007221
[21:45:10.555] iteration 1787 : loss : 0.058055 cons_dist: 0.002880, loss_weight: 0.007221
[21:45:11.473] iteration 1788 : loss : 0.076059 cons_dist: 0.013528, loss_weight: 0.007221
[21:45:13.109] iteration 1789 : loss : 0.059117 cons_dist: 0.032415, loss_weight: 0.007221
[21:45:14.028] iteration 1790 : loss : 0.043621 cons_dist: 0.002158, loss_weight: 0.007221
[21:45:14.944] iteration 1791 : loss : 0.061129 cons_dist: 0.004694, loss_weight: 0.007221
[21:45:15.861] iteration 1792 : loss : 0.060744 cons_dist: 0.001259, loss_weight: 0.007221
[21:45:16.776] iteration 1793 : loss : 0.044300 cons_dist: 0.000487, loss_weight: 0.007221
[21:45:17.693] iteration 1794 : loss : 0.040155 cons_dist: 0.001278, loss_weight: 0.007221
[21:45:18.610] iteration 1795 : loss : 0.041167 cons_dist: 0.001995, loss_weight: 0.007221
[21:45:19.526] iteration 1796 : loss : 0.104697 cons_dist: 0.002864, loss_weight: 0.007221
[21:45:20.442] iteration 1797 : loss : 0.067333 cons_dist: 0.001295, loss_weight: 0.007221
[21:45:21.359] iteration 1798 : loss : 0.090290 cons_dist: 0.014882, loss_weight: 0.007221
[21:45:22.275] iteration 1799 : loss : 0.059358 cons_dist: 0.001629, loss_weight: 0.007221
[21:45:23.193] iteration 1800 : loss : 0.065731 cons_dist: 0.002110, loss_weight: 0.007221
[21:45:25.998] iteration 1801 : loss : 0.086592 cons_dist: 0.000788, loss_weight: 0.008629
[21:45:26.942] iteration 1802 : loss : 0.058229 cons_dist: 0.001620, loss_weight: 0.008629
[21:45:27.859] iteration 1803 : loss : 0.084592 cons_dist: 0.003568, loss_weight: 0.008629
[21:45:28.775] iteration 1804 : loss : 0.074948 cons_dist: 0.003159, loss_weight: 0.008629
[21:45:29.690] iteration 1805 : loss : 0.051778 cons_dist: 0.003542, loss_weight: 0.008629
[21:45:30.606] iteration 1806 : loss : 0.083124 cons_dist: 0.003420, loss_weight: 0.008629
[21:45:31.522] iteration 1807 : loss : 0.049831 cons_dist: 0.001937, loss_weight: 0.008629
[21:45:32.494] iteration 1808 : loss : 0.054526 cons_dist: 0.001995, loss_weight: 0.008629
[21:45:33.411] iteration 1809 : loss : 0.054532 cons_dist: 0.001160, loss_weight: 0.008629
[21:45:34.329] iteration 1810 : loss : 0.055201 cons_dist: 0.004709, loss_weight: 0.008629
[21:45:35.247] iteration 1811 : loss : 0.058802 cons_dist: 0.010243, loss_weight: 0.008629
[21:45:36.166] iteration 1812 : loss : 0.048956 cons_dist: 0.014297, loss_weight: 0.008629
[21:45:37.794] iteration 1813 : loss : 0.065729 cons_dist: 0.001352, loss_weight: 0.008629
[21:45:38.712] iteration 1814 : loss : 0.073056 cons_dist: 0.001451, loss_weight: 0.008629
[21:45:39.630] iteration 1815 : loss : 0.045282 cons_dist: 0.000858, loss_weight: 0.008629
[21:45:40.547] iteration 1816 : loss : 0.057120 cons_dist: 0.006168, loss_weight: 0.008629
[21:45:41.464] iteration 1817 : loss : 0.061407 cons_dist: 0.001001, loss_weight: 0.008629
[21:45:42.381] iteration 1818 : loss : 0.060540 cons_dist: 0.003058, loss_weight: 0.008629
[21:45:43.300] iteration 1819 : loss : 0.061184 cons_dist: 0.002659, loss_weight: 0.008629
[21:45:44.215] iteration 1820 : loss : 0.046621 cons_dist: 0.001268, loss_weight: 0.008629
[21:45:45.133] iteration 1821 : loss : 0.076108 cons_dist: 0.001571, loss_weight: 0.008629
[21:45:46.050] iteration 1822 : loss : 0.056787 cons_dist: 0.001413, loss_weight: 0.008629
[21:45:46.967] iteration 1823 : loss : 0.042859 cons_dist: 0.000535, loss_weight: 0.008629
[21:45:47.884] iteration 1824 : loss : 0.069374 cons_dist: 0.006794, loss_weight: 0.008629
[21:45:49.458] iteration 1825 : loss : 0.093368 cons_dist: 0.000916, loss_weight: 0.008629
[21:45:50.373] iteration 1826 : loss : 0.045144 cons_dist: 0.001304, loss_weight: 0.008629
[21:45:51.290] iteration 1827 : loss : 0.042312 cons_dist: 0.000841, loss_weight: 0.008629
[21:45:52.207] iteration 1828 : loss : 0.051298 cons_dist: 0.007700, loss_weight: 0.008629
[21:45:53.123] iteration 1829 : loss : 0.076412 cons_dist: 0.001578, loss_weight: 0.008629
[21:45:54.038] iteration 1830 : loss : 0.038626 cons_dist: 0.037223, loss_weight: 0.008629
[21:45:54.955] iteration 1831 : loss : 0.058241 cons_dist: 0.001474, loss_weight: 0.008629
[21:45:55.871] iteration 1832 : loss : 0.066158 cons_dist: 0.003166, loss_weight: 0.008629
[21:45:56.787] iteration 1833 : loss : 0.080968 cons_dist: 0.001075, loss_weight: 0.008629
[21:45:57.703] iteration 1834 : loss : 0.051201 cons_dist: 0.015156, loss_weight: 0.008629
[21:45:58.619] iteration 1835 : loss : 0.057609 cons_dist: 0.002418, loss_weight: 0.008629
[21:45:59.537] iteration 1836 : loss : 0.060629 cons_dist: 0.003655, loss_weight: 0.008629
[21:46:01.112] iteration 1837 : loss : 0.057423 cons_dist: 0.002758, loss_weight: 0.008629
[21:46:02.028] iteration 1838 : loss : 0.050276 cons_dist: 0.001242, loss_weight: 0.008629
[21:46:02.946] iteration 1839 : loss : 0.036451 cons_dist: 0.001009, loss_weight: 0.008629
[21:46:03.863] iteration 1840 : loss : 0.059316 cons_dist: 0.004024, loss_weight: 0.008629
[21:46:04.781] iteration 1841 : loss : 0.084735 cons_dist: 0.005383, loss_weight: 0.008629
[21:46:05.698] iteration 1842 : loss : 0.042046 cons_dist: 0.000535, loss_weight: 0.008629
[21:46:06.617] iteration 1843 : loss : 0.076841 cons_dist: 0.004651, loss_weight: 0.008629
[21:46:07.535] iteration 1844 : loss : 0.164280 cons_dist: 0.001145, loss_weight: 0.008629
[21:46:08.453] iteration 1845 : loss : 0.055809 cons_dist: 0.005569, loss_weight: 0.008629
[21:46:09.371] iteration 1846 : loss : 0.048898 cons_dist: 0.001713, loss_weight: 0.008629
[21:46:10.289] iteration 1847 : loss : 0.040946 cons_dist: 0.005789, loss_weight: 0.008629
[21:46:11.207] iteration 1848 : loss : 0.054731 cons_dist: 0.001463, loss_weight: 0.008629
[21:46:12.693] iteration 1849 : loss : 0.056998 cons_dist: 0.002348, loss_weight: 0.008629
[21:46:13.609] iteration 1850 : loss : 0.056144 cons_dist: 0.001883, loss_weight: 0.008629
[21:46:14.687] iteration 1851 : loss : 0.036267 cons_dist: 0.002499, loss_weight: 0.008629
[21:46:15.604] iteration 1852 : loss : 0.059681 cons_dist: 0.004727, loss_weight: 0.008629
[21:46:16.521] iteration 1853 : loss : 0.059633 cons_dist: 0.004484, loss_weight: 0.008629
[21:46:17.440] iteration 1854 : loss : 0.053326 cons_dist: 0.007380, loss_weight: 0.008629
[21:46:18.358] iteration 1855 : loss : 0.069321 cons_dist: 0.000817, loss_weight: 0.008629
[21:46:19.276] iteration 1856 : loss : 0.073718 cons_dist: 0.003543, loss_weight: 0.008629
[21:46:20.193] iteration 1857 : loss : 0.057276 cons_dist: 0.060464, loss_weight: 0.008629
[21:46:21.110] iteration 1858 : loss : 0.042173 cons_dist: 0.004722, loss_weight: 0.008629
[21:46:22.028] iteration 1859 : loss : 0.051410 cons_dist: 0.009817, loss_weight: 0.008629
[21:46:22.945] iteration 1860 : loss : 0.045295 cons_dist: 0.027283, loss_weight: 0.008629
[21:46:24.584] iteration 1861 : loss : 0.047103 cons_dist: 0.001196, loss_weight: 0.008629
[21:46:25.503] iteration 1862 : loss : 0.047628 cons_dist: 0.001288, loss_weight: 0.008629
[21:46:26.420] iteration 1863 : loss : 0.052320 cons_dist: 0.002140, loss_weight: 0.008629
[21:46:27.337] iteration 1864 : loss : 0.043635 cons_dist: 0.001376, loss_weight: 0.008629
[21:46:28.258] iteration 1865 : loss : 0.049325 cons_dist: 0.005972, loss_weight: 0.008629
[21:46:29.178] iteration 1866 : loss : 0.054411 cons_dist: 0.001912, loss_weight: 0.008629
[21:46:30.095] iteration 1867 : loss : 0.057703 cons_dist: 0.001051, loss_weight: 0.008629
[21:46:31.011] iteration 1868 : loss : 0.043174 cons_dist: 0.000790, loss_weight: 0.008629
[21:46:31.927] iteration 1869 : loss : 0.054732 cons_dist: 0.000662, loss_weight: 0.008629
[21:46:32.845] iteration 1870 : loss : 0.081103 cons_dist: 0.009253, loss_weight: 0.008629
[21:46:33.761] iteration 1871 : loss : 0.047407 cons_dist: 0.004302, loss_weight: 0.008629
[21:46:34.679] iteration 1872 : loss : 0.043483 cons_dist: 0.001625, loss_weight: 0.008629
[21:46:36.200] iteration 1873 : loss : 0.049619 cons_dist: 0.003746, loss_weight: 0.008629
[21:46:37.116] iteration 1874 : loss : 0.036604 cons_dist: 0.001608, loss_weight: 0.008629
[21:46:38.034] iteration 1875 : loss : 0.052163 cons_dist: 0.002441, loss_weight: 0.008629
[21:46:38.952] iteration 1876 : loss : 0.052208 cons_dist: 0.001440, loss_weight: 0.008629
[21:46:39.870] iteration 1877 : loss : 0.056423 cons_dist: 0.006524, loss_weight: 0.008629
[21:46:40.788] iteration 1878 : loss : 0.070621 cons_dist: 0.008172, loss_weight: 0.008629
[21:46:41.706] iteration 1879 : loss : 0.077478 cons_dist: 0.004879, loss_weight: 0.008629
[21:46:42.626] iteration 1880 : loss : 0.048072 cons_dist: 0.000361, loss_weight: 0.008629
[21:46:43.544] iteration 1881 : loss : 0.047373 cons_dist: 0.001619, loss_weight: 0.008629
[21:46:44.459] iteration 1882 : loss : 0.071848 cons_dist: 0.000645, loss_weight: 0.008629
[21:46:45.376] iteration 1883 : loss : 0.047185 cons_dist: 0.019364, loss_weight: 0.008629
[21:46:46.294] iteration 1884 : loss : 0.087581 cons_dist: 0.004003, loss_weight: 0.008629
[21:46:47.827] iteration 1885 : loss : 0.051670 cons_dist: 0.002267, loss_weight: 0.008629
[21:46:48.745] iteration 1886 : loss : 0.033060 cons_dist: 0.001343, loss_weight: 0.008629
[21:46:49.663] iteration 1887 : loss : 0.060486 cons_dist: 0.002216, loss_weight: 0.008629
[21:46:50.582] iteration 1888 : loss : 0.061065 cons_dist: 0.001526, loss_weight: 0.008629
[21:46:51.500] iteration 1889 : loss : 0.056085 cons_dist: 0.002955, loss_weight: 0.008629
[21:46:52.418] iteration 1890 : loss : 0.044131 cons_dist: 0.003597, loss_weight: 0.008629
[21:46:53.337] iteration 1891 : loss : 0.076001 cons_dist: 0.003458, loss_weight: 0.008629
[21:46:54.257] iteration 1892 : loss : 0.078103 cons_dist: 0.003473, loss_weight: 0.008629
[21:46:55.174] iteration 1893 : loss : 0.037077 cons_dist: 0.000372, loss_weight: 0.008629
[21:46:56.093] iteration 1894 : loss : 0.071831 cons_dist: 0.002233, loss_weight: 0.008629
[21:46:57.010] iteration 1895 : loss : 0.049240 cons_dist: 0.001585, loss_weight: 0.008629
[21:46:57.927] iteration 1896 : loss : 0.045901 cons_dist: 0.009404, loss_weight: 0.008629
[21:46:59.622] iteration 1897 : loss : 0.052882 cons_dist: 0.000999, loss_weight: 0.008629
[21:47:00.538] iteration 1898 : loss : 0.066844 cons_dist: 0.002200, loss_weight: 0.008629
[21:47:01.458] iteration 1899 : loss : 0.044104 cons_dist: 0.003008, loss_weight: 0.008629
[21:47:02.376] iteration 1900 : loss : 0.079157 cons_dist: 0.000905, loss_weight: 0.008629
[21:47:03.466] iteration 1901 : loss : 0.065259 cons_dist: 0.003903, loss_weight: 0.008629
[21:47:04.384] iteration 1902 : loss : 0.059976 cons_dist: 0.037398, loss_weight: 0.008629
[21:47:05.302] iteration 1903 : loss : 0.196614 cons_dist: 0.005670, loss_weight: 0.008629
[21:47:06.219] iteration 1904 : loss : 0.043674 cons_dist: 0.000816, loss_weight: 0.008629
[21:47:07.138] iteration 1905 : loss : 0.053276 cons_dist: 0.050344, loss_weight: 0.008629
[21:47:08.056] iteration 1906 : loss : 0.062308 cons_dist: 0.001874, loss_weight: 0.008629
[21:47:08.985] iteration 1907 : loss : 0.057380 cons_dist: 0.047347, loss_weight: 0.008629
[21:47:09.902] iteration 1908 : loss : 0.048093 cons_dist: 0.000805, loss_weight: 0.008629
[21:47:11.486] iteration 1909 : loss : 0.050326 cons_dist: 0.003358, loss_weight: 0.008629
[21:47:12.405] iteration 1910 : loss : 0.050371 cons_dist: 0.000680, loss_weight: 0.008629
[21:47:13.323] iteration 1911 : loss : 0.061570 cons_dist: 0.019644, loss_weight: 0.008629
[21:47:14.241] iteration 1912 : loss : 0.054429 cons_dist: 0.003472, loss_weight: 0.008629
[21:47:15.161] iteration 1913 : loss : 0.049984 cons_dist: 0.045691, loss_weight: 0.008629
[21:47:16.077] iteration 1914 : loss : 0.074025 cons_dist: 0.000234, loss_weight: 0.008629
[21:47:16.993] iteration 1915 : loss : 0.056621 cons_dist: 0.002425, loss_weight: 0.008629
[21:47:17.910] iteration 1916 : loss : 0.051506 cons_dist: 0.002255, loss_weight: 0.008629
[21:47:18.826] iteration 1917 : loss : 0.043302 cons_dist: 0.002336, loss_weight: 0.008629
[21:47:19.743] iteration 1918 : loss : 0.042220 cons_dist: 0.002243, loss_weight: 0.008629
[21:47:20.660] iteration 1919 : loss : 0.061389 cons_dist: 0.003103, loss_weight: 0.008629
[21:47:21.577] iteration 1920 : loss : 0.033113 cons_dist: 0.001606, loss_weight: 0.008629
[21:47:23.142] iteration 1921 : loss : 0.067887 cons_dist: 0.002813, loss_weight: 0.008629
[21:47:24.059] iteration 1922 : loss : 0.076013 cons_dist: 0.003765, loss_weight: 0.008629
[21:47:24.975] iteration 1923 : loss : 0.045185 cons_dist: 0.000226, loss_weight: 0.008629
[21:47:25.893] iteration 1924 : loss : 0.049329 cons_dist: 0.003219, loss_weight: 0.008629
[21:47:26.808] iteration 1925 : loss : 0.042315 cons_dist: 0.002089, loss_weight: 0.008629
[21:47:27.725] iteration 1926 : loss : 0.035708 cons_dist: 0.004096, loss_weight: 0.008629
[21:47:28.642] iteration 1927 : loss : 0.063285 cons_dist: 0.000472, loss_weight: 0.008629
[21:47:29.559] iteration 1928 : loss : 0.069610 cons_dist: 0.000967, loss_weight: 0.008629
[21:47:30.477] iteration 1929 : loss : 0.057274 cons_dist: 0.002450, loss_weight: 0.008629
[21:47:31.394] iteration 1930 : loss : 0.057031 cons_dist: 0.001100, loss_weight: 0.008629
[21:47:32.313] iteration 1931 : loss : 0.047052 cons_dist: 0.007180, loss_weight: 0.008629
[21:47:33.230] iteration 1932 : loss : 0.071242 cons_dist: 0.001272, loss_weight: 0.008629
[21:47:34.754] iteration 1933 : loss : 0.054562 cons_dist: 0.033854, loss_weight: 0.008629
[21:47:35.672] iteration 1934 : loss : 0.045468 cons_dist: 0.001005, loss_weight: 0.008629
[21:47:36.590] iteration 1935 : loss : 0.063063 cons_dist: 0.002120, loss_weight: 0.008629
[21:47:37.507] iteration 1936 : loss : 0.059373 cons_dist: 0.003951, loss_weight: 0.008629
[21:47:38.466] iteration 1937 : loss : 0.067783 cons_dist: 0.002363, loss_weight: 0.008629
[21:47:39.383] iteration 1938 : loss : 0.062401 cons_dist: 0.005268, loss_weight: 0.008629
[21:47:40.300] iteration 1939 : loss : 0.064861 cons_dist: 0.001008, loss_weight: 0.008629
[21:47:41.218] iteration 1940 : loss : 0.041182 cons_dist: 0.002267, loss_weight: 0.008629
[21:47:42.135] iteration 1941 : loss : 0.043293 cons_dist: 0.009379, loss_weight: 0.008629
[21:47:43.053] iteration 1942 : loss : 0.033696 cons_dist: 0.000935, loss_weight: 0.008629
[21:47:43.970] iteration 1943 : loss : 0.054493 cons_dist: 0.002795, loss_weight: 0.008629
[21:47:44.889] iteration 1944 : loss : 0.061346 cons_dist: 0.000959, loss_weight: 0.008629
[21:47:46.550] iteration 1945 : loss : 0.053894 cons_dist: 0.002347, loss_weight: 0.008629
[21:47:47.468] iteration 1946 : loss : 0.049100 cons_dist: 0.001839, loss_weight: 0.008629
[21:47:48.387] iteration 1947 : loss : 0.041581 cons_dist: 0.004337, loss_weight: 0.008629
[21:47:49.304] iteration 1948 : loss : 0.120975 cons_dist: 0.001392, loss_weight: 0.008629
[21:47:50.223] iteration 1949 : loss : 0.044576 cons_dist: 0.002316, loss_weight: 0.008629
[21:47:51.140] iteration 1950 : loss : 0.049188 cons_dist: 0.009030, loss_weight: 0.008629
[21:47:52.224] iteration 1951 : loss : 0.051530 cons_dist: 0.001764, loss_weight: 0.010248
[21:47:53.141] iteration 1952 : loss : 0.052929 cons_dist: 0.007153, loss_weight: 0.010248
[21:47:54.060] iteration 1953 : loss : 0.054415 cons_dist: 0.001496, loss_weight: 0.010248
[21:47:54.978] iteration 1954 : loss : 0.054100 cons_dist: 0.001804, loss_weight: 0.010248
[21:47:55.895] iteration 1955 : loss : 0.061385 cons_dist: 0.004458, loss_weight: 0.010248
[21:47:56.812] iteration 1956 : loss : 0.049497 cons_dist: 0.009301, loss_weight: 0.010248
[21:47:58.389] iteration 1957 : loss : 0.051328 cons_dist: 0.001215, loss_weight: 0.010248
[21:47:59.308] iteration 1958 : loss : 0.101671 cons_dist: 0.001799, loss_weight: 0.010248
[21:48:00.226] iteration 1959 : loss : 0.036430 cons_dist: 0.006010, loss_weight: 0.010248
[21:48:01.144] iteration 1960 : loss : 0.057031 cons_dist: 0.001174, loss_weight: 0.010248
[21:48:02.062] iteration 1961 : loss : 0.105905 cons_dist: 0.001180, loss_weight: 0.010248
[21:48:02.980] iteration 1962 : loss : 0.061431 cons_dist: 0.004704, loss_weight: 0.010248
[21:48:03.897] iteration 1963 : loss : 0.063058 cons_dist: 0.001289, loss_weight: 0.010248
[21:48:04.815] iteration 1964 : loss : 0.065781 cons_dist: 0.005583, loss_weight: 0.010248
[21:48:05.732] iteration 1965 : loss : 0.074972 cons_dist: 0.004195, loss_weight: 0.010248
[21:48:06.650] iteration 1966 : loss : 0.084142 cons_dist: 0.002322, loss_weight: 0.010248
[21:48:07.567] iteration 1967 : loss : 0.074680 cons_dist: 0.001529, loss_weight: 0.010248
[21:48:08.509] iteration 1968 : loss : 0.039412 cons_dist: 0.006004, loss_weight: 0.010248
[21:48:10.030] iteration 1969 : loss : 0.060680 cons_dist: 0.001386, loss_weight: 0.010248
[21:48:10.946] iteration 1970 : loss : 0.041488 cons_dist: 0.001357, loss_weight: 0.010248
[21:48:11.865] iteration 1971 : loss : 0.044180 cons_dist: 0.001113, loss_weight: 0.010248
[21:48:12.783] iteration 1972 : loss : 0.048802 cons_dist: 0.002372, loss_weight: 0.010248
[21:48:13.702] iteration 1973 : loss : 0.054827 cons_dist: 0.007496, loss_weight: 0.010248
[21:48:14.620] iteration 1974 : loss : 0.060234 cons_dist: 0.009033, loss_weight: 0.010248
[21:48:15.538] iteration 1975 : loss : 0.055114 cons_dist: 0.001813, loss_weight: 0.010248
[21:48:16.456] iteration 1976 : loss : 0.046419 cons_dist: 0.002883, loss_weight: 0.010248
[21:48:17.373] iteration 1977 : loss : 0.071132 cons_dist: 0.006996, loss_weight: 0.010248
[21:48:18.290] iteration 1978 : loss : 0.043611 cons_dist: 0.008783, loss_weight: 0.010248
[21:48:19.207] iteration 1979 : loss : 0.044842 cons_dist: 0.006924, loss_weight: 0.010248
[21:48:20.125] iteration 1980 : loss : 0.085217 cons_dist: 0.014741, loss_weight: 0.010248
[21:48:21.709] iteration 1981 : loss : 0.058438 cons_dist: 0.005049, loss_weight: 0.010248
[21:48:22.626] iteration 1982 : loss : 0.065924 cons_dist: 0.008732, loss_weight: 0.010248
[21:48:23.543] iteration 1983 : loss : 0.048914 cons_dist: 0.002767, loss_weight: 0.010248
[21:48:24.458] iteration 1984 : loss : 0.080816 cons_dist: 0.002120, loss_weight: 0.010248
[21:48:25.373] iteration 1985 : loss : 0.032510 cons_dist: 0.002011, loss_weight: 0.010248
[21:48:26.288] iteration 1986 : loss : 0.042169 cons_dist: 0.002296, loss_weight: 0.010248
[21:48:27.205] iteration 1987 : loss : 0.079367 cons_dist: 0.002084, loss_weight: 0.010248
[21:48:28.122] iteration 1988 : loss : 0.052260 cons_dist: 0.000431, loss_weight: 0.010248
[21:48:29.037] iteration 1989 : loss : 0.074062 cons_dist: 0.008416, loss_weight: 0.010248
[21:48:29.955] iteration 1990 : loss : 0.066006 cons_dist: 0.017476, loss_weight: 0.010248
[21:48:30.874] iteration 1991 : loss : 0.047149 cons_dist: 0.001529, loss_weight: 0.010248
[21:48:31.791] iteration 1992 : loss : 0.052921 cons_dist: 0.002143, loss_weight: 0.010248
[21:48:33.300] iteration 1993 : loss : 0.055454 cons_dist: 0.001678, loss_weight: 0.010248
[21:48:34.217] iteration 1994 : loss : 0.054889 cons_dist: 0.003584, loss_weight: 0.010248
[21:48:35.134] iteration 1995 : loss : 0.050630 cons_dist: 0.001521, loss_weight: 0.010248
[21:48:36.051] iteration 1996 : loss : 0.042100 cons_dist: 0.014531, loss_weight: 0.010248
[21:48:36.968] iteration 1997 : loss : 0.056055 cons_dist: 0.003909, loss_weight: 0.010248
[21:48:37.884] iteration 1998 : loss : 0.068695 cons_dist: 0.000900, loss_weight: 0.010248
[21:48:38.800] iteration 1999 : loss : 0.055208 cons_dist: 0.000793, loss_weight: 0.010248
[21:48:39.721] iteration 2000 : loss : 0.049275 cons_dist: 0.006260, loss_weight: 0.010248
[21:48:39.950] save model to model/LA_vnet_25_labeled/UAMT/iter_2000.pth
[21:48:42.043] iteration 2001 : loss : 0.070485 cons_dist: 0.003511, loss_weight: 0.010248
[21:48:42.961] iteration 2002 : loss : 0.045903 cons_dist: 0.040225, loss_weight: 0.010248
[21:48:43.879] iteration 2003 : loss : 0.049060 cons_dist: 0.009022, loss_weight: 0.010248
[21:48:44.797] iteration 2004 : loss : 0.077826 cons_dist: 0.002693, loss_weight: 0.010248
[21:48:46.461] iteration 2005 : loss : 0.051615 cons_dist: 0.001566, loss_weight: 0.010248
[21:48:47.377] iteration 2006 : loss : 0.086076 cons_dist: 0.003138, loss_weight: 0.010248
[21:48:48.292] iteration 2007 : loss : 0.063805 cons_dist: 0.001088, loss_weight: 0.010248
[21:48:49.206] iteration 2008 : loss : 0.052060 cons_dist: 0.004565, loss_weight: 0.010248
[21:48:50.120] iteration 2009 : loss : 0.050549 cons_dist: 0.011899, loss_weight: 0.010248
[21:48:51.035] iteration 2010 : loss : 0.039806 cons_dist: 0.033732, loss_weight: 0.010248
[21:48:51.950] iteration 2011 : loss : 0.041046 cons_dist: 0.001754, loss_weight: 0.010248
[21:48:52.865] iteration 2012 : loss : 0.078328 cons_dist: 0.000984, loss_weight: 0.010248
[21:48:53.781] iteration 2013 : loss : 0.059038 cons_dist: 0.015630, loss_weight: 0.010248
[21:48:54.697] iteration 2014 : loss : 0.065894 cons_dist: 0.001648, loss_weight: 0.010248
[21:48:55.612] iteration 2015 : loss : 0.069512 cons_dist: 0.007188, loss_weight: 0.010248
[21:48:56.529] iteration 2016 : loss : 0.055134 cons_dist: 0.001346, loss_weight: 0.010248
[21:48:58.174] iteration 2017 : loss : 0.050809 cons_dist: 0.003884, loss_weight: 0.010248
[21:48:59.088] iteration 2018 : loss : 0.046129 cons_dist: 0.000650, loss_weight: 0.010248
[21:49:00.004] iteration 2019 : loss : 0.055464 cons_dist: 0.000622, loss_weight: 0.010248
[21:49:00.919] iteration 2020 : loss : 0.069348 cons_dist: 0.006845, loss_weight: 0.010248
[21:49:01.833] iteration 2021 : loss : 0.051336 cons_dist: 0.001033, loss_weight: 0.010248
[21:49:02.747] iteration 2022 : loss : 0.066841 cons_dist: 0.002727, loss_weight: 0.010248
[21:49:03.661] iteration 2023 : loss : 0.070715 cons_dist: 0.019168, loss_weight: 0.010248
[21:49:04.579] iteration 2024 : loss : 0.059827 cons_dist: 0.001637, loss_weight: 0.010248
[21:49:05.494] iteration 2025 : loss : 0.075773 cons_dist: 0.001113, loss_weight: 0.010248
[21:49:06.410] iteration 2026 : loss : 0.045234 cons_dist: 0.003928, loss_weight: 0.010248
[21:49:07.350] iteration 2027 : loss : 0.047251 cons_dist: 0.004140, loss_weight: 0.010248
[21:49:08.266] iteration 2028 : loss : 0.052936 cons_dist: 0.004635, loss_weight: 0.010248
[21:49:09.764] iteration 2029 : loss : 0.057492 cons_dist: 0.002945, loss_weight: 0.010248
[21:49:10.678] iteration 2030 : loss : 0.050775 cons_dist: 0.015414, loss_weight: 0.010248
[21:49:11.594] iteration 2031 : loss : 0.066920 cons_dist: 0.001615, loss_weight: 0.010248
[21:49:12.510] iteration 2032 : loss : 0.060137 cons_dist: 0.012028, loss_weight: 0.010248
[21:49:13.425] iteration 2033 : loss : 0.048699 cons_dist: 0.002924, loss_weight: 0.010248
[21:49:14.341] iteration 2034 : loss : 0.054440 cons_dist: 0.004120, loss_weight: 0.010248
[21:49:15.255] iteration 2035 : loss : 0.054208 cons_dist: 0.007149, loss_weight: 0.010248
[21:49:16.171] iteration 2036 : loss : 0.059288 cons_dist: 0.011001, loss_weight: 0.010248
[21:49:17.086] iteration 2037 : loss : 0.056306 cons_dist: 0.011663, loss_weight: 0.010248
[21:49:18.001] iteration 2038 : loss : 0.063393 cons_dist: 0.000505, loss_weight: 0.010248
[21:49:18.917] iteration 2039 : loss : 0.066781 cons_dist: 0.000789, loss_weight: 0.010248
[21:49:19.832] iteration 2040 : loss : 0.058223 cons_dist: 0.000650, loss_weight: 0.010248
[21:49:21.348] iteration 2041 : loss : 0.050793 cons_dist: 0.001145, loss_weight: 0.010248
[21:49:22.263] iteration 2042 : loss : 0.042808 cons_dist: 0.000430, loss_weight: 0.010248
[21:49:23.178] iteration 2043 : loss : 0.045491 cons_dist: 0.012774, loss_weight: 0.010248
[21:49:24.093] iteration 2044 : loss : 0.056910 cons_dist: 0.006892, loss_weight: 0.010248
[21:49:25.008] iteration 2045 : loss : 0.051350 cons_dist: 0.005535, loss_weight: 0.010248
[21:49:25.924] iteration 2046 : loss : 0.051311 cons_dist: 0.002178, loss_weight: 0.010248
[21:49:26.840] iteration 2047 : loss : 0.080340 cons_dist: 0.006313, loss_weight: 0.010248
[21:49:27.756] iteration 2048 : loss : 0.048319 cons_dist: 0.005234, loss_weight: 0.010248
[21:49:28.672] iteration 2049 : loss : 0.043495 cons_dist: 0.004408, loss_weight: 0.010248
[21:49:29.589] iteration 2050 : loss : 0.046185 cons_dist: 0.001181, loss_weight: 0.010248
[21:49:30.666] iteration 2051 : loss : 0.089658 cons_dist: 0.014289, loss_weight: 0.010248
[21:49:31.581] iteration 2052 : loss : 0.048640 cons_dist: 0.014644, loss_weight: 0.010248
[21:49:33.154] iteration 2053 : loss : 0.050452 cons_dist: 0.000879, loss_weight: 0.010248
[21:49:34.071] iteration 2054 : loss : 0.052388 cons_dist: 0.001312, loss_weight: 0.010248
[21:49:34.987] iteration 2055 : loss : 0.065803 cons_dist: 0.014628, loss_weight: 0.010248
[21:49:35.904] iteration 2056 : loss : 0.048134 cons_dist: 0.010098, loss_weight: 0.010248
[21:49:36.820] iteration 2057 : loss : 0.052310 cons_dist: 0.018860, loss_weight: 0.010248
[21:49:37.737] iteration 2058 : loss : 0.052969 cons_dist: 0.006318, loss_weight: 0.010248
[21:49:38.652] iteration 2059 : loss : 0.084138 cons_dist: 0.000887, loss_weight: 0.010248
[21:49:39.569] iteration 2060 : loss : 0.041783 cons_dist: 0.001534, loss_weight: 0.010248
[21:49:40.485] iteration 2061 : loss : 0.048542 cons_dist: 0.002346, loss_weight: 0.010248
[21:49:41.400] iteration 2062 : loss : 0.053364 cons_dist: 0.001455, loss_weight: 0.010248
[21:49:42.315] iteration 2063 : loss : 0.074787 cons_dist: 0.003065, loss_weight: 0.010248
[21:49:43.229] iteration 2064 : loss : 0.059424 cons_dist: 0.001009, loss_weight: 0.010248
[21:49:44.808] iteration 2065 : loss : 0.046397 cons_dist: 0.001389, loss_weight: 0.010248
[21:49:45.724] iteration 2066 : loss : 0.059196 cons_dist: 0.000896, loss_weight: 0.010248
[21:49:46.639] iteration 2067 : loss : 0.042402 cons_dist: 0.002616, loss_weight: 0.010248
[21:49:47.556] iteration 2068 : loss : 0.063227 cons_dist: 0.009396, loss_weight: 0.010248
[21:49:48.470] iteration 2069 : loss : 0.039815 cons_dist: 0.005813, loss_weight: 0.010248
[21:49:49.384] iteration 2070 : loss : 0.054614 cons_dist: 0.000766, loss_weight: 0.010248
[21:49:50.297] iteration 2071 : loss : 0.057444 cons_dist: 0.001428, loss_weight: 0.010248
[21:49:51.214] iteration 2072 : loss : 0.049066 cons_dist: 0.003845, loss_weight: 0.010248
[21:49:52.130] iteration 2073 : loss : 0.048211 cons_dist: 0.002392, loss_weight: 0.010248
[21:49:53.046] iteration 2074 : loss : 0.069997 cons_dist: 0.005338, loss_weight: 0.010248
[21:49:53.963] iteration 2075 : loss : 0.058132 cons_dist: 0.000848, loss_weight: 0.010248
[21:49:54.878] iteration 2076 : loss : 0.050547 cons_dist: 0.000879, loss_weight: 0.010248
[21:49:56.481] iteration 2077 : loss : 0.041977 cons_dist: 0.001556, loss_weight: 0.010248
[21:49:57.396] iteration 2078 : loss : 0.048250 cons_dist: 0.006248, loss_weight: 0.010248
[21:49:58.311] iteration 2079 : loss : 0.051107 cons_dist: 0.009540, loss_weight: 0.010248
[21:49:59.226] iteration 2080 : loss : 0.056750 cons_dist: 0.001398, loss_weight: 0.010248
[21:50:00.141] iteration 2081 : loss : 0.055848 cons_dist: 0.002880, loss_weight: 0.010248
[21:50:01.056] iteration 2082 : loss : 0.056183 cons_dist: 0.037937, loss_weight: 0.010248
[21:50:01.972] iteration 2083 : loss : 0.041296 cons_dist: 0.000709, loss_weight: 0.010248
[21:50:02.888] iteration 2084 : loss : 0.055756 cons_dist: 0.001538, loss_weight: 0.010248
[21:50:03.804] iteration 2085 : loss : 0.052095 cons_dist: 0.000312, loss_weight: 0.010248
[21:50:04.720] iteration 2086 : loss : 0.048599 cons_dist: 0.000725, loss_weight: 0.010248
[21:50:05.639] iteration 2087 : loss : 0.053018 cons_dist: 0.001765, loss_weight: 0.010248
[21:50:06.555] iteration 2088 : loss : 0.071353 cons_dist: 0.002997, loss_weight: 0.010248
[21:50:08.147] iteration 2089 : loss : 0.055412 cons_dist: 0.002097, loss_weight: 0.010248
[21:50:09.062] iteration 2090 : loss : 0.061004 cons_dist: 0.032631, loss_weight: 0.010248
[21:50:09.978] iteration 2091 : loss : 0.054392 cons_dist: 0.002882, loss_weight: 0.010248
[21:50:10.893] iteration 2092 : loss : 0.057692 cons_dist: 0.002424, loss_weight: 0.010248
[21:50:11.808] iteration 2093 : loss : 0.057308 cons_dist: 0.004399, loss_weight: 0.010248
[21:50:12.722] iteration 2094 : loss : 0.060278 cons_dist: 0.007458, loss_weight: 0.010248
[21:50:13.636] iteration 2095 : loss : 0.092989 cons_dist: 0.005847, loss_weight: 0.010248
[21:50:14.550] iteration 2096 : loss : 0.039338 cons_dist: 0.003552, loss_weight: 0.010248
[21:50:15.465] iteration 2097 : loss : 0.054771 cons_dist: 0.002937, loss_weight: 0.010248
[21:50:16.381] iteration 2098 : loss : 0.069175 cons_dist: 0.003033, loss_weight: 0.010248
[21:50:17.296] iteration 2099 : loss : 0.073611 cons_dist: 0.003233, loss_weight: 0.010248
[21:50:18.211] iteration 2100 : loss : 0.042162 cons_dist: 0.001557, loss_weight: 0.010248
[21:50:19.900] iteration 2101 : loss : 0.057824 cons_dist: 0.004255, loss_weight: 0.012094
[21:50:20.817] iteration 2102 : loss : 0.045357 cons_dist: 0.001141, loss_weight: 0.012094
[21:50:21.732] iteration 2103 : loss : 0.064884 cons_dist: 0.012305, loss_weight: 0.012094
[21:50:22.652] iteration 2104 : loss : 0.037926 cons_dist: 0.001590, loss_weight: 0.012094
[21:50:23.566] iteration 2105 : loss : 0.049623 cons_dist: 0.002219, loss_weight: 0.012094
[21:50:24.482] iteration 2106 : loss : 0.066023 cons_dist: 0.002564, loss_weight: 0.012094
[21:50:25.398] iteration 2107 : loss : 0.052070 cons_dist: 0.001592, loss_weight: 0.012094
[21:50:26.314] iteration 2108 : loss : 0.045119 cons_dist: 0.005075, loss_weight: 0.012094
[21:50:27.229] iteration 2109 : loss : 0.043863 cons_dist: 0.000739, loss_weight: 0.012094
[21:50:28.177] iteration 2110 : loss : 0.073905 cons_dist: 0.000527, loss_weight: 0.012094
[21:50:29.094] iteration 2111 : loss : 0.061005 cons_dist: 0.000653, loss_weight: 0.012094
[21:50:30.011] iteration 2112 : loss : 0.045670 cons_dist: 0.003769, loss_weight: 0.012094
[21:50:31.518] iteration 2113 : loss : 0.060742 cons_dist: 0.006073, loss_weight: 0.012094
[21:50:32.433] iteration 2114 : loss : 0.065417 cons_dist: 0.001270, loss_weight: 0.012094
[21:50:33.348] iteration 2115 : loss : 0.156481 cons_dist: 0.000365, loss_weight: 0.012094
[21:50:34.264] iteration 2116 : loss : 0.050371 cons_dist: 0.011645, loss_weight: 0.012094
[21:50:35.179] iteration 2117 : loss : 0.055979 cons_dist: 0.005720, loss_weight: 0.012094
[21:50:36.094] iteration 2118 : loss : 0.038934 cons_dist: 0.003884, loss_weight: 0.012094
[21:50:37.011] iteration 2119 : loss : 0.044795 cons_dist: 0.036544, loss_weight: 0.012094
[21:50:37.928] iteration 2120 : loss : 0.058316 cons_dist: 0.005382, loss_weight: 0.012094
[21:50:38.845] iteration 2121 : loss : 0.059809 cons_dist: 0.002286, loss_weight: 0.012094
[21:50:39.761] iteration 2122 : loss : 0.049959 cons_dist: 0.008420, loss_weight: 0.012094
[21:50:40.680] iteration 2123 : loss : 0.060407 cons_dist: 0.003261, loss_weight: 0.012094
[21:50:41.598] iteration 2124 : loss : 0.079444 cons_dist: 0.001242, loss_weight: 0.012094
[21:50:43.167] iteration 2125 : loss : 0.047896 cons_dist: 0.001394, loss_weight: 0.012094
[21:50:44.084] iteration 2126 : loss : 0.060142 cons_dist: 0.008203, loss_weight: 0.012094
[21:50:45.001] iteration 2127 : loss : 0.044280 cons_dist: 0.014225, loss_weight: 0.012094
[21:50:45.919] iteration 2128 : loss : 0.060619 cons_dist: 0.001910, loss_weight: 0.012094
[21:50:46.834] iteration 2129 : loss : 0.058003 cons_dist: 0.003836, loss_weight: 0.012094
[21:50:47.751] iteration 2130 : loss : 0.087157 cons_dist: 0.000935, loss_weight: 0.012094
[21:50:48.666] iteration 2131 : loss : 0.076090 cons_dist: 0.002306, loss_weight: 0.012094
[21:50:49.581] iteration 2132 : loss : 0.069172 cons_dist: 0.007076, loss_weight: 0.012094
[21:50:50.495] iteration 2133 : loss : 0.054036 cons_dist: 0.001645, loss_weight: 0.012094
[21:50:51.410] iteration 2134 : loss : 0.044003 cons_dist: 0.030234, loss_weight: 0.012094
[21:50:52.325] iteration 2135 : loss : 0.075015 cons_dist: 0.029427, loss_weight: 0.012094
[21:50:53.240] iteration 2136 : loss : 0.045570 cons_dist: 0.001413, loss_weight: 0.012094
[21:50:54.820] iteration 2137 : loss : 0.112027 cons_dist: 0.025629, loss_weight: 0.012094
[21:50:55.734] iteration 2138 : loss : 0.065236 cons_dist: 0.009753, loss_weight: 0.012094
[21:50:56.648] iteration 2139 : loss : 0.049761 cons_dist: 0.002677, loss_weight: 0.012094
[21:50:57.566] iteration 2140 : loss : 0.051577 cons_dist: 0.006670, loss_weight: 0.012094
[21:50:58.483] iteration 2141 : loss : 0.074194 cons_dist: 0.001201, loss_weight: 0.012094
[21:50:59.401] iteration 2142 : loss : 0.040054 cons_dist: 0.006556, loss_weight: 0.012094
[21:51:00.318] iteration 2143 : loss : 0.058115 cons_dist: 0.005858, loss_weight: 0.012094
[21:51:01.235] iteration 2144 : loss : 0.079940 cons_dist: 0.003880, loss_weight: 0.012094
[21:51:02.152] iteration 2145 : loss : 0.046899 cons_dist: 0.003118, loss_weight: 0.012094
[21:51:03.068] iteration 2146 : loss : 0.084893 cons_dist: 0.001553, loss_weight: 0.012094
[21:51:03.997] iteration 2147 : loss : 0.056188 cons_dist: 0.002095, loss_weight: 0.012094
[21:51:04.916] iteration 2148 : loss : 0.083178 cons_dist: 0.033168, loss_weight: 0.012094
[21:51:06.435] iteration 2149 : loss : 0.072054 cons_dist: 0.015717, loss_weight: 0.012094
[21:51:07.352] iteration 2150 : loss : 0.047161 cons_dist: 0.004620, loss_weight: 0.012094
[21:51:08.440] iteration 2151 : loss : 0.040266 cons_dist: 0.005935, loss_weight: 0.012094
[21:51:09.358] iteration 2152 : loss : 0.059779 cons_dist: 0.002231, loss_weight: 0.012094
[21:51:10.276] iteration 2153 : loss : 0.067439 cons_dist: 0.001162, loss_weight: 0.012094
[21:51:11.192] iteration 2154 : loss : 0.050453 cons_dist: 0.009663, loss_weight: 0.012094
[21:51:12.109] iteration 2155 : loss : 0.064138 cons_dist: 0.002033, loss_weight: 0.012094
[21:51:13.025] iteration 2156 : loss : 0.056747 cons_dist: 0.000719, loss_weight: 0.012094
[21:51:13.944] iteration 2157 : loss : 0.085960 cons_dist: 0.003093, loss_weight: 0.012094
[21:51:14.863] iteration 2158 : loss : 0.068608 cons_dist: 0.000506, loss_weight: 0.012094
[21:51:15.779] iteration 2159 : loss : 0.057369 cons_dist: 0.001920, loss_weight: 0.012094
[21:51:16.695] iteration 2160 : loss : 0.045070 cons_dist: 0.000869, loss_weight: 0.012094
[21:51:18.342] iteration 2161 : loss : 0.051050 cons_dist: 0.000590, loss_weight: 0.012094
[21:51:19.259] iteration 2162 : loss : 0.041922 cons_dist: 0.002644, loss_weight: 0.012094
[21:51:20.176] iteration 2163 : loss : 0.062750 cons_dist: 0.003692, loss_weight: 0.012094
[21:51:21.093] iteration 2164 : loss : 0.048518 cons_dist: 0.002615, loss_weight: 0.012094
[21:51:22.010] iteration 2165 : loss : 0.073122 cons_dist: 0.001112, loss_weight: 0.012094
[21:51:22.927] iteration 2166 : loss : 0.061707 cons_dist: 0.001958, loss_weight: 0.012094
[21:51:23.843] iteration 2167 : loss : 0.054312 cons_dist: 0.003805, loss_weight: 0.012094
[21:51:24.761] iteration 2168 : loss : 0.071098 cons_dist: 0.000595, loss_weight: 0.012094
[21:51:25.678] iteration 2169 : loss : 0.047268 cons_dist: 0.001220, loss_weight: 0.012094
[21:51:26.595] iteration 2170 : loss : 0.077855 cons_dist: 0.002464, loss_weight: 0.012094
[21:51:27.513] iteration 2171 : loss : 0.048105 cons_dist: 0.011556, loss_weight: 0.012094
[21:51:28.431] iteration 2172 : loss : 0.050745 cons_dist: 0.001281, loss_weight: 0.012094
[21:51:29.981] iteration 2173 : loss : 0.055522 cons_dist: 0.003400, loss_weight: 0.012094
[21:51:30.897] iteration 2174 : loss : 0.075802 cons_dist: 0.001169, loss_weight: 0.012094
[21:51:31.815] iteration 2175 : loss : 0.051623 cons_dist: 0.005598, loss_weight: 0.012094
[21:51:32.733] iteration 2176 : loss : 0.059658 cons_dist: 0.001358, loss_weight: 0.012094
[21:51:33.653] iteration 2177 : loss : 0.059105 cons_dist: 0.040005, loss_weight: 0.012094
[21:51:34.574] iteration 2178 : loss : 0.055259 cons_dist: 0.004072, loss_weight: 0.012094
[21:51:35.491] iteration 2179 : loss : 0.040285 cons_dist: 0.002151, loss_weight: 0.012094
[21:51:36.409] iteration 2180 : loss : 0.214226 cons_dist: 0.005450, loss_weight: 0.012094
[21:51:37.325] iteration 2181 : loss : 0.048735 cons_dist: 0.005396, loss_weight: 0.012094
[21:51:38.243] iteration 2182 : loss : 0.069478 cons_dist: 0.006523, loss_weight: 0.012094
[21:51:39.161] iteration 2183 : loss : 0.056110 cons_dist: 0.007592, loss_weight: 0.012094
[21:51:40.078] iteration 2184 : loss : 0.064044 cons_dist: 0.002661, loss_weight: 0.012094
[21:51:41.626] iteration 2185 : loss : 0.062694 cons_dist: 0.001161, loss_weight: 0.012094
[21:51:42.542] iteration 2186 : loss : 0.060904 cons_dist: 0.008954, loss_weight: 0.012094
[21:51:43.460] iteration 2187 : loss : 0.056816 cons_dist: 0.003764, loss_weight: 0.012094
[21:51:44.378] iteration 2188 : loss : 0.043965 cons_dist: 0.004428, loss_weight: 0.012094
[21:51:45.295] iteration 2189 : loss : 0.062515 cons_dist: 0.005137, loss_weight: 0.012094
[21:51:46.213] iteration 2190 : loss : 0.042116 cons_dist: 0.003719, loss_weight: 0.012094
[21:51:47.130] iteration 2191 : loss : 0.043588 cons_dist: 0.009018, loss_weight: 0.012094
[21:51:48.048] iteration 2192 : loss : 0.051613 cons_dist: 0.003599, loss_weight: 0.012094
[21:51:48.965] iteration 2193 : loss : 0.050906 cons_dist: 0.002043, loss_weight: 0.012094
[21:51:49.882] iteration 2194 : loss : 0.040336 cons_dist: 0.009579, loss_weight: 0.012094
[21:51:50.799] iteration 2195 : loss : 0.076277 cons_dist: 0.002795, loss_weight: 0.012094
[21:51:51.738] iteration 2196 : loss : 0.066915 cons_dist: 0.000730, loss_weight: 0.012094
[21:51:53.324] iteration 2197 : loss : 0.057826 cons_dist: 0.006016, loss_weight: 0.012094
[21:51:54.240] iteration 2198 : loss : 0.046771 cons_dist: 0.040704, loss_weight: 0.012094
[21:51:55.156] iteration 2199 : loss : 0.048150 cons_dist: 0.009234, loss_weight: 0.012094
[21:51:56.073] iteration 2200 : loss : 0.051394 cons_dist: 0.000731, loss_weight: 0.012094
[21:51:58.326] iteration 2201 : loss : 0.043967 cons_dist: 0.002651, loss_weight: 0.012094
[21:51:59.243] iteration 2202 : loss : 0.069567 cons_dist: 0.000334, loss_weight: 0.012094
[21:52:00.161] iteration 2203 : loss : 0.048663 cons_dist: 0.014031, loss_weight: 0.012094
[21:52:01.079] iteration 2204 : loss : 0.040038 cons_dist: 0.002486, loss_weight: 0.012094
[21:52:01.998] iteration 2205 : loss : 0.068911 cons_dist: 0.004038, loss_weight: 0.012094
[21:52:02.914] iteration 2206 : loss : 0.060440 cons_dist: 0.004286, loss_weight: 0.012094
[21:52:03.832] iteration 2207 : loss : 0.043759 cons_dist: 0.001041, loss_weight: 0.012094
[21:52:04.749] iteration 2208 : loss : 0.080407 cons_dist: 0.001932, loss_weight: 0.012094
[21:52:06.259] iteration 2209 : loss : 0.049595 cons_dist: 0.005059, loss_weight: 0.012094
[21:52:07.174] iteration 2210 : loss : 0.064194 cons_dist: 0.004638, loss_weight: 0.012094
[21:52:08.093] iteration 2211 : loss : 0.050234 cons_dist: 0.000710, loss_weight: 0.012094
[21:52:09.010] iteration 2212 : loss : 0.075350 cons_dist: 0.007279, loss_weight: 0.012094
[21:52:09.925] iteration 2213 : loss : 0.056691 cons_dist: 0.007108, loss_weight: 0.012094
[21:52:10.842] iteration 2214 : loss : 0.058356 cons_dist: 0.008060, loss_weight: 0.012094
[21:52:11.760] iteration 2215 : loss : 0.049716 cons_dist: 0.007569, loss_weight: 0.012094
[21:52:12.677] iteration 2216 : loss : 0.053344 cons_dist: 0.003389, loss_weight: 0.012094
[21:52:13.594] iteration 2217 : loss : 0.047533 cons_dist: 0.001128, loss_weight: 0.012094
[21:52:14.550] iteration 2218 : loss : 0.040754 cons_dist: 0.001108, loss_weight: 0.012094
[21:52:15.468] iteration 2219 : loss : 0.061801 cons_dist: 0.001327, loss_weight: 0.012094
[21:52:16.385] iteration 2220 : loss : 0.084254 cons_dist: 0.005141, loss_weight: 0.012094
[21:52:17.954] iteration 2221 : loss : 0.039794 cons_dist: 0.001631, loss_weight: 0.012094
[21:52:18.871] iteration 2222 : loss : 0.060467 cons_dist: 0.007256, loss_weight: 0.012094
[21:52:19.789] iteration 2223 : loss : 0.038370 cons_dist: 0.000675, loss_weight: 0.012094
[21:52:20.707] iteration 2224 : loss : 0.051741 cons_dist: 0.020033, loss_weight: 0.012094
[21:52:21.624] iteration 2225 : loss : 0.050562 cons_dist: 0.001809, loss_weight: 0.012094
[21:52:22.541] iteration 2226 : loss : 0.053496 cons_dist: 0.013414, loss_weight: 0.012094
[21:52:23.457] iteration 2227 : loss : 0.039595 cons_dist: 0.000620, loss_weight: 0.012094
[21:52:24.375] iteration 2228 : loss : 0.053893 cons_dist: 0.007041, loss_weight: 0.012094
[21:52:25.293] iteration 2229 : loss : 0.041348 cons_dist: 0.002476, loss_weight: 0.012094
[21:52:26.210] iteration 2230 : loss : 0.122039 cons_dist: 0.005272, loss_weight: 0.012094
[21:52:27.126] iteration 2231 : loss : 0.057263 cons_dist: 0.001642, loss_weight: 0.012094
[21:52:28.044] iteration 2232 : loss : 0.054687 cons_dist: 0.001833, loss_weight: 0.012094
[21:52:29.640] iteration 2233 : loss : 0.054316 cons_dist: 0.001493, loss_weight: 0.012094
[21:52:30.558] iteration 2234 : loss : 0.056611 cons_dist: 0.001089, loss_weight: 0.012094
[21:52:31.476] iteration 2235 : loss : 0.037877 cons_dist: 0.002393, loss_weight: 0.012094
[21:52:32.394] iteration 2236 : loss : 0.047206 cons_dist: 0.002842, loss_weight: 0.012094
[21:52:33.312] iteration 2237 : loss : 0.049375 cons_dist: 0.002675, loss_weight: 0.012094
[21:52:34.230] iteration 2238 : loss : 0.060370 cons_dist: 0.001465, loss_weight: 0.012094
[21:52:35.147] iteration 2239 : loss : 0.038257 cons_dist: 0.005904, loss_weight: 0.012094
[21:52:36.065] iteration 2240 : loss : 0.127399 cons_dist: 0.007947, loss_weight: 0.012094
[21:52:36.983] iteration 2241 : loss : 0.092000 cons_dist: 0.001591, loss_weight: 0.012094
[21:52:37.903] iteration 2242 : loss : 0.070632 cons_dist: 0.006359, loss_weight: 0.012094
[21:52:38.820] iteration 2243 : loss : 0.080673 cons_dist: 0.001425, loss_weight: 0.012094
[21:52:39.737] iteration 2244 : loss : 0.066668 cons_dist: 0.003074, loss_weight: 0.012094
[21:52:41.308] iteration 2245 : loss : 0.045510 cons_dist: 0.001069, loss_weight: 0.012094
[21:52:42.227] iteration 2246 : loss : 0.062757 cons_dist: 0.001883, loss_weight: 0.012094
[21:52:43.144] iteration 2247 : loss : 0.070919 cons_dist: 0.001061, loss_weight: 0.012094
[21:52:44.062] iteration 2248 : loss : 0.061494 cons_dist: 0.004199, loss_weight: 0.012094
[21:52:44.980] iteration 2249 : loss : 0.053902 cons_dist: 0.002090, loss_weight: 0.012094
[21:52:45.898] iteration 2250 : loss : 0.104488 cons_dist: 0.000796, loss_weight: 0.012094
[21:52:46.968] iteration 2251 : loss : 0.063952 cons_dist: 0.004654, loss_weight: 0.014183
[21:52:47.884] iteration 2252 : loss : 0.039054 cons_dist: 0.001610, loss_weight: 0.014183
[21:52:48.801] iteration 2253 : loss : 0.055102 cons_dist: 0.003120, loss_weight: 0.014183
[21:52:49.720] iteration 2254 : loss : 0.041087 cons_dist: 0.001467, loss_weight: 0.014183
[21:52:50.639] iteration 2255 : loss : 0.060681 cons_dist: 0.001182, loss_weight: 0.014183
[21:52:51.558] iteration 2256 : loss : 0.049668 cons_dist: 0.001881, loss_weight: 0.014183
[21:52:53.070] iteration 2257 : loss : 0.051994 cons_dist: 0.007692, loss_weight: 0.014183
[21:52:53.987] iteration 2258 : loss : 0.165234 cons_dist: 0.005360, loss_weight: 0.014183
[21:52:54.904] iteration 2259 : loss : 0.073324 cons_dist: 0.006866, loss_weight: 0.014183
[21:52:55.821] iteration 2260 : loss : 0.189579 cons_dist: 0.000712, loss_weight: 0.014183
[21:52:56.739] iteration 2261 : loss : 0.080497 cons_dist: 0.003384, loss_weight: 0.014183
[21:52:57.656] iteration 2262 : loss : 0.053069 cons_dist: 0.001664, loss_weight: 0.014183
[21:52:58.574] iteration 2263 : loss : 0.071133 cons_dist: 0.004032, loss_weight: 0.014183
[21:52:59.490] iteration 2264 : loss : 0.053772 cons_dist: 0.001802, loss_weight: 0.014183
[21:53:00.406] iteration 2265 : loss : 0.042102 cons_dist: 0.004746, loss_weight: 0.014183
[21:53:01.323] iteration 2266 : loss : 0.175397 cons_dist: 0.030434, loss_weight: 0.014183
[21:53:02.240] iteration 2267 : loss : 0.044943 cons_dist: 0.002559, loss_weight: 0.014183
[21:53:03.157] iteration 2268 : loss : 0.061268 cons_dist: 0.001044, loss_weight: 0.014183
[21:53:04.769] iteration 2269 : loss : 0.074665 cons_dist: 0.007110, loss_weight: 0.014183
[21:53:05.686] iteration 2270 : loss : 0.083056 cons_dist: 0.001965, loss_weight: 0.014183
[21:53:06.603] iteration 2271 : loss : 0.083063 cons_dist: 0.004059, loss_weight: 0.014183
[21:53:07.521] iteration 2272 : loss : 0.046287 cons_dist: 0.002601, loss_weight: 0.014183
[21:53:08.438] iteration 2273 : loss : 0.040155 cons_dist: 0.005623, loss_weight: 0.014183
[21:53:09.356] iteration 2274 : loss : 0.039771 cons_dist: 0.001034, loss_weight: 0.014183
[21:53:10.275] iteration 2275 : loss : 0.043991 cons_dist: 0.006658, loss_weight: 0.014183
[21:53:11.193] iteration 2276 : loss : 0.056730 cons_dist: 0.000796, loss_weight: 0.014183
[21:53:12.111] iteration 2277 : loss : 0.081185 cons_dist: 0.006616, loss_weight: 0.014183
[21:53:13.031] iteration 2278 : loss : 0.048204 cons_dist: 0.000722, loss_weight: 0.014183
[21:53:13.948] iteration 2279 : loss : 0.053334 cons_dist: 0.003261, loss_weight: 0.014183
[21:53:14.865] iteration 2280 : loss : 0.056905 cons_dist: 0.000709, loss_weight: 0.014183
[21:53:16.358] iteration 2281 : loss : 0.065616 cons_dist: 0.019759, loss_weight: 0.014183
[21:53:17.275] iteration 2282 : loss : 0.047994 cons_dist: 0.002351, loss_weight: 0.014183
[21:53:18.192] iteration 2283 : loss : 0.051103 cons_dist: 0.002931, loss_weight: 0.014183
[21:53:19.109] iteration 2284 : loss : 0.052701 cons_dist: 0.001198, loss_weight: 0.014183
[21:53:20.024] iteration 2285 : loss : 0.055143 cons_dist: 0.003140, loss_weight: 0.014183
[21:53:20.941] iteration 2286 : loss : 0.050141 cons_dist: 0.002509, loss_weight: 0.014183
[21:53:21.858] iteration 2287 : loss : 0.043271 cons_dist: 0.000558, loss_weight: 0.014183
[21:53:22.774] iteration 2288 : loss : 0.121027 cons_dist: 0.001399, loss_weight: 0.014183
[21:53:23.691] iteration 2289 : loss : 0.042065 cons_dist: 0.000943, loss_weight: 0.014183
[21:53:24.609] iteration 2290 : loss : 0.048512 cons_dist: 0.001963, loss_weight: 0.014183
[21:53:25.526] iteration 2291 : loss : 0.068163 cons_dist: 0.037352, loss_weight: 0.014183
[21:53:26.443] iteration 2292 : loss : 0.053456 cons_dist: 0.001644, loss_weight: 0.014183
[21:53:27.992] iteration 2293 : loss : 0.045584 cons_dist: 0.001115, loss_weight: 0.014183
[21:53:28.910] iteration 2294 : loss : 0.055803 cons_dist: 0.001206, loss_weight: 0.014183
[21:53:29.829] iteration 2295 : loss : 0.054165 cons_dist: 0.000958, loss_weight: 0.014183
[21:53:30.747] iteration 2296 : loss : 0.073059 cons_dist: 0.001203, loss_weight: 0.014183
[21:53:31.666] iteration 2297 : loss : 0.042547 cons_dist: 0.001280, loss_weight: 0.014183
[21:53:32.584] iteration 2298 : loss : 0.045761 cons_dist: 0.002660, loss_weight: 0.014183
[21:53:33.502] iteration 2299 : loss : 0.050007 cons_dist: 0.000367, loss_weight: 0.014183
[21:53:34.421] iteration 2300 : loss : 0.066588 cons_dist: 0.010601, loss_weight: 0.014183
[21:53:35.509] iteration 2301 : loss : 0.095285 cons_dist: 0.003804, loss_weight: 0.014183
[21:53:36.425] iteration 2302 : loss : 0.043083 cons_dist: 0.001503, loss_weight: 0.014183
[21:53:37.341] iteration 2303 : loss : 0.042098 cons_dist: 0.001138, loss_weight: 0.014183
[21:53:38.260] iteration 2304 : loss : 0.039231 cons_dist: 0.005877, loss_weight: 0.014183
[21:53:39.880] iteration 2305 : loss : 0.049293 cons_dist: 0.003781, loss_weight: 0.014183
[21:53:40.797] iteration 2306 : loss : 0.082040 cons_dist: 0.002906, loss_weight: 0.014183
[21:53:41.715] iteration 2307 : loss : 0.052327 cons_dist: 0.005461, loss_weight: 0.014183
[21:53:42.633] iteration 2308 : loss : 0.061542 cons_dist: 0.008220, loss_weight: 0.014183
[21:53:43.550] iteration 2309 : loss : 0.050636 cons_dist: 0.001708, loss_weight: 0.014183
[21:53:44.469] iteration 2310 : loss : 0.056359 cons_dist: 0.006913, loss_weight: 0.014183
[21:53:45.389] iteration 2311 : loss : 0.048473 cons_dist: 0.003196, loss_weight: 0.014183
[21:53:46.307] iteration 2312 : loss : 0.065633 cons_dist: 0.000829, loss_weight: 0.014183
[21:53:47.225] iteration 2313 : loss : 0.054329 cons_dist: 0.001623, loss_weight: 0.014183
[21:53:48.143] iteration 2314 : loss : 0.049912 cons_dist: 0.003543, loss_weight: 0.014183
[21:53:49.061] iteration 2315 : loss : 0.041343 cons_dist: 0.006387, loss_weight: 0.014183
[21:53:49.980] iteration 2316 : loss : 0.054333 cons_dist: 0.004087, loss_weight: 0.014183
[21:53:51.604] iteration 2317 : loss : 0.073090 cons_dist: 0.004815, loss_weight: 0.014183
[21:53:52.523] iteration 2318 : loss : 0.048964 cons_dist: 0.016560, loss_weight: 0.014183
[21:53:53.442] iteration 2319 : loss : 0.053077 cons_dist: 0.002723, loss_weight: 0.014183
[21:53:54.361] iteration 2320 : loss : 0.055831 cons_dist: 0.002469, loss_weight: 0.014183
[21:53:55.279] iteration 2321 : loss : 0.059036 cons_dist: 0.002645, loss_weight: 0.014183
[21:53:56.196] iteration 2322 : loss : 0.077974 cons_dist: 0.004813, loss_weight: 0.014183
[21:53:57.114] iteration 2323 : loss : 0.037518 cons_dist: 0.002225, loss_weight: 0.014183
[21:53:58.032] iteration 2324 : loss : 0.040953 cons_dist: 0.007497, loss_weight: 0.014183
[21:53:58.950] iteration 2325 : loss : 0.055773 cons_dist: 0.001625, loss_weight: 0.014183
[21:53:59.867] iteration 2326 : loss : 0.043940 cons_dist: 0.005207, loss_weight: 0.014183
[21:54:00.785] iteration 2327 : loss : 0.061798 cons_dist: 0.000687, loss_weight: 0.014183
[21:54:01.704] iteration 2328 : loss : 0.045616 cons_dist: 0.000940, loss_weight: 0.014183
[21:54:03.210] iteration 2329 : loss : 0.042648 cons_dist: 0.001444, loss_weight: 0.014183
[21:54:04.127] iteration 2330 : loss : 0.063226 cons_dist: 0.001151, loss_weight: 0.014183
[21:54:05.044] iteration 2331 : loss : 0.054140 cons_dist: 0.002415, loss_weight: 0.014183
[21:54:05.962] iteration 2332 : loss : 0.035284 cons_dist: 0.023991, loss_weight: 0.014183
[21:54:06.880] iteration 2333 : loss : 0.041324 cons_dist: 0.005358, loss_weight: 0.014183
[21:54:07.798] iteration 2334 : loss : 0.072694 cons_dist: 0.006780, loss_weight: 0.014183
[21:54:08.716] iteration 2335 : loss : 0.045301 cons_dist: 0.001573, loss_weight: 0.014183
[21:54:09.633] iteration 2336 : loss : 0.067704 cons_dist: 0.001189, loss_weight: 0.014183
[21:54:10.551] iteration 2337 : loss : 0.082970 cons_dist: 0.002482, loss_weight: 0.014183
[21:54:11.466] iteration 2338 : loss : 0.038493 cons_dist: 0.000429, loss_weight: 0.014183
[21:54:12.385] iteration 2339 : loss : 0.053632 cons_dist: 0.001318, loss_weight: 0.014183
[21:54:13.302] iteration 2340 : loss : 0.040727 cons_dist: 0.001535, loss_weight: 0.014183
[21:54:14.873] iteration 2341 : loss : 0.042343 cons_dist: 0.001253, loss_weight: 0.014183
[21:54:15.789] iteration 2342 : loss : 0.044667 cons_dist: 0.005771, loss_weight: 0.014183
[21:54:16.705] iteration 2343 : loss : 0.069261 cons_dist: 0.003114, loss_weight: 0.014183
[21:54:17.623] iteration 2344 : loss : 0.044488 cons_dist: 0.000791, loss_weight: 0.014183
[21:54:18.540] iteration 2345 : loss : 0.056550 cons_dist: 0.009340, loss_weight: 0.014183
[21:54:19.457] iteration 2346 : loss : 0.062884 cons_dist: 0.000487, loss_weight: 0.014183
[21:54:20.374] iteration 2347 : loss : 0.036806 cons_dist: 0.007702, loss_weight: 0.014183
[21:54:21.291] iteration 2348 : loss : 0.057136 cons_dist: 0.003234, loss_weight: 0.014183
[21:54:22.208] iteration 2349 : loss : 0.045755 cons_dist: 0.002044, loss_weight: 0.014183
[21:54:23.127] iteration 2350 : loss : 0.040340 cons_dist: 0.004564, loss_weight: 0.014183
[21:54:24.211] iteration 2351 : loss : 0.074703 cons_dist: 0.005779, loss_weight: 0.014183
[21:54:25.126] iteration 2352 : loss : 0.044660 cons_dist: 0.006830, loss_weight: 0.014183
[21:54:26.756] iteration 2353 : loss : 0.049984 cons_dist: 0.001463, loss_weight: 0.014183
[21:54:27.673] iteration 2354 : loss : 0.034995 cons_dist: 0.001632, loss_weight: 0.014183
[21:54:28.591] iteration 2355 : loss : 0.058640 cons_dist: 0.002323, loss_weight: 0.014183
[21:54:29.510] iteration 2356 : loss : 0.062038 cons_dist: 0.004476, loss_weight: 0.014183
[21:54:30.429] iteration 2357 : loss : 0.042713 cons_dist: 0.038288, loss_weight: 0.014183
[21:54:31.347] iteration 2358 : loss : 0.073878 cons_dist: 0.000755, loss_weight: 0.014183
[21:54:32.264] iteration 2359 : loss : 0.135590 cons_dist: 0.002430, loss_weight: 0.014183
[21:54:33.181] iteration 2360 : loss : 0.059260 cons_dist: 0.007514, loss_weight: 0.014183
[21:54:34.099] iteration 2361 : loss : 0.056988 cons_dist: 0.001267, loss_weight: 0.014183
[21:54:35.017] iteration 2362 : loss : 0.056853 cons_dist: 0.000936, loss_weight: 0.014183
[21:54:35.934] iteration 2363 : loss : 0.048254 cons_dist: 0.031645, loss_weight: 0.014183
[21:54:36.853] iteration 2364 : loss : 0.050470 cons_dist: 0.000556, loss_weight: 0.014183
[21:54:38.500] iteration 2365 : loss : 0.068209 cons_dist: 0.009332, loss_weight: 0.014183
[21:54:39.417] iteration 2366 : loss : 0.044268 cons_dist: 0.001277, loss_weight: 0.014183
[21:54:40.335] iteration 2367 : loss : 0.045462 cons_dist: 0.005904, loss_weight: 0.014183
[21:54:41.253] iteration 2368 : loss : 0.051875 cons_dist: 0.001362, loss_weight: 0.014183
[21:54:42.169] iteration 2369 : loss : 0.048333 cons_dist: 0.003521, loss_weight: 0.014183
[21:54:43.084] iteration 2370 : loss : 0.056156 cons_dist: 0.001648, loss_weight: 0.014183
[21:54:44.001] iteration 2371 : loss : 0.057696 cons_dist: 0.001142, loss_weight: 0.014183
[21:54:44.917] iteration 2372 : loss : 0.048058 cons_dist: 0.002098, loss_weight: 0.014183
[21:54:45.834] iteration 2373 : loss : 0.044282 cons_dist: 0.001776, loss_weight: 0.014183
[21:54:46.750] iteration 2374 : loss : 0.063935 cons_dist: 0.004592, loss_weight: 0.014183
[21:54:47.670] iteration 2375 : loss : 0.043641 cons_dist: 0.001938, loss_weight: 0.014183
[21:54:48.588] iteration 2376 : loss : 0.059569 cons_dist: 0.003817, loss_weight: 0.014183
[21:54:50.180] iteration 2377 : loss : 0.041847 cons_dist: 0.001862, loss_weight: 0.014183
[21:54:51.098] iteration 2378 : loss : 0.040340 cons_dist: 0.006439, loss_weight: 0.014183
[21:54:52.018] iteration 2379 : loss : 0.035444 cons_dist: 0.032861, loss_weight: 0.014183
[21:54:52.936] iteration 2380 : loss : 0.052078 cons_dist: 0.002910, loss_weight: 0.014183
[21:54:53.853] iteration 2381 : loss : 0.078233 cons_dist: 0.002457, loss_weight: 0.014183
[21:54:54.769] iteration 2382 : loss : 0.043425 cons_dist: 0.004494, loss_weight: 0.014183
[21:54:55.687] iteration 2383 : loss : 0.045361 cons_dist: 0.000562, loss_weight: 0.014183
[21:54:56.604] iteration 2384 : loss : 0.048979 cons_dist: 0.001286, loss_weight: 0.014183
[21:54:57.520] iteration 2385 : loss : 0.042752 cons_dist: 0.002452, loss_weight: 0.014183
[21:54:58.438] iteration 2386 : loss : 0.036083 cons_dist: 0.032751, loss_weight: 0.014183
[21:54:59.354] iteration 2387 : loss : 0.061322 cons_dist: 0.002001, loss_weight: 0.014183
[21:55:00.272] iteration 2388 : loss : 0.064642 cons_dist: 0.001080, loss_weight: 0.014183
[21:55:01.804] iteration 2389 : loss : 0.050180 cons_dist: 0.000725, loss_weight: 0.014183
[21:55:02.721] iteration 2390 : loss : 0.045320 cons_dist: 0.001094, loss_weight: 0.014183
[21:55:03.641] iteration 2391 : loss : 0.054686 cons_dist: 0.001766, loss_weight: 0.014183
[21:55:04.557] iteration 2392 : loss : 0.046092 cons_dist: 0.002951, loss_weight: 0.014183
[21:55:05.473] iteration 2393 : loss : 0.043254 cons_dist: 0.000651, loss_weight: 0.014183
[21:55:06.389] iteration 2394 : loss : 0.062909 cons_dist: 0.000860, loss_weight: 0.014183
[21:55:07.307] iteration 2395 : loss : 0.052500 cons_dist: 0.003583, loss_weight: 0.014183
[21:55:08.225] iteration 2396 : loss : 0.038536 cons_dist: 0.001057, loss_weight: 0.014183
[21:55:09.142] iteration 2397 : loss : 0.038481 cons_dist: 0.001524, loss_weight: 0.014183
[21:55:10.061] iteration 2398 : loss : 0.121018 cons_dist: 0.000845, loss_weight: 0.014183
[21:55:10.979] iteration 2399 : loss : 0.049435 cons_dist: 0.003052, loss_weight: 0.014183
[21:55:11.897] iteration 2400 : loss : 0.073484 cons_dist: 0.002759, loss_weight: 0.014183
[21:55:13.405] save best model to model/LA_vnet_25_labeled/UAMT/iter_2400_dice_0.9222151041030884.pth
[21:55:14.944] iteration 2401 : loss : 0.058165 cons_dist: 0.010236, loss_weight: 0.016530
[21:55:15.860] iteration 2402 : loss : 0.066238 cons_dist: 0.009080, loss_weight: 0.016530
[21:55:16.776] iteration 2403 : loss : 0.065583 cons_dist: 0.001669, loss_weight: 0.016530
[21:55:17.692] iteration 2404 : loss : 0.053148 cons_dist: 0.003892, loss_weight: 0.016530
[21:55:18.607] iteration 2405 : loss : 0.043552 cons_dist: 0.001538, loss_weight: 0.016530
[21:55:19.521] iteration 2406 : loss : 0.040943 cons_dist: 0.003065, loss_weight: 0.016530
[21:55:20.436] iteration 2407 : loss : 0.046061 cons_dist: 0.002381, loss_weight: 0.016530
[21:55:21.350] iteration 2408 : loss : 0.045835 cons_dist: 0.002305, loss_weight: 0.016530
[21:55:22.266] iteration 2409 : loss : 0.057064 cons_dist: 0.002098, loss_weight: 0.016530
[21:55:23.183] iteration 2410 : loss : 0.067790 cons_dist: 0.005260, loss_weight: 0.016530
[21:55:24.099] iteration 2411 : loss : 0.058377 cons_dist: 0.001840, loss_weight: 0.016530
[21:55:25.019] iteration 2412 : loss : 0.049430 cons_dist: 0.006055, loss_weight: 0.016530
[21:55:26.641] iteration 2413 : loss : 0.068201 cons_dist: 0.028981, loss_weight: 0.016530
[21:55:27.557] iteration 2414 : loss : 0.087665 cons_dist: 0.002443, loss_weight: 0.016530
[21:55:28.474] iteration 2415 : loss : 0.036110 cons_dist: 0.004231, loss_weight: 0.016530
[21:55:29.391] iteration 2416 : loss : 0.085635 cons_dist: 0.003475, loss_weight: 0.016530
[21:55:30.307] iteration 2417 : loss : 0.045916 cons_dist: 0.001223, loss_weight: 0.016530
[21:55:31.224] iteration 2418 : loss : 0.054246 cons_dist: 0.022362, loss_weight: 0.016530
[21:55:32.138] iteration 2419 : loss : 0.043706 cons_dist: 0.001229, loss_weight: 0.016530
[21:55:33.053] iteration 2420 : loss : 0.046065 cons_dist: 0.001275, loss_weight: 0.016530
[21:55:33.967] iteration 2421 : loss : 0.064572 cons_dist: 0.002511, loss_weight: 0.016530
[21:55:34.885] iteration 2422 : loss : 0.062955 cons_dist: 0.001690, loss_weight: 0.016530
[21:55:35.798] iteration 2423 : loss : 0.055853 cons_dist: 0.004608, loss_weight: 0.016530
[21:55:36.714] iteration 2424 : loss : 0.045671 cons_dist: 0.002269, loss_weight: 0.016530
[21:55:38.224] iteration 2425 : loss : 0.059622 cons_dist: 0.011851, loss_weight: 0.016530
[21:55:39.140] iteration 2426 : loss : 0.054497 cons_dist: 0.001866, loss_weight: 0.016530
[21:55:40.056] iteration 2427 : loss : 0.086147 cons_dist: 0.002350, loss_weight: 0.016530
[21:55:40.972] iteration 2428 : loss : 0.045892 cons_dist: 0.001288, loss_weight: 0.016530
[21:55:41.888] iteration 2429 : loss : 0.067626 cons_dist: 0.001159, loss_weight: 0.016530
[21:55:42.804] iteration 2430 : loss : 0.065289 cons_dist: 0.000985, loss_weight: 0.016530
[21:55:43.723] iteration 2431 : loss : 0.048188 cons_dist: 0.002907, loss_weight: 0.016530
[21:55:44.641] iteration 2432 : loss : 0.072590 cons_dist: 0.006232, loss_weight: 0.016530
[21:55:45.558] iteration 2433 : loss : 0.052703 cons_dist: 0.039154, loss_weight: 0.016530
[21:55:46.476] iteration 2434 : loss : 0.058076 cons_dist: 0.001388, loss_weight: 0.016530
[21:55:47.394] iteration 2435 : loss : 0.046305 cons_dist: 0.004414, loss_weight: 0.016530
[21:55:48.313] iteration 2436 : loss : 0.078198 cons_dist: 0.001249, loss_weight: 0.016530
[21:55:49.870] iteration 2437 : loss : 0.080962 cons_dist: 0.008578, loss_weight: 0.016530
[21:55:50.788] iteration 2438 : loss : 0.055763 cons_dist: 0.004181, loss_weight: 0.016530
[21:55:51.706] iteration 2439 : loss : 0.054596 cons_dist: 0.001137, loss_weight: 0.016530
[21:55:52.625] iteration 2440 : loss : 0.067400 cons_dist: 0.001177, loss_weight: 0.016530
[21:55:53.544] iteration 2441 : loss : 0.069596 cons_dist: 0.002476, loss_weight: 0.016530
[21:55:54.462] iteration 2442 : loss : 0.042211 cons_dist: 0.005919, loss_weight: 0.016530
[21:55:55.380] iteration 2443 : loss : 0.048036 cons_dist: 0.000901, loss_weight: 0.016530
[21:55:56.298] iteration 2444 : loss : 0.035288 cons_dist: 0.001094, loss_weight: 0.016530
[21:55:57.217] iteration 2445 : loss : 0.050982 cons_dist: 0.015897, loss_weight: 0.016530
[21:55:58.138] iteration 2446 : loss : 0.055764 cons_dist: 0.040667, loss_weight: 0.016530
[21:55:59.055] iteration 2447 : loss : 0.044075 cons_dist: 0.000592, loss_weight: 0.016530
[21:55:59.972] iteration 2448 : loss : 0.054423 cons_dist: 0.001440, loss_weight: 0.016530
[21:56:01.564] iteration 2449 : loss : 0.082107 cons_dist: 0.001206, loss_weight: 0.016530
[21:56:02.483] iteration 2450 : loss : 0.053755 cons_dist: 0.001950, loss_weight: 0.016530
[21:56:03.550] iteration 2451 : loss : 0.053400 cons_dist: 0.003440, loss_weight: 0.016530
[21:56:04.468] iteration 2452 : loss : 0.070616 cons_dist: 0.004458, loss_weight: 0.016530
[21:56:05.385] iteration 2453 : loss : 0.047380 cons_dist: 0.003746, loss_weight: 0.016530
[21:56:06.303] iteration 2454 : loss : 0.054366 cons_dist: 0.003564, loss_weight: 0.016530
[21:56:07.221] iteration 2455 : loss : 0.045782 cons_dist: 0.000663, loss_weight: 0.016530
[21:56:08.140] iteration 2456 : loss : 0.044679 cons_dist: 0.001259, loss_weight: 0.016530
[21:56:09.057] iteration 2457 : loss : 0.060146 cons_dist: 0.001471, loss_weight: 0.016530
[21:56:09.975] iteration 2458 : loss : 0.059841 cons_dist: 0.001461, loss_weight: 0.016530
[21:56:10.893] iteration 2459 : loss : 0.046827 cons_dist: 0.003957, loss_weight: 0.016530
[21:56:11.811] iteration 2460 : loss : 0.048454 cons_dist: 0.005031, loss_weight: 0.016530
[21:56:13.380] iteration 2461 : loss : 0.046561 cons_dist: 0.002012, loss_weight: 0.016530
[21:56:14.299] iteration 2462 : loss : 0.050555 cons_dist: 0.001899, loss_weight: 0.016530
[21:56:15.217] iteration 2463 : loss : 0.060879 cons_dist: 0.000957, loss_weight: 0.016530
[21:56:16.134] iteration 2464 : loss : 0.044384 cons_dist: 0.002687, loss_weight: 0.016530
[21:56:17.052] iteration 2465 : loss : 0.036912 cons_dist: 0.002136, loss_weight: 0.016530
[21:56:17.969] iteration 2466 : loss : 0.053436 cons_dist: 0.001871, loss_weight: 0.016530
[21:56:18.886] iteration 2467 : loss : 0.046861 cons_dist: 0.001745, loss_weight: 0.016530
[21:56:19.803] iteration 2468 : loss : 0.062369 cons_dist: 0.002335, loss_weight: 0.016530
[21:56:20.722] iteration 2469 : loss : 0.045683 cons_dist: 0.002204, loss_weight: 0.016530
[21:56:21.639] iteration 2470 : loss : 0.059975 cons_dist: 0.004361, loss_weight: 0.016530
[21:56:22.557] iteration 2471 : loss : 0.038151 cons_dist: 0.000888, loss_weight: 0.016530
[21:56:23.474] iteration 2472 : loss : 0.058344 cons_dist: 0.000886, loss_weight: 0.016530
[21:56:25.049] iteration 2473 : loss : 0.080161 cons_dist: 0.001085, loss_weight: 0.016530
[21:56:25.969] iteration 2474 : loss : 0.050536 cons_dist: 0.004301, loss_weight: 0.016530
[21:56:26.892] iteration 2475 : loss : 0.047605 cons_dist: 0.001712, loss_weight: 0.016530
[21:56:27.812] iteration 2476 : loss : 0.042817 cons_dist: 0.004258, loss_weight: 0.016530
[21:56:28.729] iteration 2477 : loss : 0.050504 cons_dist: 0.002212, loss_weight: 0.016530
[21:56:29.646] iteration 2478 : loss : 0.047036 cons_dist: 0.006386, loss_weight: 0.016530
[21:56:30.563] iteration 2479 : loss : 0.029418 cons_dist: 0.001865, loss_weight: 0.016530
[21:56:31.480] iteration 2480 : loss : 0.047583 cons_dist: 0.003554, loss_weight: 0.016530
[21:56:32.397] iteration 2481 : loss : 0.106453 cons_dist: 0.003710, loss_weight: 0.016530
[21:56:33.313] iteration 2482 : loss : 0.051732 cons_dist: 0.001045, loss_weight: 0.016530
[21:56:34.231] iteration 2483 : loss : 0.071968 cons_dist: 0.004527, loss_weight: 0.016530
[21:56:35.148] iteration 2484 : loss : 0.036394 cons_dist: 0.019783, loss_weight: 0.016530
[21:56:36.772] iteration 2485 : loss : 0.056432 cons_dist: 0.006663, loss_weight: 0.016530
[21:56:37.691] iteration 2486 : loss : 0.044373 cons_dist: 0.001240, loss_weight: 0.016530
[21:56:38.612] iteration 2487 : loss : 0.057434 cons_dist: 0.002853, loss_weight: 0.016530
[21:56:39.528] iteration 2488 : loss : 0.061883 cons_dist: 0.003927, loss_weight: 0.016530
[21:56:40.444] iteration 2489 : loss : 0.038417 cons_dist: 0.001943, loss_weight: 0.016530
[21:56:41.361] iteration 2490 : loss : 0.050715 cons_dist: 0.007799, loss_weight: 0.016530
[21:56:42.278] iteration 2491 : loss : 0.047565 cons_dist: 0.009121, loss_weight: 0.016530
[21:56:43.195] iteration 2492 : loss : 0.066909 cons_dist: 0.005392, loss_weight: 0.016530
[21:56:44.112] iteration 2493 : loss : 0.071775 cons_dist: 0.001208, loss_weight: 0.016530
[21:56:45.031] iteration 2494 : loss : 0.059269 cons_dist: 0.001552, loss_weight: 0.016530
[21:56:45.947] iteration 2495 : loss : 0.058004 cons_dist: 0.002819, loss_weight: 0.016530
[21:56:46.864] iteration 2496 : loss : 0.063996 cons_dist: 0.005208, loss_weight: 0.016530
[21:56:48.512] iteration 2497 : loss : 0.054678 cons_dist: 0.001673, loss_weight: 0.016530
[21:56:49.430] iteration 2498 : loss : 0.054629 cons_dist: 0.001098, loss_weight: 0.016530
[21:56:50.347] iteration 2499 : loss : 0.033823 cons_dist: 0.005393, loss_weight: 0.016530
[21:56:51.262] iteration 2500 : loss : 0.055659 cons_dist: 0.002061, loss_weight: 0.016530
[21:56:52.339] iteration 2501 : loss : 0.067208 cons_dist: 0.009065, loss_weight: 0.016530
[21:56:53.256] iteration 2502 : loss : 0.042794 cons_dist: 0.003780, loss_weight: 0.016530
[21:56:54.173] iteration 2503 : loss : 0.051282 cons_dist: 0.031675, loss_weight: 0.016530
[21:56:55.089] iteration 2504 : loss : 0.033723 cons_dist: 0.008636, loss_weight: 0.016530
[21:56:56.007] iteration 2505 : loss : 0.041525 cons_dist: 0.000872, loss_weight: 0.016530
[21:56:56.925] iteration 2506 : loss : 0.055723 cons_dist: 0.008536, loss_weight: 0.016530
[21:56:57.846] iteration 2507 : loss : 0.051613 cons_dist: 0.003385, loss_weight: 0.016530
[21:56:58.761] iteration 2508 : loss : 0.057476 cons_dist: 0.012433, loss_weight: 0.016530
[21:57:00.365] iteration 2509 : loss : 0.055093 cons_dist: 0.002310, loss_weight: 0.016530
[21:57:01.282] iteration 2510 : loss : 0.045725 cons_dist: 0.001098, loss_weight: 0.016530
[21:57:02.198] iteration 2511 : loss : 0.047315 cons_dist: 0.002652, loss_weight: 0.016530
[21:57:03.116] iteration 2512 : loss : 0.051606 cons_dist: 0.001876, loss_weight: 0.016530
[21:57:04.032] iteration 2513 : loss : 0.057528 cons_dist: 0.000859, loss_weight: 0.016530
[21:57:04.948] iteration 2514 : loss : 0.057069 cons_dist: 0.003755, loss_weight: 0.016530
[21:57:05.865] iteration 2515 : loss : 0.058709 cons_dist: 0.002702, loss_weight: 0.016530
[21:57:06.782] iteration 2516 : loss : 0.038737 cons_dist: 0.006115, loss_weight: 0.016530
[21:57:07.700] iteration 2517 : loss : 0.045073 cons_dist: 0.000853, loss_weight: 0.016530
[21:57:08.616] iteration 2518 : loss : 0.050854 cons_dist: 0.001178, loss_weight: 0.016530
[21:57:09.534] iteration 2519 : loss : 0.040685 cons_dist: 0.030331, loss_weight: 0.016530
[21:57:10.452] iteration 2520 : loss : 0.064970 cons_dist: 0.005925, loss_weight: 0.016530
[21:57:11.961] iteration 2521 : loss : 0.053157 cons_dist: 0.001261, loss_weight: 0.016530
[21:57:12.878] iteration 2522 : loss : 0.075656 cons_dist: 0.000838, loss_weight: 0.016530
[21:57:13.796] iteration 2523 : loss : 0.057138 cons_dist: 0.000599, loss_weight: 0.016530
[21:57:14.714] iteration 2524 : loss : 0.048015 cons_dist: 0.001573, loss_weight: 0.016530
[21:57:15.630] iteration 2525 : loss : 0.030117 cons_dist: 0.001321, loss_weight: 0.016530
[21:57:16.545] iteration 2526 : loss : 0.038402 cons_dist: 0.002617, loss_weight: 0.016530
[21:57:17.463] iteration 2527 : loss : 0.045549 cons_dist: 0.031773, loss_weight: 0.016530
[21:57:18.380] iteration 2528 : loss : 0.047697 cons_dist: 0.004283, loss_weight: 0.016530
[21:57:19.298] iteration 2529 : loss : 0.050241 cons_dist: 0.002695, loss_weight: 0.016530
[21:57:20.216] iteration 2530 : loss : 0.053593 cons_dist: 0.000644, loss_weight: 0.016530
[21:57:21.134] iteration 2531 : loss : 0.058423 cons_dist: 0.001377, loss_weight: 0.016530
[21:57:22.051] iteration 2532 : loss : 0.060769 cons_dist: 0.003471, loss_weight: 0.016530
[21:57:23.579] iteration 2533 : loss : 0.054302 cons_dist: 0.003319, loss_weight: 0.016530
[21:57:24.496] iteration 2534 : loss : 0.076607 cons_dist: 0.000320, loss_weight: 0.016530
[21:57:25.413] iteration 2535 : loss : 0.042689 cons_dist: 0.000638, loss_weight: 0.016530
[21:57:26.331] iteration 2536 : loss : 0.045750 cons_dist: 0.003961, loss_weight: 0.016530
[21:57:27.247] iteration 2537 : loss : 0.039206 cons_dist: 0.002031, loss_weight: 0.016530
[21:57:28.164] iteration 2538 : loss : 0.039414 cons_dist: 0.026443, loss_weight: 0.016530
[21:57:29.082] iteration 2539 : loss : 0.052396 cons_dist: 0.000805, loss_weight: 0.016530
[21:57:29.999] iteration 2540 : loss : 0.069159 cons_dist: 0.006862, loss_weight: 0.016530
[21:57:30.916] iteration 2541 : loss : 0.036669 cons_dist: 0.002200, loss_weight: 0.016530
[21:57:31.835] iteration 2542 : loss : 0.054068 cons_dist: 0.001094, loss_weight: 0.016530
[21:57:32.752] iteration 2543 : loss : 0.037958 cons_dist: 0.008860, loss_weight: 0.016530
[21:57:33.670] iteration 2544 : loss : 0.037430 cons_dist: 0.004784, loss_weight: 0.016530
[21:57:35.219] iteration 2545 : loss : 0.029527 cons_dist: 0.000845, loss_weight: 0.016530
[21:57:36.135] iteration 2546 : loss : 0.040888 cons_dist: 0.005248, loss_weight: 0.016530
[21:57:37.051] iteration 2547 : loss : 0.041669 cons_dist: 0.003934, loss_weight: 0.016530
[21:57:37.968] iteration 2548 : loss : 0.040420 cons_dist: 0.003646, loss_weight: 0.016530
[21:57:38.884] iteration 2549 : loss : 0.050696 cons_dist: 0.000696, loss_weight: 0.016530
[21:57:39.801] iteration 2550 : loss : 0.047747 cons_dist: 0.001101, loss_weight: 0.016530
[21:57:40.880] iteration 2551 : loss : 0.061032 cons_dist: 0.014881, loss_weight: 0.019145
[21:57:41.797] iteration 2552 : loss : 0.044269 cons_dist: 0.001730, loss_weight: 0.019145
[21:57:42.714] iteration 2553 : loss : 0.041686 cons_dist: 0.004100, loss_weight: 0.019145
[21:57:43.632] iteration 2554 : loss : 0.047155 cons_dist: 0.004314, loss_weight: 0.019145
[21:57:44.549] iteration 2555 : loss : 0.040217 cons_dist: 0.000445, loss_weight: 0.019145
[21:57:45.466] iteration 2556 : loss : 0.044779 cons_dist: 0.001598, loss_weight: 0.019145
[21:57:47.022] iteration 2557 : loss : 0.039170 cons_dist: 0.001033, loss_weight: 0.019145
[21:57:47.940] iteration 2558 : loss : 0.064776 cons_dist: 0.001415, loss_weight: 0.019145
[21:57:48.859] iteration 2559 : loss : 0.060890 cons_dist: 0.001190, loss_weight: 0.019145
[21:57:49.777] iteration 2560 : loss : 0.043026 cons_dist: 0.000688, loss_weight: 0.019145
[21:57:50.696] iteration 2561 : loss : 0.066252 cons_dist: 0.004162, loss_weight: 0.019145
[21:57:51.614] iteration 2562 : loss : 0.066621 cons_dist: 0.000650, loss_weight: 0.019145
[21:57:52.531] iteration 2563 : loss : 0.043876 cons_dist: 0.006917, loss_weight: 0.019145
[21:57:53.447] iteration 2564 : loss : 0.044950 cons_dist: 0.004890, loss_weight: 0.019145
[21:57:54.367] iteration 2565 : loss : 0.045023 cons_dist: 0.001241, loss_weight: 0.019145
[21:57:55.284] iteration 2566 : loss : 0.048616 cons_dist: 0.001119, loss_weight: 0.019145
[21:57:56.200] iteration 2567 : loss : 0.041116 cons_dist: 0.000404, loss_weight: 0.019145
[21:57:57.117] iteration 2568 : loss : 0.048255 cons_dist: 0.001397, loss_weight: 0.019145
[21:57:58.752] iteration 2569 : loss : 0.036953 cons_dist: 0.004065, loss_weight: 0.019145
[21:57:59.670] iteration 2570 : loss : 0.039555 cons_dist: 0.000954, loss_weight: 0.019145
[21:58:00.588] iteration 2571 : loss : 0.035594 cons_dist: 0.002504, loss_weight: 0.019145
[21:58:01.506] iteration 2572 : loss : 0.050262 cons_dist: 0.006986, loss_weight: 0.019145
[21:58:02.424] iteration 2573 : loss : 0.051093 cons_dist: 0.003701, loss_weight: 0.019145
[21:58:03.342] iteration 2574 : loss : 0.044244 cons_dist: 0.000686, loss_weight: 0.019145
[21:58:04.260] iteration 2575 : loss : 0.051888 cons_dist: 0.007196, loss_weight: 0.019145
[21:58:05.179] iteration 2576 : loss : 0.039395 cons_dist: 0.019453, loss_weight: 0.019145
[21:58:06.096] iteration 2577 : loss : 0.050836 cons_dist: 0.000249, loss_weight: 0.019145
[21:58:07.013] iteration 2578 : loss : 0.050631 cons_dist: 0.006738, loss_weight: 0.019145
[21:58:07.933] iteration 2579 : loss : 0.059858 cons_dist: 0.000761, loss_weight: 0.019145
[21:58:08.906] iteration 2580 : loss : 0.056574 cons_dist: 0.003761, loss_weight: 0.019145
[21:58:10.476] iteration 2581 : loss : 0.040805 cons_dist: 0.000463, loss_weight: 0.019145
[21:58:11.392] iteration 2582 : loss : 0.063896 cons_dist: 0.024611, loss_weight: 0.019145
[21:58:12.309] iteration 2583 : loss : 0.051459 cons_dist: 0.009894, loss_weight: 0.019145
[21:58:13.226] iteration 2584 : loss : 0.052849 cons_dist: 0.001645, loss_weight: 0.019145
[21:58:14.144] iteration 2585 : loss : 0.043797 cons_dist: 0.000566, loss_weight: 0.019145
[21:58:15.061] iteration 2586 : loss : 0.040401 cons_dist: 0.004046, loss_weight: 0.019145
[21:58:15.978] iteration 2587 : loss : 0.054608 cons_dist: 0.008828, loss_weight: 0.019145
[21:58:16.896] iteration 2588 : loss : 0.043387 cons_dist: 0.000783, loss_weight: 0.019145
[21:58:17.813] iteration 2589 : loss : 0.040114 cons_dist: 0.007083, loss_weight: 0.019145
[21:58:18.732] iteration 2590 : loss : 0.049504 cons_dist: 0.019215, loss_weight: 0.019145
[21:58:19.650] iteration 2591 : loss : 0.035827 cons_dist: 0.000660, loss_weight: 0.019145
[21:58:20.567] iteration 2592 : loss : 0.037907 cons_dist: 0.001142, loss_weight: 0.019145
[21:58:22.135] iteration 2593 : loss : 0.050393 cons_dist: 0.020192, loss_weight: 0.019145
[21:58:23.053] iteration 2594 : loss : 0.059619 cons_dist: 0.004966, loss_weight: 0.019145
[21:58:23.972] iteration 2595 : loss : 0.082912 cons_dist: 0.005264, loss_weight: 0.019145
[21:58:24.890] iteration 2596 : loss : 0.050150 cons_dist: 0.002325, loss_weight: 0.019145
[21:58:25.808] iteration 2597 : loss : 0.034134 cons_dist: 0.001883, loss_weight: 0.019145
[21:58:26.724] iteration 2598 : loss : 0.063333 cons_dist: 0.002201, loss_weight: 0.019145
[21:58:27.641] iteration 2599 : loss : 0.040800 cons_dist: 0.004694, loss_weight: 0.019145
[21:58:28.560] iteration 2600 : loss : 0.078459 cons_dist: 0.001532, loss_weight: 0.019145
[21:58:30.840] iteration 2601 : loss : 0.061359 cons_dist: 0.001687, loss_weight: 0.019145
[21:58:31.757] iteration 2602 : loss : 0.049820 cons_dist: 0.004097, loss_weight: 0.019145
[21:58:32.675] iteration 2603 : loss : 0.042168 cons_dist: 0.001401, loss_weight: 0.019145
[21:58:33.594] iteration 2604 : loss : 0.050380 cons_dist: 0.001734, loss_weight: 0.019145
[21:58:35.163] iteration 2605 : loss : 0.033636 cons_dist: 0.000881, loss_weight: 0.019145
[21:58:36.082] iteration 2606 : loss : 0.056826 cons_dist: 0.001358, loss_weight: 0.019145
[21:58:36.999] iteration 2607 : loss : 0.044851 cons_dist: 0.006155, loss_weight: 0.019145
[21:58:37.916] iteration 2608 : loss : 0.053839 cons_dist: 0.001217, loss_weight: 0.019145
[21:58:38.833] iteration 2609 : loss : 0.037313 cons_dist: 0.001369, loss_weight: 0.019145
[21:58:39.751] iteration 2610 : loss : 0.040116 cons_dist: 0.001054, loss_weight: 0.019145
[21:58:40.666] iteration 2611 : loss : 0.077389 cons_dist: 0.002989, loss_weight: 0.019145
[21:58:41.583] iteration 2612 : loss : 0.062436 cons_dist: 0.002261, loss_weight: 0.019145
[21:58:42.499] iteration 2613 : loss : 0.038478 cons_dist: 0.001486, loss_weight: 0.019145
[21:58:43.415] iteration 2614 : loss : 0.053486 cons_dist: 0.005683, loss_weight: 0.019145
[21:58:44.332] iteration 2615 : loss : 0.038284 cons_dist: 0.000855, loss_weight: 0.019145
[21:58:45.249] iteration 2616 : loss : 0.060644 cons_dist: 0.042139, loss_weight: 0.019145
[21:58:46.883] iteration 2617 : loss : 0.034703 cons_dist: 0.001121, loss_weight: 0.019145
[21:58:47.801] iteration 2618 : loss : 0.038467 cons_dist: 0.001719, loss_weight: 0.019145
[21:58:48.720] iteration 2619 : loss : 0.043055 cons_dist: 0.001435, loss_weight: 0.019145
[21:58:49.638] iteration 2620 : loss : 0.042376 cons_dist: 0.000585, loss_weight: 0.019145
[21:58:50.556] iteration 2621 : loss : 0.045080 cons_dist: 0.002805, loss_weight: 0.019145
[21:58:51.474] iteration 2622 : loss : 0.038206 cons_dist: 0.000303, loss_weight: 0.019145
[21:58:52.392] iteration 2623 : loss : 0.045908 cons_dist: 0.003524, loss_weight: 0.019145
[21:58:53.311] iteration 2624 : loss : 0.048437 cons_dist: 0.001165, loss_weight: 0.019145
[21:58:54.228] iteration 2625 : loss : 0.047320 cons_dist: 0.001246, loss_weight: 0.019145
[21:58:55.145] iteration 2626 : loss : 0.040895 cons_dist: 0.008976, loss_weight: 0.019145
[21:58:56.063] iteration 2627 : loss : 0.048084 cons_dist: 0.000915, loss_weight: 0.019145
[21:58:56.982] iteration 2628 : loss : 0.082151 cons_dist: 0.001164, loss_weight: 0.019145
[21:58:58.545] iteration 2629 : loss : 0.056890 cons_dist: 0.001216, loss_weight: 0.019145
[21:58:59.463] iteration 2630 : loss : 0.039082 cons_dist: 0.006025, loss_weight: 0.019145
[21:59:00.381] iteration 2631 : loss : 0.054251 cons_dist: 0.002211, loss_weight: 0.019145
[21:59:01.299] iteration 2632 : loss : 0.045619 cons_dist: 0.001970, loss_weight: 0.019145
[21:59:02.217] iteration 2633 : loss : 0.057670 cons_dist: 0.005498, loss_weight: 0.019145
[21:59:03.134] iteration 2634 : loss : 0.052234 cons_dist: 0.000749, loss_weight: 0.019145
[21:59:04.052] iteration 2635 : loss : 0.037523 cons_dist: 0.001285, loss_weight: 0.019145
[21:59:04.971] iteration 2636 : loss : 0.036495 cons_dist: 0.005753, loss_weight: 0.019145
[21:59:05.889] iteration 2637 : loss : 0.045110 cons_dist: 0.001412, loss_weight: 0.019145
[21:59:06.807] iteration 2638 : loss : 0.033532 cons_dist: 0.000586, loss_weight: 0.019145
[21:59:07.727] iteration 2639 : loss : 0.045352 cons_dist: 0.000428, loss_weight: 0.019145
[21:59:08.645] iteration 2640 : loss : 0.058663 cons_dist: 0.000460, loss_weight: 0.019145
[21:59:10.270] iteration 2641 : loss : 0.042397 cons_dist: 0.045786, loss_weight: 0.019145
[21:59:11.188] iteration 2642 : loss : 0.072710 cons_dist: 0.002703, loss_weight: 0.019145
[21:59:12.106] iteration 2643 : loss : 0.047146 cons_dist: 0.000674, loss_weight: 0.019145
[21:59:13.024] iteration 2644 : loss : 0.039771 cons_dist: 0.001093, loss_weight: 0.019145
[21:59:13.941] iteration 2645 : loss : 0.039682 cons_dist: 0.003372, loss_weight: 0.019145
[21:59:14.859] iteration 2646 : loss : 0.065672 cons_dist: 0.019372, loss_weight: 0.019145
[21:59:15.777] iteration 2647 : loss : 0.044650 cons_dist: 0.002361, loss_weight: 0.019145
[21:59:16.695] iteration 2648 : loss : 0.061196 cons_dist: 0.000747, loss_weight: 0.019145
[21:59:17.612] iteration 2649 : loss : 0.033361 cons_dist: 0.010737, loss_weight: 0.019145
[21:59:18.530] iteration 2650 : loss : 0.103947 cons_dist: 0.000492, loss_weight: 0.019145
[21:59:19.601] iteration 2651 : loss : 0.050002 cons_dist: 0.003622, loss_weight: 0.019145
[21:59:20.519] iteration 2652 : loss : 0.042933 cons_dist: 0.013796, loss_weight: 0.019145
[21:59:22.091] iteration 2653 : loss : 0.040683 cons_dist: 0.001507, loss_weight: 0.019145
[21:59:23.009] iteration 2654 : loss : 0.054078 cons_dist: 0.000909, loss_weight: 0.019145
[21:59:23.932] iteration 2655 : loss : 0.037240 cons_dist: 0.001322, loss_weight: 0.019145
[21:59:24.849] iteration 2656 : loss : 0.071660 cons_dist: 0.040153, loss_weight: 0.019145
[21:59:25.767] iteration 2657 : loss : 0.048865 cons_dist: 0.001560, loss_weight: 0.019145
[21:59:26.683] iteration 2658 : loss : 0.037195 cons_dist: 0.007881, loss_weight: 0.019145
[21:59:27.600] iteration 2659 : loss : 0.042983 cons_dist: 0.001835, loss_weight: 0.019145
[21:59:28.516] iteration 2660 : loss : 0.071213 cons_dist: 0.001040, loss_weight: 0.019145
[21:59:29.432] iteration 2661 : loss : 0.053358 cons_dist: 0.003377, loss_weight: 0.019145
[21:59:30.348] iteration 2662 : loss : 0.040985 cons_dist: 0.001568, loss_weight: 0.019145
[21:59:31.264] iteration 2663 : loss : 0.067123 cons_dist: 0.007289, loss_weight: 0.019145
[21:59:32.181] iteration 2664 : loss : 0.039332 cons_dist: 0.012555, loss_weight: 0.019145
[21:59:33.720] iteration 2665 : loss : 0.047783 cons_dist: 0.001158, loss_weight: 0.019145
[21:59:34.638] iteration 2666 : loss : 0.038747 cons_dist: 0.001435, loss_weight: 0.019145
[21:59:35.557] iteration 2667 : loss : 0.037934 cons_dist: 0.008579, loss_weight: 0.019145
[21:59:36.475] iteration 2668 : loss : 0.117048 cons_dist: 0.004273, loss_weight: 0.019145
[21:59:37.393] iteration 2669 : loss : 0.051687 cons_dist: 0.008137, loss_weight: 0.019145
[21:59:38.311] iteration 2670 : loss : 0.038029 cons_dist: 0.000309, loss_weight: 0.019145
[21:59:39.228] iteration 2671 : loss : 0.053755 cons_dist: 0.002189, loss_weight: 0.019145
[21:59:40.146] iteration 2672 : loss : 0.054502 cons_dist: 0.002062, loss_weight: 0.019145
[21:59:41.064] iteration 2673 : loss : 0.038704 cons_dist: 0.000348, loss_weight: 0.019145
[21:59:41.983] iteration 2674 : loss : 0.040064 cons_dist: 0.000852, loss_weight: 0.019145
[21:59:42.900] iteration 2675 : loss : 0.054289 cons_dist: 0.000625, loss_weight: 0.019145
[21:59:43.822] iteration 2676 : loss : 0.045080 cons_dist: 0.002611, loss_weight: 0.019145
[21:59:45.408] iteration 2677 : loss : 0.034788 cons_dist: 0.002405, loss_weight: 0.019145
[21:59:46.327] iteration 2678 : loss : 0.038430 cons_dist: 0.008675, loss_weight: 0.019145
[21:59:47.245] iteration 2679 : loss : 0.057018 cons_dist: 0.008093, loss_weight: 0.019145
[21:59:48.163] iteration 2680 : loss : 0.028922 cons_dist: 0.001917, loss_weight: 0.019145
[21:59:49.082] iteration 2681 : loss : 0.047088 cons_dist: 0.000837, loss_weight: 0.019145
[21:59:49.999] iteration 2682 : loss : 0.042798 cons_dist: 0.000221, loss_weight: 0.019145
[21:59:50.917] iteration 2683 : loss : 0.067264 cons_dist: 0.000822, loss_weight: 0.019145
[21:59:51.834] iteration 2684 : loss : 0.056281 cons_dist: 0.002452, loss_weight: 0.019145
[21:59:52.753] iteration 2685 : loss : 0.050770 cons_dist: 0.002758, loss_weight: 0.019145
[21:59:53.671] iteration 2686 : loss : 0.047149 cons_dist: 0.001268, loss_weight: 0.019145
[21:59:54.588] iteration 2687 : loss : 0.038200 cons_dist: 0.001090, loss_weight: 0.019145
[21:59:55.506] iteration 2688 : loss : 0.046114 cons_dist: 0.002096, loss_weight: 0.019145
[21:59:57.092] iteration 2689 : loss : 0.037554 cons_dist: 0.005241, loss_weight: 0.019145
[21:59:58.010] iteration 2690 : loss : 0.034465 cons_dist: 0.005485, loss_weight: 0.019145
[21:59:58.928] iteration 2691 : loss : 0.063148 cons_dist: 0.001402, loss_weight: 0.019145
[21:59:59.847] iteration 2692 : loss : 0.044101 cons_dist: 0.004184, loss_weight: 0.019145
[22:00:00.764] iteration 2693 : loss : 0.051334 cons_dist: 0.000394, loss_weight: 0.019145
[22:00:01.682] iteration 2694 : loss : 0.045046 cons_dist: 0.005457, loss_weight: 0.019145
[22:00:02.598] iteration 2695 : loss : 0.056495 cons_dist: 0.002678, loss_weight: 0.019145
[22:00:03.514] iteration 2696 : loss : 0.053590 cons_dist: 0.001187, loss_weight: 0.019145
[22:00:04.430] iteration 2697 : loss : 0.055556 cons_dist: 0.043231, loss_weight: 0.019145
[22:00:05.346] iteration 2698 : loss : 0.035984 cons_dist: 0.002619, loss_weight: 0.019145
[22:00:06.263] iteration 2699 : loss : 0.040462 cons_dist: 0.001876, loss_weight: 0.019145
[22:00:07.180] iteration 2700 : loss : 0.045604 cons_dist: 0.002159, loss_weight: 0.019145
[22:00:08.936] iteration 2701 : loss : 0.049942 cons_dist: 0.002576, loss_weight: 0.022036
[22:00:09.854] iteration 2702 : loss : 0.038567 cons_dist: 0.003330, loss_weight: 0.022036
[22:00:10.773] iteration 2703 : loss : 0.051525 cons_dist: 0.002648, loss_weight: 0.022036
[22:00:11.692] iteration 2704 : loss : 0.042501 cons_dist: 0.002067, loss_weight: 0.022036
[22:00:12.612] iteration 2705 : loss : 0.037612 cons_dist: 0.066931, loss_weight: 0.022036
[22:00:13.528] iteration 2706 : loss : 0.063248 cons_dist: 0.005563, loss_weight: 0.022036
[22:00:14.446] iteration 2707 : loss : 0.039188 cons_dist: 0.000801, loss_weight: 0.022036
[22:00:15.363] iteration 2708 : loss : 0.048836 cons_dist: 0.001432, loss_weight: 0.022036
[22:00:16.280] iteration 2709 : loss : 0.055018 cons_dist: 0.001994, loss_weight: 0.022036
[22:00:17.197] iteration 2710 : loss : 0.041121 cons_dist: 0.003062, loss_weight: 0.022036
[22:00:18.114] iteration 2711 : loss : 0.064770 cons_dist: 0.001286, loss_weight: 0.022036
[22:00:19.031] iteration 2712 : loss : 0.038197 cons_dist: 0.003087, loss_weight: 0.022036
[22:00:20.553] iteration 2713 : loss : 0.052155 cons_dist: 0.000516, loss_weight: 0.022036
[22:00:21.475] iteration 2714 : loss : 0.041866 cons_dist: 0.000752, loss_weight: 0.022036
[22:00:22.393] iteration 2715 : loss : 0.051617 cons_dist: 0.018262, loss_weight: 0.022036
[22:00:23.311] iteration 2716 : loss : 0.047118 cons_dist: 0.069988, loss_weight: 0.022036
[22:00:24.227] iteration 2717 : loss : 0.057782 cons_dist: 0.001024, loss_weight: 0.022036
[22:00:25.145] iteration 2718 : loss : 0.038505 cons_dist: 0.002396, loss_weight: 0.022036
[22:00:26.061] iteration 2719 : loss : 0.045209 cons_dist: 0.001622, loss_weight: 0.022036
[22:00:26.978] iteration 2720 : loss : 0.035247 cons_dist: 0.000521, loss_weight: 0.022036
[22:00:27.896] iteration 2721 : loss : 0.043520 cons_dist: 0.002649, loss_weight: 0.022036
[22:00:28.813] iteration 2722 : loss : 0.051924 cons_dist: 0.004724, loss_weight: 0.022036
[22:00:29.730] iteration 2723 : loss : 0.047676 cons_dist: 0.002477, loss_weight: 0.022036
[22:00:30.647] iteration 2724 : loss : 0.039613 cons_dist: 0.003030, loss_weight: 0.022036
[22:00:32.245] iteration 2725 : loss : 0.052816 cons_dist: 0.001358, loss_weight: 0.022036
[22:00:33.162] iteration 2726 : loss : 0.037304 cons_dist: 0.000605, loss_weight: 0.022036
[22:00:34.080] iteration 2727 : loss : 0.049310 cons_dist: 0.004897, loss_weight: 0.022036
[22:00:34.999] iteration 2728 : loss : 0.056717 cons_dist: 0.010102, loss_weight: 0.022036
[22:00:35.917] iteration 2729 : loss : 0.048723 cons_dist: 0.001284, loss_weight: 0.022036
[22:00:36.836] iteration 2730 : loss : 0.063813 cons_dist: 0.004766, loss_weight: 0.022036
[22:00:37.754] iteration 2731 : loss : 0.042018 cons_dist: 0.002972, loss_weight: 0.022036
[22:00:38.672] iteration 2732 : loss : 0.038480 cons_dist: 0.000343, loss_weight: 0.022036
[22:00:39.590] iteration 2733 : loss : 0.044630 cons_dist: 0.001787, loss_weight: 0.022036
[22:00:40.508] iteration 2734 : loss : 0.038050 cons_dist: 0.005604, loss_weight: 0.022036
[22:00:41.426] iteration 2735 : loss : 0.044578 cons_dist: 0.000296, loss_weight: 0.022036
[22:00:42.344] iteration 2736 : loss : 0.044652 cons_dist: 0.000421, loss_weight: 0.022036
[22:00:44.026] iteration 2737 : loss : 0.043909 cons_dist: 0.001667, loss_weight: 0.022036
[22:00:44.942] iteration 2738 : loss : 0.047279 cons_dist: 0.001853, loss_weight: 0.022036
[22:00:45.859] iteration 2739 : loss : 0.053257 cons_dist: 0.002367, loss_weight: 0.022036
[22:00:46.778] iteration 2740 : loss : 0.042211 cons_dist: 0.001210, loss_weight: 0.022036
[22:00:47.696] iteration 2741 : loss : 0.069720 cons_dist: 0.002186, loss_weight: 0.022036
[22:00:48.611] iteration 2742 : loss : 0.046641 cons_dist: 0.004945, loss_weight: 0.022036
[22:00:49.528] iteration 2743 : loss : 0.044708 cons_dist: 0.003714, loss_weight: 0.022036
[22:00:50.443] iteration 2744 : loss : 0.046910 cons_dist: 0.022925, loss_weight: 0.022036
[22:00:51.360] iteration 2745 : loss : 0.042198 cons_dist: 0.004246, loss_weight: 0.022036
[22:00:52.276] iteration 2746 : loss : 0.040484 cons_dist: 0.004166, loss_weight: 0.022036
[22:00:53.192] iteration 2747 : loss : 0.044831 cons_dist: 0.000560, loss_weight: 0.022036
[22:00:54.109] iteration 2748 : loss : 0.049946 cons_dist: 0.000797, loss_weight: 0.022036
[22:00:55.686] iteration 2749 : loss : 0.044476 cons_dist: 0.034500, loss_weight: 0.022036
[22:00:56.605] iteration 2750 : loss : 0.044255 cons_dist: 0.005017, loss_weight: 0.022036
[22:00:57.700] iteration 2751 : loss : 0.063805 cons_dist: 0.001468, loss_weight: 0.022036
[22:00:58.618] iteration 2752 : loss : 0.040039 cons_dist: 0.001287, loss_weight: 0.022036
[22:00:59.538] iteration 2753 : loss : 0.052833 cons_dist: 0.028636, loss_weight: 0.022036
[22:01:00.456] iteration 2754 : loss : 0.041996 cons_dist: 0.001978, loss_weight: 0.022036
[22:01:01.374] iteration 2755 : loss : 0.101764 cons_dist: 0.000952, loss_weight: 0.022036
[22:01:02.291] iteration 2756 : loss : 0.047928 cons_dist: 0.000947, loss_weight: 0.022036
[22:01:03.208] iteration 2757 : loss : 0.038467 cons_dist: 0.003443, loss_weight: 0.022036
[22:01:04.125] iteration 2758 : loss : 0.072062 cons_dist: 0.044683, loss_weight: 0.022036
[22:01:05.042] iteration 2759 : loss : 0.049103 cons_dist: 0.001056, loss_weight: 0.022036
[22:01:05.961] iteration 2760 : loss : 0.041399 cons_dist: 0.000564, loss_weight: 0.022036
[22:01:07.644] iteration 2761 : loss : 0.055175 cons_dist: 0.002090, loss_weight: 0.022036
[22:01:08.562] iteration 2762 : loss : 0.035806 cons_dist: 0.001471, loss_weight: 0.022036
[22:01:09.479] iteration 2763 : loss : 0.037798 cons_dist: 0.000452, loss_weight: 0.022036
[22:01:10.398] iteration 2764 : loss : 0.068653 cons_dist: 0.000769, loss_weight: 0.022036
[22:01:11.315] iteration 2765 : loss : 0.055175 cons_dist: 0.008648, loss_weight: 0.022036
[22:01:12.233] iteration 2766 : loss : 0.040638 cons_dist: 0.002895, loss_weight: 0.022036
[22:01:13.153] iteration 2767 : loss : 0.044933 cons_dist: 0.070415, loss_weight: 0.022036
[22:01:14.070] iteration 2768 : loss : 0.041748 cons_dist: 0.001722, loss_weight: 0.022036
[22:01:14.987] iteration 2769 : loss : 0.050483 cons_dist: 0.007246, loss_weight: 0.022036
[22:01:15.904] iteration 2770 : loss : 0.050552 cons_dist: 0.004258, loss_weight: 0.022036
[22:01:16.823] iteration 2771 : loss : 0.051767 cons_dist: 0.001795, loss_weight: 0.022036
[22:01:17.740] iteration 2772 : loss : 0.037242 cons_dist: 0.003757, loss_weight: 0.022036
[22:01:19.315] iteration 2773 : loss : 0.068565 cons_dist: 0.000660, loss_weight: 0.022036
[22:01:20.230] iteration 2774 : loss : 0.038383 cons_dist: 0.001619, loss_weight: 0.022036
[22:01:21.147] iteration 2775 : loss : 0.045430 cons_dist: 0.001888, loss_weight: 0.022036
[22:01:22.063] iteration 2776 : loss : 0.087822 cons_dist: 0.004139, loss_weight: 0.022036
[22:01:22.980] iteration 2777 : loss : 0.036440 cons_dist: 0.001361, loss_weight: 0.022036
[22:01:23.896] iteration 2778 : loss : 0.048851 cons_dist: 0.001724, loss_weight: 0.022036
[22:01:24.812] iteration 2779 : loss : 0.038354 cons_dist: 0.000497, loss_weight: 0.022036
[22:01:25.728] iteration 2780 : loss : 0.038421 cons_dist: 0.001030, loss_weight: 0.022036
[22:01:26.644] iteration 2781 : loss : 0.042753 cons_dist: 0.001516, loss_weight: 0.022036
[22:01:27.560] iteration 2782 : loss : 0.054669 cons_dist: 0.000576, loss_weight: 0.022036
[22:01:28.476] iteration 2783 : loss : 0.065256 cons_dist: 0.006769, loss_weight: 0.022036
[22:01:29.393] iteration 2784 : loss : 0.050146 cons_dist: 0.001470, loss_weight: 0.022036
[22:01:31.028] iteration 2785 : loss : 0.047298 cons_dist: 0.003973, loss_weight: 0.022036
[22:01:31.942] iteration 2786 : loss : 0.045474 cons_dist: 0.005301, loss_weight: 0.022036
[22:01:32.859] iteration 2787 : loss : 0.060502 cons_dist: 0.003220, loss_weight: 0.022036
[22:01:33.778] iteration 2788 : loss : 0.057448 cons_dist: 0.000765, loss_weight: 0.022036
[22:01:34.696] iteration 2789 : loss : 0.036872 cons_dist: 0.002172, loss_weight: 0.022036
[22:01:35.615] iteration 2790 : loss : 0.068311 cons_dist: 0.001393, loss_weight: 0.022036
[22:01:36.533] iteration 2791 : loss : 0.060972 cons_dist: 0.002206, loss_weight: 0.022036
[22:01:37.450] iteration 2792 : loss : 0.071377 cons_dist: 0.047589, loss_weight: 0.022036
[22:01:38.368] iteration 2793 : loss : 0.059091 cons_dist: 0.008818, loss_weight: 0.022036
[22:01:39.285] iteration 2794 : loss : 0.059071 cons_dist: 0.000479, loss_weight: 0.022036
[22:01:40.203] iteration 2795 : loss : 0.046116 cons_dist: 0.001754, loss_weight: 0.022036
[22:01:41.121] iteration 2796 : loss : 0.030059 cons_dist: 0.001221, loss_weight: 0.022036
[22:01:42.708] iteration 2797 : loss : 0.042413 cons_dist: 0.000582, loss_weight: 0.022036
[22:01:43.624] iteration 2798 : loss : 0.047093 cons_dist: 0.000528, loss_weight: 0.022036
[22:01:44.541] iteration 2799 : loss : 0.040888 cons_dist: 0.000328, loss_weight: 0.022036
[22:01:45.459] iteration 2800 : loss : 0.040052 cons_dist: 0.004780, loss_weight: 0.022036
[22:01:47.020] save best model to model/LA_vnet_25_labeled/UAMT/iter_2800_dice_0.9247463941574097.pth
[22:01:47.939] iteration 2801 : loss : 0.044414 cons_dist: 0.000540, loss_weight: 0.022036
[22:01:48.857] iteration 2802 : loss : 0.059226 cons_dist: 0.007213, loss_weight: 0.022036
[22:01:49.775] iteration 2803 : loss : 0.057220 cons_dist: 0.021803, loss_weight: 0.022036
[22:01:50.693] iteration 2804 : loss : 0.047185 cons_dist: 0.003255, loss_weight: 0.022036
[22:01:51.612] iteration 2805 : loss : 0.038870 cons_dist: 0.002214, loss_weight: 0.022036
[22:01:52.530] iteration 2806 : loss : 0.034613 cons_dist: 0.004395, loss_weight: 0.022036
[22:01:53.446] iteration 2807 : loss : 0.058946 cons_dist: 0.003770, loss_weight: 0.022036
[22:01:54.363] iteration 2808 : loss : 0.052621 cons_dist: 0.000443, loss_weight: 0.022036
[22:01:55.938] iteration 2809 : loss : 0.040200 cons_dist: 0.001038, loss_weight: 0.022036
[22:01:56.856] iteration 2810 : loss : 0.039865 cons_dist: 0.007018, loss_weight: 0.022036
[22:01:57.774] iteration 2811 : loss : 0.045907 cons_dist: 0.002918, loss_weight: 0.022036
[22:01:58.694] iteration 2812 : loss : 0.072257 cons_dist: 0.037961, loss_weight: 0.022036
[22:01:59.610] iteration 2813 : loss : 0.043917 cons_dist: 0.000829, loss_weight: 0.022036
[22:02:00.529] iteration 2814 : loss : 0.039245 cons_dist: 0.000954, loss_weight: 0.022036
[22:02:01.447] iteration 2815 : loss : 0.040228 cons_dist: 0.003193, loss_weight: 0.022036
[22:02:02.365] iteration 2816 : loss : 0.048340 cons_dist: 0.004060, loss_weight: 0.022036
[22:02:03.284] iteration 2817 : loss : 0.038993 cons_dist: 0.001239, loss_weight: 0.022036
[22:02:04.202] iteration 2818 : loss : 0.055403 cons_dist: 0.003765, loss_weight: 0.022036
[22:02:05.119] iteration 2819 : loss : 0.045989 cons_dist: 0.003007, loss_weight: 0.022036
[22:02:06.037] iteration 2820 : loss : 0.055650 cons_dist: 0.002800, loss_weight: 0.022036
[22:02:07.620] iteration 2821 : loss : 0.043536 cons_dist: 0.001550, loss_weight: 0.022036
[22:02:08.541] iteration 2822 : loss : 0.059854 cons_dist: 0.000861, loss_weight: 0.022036
[22:02:09.508] iteration 2823 : loss : 0.055179 cons_dist: 0.000638, loss_weight: 0.022036
[22:02:10.426] iteration 2824 : loss : 0.070312 cons_dist: 0.005031, loss_weight: 0.022036
[22:02:11.344] iteration 2825 : loss : 0.046875 cons_dist: 0.003654, loss_weight: 0.022036
[22:02:12.263] iteration 2826 : loss : 0.035413 cons_dist: 0.007351, loss_weight: 0.022036
[22:02:13.181] iteration 2827 : loss : 0.052525 cons_dist: 0.007258, loss_weight: 0.022036
[22:02:14.100] iteration 2828 : loss : 0.079938 cons_dist: 0.003241, loss_weight: 0.022036
[22:02:15.041] iteration 2829 : loss : 0.042824 cons_dist: 0.000370, loss_weight: 0.022036
[22:02:15.958] iteration 2830 : loss : 0.050835 cons_dist: 0.000754, loss_weight: 0.022036
[22:02:16.875] iteration 2831 : loss : 0.034312 cons_dist: 0.000652, loss_weight: 0.022036
[22:02:17.792] iteration 2832 : loss : 0.044884 cons_dist: 0.001338, loss_weight: 0.022036
[22:02:19.433] iteration 2833 : loss : 0.038363 cons_dist: 0.003128, loss_weight: 0.022036
[22:02:20.350] iteration 2834 : loss : 0.048083 cons_dist: 0.000548, loss_weight: 0.022036
[22:02:21.268] iteration 2835 : loss : 0.042058 cons_dist: 0.001416, loss_weight: 0.022036
[22:02:22.187] iteration 2836 : loss : 0.043511 cons_dist: 0.002710, loss_weight: 0.022036
[22:02:23.105] iteration 2837 : loss : 0.044398 cons_dist: 0.000396, loss_weight: 0.022036
[22:02:24.021] iteration 2838 : loss : 0.035620 cons_dist: 0.002311, loss_weight: 0.022036
[22:02:24.938] iteration 2839 : loss : 0.044191 cons_dist: 0.001184, loss_weight: 0.022036
[22:02:25.854] iteration 2840 : loss : 0.045612 cons_dist: 0.004313, loss_weight: 0.022036
[22:02:26.770] iteration 2841 : loss : 0.067237 cons_dist: 0.002330, loss_weight: 0.022036
[22:02:27.688] iteration 2842 : loss : 0.030208 cons_dist: 0.000593, loss_weight: 0.022036
[22:02:28.605] iteration 2843 : loss : 0.050676 cons_dist: 0.044936, loss_weight: 0.022036
[22:02:29.521] iteration 2844 : loss : 0.042816 cons_dist: 0.003471, loss_weight: 0.022036
[22:02:31.158] iteration 2845 : loss : 0.174046 cons_dist: 0.001890, loss_weight: 0.022036
[22:02:32.075] iteration 2846 : loss : 0.052541 cons_dist: 0.005093, loss_weight: 0.022036
[22:02:32.993] iteration 2847 : loss : 0.050395 cons_dist: 0.000950, loss_weight: 0.022036
[22:02:33.912] iteration 2848 : loss : 0.061286 cons_dist: 0.004763, loss_weight: 0.022036
[22:02:34.831] iteration 2849 : loss : 0.051222 cons_dist: 0.046629, loss_weight: 0.022036
[22:02:35.751] iteration 2850 : loss : 0.049607 cons_dist: 0.003517, loss_weight: 0.022036
[22:02:36.833] iteration 2851 : loss : 0.037005 cons_dist: 0.003480, loss_weight: 0.025205
[22:02:37.750] iteration 2852 : loss : 0.044647 cons_dist: 0.004006, loss_weight: 0.025205
[22:02:38.670] iteration 2853 : loss : 0.056367 cons_dist: 0.000945, loss_weight: 0.025205
[22:02:39.592] iteration 2854 : loss : 0.046575 cons_dist: 0.001205, loss_weight: 0.025205
[22:02:40.507] iteration 2855 : loss : 0.051092 cons_dist: 0.002305, loss_weight: 0.025205
[22:02:41.423] iteration 2856 : loss : 0.044924 cons_dist: 0.001323, loss_weight: 0.025205
[22:02:43.050] iteration 2857 : loss : 0.068457 cons_dist: 0.001008, loss_weight: 0.025205
[22:02:43.967] iteration 2858 : loss : 0.047709 cons_dist: 0.000628, loss_weight: 0.025205
[22:02:44.884] iteration 2859 : loss : 0.055864 cons_dist: 0.003607, loss_weight: 0.025205
[22:02:45.800] iteration 2860 : loss : 0.045020 cons_dist: 0.001333, loss_weight: 0.025205
[22:02:46.718] iteration 2861 : loss : 0.117394 cons_dist: 0.002026, loss_weight: 0.025205
[22:02:47.635] iteration 2862 : loss : 0.048585 cons_dist: 0.002633, loss_weight: 0.025205
[22:02:48.552] iteration 2863 : loss : 0.051844 cons_dist: 0.002001, loss_weight: 0.025205
[22:02:49.471] iteration 2864 : loss : 0.053547 cons_dist: 0.001102, loss_weight: 0.025205
[22:02:50.389] iteration 2865 : loss : 0.052142 cons_dist: 0.001574, loss_weight: 0.025205
[22:02:51.306] iteration 2866 : loss : 0.051657 cons_dist: 0.001111, loss_weight: 0.025205
[22:02:52.222] iteration 2867 : loss : 0.056524 cons_dist: 0.009357, loss_weight: 0.025205
[22:02:53.141] iteration 2868 : loss : 0.040990 cons_dist: 0.002428, loss_weight: 0.025205
[22:02:54.793] iteration 2869 : loss : 0.078552 cons_dist: 0.000691, loss_weight: 0.025205
[22:02:55.709] iteration 2870 : loss : 0.044051 cons_dist: 0.001720, loss_weight: 0.025205
[22:02:56.681] iteration 2871 : loss : 0.049829 cons_dist: 0.000708, loss_weight: 0.025205
[22:02:57.600] iteration 2872 : loss : 0.041866 cons_dist: 0.003278, loss_weight: 0.025205
[22:02:58.517] iteration 2873 : loss : 0.048781 cons_dist: 0.007026, loss_weight: 0.025205
[22:02:59.435] iteration 2874 : loss : 0.053308 cons_dist: 0.020733, loss_weight: 0.025205
[22:03:00.353] iteration 2875 : loss : 0.042764 cons_dist: 0.000417, loss_weight: 0.025205
[22:03:01.272] iteration 2876 : loss : 0.052835 cons_dist: 0.001137, loss_weight: 0.025205
[22:03:02.194] iteration 2877 : loss : 0.046040 cons_dist: 0.000921, loss_weight: 0.025205
[22:03:03.111] iteration 2878 : loss : 0.036958 cons_dist: 0.001463, loss_weight: 0.025205
[22:03:04.029] iteration 2879 : loss : 0.044634 cons_dist: 0.011619, loss_weight: 0.025205
[22:03:04.947] iteration 2880 : loss : 0.052281 cons_dist: 0.001029, loss_weight: 0.025205
[22:03:06.530] iteration 2881 : loss : 0.042092 cons_dist: 0.001791, loss_weight: 0.025205
[22:03:07.448] iteration 2882 : loss : 0.046044 cons_dist: 0.000564, loss_weight: 0.025205
[22:03:08.366] iteration 2883 : loss : 0.041327 cons_dist: 0.001770, loss_weight: 0.025205
[22:03:09.285] iteration 2884 : loss : 0.053216 cons_dist: 0.004674, loss_weight: 0.025205
[22:03:10.204] iteration 2885 : loss : 0.051396 cons_dist: 0.003950, loss_weight: 0.025205
[22:03:11.120] iteration 2886 : loss : 0.066653 cons_dist: 0.000682, loss_weight: 0.025205
[22:03:12.038] iteration 2887 : loss : 0.056585 cons_dist: 0.001196, loss_weight: 0.025205
[22:03:12.956] iteration 2888 : loss : 0.043147 cons_dist: 0.009483, loss_weight: 0.025205
[22:03:13.874] iteration 2889 : loss : 0.046016 cons_dist: 0.001760, loss_weight: 0.025205
[22:03:14.791] iteration 2890 : loss : 0.040439 cons_dist: 0.004518, loss_weight: 0.025205
[22:03:15.709] iteration 2891 : loss : 0.069000 cons_dist: 0.004669, loss_weight: 0.025205
[22:03:16.626] iteration 2892 : loss : 0.056925 cons_dist: 0.001372, loss_weight: 0.025205
[22:03:18.223] iteration 2893 : loss : 0.052998 cons_dist: 0.001493, loss_weight: 0.025205
[22:03:19.142] iteration 2894 : loss : 0.050702 cons_dist: 0.001838, loss_weight: 0.025205
[22:03:20.061] iteration 2895 : loss : 0.049368 cons_dist: 0.006138, loss_weight: 0.025205
[22:03:20.979] iteration 2896 : loss : 0.046210 cons_dist: 0.000296, loss_weight: 0.025205
[22:03:21.898] iteration 2897 : loss : 0.041008 cons_dist: 0.000145, loss_weight: 0.025205
[22:03:22.816] iteration 2898 : loss : 0.040333 cons_dist: 0.000958, loss_weight: 0.025205
[22:03:23.733] iteration 2899 : loss : 0.037747 cons_dist: 0.000577, loss_weight: 0.025205
[22:03:24.651] iteration 2900 : loss : 0.051297 cons_dist: 0.002151, loss_weight: 0.025205
[22:03:25.699] iteration 2901 : loss : 0.043303 cons_dist: 0.001417, loss_weight: 0.025205
[22:03:26.615] iteration 2902 : loss : 0.059682 cons_dist: 0.003625, loss_weight: 0.025205
[22:03:27.532] iteration 2903 : loss : 0.044852 cons_dist: 0.000737, loss_weight: 0.025205
[22:03:28.448] iteration 2904 : loss : 0.046276 cons_dist: 0.005655, loss_weight: 0.025205
[22:03:30.020] iteration 2905 : loss : 0.048535 cons_dist: 0.003766, loss_weight: 0.025205
[22:03:30.938] iteration 2906 : loss : 0.050456 cons_dist: 0.004101, loss_weight: 0.025205
[22:03:31.857] iteration 2907 : loss : 0.051138 cons_dist: 0.002968, loss_weight: 0.025205
[22:03:32.776] iteration 2908 : loss : 0.035177 cons_dist: 0.001050, loss_weight: 0.025205
[22:03:33.694] iteration 2909 : loss : 0.052176 cons_dist: 0.000488, loss_weight: 0.025205
[22:03:34.612] iteration 2910 : loss : 0.034610 cons_dist: 0.001655, loss_weight: 0.025205
[22:03:35.530] iteration 2911 : loss : 0.047535 cons_dist: 0.001218, loss_weight: 0.025205
[22:03:36.448] iteration 2912 : loss : 0.042659 cons_dist: 0.000515, loss_weight: 0.025205
[22:03:37.366] iteration 2913 : loss : 0.052547 cons_dist: 0.001752, loss_weight: 0.025205
[22:03:38.284] iteration 2914 : loss : 0.067510 cons_dist: 0.007800, loss_weight: 0.025205
[22:03:39.202] iteration 2915 : loss : 0.052985 cons_dist: 0.006002, loss_weight: 0.025205
[22:03:40.120] iteration 2916 : loss : 0.046836 cons_dist: 0.002896, loss_weight: 0.025205
[22:03:41.752] iteration 2917 : loss : 0.052246 cons_dist: 0.004964, loss_weight: 0.025205
[22:03:42.669] iteration 2918 : loss : 0.036486 cons_dist: 0.001958, loss_weight: 0.025205
[22:03:43.586] iteration 2919 : loss : 0.074564 cons_dist: 0.032184, loss_weight: 0.025205
[22:03:44.502] iteration 2920 : loss : 0.051844 cons_dist: 0.003958, loss_weight: 0.025205
[22:03:45.418] iteration 2921 : loss : 0.038942 cons_dist: 0.001346, loss_weight: 0.025205
[22:03:46.335] iteration 2922 : loss : 0.044784 cons_dist: 0.000377, loss_weight: 0.025205
[22:03:47.252] iteration 2923 : loss : 0.038069 cons_dist: 0.001323, loss_weight: 0.025205
[22:03:48.169] iteration 2924 : loss : 0.078494 cons_dist: 0.003092, loss_weight: 0.025205
[22:03:49.089] iteration 2925 : loss : 0.047138 cons_dist: 0.000524, loss_weight: 0.025205
[22:03:50.008] iteration 2926 : loss : 0.050353 cons_dist: 0.002400, loss_weight: 0.025205
[22:03:50.926] iteration 2927 : loss : 0.046844 cons_dist: 0.004224, loss_weight: 0.025205
[22:03:51.844] iteration 2928 : loss : 0.043114 cons_dist: 0.004231, loss_weight: 0.025205
[22:03:53.410] iteration 2929 : loss : 0.039054 cons_dist: 0.002605, loss_weight: 0.025205
[22:03:54.328] iteration 2930 : loss : 0.049299 cons_dist: 0.000876, loss_weight: 0.025205
[22:03:55.248] iteration 2931 : loss : 0.037695 cons_dist: 0.001216, loss_weight: 0.025205
[22:03:56.165] iteration 2932 : loss : 0.080699 cons_dist: 0.000764, loss_weight: 0.025205
[22:03:57.082] iteration 2933 : loss : 0.038214 cons_dist: 0.000536, loss_weight: 0.025205
[22:03:57.999] iteration 2934 : loss : 0.039234 cons_dist: 0.001550, loss_weight: 0.025205
[22:03:58.917] iteration 2935 : loss : 0.034790 cons_dist: 0.000353, loss_weight: 0.025205
[22:03:59.835] iteration 2936 : loss : 0.047810 cons_dist: 0.001711, loss_weight: 0.025205
[22:04:00.753] iteration 2937 : loss : 0.082880 cons_dist: 0.003724, loss_weight: 0.025205
[22:04:01.671] iteration 2938 : loss : 0.040176 cons_dist: 0.003365, loss_weight: 0.025205
[22:04:02.590] iteration 2939 : loss : 0.041886 cons_dist: 0.000563, loss_weight: 0.025205
[22:04:03.512] iteration 2940 : loss : 0.075886 cons_dist: 0.008952, loss_weight: 0.025205
[22:04:05.092] iteration 2941 : loss : 0.043858 cons_dist: 0.001640, loss_weight: 0.025205
[22:04:06.010] iteration 2942 : loss : 0.052098 cons_dist: 0.000841, loss_weight: 0.025205
[22:04:06.929] iteration 2943 : loss : 0.040770 cons_dist: 0.000778, loss_weight: 0.025205
[22:04:07.848] iteration 2944 : loss : 0.042302 cons_dist: 0.000569, loss_weight: 0.025205
[22:04:08.766] iteration 2945 : loss : 0.037600 cons_dist: 0.001042, loss_weight: 0.025205
[22:04:09.686] iteration 2946 : loss : 0.053865 cons_dist: 0.003607, loss_weight: 0.025205
[22:04:10.604] iteration 2947 : loss : 0.054000 cons_dist: 0.001371, loss_weight: 0.025205
[22:04:11.522] iteration 2948 : loss : 0.046585 cons_dist: 0.006080, loss_weight: 0.025205
[22:04:12.441] iteration 2949 : loss : 0.037599 cons_dist: 0.033364, loss_weight: 0.025205
[22:04:13.360] iteration 2950 : loss : 0.040370 cons_dist: 0.006188, loss_weight: 0.025205
[22:04:14.437] iteration 2951 : loss : 0.041705 cons_dist: 0.006469, loss_weight: 0.025205
[22:04:15.355] iteration 2952 : loss : 0.046662 cons_dist: 0.002703, loss_weight: 0.025205
[22:04:16.923] iteration 2953 : loss : 0.036990 cons_dist: 0.010998, loss_weight: 0.025205
[22:04:17.841] iteration 2954 : loss : 0.035942 cons_dist: 0.000271, loss_weight: 0.025205
[22:04:18.759] iteration 2955 : loss : 0.037376 cons_dist: 0.001135, loss_weight: 0.025205
[22:04:19.676] iteration 2956 : loss : 0.057421 cons_dist: 0.001151, loss_weight: 0.025205
[22:04:20.595] iteration 2957 : loss : 0.048794 cons_dist: 0.003162, loss_weight: 0.025205
[22:04:21.512] iteration 2958 : loss : 0.032210 cons_dist: 0.000498, loss_weight: 0.025205
[22:04:22.429] iteration 2959 : loss : 0.119603 cons_dist: 0.000976, loss_weight: 0.025205
[22:04:23.348] iteration 2960 : loss : 0.036626 cons_dist: 0.001313, loss_weight: 0.025205
[22:04:24.266] iteration 2961 : loss : 0.047694 cons_dist: 0.001507, loss_weight: 0.025205
[22:04:25.185] iteration 2962 : loss : 0.044573 cons_dist: 0.004828, loss_weight: 0.025205
[22:04:26.103] iteration 2963 : loss : 0.038095 cons_dist: 0.000718, loss_weight: 0.025205
[22:04:27.021] iteration 2964 : loss : 0.053563 cons_dist: 0.000449, loss_weight: 0.025205
[22:04:28.580] iteration 2965 : loss : 0.042172 cons_dist: 0.004285, loss_weight: 0.025205
[22:04:29.499] iteration 2966 : loss : 0.041412 cons_dist: 0.004568, loss_weight: 0.025205
[22:04:30.418] iteration 2967 : loss : 0.039394 cons_dist: 0.003926, loss_weight: 0.025205
[22:04:31.338] iteration 2968 : loss : 0.046562 cons_dist: 0.003719, loss_weight: 0.025205
[22:04:32.255] iteration 2969 : loss : 0.044309 cons_dist: 0.000691, loss_weight: 0.025205
[22:04:33.171] iteration 2970 : loss : 0.053613 cons_dist: 0.002681, loss_weight: 0.025205
[22:04:34.089] iteration 2971 : loss : 0.035513 cons_dist: 0.001925, loss_weight: 0.025205
[22:04:35.006] iteration 2972 : loss : 0.060370 cons_dist: 0.021339, loss_weight: 0.025205
[22:04:35.923] iteration 2973 : loss : 0.096479 cons_dist: 0.003470, loss_weight: 0.025205
[22:04:36.841] iteration 2974 : loss : 0.040858 cons_dist: 0.002260, loss_weight: 0.025205
[22:04:37.761] iteration 2975 : loss : 0.038610 cons_dist: 0.000781, loss_weight: 0.025205
[22:04:38.678] iteration 2976 : loss : 0.045143 cons_dist: 0.001651, loss_weight: 0.025205
[22:04:40.207] iteration 2977 : loss : 0.063401 cons_dist: 0.004930, loss_weight: 0.025205
[22:04:41.124] iteration 2978 : loss : 0.041519 cons_dist: 0.003073, loss_weight: 0.025205
[22:04:42.043] iteration 2979 : loss : 0.043899 cons_dist: 0.001392, loss_weight: 0.025205
[22:04:42.962] iteration 2980 : loss : 0.053957 cons_dist: 0.002880, loss_weight: 0.025205
[22:04:43.880] iteration 2981 : loss : 0.046151 cons_dist: 0.002451, loss_weight: 0.025205
[22:04:44.801] iteration 2982 : loss : 0.039540 cons_dist: 0.002114, loss_weight: 0.025205
[22:04:45.717] iteration 2983 : loss : 0.037252 cons_dist: 0.000624, loss_weight: 0.025205
[22:04:46.634] iteration 2984 : loss : 0.051172 cons_dist: 0.004574, loss_weight: 0.025205
[22:04:47.552] iteration 2985 : loss : 0.078366 cons_dist: 0.004293, loss_weight: 0.025205
[22:04:48.470] iteration 2986 : loss : 0.040278 cons_dist: 0.002405, loss_weight: 0.025205
[22:04:49.389] iteration 2987 : loss : 0.043597 cons_dist: 0.003739, loss_weight: 0.025205
[22:04:50.306] iteration 2988 : loss : 0.047830 cons_dist: 0.003816, loss_weight: 0.025205
[22:04:51.902] iteration 2989 : loss : 0.035069 cons_dist: 0.000719, loss_weight: 0.025205
[22:04:52.821] iteration 2990 : loss : 0.041237 cons_dist: 0.001130, loss_weight: 0.025205
[22:04:53.740] iteration 2991 : loss : 0.055565 cons_dist: 0.004672, loss_weight: 0.025205
[22:04:54.658] iteration 2992 : loss : 0.062684 cons_dist: 0.000894, loss_weight: 0.025205
[22:04:55.577] iteration 2993 : loss : 0.041677 cons_dist: 0.000464, loss_weight: 0.025205
[22:04:56.495] iteration 2994 : loss : 0.041303 cons_dist: 0.007494, loss_weight: 0.025205
[22:04:57.412] iteration 2995 : loss : 0.066005 cons_dist: 0.000552, loss_weight: 0.025205
[22:04:58.331] iteration 2996 : loss : 0.176979 cons_dist: 0.007124, loss_weight: 0.025205
[22:04:59.250] iteration 2997 : loss : 0.048638 cons_dist: 0.002375, loss_weight: 0.025205
[22:05:00.167] iteration 2998 : loss : 0.041985 cons_dist: 0.001163, loss_weight: 0.025205
[22:05:01.085] iteration 2999 : loss : 0.045783 cons_dist: 0.002706, loss_weight: 0.025205
[22:05:02.002] iteration 3000 : loss : 0.071432 cons_dist: 0.000775, loss_weight: 0.025205
[22:05:02.211] save model to model/LA_vnet_25_labeled/UAMT/iter_3000.pth
[22:05:03.575] save best model to model/LA_vnet_25_labeled/UAMT/iter_3000_dice_0.9256293177604675.pth
[22:05:05.165] iteration 3001 : loss : 0.046980 cons_dist: 0.042638, loss_weight: 0.028650
[22:05:06.082] iteration 3002 : loss : 0.040969 cons_dist: 0.000738, loss_weight: 0.028650
[22:05:06.997] iteration 3003 : loss : 0.057842 cons_dist: 0.000775, loss_weight: 0.028650
[22:05:07.911] iteration 3004 : loss : 0.045549 cons_dist: 0.001567, loss_weight: 0.028650
[22:05:08.826] iteration 3005 : loss : 0.054512 cons_dist: 0.000417, loss_weight: 0.028650
[22:05:09.742] iteration 3006 : loss : 0.041960 cons_dist: 0.000267, loss_weight: 0.028650
[22:05:10.658] iteration 3007 : loss : 0.041821 cons_dist: 0.002136, loss_weight: 0.028650
[22:05:11.574] iteration 3008 : loss : 0.064187 cons_dist: 0.001698, loss_weight: 0.028650
[22:05:12.491] iteration 3009 : loss : 0.040669 cons_dist: 0.000977, loss_weight: 0.028650
[22:05:13.408] iteration 3010 : loss : 0.040293 cons_dist: 0.006053, loss_weight: 0.028650
[22:05:14.323] iteration 3011 : loss : 0.047540 cons_dist: 0.001803, loss_weight: 0.028650
[22:05:15.238] iteration 3012 : loss : 0.047136 cons_dist: 0.000430, loss_weight: 0.028650
[22:05:16.816] iteration 3013 : loss : 0.067616 cons_dist: 0.000638, loss_weight: 0.028650
[22:05:17.732] iteration 3014 : loss : 0.037001 cons_dist: 0.003712, loss_weight: 0.028650
[22:05:18.649] iteration 3015 : loss : 0.038250 cons_dist: 0.000689, loss_weight: 0.028650
[22:05:19.564] iteration 3016 : loss : 0.045857 cons_dist: 0.005215, loss_weight: 0.028650
[22:05:20.479] iteration 3017 : loss : 0.063323 cons_dist: 0.000479, loss_weight: 0.028650
[22:05:21.397] iteration 3018 : loss : 0.034956 cons_dist: 0.009807, loss_weight: 0.028650
[22:05:22.314] iteration 3019 : loss : 0.048865 cons_dist: 0.003303, loss_weight: 0.028650
[22:05:23.230] iteration 3020 : loss : 0.068827 cons_dist: 0.026504, loss_weight: 0.028650
[22:05:24.147] iteration 3021 : loss : 0.042932 cons_dist: 0.002251, loss_weight: 0.028650
[22:05:25.063] iteration 3022 : loss : 0.033625 cons_dist: 0.001933, loss_weight: 0.028650
[22:05:25.981] iteration 3023 : loss : 0.040157 cons_dist: 0.001643, loss_weight: 0.028650
[22:05:26.897] iteration 3024 : loss : 0.043109 cons_dist: 0.001044, loss_weight: 0.028650
[22:05:28.555] iteration 3025 : loss : 0.050663 cons_dist: 0.002856, loss_weight: 0.028650
[22:05:29.473] iteration 3026 : loss : 0.058482 cons_dist: 0.002062, loss_weight: 0.028650
[22:05:30.391] iteration 3027 : loss : 0.046881 cons_dist: 0.009549, loss_weight: 0.028650
[22:05:31.310] iteration 3028 : loss : 0.040658 cons_dist: 0.000709, loss_weight: 0.028650
[22:05:32.227] iteration 3029 : loss : 0.032346 cons_dist: 0.004069, loss_weight: 0.028650
[22:05:33.144] iteration 3030 : loss : 0.044576 cons_dist: 0.007402, loss_weight: 0.028650
[22:05:34.061] iteration 3031 : loss : 0.040056 cons_dist: 0.000912, loss_weight: 0.028650
[22:05:34.978] iteration 3032 : loss : 0.038946 cons_dist: 0.001600, loss_weight: 0.028650
[22:05:35.895] iteration 3033 : loss : 0.050611 cons_dist: 0.001227, loss_weight: 0.028650
[22:05:36.812] iteration 3034 : loss : 0.038014 cons_dist: 0.000372, loss_weight: 0.028650
[22:05:37.730] iteration 3035 : loss : 0.049796 cons_dist: 0.001132, loss_weight: 0.028650
[22:05:38.647] iteration 3036 : loss : 0.045462 cons_dist: 0.001409, loss_weight: 0.028650
[22:05:40.185] iteration 3037 : loss : 0.043393 cons_dist: 0.000881, loss_weight: 0.028650
[22:05:41.103] iteration 3038 : loss : 0.037503 cons_dist: 0.008450, loss_weight: 0.028650
[22:05:42.022] iteration 3039 : loss : 0.043811 cons_dist: 0.003917, loss_weight: 0.028650
[22:05:42.940] iteration 3040 : loss : 0.043662 cons_dist: 0.002253, loss_weight: 0.028650
[22:05:43.858] iteration 3041 : loss : 0.050974 cons_dist: 0.040428, loss_weight: 0.028650
[22:05:44.776] iteration 3042 : loss : 0.041028 cons_dist: 0.003215, loss_weight: 0.028650
[22:05:45.694] iteration 3043 : loss : 0.063306 cons_dist: 0.000505, loss_weight: 0.028650
[22:05:46.612] iteration 3044 : loss : 0.040684 cons_dist: 0.003406, loss_weight: 0.028650
[22:05:47.530] iteration 3045 : loss : 0.032871 cons_dist: 0.000412, loss_weight: 0.028650
[22:05:48.448] iteration 3046 : loss : 0.043988 cons_dist: 0.001394, loss_weight: 0.028650
[22:05:49.365] iteration 3047 : loss : 0.059786 cons_dist: 0.006214, loss_weight: 0.028650
[22:05:50.282] iteration 3048 : loss : 0.062437 cons_dist: 0.000531, loss_weight: 0.028650
[22:05:51.800] iteration 3049 : loss : 0.045375 cons_dist: 0.003649, loss_weight: 0.028650
[22:05:52.718] iteration 3050 : loss : 0.038296 cons_dist: 0.000850, loss_weight: 0.028650
[22:05:53.792] iteration 3051 : loss : 0.041657 cons_dist: 0.012148, loss_weight: 0.028650
[22:05:54.710] iteration 3052 : loss : 0.062912 cons_dist: 0.000766, loss_weight: 0.028650
[22:05:55.628] iteration 3053 : loss : 0.040591 cons_dist: 0.000363, loss_weight: 0.028650
[22:05:56.547] iteration 3054 : loss : 0.058741 cons_dist: 0.001942, loss_weight: 0.028650
[22:05:57.466] iteration 3055 : loss : 0.040420 cons_dist: 0.004471, loss_weight: 0.028650
[22:05:58.384] iteration 3056 : loss : 0.037062 cons_dist: 0.000628, loss_weight: 0.028650
[22:05:59.302] iteration 3057 : loss : 0.061106 cons_dist: 0.000875, loss_weight: 0.028650
[22:06:00.221] iteration 3058 : loss : 0.036317 cons_dist: 0.004528, loss_weight: 0.028650
[22:06:01.140] iteration 3059 : loss : 0.057682 cons_dist: 0.000654, loss_weight: 0.028650
[22:06:02.057] iteration 3060 : loss : 0.035441 cons_dist: 0.001864, loss_weight: 0.028650
[22:06:03.628] iteration 3061 : loss : 0.047386 cons_dist: 0.002305, loss_weight: 0.028650
[22:06:04.544] iteration 3062 : loss : 0.037697 cons_dist: 0.000267, loss_weight: 0.028650
[22:06:05.460] iteration 3063 : loss : 0.039071 cons_dist: 0.005120, loss_weight: 0.028650
[22:06:06.377] iteration 3064 : loss : 0.054853 cons_dist: 0.013307, loss_weight: 0.028650
[22:06:07.293] iteration 3065 : loss : 0.048073 cons_dist: 0.027714, loss_weight: 0.028650
[22:06:08.210] iteration 3066 : loss : 0.041769 cons_dist: 0.003880, loss_weight: 0.028650
[22:06:09.126] iteration 3067 : loss : 0.047442 cons_dist: 0.029356, loss_weight: 0.028650
[22:06:10.044] iteration 3068 : loss : 0.064715 cons_dist: 0.005937, loss_weight: 0.028650
[22:06:10.963] iteration 3069 : loss : 0.049787 cons_dist: 0.002695, loss_weight: 0.028650
[22:06:11.878] iteration 3070 : loss : 0.049399 cons_dist: 0.002316, loss_weight: 0.028650
[22:06:12.796] iteration 3071 : loss : 0.037522 cons_dist: 0.002023, loss_weight: 0.028650
[22:06:13.713] iteration 3072 : loss : 0.050188 cons_dist: 0.002245, loss_weight: 0.028650
[22:06:15.235] iteration 3073 : loss : 0.058434 cons_dist: 0.005892, loss_weight: 0.028650
[22:06:16.154] iteration 3074 : loss : 0.063604 cons_dist: 0.002630, loss_weight: 0.028650
[22:06:17.073] iteration 3075 : loss : 0.050625 cons_dist: 0.002445, loss_weight: 0.028650
[22:06:17.992] iteration 3076 : loss : 0.028870 cons_dist: 0.000611, loss_weight: 0.028650
[22:06:18.909] iteration 3077 : loss : 0.043614 cons_dist: 0.041685, loss_weight: 0.028650
[22:06:19.827] iteration 3078 : loss : 0.049173 cons_dist: 0.000735, loss_weight: 0.028650
[22:06:20.745] iteration 3079 : loss : 0.037237 cons_dist: 0.004095, loss_weight: 0.028650
[22:06:21.662] iteration 3080 : loss : 0.046570 cons_dist: 0.007709, loss_weight: 0.028650
[22:06:22.580] iteration 3081 : loss : 0.052928 cons_dist: 0.002039, loss_weight: 0.028650
[22:06:23.498] iteration 3082 : loss : 0.042857 cons_dist: 0.000726, loss_weight: 0.028650
[22:06:24.416] iteration 3083 : loss : 0.037189 cons_dist: 0.004355, loss_weight: 0.028650
[22:06:25.333] iteration 3084 : loss : 0.052575 cons_dist: 0.004099, loss_weight: 0.028650
[22:06:26.945] iteration 3085 : loss : 0.041378 cons_dist: 0.001597, loss_weight: 0.028650
[22:06:27.862] iteration 3086 : loss : 0.064181 cons_dist: 0.037118, loss_weight: 0.028650
[22:06:28.778] iteration 3087 : loss : 0.045781 cons_dist: 0.001609, loss_weight: 0.028650
[22:06:29.695] iteration 3088 : loss : 0.048641 cons_dist: 0.006433, loss_weight: 0.028650
[22:06:30.615] iteration 3089 : loss : 0.038832 cons_dist: 0.001400, loss_weight: 0.028650
[22:06:31.531] iteration 3090 : loss : 0.040965 cons_dist: 0.001015, loss_weight: 0.028650
[22:06:32.447] iteration 3091 : loss : 0.063927 cons_dist: 0.002583, loss_weight: 0.028650
[22:06:33.364] iteration 3092 : loss : 0.050367 cons_dist: 0.002402, loss_weight: 0.028650
[22:06:34.285] iteration 3093 : loss : 0.041701 cons_dist: 0.001444, loss_weight: 0.028650
[22:06:35.203] iteration 3094 : loss : 0.053106 cons_dist: 0.003851, loss_weight: 0.028650
[22:06:36.120] iteration 3095 : loss : 0.051506 cons_dist: 0.001189, loss_weight: 0.028650
[22:06:37.038] iteration 3096 : loss : 0.044954 cons_dist: 0.000386, loss_weight: 0.028650
[22:06:38.623] iteration 3097 : loss : 0.053937 cons_dist: 0.001545, loss_weight: 0.028650
[22:06:39.540] iteration 3098 : loss : 0.056198 cons_dist: 0.000923, loss_weight: 0.028650
[22:06:40.459] iteration 3099 : loss : 0.043166 cons_dist: 0.001434, loss_weight: 0.028650
[22:06:41.378] iteration 3100 : loss : 0.066127 cons_dist: 0.001465, loss_weight: 0.028650
[22:06:42.439] iteration 3101 : loss : 0.047285 cons_dist: 0.004647, loss_weight: 0.028650
[22:06:43.357] iteration 3102 : loss : 0.039961 cons_dist: 0.000840, loss_weight: 0.028650
[22:06:44.276] iteration 3103 : loss : 0.034094 cons_dist: 0.000863, loss_weight: 0.028650
[22:06:45.194] iteration 3104 : loss : 0.047747 cons_dist: 0.005556, loss_weight: 0.028650
[22:06:46.112] iteration 3105 : loss : 0.035109 cons_dist: 0.001624, loss_weight: 0.028650
[22:06:47.032] iteration 3106 : loss : 0.037164 cons_dist: 0.000976, loss_weight: 0.028650
[22:06:47.949] iteration 3107 : loss : 0.035346 cons_dist: 0.001581, loss_weight: 0.028650
[22:06:48.866] iteration 3108 : loss : 0.098883 cons_dist: 0.056545, loss_weight: 0.028650
[22:06:50.433] iteration 3109 : loss : 0.040929 cons_dist: 0.010525, loss_weight: 0.028650
[22:06:51.349] iteration 3110 : loss : 0.063829 cons_dist: 0.002769, loss_weight: 0.028650
[22:06:52.266] iteration 3111 : loss : 0.044232 cons_dist: 0.008531, loss_weight: 0.028650
[22:06:53.183] iteration 3112 : loss : 0.052190 cons_dist: 0.002885, loss_weight: 0.028650
[22:06:54.099] iteration 3113 : loss : 0.052377 cons_dist: 0.003629, loss_weight: 0.028650
[22:06:55.015] iteration 3114 : loss : 0.078710 cons_dist: 0.031927, loss_weight: 0.028650
[22:06:55.932] iteration 3115 : loss : 0.032205 cons_dist: 0.001402, loss_weight: 0.028650
[22:06:56.848] iteration 3116 : loss : 0.045732 cons_dist: 0.000757, loss_weight: 0.028650
[22:06:57.765] iteration 3117 : loss : 0.040219 cons_dist: 0.001825, loss_weight: 0.028650
[22:06:58.680] iteration 3118 : loss : 0.031553 cons_dist: 0.001678, loss_weight: 0.028650
[22:06:59.597] iteration 3119 : loss : 0.050242 cons_dist: 0.001645, loss_weight: 0.028650
[22:07:00.513] iteration 3120 : loss : 0.052865 cons_dist: 0.009476, loss_weight: 0.028650
[22:07:02.077] iteration 3121 : loss : 0.032457 cons_dist: 0.003453, loss_weight: 0.028650
[22:07:02.994] iteration 3122 : loss : 0.042799 cons_dist: 0.001150, loss_weight: 0.028650
[22:07:03.912] iteration 3123 : loss : 0.062465 cons_dist: 0.003573, loss_weight: 0.028650
[22:07:04.828] iteration 3124 : loss : 0.053543 cons_dist: 0.001926, loss_weight: 0.028650
[22:07:05.745] iteration 3125 : loss : 0.050134 cons_dist: 0.001114, loss_weight: 0.028650
[22:07:06.662] iteration 3126 : loss : 0.041401 cons_dist: 0.001101, loss_weight: 0.028650
[22:07:07.578] iteration 3127 : loss : 0.045856 cons_dist: 0.002899, loss_weight: 0.028650
[22:07:08.494] iteration 3128 : loss : 0.050604 cons_dist: 0.000781, loss_weight: 0.028650
[22:07:09.412] iteration 3129 : loss : 0.041827 cons_dist: 0.000853, loss_weight: 0.028650
[22:07:10.329] iteration 3130 : loss : 0.046328 cons_dist: 0.007830, loss_weight: 0.028650
[22:07:11.246] iteration 3131 : loss : 0.041862 cons_dist: 0.002524, loss_weight: 0.028650
[22:07:12.163] iteration 3132 : loss : 0.040151 cons_dist: 0.002324, loss_weight: 0.028650
[22:07:13.735] iteration 3133 : loss : 0.046137 cons_dist: 0.000476, loss_weight: 0.028650
[22:07:14.655] iteration 3134 : loss : 0.037395 cons_dist: 0.002822, loss_weight: 0.028650
[22:07:15.574] iteration 3135 : loss : 0.033867 cons_dist: 0.006539, loss_weight: 0.028650
[22:07:16.492] iteration 3136 : loss : 0.041139 cons_dist: 0.001071, loss_weight: 0.028650
[22:07:17.411] iteration 3137 : loss : 0.160818 cons_dist: 0.002234, loss_weight: 0.028650
[22:07:18.330] iteration 3138 : loss : 0.044431 cons_dist: 0.000889, loss_weight: 0.028650
[22:07:19.248] iteration 3139 : loss : 0.049209 cons_dist: 0.029368, loss_weight: 0.028650
[22:07:20.165] iteration 3140 : loss : 0.031944 cons_dist: 0.001979, loss_weight: 0.028650
[22:07:21.083] iteration 3141 : loss : 0.048863 cons_dist: 0.000551, loss_weight: 0.028650
[22:07:22.002] iteration 3142 : loss : 0.051775 cons_dist: 0.004666, loss_weight: 0.028650
[22:07:22.919] iteration 3143 : loss : 0.045223 cons_dist: 0.000850, loss_weight: 0.028650
[22:07:23.837] iteration 3144 : loss : 0.042047 cons_dist: 0.002526, loss_weight: 0.028650
[22:07:25.458] iteration 3145 : loss : 0.043966 cons_dist: 0.001524, loss_weight: 0.028650
[22:07:26.374] iteration 3146 : loss : 0.047849 cons_dist: 0.003908, loss_weight: 0.028650
[22:07:27.290] iteration 3147 : loss : 0.062789 cons_dist: 0.008834, loss_weight: 0.028650
[22:07:28.207] iteration 3148 : loss : 0.062786 cons_dist: 0.001635, loss_weight: 0.028650
[22:07:29.127] iteration 3149 : loss : 0.049512 cons_dist: 0.001304, loss_weight: 0.028650
[22:07:30.043] iteration 3150 : loss : 0.055441 cons_dist: 0.000642, loss_weight: 0.028650
[22:07:31.121] iteration 3151 : loss : 0.037884 cons_dist: 0.001396, loss_weight: 0.032364
[22:07:32.039] iteration 3152 : loss : 0.079894 cons_dist: 0.001457, loss_weight: 0.032364
[22:07:32.958] iteration 3153 : loss : 0.044901 cons_dist: 0.000893, loss_weight: 0.032364
[22:07:33.876] iteration 3154 : loss : 0.044258 cons_dist: 0.001974, loss_weight: 0.032364
[22:07:34.793] iteration 3155 : loss : 0.042908 cons_dist: 0.000386, loss_weight: 0.032364
[22:07:35.710] iteration 3156 : loss : 0.044468 cons_dist: 0.003294, loss_weight: 0.032364
[22:07:37.310] iteration 3157 : loss : 0.043307 cons_dist: 0.001313, loss_weight: 0.032364
[22:07:38.228] iteration 3158 : loss : 0.050147 cons_dist: 0.002484, loss_weight: 0.032364
[22:07:39.150] iteration 3159 : loss : 0.042895 cons_dist: 0.001790, loss_weight: 0.032364
[22:07:40.069] iteration 3160 : loss : 0.065565 cons_dist: 0.006759, loss_weight: 0.032364
[22:07:40.986] iteration 3161 : loss : 0.038770 cons_dist: 0.007570, loss_weight: 0.032364
[22:07:41.904] iteration 3162 : loss : 0.041099 cons_dist: 0.001677, loss_weight: 0.032364
[22:07:42.823] iteration 3163 : loss : 0.040604 cons_dist: 0.007474, loss_weight: 0.032364
[22:07:43.740] iteration 3164 : loss : 0.048597 cons_dist: 0.004362, loss_weight: 0.032364
[22:07:44.656] iteration 3165 : loss : 0.041341 cons_dist: 0.002079, loss_weight: 0.032364
[22:07:45.572] iteration 3166 : loss : 0.033715 cons_dist: 0.000469, loss_weight: 0.032364
[22:07:46.488] iteration 3167 : loss : 0.054376 cons_dist: 0.001184, loss_weight: 0.032364
[22:07:47.405] iteration 3168 : loss : 0.036918 cons_dist: 0.001736, loss_weight: 0.032364
[22:07:48.907] iteration 3169 : loss : 0.043998 cons_dist: 0.000373, loss_weight: 0.032364
[22:07:49.825] iteration 3170 : loss : 0.069871 cons_dist: 0.007904, loss_weight: 0.032364
[22:07:50.743] iteration 3171 : loss : 0.036522 cons_dist: 0.000753, loss_weight: 0.032364
[22:07:51.661] iteration 3172 : loss : 0.180501 cons_dist: 0.002615, loss_weight: 0.032364
[22:07:52.577] iteration 3173 : loss : 0.046587 cons_dist: 0.003716, loss_weight: 0.032364
[22:07:53.496] iteration 3174 : loss : 0.039332 cons_dist: 0.001406, loss_weight: 0.032364
[22:07:54.413] iteration 3175 : loss : 0.035673 cons_dist: 0.000627, loss_weight: 0.032364
[22:07:55.331] iteration 3176 : loss : 0.050082 cons_dist: 0.010164, loss_weight: 0.032364
[22:07:56.249] iteration 3177 : loss : 0.049868 cons_dist: 0.001230, loss_weight: 0.032364
[22:07:57.166] iteration 3178 : loss : 0.044890 cons_dist: 0.001040, loss_weight: 0.032364
[22:07:58.082] iteration 3179 : loss : 0.032894 cons_dist: 0.000368, loss_weight: 0.032364
[22:07:58.999] iteration 3180 : loss : 0.045608 cons_dist: 0.009463, loss_weight: 0.032364
[22:08:00.630] iteration 3181 : loss : 0.046760 cons_dist: 0.001220, loss_weight: 0.032364
[22:08:01.546] iteration 3182 : loss : 0.038322 cons_dist: 0.000683, loss_weight: 0.032364
[22:08:02.462] iteration 3183 : loss : 0.037525 cons_dist: 0.000262, loss_weight: 0.032364
[22:08:03.379] iteration 3184 : loss : 0.041045 cons_dist: 0.001478, loss_weight: 0.032364
[22:08:04.294] iteration 3185 : loss : 0.045164 cons_dist: 0.004555, loss_weight: 0.032364
[22:08:05.212] iteration 3186 : loss : 0.062924 cons_dist: 0.005920, loss_weight: 0.032364
[22:08:06.129] iteration 3187 : loss : 0.037617 cons_dist: 0.001663, loss_weight: 0.032364
[22:08:07.046] iteration 3188 : loss : 0.036693 cons_dist: 0.003812, loss_weight: 0.032364
[22:08:07.963] iteration 3189 : loss : 0.053625 cons_dist: 0.001344, loss_weight: 0.032364
[22:08:08.880] iteration 3190 : loss : 0.045307 cons_dist: 0.051166, loss_weight: 0.032364
[22:08:09.797] iteration 3191 : loss : 0.057416 cons_dist: 0.000859, loss_weight: 0.032364
[22:08:10.714] iteration 3192 : loss : 0.035830 cons_dist: 0.005726, loss_weight: 0.032364
[22:08:12.260] iteration 3193 : loss : 0.037549 cons_dist: 0.000546, loss_weight: 0.032364
[22:08:13.178] iteration 3194 : loss : 0.037002 cons_dist: 0.001140, loss_weight: 0.032364
[22:08:14.096] iteration 3195 : loss : 0.042437 cons_dist: 0.000772, loss_weight: 0.032364
[22:08:15.014] iteration 3196 : loss : 0.049544 cons_dist: 0.010647, loss_weight: 0.032364
[22:08:15.933] iteration 3197 : loss : 0.053136 cons_dist: 0.007597, loss_weight: 0.032364
[22:08:16.851] iteration 3198 : loss : 0.059276 cons_dist: 0.008509, loss_weight: 0.032364
[22:08:17.768] iteration 3199 : loss : 0.048136 cons_dist: 0.001716, loss_weight: 0.032364
[22:08:18.686] iteration 3200 : loss : 0.047651 cons_dist: 0.001167, loss_weight: 0.032364
[22:08:20.230] save best model to model/LA_vnet_25_labeled/UAMT/iter_3200_dice_0.9262756705284119.pth
[22:08:21.151] iteration 3201 : loss : 0.055193 cons_dist: 0.004373, loss_weight: 0.032364
[22:08:22.069] iteration 3202 : loss : 0.039434 cons_dist: 0.001151, loss_weight: 0.032364
[22:08:22.986] iteration 3203 : loss : 0.043419 cons_dist: 0.000619, loss_weight: 0.032364
[22:08:23.904] iteration 3204 : loss : 0.039981 cons_dist: 0.003706, loss_weight: 0.032364
[22:08:25.477] iteration 3205 : loss : 0.052198 cons_dist: 0.004807, loss_weight: 0.032364
[22:08:26.394] iteration 3206 : loss : 0.043924 cons_dist: 0.004045, loss_weight: 0.032364
[22:08:27.312] iteration 3207 : loss : 0.034038 cons_dist: 0.036792, loss_weight: 0.032364
[22:08:28.228] iteration 3208 : loss : 0.050010 cons_dist: 0.007728, loss_weight: 0.032364
[22:08:29.145] iteration 3209 : loss : 0.042077 cons_dist: 0.000827, loss_weight: 0.032364
[22:08:30.061] iteration 3210 : loss : 0.053065 cons_dist: 0.000678, loss_weight: 0.032364
[22:08:30.977] iteration 3211 : loss : 0.066387 cons_dist: 0.002823, loss_weight: 0.032364
[22:08:31.894] iteration 3212 : loss : 0.042879 cons_dist: 0.009923, loss_weight: 0.032364
[22:08:32.812] iteration 3213 : loss : 0.048167 cons_dist: 0.001898, loss_weight: 0.032364
[22:08:33.729] iteration 3214 : loss : 0.060983 cons_dist: 0.002426, loss_weight: 0.032364
[22:08:34.647] iteration 3215 : loss : 0.060296 cons_dist: 0.001518, loss_weight: 0.032364
[22:08:35.565] iteration 3216 : loss : 0.043217 cons_dist: 0.001258, loss_weight: 0.032364
[22:08:37.117] iteration 3217 : loss : 0.046346 cons_dist: 0.002032, loss_weight: 0.032364
[22:08:38.034] iteration 3218 : loss : 0.031561 cons_dist: 0.000600, loss_weight: 0.032364
[22:08:38.951] iteration 3219 : loss : 0.033773 cons_dist: 0.000928, loss_weight: 0.032364
[22:08:39.868] iteration 3220 : loss : 0.043066 cons_dist: 0.002651, loss_weight: 0.032364
[22:08:40.785] iteration 3221 : loss : 0.050938 cons_dist: 0.001326, loss_weight: 0.032364
[22:08:41.702] iteration 3222 : loss : 0.064300 cons_dist: 0.004648, loss_weight: 0.032364
[22:08:42.620] iteration 3223 : loss : 0.041689 cons_dist: 0.001650, loss_weight: 0.032364
[22:08:43.537] iteration 3224 : loss : 0.059130 cons_dist: 0.004980, loss_weight: 0.032364
[22:08:44.454] iteration 3225 : loss : 0.041123 cons_dist: 0.000324, loss_weight: 0.032364
[22:08:45.374] iteration 3226 : loss : 0.046215 cons_dist: 0.002952, loss_weight: 0.032364
[22:08:46.291] iteration 3227 : loss : 0.061579 cons_dist: 0.002435, loss_weight: 0.032364
[22:08:47.210] iteration 3228 : loss : 0.040970 cons_dist: 0.001706, loss_weight: 0.032364
[22:08:48.792] iteration 3229 : loss : 0.040486 cons_dist: 0.007325, loss_weight: 0.032364
[22:08:49.710] iteration 3230 : loss : 0.036847 cons_dist: 0.000345, loss_weight: 0.032364
[22:08:50.628] iteration 3231 : loss : 0.096616 cons_dist: 0.000331, loss_weight: 0.032364
[22:08:51.546] iteration 3232 : loss : 0.038833 cons_dist: 0.004103, loss_weight: 0.032364
[22:08:52.463] iteration 3233 : loss : 0.065110 cons_dist: 0.007927, loss_weight: 0.032364
[22:08:53.381] iteration 3234 : loss : 0.062177 cons_dist: 0.004857, loss_weight: 0.032364
[22:08:54.299] iteration 3235 : loss : 0.039167 cons_dist: 0.001673, loss_weight: 0.032364
[22:08:55.217] iteration 3236 : loss : 0.079063 cons_dist: 0.000576, loss_weight: 0.032364
[22:08:56.136] iteration 3237 : loss : 0.036977 cons_dist: 0.000839, loss_weight: 0.032364
[22:08:57.055] iteration 3238 : loss : 0.046520 cons_dist: 0.003846, loss_weight: 0.032364
[22:08:57.972] iteration 3239 : loss : 0.042797 cons_dist: 0.003116, loss_weight: 0.032364
[22:08:58.891] iteration 3240 : loss : 0.049922 cons_dist: 0.003177, loss_weight: 0.032364
[22:09:00.538] iteration 3241 : loss : 0.046590 cons_dist: 0.001113, loss_weight: 0.032364
[22:09:01.455] iteration 3242 : loss : 0.048151 cons_dist: 0.001368, loss_weight: 0.032364
[22:09:02.371] iteration 3243 : loss : 0.035965 cons_dist: 0.001662, loss_weight: 0.032364
[22:09:03.288] iteration 3244 : loss : 0.043246 cons_dist: 0.001167, loss_weight: 0.032364
[22:09:04.204] iteration 3245 : loss : 0.062804 cons_dist: 0.000955, loss_weight: 0.032364
[22:09:05.122] iteration 3246 : loss : 0.043269 cons_dist: 0.004975, loss_weight: 0.032364
[22:09:06.038] iteration 3247 : loss : 0.053631 cons_dist: 0.001806, loss_weight: 0.032364
[22:09:06.954] iteration 3248 : loss : 0.040123 cons_dist: 0.002539, loss_weight: 0.032364
[22:09:07.870] iteration 3249 : loss : 0.035443 cons_dist: 0.000281, loss_weight: 0.032364
[22:09:08.787] iteration 3250 : loss : 0.056415 cons_dist: 0.002037, loss_weight: 0.032364
[22:09:09.850] iteration 3251 : loss : 0.056755 cons_dist: 0.000889, loss_weight: 0.032364
[22:09:10.766] iteration 3252 : loss : 0.036768 cons_dist: 0.001587, loss_weight: 0.032364
[22:09:12.324] iteration 3253 : loss : 0.032065 cons_dist: 0.002271, loss_weight: 0.032364
[22:09:13.241] iteration 3254 : loss : 0.041357 cons_dist: 0.031558, loss_weight: 0.032364
[22:09:14.159] iteration 3255 : loss : 0.046616 cons_dist: 0.002200, loss_weight: 0.032364
[22:09:15.077] iteration 3256 : loss : 0.048213 cons_dist: 0.001182, loss_weight: 0.032364
[22:09:15.994] iteration 3257 : loss : 0.031249 cons_dist: 0.004327, loss_weight: 0.032364
[22:09:16.911] iteration 3258 : loss : 0.084615 cons_dist: 0.075244, loss_weight: 0.032364
[22:09:17.827] iteration 3259 : loss : 0.035922 cons_dist: 0.000976, loss_weight: 0.032364
[22:09:18.745] iteration 3260 : loss : 0.042991 cons_dist: 0.002055, loss_weight: 0.032364
[22:09:19.661] iteration 3261 : loss : 0.035249 cons_dist: 0.002200, loss_weight: 0.032364
[22:09:20.577] iteration 3262 : loss : 0.041879 cons_dist: 0.000627, loss_weight: 0.032364
[22:09:21.494] iteration 3263 : loss : 0.033782 cons_dist: 0.002838, loss_weight: 0.032364
[22:09:22.412] iteration 3264 : loss : 0.043282 cons_dist: 0.000534, loss_weight: 0.032364
[22:09:24.068] iteration 3265 : loss : 0.077018 cons_dist: 0.004327, loss_weight: 0.032364
[22:09:24.987] iteration 3266 : loss : 0.045451 cons_dist: 0.001457, loss_weight: 0.032364
[22:09:25.906] iteration 3267 : loss : 0.043565 cons_dist: 0.000872, loss_weight: 0.032364
[22:09:26.824] iteration 3268 : loss : 0.044091 cons_dist: 0.001445, loss_weight: 0.032364
[22:09:27.744] iteration 3269 : loss : 0.042623 cons_dist: 0.000883, loss_weight: 0.032364
[22:09:28.662] iteration 3270 : loss : 0.059483 cons_dist: 0.001806, loss_weight: 0.032364
[22:09:29.580] iteration 3271 : loss : 0.034440 cons_dist: 0.001331, loss_weight: 0.032364
[22:09:30.498] iteration 3272 : loss : 0.059661 cons_dist: 0.000679, loss_weight: 0.032364
[22:09:31.417] iteration 3273 : loss : 0.038274 cons_dist: 0.004338, loss_weight: 0.032364
[22:09:32.334] iteration 3274 : loss : 0.034221 cons_dist: 0.001438, loss_weight: 0.032364
[22:09:33.253] iteration 3275 : loss : 0.061155 cons_dist: 0.001502, loss_weight: 0.032364
[22:09:34.172] iteration 3276 : loss : 0.038823 cons_dist: 0.006959, loss_weight: 0.032364
[22:09:35.754] iteration 3277 : loss : 0.039302 cons_dist: 0.005120, loss_weight: 0.032364
[22:09:36.672] iteration 3278 : loss : 0.042194 cons_dist: 0.001276, loss_weight: 0.032364
[22:09:37.590] iteration 3279 : loss : 0.042569 cons_dist: 0.001037, loss_weight: 0.032364
[22:09:38.509] iteration 3280 : loss : 0.043119 cons_dist: 0.000981, loss_weight: 0.032364
[22:09:39.427] iteration 3281 : loss : 0.039154 cons_dist: 0.007076, loss_weight: 0.032364
[22:09:40.344] iteration 3282 : loss : 0.045037 cons_dist: 0.001538, loss_weight: 0.032364
[22:09:41.263] iteration 3283 : loss : 0.045798 cons_dist: 0.001361, loss_weight: 0.032364
[22:09:42.182] iteration 3284 : loss : 0.037296 cons_dist: 0.001856, loss_weight: 0.032364
[22:09:43.100] iteration 3285 : loss : 0.048980 cons_dist: 0.001302, loss_weight: 0.032364
[22:09:44.018] iteration 3286 : loss : 0.055686 cons_dist: 0.001884, loss_weight: 0.032364
[22:09:44.935] iteration 3287 : loss : 0.044080 cons_dist: 0.000868, loss_weight: 0.032364
[22:09:45.854] iteration 3288 : loss : 0.030265 cons_dist: 0.002221, loss_weight: 0.032364
[22:09:47.418] iteration 3289 : loss : 0.045301 cons_dist: 0.002778, loss_weight: 0.032364
[22:09:48.335] iteration 3290 : loss : 0.039090 cons_dist: 0.007016, loss_weight: 0.032364
[22:09:49.252] iteration 3291 : loss : 0.049780 cons_dist: 0.002648, loss_weight: 0.032364
[22:09:50.170] iteration 3292 : loss : 0.036890 cons_dist: 0.000554, loss_weight: 0.032364
[22:09:51.087] iteration 3293 : loss : 0.049742 cons_dist: 0.000565, loss_weight: 0.032364
[22:09:52.003] iteration 3294 : loss : 0.037116 cons_dist: 0.004844, loss_weight: 0.032364
[22:09:52.919] iteration 3295 : loss : 0.069398 cons_dist: 0.053504, loss_weight: 0.032364
[22:09:53.835] iteration 3296 : loss : 0.050108 cons_dist: 0.001480, loss_weight: 0.032364
[22:09:54.750] iteration 3297 : loss : 0.045443 cons_dist: 0.004518, loss_weight: 0.032364
[22:09:55.666] iteration 3298 : loss : 0.053668 cons_dist: 0.010472, loss_weight: 0.032364
[22:09:56.582] iteration 3299 : loss : 0.038205 cons_dist: 0.018407, loss_weight: 0.032364
[22:09:57.501] iteration 3300 : loss : 0.038325 cons_dist: 0.001294, loss_weight: 0.032364
[22:09:59.317] iteration 3301 : loss : 0.054606 cons_dist: 0.007387, loss_weight: 0.036331
[22:10:00.234] iteration 3302 : loss : 0.041975 cons_dist: 0.003899, loss_weight: 0.036331
[22:10:01.151] iteration 3303 : loss : 0.044516 cons_dist: 0.003322, loss_weight: 0.036331
[22:10:02.069] iteration 3304 : loss : 0.076622 cons_dist: 0.002540, loss_weight: 0.036331
[22:10:02.985] iteration 3305 : loss : 0.046831 cons_dist: 0.002713, loss_weight: 0.036331
[22:10:03.904] iteration 3306 : loss : 0.030662 cons_dist: 0.002975, loss_weight: 0.036331
[22:10:04.821] iteration 3307 : loss : 0.192748 cons_dist: 0.000798, loss_weight: 0.036331
[22:10:05.738] iteration 3308 : loss : 0.027249 cons_dist: 0.005423, loss_weight: 0.036331
[22:10:06.656] iteration 3309 : loss : 0.050218 cons_dist: 0.001213, loss_weight: 0.036331
[22:10:07.573] iteration 3310 : loss : 0.073446 cons_dist: 0.001832, loss_weight: 0.036331
[22:10:08.510] iteration 3311 : loss : 0.037723 cons_dist: 0.000750, loss_weight: 0.036331
[22:10:09.432] iteration 3312 : loss : 0.042496 cons_dist: 0.007350, loss_weight: 0.036331
[22:10:10.914] iteration 3313 : loss : 0.041833 cons_dist: 0.002037, loss_weight: 0.036331
[22:10:11.834] iteration 3314 : loss : 0.034254 cons_dist: 0.001820, loss_weight: 0.036331
[22:10:12.752] iteration 3315 : loss : 0.042838 cons_dist: 0.001872, loss_weight: 0.036331
[22:10:13.670] iteration 3316 : loss : 0.048282 cons_dist: 0.000974, loss_weight: 0.036331
[22:10:14.589] iteration 3317 : loss : 0.041919 cons_dist: 0.001245, loss_weight: 0.036331
[22:10:15.506] iteration 3318 : loss : 0.054706 cons_dist: 0.001265, loss_weight: 0.036331
[22:10:16.424] iteration 3319 : loss : 0.045949 cons_dist: 0.000907, loss_weight: 0.036331
[22:10:17.342] iteration 3320 : loss : 0.056349 cons_dist: 0.001539, loss_weight: 0.036331
[22:10:18.260] iteration 3321 : loss : 0.037662 cons_dist: 0.001450, loss_weight: 0.036331
[22:10:19.177] iteration 3322 : loss : 0.050124 cons_dist: 0.000969, loss_weight: 0.036331
[22:10:20.107] iteration 3323 : loss : 0.047691 cons_dist: 0.002650, loss_weight: 0.036331
[22:10:21.024] iteration 3324 : loss : 0.046329 cons_dist: 0.006993, loss_weight: 0.036331
[22:10:22.602] iteration 3325 : loss : 0.047244 cons_dist: 0.000895, loss_weight: 0.036331
[22:10:23.518] iteration 3326 : loss : 0.041115 cons_dist: 0.016064, loss_weight: 0.036331
[22:10:24.436] iteration 3327 : loss : 0.077843 cons_dist: 0.009182, loss_weight: 0.036331
[22:10:25.353] iteration 3328 : loss : 0.047246 cons_dist: 0.010057, loss_weight: 0.036331
[22:10:26.271] iteration 3329 : loss : 0.044596 cons_dist: 0.000479, loss_weight: 0.036331
[22:10:27.188] iteration 3330 : loss : 0.193617 cons_dist: 0.008357, loss_weight: 0.036331
[22:10:28.104] iteration 3331 : loss : 0.049753 cons_dist: 0.003539, loss_weight: 0.036331
[22:10:29.021] iteration 3332 : loss : 0.041717 cons_dist: 0.009002, loss_weight: 0.036331
[22:10:29.939] iteration 3333 : loss : 0.053481 cons_dist: 0.000366, loss_weight: 0.036331
[22:10:30.857] iteration 3334 : loss : 0.065926 cons_dist: 0.048090, loss_weight: 0.036331
[22:10:31.775] iteration 3335 : loss : 0.055626 cons_dist: 0.001192, loss_weight: 0.036331
[22:10:32.693] iteration 3336 : loss : 0.032886 cons_dist: 0.002785, loss_weight: 0.036331
[22:10:34.277] iteration 3337 : loss : 0.046726 cons_dist: 0.001100, loss_weight: 0.036331
[22:10:35.194] iteration 3338 : loss : 0.051748 cons_dist: 0.000656, loss_weight: 0.036331
[22:10:36.111] iteration 3339 : loss : 0.042276 cons_dist: 0.002577, loss_weight: 0.036331
[22:10:37.028] iteration 3340 : loss : 0.048205 cons_dist: 0.002021, loss_weight: 0.036331
[22:10:37.946] iteration 3341 : loss : 0.060109 cons_dist: 0.002004, loss_weight: 0.036331
[22:10:38.864] iteration 3342 : loss : 0.047836 cons_dist: 0.002844, loss_weight: 0.036331
[22:10:39.782] iteration 3343 : loss : 0.048943 cons_dist: 0.044832, loss_weight: 0.036331
[22:10:40.702] iteration 3344 : loss : 0.047549 cons_dist: 0.003870, loss_weight: 0.036331
[22:10:41.619] iteration 3345 : loss : 0.047727 cons_dist: 0.001320, loss_weight: 0.036331
[22:10:42.537] iteration 3346 : loss : 0.076054 cons_dist: 0.023390, loss_weight: 0.036331
[22:10:43.454] iteration 3347 : loss : 0.038969 cons_dist: 0.044929, loss_weight: 0.036331
[22:10:44.373] iteration 3348 : loss : 0.040144 cons_dist: 0.002295, loss_weight: 0.036331
[22:10:46.030] iteration 3349 : loss : 0.059542 cons_dist: 0.003533, loss_weight: 0.036331
[22:10:46.949] iteration 3350 : loss : 0.069507 cons_dist: 0.007859, loss_weight: 0.036331
[22:10:48.007] iteration 3351 : loss : 0.034657 cons_dist: 0.001607, loss_weight: 0.036331
[22:10:48.926] iteration 3352 : loss : 0.066522 cons_dist: 0.000859, loss_weight: 0.036331
[22:10:49.843] iteration 3353 : loss : 0.044731 cons_dist: 0.031874, loss_weight: 0.036331
[22:10:50.761] iteration 3354 : loss : 0.051361 cons_dist: 0.013234, loss_weight: 0.036331
[22:10:51.679] iteration 3355 : loss : 0.039977 cons_dist: 0.005057, loss_weight: 0.036331
[22:10:52.598] iteration 3356 : loss : 0.035215 cons_dist: 0.002443, loss_weight: 0.036331
[22:10:53.516] iteration 3357 : loss : 0.039147 cons_dist: 0.005238, loss_weight: 0.036331
[22:10:54.434] iteration 3358 : loss : 0.036160 cons_dist: 0.014477, loss_weight: 0.036331
[22:10:55.351] iteration 3359 : loss : 0.041617 cons_dist: 0.000890, loss_weight: 0.036331
[22:10:56.271] iteration 3360 : loss : 0.042934 cons_dist: 0.006365, loss_weight: 0.036331
[22:10:57.826] iteration 3361 : loss : 0.039889 cons_dist: 0.000975, loss_weight: 0.036331
[22:10:58.744] iteration 3362 : loss : 0.046180 cons_dist: 0.005473, loss_weight: 0.036331
[22:10:59.662] iteration 3363 : loss : 0.044231 cons_dist: 0.003835, loss_weight: 0.036331
[22:11:00.578] iteration 3364 : loss : 0.056130 cons_dist: 0.001045, loss_weight: 0.036331
[22:11:01.496] iteration 3365 : loss : 0.040632 cons_dist: 0.002334, loss_weight: 0.036331
[22:11:02.414] iteration 3366 : loss : 0.043574 cons_dist: 0.001627, loss_weight: 0.036331
[22:11:03.332] iteration 3367 : loss : 0.043346 cons_dist: 0.004099, loss_weight: 0.036331
[22:11:04.250] iteration 3368 : loss : 0.036347 cons_dist: 0.002129, loss_weight: 0.036331
[22:11:05.167] iteration 3369 : loss : 0.187979 cons_dist: 0.000349, loss_weight: 0.036331
[22:11:06.084] iteration 3370 : loss : 0.065048 cons_dist: 0.005424, loss_weight: 0.036331
[22:11:07.002] iteration 3371 : loss : 0.053555 cons_dist: 0.000536, loss_weight: 0.036331
[22:11:07.918] iteration 3372 : loss : 0.059053 cons_dist: 0.001720, loss_weight: 0.036331
[22:11:09.450] iteration 3373 : loss : 0.048754 cons_dist: 0.006777, loss_weight: 0.036331
[22:11:10.369] iteration 3374 : loss : 0.049633 cons_dist: 0.003464, loss_weight: 0.036331
[22:11:11.288] iteration 3375 : loss : 0.043161 cons_dist: 0.001020, loss_weight: 0.036331
[22:11:12.205] iteration 3376 : loss : 0.037421 cons_dist: 0.001612, loss_weight: 0.036331
[22:11:13.123] iteration 3377 : loss : 0.040055 cons_dist: 0.002267, loss_weight: 0.036331
[22:11:14.039] iteration 3378 : loss : 0.047149 cons_dist: 0.057206, loss_weight: 0.036331
[22:11:14.956] iteration 3379 : loss : 0.065730 cons_dist: 0.005453, loss_weight: 0.036331
[22:11:15.874] iteration 3380 : loss : 0.076323 cons_dist: 0.000642, loss_weight: 0.036331
[22:11:16.791] iteration 3381 : loss : 0.075724 cons_dist: 0.000850, loss_weight: 0.036331
[22:11:17.709] iteration 3382 : loss : 0.056445 cons_dist: 0.002735, loss_weight: 0.036331
[22:11:18.627] iteration 3383 : loss : 0.040736 cons_dist: 0.000443, loss_weight: 0.036331
[22:11:19.544] iteration 3384 : loss : 0.061179 cons_dist: 0.000878, loss_weight: 0.036331
[22:11:21.086] iteration 3385 : loss : 0.061766 cons_dist: 0.003161, loss_weight: 0.036331
[22:11:22.003] iteration 3386 : loss : 0.034774 cons_dist: 0.001919, loss_weight: 0.036331
[22:11:22.921] iteration 3387 : loss : 0.044569 cons_dist: 0.001439, loss_weight: 0.036331
[22:11:23.839] iteration 3388 : loss : 0.033654 cons_dist: 0.000549, loss_weight: 0.036331
[22:11:24.757] iteration 3389 : loss : 0.038976 cons_dist: 0.001985, loss_weight: 0.036331
[22:11:25.676] iteration 3390 : loss : 0.052944 cons_dist: 0.005582, loss_weight: 0.036331
[22:11:26.594] iteration 3391 : loss : 0.059100 cons_dist: 0.001025, loss_weight: 0.036331
[22:11:27.512] iteration 3392 : loss : 0.041531 cons_dist: 0.000863, loss_weight: 0.036331
[22:11:28.429] iteration 3393 : loss : 0.054741 cons_dist: 0.000955, loss_weight: 0.036331
[22:11:29.346] iteration 3394 : loss : 0.041242 cons_dist: 0.000907, loss_weight: 0.036331
[22:11:30.263] iteration 3395 : loss : 0.045994 cons_dist: 0.001577, loss_weight: 0.036331
[22:11:31.180] iteration 3396 : loss : 0.039014 cons_dist: 0.014783, loss_weight: 0.036331
[22:11:32.676] iteration 3397 : loss : 0.035557 cons_dist: 0.001959, loss_weight: 0.036331
[22:11:33.597] iteration 3398 : loss : 0.048047 cons_dist: 0.001324, loss_weight: 0.036331
[22:11:34.517] iteration 3399 : loss : 0.039523 cons_dist: 0.015718, loss_weight: 0.036331
[22:11:35.434] iteration 3400 : loss : 0.044772 cons_dist: 0.004232, loss_weight: 0.036331
[22:11:37.665] iteration 3401 : loss : 0.056497 cons_dist: 0.004143, loss_weight: 0.036331
[22:11:38.582] iteration 3402 : loss : 0.046876 cons_dist: 0.000932, loss_weight: 0.036331
[22:11:39.500] iteration 3403 : loss : 0.037429 cons_dist: 0.001345, loss_weight: 0.036331
[22:11:40.421] iteration 3404 : loss : 0.045545 cons_dist: 0.001411, loss_weight: 0.036331
[22:11:41.339] iteration 3405 : loss : 0.059168 cons_dist: 0.005319, loss_weight: 0.036331
[22:11:42.257] iteration 3406 : loss : 0.046700 cons_dist: 0.003496, loss_weight: 0.036331
[22:11:43.174] iteration 3407 : loss : 0.046594 cons_dist: 0.000461, loss_weight: 0.036331
[22:11:44.092] iteration 3408 : loss : 0.050230 cons_dist: 0.002649, loss_weight: 0.036331
[22:11:45.650] iteration 3409 : loss : 0.062898 cons_dist: 0.007564, loss_weight: 0.036331
[22:11:46.567] iteration 3410 : loss : 0.039049 cons_dist: 0.003296, loss_weight: 0.036331
[22:11:47.539] iteration 3411 : loss : 0.073252 cons_dist: 0.011763, loss_weight: 0.036331
[22:11:48.457] iteration 3412 : loss : 0.059707 cons_dist: 0.000942, loss_weight: 0.036331
[22:11:49.376] iteration 3413 : loss : 0.053151 cons_dist: 0.001313, loss_weight: 0.036331
[22:11:50.294] iteration 3414 : loss : 0.044512 cons_dist: 0.003504, loss_weight: 0.036331
[22:11:51.211] iteration 3415 : loss : 0.060220 cons_dist: 0.000372, loss_weight: 0.036331
[22:11:52.129] iteration 3416 : loss : 0.044780 cons_dist: 0.002747, loss_weight: 0.036331
[22:11:53.049] iteration 3417 : loss : 0.039777 cons_dist: 0.000911, loss_weight: 0.036331
[22:11:53.966] iteration 3418 : loss : 0.050358 cons_dist: 0.004108, loss_weight: 0.036331
[22:11:54.883] iteration 3419 : loss : 0.044977 cons_dist: 0.006281, loss_weight: 0.036331
[22:11:55.802] iteration 3420 : loss : 0.038361 cons_dist: 0.003663, loss_weight: 0.036331
[22:11:57.432] iteration 3421 : loss : 0.045668 cons_dist: 0.001809, loss_weight: 0.036331
[22:11:58.349] iteration 3422 : loss : 0.035546 cons_dist: 0.001203, loss_weight: 0.036331
[22:11:59.267] iteration 3423 : loss : 0.047709 cons_dist: 0.001454, loss_weight: 0.036331
[22:12:00.185] iteration 3424 : loss : 0.054989 cons_dist: 0.000946, loss_weight: 0.036331
[22:12:01.103] iteration 3425 : loss : 0.037939 cons_dist: 0.000537, loss_weight: 0.036331
[22:12:02.021] iteration 3426 : loss : 0.040436 cons_dist: 0.005017, loss_weight: 0.036331
[22:12:02.940] iteration 3427 : loss : 0.055264 cons_dist: 0.001138, loss_weight: 0.036331
[22:12:03.859] iteration 3428 : loss : 0.039147 cons_dist: 0.006741, loss_weight: 0.036331
[22:12:04.775] iteration 3429 : loss : 0.037462 cons_dist: 0.000777, loss_weight: 0.036331
[22:12:05.694] iteration 3430 : loss : 0.043638 cons_dist: 0.001041, loss_weight: 0.036331
[22:12:06.611] iteration 3431 : loss : 0.077338 cons_dist: 0.000241, loss_weight: 0.036331
[22:12:07.528] iteration 3432 : loss : 0.053314 cons_dist: 0.010164, loss_weight: 0.036331
[22:12:09.098] iteration 3433 : loss : 0.040452 cons_dist: 0.002830, loss_weight: 0.036331
[22:12:10.014] iteration 3434 : loss : 0.037800 cons_dist: 0.004591, loss_weight: 0.036331
[22:12:10.930] iteration 3435 : loss : 0.046452 cons_dist: 0.001843, loss_weight: 0.036331
[22:12:11.846] iteration 3436 : loss : 0.041518 cons_dist: 0.000424, loss_weight: 0.036331
[22:12:12.761] iteration 3437 : loss : 0.263086 cons_dist: 0.003346, loss_weight: 0.036331
[22:12:13.678] iteration 3438 : loss : 0.048023 cons_dist: 0.001689, loss_weight: 0.036331
[22:12:14.594] iteration 3439 : loss : 0.056161 cons_dist: 0.002344, loss_weight: 0.036331
[22:12:15.511] iteration 3440 : loss : 0.048466 cons_dist: 0.000887, loss_weight: 0.036331
[22:12:16.426] iteration 3441 : loss : 0.044566 cons_dist: 0.002971, loss_weight: 0.036331
[22:12:17.343] iteration 3442 : loss : 0.033510 cons_dist: 0.002327, loss_weight: 0.036331
[22:12:18.259] iteration 3443 : loss : 0.047636 cons_dist: 0.000688, loss_weight: 0.036331
[22:12:19.175] iteration 3444 : loss : 0.052983 cons_dist: 0.003439, loss_weight: 0.036331
[22:12:20.682] iteration 3445 : loss : 0.036641 cons_dist: 0.001273, loss_weight: 0.036331
[22:12:21.600] iteration 3446 : loss : 0.046444 cons_dist: 0.005266, loss_weight: 0.036331
[22:12:22.519] iteration 3447 : loss : 0.040292 cons_dist: 0.000674, loss_weight: 0.036331
[22:12:23.435] iteration 3448 : loss : 0.042511 cons_dist: 0.012459, loss_weight: 0.036331
[22:12:24.351] iteration 3449 : loss : 0.052168 cons_dist: 0.000422, loss_weight: 0.036331
[22:12:25.266] iteration 3450 : loss : 0.036540 cons_dist: 0.005101, loss_weight: 0.036331
[22:12:26.365] iteration 3451 : loss : 0.038715 cons_dist: 0.002236, loss_weight: 0.040530
[22:12:27.280] iteration 3452 : loss : 0.057395 cons_dist: 0.002924, loss_weight: 0.040530
[22:12:28.197] iteration 3453 : loss : 0.058852 cons_dist: 0.001179, loss_weight: 0.040530
[22:12:29.114] iteration 3454 : loss : 0.058262 cons_dist: 0.001897, loss_weight: 0.040530
[22:12:30.032] iteration 3455 : loss : 0.054690 cons_dist: 0.004396, loss_weight: 0.040530
[22:12:30.949] iteration 3456 : loss : 0.041094 cons_dist: 0.002900, loss_weight: 0.040530
[22:12:32.562] iteration 3457 : loss : 0.042137 cons_dist: 0.001207, loss_weight: 0.040530
[22:12:33.479] iteration 3458 : loss : 0.059573 cons_dist: 0.001817, loss_weight: 0.040530
[22:12:34.396] iteration 3459 : loss : 0.051741 cons_dist: 0.001996, loss_weight: 0.040530
[22:12:35.312] iteration 3460 : loss : 0.027795 cons_dist: 0.000751, loss_weight: 0.040530
[22:12:36.227] iteration 3461 : loss : 0.048991 cons_dist: 0.003061, loss_weight: 0.040530
[22:12:37.143] iteration 3462 : loss : 0.042027 cons_dist: 0.001318, loss_weight: 0.040530
[22:12:38.058] iteration 3463 : loss : 0.047536 cons_dist: 0.001083, loss_weight: 0.040530
[22:12:39.030] iteration 3464 : loss : 0.043082 cons_dist: 0.005739, loss_weight: 0.040530
[22:12:39.948] iteration 3465 : loss : 0.046517 cons_dist: 0.001208, loss_weight: 0.040530
[22:12:40.865] iteration 3466 : loss : 0.052545 cons_dist: 0.011376, loss_weight: 0.040530
[22:12:41.783] iteration 3467 : loss : 0.048117 cons_dist: 0.000495, loss_weight: 0.040530
[22:12:42.700] iteration 3468 : loss : 0.037266 cons_dist: 0.003775, loss_weight: 0.040530
[22:12:44.271] iteration 3469 : loss : 0.037581 cons_dist: 0.001154, loss_weight: 0.040530
[22:12:45.189] iteration 3470 : loss : 0.167243 cons_dist: 0.003702, loss_weight: 0.040530
[22:12:46.107] iteration 3471 : loss : 0.033345 cons_dist: 0.000556, loss_weight: 0.040530
[22:12:47.025] iteration 3472 : loss : 0.042609 cons_dist: 0.000566, loss_weight: 0.040530
[22:12:47.941] iteration 3473 : loss : 0.050893 cons_dist: 0.005409, loss_weight: 0.040530
[22:12:48.859] iteration 3474 : loss : 0.058734 cons_dist: 0.001507, loss_weight: 0.040530
[22:12:49.775] iteration 3475 : loss : 0.039206 cons_dist: 0.001279, loss_weight: 0.040530
[22:12:50.690] iteration 3476 : loss : 0.034146 cons_dist: 0.001487, loss_weight: 0.040530
[22:12:51.607] iteration 3477 : loss : 0.050854 cons_dist: 0.001647, loss_weight: 0.040530
[22:12:52.523] iteration 3478 : loss : 0.055834 cons_dist: 0.000393, loss_weight: 0.040530
[22:12:53.441] iteration 3479 : loss : 0.049360 cons_dist: 0.000646, loss_weight: 0.040530
[22:12:54.358] iteration 3480 : loss : 0.036908 cons_dist: 0.001466, loss_weight: 0.040530
[22:12:55.923] iteration 3481 : loss : 0.051518 cons_dist: 0.000280, loss_weight: 0.040530
[22:12:56.840] iteration 3482 : loss : 0.047671 cons_dist: 0.000692, loss_weight: 0.040530
[22:12:57.755] iteration 3483 : loss : 0.036189 cons_dist: 0.001076, loss_weight: 0.040530
[22:12:58.671] iteration 3484 : loss : 0.044457 cons_dist: 0.003001, loss_weight: 0.040530
[22:12:59.588] iteration 3485 : loss : 0.038005 cons_dist: 0.001358, loss_weight: 0.040530
[22:13:00.504] iteration 3486 : loss : 0.069067 cons_dist: 0.002314, loss_weight: 0.040530
[22:13:01.420] iteration 3487 : loss : 0.190998 cons_dist: 0.028504, loss_weight: 0.040530
[22:13:02.336] iteration 3488 : loss : 0.038640 cons_dist: 0.006163, loss_weight: 0.040530
[22:13:03.252] iteration 3489 : loss : 0.044366 cons_dist: 0.002565, loss_weight: 0.040530
[22:13:04.169] iteration 3490 : loss : 0.032390 cons_dist: 0.000527, loss_weight: 0.040530
[22:13:05.088] iteration 3491 : loss : 0.045049 cons_dist: 0.000570, loss_weight: 0.040530
[22:13:06.005] iteration 3492 : loss : 0.038988 cons_dist: 0.001530, loss_weight: 0.040530
[22:13:07.709] iteration 3493 : loss : 0.049977 cons_dist: 0.000984, loss_weight: 0.040530
[22:13:08.628] iteration 3494 : loss : 0.053434 cons_dist: 0.006768, loss_weight: 0.040530
[22:13:09.546] iteration 3495 : loss : 0.038967 cons_dist: 0.001064, loss_weight: 0.040530
[22:13:10.464] iteration 3496 : loss : 0.044600 cons_dist: 0.000458, loss_weight: 0.040530
[22:13:11.381] iteration 3497 : loss : 0.047070 cons_dist: 0.000523, loss_weight: 0.040530
[22:13:12.299] iteration 3498 : loss : 0.058992 cons_dist: 0.003274, loss_weight: 0.040530
[22:13:13.217] iteration 3499 : loss : 0.063540 cons_dist: 0.001800, loss_weight: 0.040530
[22:13:14.137] iteration 3500 : loss : 0.042423 cons_dist: 0.034132, loss_weight: 0.040530
[22:13:15.225] iteration 3501 : loss : 0.036331 cons_dist: 0.001552, loss_weight: 0.040530
[22:13:16.142] iteration 3502 : loss : 0.055711 cons_dist: 0.000649, loss_weight: 0.040530
[22:13:17.059] iteration 3503 : loss : 0.076862 cons_dist: 0.010130, loss_weight: 0.040530
[22:13:17.976] iteration 3504 : loss : 0.043832 cons_dist: 0.001965, loss_weight: 0.040530
[22:13:19.593] iteration 3505 : loss : 0.070865 cons_dist: 0.002023, loss_weight: 0.040530
[22:13:20.510] iteration 3506 : loss : 0.042136 cons_dist: 0.001162, loss_weight: 0.040530
[22:13:21.429] iteration 3507 : loss : 0.075080 cons_dist: 0.001488, loss_weight: 0.040530
[22:13:22.346] iteration 3508 : loss : 0.039236 cons_dist: 0.009878, loss_weight: 0.040530
[22:13:23.263] iteration 3509 : loss : 0.046927 cons_dist: 0.000794, loss_weight: 0.040530
[22:13:24.180] iteration 3510 : loss : 0.040555 cons_dist: 0.003254, loss_weight: 0.040530
[22:13:25.098] iteration 3511 : loss : 0.041690 cons_dist: 0.000724, loss_weight: 0.040530
[22:13:26.017] iteration 3512 : loss : 0.050310 cons_dist: 0.003715, loss_weight: 0.040530
[22:13:26.934] iteration 3513 : loss : 0.044295 cons_dist: 0.000919, loss_weight: 0.040530
[22:13:27.854] iteration 3514 : loss : 0.065050 cons_dist: 0.001940, loss_weight: 0.040530
[22:13:28.770] iteration 3515 : loss : 0.041674 cons_dist: 0.004457, loss_weight: 0.040530
[22:13:29.689] iteration 3516 : loss : 0.207852 cons_dist: 0.004836, loss_weight: 0.040530
[22:13:31.298] iteration 3517 : loss : 0.070638 cons_dist: 0.000917, loss_weight: 0.040530
[22:13:32.216] iteration 3518 : loss : 0.056943 cons_dist: 0.002132, loss_weight: 0.040530
[22:13:33.133] iteration 3519 : loss : 0.042821 cons_dist: 0.000914, loss_weight: 0.040530
[22:13:34.050] iteration 3520 : loss : 0.051403 cons_dist: 0.001801, loss_weight: 0.040530
[22:13:34.967] iteration 3521 : loss : 0.040343 cons_dist: 0.003321, loss_weight: 0.040530
[22:13:35.883] iteration 3522 : loss : 0.035448 cons_dist: 0.000841, loss_weight: 0.040530
[22:13:36.800] iteration 3523 : loss : 0.037980 cons_dist: 0.001178, loss_weight: 0.040530
[22:13:37.716] iteration 3524 : loss : 0.050161 cons_dist: 0.001299, loss_weight: 0.040530
[22:13:38.632] iteration 3525 : loss : 0.057289 cons_dist: 0.047424, loss_weight: 0.040530
[22:13:39.550] iteration 3526 : loss : 0.047842 cons_dist: 0.000626, loss_weight: 0.040530
[22:13:40.466] iteration 3527 : loss : 0.044581 cons_dist: 0.001205, loss_weight: 0.040530
[22:13:41.383] iteration 3528 : loss : 0.034374 cons_dist: 0.004357, loss_weight: 0.040530
[22:13:42.980] iteration 3529 : loss : 0.046637 cons_dist: 0.000231, loss_weight: 0.040530
[22:13:43.899] iteration 3530 : loss : 0.048617 cons_dist: 0.011037, loss_weight: 0.040530
[22:13:44.817] iteration 3531 : loss : 0.040924 cons_dist: 0.000663, loss_weight: 0.040530
[22:13:45.736] iteration 3532 : loss : 0.048417 cons_dist: 0.002933, loss_weight: 0.040530
[22:13:46.654] iteration 3533 : loss : 0.050369 cons_dist: 0.000680, loss_weight: 0.040530
[22:13:47.570] iteration 3534 : loss : 0.071354 cons_dist: 0.001360, loss_weight: 0.040530
[22:13:48.488] iteration 3535 : loss : 0.036720 cons_dist: 0.002859, loss_weight: 0.040530
[22:13:49.405] iteration 3536 : loss : 0.044401 cons_dist: 0.000533, loss_weight: 0.040530
[22:13:50.322] iteration 3537 : loss : 0.055966 cons_dist: 0.001621, loss_weight: 0.040530
[22:13:51.238] iteration 3538 : loss : 0.030635 cons_dist: 0.002245, loss_weight: 0.040530
[22:13:52.155] iteration 3539 : loss : 0.061395 cons_dist: 0.001030, loss_weight: 0.040530
[22:13:53.071] iteration 3540 : loss : 0.044714 cons_dist: 0.000407, loss_weight: 0.040530
[22:13:54.644] iteration 3541 : loss : 0.038255 cons_dist: 0.000894, loss_weight: 0.040530
[22:13:55.560] iteration 3542 : loss : 0.056401 cons_dist: 0.001870, loss_weight: 0.040530
[22:13:56.478] iteration 3543 : loss : 0.048573 cons_dist: 0.001641, loss_weight: 0.040530
[22:13:57.394] iteration 3544 : loss : 0.055254 cons_dist: 0.009045, loss_weight: 0.040530
[22:13:58.310] iteration 3545 : loss : 0.042901 cons_dist: 0.006410, loss_weight: 0.040530
[22:13:59.225] iteration 3546 : loss : 0.037490 cons_dist: 0.002754, loss_weight: 0.040530
[22:14:00.142] iteration 3547 : loss : 0.050851 cons_dist: 0.000668, loss_weight: 0.040530
[22:14:01.058] iteration 3548 : loss : 0.048246 cons_dist: 0.006408, loss_weight: 0.040530
[22:14:01.976] iteration 3549 : loss : 0.035334 cons_dist: 0.003559, loss_weight: 0.040530
[22:14:02.891] iteration 3550 : loss : 0.038659 cons_dist: 0.024929, loss_weight: 0.040530
[22:14:03.964] iteration 3551 : loss : 0.057804 cons_dist: 0.001306, loss_weight: 0.040530
[22:14:04.882] iteration 3552 : loss : 0.034825 cons_dist: 0.003641, loss_weight: 0.040530
[22:14:06.466] iteration 3553 : loss : 0.044740 cons_dist: 0.007225, loss_weight: 0.040530
[22:14:07.383] iteration 3554 : loss : 0.056679 cons_dist: 0.011125, loss_weight: 0.040530
[22:14:08.302] iteration 3555 : loss : 0.041638 cons_dist: 0.005062, loss_weight: 0.040530
[22:14:09.219] iteration 3556 : loss : 0.047635 cons_dist: 0.001129, loss_weight: 0.040530
[22:14:10.136] iteration 3557 : loss : 0.056365 cons_dist: 0.002375, loss_weight: 0.040530
[22:14:11.054] iteration 3558 : loss : 0.039420 cons_dist: 0.002443, loss_weight: 0.040530
[22:14:11.972] iteration 3559 : loss : 0.042389 cons_dist: 0.029201, loss_weight: 0.040530
[22:14:12.889] iteration 3560 : loss : 0.036546 cons_dist: 0.001715, loss_weight: 0.040530
[22:14:13.807] iteration 3561 : loss : 0.060834 cons_dist: 0.000714, loss_weight: 0.040530
[22:14:14.726] iteration 3562 : loss : 0.035322 cons_dist: 0.000953, loss_weight: 0.040530
[22:14:15.645] iteration 3563 : loss : 0.039034 cons_dist: 0.000804, loss_weight: 0.040530
[22:14:16.563] iteration 3564 : loss : 0.052062 cons_dist: 0.003260, loss_weight: 0.040530
[22:14:18.169] iteration 3565 : loss : 0.038314 cons_dist: 0.007032, loss_weight: 0.040530
[22:14:19.086] iteration 3566 : loss : 0.032648 cons_dist: 0.000666, loss_weight: 0.040530
[22:14:20.006] iteration 3567 : loss : 0.040942 cons_dist: 0.000541, loss_weight: 0.040530
[22:14:20.924] iteration 3568 : loss : 0.038270 cons_dist: 0.009854, loss_weight: 0.040530
[22:14:21.842] iteration 3569 : loss : 0.046303 cons_dist: 0.004380, loss_weight: 0.040530
[22:14:22.762] iteration 3570 : loss : 0.054553 cons_dist: 0.004882, loss_weight: 0.040530
[22:14:23.679] iteration 3571 : loss : 0.031526 cons_dist: 0.002576, loss_weight: 0.040530
[22:14:24.597] iteration 3572 : loss : 0.051437 cons_dist: 0.001864, loss_weight: 0.040530
[22:14:25.514] iteration 3573 : loss : 0.040389 cons_dist: 0.001547, loss_weight: 0.040530
[22:14:26.432] iteration 3574 : loss : 0.077674 cons_dist: 0.002321, loss_weight: 0.040530
[22:14:27.349] iteration 3575 : loss : 0.045660 cons_dist: 0.029890, loss_weight: 0.040530
[22:14:28.266] iteration 3576 : loss : 0.058018 cons_dist: 0.000799, loss_weight: 0.040530
[22:14:29.884] iteration 3577 : loss : 0.042503 cons_dist: 0.000599, loss_weight: 0.040530
[22:14:30.800] iteration 3578 : loss : 0.039746 cons_dist: 0.000582, loss_weight: 0.040530
[22:14:31.717] iteration 3579 : loss : 0.048431 cons_dist: 0.001306, loss_weight: 0.040530
[22:14:32.633] iteration 3580 : loss : 0.047756 cons_dist: 0.000876, loss_weight: 0.040530
[22:14:33.548] iteration 3581 : loss : 0.043494 cons_dist: 0.010724, loss_weight: 0.040530
[22:14:34.464] iteration 3582 : loss : 0.044559 cons_dist: 0.000648, loss_weight: 0.040530
[22:14:35.380] iteration 3583 : loss : 0.048604 cons_dist: 0.000536, loss_weight: 0.040530
[22:14:36.296] iteration 3584 : loss : 0.056413 cons_dist: 0.004729, loss_weight: 0.040530
[22:14:37.212] iteration 3585 : loss : 0.039080 cons_dist: 0.000394, loss_weight: 0.040530
[22:14:38.141] iteration 3586 : loss : 0.044489 cons_dist: 0.000574, loss_weight: 0.040530
[22:14:39.059] iteration 3587 : loss : 0.045590 cons_dist: 0.003687, loss_weight: 0.040530
[22:14:39.977] iteration 3588 : loss : 0.065133 cons_dist: 0.006443, loss_weight: 0.040530
[22:14:41.664] iteration 3589 : loss : 0.035783 cons_dist: 0.000704, loss_weight: 0.040530
[22:14:42.582] iteration 3590 : loss : 0.037122 cons_dist: 0.000815, loss_weight: 0.040530
[22:14:43.501] iteration 3591 : loss : 0.033531 cons_dist: 0.003196, loss_weight: 0.040530
[22:14:44.419] iteration 3592 : loss : 0.049025 cons_dist: 0.002288, loss_weight: 0.040530
[22:14:45.337] iteration 3593 : loss : 0.049006 cons_dist: 0.002015, loss_weight: 0.040530
[22:14:46.254] iteration 3594 : loss : 0.039443 cons_dist: 0.002403, loss_weight: 0.040530
[22:14:47.171] iteration 3595 : loss : 0.048543 cons_dist: 0.004458, loss_weight: 0.040530
[22:14:48.088] iteration 3596 : loss : 0.037938 cons_dist: 0.001346, loss_weight: 0.040530
[22:14:49.006] iteration 3597 : loss : 0.041017 cons_dist: 0.001455, loss_weight: 0.040530
[22:14:49.924] iteration 3598 : loss : 0.047193 cons_dist: 0.000723, loss_weight: 0.040530
[22:14:50.842] iteration 3599 : loss : 0.049645 cons_dist: 0.000402, loss_weight: 0.040530
[22:14:51.759] iteration 3600 : loss : 0.044448 cons_dist: 0.000548, loss_weight: 0.040530
[22:14:54.660] iteration 3601 : loss : 0.033854 cons_dist: 0.000792, loss_weight: 0.044933
[22:14:55.574] iteration 3602 : loss : 0.035665 cons_dist: 0.001544, loss_weight: 0.044933
[22:14:56.490] iteration 3603 : loss : 0.049281 cons_dist: 0.000995, loss_weight: 0.044933
[22:14:57.405] iteration 3604 : loss : 0.041187 cons_dist: 0.004963, loss_weight: 0.044933
[22:14:58.321] iteration 3605 : loss : 0.044157 cons_dist: 0.001629, loss_weight: 0.044933
[22:14:59.237] iteration 3606 : loss : 0.040230 cons_dist: 0.008071, loss_weight: 0.044933
[22:15:00.154] iteration 3607 : loss : 0.037805 cons_dist: 0.003312, loss_weight: 0.044933
[22:15:01.071] iteration 3608 : loss : 0.051830 cons_dist: 0.006058, loss_weight: 0.044933
[22:15:01.988] iteration 3609 : loss : 0.048497 cons_dist: 0.003309, loss_weight: 0.044933
[22:15:02.906] iteration 3610 : loss : 0.071868 cons_dist: 0.004567, loss_weight: 0.044933
[22:15:03.823] iteration 3611 : loss : 0.061596 cons_dist: 0.001146, loss_weight: 0.044933
[22:15:04.741] iteration 3612 : loss : 0.042889 cons_dist: 0.002058, loss_weight: 0.044933
[22:15:06.357] iteration 3613 : loss : 0.052613 cons_dist: 0.006753, loss_weight: 0.044933
[22:15:07.275] iteration 3614 : loss : 0.061892 cons_dist: 0.003476, loss_weight: 0.044933
[22:15:08.191] iteration 3615 : loss : 0.045597 cons_dist: 0.001082, loss_weight: 0.044933
[22:15:09.107] iteration 3616 : loss : 0.049670 cons_dist: 0.007293, loss_weight: 0.044933
[22:15:10.021] iteration 3617 : loss : 0.103760 cons_dist: 0.005033, loss_weight: 0.044933
[22:15:10.938] iteration 3618 : loss : 0.073233 cons_dist: 0.000879, loss_weight: 0.044933
[22:15:11.852] iteration 3619 : loss : 0.060208 cons_dist: 0.000655, loss_weight: 0.044933
[22:15:12.768] iteration 3620 : loss : 0.049326 cons_dist: 0.000868, loss_weight: 0.044933
[22:15:13.686] iteration 3621 : loss : 0.035327 cons_dist: 0.001373, loss_weight: 0.044933
[22:15:14.603] iteration 3622 : loss : 0.037004 cons_dist: 0.000845, loss_weight: 0.044933
[22:15:15.519] iteration 3623 : loss : 0.054881 cons_dist: 0.004840, loss_weight: 0.044933
[22:15:16.435] iteration 3624 : loss : 0.041064 cons_dist: 0.013032, loss_weight: 0.044933
[22:15:18.043] iteration 3625 : loss : 0.048440 cons_dist: 0.038718, loss_weight: 0.044933
[22:15:18.960] iteration 3626 : loss : 0.045033 cons_dist: 0.004786, loss_weight: 0.044933
[22:15:19.877] iteration 3627 : loss : 0.052164 cons_dist: 0.004174, loss_weight: 0.044933
[22:15:20.794] iteration 3628 : loss : 0.059715 cons_dist: 0.003526, loss_weight: 0.044933
[22:15:21.711] iteration 3629 : loss : 0.032353 cons_dist: 0.001412, loss_weight: 0.044933
[22:15:22.628] iteration 3630 : loss : 0.044501 cons_dist: 0.000887, loss_weight: 0.044933
[22:15:23.545] iteration 3631 : loss : 0.036386 cons_dist: 0.004987, loss_weight: 0.044933
[22:15:24.463] iteration 3632 : loss : 0.037801 cons_dist: 0.020553, loss_weight: 0.044933
[22:15:25.381] iteration 3633 : loss : 0.066857 cons_dist: 0.007150, loss_weight: 0.044933
[22:15:26.298] iteration 3634 : loss : 0.049756 cons_dist: 0.005303, loss_weight: 0.044933
[22:15:27.216] iteration 3635 : loss : 0.050056 cons_dist: 0.000923, loss_weight: 0.044933
[22:15:28.133] iteration 3636 : loss : 0.055165 cons_dist: 0.000767, loss_weight: 0.044933
[22:15:29.765] iteration 3637 : loss : 0.042671 cons_dist: 0.003935, loss_weight: 0.044933
[22:15:30.682] iteration 3638 : loss : 0.048705 cons_dist: 0.004568, loss_weight: 0.044933
[22:15:31.600] iteration 3639 : loss : 0.041607 cons_dist: 0.001704, loss_weight: 0.044933
[22:15:32.519] iteration 3640 : loss : 0.037265 cons_dist: 0.002238, loss_weight: 0.044933
[22:15:33.437] iteration 3641 : loss : 0.033913 cons_dist: 0.001032, loss_weight: 0.044933
[22:15:34.355] iteration 3642 : loss : 0.049139 cons_dist: 0.067811, loss_weight: 0.044933
[22:15:35.273] iteration 3643 : loss : 0.054342 cons_dist: 0.001280, loss_weight: 0.044933
[22:15:36.192] iteration 3644 : loss : 0.032537 cons_dist: 0.001981, loss_weight: 0.044933
[22:15:37.109] iteration 3645 : loss : 0.037307 cons_dist: 0.000764, loss_weight: 0.044933
[22:15:38.027] iteration 3646 : loss : 0.044499 cons_dist: 0.004147, loss_weight: 0.044933
[22:15:38.945] iteration 3647 : loss : 0.049490 cons_dist: 0.001663, loss_weight: 0.044933
[22:15:39.863] iteration 3648 : loss : 0.043759 cons_dist: 0.003965, loss_weight: 0.044933
[22:15:41.439] iteration 3649 : loss : 0.061310 cons_dist: 0.001940, loss_weight: 0.044933
[22:15:42.355] iteration 3650 : loss : 0.042296 cons_dist: 0.001282, loss_weight: 0.044933
[22:15:43.436] iteration 3651 : loss : 0.052988 cons_dist: 0.000740, loss_weight: 0.044933
[22:15:44.353] iteration 3652 : loss : 0.053386 cons_dist: 0.001715, loss_weight: 0.044933
[22:15:45.270] iteration 3653 : loss : 0.045674 cons_dist: 0.000746, loss_weight: 0.044933
[22:15:46.188] iteration 3654 : loss : 0.042910 cons_dist: 0.000666, loss_weight: 0.044933
[22:15:47.105] iteration 3655 : loss : 0.040425 cons_dist: 0.000537, loss_weight: 0.044933
[22:15:48.025] iteration 3656 : loss : 0.049203 cons_dist: 0.049750, loss_weight: 0.044933
[22:15:48.942] iteration 3657 : loss : 0.040773 cons_dist: 0.000460, loss_weight: 0.044933
[22:15:49.861] iteration 3658 : loss : 0.039505 cons_dist: 0.001114, loss_weight: 0.044933
[22:15:50.779] iteration 3659 : loss : 0.055447 cons_dist: 0.003633, loss_weight: 0.044933
[22:15:51.696] iteration 3660 : loss : 0.040831 cons_dist: 0.003387, loss_weight: 0.044933
[22:15:53.316] iteration 3661 : loss : 0.047734 cons_dist: 0.003119, loss_weight: 0.044933
[22:15:54.234] iteration 3662 : loss : 0.055181 cons_dist: 0.001045, loss_weight: 0.044933
[22:15:55.153] iteration 3663 : loss : 0.060051 cons_dist: 0.004378, loss_weight: 0.044933
[22:15:56.071] iteration 3664 : loss : 0.049115 cons_dist: 0.001182, loss_weight: 0.044933
[22:15:56.988] iteration 3665 : loss : 0.035444 cons_dist: 0.000772, loss_weight: 0.044933
[22:15:57.905] iteration 3666 : loss : 0.026657 cons_dist: 0.001654, loss_weight: 0.044933
[22:15:58.822] iteration 3667 : loss : 0.033818 cons_dist: 0.001408, loss_weight: 0.044933
[22:15:59.741] iteration 3668 : loss : 0.068956 cons_dist: 0.011608, loss_weight: 0.044933
[22:16:00.659] iteration 3669 : loss : 0.057037 cons_dist: 0.000647, loss_weight: 0.044933
[22:16:01.576] iteration 3670 : loss : 0.036298 cons_dist: 0.002805, loss_weight: 0.044933
[22:16:02.494] iteration 3671 : loss : 0.040811 cons_dist: 0.000816, loss_weight: 0.044933
[22:16:03.414] iteration 3672 : loss : 0.044083 cons_dist: 0.003972, loss_weight: 0.044933
[22:16:05.015] iteration 3673 : loss : 0.033233 cons_dist: 0.003753, loss_weight: 0.044933
[22:16:05.932] iteration 3674 : loss : 0.044644 cons_dist: 0.001312, loss_weight: 0.044933
[22:16:06.850] iteration 3675 : loss : 0.043439 cons_dist: 0.005380, loss_weight: 0.044933
[22:16:07.770] iteration 3676 : loss : 0.047537 cons_dist: 0.000957, loss_weight: 0.044933
[22:16:08.687] iteration 3677 : loss : 0.038265 cons_dist: 0.004481, loss_weight: 0.044933
[22:16:09.603] iteration 3678 : loss : 0.040034 cons_dist: 0.003566, loss_weight: 0.044933
[22:16:10.521] iteration 3679 : loss : 0.040085 cons_dist: 0.001895, loss_weight: 0.044933
[22:16:11.439] iteration 3680 : loss : 0.041144 cons_dist: 0.003173, loss_weight: 0.044933
[22:16:12.357] iteration 3681 : loss : 0.046718 cons_dist: 0.001053, loss_weight: 0.044933
[22:16:13.275] iteration 3682 : loss : 0.037147 cons_dist: 0.003860, loss_weight: 0.044933
[22:16:14.194] iteration 3683 : loss : 0.045869 cons_dist: 0.005807, loss_weight: 0.044933
[22:16:15.110] iteration 3684 : loss : 0.048097 cons_dist: 0.001176, loss_weight: 0.044933
[22:16:16.678] iteration 3685 : loss : 0.058553 cons_dist: 0.002092, loss_weight: 0.044933
[22:16:17.595] iteration 3686 : loss : 0.070411 cons_dist: 0.002147, loss_weight: 0.044933
[22:16:18.512] iteration 3687 : loss : 0.041692 cons_dist: 0.001499, loss_weight: 0.044933
[22:16:19.430] iteration 3688 : loss : 0.036627 cons_dist: 0.003921, loss_weight: 0.044933
[22:16:20.347] iteration 3689 : loss : 0.040060 cons_dist: 0.006188, loss_weight: 0.044933
[22:16:21.264] iteration 3690 : loss : 0.034151 cons_dist: 0.001328, loss_weight: 0.044933
[22:16:22.186] iteration 3691 : loss : 0.043582 cons_dist: 0.000444, loss_weight: 0.044933
[22:16:23.103] iteration 3692 : loss : 0.044079 cons_dist: 0.006508, loss_weight: 0.044933
[22:16:24.019] iteration 3693 : loss : 0.041018 cons_dist: 0.005781, loss_weight: 0.044933
[22:16:24.936] iteration 3694 : loss : 0.069235 cons_dist: 0.001113, loss_weight: 0.044933
[22:16:25.855] iteration 3695 : loss : 0.050453 cons_dist: 0.000435, loss_weight: 0.044933
[22:16:26.771] iteration 3696 : loss : 0.050529 cons_dist: 0.000759, loss_weight: 0.044933
[22:16:28.338] iteration 3697 : loss : 0.046940 cons_dist: 0.001736, loss_weight: 0.044933
[22:16:29.256] iteration 3698 : loss : 0.035755 cons_dist: 0.010531, loss_weight: 0.044933
[22:16:30.174] iteration 3699 : loss : 0.043171 cons_dist: 0.059066, loss_weight: 0.044933
[22:16:31.092] iteration 3700 : loss : 0.045635 cons_dist: 0.006405, loss_weight: 0.044933
[22:16:32.156] iteration 3701 : loss : 0.058280 cons_dist: 0.042761, loss_weight: 0.044933
[22:16:33.076] iteration 3702 : loss : 0.043146 cons_dist: 0.010447, loss_weight: 0.044933
[22:16:33.996] iteration 3703 : loss : 0.040951 cons_dist: 0.006293, loss_weight: 0.044933
[22:16:34.913] iteration 3704 : loss : 0.047961 cons_dist: 0.002410, loss_weight: 0.044933
[22:16:35.831] iteration 3705 : loss : 0.149715 cons_dist: 0.001500, loss_weight: 0.044933
[22:16:36.747] iteration 3706 : loss : 0.039786 cons_dist: 0.006443, loss_weight: 0.044933
[22:16:37.665] iteration 3707 : loss : 0.051078 cons_dist: 0.001275, loss_weight: 0.044933
[22:16:38.582] iteration 3708 : loss : 0.033385 cons_dist: 0.000714, loss_weight: 0.044933
[22:16:40.077] iteration 3709 : loss : 0.096228 cons_dist: 0.003178, loss_weight: 0.044933
[22:16:40.994] iteration 3710 : loss : 0.038156 cons_dist: 0.007385, loss_weight: 0.044933
[22:16:41.910] iteration 3711 : loss : 0.044432 cons_dist: 0.009114, loss_weight: 0.044933
[22:16:42.827] iteration 3712 : loss : 0.059919 cons_dist: 0.000561, loss_weight: 0.044933
[22:16:43.743] iteration 3713 : loss : 0.040824 cons_dist: 0.002985, loss_weight: 0.044933
[22:16:44.660] iteration 3714 : loss : 0.042102 cons_dist: 0.003236, loss_weight: 0.044933
[22:16:45.577] iteration 3715 : loss : 0.049493 cons_dist: 0.000826, loss_weight: 0.044933
[22:16:46.493] iteration 3716 : loss : 0.049154 cons_dist: 0.003804, loss_weight: 0.044933
[22:16:47.409] iteration 3717 : loss : 0.043577 cons_dist: 0.011587, loss_weight: 0.044933
[22:16:48.326] iteration 3718 : loss : 0.052756 cons_dist: 0.000974, loss_weight: 0.044933
[22:16:49.242] iteration 3719 : loss : 0.038017 cons_dist: 0.027337, loss_weight: 0.044933
[22:16:50.158] iteration 3720 : loss : 0.051186 cons_dist: 0.002230, loss_weight: 0.044933
[22:16:51.747] iteration 3721 : loss : 0.039709 cons_dist: 0.002210, loss_weight: 0.044933
[22:16:52.666] iteration 3722 : loss : 0.045852 cons_dist: 0.000399, loss_weight: 0.044933
[22:16:53.587] iteration 3723 : loss : 0.083179 cons_dist: 0.003960, loss_weight: 0.044933
[22:16:54.505] iteration 3724 : loss : 0.060063 cons_dist: 0.000493, loss_weight: 0.044933
[22:16:55.423] iteration 3725 : loss : 0.053029 cons_dist: 0.000940, loss_weight: 0.044933
[22:16:56.341] iteration 3726 : loss : 0.041019 cons_dist: 0.003268, loss_weight: 0.044933
[22:16:57.260] iteration 3727 : loss : 0.038242 cons_dist: 0.004289, loss_weight: 0.044933
[22:16:58.178] iteration 3728 : loss : 0.037115 cons_dist: 0.001690, loss_weight: 0.044933
[22:16:59.096] iteration 3729 : loss : 0.040290 cons_dist: 0.003654, loss_weight: 0.044933
[22:17:00.013] iteration 3730 : loss : 0.039735 cons_dist: 0.000875, loss_weight: 0.044933
[22:17:00.932] iteration 3731 : loss : 0.038347 cons_dist: 0.001014, loss_weight: 0.044933
[22:17:01.850] iteration 3732 : loss : 0.039342 cons_dist: 0.020144, loss_weight: 0.044933
[22:17:03.375] iteration 3733 : loss : 0.047526 cons_dist: 0.001766, loss_weight: 0.044933
[22:17:04.295] iteration 3734 : loss : 0.057210 cons_dist: 0.004349, loss_weight: 0.044933
[22:17:05.212] iteration 3735 : loss : 0.056089 cons_dist: 0.001149, loss_weight: 0.044933
[22:17:06.130] iteration 3736 : loss : 0.049142 cons_dist: 0.002961, loss_weight: 0.044933
[22:17:07.046] iteration 3737 : loss : 0.047749 cons_dist: 0.001083, loss_weight: 0.044933
[22:17:07.964] iteration 3738 : loss : 0.063893 cons_dist: 0.011924, loss_weight: 0.044933
[22:17:08.881] iteration 3739 : loss : 0.042010 cons_dist: 0.005706, loss_weight: 0.044933
[22:17:09.799] iteration 3740 : loss : 0.041730 cons_dist: 0.003774, loss_weight: 0.044933
[22:17:10.716] iteration 3741 : loss : 0.048748 cons_dist: 0.004554, loss_weight: 0.044933
[22:17:11.635] iteration 3742 : loss : 0.091102 cons_dist: 0.000479, loss_weight: 0.044933
[22:17:12.553] iteration 3743 : loss : 0.052363 cons_dist: 0.000574, loss_weight: 0.044933
[22:17:13.469] iteration 3744 : loss : 0.030407 cons_dist: 0.005585, loss_weight: 0.044933
[22:17:15.060] iteration 3745 : loss : 0.044088 cons_dist: 0.007109, loss_weight: 0.044933
[22:17:15.976] iteration 3746 : loss : 0.049690 cons_dist: 0.001556, loss_weight: 0.044933
[22:17:16.892] iteration 3747 : loss : 0.051273 cons_dist: 0.002058, loss_weight: 0.044933
[22:17:17.809] iteration 3748 : loss : 0.041236 cons_dist: 0.003019, loss_weight: 0.044933
[22:17:18.727] iteration 3749 : loss : 0.040554 cons_dist: 0.027050, loss_weight: 0.044933
[22:17:19.643] iteration 3750 : loss : 0.038764 cons_dist: 0.002058, loss_weight: 0.044933
[22:17:20.725] iteration 3751 : loss : 0.054813 cons_dist: 0.001125, loss_weight: 0.049504
[22:17:21.640] iteration 3752 : loss : 0.045545 cons_dist: 0.000834, loss_weight: 0.049504
[22:17:22.555] iteration 3753 : loss : 0.037040 cons_dist: 0.001031, loss_weight: 0.049504
[22:17:23.471] iteration 3754 : loss : 0.048236 cons_dist: 0.001068, loss_weight: 0.049504
[22:17:24.388] iteration 3755 : loss : 0.045878 cons_dist: 0.001087, loss_weight: 0.049504
[22:17:25.305] iteration 3756 : loss : 0.054950 cons_dist: 0.003322, loss_weight: 0.049504
[22:17:26.840] iteration 3757 : loss : 0.032944 cons_dist: 0.001093, loss_weight: 0.049504
[22:17:27.756] iteration 3758 : loss : 0.036830 cons_dist: 0.009530, loss_weight: 0.049504
[22:17:28.674] iteration 3759 : loss : 0.036037 cons_dist: 0.002997, loss_weight: 0.049504
[22:17:29.593] iteration 3760 : loss : 0.051441 cons_dist: 0.002494, loss_weight: 0.049504
[22:17:30.512] iteration 3761 : loss : 0.041966 cons_dist: 0.000558, loss_weight: 0.049504
[22:17:31.430] iteration 3762 : loss : 0.040698 cons_dist: 0.001914, loss_weight: 0.049504
[22:17:32.347] iteration 3763 : loss : 0.036236 cons_dist: 0.050226, loss_weight: 0.049504
[22:17:33.266] iteration 3764 : loss : 0.042223 cons_dist: 0.001042, loss_weight: 0.049504
[22:17:34.183] iteration 3765 : loss : 0.042876 cons_dist: 0.000881, loss_weight: 0.049504
[22:17:35.101] iteration 3766 : loss : 0.053468 cons_dist: 0.000920, loss_weight: 0.049504
[22:17:36.041] iteration 3767 : loss : 0.040034 cons_dist: 0.002109, loss_weight: 0.049504
[22:17:36.960] iteration 3768 : loss : 0.041462 cons_dist: 0.007806, loss_weight: 0.049504
[22:17:38.591] iteration 3769 : loss : 0.037557 cons_dist: 0.005170, loss_weight: 0.049504
[22:17:39.508] iteration 3770 : loss : 0.044309 cons_dist: 0.006865, loss_weight: 0.049504
[22:17:40.426] iteration 3771 : loss : 0.029314 cons_dist: 0.003043, loss_weight: 0.049504
[22:17:41.344] iteration 3772 : loss : 0.039324 cons_dist: 0.002054, loss_weight: 0.049504
[22:17:42.262] iteration 3773 : loss : 0.037013 cons_dist: 0.001310, loss_weight: 0.049504
[22:17:43.178] iteration 3774 : loss : 0.050911 cons_dist: 0.000978, loss_weight: 0.049504
[22:17:44.096] iteration 3775 : loss : 0.053869 cons_dist: 0.003101, loss_weight: 0.049504
[22:17:45.014] iteration 3776 : loss : 0.053435 cons_dist: 0.000955, loss_weight: 0.049504
[22:17:45.932] iteration 3777 : loss : 0.037484 cons_dist: 0.002609, loss_weight: 0.049504
[22:17:46.851] iteration 3778 : loss : 0.051223 cons_dist: 0.001244, loss_weight: 0.049504
[22:17:47.770] iteration 3779 : loss : 0.043932 cons_dist: 0.001983, loss_weight: 0.049504
[22:17:48.689] iteration 3780 : loss : 0.061174 cons_dist: 0.003215, loss_weight: 0.049504
[22:17:50.237] iteration 3781 : loss : 0.057199 cons_dist: 0.003472, loss_weight: 0.049504
[22:17:51.159] iteration 3782 : loss : 0.041440 cons_dist: 0.001978, loss_weight: 0.049504
[22:17:52.076] iteration 3783 : loss : 0.053103 cons_dist: 0.000323, loss_weight: 0.049504
[22:17:52.994] iteration 3784 : loss : 0.037149 cons_dist: 0.000507, loss_weight: 0.049504
[22:17:53.911] iteration 3785 : loss : 0.047499 cons_dist: 0.047219, loss_weight: 0.049504
[22:17:54.829] iteration 3786 : loss : 0.061130 cons_dist: 0.000570, loss_weight: 0.049504
[22:17:55.747] iteration 3787 : loss : 0.043673 cons_dist: 0.006432, loss_weight: 0.049504
[22:17:56.664] iteration 3788 : loss : 0.039147 cons_dist: 0.002655, loss_weight: 0.049504
[22:17:57.580] iteration 3789 : loss : 0.050968 cons_dist: 0.001436, loss_weight: 0.049504
[22:17:58.497] iteration 3790 : loss : 0.046738 cons_dist: 0.002073, loss_weight: 0.049504
[22:17:59.414] iteration 3791 : loss : 0.078466 cons_dist: 0.003442, loss_weight: 0.049504
[22:18:00.330] iteration 3792 : loss : 0.133018 cons_dist: 0.001190, loss_weight: 0.049504
[22:18:01.898] iteration 3793 : loss : 0.042489 cons_dist: 0.003136, loss_weight: 0.049504
[22:18:02.814] iteration 3794 : loss : 0.036547 cons_dist: 0.000936, loss_weight: 0.049504
[22:18:03.732] iteration 3795 : loss : 0.033701 cons_dist: 0.002807, loss_weight: 0.049504
[22:18:04.650] iteration 3796 : loss : 0.046641 cons_dist: 0.001128, loss_weight: 0.049504
[22:18:05.566] iteration 3797 : loss : 0.039365 cons_dist: 0.000557, loss_weight: 0.049504
[22:18:06.482] iteration 3798 : loss : 0.077582 cons_dist: 0.000443, loss_weight: 0.049504
[22:18:07.397] iteration 3799 : loss : 0.049342 cons_dist: 0.002846, loss_weight: 0.049504
[22:18:08.313] iteration 3800 : loss : 0.045275 cons_dist: 0.001165, loss_weight: 0.049504
[22:18:10.517] iteration 3801 : loss : 0.045330 cons_dist: 0.002115, loss_weight: 0.049504
[22:18:11.433] iteration 3802 : loss : 0.047433 cons_dist: 0.003249, loss_weight: 0.049504
[22:18:12.350] iteration 3803 : loss : 0.053989 cons_dist: 0.002136, loss_weight: 0.049504
[22:18:13.267] iteration 3804 : loss : 0.036219 cons_dist: 0.000874, loss_weight: 0.049504
[22:18:14.863] iteration 3805 : loss : 0.037667 cons_dist: 0.005077, loss_weight: 0.049504
[22:18:15.782] iteration 3806 : loss : 0.038195 cons_dist: 0.000991, loss_weight: 0.049504
[22:18:16.698] iteration 3807 : loss : 0.057005 cons_dist: 0.004164, loss_weight: 0.049504
[22:18:17.617] iteration 3808 : loss : 0.031897 cons_dist: 0.001074, loss_weight: 0.049504
[22:18:18.533] iteration 3809 : loss : 0.076494 cons_dist: 0.005958, loss_weight: 0.049504
[22:18:19.448] iteration 3810 : loss : 0.037721 cons_dist: 0.001111, loss_weight: 0.049504
[22:18:20.364] iteration 3811 : loss : 0.040309 cons_dist: 0.001156, loss_weight: 0.049504
[22:18:21.280] iteration 3812 : loss : 0.051104 cons_dist: 0.002775, loss_weight: 0.049504
[22:18:22.197] iteration 3813 : loss : 0.044165 cons_dist: 0.009693, loss_weight: 0.049504
[22:18:23.111] iteration 3814 : loss : 0.037088 cons_dist: 0.001362, loss_weight: 0.049504
[22:18:24.028] iteration 3815 : loss : 0.036742 cons_dist: 0.003949, loss_weight: 0.049504
[22:18:24.944] iteration 3816 : loss : 0.041763 cons_dist: 0.007775, loss_weight: 0.049504
[22:18:26.459] iteration 3817 : loss : 0.035621 cons_dist: 0.001441, loss_weight: 0.049504
[22:18:27.377] iteration 3818 : loss : 0.194164 cons_dist: 0.002021, loss_weight: 0.049504
[22:18:28.294] iteration 3819 : loss : 0.037022 cons_dist: 0.005023, loss_weight: 0.049504
[22:18:29.209] iteration 3820 : loss : 0.054441 cons_dist: 0.002763, loss_weight: 0.049504
[22:18:30.125] iteration 3821 : loss : 0.044736 cons_dist: 0.006347, loss_weight: 0.049504
[22:18:31.041] iteration 3822 : loss : 0.047632 cons_dist: 0.022953, loss_weight: 0.049504
[22:18:31.958] iteration 3823 : loss : 0.043263 cons_dist: 0.002249, loss_weight: 0.049504
[22:18:32.874] iteration 3824 : loss : 0.066911 cons_dist: 0.003338, loss_weight: 0.049504
[22:18:33.790] iteration 3825 : loss : 0.060338 cons_dist: 0.000965, loss_weight: 0.049504
[22:18:34.706] iteration 3826 : loss : 0.046231 cons_dist: 0.000397, loss_weight: 0.049504
[22:18:35.622] iteration 3827 : loss : 0.165792 cons_dist: 0.003763, loss_weight: 0.049504
[22:18:36.539] iteration 3828 : loss : 0.038971 cons_dist: 0.002950, loss_weight: 0.049504
[22:18:38.101] iteration 3829 : loss : 0.037319 cons_dist: 0.001880, loss_weight: 0.049504
[22:18:39.019] iteration 3830 : loss : 0.056763 cons_dist: 0.000601, loss_weight: 0.049504
[22:18:39.937] iteration 3831 : loss : 0.031366 cons_dist: 0.001594, loss_weight: 0.049504
[22:18:40.855] iteration 3832 : loss : 0.071656 cons_dist: 0.002438, loss_weight: 0.049504
[22:18:41.773] iteration 3833 : loss : 0.046633 cons_dist: 0.002656, loss_weight: 0.049504
[22:18:42.692] iteration 3834 : loss : 0.044887 cons_dist: 0.003245, loss_weight: 0.049504
[22:18:43.610] iteration 3835 : loss : 0.048049 cons_dist: 0.001041, loss_weight: 0.049504
[22:18:44.528] iteration 3836 : loss : 0.042122 cons_dist: 0.006262, loss_weight: 0.049504
[22:18:45.446] iteration 3837 : loss : 0.042282 cons_dist: 0.001589, loss_weight: 0.049504
[22:18:46.365] iteration 3838 : loss : 0.036940 cons_dist: 0.003537, loss_weight: 0.049504
[22:18:47.284] iteration 3839 : loss : 0.038646 cons_dist: 0.001454, loss_weight: 0.049504
[22:18:48.201] iteration 3840 : loss : 0.044651 cons_dist: 0.003711, loss_weight: 0.049504
[22:18:49.858] iteration 3841 : loss : 0.045628 cons_dist: 0.006685, loss_weight: 0.049504
[22:18:50.773] iteration 3842 : loss : 0.039096 cons_dist: 0.000459, loss_weight: 0.049504
[22:18:51.689] iteration 3843 : loss : 0.041221 cons_dist: 0.007689, loss_weight: 0.049504
[22:18:52.606] iteration 3844 : loss : 0.046827 cons_dist: 0.062361, loss_weight: 0.049504
[22:18:53.522] iteration 3845 : loss : 0.040781 cons_dist: 0.001486, loss_weight: 0.049504
[22:18:54.439] iteration 3846 : loss : 0.040919 cons_dist: 0.002235, loss_weight: 0.049504
[22:18:55.358] iteration 3847 : loss : 0.046323 cons_dist: 0.001318, loss_weight: 0.049504
[22:18:56.276] iteration 3848 : loss : 0.058429 cons_dist: 0.001086, loss_weight: 0.049504
[22:18:57.193] iteration 3849 : loss : 0.035721 cons_dist: 0.001079, loss_weight: 0.049504
[22:18:58.111] iteration 3850 : loss : 0.052512 cons_dist: 0.006614, loss_weight: 0.049504
[22:18:59.189] iteration 3851 : loss : 0.049427 cons_dist: 0.000892, loss_weight: 0.049504
[22:19:00.106] iteration 3852 : loss : 0.051413 cons_dist: 0.001054, loss_weight: 0.049504
[22:19:01.678] iteration 3853 : loss : 0.039341 cons_dist: 0.003340, loss_weight: 0.049504
[22:19:02.598] iteration 3854 : loss : 0.038578 cons_dist: 0.005343, loss_weight: 0.049504
[22:19:03.515] iteration 3855 : loss : 0.044751 cons_dist: 0.001990, loss_weight: 0.049504
[22:19:04.433] iteration 3856 : loss : 0.039120 cons_dist: 0.019911, loss_weight: 0.049504
[22:19:05.352] iteration 3857 : loss : 0.041985 cons_dist: 0.002656, loss_weight: 0.049504
[22:19:06.270] iteration 3858 : loss : 0.042290 cons_dist: 0.003401, loss_weight: 0.049504
[22:19:07.188] iteration 3859 : loss : 0.043865 cons_dist: 0.000901, loss_weight: 0.049504
[22:19:08.108] iteration 3860 : loss : 0.055090 cons_dist: 0.005530, loss_weight: 0.049504
[22:19:09.025] iteration 3861 : loss : 0.047592 cons_dist: 0.033261, loss_weight: 0.049504
[22:19:09.942] iteration 3862 : loss : 0.035293 cons_dist: 0.001173, loss_weight: 0.049504
[22:19:10.858] iteration 3863 : loss : 0.049391 cons_dist: 0.032559, loss_weight: 0.049504
[22:19:11.775] iteration 3864 : loss : 0.090512 cons_dist: 0.001210, loss_weight: 0.049504
[22:19:13.364] iteration 3865 : loss : 0.036946 cons_dist: 0.000842, loss_weight: 0.049504
[22:19:14.280] iteration 3866 : loss : 0.056180 cons_dist: 0.004503, loss_weight: 0.049504
[22:19:15.198] iteration 3867 : loss : 0.047618 cons_dist: 0.004370, loss_weight: 0.049504
[22:19:16.113] iteration 3868 : loss : 0.034517 cons_dist: 0.002270, loss_weight: 0.049504
[22:19:17.031] iteration 3869 : loss : 0.041041 cons_dist: 0.007096, loss_weight: 0.049504
[22:19:17.947] iteration 3870 : loss : 0.049845 cons_dist: 0.001877, loss_weight: 0.049504
[22:19:18.869] iteration 3871 : loss : 0.052027 cons_dist: 0.027543, loss_weight: 0.049504
[22:19:19.786] iteration 3872 : loss : 0.039053 cons_dist: 0.010674, loss_weight: 0.049504
[22:19:20.702] iteration 3873 : loss : 0.050602 cons_dist: 0.012721, loss_weight: 0.049504
[22:19:21.618] iteration 3874 : loss : 0.046615 cons_dist: 0.006302, loss_weight: 0.049504
[22:19:22.536] iteration 3875 : loss : 0.048402 cons_dist: 0.003213, loss_weight: 0.049504
[22:19:23.451] iteration 3876 : loss : 0.050796 cons_dist: 0.000643, loss_weight: 0.049504
[22:19:25.046] iteration 3877 : loss : 0.035803 cons_dist: 0.006411, loss_weight: 0.049504
[22:19:25.966] iteration 3878 : loss : 0.047660 cons_dist: 0.000951, loss_weight: 0.049504
[22:19:26.884] iteration 3879 : loss : 0.037038 cons_dist: 0.001075, loss_weight: 0.049504
[22:19:27.802] iteration 3880 : loss : 0.062991 cons_dist: 0.001245, loss_weight: 0.049504
[22:19:28.720] iteration 3881 : loss : 0.037539 cons_dist: 0.008359, loss_weight: 0.049504
[22:19:29.638] iteration 3882 : loss : 0.043036 cons_dist: 0.000697, loss_weight: 0.049504
[22:19:30.559] iteration 3883 : loss : 0.043104 cons_dist: 0.000500, loss_weight: 0.049504
[22:19:31.476] iteration 3884 : loss : 0.041516 cons_dist: 0.002597, loss_weight: 0.049504
[22:19:32.394] iteration 3885 : loss : 0.052962 cons_dist: 0.001595, loss_weight: 0.049504
[22:19:33.312] iteration 3886 : loss : 0.044661 cons_dist: 0.010523, loss_weight: 0.049504
[22:19:34.231] iteration 3887 : loss : 0.047435 cons_dist: 0.003089, loss_weight: 0.049504
[22:19:35.147] iteration 3888 : loss : 0.048222 cons_dist: 0.003260, loss_weight: 0.049504
[22:19:36.835] iteration 3889 : loss : 0.043760 cons_dist: 0.001180, loss_weight: 0.049504
[22:19:37.752] iteration 3890 : loss : 0.044767 cons_dist: 0.006291, loss_weight: 0.049504
[22:19:38.668] iteration 3891 : loss : 0.046518 cons_dist: 0.008294, loss_weight: 0.049504
[22:19:39.586] iteration 3892 : loss : 0.034212 cons_dist: 0.002718, loss_weight: 0.049504
[22:19:40.502] iteration 3893 : loss : 0.048853 cons_dist: 0.001253, loss_weight: 0.049504
[22:19:41.420] iteration 3894 : loss : 0.044460 cons_dist: 0.002531, loss_weight: 0.049504
[22:19:42.336] iteration 3895 : loss : 0.039694 cons_dist: 0.002419, loss_weight: 0.049504
[22:19:43.253] iteration 3896 : loss : 0.054954 cons_dist: 0.000886, loss_weight: 0.049504
[22:19:44.170] iteration 3897 : loss : 0.052235 cons_dist: 0.009115, loss_weight: 0.049504
[22:19:45.087] iteration 3898 : loss : 0.033631 cons_dist: 0.002127, loss_weight: 0.049504
[22:19:46.004] iteration 3899 : loss : 0.046314 cons_dist: 0.001615, loss_weight: 0.049504
[22:19:46.921] iteration 3900 : loss : 0.293258 cons_dist: 0.002240, loss_weight: 0.049504
[22:19:48.643] iteration 3901 : loss : 0.045464 cons_dist: 0.001175, loss_weight: 0.054199
[22:19:49.561] iteration 3902 : loss : 0.033888 cons_dist: 0.000976, loss_weight: 0.054199
[22:19:50.479] iteration 3903 : loss : 0.035223 cons_dist: 0.007189, loss_weight: 0.054199
[22:19:51.401] iteration 3904 : loss : 0.165910 cons_dist: 0.002788, loss_weight: 0.054199
[22:19:52.318] iteration 3905 : loss : 0.041961 cons_dist: 0.006067, loss_weight: 0.054199
[22:19:53.236] iteration 3906 : loss : 0.042050 cons_dist: 0.001165, loss_weight: 0.054199
[22:19:54.153] iteration 3907 : loss : 0.041336 cons_dist: 0.011156, loss_weight: 0.054199
[22:19:55.071] iteration 3908 : loss : 0.046568 cons_dist: 0.002380, loss_weight: 0.054199
[22:19:55.989] iteration 3909 : loss : 0.059390 cons_dist: 0.004506, loss_weight: 0.054199
[22:19:56.906] iteration 3910 : loss : 0.046555 cons_dist: 0.003899, loss_weight: 0.054199
[22:19:57.824] iteration 3911 : loss : 0.051400 cons_dist: 0.000602, loss_weight: 0.054199
[22:19:58.741] iteration 3912 : loss : 0.050979 cons_dist: 0.001810, loss_weight: 0.054199
[22:20:00.300] iteration 3913 : loss : 0.035679 cons_dist: 0.001757, loss_weight: 0.054199
[22:20:01.217] iteration 3914 : loss : 0.045004 cons_dist: 0.001563, loss_weight: 0.054199
[22:20:02.133] iteration 3915 : loss : 0.051557 cons_dist: 0.000761, loss_weight: 0.054199
[22:20:03.050] iteration 3916 : loss : 0.031466 cons_dist: 0.000530, loss_weight: 0.054199
[22:20:03.965] iteration 3917 : loss : 0.052453 cons_dist: 0.007052, loss_weight: 0.054199
[22:20:04.882] iteration 3918 : loss : 0.037257 cons_dist: 0.003170, loss_weight: 0.054199
[22:20:05.800] iteration 3919 : loss : 0.035919 cons_dist: 0.001845, loss_weight: 0.054199
[22:20:06.717] iteration 3920 : loss : 0.041658 cons_dist: 0.004377, loss_weight: 0.054199
[22:20:07.635] iteration 3921 : loss : 0.047416 cons_dist: 0.006353, loss_weight: 0.054199
[22:20:08.553] iteration 3922 : loss : 0.033851 cons_dist: 0.001085, loss_weight: 0.054199
[22:20:09.470] iteration 3923 : loss : 0.044307 cons_dist: 0.001000, loss_weight: 0.054199
[22:20:10.388] iteration 3924 : loss : 0.040996 cons_dist: 0.001239, loss_weight: 0.054199
[22:20:11.903] iteration 3925 : loss : 0.049563 cons_dist: 0.004498, loss_weight: 0.054199
[22:20:12.819] iteration 3926 : loss : 0.044009 cons_dist: 0.018603, loss_weight: 0.054199
[22:20:13.734] iteration 3927 : loss : 0.050417 cons_dist: 0.003678, loss_weight: 0.054199
[22:20:14.653] iteration 3928 : loss : 0.045359 cons_dist: 0.011244, loss_weight: 0.054199
[22:20:15.569] iteration 3929 : loss : 0.063702 cons_dist: 0.001368, loss_weight: 0.054199
[22:20:16.486] iteration 3930 : loss : 0.045043 cons_dist: 0.001078, loss_weight: 0.054199
[22:20:17.401] iteration 3931 : loss : 0.047764 cons_dist: 0.000849, loss_weight: 0.054199
[22:20:18.320] iteration 3932 : loss : 0.042595 cons_dist: 0.000937, loss_weight: 0.054199
[22:20:19.238] iteration 3933 : loss : 0.054886 cons_dist: 0.000764, loss_weight: 0.054199
[22:20:20.154] iteration 3934 : loss : 0.049297 cons_dist: 0.002523, loss_weight: 0.054199
[22:20:21.072] iteration 3935 : loss : 0.061108 cons_dist: 0.005754, loss_weight: 0.054199
[22:20:21.988] iteration 3936 : loss : 0.039793 cons_dist: 0.004987, loss_weight: 0.054199
[22:20:23.524] iteration 3937 : loss : 0.053471 cons_dist: 0.000531, loss_weight: 0.054199
[22:20:24.442] iteration 3938 : loss : 0.058136 cons_dist: 0.050881, loss_weight: 0.054199
[22:20:25.359] iteration 3939 : loss : 0.070834 cons_dist: 0.003015, loss_weight: 0.054199
[22:20:26.279] iteration 3940 : loss : 0.032206 cons_dist: 0.001002, loss_weight: 0.054199
[22:20:27.196] iteration 3941 : loss : 0.043692 cons_dist: 0.001046, loss_weight: 0.054199
[22:20:28.112] iteration 3942 : loss : 0.047008 cons_dist: 0.015169, loss_weight: 0.054199
[22:20:29.029] iteration 3943 : loss : 0.052789 cons_dist: 0.000621, loss_weight: 0.054199
[22:20:29.947] iteration 3944 : loss : 0.037674 cons_dist: 0.001357, loss_weight: 0.054199
[22:20:30.864] iteration 3945 : loss : 0.036997 cons_dist: 0.000791, loss_weight: 0.054199
[22:20:31.779] iteration 3946 : loss : 0.036552 cons_dist: 0.009508, loss_weight: 0.054199
[22:20:32.695] iteration 3947 : loss : 0.046249 cons_dist: 0.001261, loss_weight: 0.054199
[22:20:33.611] iteration 3948 : loss : 0.046615 cons_dist: 0.000170, loss_weight: 0.054199
[22:20:35.133] iteration 3949 : loss : 0.037831 cons_dist: 0.004160, loss_weight: 0.054199
[22:20:36.051] iteration 3950 : loss : 0.041365 cons_dist: 0.026529, loss_weight: 0.054199
[22:20:37.133] iteration 3951 : loss : 0.042929 cons_dist: 0.000615, loss_weight: 0.054199
[22:20:38.051] iteration 3952 : loss : 0.053337 cons_dist: 0.002711, loss_weight: 0.054199
[22:20:38.968] iteration 3953 : loss : 0.032842 cons_dist: 0.001801, loss_weight: 0.054199
[22:20:39.885] iteration 3954 : loss : 0.048795 cons_dist: 0.004663, loss_weight: 0.054199
[22:20:40.801] iteration 3955 : loss : 0.041367 cons_dist: 0.001622, loss_weight: 0.054199
[22:20:41.718] iteration 3956 : loss : 0.042811 cons_dist: 0.001003, loss_weight: 0.054199
[22:20:42.636] iteration 3957 : loss : 0.039348 cons_dist: 0.000556, loss_weight: 0.054199
[22:20:43.553] iteration 3958 : loss : 0.041959 cons_dist: 0.001578, loss_weight: 0.054199
[22:20:44.470] iteration 3959 : loss : 0.074646 cons_dist: 0.006095, loss_weight: 0.054199
[22:20:45.387] iteration 3960 : loss : 0.038500 cons_dist: 0.000629, loss_weight: 0.054199
[22:20:47.026] iteration 3961 : loss : 0.043060 cons_dist: 0.031701, loss_weight: 0.054199
[22:20:47.944] iteration 3962 : loss : 0.055895 cons_dist: 0.000813, loss_weight: 0.054199
[22:20:48.861] iteration 3963 : loss : 0.045850 cons_dist: 0.002998, loss_weight: 0.054199
[22:20:49.780] iteration 3964 : loss : 0.029911 cons_dist: 0.001538, loss_weight: 0.054199
[22:20:50.697] iteration 3965 : loss : 0.050012 cons_dist: 0.000535, loss_weight: 0.054199
[22:20:51.614] iteration 3966 : loss : 0.044083 cons_dist: 0.012162, loss_weight: 0.054199
[22:20:52.533] iteration 3967 : loss : 0.211805 cons_dist: 0.007532, loss_weight: 0.054199
[22:20:53.450] iteration 3968 : loss : 0.052612 cons_dist: 0.001394, loss_weight: 0.054199
[22:20:54.368] iteration 3969 : loss : 0.068158 cons_dist: 0.003369, loss_weight: 0.054199
[22:20:55.286] iteration 3970 : loss : 0.073688 cons_dist: 0.001148, loss_weight: 0.054199
[22:20:56.205] iteration 3971 : loss : 0.056507 cons_dist: 0.001474, loss_weight: 0.054199
[22:20:57.124] iteration 3972 : loss : 0.027710 cons_dist: 0.001885, loss_weight: 0.054199
[22:20:58.775] iteration 3973 : loss : 0.043677 cons_dist: 0.006250, loss_weight: 0.054199
[22:20:59.694] iteration 3974 : loss : 0.042460 cons_dist: 0.005595, loss_weight: 0.054199
[22:21:00.611] iteration 3975 : loss : 0.042909 cons_dist: 0.001944, loss_weight: 0.054199
[22:21:01.528] iteration 3976 : loss : 0.038660 cons_dist: 0.033676, loss_weight: 0.054199
[22:21:02.446] iteration 3977 : loss : 0.065745 cons_dist: 0.000560, loss_weight: 0.054199
[22:21:03.365] iteration 3978 : loss : 0.033937 cons_dist: 0.000491, loss_weight: 0.054199
[22:21:04.283] iteration 3979 : loss : 0.049944 cons_dist: 0.027595, loss_weight: 0.054199
[22:21:05.200] iteration 3980 : loss : 0.044663 cons_dist: 0.000875, loss_weight: 0.054199
[22:21:06.118] iteration 3981 : loss : 0.046960 cons_dist: 0.002207, loss_weight: 0.054199
[22:21:07.036] iteration 3982 : loss : 0.035362 cons_dist: 0.002411, loss_weight: 0.054199
[22:21:07.956] iteration 3983 : loss : 0.042175 cons_dist: 0.003291, loss_weight: 0.054199
[22:21:08.873] iteration 3984 : loss : 0.051822 cons_dist: 0.002711, loss_weight: 0.054199
[22:21:10.445] iteration 3985 : loss : 0.035890 cons_dist: 0.002325, loss_weight: 0.054199
[22:21:11.361] iteration 3986 : loss : 0.043094 cons_dist: 0.000862, loss_weight: 0.054199
[22:21:12.279] iteration 3987 : loss : 0.047552 cons_dist: 0.000574, loss_weight: 0.054199
[22:21:13.195] iteration 3988 : loss : 0.047848 cons_dist: 0.003521, loss_weight: 0.054199
[22:21:14.113] iteration 3989 : loss : 0.040262 cons_dist: 0.000760, loss_weight: 0.054199
[22:21:15.029] iteration 3990 : loss : 0.050489 cons_dist: 0.001680, loss_weight: 0.054199
[22:21:15.947] iteration 3991 : loss : 0.040923 cons_dist: 0.007962, loss_weight: 0.054199
[22:21:16.864] iteration 3992 : loss : 0.040315 cons_dist: 0.001458, loss_weight: 0.054199
[22:21:17.780] iteration 3993 : loss : 0.044212 cons_dist: 0.001521, loss_weight: 0.054199
[22:21:18.696] iteration 3994 : loss : 0.037337 cons_dist: 0.013007, loss_weight: 0.054199
[22:21:19.613] iteration 3995 : loss : 0.038776 cons_dist: 0.003484, loss_weight: 0.054199
[22:21:20.529] iteration 3996 : loss : 0.045945 cons_dist: 0.005158, loss_weight: 0.054199
[22:21:22.033] iteration 3997 : loss : 0.045494 cons_dist: 0.001457, loss_weight: 0.054199
[22:21:22.950] iteration 3998 : loss : 0.057018 cons_dist: 0.002484, loss_weight: 0.054199
[22:21:23.866] iteration 3999 : loss : 0.044908 cons_dist: 0.022892, loss_weight: 0.054199
[22:21:24.786] iteration 4000 : loss : 0.038273 cons_dist: 0.007407, loss_weight: 0.054199
[22:21:25.023] save model to model/LA_vnet_25_labeled/UAMT/iter_4000.pth
[22:21:27.120] iteration 4001 : loss : 0.045196 cons_dist: 0.001287, loss_weight: 0.054199
[22:21:28.038] iteration 4002 : loss : 0.039895 cons_dist: 0.007231, loss_weight: 0.054199
[22:21:28.957] iteration 4003 : loss : 0.055924 cons_dist: 0.006699, loss_weight: 0.054199
[22:21:29.875] iteration 4004 : loss : 0.049089 cons_dist: 0.001181, loss_weight: 0.054199
[22:21:30.793] iteration 4005 : loss : 0.068456 cons_dist: 0.001831, loss_weight: 0.054199
[22:21:31.709] iteration 4006 : loss : 0.069016 cons_dist: 0.001438, loss_weight: 0.054199
[22:21:32.625] iteration 4007 : loss : 0.040241 cons_dist: 0.013469, loss_weight: 0.054199
[22:21:33.542] iteration 4008 : loss : 0.045649 cons_dist: 0.000566, loss_weight: 0.054199
[22:21:35.134] iteration 4009 : loss : 0.058192 cons_dist: 0.000733, loss_weight: 0.054199
[22:21:36.051] iteration 4010 : loss : 0.042699 cons_dist: 0.006776, loss_weight: 0.054199
[22:21:36.967] iteration 4011 : loss : 0.038764 cons_dist: 0.001459, loss_weight: 0.054199
[22:21:37.883] iteration 4012 : loss : 0.065611 cons_dist: 0.010144, loss_weight: 0.054199
[22:21:38.798] iteration 4013 : loss : 0.035241 cons_dist: 0.001082, loss_weight: 0.054199
[22:21:39.715] iteration 4014 : loss : 0.039315 cons_dist: 0.000823, loss_weight: 0.054199
[22:21:40.631] iteration 4015 : loss : 0.036762 cons_dist: 0.001521, loss_weight: 0.054199
[22:21:41.547] iteration 4016 : loss : 0.035876 cons_dist: 0.001149, loss_weight: 0.054199
[22:21:42.464] iteration 4017 : loss : 0.051428 cons_dist: 0.002718, loss_weight: 0.054199
[22:21:43.381] iteration 4018 : loss : 0.039868 cons_dist: 0.000896, loss_weight: 0.054199
[22:21:44.298] iteration 4019 : loss : 0.039520 cons_dist: 0.001212, loss_weight: 0.054199
[22:21:45.217] iteration 4020 : loss : 0.041809 cons_dist: 0.009092, loss_weight: 0.054199
[22:21:46.827] iteration 4021 : loss : 0.034812 cons_dist: 0.000887, loss_weight: 0.054199
[22:21:47.745] iteration 4022 : loss : 0.039469 cons_dist: 0.000701, loss_weight: 0.054199
[22:21:48.662] iteration 4023 : loss : 0.032895 cons_dist: 0.000654, loss_weight: 0.054199
[22:21:49.579] iteration 4024 : loss : 0.032930 cons_dist: 0.001602, loss_weight: 0.054199
[22:21:50.499] iteration 4025 : loss : 0.040550 cons_dist: 0.015095, loss_weight: 0.054199
[22:21:51.416] iteration 4026 : loss : 0.043962 cons_dist: 0.006890, loss_weight: 0.054199
[22:21:52.332] iteration 4027 : loss : 0.038942 cons_dist: 0.001693, loss_weight: 0.054199
[22:21:53.248] iteration 4028 : loss : 0.040870 cons_dist: 0.000873, loss_weight: 0.054199
[22:21:54.164] iteration 4029 : loss : 0.052050 cons_dist: 0.029857, loss_weight: 0.054199
[22:21:55.082] iteration 4030 : loss : 0.032415 cons_dist: 0.006155, loss_weight: 0.054199
[22:21:55.998] iteration 4031 : loss : 0.036431 cons_dist: 0.003697, loss_weight: 0.054199
[22:21:56.915] iteration 4032 : loss : 0.041470 cons_dist: 0.001442, loss_weight: 0.054199
[22:21:58.442] iteration 4033 : loss : 0.048640 cons_dist: 0.001234, loss_weight: 0.054199
[22:21:59.359] iteration 4034 : loss : 0.037368 cons_dist: 0.003808, loss_weight: 0.054199
[22:22:00.276] iteration 4035 : loss : 0.050693 cons_dist: 0.000679, loss_weight: 0.054199
[22:22:01.194] iteration 4036 : loss : 0.037734 cons_dist: 0.000559, loss_weight: 0.054199
[22:22:02.111] iteration 4037 : loss : 0.043807 cons_dist: 0.000876, loss_weight: 0.054199
[22:22:03.028] iteration 4038 : loss : 0.039537 cons_dist: 0.005398, loss_weight: 0.054199
[22:22:03.945] iteration 4039 : loss : 0.039156 cons_dist: 0.007945, loss_weight: 0.054199
[22:22:04.862] iteration 4040 : loss : 0.046744 cons_dist: 0.003442, loss_weight: 0.054199
[22:22:05.778] iteration 4041 : loss : 0.042694 cons_dist: 0.003880, loss_weight: 0.054199
[22:22:06.694] iteration 4042 : loss : 0.040730 cons_dist: 0.006176, loss_weight: 0.054199
[22:22:07.612] iteration 4043 : loss : 0.062126 cons_dist: 0.001624, loss_weight: 0.054199
[22:22:08.529] iteration 4044 : loss : 0.045172 cons_dist: 0.002285, loss_weight: 0.054199
[22:22:10.028] iteration 4045 : loss : 0.051563 cons_dist: 0.000273, loss_weight: 0.054199
[22:22:10.947] iteration 4046 : loss : 0.041225 cons_dist: 0.004282, loss_weight: 0.054199
[22:22:11.866] iteration 4047 : loss : 0.040581 cons_dist: 0.015544, loss_weight: 0.054199
[22:22:12.786] iteration 4048 : loss : 0.041615 cons_dist: 0.001604, loss_weight: 0.054199
[22:22:13.703] iteration 4049 : loss : 0.061192 cons_dist: 0.050354, loss_weight: 0.054199
[22:22:14.621] iteration 4050 : loss : 0.183301 cons_dist: 0.042150, loss_weight: 0.054199
[22:22:15.704] iteration 4051 : loss : 0.038508 cons_dist: 0.006259, loss_weight: 0.058971
[22:22:16.623] iteration 4052 : loss : 0.058026 cons_dist: 0.001708, loss_weight: 0.058971
[22:22:17.540] iteration 4053 : loss : 0.043271 cons_dist: 0.003967, loss_weight: 0.058971
[22:22:18.458] iteration 4054 : loss : 0.040380 cons_dist: 0.000750, loss_weight: 0.058971
[22:22:19.376] iteration 4055 : loss : 0.033173 cons_dist: 0.002589, loss_weight: 0.058971
[22:22:20.295] iteration 4056 : loss : 0.154429 cons_dist: 0.002883, loss_weight: 0.058971
[22:22:21.936] iteration 4057 : loss : 0.045844 cons_dist: 0.000409, loss_weight: 0.058971
[22:22:22.854] iteration 4058 : loss : 0.040146 cons_dist: 0.001285, loss_weight: 0.058971
[22:22:23.773] iteration 4059 : loss : 0.040504 cons_dist: 0.001526, loss_weight: 0.058971
[22:22:24.691] iteration 4060 : loss : 0.041736 cons_dist: 0.000940, loss_weight: 0.058971
[22:22:25.609] iteration 4061 : loss : 0.044506 cons_dist: 0.002460, loss_weight: 0.058971
[22:22:26.529] iteration 4062 : loss : 0.043779 cons_dist: 0.001782, loss_weight: 0.058971
[22:22:27.447] iteration 4063 : loss : 0.044327 cons_dist: 0.000990, loss_weight: 0.058971
[22:22:28.365] iteration 4064 : loss : 0.045820 cons_dist: 0.000729, loss_weight: 0.058971
[22:22:29.283] iteration 4065 : loss : 0.062948 cons_dist: 0.002278, loss_weight: 0.058971
[22:22:30.202] iteration 4066 : loss : 0.054945 cons_dist: 0.003429, loss_weight: 0.058971
[22:22:31.119] iteration 4067 : loss : 0.046927 cons_dist: 0.001171, loss_weight: 0.058971
[22:22:32.036] iteration 4068 : loss : 0.042604 cons_dist: 0.001816, loss_weight: 0.058971
[22:22:33.646] iteration 4069 : loss : 0.049585 cons_dist: 0.002880, loss_weight: 0.058971
[22:22:34.562] iteration 4070 : loss : 0.039041 cons_dist: 0.000613, loss_weight: 0.058971
[22:22:35.479] iteration 4071 : loss : 0.051481 cons_dist: 0.045383, loss_weight: 0.058971
[22:22:36.395] iteration 4072 : loss : 0.048778 cons_dist: 0.003185, loss_weight: 0.058971
[22:22:37.312] iteration 4073 : loss : 0.053002 cons_dist: 0.004326, loss_weight: 0.058971
[22:22:38.230] iteration 4074 : loss : 0.038444 cons_dist: 0.003824, loss_weight: 0.058971
[22:22:39.146] iteration 4075 : loss : 0.047145 cons_dist: 0.003192, loss_weight: 0.058971
[22:22:40.063] iteration 4076 : loss : 0.037084 cons_dist: 0.001854, loss_weight: 0.058971
[22:22:40.980] iteration 4077 : loss : 0.041132 cons_dist: 0.000500, loss_weight: 0.058971
[22:22:41.895] iteration 4078 : loss : 0.045235 cons_dist: 0.003686, loss_weight: 0.058971
[22:22:42.811] iteration 4079 : loss : 0.063617 cons_dist: 0.001295, loss_weight: 0.058971
[22:22:43.729] iteration 4080 : loss : 0.051031 cons_dist: 0.026725, loss_weight: 0.058971
[22:22:45.316] iteration 4081 : loss : 0.050092 cons_dist: 0.000314, loss_weight: 0.058971
[22:22:46.234] iteration 4082 : loss : 0.046513 cons_dist: 0.002184, loss_weight: 0.058971
[22:22:47.150] iteration 4083 : loss : 0.037464 cons_dist: 0.001872, loss_weight: 0.058971
[22:22:48.066] iteration 4084 : loss : 0.049225 cons_dist: 0.009268, loss_weight: 0.058971
[22:22:48.981] iteration 4085 : loss : 0.052776 cons_dist: 0.000715, loss_weight: 0.058971
[22:22:49.898] iteration 4086 : loss : 0.060345 cons_dist: 0.001471, loss_weight: 0.058971
[22:22:50.814] iteration 4087 : loss : 0.127538 cons_dist: 0.000653, loss_weight: 0.058971
[22:22:51.730] iteration 4088 : loss : 0.047701 cons_dist: 0.001113, loss_weight: 0.058971
[22:22:52.645] iteration 4089 : loss : 0.038708 cons_dist: 0.006270, loss_weight: 0.058971
[22:22:53.561] iteration 4090 : loss : 0.041166 cons_dist: 0.002667, loss_weight: 0.058971
[22:22:54.478] iteration 4091 : loss : 0.047647 cons_dist: 0.006758, loss_weight: 0.058971
[22:22:55.394] iteration 4092 : loss : 0.051084 cons_dist: 0.007132, loss_weight: 0.058971
[22:22:56.963] iteration 4093 : loss : 0.043535 cons_dist: 0.009309, loss_weight: 0.058971
[22:22:57.878] iteration 4094 : loss : 0.052499 cons_dist: 0.000421, loss_weight: 0.058971
[22:22:58.794] iteration 4095 : loss : 0.038092 cons_dist: 0.003528, loss_weight: 0.058971
[22:22:59.711] iteration 4096 : loss : 0.044658 cons_dist: 0.000960, loss_weight: 0.058971
[22:23:00.628] iteration 4097 : loss : 0.041759 cons_dist: 0.000488, loss_weight: 0.058971
[22:23:01.544] iteration 4098 : loss : 0.035628 cons_dist: 0.003709, loss_weight: 0.058971
[22:23:02.461] iteration 4099 : loss : 0.053243 cons_dist: 0.004105, loss_weight: 0.058971
[22:23:03.378] iteration 4100 : loss : 0.046392 cons_dist: 0.000843, loss_weight: 0.058971
[22:23:04.458] iteration 4101 : loss : 0.036470 cons_dist: 0.001023, loss_weight: 0.058971
[22:23:05.376] iteration 4102 : loss : 0.041571 cons_dist: 0.005660, loss_weight: 0.058971
[22:23:06.293] iteration 4103 : loss : 0.036455 cons_dist: 0.003866, loss_weight: 0.058971
[22:23:07.212] iteration 4104 : loss : 0.035857 cons_dist: 0.002516, loss_weight: 0.058971
[22:23:08.786] iteration 4105 : loss : 0.045709 cons_dist: 0.000925, loss_weight: 0.058971
[22:23:09.703] iteration 4106 : loss : 0.045788 cons_dist: 0.000469, loss_weight: 0.058971
[22:23:10.622] iteration 4107 : loss : 0.039042 cons_dist: 0.000930, loss_weight: 0.058971
[22:23:11.540] iteration 4108 : loss : 0.038600 cons_dist: 0.000993, loss_weight: 0.058971
[22:23:12.457] iteration 4109 : loss : 0.065146 cons_dist: 0.015309, loss_weight: 0.058971
[22:23:13.373] iteration 4110 : loss : 0.037949 cons_dist: 0.001915, loss_weight: 0.058971
[22:23:14.289] iteration 4111 : loss : 0.047807 cons_dist: 0.000764, loss_weight: 0.058971
[22:23:15.204] iteration 4112 : loss : 0.072096 cons_dist: 0.032605, loss_weight: 0.058971
[22:23:16.120] iteration 4113 : loss : 0.053725 cons_dist: 0.002290, loss_weight: 0.058971
[22:23:17.038] iteration 4114 : loss : 0.042213 cons_dist: 0.001870, loss_weight: 0.058971
[22:23:17.954] iteration 4115 : loss : 0.046990 cons_dist: 0.005032, loss_weight: 0.058971
[22:23:18.871] iteration 4116 : loss : 0.064278 cons_dist: 0.000874, loss_weight: 0.058971
[22:23:20.360] iteration 4117 : loss : 0.036668 cons_dist: 0.001179, loss_weight: 0.058971
[22:23:21.278] iteration 4118 : loss : 0.035150 cons_dist: 0.001108, loss_weight: 0.058971
[22:23:22.196] iteration 4119 : loss : 0.044901 cons_dist: 0.000484, loss_weight: 0.058971
[22:23:23.113] iteration 4120 : loss : 0.036665 cons_dist: 0.001549, loss_weight: 0.058971
[22:23:24.032] iteration 4121 : loss : 0.038061 cons_dist: 0.001847, loss_weight: 0.058971
[22:23:24.950] iteration 4122 : loss : 0.043325 cons_dist: 0.006549, loss_weight: 0.058971
[22:23:25.868] iteration 4123 : loss : 0.047368 cons_dist: 0.001671, loss_weight: 0.058971
[22:23:26.787] iteration 4124 : loss : 0.051053 cons_dist: 0.001818, loss_weight: 0.058971
[22:23:27.704] iteration 4125 : loss : 0.055076 cons_dist: 0.001306, loss_weight: 0.058971
[22:23:28.621] iteration 4126 : loss : 0.056030 cons_dist: 0.001478, loss_weight: 0.058971
[22:23:29.539] iteration 4127 : loss : 0.038253 cons_dist: 0.002023, loss_weight: 0.058971
[22:23:30.456] iteration 4128 : loss : 0.034512 cons_dist: 0.002454, loss_weight: 0.058971
[22:23:31.938] iteration 4129 : loss : 0.036305 cons_dist: 0.002688, loss_weight: 0.058971
[22:23:32.856] iteration 4130 : loss : 0.045737 cons_dist: 0.000778, loss_weight: 0.058971
[22:23:33.776] iteration 4131 : loss : 0.067217 cons_dist: 0.007219, loss_weight: 0.058971
[22:23:34.696] iteration 4132 : loss : 0.037935 cons_dist: 0.004543, loss_weight: 0.058971
[22:23:35.611] iteration 4133 : loss : 0.051055 cons_dist: 0.003540, loss_weight: 0.058971
[22:23:36.528] iteration 4134 : loss : 0.072564 cons_dist: 0.000814, loss_weight: 0.058971
[22:23:37.449] iteration 4135 : loss : 0.062423 cons_dist: 0.001701, loss_weight: 0.058971
[22:23:38.367] iteration 4136 : loss : 0.080577 cons_dist: 0.000868, loss_weight: 0.058971
[22:23:39.286] iteration 4137 : loss : 0.047613 cons_dist: 0.004453, loss_weight: 0.058971
[22:23:40.203] iteration 4138 : loss : 0.166859 cons_dist: 0.003345, loss_weight: 0.058971
[22:23:41.122] iteration 4139 : loss : 0.062651 cons_dist: 0.004999, loss_weight: 0.058971
[22:23:42.061] iteration 4140 : loss : 0.035714 cons_dist: 0.002507, loss_weight: 0.058971
[22:23:43.565] iteration 4141 : loss : 0.063542 cons_dist: 0.000743, loss_weight: 0.058971
[22:23:44.484] iteration 4142 : loss : 0.060283 cons_dist: 0.000336, loss_weight: 0.058971
[22:23:45.402] iteration 4143 : loss : 0.046511 cons_dist: 0.001265, loss_weight: 0.058971
[22:23:46.320] iteration 4144 : loss : 0.049445 cons_dist: 0.000531, loss_weight: 0.058971
[22:23:47.238] iteration 4145 : loss : 0.029595 cons_dist: 0.000577, loss_weight: 0.058971
[22:23:48.156] iteration 4146 : loss : 0.039159 cons_dist: 0.004842, loss_weight: 0.058971
[22:23:49.074] iteration 4147 : loss : 0.033064 cons_dist: 0.001785, loss_weight: 0.058971
[22:23:49.990] iteration 4148 : loss : 0.038295 cons_dist: 0.001742, loss_weight: 0.058971
[22:23:50.908] iteration 4149 : loss : 0.039879 cons_dist: 0.006538, loss_weight: 0.058971
[22:23:51.825] iteration 4150 : loss : 0.104918 cons_dist: 0.001205, loss_weight: 0.058971
[22:23:52.883] iteration 4151 : loss : 0.219844 cons_dist: 0.006334, loss_weight: 0.058971
[22:23:53.801] iteration 4152 : loss : 0.052138 cons_dist: 0.028910, loss_weight: 0.058971
[22:23:55.375] iteration 4153 : loss : 0.043081 cons_dist: 0.001421, loss_weight: 0.058971
[22:23:56.297] iteration 4154 : loss : 0.030121 cons_dist: 0.003093, loss_weight: 0.058971
[22:23:57.216] iteration 4155 : loss : 0.055233 cons_dist: 0.000497, loss_weight: 0.058971
[22:23:58.134] iteration 4156 : loss : 0.043100 cons_dist: 0.001247, loss_weight: 0.058971
[22:23:59.052] iteration 4157 : loss : 0.051487 cons_dist: 0.000960, loss_weight: 0.058971
[22:23:59.970] iteration 4158 : loss : 0.046912 cons_dist: 0.000909, loss_weight: 0.058971
[22:24:00.889] iteration 4159 : loss : 0.044035 cons_dist: 0.004518, loss_weight: 0.058971
[22:24:01.807] iteration 4160 : loss : 0.058389 cons_dist: 0.004166, loss_weight: 0.058971
[22:24:02.725] iteration 4161 : loss : 0.041498 cons_dist: 0.000834, loss_weight: 0.058971
[22:24:03.643] iteration 4162 : loss : 0.040792 cons_dist: 0.011165, loss_weight: 0.058971
[22:24:04.562] iteration 4163 : loss : 0.040516 cons_dist: 0.004222, loss_weight: 0.058971
[22:24:05.480] iteration 4164 : loss : 0.060597 cons_dist: 0.005044, loss_weight: 0.058971
[22:24:07.129] iteration 4165 : loss : 0.043536 cons_dist: 0.001000, loss_weight: 0.058971
[22:24:08.047] iteration 4166 : loss : 0.030693 cons_dist: 0.001293, loss_weight: 0.058971
[22:24:08.963] iteration 4167 : loss : 0.044901 cons_dist: 0.003743, loss_weight: 0.058971
[22:24:09.881] iteration 4168 : loss : 0.038860 cons_dist: 0.006656, loss_weight: 0.058971
[22:24:10.797] iteration 4169 : loss : 0.038471 cons_dist: 0.007255, loss_weight: 0.058971
[22:24:11.713] iteration 4170 : loss : 0.117561 cons_dist: 0.001912, loss_weight: 0.058971
[22:24:12.630] iteration 4171 : loss : 0.044239 cons_dist: 0.009771, loss_weight: 0.058971
[22:24:13.547] iteration 4172 : loss : 0.055698 cons_dist: 0.000784, loss_weight: 0.058971
[22:24:14.464] iteration 4173 : loss : 0.039739 cons_dist: 0.003385, loss_weight: 0.058971
[22:24:15.380] iteration 4174 : loss : 0.046871 cons_dist: 0.001164, loss_weight: 0.058971
[22:24:16.298] iteration 4175 : loss : 0.040319 cons_dist: 0.000723, loss_weight: 0.058971
[22:24:17.215] iteration 4176 : loss : 0.039983 cons_dist: 0.000462, loss_weight: 0.058971
[22:24:18.863] iteration 4177 : loss : 0.040611 cons_dist: 0.002234, loss_weight: 0.058971
[22:24:19.779] iteration 4178 : loss : 0.039323 cons_dist: 0.013643, loss_weight: 0.058971
[22:24:20.694] iteration 4179 : loss : 0.037891 cons_dist: 0.003325, loss_weight: 0.058971
[22:24:21.610] iteration 4180 : loss : 0.045822 cons_dist: 0.000714, loss_weight: 0.058971
[22:24:22.526] iteration 4181 : loss : 0.036543 cons_dist: 0.000469, loss_weight: 0.058971
[22:24:23.442] iteration 4182 : loss : 0.050336 cons_dist: 0.003022, loss_weight: 0.058971
[22:24:24.360] iteration 4183 : loss : 0.047971 cons_dist: 0.000344, loss_weight: 0.058971
[22:24:25.275] iteration 4184 : loss : 0.050087 cons_dist: 0.001010, loss_weight: 0.058971
[22:24:26.192] iteration 4185 : loss : 0.037077 cons_dist: 0.009677, loss_weight: 0.058971
[22:24:27.110] iteration 4186 : loss : 0.051928 cons_dist: 0.002896, loss_weight: 0.058971
[22:24:28.027] iteration 4187 : loss : 0.075944 cons_dist: 0.001422, loss_weight: 0.058971
[22:24:28.945] iteration 4188 : loss : 0.044632 cons_dist: 0.000915, loss_weight: 0.058971
[22:24:30.446] iteration 4189 : loss : 0.071839 cons_dist: 0.001027, loss_weight: 0.058971
[22:24:31.366] iteration 4190 : loss : 0.054033 cons_dist: 0.000519, loss_weight: 0.058971
[22:24:32.284] iteration 4191 : loss : 0.040528 cons_dist: 0.004194, loss_weight: 0.058971
[22:24:33.203] iteration 4192 : loss : 0.031663 cons_dist: 0.008787, loss_weight: 0.058971
[22:24:34.121] iteration 4193 : loss : 0.043965 cons_dist: 0.000556, loss_weight: 0.058971
[22:24:35.038] iteration 4194 : loss : 0.049331 cons_dist: 0.002949, loss_weight: 0.058971
[22:24:35.958] iteration 4195 : loss : 0.042638 cons_dist: 0.001698, loss_weight: 0.058971
[22:24:36.877] iteration 4196 : loss : 0.042187 cons_dist: 0.001956, loss_weight: 0.058971
[22:24:37.795] iteration 4197 : loss : 0.032984 cons_dist: 0.003266, loss_weight: 0.058971
[22:24:38.713] iteration 4198 : loss : 0.041912 cons_dist: 0.002123, loss_weight: 0.058971
[22:24:39.631] iteration 4199 : loss : 0.030214 cons_dist: 0.002243, loss_weight: 0.058971
[22:24:40.549] iteration 4200 : loss : 0.045973 cons_dist: 0.002171, loss_weight: 0.058971
[22:24:43.515] iteration 4201 : loss : 0.058427 cons_dist: 0.002566, loss_weight: 0.063763
[22:24:44.431] iteration 4202 : loss : 0.044434 cons_dist: 0.003256, loss_weight: 0.063763
[22:24:45.348] iteration 4203 : loss : 0.053939 cons_dist: 0.001945, loss_weight: 0.063763
[22:24:46.264] iteration 4204 : loss : 0.168338 cons_dist: 0.001786, loss_weight: 0.063763
[22:24:47.184] iteration 4205 : loss : 0.035568 cons_dist: 0.001498, loss_weight: 0.063763
[22:24:48.101] iteration 4206 : loss : 0.040829 cons_dist: 0.002612, loss_weight: 0.063763
[22:24:49.017] iteration 4207 : loss : 0.158052 cons_dist: 0.000834, loss_weight: 0.063763
[22:24:49.934] iteration 4208 : loss : 0.046805 cons_dist: 0.002857, loss_weight: 0.063763
[22:24:50.850] iteration 4209 : loss : 0.052219 cons_dist: 0.004496, loss_weight: 0.063763
[22:24:51.766] iteration 4210 : loss : 0.062017 cons_dist: 0.001249, loss_weight: 0.063763
[22:24:52.681] iteration 4211 : loss : 0.049202 cons_dist: 0.004687, loss_weight: 0.063763
[22:24:53.596] iteration 4212 : loss : 0.036260 cons_dist: 0.003015, loss_weight: 0.063763
[22:24:55.112] iteration 4213 : loss : 0.030826 cons_dist: 0.002724, loss_weight: 0.063763
[22:24:56.027] iteration 4214 : loss : 0.041138 cons_dist: 0.007787, loss_weight: 0.063763
[22:24:56.943] iteration 4215 : loss : 0.058696 cons_dist: 0.005511, loss_weight: 0.063763
[22:24:57.858] iteration 4216 : loss : 0.041595 cons_dist: 0.006356, loss_weight: 0.063763
[22:24:58.773] iteration 4217 : loss : 0.038145 cons_dist: 0.001817, loss_weight: 0.063763
[22:24:59.688] iteration 4218 : loss : 0.046492 cons_dist: 0.008532, loss_weight: 0.063763
[22:25:00.603] iteration 4219 : loss : 0.050039 cons_dist: 0.001520, loss_weight: 0.063763
[22:25:01.518] iteration 4220 : loss : 0.040248 cons_dist: 0.000433, loss_weight: 0.063763
[22:25:02.433] iteration 4221 : loss : 0.037209 cons_dist: 0.003385, loss_weight: 0.063763
[22:25:03.348] iteration 4222 : loss : 0.047317 cons_dist: 0.024781, loss_weight: 0.063763
[22:25:04.263] iteration 4223 : loss : 0.062600 cons_dist: 0.001817, loss_weight: 0.063763
[22:25:05.181] iteration 4224 : loss : 0.085648 cons_dist: 0.000720, loss_weight: 0.063763
[22:25:06.822] iteration 4225 : loss : 0.034841 cons_dist: 0.004855, loss_weight: 0.063763
[22:25:07.740] iteration 4226 : loss : 0.044669 cons_dist: 0.004339, loss_weight: 0.063763
[22:25:08.658] iteration 4227 : loss : 0.061100 cons_dist: 0.001896, loss_weight: 0.063763
[22:25:09.577] iteration 4228 : loss : 0.044670 cons_dist: 0.003939, loss_weight: 0.063763
[22:25:10.496] iteration 4229 : loss : 0.050850 cons_dist: 0.008342, loss_weight: 0.063763
[22:25:11.415] iteration 4230 : loss : 0.058645 cons_dist: 0.006716, loss_weight: 0.063763
[22:25:12.332] iteration 4231 : loss : 0.046006 cons_dist: 0.003275, loss_weight: 0.063763
[22:25:13.251] iteration 4232 : loss : 0.037802 cons_dist: 0.000538, loss_weight: 0.063763
[22:25:14.168] iteration 4233 : loss : 0.071226 cons_dist: 0.002614, loss_weight: 0.063763
[22:25:15.086] iteration 4234 : loss : 0.047637 cons_dist: 0.004387, loss_weight: 0.063763
[22:25:16.004] iteration 4235 : loss : 0.048459 cons_dist: 0.000554, loss_weight: 0.063763
[22:25:16.920] iteration 4236 : loss : 0.047555 cons_dist: 0.000539, loss_weight: 0.063763
[22:25:18.609] iteration 4237 : loss : 0.042372 cons_dist: 0.018398, loss_weight: 0.063763
[22:25:19.527] iteration 4238 : loss : 0.038813 cons_dist: 0.000501, loss_weight: 0.063763
[22:25:20.446] iteration 4239 : loss : 0.063872 cons_dist: 0.004821, loss_weight: 0.063763
[22:25:21.362] iteration 4240 : loss : 0.046880 cons_dist: 0.003300, loss_weight: 0.063763
[22:25:22.280] iteration 4241 : loss : 0.058156 cons_dist: 0.019428, loss_weight: 0.063763
[22:25:23.196] iteration 4242 : loss : 0.035840 cons_dist: 0.001672, loss_weight: 0.063763
[22:25:24.112] iteration 4243 : loss : 0.045858 cons_dist: 0.004952, loss_weight: 0.063763
[22:25:25.058] iteration 4244 : loss : 0.032857 cons_dist: 0.002476, loss_weight: 0.063763
[22:25:25.974] iteration 4245 : loss : 0.051289 cons_dist: 0.000880, loss_weight: 0.063763
[22:25:26.891] iteration 4246 : loss : 0.045936 cons_dist: 0.001066, loss_weight: 0.063763
[22:25:27.807] iteration 4247 : loss : 0.034819 cons_dist: 0.002296, loss_weight: 0.063763
[22:25:28.724] iteration 4248 : loss : 0.045244 cons_dist: 0.002835, loss_weight: 0.063763
[22:25:30.367] iteration 4249 : loss : 0.045451 cons_dist: 0.009122, loss_weight: 0.063763
[22:25:31.288] iteration 4250 : loss : 0.039002 cons_dist: 0.003800, loss_weight: 0.063763
[22:25:32.349] iteration 4251 : loss : 0.060985 cons_dist: 0.005146, loss_weight: 0.063763
[22:25:33.266] iteration 4252 : loss : 0.135388 cons_dist: 0.001048, loss_weight: 0.063763
[22:25:34.183] iteration 4253 : loss : 0.045882 cons_dist: 0.017754, loss_weight: 0.063763
[22:25:35.101] iteration 4254 : loss : 0.049431 cons_dist: 0.000849, loss_weight: 0.063763
[22:25:36.018] iteration 4255 : loss : 0.047733 cons_dist: 0.000938, loss_weight: 0.063763
[22:25:36.935] iteration 4256 : loss : 0.048585 cons_dist: 0.004428, loss_weight: 0.063763
[22:25:37.852] iteration 4257 : loss : 0.038981 cons_dist: 0.000661, loss_weight: 0.063763
[22:25:38.770] iteration 4258 : loss : 0.050278 cons_dist: 0.000613, loss_weight: 0.063763
[22:25:39.688] iteration 4259 : loss : 0.050338 cons_dist: 0.000750, loss_weight: 0.063763
[22:25:40.605] iteration 4260 : loss : 0.036513 cons_dist: 0.003414, loss_weight: 0.063763
[22:25:42.236] iteration 4261 : loss : 0.048595 cons_dist: 0.008016, loss_weight: 0.063763
[22:25:43.153] iteration 4262 : loss : 0.050408 cons_dist: 0.000452, loss_weight: 0.063763
[22:25:44.070] iteration 4263 : loss : 0.046842 cons_dist: 0.001926, loss_weight: 0.063763
[22:25:44.987] iteration 4264 : loss : 0.033994 cons_dist: 0.002256, loss_weight: 0.063763
[22:25:45.904] iteration 4265 : loss : 0.047586 cons_dist: 0.002976, loss_weight: 0.063763
[22:25:46.820] iteration 4266 : loss : 0.036658 cons_dist: 0.001609, loss_weight: 0.063763
[22:25:47.737] iteration 4267 : loss : 0.044370 cons_dist: 0.000543, loss_weight: 0.063763
[22:25:48.654] iteration 4268 : loss : 0.038013 cons_dist: 0.005061, loss_weight: 0.063763
[22:25:49.571] iteration 4269 : loss : 0.043199 cons_dist: 0.004162, loss_weight: 0.063763
[22:25:50.488] iteration 4270 : loss : 0.051389 cons_dist: 0.000812, loss_weight: 0.063763
[22:25:51.405] iteration 4271 : loss : 0.035828 cons_dist: 0.003210, loss_weight: 0.063763
[22:25:52.322] iteration 4272 : loss : 0.033467 cons_dist: 0.000546, loss_weight: 0.063763
[22:25:53.892] iteration 4273 : loss : 0.038716 cons_dist: 0.002084, loss_weight: 0.063763
[22:25:54.810] iteration 4274 : loss : 0.045866 cons_dist: 0.005790, loss_weight: 0.063763
[22:25:55.732] iteration 4275 : loss : 0.043646 cons_dist: 0.006255, loss_weight: 0.063763
[22:25:56.651] iteration 4276 : loss : 0.135819 cons_dist: 0.001228, loss_weight: 0.063763
[22:25:57.569] iteration 4277 : loss : 0.036051 cons_dist: 0.004922, loss_weight: 0.063763
[22:25:58.486] iteration 4278 : loss : 0.069966 cons_dist: 0.000869, loss_weight: 0.063763
[22:25:59.405] iteration 4279 : loss : 0.041797 cons_dist: 0.004596, loss_weight: 0.063763
[22:26:00.322] iteration 4280 : loss : 0.096145 cons_dist: 0.001076, loss_weight: 0.063763
[22:26:01.240] iteration 4281 : loss : 0.041431 cons_dist: 0.000852, loss_weight: 0.063763
[22:26:02.177] iteration 4282 : loss : 0.038833 cons_dist: 0.001240, loss_weight: 0.063763
[22:26:03.095] iteration 4283 : loss : 0.041151 cons_dist: 0.000934, loss_weight: 0.063763
[22:26:04.013] iteration 4284 : loss : 0.063602 cons_dist: 0.001433, loss_weight: 0.063763
[22:26:05.636] iteration 4285 : loss : 0.038124 cons_dist: 0.005299, loss_weight: 0.063763
[22:26:06.556] iteration 4286 : loss : 0.073220 cons_dist: 0.005456, loss_weight: 0.063763
[22:26:07.474] iteration 4287 : loss : 0.050685 cons_dist: 0.001353, loss_weight: 0.063763
[22:26:08.392] iteration 4288 : loss : 0.043621 cons_dist: 0.000597, loss_weight: 0.063763
[22:26:09.309] iteration 4289 : loss : 0.046675 cons_dist: 0.003401, loss_weight: 0.063763
[22:26:10.227] iteration 4290 : loss : 0.118124 cons_dist: 0.002335, loss_weight: 0.063763
[22:26:11.145] iteration 4291 : loss : 0.048609 cons_dist: 0.004077, loss_weight: 0.063763
[22:26:12.062] iteration 4292 : loss : 0.037654 cons_dist: 0.001726, loss_weight: 0.063763
[22:26:12.980] iteration 4293 : loss : 0.039063 cons_dist: 0.007064, loss_weight: 0.063763
[22:26:13.897] iteration 4294 : loss : 0.034989 cons_dist: 0.000705, loss_weight: 0.063763
[22:26:14.815] iteration 4295 : loss : 0.057981 cons_dist: 0.000747, loss_weight: 0.063763
[22:26:15.732] iteration 4296 : loss : 0.029603 cons_dist: 0.000962, loss_weight: 0.063763
[22:26:17.369] iteration 4297 : loss : 0.050426 cons_dist: 0.001884, loss_weight: 0.063763
[22:26:18.286] iteration 4298 : loss : 0.042637 cons_dist: 0.001979, loss_weight: 0.063763
[22:26:19.205] iteration 4299 : loss : 0.040760 cons_dist: 0.001350, loss_weight: 0.063763
[22:26:20.124] iteration 4300 : loss : 0.045056 cons_dist: 0.009247, loss_weight: 0.063763
[22:26:21.226] iteration 4301 : loss : 0.042799 cons_dist: 0.003355, loss_weight: 0.063763
[22:26:22.144] iteration 4302 : loss : 0.044972 cons_dist: 0.005254, loss_weight: 0.063763
[22:26:23.061] iteration 4303 : loss : 0.031846 cons_dist: 0.005795, loss_weight: 0.063763
[22:26:23.980] iteration 4304 : loss : 0.046042 cons_dist: 0.002744, loss_weight: 0.063763
[22:26:24.898] iteration 4305 : loss : 0.050380 cons_dist: 0.001063, loss_weight: 0.063763
[22:26:25.814] iteration 4306 : loss : 0.054857 cons_dist: 0.000653, loss_weight: 0.063763
[22:26:26.731] iteration 4307 : loss : 0.040984 cons_dist: 0.024870, loss_weight: 0.063763
[22:26:27.648] iteration 4308 : loss : 0.039254 cons_dist: 0.005927, loss_weight: 0.063763
[22:26:29.210] iteration 4309 : loss : 0.039654 cons_dist: 0.001462, loss_weight: 0.063763
[22:26:30.128] iteration 4310 : loss : 0.042272 cons_dist: 0.002317, loss_weight: 0.063763
[22:26:31.046] iteration 4311 : loss : 0.038849 cons_dist: 0.001597, loss_weight: 0.063763
[22:26:31.963] iteration 4312 : loss : 0.048026 cons_dist: 0.002182, loss_weight: 0.063763
[22:26:32.881] iteration 4313 : loss : 0.052588 cons_dist: 0.003461, loss_weight: 0.063763
[22:26:33.801] iteration 4314 : loss : 0.033161 cons_dist: 0.001050, loss_weight: 0.063763
[22:26:34.718] iteration 4315 : loss : 0.043085 cons_dist: 0.003784, loss_weight: 0.063763
[22:26:35.635] iteration 4316 : loss : 0.036555 cons_dist: 0.000873, loss_weight: 0.063763
[22:26:36.552] iteration 4317 : loss : 0.028772 cons_dist: 0.003729, loss_weight: 0.063763
[22:26:37.468] iteration 4318 : loss : 0.047657 cons_dist: 0.002881, loss_weight: 0.063763
[22:26:38.384] iteration 4319 : loss : 0.160272 cons_dist: 0.001244, loss_weight: 0.063763
[22:26:39.302] iteration 4320 : loss : 0.052026 cons_dist: 0.012101, loss_weight: 0.063763
[22:26:40.944] iteration 4321 : loss : 0.047371 cons_dist: 0.001593, loss_weight: 0.063763
[22:26:41.862] iteration 4322 : loss : 0.040713 cons_dist: 0.000991, loss_weight: 0.063763
[22:26:42.780] iteration 4323 : loss : 0.043628 cons_dist: 0.011335, loss_weight: 0.063763
[22:26:43.698] iteration 4324 : loss : 0.074615 cons_dist: 0.000811, loss_weight: 0.063763
[22:26:44.619] iteration 4325 : loss : 0.038929 cons_dist: 0.001233, loss_weight: 0.063763
[22:26:45.537] iteration 4326 : loss : 0.035890 cons_dist: 0.002583, loss_weight: 0.063763
[22:26:46.454] iteration 4327 : loss : 0.037908 cons_dist: 0.000528, loss_weight: 0.063763
[22:26:47.372] iteration 4328 : loss : 0.059090 cons_dist: 0.001340, loss_weight: 0.063763
[22:26:48.290] iteration 4329 : loss : 0.034999 cons_dist: 0.002350, loss_weight: 0.063763
[22:26:49.207] iteration 4330 : loss : 0.035944 cons_dist: 0.002079, loss_weight: 0.063763
[22:26:50.125] iteration 4331 : loss : 0.036517 cons_dist: 0.004056, loss_weight: 0.063763
[22:26:51.068] iteration 4332 : loss : 0.037576 cons_dist: 0.000772, loss_weight: 0.063763
[22:26:52.648] iteration 4333 : loss : 0.045314 cons_dist: 0.001947, loss_weight: 0.063763
[22:26:53.566] iteration 4334 : loss : 0.053490 cons_dist: 0.001524, loss_weight: 0.063763
[22:26:54.485] iteration 4335 : loss : 0.073431 cons_dist: 0.001130, loss_weight: 0.063763
[22:26:55.403] iteration 4336 : loss : 0.037530 cons_dist: 0.001106, loss_weight: 0.063763
[22:26:56.322] iteration 4337 : loss : 0.052947 cons_dist: 0.011915, loss_weight: 0.063763
[22:26:57.241] iteration 4338 : loss : 0.043953 cons_dist: 0.046759, loss_weight: 0.063763
[22:26:58.159] iteration 4339 : loss : 0.042674 cons_dist: 0.003874, loss_weight: 0.063763
[22:26:59.077] iteration 4340 : loss : 0.038288 cons_dist: 0.006316, loss_weight: 0.063763
[22:26:59.995] iteration 4341 : loss : 0.046467 cons_dist: 0.001538, loss_weight: 0.063763
[22:27:00.913] iteration 4342 : loss : 0.038673 cons_dist: 0.000871, loss_weight: 0.063763
[22:27:01.832] iteration 4343 : loss : 0.073929 cons_dist: 0.001896, loss_weight: 0.063763
[22:27:02.749] iteration 4344 : loss : 0.049931 cons_dist: 0.001055, loss_weight: 0.063763
[22:27:04.279] iteration 4345 : loss : 0.036156 cons_dist: 0.001167, loss_weight: 0.063763
[22:27:05.196] iteration 4346 : loss : 0.046193 cons_dist: 0.000748, loss_weight: 0.063763
[22:27:06.113] iteration 4347 : loss : 0.035898 cons_dist: 0.007523, loss_weight: 0.063763
[22:27:07.030] iteration 4348 : loss : 0.053301 cons_dist: 0.004288, loss_weight: 0.063763
[22:27:07.948] iteration 4349 : loss : 0.040697 cons_dist: 0.001008, loss_weight: 0.063763
[22:27:08.865] iteration 4350 : loss : 0.047491 cons_dist: 0.003119, loss_weight: 0.063763
[22:27:09.944] iteration 4351 : loss : 0.051189 cons_dist: 0.001969, loss_weight: 0.068514
[22:27:10.861] iteration 4352 : loss : 0.050194 cons_dist: 0.001219, loss_weight: 0.068514
[22:27:11.777] iteration 4353 : loss : 0.066439 cons_dist: 0.001755, loss_weight: 0.068514
[22:27:12.695] iteration 4354 : loss : 0.036207 cons_dist: 0.009155, loss_weight: 0.068514
[22:27:13.611] iteration 4355 : loss : 0.043574 cons_dist: 0.001395, loss_weight: 0.068514
[22:27:14.527] iteration 4356 : loss : 0.049989 cons_dist: 0.000580, loss_weight: 0.068514
[22:27:16.115] iteration 4357 : loss : 0.038761 cons_dist: 0.000264, loss_weight: 0.068514
[22:27:17.031] iteration 4358 : loss : 0.049287 cons_dist: 0.000585, loss_weight: 0.068514
[22:27:17.948] iteration 4359 : loss : 0.049209 cons_dist: 0.000557, loss_weight: 0.068514
[22:27:18.864] iteration 4360 : loss : 0.043707 cons_dist: 0.001057, loss_weight: 0.068514
[22:27:19.780] iteration 4361 : loss : 0.040409 cons_dist: 0.005538, loss_weight: 0.068514
[22:27:20.699] iteration 4362 : loss : 0.049767 cons_dist: 0.001454, loss_weight: 0.068514
[22:27:21.615] iteration 4363 : loss : 0.034270 cons_dist: 0.001091, loss_weight: 0.068514
[22:27:22.531] iteration 4364 : loss : 0.039791 cons_dist: 0.002468, loss_weight: 0.068514
[22:27:23.447] iteration 4365 : loss : 0.039617 cons_dist: 0.003355, loss_weight: 0.068514
[22:27:24.364] iteration 4366 : loss : 0.040423 cons_dist: 0.009199, loss_weight: 0.068514
[22:27:25.281] iteration 4367 : loss : 0.046592 cons_dist: 0.001446, loss_weight: 0.068514
[22:27:26.198] iteration 4368 : loss : 0.044336 cons_dist: 0.003001, loss_weight: 0.068514
[22:27:27.792] iteration 4369 : loss : 0.056442 cons_dist: 0.016572, loss_weight: 0.068514
[22:27:28.710] iteration 4370 : loss : 0.041893 cons_dist: 0.002408, loss_weight: 0.068514
[22:27:29.628] iteration 4371 : loss : 0.055041 cons_dist: 0.001394, loss_weight: 0.068514
[22:27:30.547] iteration 4372 : loss : 0.039377 cons_dist: 0.001210, loss_weight: 0.068514
[22:27:31.466] iteration 4373 : loss : 0.047295 cons_dist: 0.005856, loss_weight: 0.068514
[22:27:32.386] iteration 4374 : loss : 0.041741 cons_dist: 0.001894, loss_weight: 0.068514
[22:27:33.304] iteration 4375 : loss : 0.058589 cons_dist: 0.004268, loss_weight: 0.068514
[22:27:34.224] iteration 4376 : loss : 0.035783 cons_dist: 0.000379, loss_weight: 0.068514
[22:27:35.141] iteration 4377 : loss : 0.038335 cons_dist: 0.000280, loss_weight: 0.068514
[22:27:36.059] iteration 4378 : loss : 0.035877 cons_dist: 0.002219, loss_weight: 0.068514
[22:27:36.975] iteration 4379 : loss : 0.035348 cons_dist: 0.000703, loss_weight: 0.068514
[22:27:37.893] iteration 4380 : loss : 0.036160 cons_dist: 0.007853, loss_weight: 0.068514
[22:27:39.468] iteration 4381 : loss : 0.038886 cons_dist: 0.003953, loss_weight: 0.068514
[22:27:40.387] iteration 4382 : loss : 0.050567 cons_dist: 0.005461, loss_weight: 0.068514
[22:27:41.308] iteration 4383 : loss : 0.046669 cons_dist: 0.003854, loss_weight: 0.068514
[22:27:42.226] iteration 4384 : loss : 0.040847 cons_dist: 0.002148, loss_weight: 0.068514
[22:27:43.143] iteration 4385 : loss : 0.040026 cons_dist: 0.000688, loss_weight: 0.068514
[22:27:44.060] iteration 4386 : loss : 0.038072 cons_dist: 0.000955, loss_weight: 0.068514
[22:27:44.978] iteration 4387 : loss : 0.057161 cons_dist: 0.020221, loss_weight: 0.068514
[22:27:45.896] iteration 4388 : loss : 0.046103 cons_dist: 0.003728, loss_weight: 0.068514
[22:27:46.815] iteration 4389 : loss : 0.043899 cons_dist: 0.001118, loss_weight: 0.068514
[22:27:47.735] iteration 4390 : loss : 0.044538 cons_dist: 0.000448, loss_weight: 0.068514
[22:27:48.654] iteration 4391 : loss : 0.043212 cons_dist: 0.010313, loss_weight: 0.068514
[22:27:49.574] iteration 4392 : loss : 0.042263 cons_dist: 0.033468, loss_weight: 0.068514
[22:27:51.192] iteration 4393 : loss : 0.037856 cons_dist: 0.004644, loss_weight: 0.068514
[22:27:52.109] iteration 4394 : loss : 0.034978 cons_dist: 0.003561, loss_weight: 0.068514
[22:27:53.026] iteration 4395 : loss : 0.085151 cons_dist: 0.002904, loss_weight: 0.068514
[22:27:53.944] iteration 4396 : loss : 0.050199 cons_dist: 0.002115, loss_weight: 0.068514
[22:27:54.859] iteration 4397 : loss : 0.045592 cons_dist: 0.000479, loss_weight: 0.068514
[22:27:55.775] iteration 4398 : loss : 0.055897 cons_dist: 0.003814, loss_weight: 0.068514
[22:27:56.692] iteration 4399 : loss : 0.052741 cons_dist: 0.001119, loss_weight: 0.068514
[22:27:57.608] iteration 4400 : loss : 0.048722 cons_dist: 0.005270, loss_weight: 0.068514
[22:27:59.849] iteration 4401 : loss : 0.043777 cons_dist: 0.003146, loss_weight: 0.068514
[22:28:00.768] iteration 4402 : loss : 0.044683 cons_dist: 0.000353, loss_weight: 0.068514
[22:28:01.685] iteration 4403 : loss : 0.066316 cons_dist: 0.001264, loss_weight: 0.068514
[22:28:02.601] iteration 4404 : loss : 0.034803 cons_dist: 0.001339, loss_weight: 0.068514
[22:28:04.236] iteration 4405 : loss : 0.046493 cons_dist: 0.001477, loss_weight: 0.068514
[22:28:05.154] iteration 4406 : loss : 0.051570 cons_dist: 0.001045, loss_weight: 0.068514
[22:28:06.073] iteration 4407 : loss : 0.149449 cons_dist: 0.000990, loss_weight: 0.068514
[22:28:06.992] iteration 4408 : loss : 0.048578 cons_dist: 0.003159, loss_weight: 0.068514
[22:28:07.909] iteration 4409 : loss : 0.048325 cons_dist: 0.003433, loss_weight: 0.068514
[22:28:08.827] iteration 4410 : loss : 0.051508 cons_dist: 0.003178, loss_weight: 0.068514
[22:28:09.745] iteration 4411 : loss : 0.037886 cons_dist: 0.000378, loss_weight: 0.068514
[22:28:10.664] iteration 4412 : loss : 0.041325 cons_dist: 0.002547, loss_weight: 0.068514
[22:28:11.583] iteration 4413 : loss : 0.057608 cons_dist: 0.002113, loss_weight: 0.068514
[22:28:12.499] iteration 4414 : loss : 0.061579 cons_dist: 0.002745, loss_weight: 0.068514
[22:28:13.416] iteration 4415 : loss : 0.036285 cons_dist: 0.001037, loss_weight: 0.068514
[22:28:14.333] iteration 4416 : loss : 0.047030 cons_dist: 0.000763, loss_weight: 0.068514
[22:28:16.015] iteration 4417 : loss : 0.038021 cons_dist: 0.000364, loss_weight: 0.068514
[22:28:16.934] iteration 4418 : loss : 0.033615 cons_dist: 0.001953, loss_weight: 0.068514
[22:28:17.853] iteration 4419 : loss : 0.045411 cons_dist: 0.009530, loss_weight: 0.068514
[22:28:18.772] iteration 4420 : loss : 0.041905 cons_dist: 0.002227, loss_weight: 0.068514
[22:28:19.689] iteration 4421 : loss : 0.043822 cons_dist: 0.004267, loss_weight: 0.068514
[22:28:20.607] iteration 4422 : loss : 0.052102 cons_dist: 0.058095, loss_weight: 0.068514
[22:28:21.523] iteration 4423 : loss : 0.041482 cons_dist: 0.009975, loss_weight: 0.068514
[22:28:22.441] iteration 4424 : loss : 0.042297 cons_dist: 0.000823, loss_weight: 0.068514
[22:28:23.357] iteration 4425 : loss : 0.056484 cons_dist: 0.003069, loss_weight: 0.068514
[22:28:24.274] iteration 4426 : loss : 0.036169 cons_dist: 0.003759, loss_weight: 0.068514
[22:28:25.191] iteration 4427 : loss : 0.041095 cons_dist: 0.000730, loss_weight: 0.068514
[22:28:26.110] iteration 4428 : loss : 0.039452 cons_dist: 0.007685, loss_weight: 0.068514
[22:28:27.631] iteration 4429 : loss : 0.033795 cons_dist: 0.008091, loss_weight: 0.068514
[22:28:28.548] iteration 4430 : loss : 0.050680 cons_dist: 0.001463, loss_weight: 0.068514
[22:28:29.467] iteration 4431 : loss : 0.033589 cons_dist: 0.011614, loss_weight: 0.068514
[22:28:30.385] iteration 4432 : loss : 0.036846 cons_dist: 0.007624, loss_weight: 0.068514
[22:28:31.302] iteration 4433 : loss : 0.043016 cons_dist: 0.000826, loss_weight: 0.068514
[22:28:32.219] iteration 4434 : loss : 0.038173 cons_dist: 0.000878, loss_weight: 0.068514
[22:28:33.136] iteration 4435 : loss : 0.034038 cons_dist: 0.002290, loss_weight: 0.068514
[22:28:34.054] iteration 4436 : loss : 0.051237 cons_dist: 0.001186, loss_weight: 0.068514
[22:28:34.971] iteration 4437 : loss : 0.048241 cons_dist: 0.003575, loss_weight: 0.068514
[22:28:35.888] iteration 4438 : loss : 0.047942 cons_dist: 0.002884, loss_weight: 0.068514
[22:28:36.805] iteration 4439 : loss : 0.033983 cons_dist: 0.007218, loss_weight: 0.068514
[22:28:37.724] iteration 4440 : loss : 0.040617 cons_dist: 0.000611, loss_weight: 0.068514
[22:28:39.390] iteration 4441 : loss : 0.038673 cons_dist: 0.000654, loss_weight: 0.068514
[22:28:40.307] iteration 4442 : loss : 0.052120 cons_dist: 0.044402, loss_weight: 0.068514
[22:28:41.223] iteration 4443 : loss : 0.037123 cons_dist: 0.000582, loss_weight: 0.068514
[22:28:42.140] iteration 4444 : loss : 0.045423 cons_dist: 0.001827, loss_weight: 0.068514
[22:28:43.056] iteration 4445 : loss : 0.077003 cons_dist: 0.000584, loss_weight: 0.068514
[22:28:43.972] iteration 4446 : loss : 0.044388 cons_dist: 0.002011, loss_weight: 0.068514
[22:28:44.889] iteration 4447 : loss : 0.038851 cons_dist: 0.001600, loss_weight: 0.068514
[22:28:45.805] iteration 4448 : loss : 0.038676 cons_dist: 0.003777, loss_weight: 0.068514
[22:28:46.722] iteration 4449 : loss : 0.062566 cons_dist: 0.007181, loss_weight: 0.068514
[22:28:47.639] iteration 4450 : loss : 0.036338 cons_dist: 0.001679, loss_weight: 0.068514
[22:28:48.736] iteration 4451 : loss : 0.056153 cons_dist: 0.010023, loss_weight: 0.068514
[22:28:49.652] iteration 4452 : loss : 0.039513 cons_dist: 0.002902, loss_weight: 0.068514
[22:28:51.275] iteration 4453 : loss : 0.036883 cons_dist: 0.026405, loss_weight: 0.068514
[22:28:52.193] iteration 4454 : loss : 0.046241 cons_dist: 0.003366, loss_weight: 0.068514
[22:28:53.110] iteration 4455 : loss : 0.044631 cons_dist: 0.003194, loss_weight: 0.068514
[22:28:54.028] iteration 4456 : loss : 0.069682 cons_dist: 0.002343, loss_weight: 0.068514
[22:28:54.947] iteration 4457 : loss : 0.030749 cons_dist: 0.006032, loss_weight: 0.068514
[22:28:55.865] iteration 4458 : loss : 0.057394 cons_dist: 0.026184, loss_weight: 0.068514
[22:28:56.782] iteration 4459 : loss : 0.048175 cons_dist: 0.002537, loss_weight: 0.068514
[22:28:57.700] iteration 4460 : loss : 0.048236 cons_dist: 0.009951, loss_weight: 0.068514
[22:28:58.618] iteration 4461 : loss : 0.037440 cons_dist: 0.005277, loss_weight: 0.068514
[22:28:59.537] iteration 4462 : loss : 0.041244 cons_dist: 0.001389, loss_weight: 0.068514
[22:29:00.454] iteration 4463 : loss : 0.036259 cons_dist: 0.004487, loss_weight: 0.068514
[22:29:01.373] iteration 4464 : loss : 0.032177 cons_dist: 0.006794, loss_weight: 0.068514
[22:29:02.918] iteration 4465 : loss : 0.034949 cons_dist: 0.001607, loss_weight: 0.068514
[22:29:03.836] iteration 4466 : loss : 0.040575 cons_dist: 0.002892, loss_weight: 0.068514
[22:29:04.755] iteration 4467 : loss : 0.034108 cons_dist: 0.001071, loss_weight: 0.068514
[22:29:05.673] iteration 4468 : loss : 0.047313 cons_dist: 0.021537, loss_weight: 0.068514
[22:29:06.590] iteration 4469 : loss : 0.052128 cons_dist: 0.005409, loss_weight: 0.068514
[22:29:07.509] iteration 4470 : loss : 0.039284 cons_dist: 0.004737, loss_weight: 0.068514
[22:29:08.427] iteration 4471 : loss : 0.044157 cons_dist: 0.006750, loss_weight: 0.068514
[22:29:09.347] iteration 4472 : loss : 0.063859 cons_dist: 0.003046, loss_weight: 0.068514
[22:29:10.264] iteration 4473 : loss : 0.040512 cons_dist: 0.004025, loss_weight: 0.068514
[22:29:11.183] iteration 4474 : loss : 0.059972 cons_dist: 0.014110, loss_weight: 0.068514
[22:29:12.101] iteration 4475 : loss : 0.044146 cons_dist: 0.001254, loss_weight: 0.068514
[22:29:13.020] iteration 4476 : loss : 0.036527 cons_dist: 0.010282, loss_weight: 0.068514
[22:29:14.570] iteration 4477 : loss : 0.042703 cons_dist: 0.002486, loss_weight: 0.068514
[22:29:15.488] iteration 4478 : loss : 0.038474 cons_dist: 0.000673, loss_weight: 0.068514
[22:29:16.403] iteration 4479 : loss : 0.057399 cons_dist: 0.001309, loss_weight: 0.068514
[22:29:17.322] iteration 4480 : loss : 0.047268 cons_dist: 0.001865, loss_weight: 0.068514
[22:29:18.238] iteration 4481 : loss : 0.048228 cons_dist: 0.002152, loss_weight: 0.068514
[22:29:19.155] iteration 4482 : loss : 0.030127 cons_dist: 0.000833, loss_weight: 0.068514
[22:29:20.071] iteration 4483 : loss : 0.048681 cons_dist: 0.001362, loss_weight: 0.068514
[22:29:20.988] iteration 4484 : loss : 0.044236 cons_dist: 0.002843, loss_weight: 0.068514
[22:29:21.906] iteration 4485 : loss : 0.041139 cons_dist: 0.004470, loss_weight: 0.068514
[22:29:22.824] iteration 4486 : loss : 0.039004 cons_dist: 0.004276, loss_weight: 0.068514
[22:29:23.741] iteration 4487 : loss : 0.043586 cons_dist: 0.006086, loss_weight: 0.068514
[22:29:24.658] iteration 4488 : loss : 0.036789 cons_dist: 0.005143, loss_weight: 0.068514
[22:29:26.337] iteration 4489 : loss : 0.041482 cons_dist: 0.006782, loss_weight: 0.068514
[22:29:27.256] iteration 4490 : loss : 0.044136 cons_dist: 0.001864, loss_weight: 0.068514
[22:29:28.174] iteration 4491 : loss : 0.035834 cons_dist: 0.002080, loss_weight: 0.068514
[22:29:29.092] iteration 4492 : loss : 0.032193 cons_dist: 0.004354, loss_weight: 0.068514
[22:29:30.010] iteration 4493 : loss : 0.040922 cons_dist: 0.004751, loss_weight: 0.068514
[22:29:30.927] iteration 4494 : loss : 0.062492 cons_dist: 0.018699, loss_weight: 0.068514
[22:29:31.846] iteration 4495 : loss : 0.046810 cons_dist: 0.001133, loss_weight: 0.068514
[22:29:32.763] iteration 4496 : loss : 0.042921 cons_dist: 0.028538, loss_weight: 0.068514
[22:29:33.679] iteration 4497 : loss : 0.033696 cons_dist: 0.003367, loss_weight: 0.068514
[22:29:34.598] iteration 4498 : loss : 0.039544 cons_dist: 0.000243, loss_weight: 0.068514
[22:29:35.516] iteration 4499 : loss : 0.036875 cons_dist: 0.001431, loss_weight: 0.068514
[22:29:36.432] iteration 4500 : loss : 0.039097 cons_dist: 0.001977, loss_weight: 0.068514
[22:29:38.124] iteration 4501 : loss : 0.040311 cons_dist: 0.008048, loss_weight: 0.073162
[22:29:39.042] iteration 4502 : loss : 0.042703 cons_dist: 0.000788, loss_weight: 0.073162
[22:29:39.961] iteration 4503 : loss : 0.050871 cons_dist: 0.007307, loss_weight: 0.073162
[22:29:40.879] iteration 4504 : loss : 0.033856 cons_dist: 0.000955, loss_weight: 0.073162
[22:29:41.799] iteration 4505 : loss : 0.064190 cons_dist: 0.001586, loss_weight: 0.073162
[22:29:42.716] iteration 4506 : loss : 0.042687 cons_dist: 0.000755, loss_weight: 0.073162
[22:29:43.634] iteration 4507 : loss : 0.039867 cons_dist: 0.003549, loss_weight: 0.073162
[22:29:44.552] iteration 4508 : loss : 0.058330 cons_dist: 0.010708, loss_weight: 0.073162
[22:29:45.470] iteration 4509 : loss : 0.053711 cons_dist: 0.005706, loss_weight: 0.073162
[22:29:46.388] iteration 4510 : loss : 0.053710 cons_dist: 0.005767, loss_weight: 0.073162
[22:29:47.306] iteration 4511 : loss : 0.048689 cons_dist: 0.002687, loss_weight: 0.073162
[22:29:48.224] iteration 4512 : loss : 0.053076 cons_dist: 0.005323, loss_weight: 0.073162
[22:29:49.722] iteration 4513 : loss : 0.050709 cons_dist: 0.002022, loss_weight: 0.073162
[22:29:50.641] iteration 4514 : loss : 0.033424 cons_dist: 0.001320, loss_weight: 0.073162
[22:29:51.560] iteration 4515 : loss : 0.037135 cons_dist: 0.003192, loss_weight: 0.073162
[22:29:52.479] iteration 4516 : loss : 0.043301 cons_dist: 0.001402, loss_weight: 0.073162
[22:29:53.397] iteration 4517 : loss : 0.043860 cons_dist: 0.002618, loss_weight: 0.073162
[22:29:54.315] iteration 4518 : loss : 0.049855 cons_dist: 0.000510, loss_weight: 0.073162
[22:29:55.234] iteration 4519 : loss : 0.044064 cons_dist: 0.004262, loss_weight: 0.073162
[22:29:56.151] iteration 4520 : loss : 0.038712 cons_dist: 0.003055, loss_weight: 0.073162
[22:29:57.070] iteration 4521 : loss : 0.051301 cons_dist: 0.002235, loss_weight: 0.073162
[22:29:57.988] iteration 4522 : loss : 0.038311 cons_dist: 0.003867, loss_weight: 0.073162
[22:29:58.906] iteration 4523 : loss : 0.032078 cons_dist: 0.011448, loss_weight: 0.073162
[22:29:59.825] iteration 4524 : loss : 0.034655 cons_dist: 0.011541, loss_weight: 0.073162
[22:30:01.353] iteration 4525 : loss : 0.035297 cons_dist: 0.002749, loss_weight: 0.073162
[22:30:02.271] iteration 4526 : loss : 0.041788 cons_dist: 0.005772, loss_weight: 0.073162
[22:30:03.189] iteration 4527 : loss : 0.047010 cons_dist: 0.000844, loss_weight: 0.073162
[22:30:04.107] iteration 4528 : loss : 0.045440 cons_dist: 0.002361, loss_weight: 0.073162
[22:30:05.024] iteration 4529 : loss : 0.066104 cons_dist: 0.005831, loss_weight: 0.073162
[22:30:05.942] iteration 4530 : loss : 0.100824 cons_dist: 0.004334, loss_weight: 0.073162
[22:30:06.860] iteration 4531 : loss : 0.056343 cons_dist: 0.001773, loss_weight: 0.073162
[22:30:07.778] iteration 4532 : loss : 0.036437 cons_dist: 0.004015, loss_weight: 0.073162
[22:30:08.697] iteration 4533 : loss : 0.047678 cons_dist: 0.006252, loss_weight: 0.073162
[22:30:09.615] iteration 4534 : loss : 0.031582 cons_dist: 0.000707, loss_weight: 0.073162
[22:30:10.532] iteration 4535 : loss : 0.052562 cons_dist: 0.003918, loss_weight: 0.073162
[22:30:11.452] iteration 4536 : loss : 0.043583 cons_dist: 0.029111, loss_weight: 0.073162
[22:30:13.050] iteration 4537 : loss : 0.079737 cons_dist: 0.001941, loss_weight: 0.073162
[22:30:13.967] iteration 4538 : loss : 0.040092 cons_dist: 0.002745, loss_weight: 0.073162
[22:30:14.886] iteration 4539 : loss : 0.047434 cons_dist: 0.000786, loss_weight: 0.073162
[22:30:15.804] iteration 4540 : loss : 0.041997 cons_dist: 0.014226, loss_weight: 0.073162
[22:30:16.723] iteration 4541 : loss : 0.037150 cons_dist: 0.003187, loss_weight: 0.073162
[22:30:17.642] iteration 4542 : loss : 0.077736 cons_dist: 0.000709, loss_weight: 0.073162
[22:30:18.561] iteration 4543 : loss : 0.033170 cons_dist: 0.007374, loss_weight: 0.073162
[22:30:19.480] iteration 4544 : loss : 0.043639 cons_dist: 0.000802, loss_weight: 0.073162
[22:30:20.397] iteration 4545 : loss : 0.035582 cons_dist: 0.023053, loss_weight: 0.073162
[22:30:21.315] iteration 4546 : loss : 0.054633 cons_dist: 0.003168, loss_weight: 0.073162
[22:30:22.233] iteration 4547 : loss : 0.046648 cons_dist: 0.001560, loss_weight: 0.073162
[22:30:23.151] iteration 4548 : loss : 0.051492 cons_dist: 0.003919, loss_weight: 0.073162
[22:30:24.832] iteration 4549 : loss : 0.035210 cons_dist: 0.000975, loss_weight: 0.073162
[22:30:25.750] iteration 4550 : loss : 0.052464 cons_dist: 0.003008, loss_weight: 0.073162
[22:30:26.827] iteration 4551 : loss : 0.051017 cons_dist: 0.001060, loss_weight: 0.073162
[22:30:27.745] iteration 4552 : loss : 0.032638 cons_dist: 0.000988, loss_weight: 0.073162
[22:30:28.663] iteration 4553 : loss : 0.036064 cons_dist: 0.004124, loss_weight: 0.073162
[22:30:29.580] iteration 4554 : loss : 0.098698 cons_dist: 0.008918, loss_weight: 0.073162
[22:30:30.498] iteration 4555 : loss : 0.044213 cons_dist: 0.005447, loss_weight: 0.073162
[22:30:31.416] iteration 4556 : loss : 0.044178 cons_dist: 0.004515, loss_weight: 0.073162
[22:30:32.333] iteration 4557 : loss : 0.049855 cons_dist: 0.000895, loss_weight: 0.073162
[22:30:33.251] iteration 4558 : loss : 0.046005 cons_dist: 0.005163, loss_weight: 0.073162
[22:30:34.169] iteration 4559 : loss : 0.054041 cons_dist: 0.008693, loss_weight: 0.073162
[22:30:35.087] iteration 4560 : loss : 0.038195 cons_dist: 0.002667, loss_weight: 0.073162
[22:30:36.692] iteration 4561 : loss : 0.041766 cons_dist: 0.000785, loss_weight: 0.073162
[22:30:37.611] iteration 4562 : loss : 0.033782 cons_dist: 0.012102, loss_weight: 0.073162
[22:30:38.529] iteration 4563 : loss : 0.034593 cons_dist: 0.001979, loss_weight: 0.073162
[22:30:39.447] iteration 4564 : loss : 0.044586 cons_dist: 0.001136, loss_weight: 0.073162
[22:30:40.365] iteration 4565 : loss : 0.045693 cons_dist: 0.006564, loss_weight: 0.073162
[22:30:41.283] iteration 4566 : loss : 0.054810 cons_dist: 0.008813, loss_weight: 0.073162
[22:30:42.199] iteration 4567 : loss : 0.051847 cons_dist: 0.015773, loss_weight: 0.073162
[22:30:43.118] iteration 4568 : loss : 0.043129 cons_dist: 0.000953, loss_weight: 0.073162
[22:30:44.035] iteration 4569 : loss : 0.033349 cons_dist: 0.004136, loss_weight: 0.073162
[22:30:44.951] iteration 4570 : loss : 0.071591 cons_dist: 0.039567, loss_weight: 0.073162
[22:30:45.868] iteration 4571 : loss : 0.049402 cons_dist: 0.033022, loss_weight: 0.073162
[22:30:46.786] iteration 4572 : loss : 0.043074 cons_dist: 0.004455, loss_weight: 0.073162
[22:30:48.297] iteration 4573 : loss : 0.036975 cons_dist: 0.001462, loss_weight: 0.073162
[22:30:49.213] iteration 4574 : loss : 0.050756 cons_dist: 0.001138, loss_weight: 0.073162
[22:30:50.130] iteration 4575 : loss : 0.069411 cons_dist: 0.000998, loss_weight: 0.073162
[22:30:51.046] iteration 4576 : loss : 0.045698 cons_dist: 0.002485, loss_weight: 0.073162
[22:30:51.962] iteration 4577 : loss : 0.046007 cons_dist: 0.001125, loss_weight: 0.073162
[22:30:52.879] iteration 4578 : loss : 0.047495 cons_dist: 0.000467, loss_weight: 0.073162
[22:30:53.797] iteration 4579 : loss : 0.039355 cons_dist: 0.003864, loss_weight: 0.073162
[22:30:54.715] iteration 4580 : loss : 0.036990 cons_dist: 0.002419, loss_weight: 0.073162
[22:30:55.631] iteration 4581 : loss : 0.040035 cons_dist: 0.005546, loss_weight: 0.073162
[22:30:56.547] iteration 4582 : loss : 0.043257 cons_dist: 0.000587, loss_weight: 0.073162
[22:30:57.463] iteration 4583 : loss : 0.042360 cons_dist: 0.003721, loss_weight: 0.073162
[22:30:58.379] iteration 4584 : loss : 0.049842 cons_dist: 0.003915, loss_weight: 0.073162
[22:30:59.906] iteration 4585 : loss : 0.038364 cons_dist: 0.005586, loss_weight: 0.073162
[22:31:00.827] iteration 4586 : loss : 0.061376 cons_dist: 0.000739, loss_weight: 0.073162
[22:31:01.746] iteration 4587 : loss : 0.045467 cons_dist: 0.041805, loss_weight: 0.073162
[22:31:02.663] iteration 4588 : loss : 0.048776 cons_dist: 0.002018, loss_weight: 0.073162
[22:31:03.582] iteration 4589 : loss : 0.046865 cons_dist: 0.004120, loss_weight: 0.073162
[22:31:04.500] iteration 4590 : loss : 0.038054 cons_dist: 0.000905, loss_weight: 0.073162
[22:31:05.418] iteration 4591 : loss : 0.039445 cons_dist: 0.002673, loss_weight: 0.073162
[22:31:06.336] iteration 4592 : loss : 0.184528 cons_dist: 0.005240, loss_weight: 0.073162
[22:31:07.255] iteration 4593 : loss : 0.037350 cons_dist: 0.000467, loss_weight: 0.073162
[22:31:08.173] iteration 4594 : loss : 0.032746 cons_dist: 0.000808, loss_weight: 0.073162
[22:31:09.094] iteration 4595 : loss : 0.097042 cons_dist: 0.001857, loss_weight: 0.073162
[22:31:10.012] iteration 4596 : loss : 0.043747 cons_dist: 0.008314, loss_weight: 0.073162
[22:31:11.578] iteration 4597 : loss : 0.052144 cons_dist: 0.000706, loss_weight: 0.073162
[22:31:12.496] iteration 4598 : loss : 0.039807 cons_dist: 0.002356, loss_weight: 0.073162
[22:31:13.412] iteration 4599 : loss : 0.050928 cons_dist: 0.002094, loss_weight: 0.073162
[22:31:14.331] iteration 4600 : loss : 0.048478 cons_dist: 0.001433, loss_weight: 0.073162
[22:31:16.552] iteration 4601 : loss : 0.044260 cons_dist: 0.001915, loss_weight: 0.073162
[22:31:17.469] iteration 4602 : loss : 0.039618 cons_dist: 0.002597, loss_weight: 0.073162
[22:31:18.386] iteration 4603 : loss : 0.052723 cons_dist: 0.016828, loss_weight: 0.073162
[22:31:19.304] iteration 4604 : loss : 0.039252 cons_dist: 0.008351, loss_weight: 0.073162
[22:31:20.221] iteration 4605 : loss : 0.043662 cons_dist: 0.001020, loss_weight: 0.073162
[22:31:21.140] iteration 4606 : loss : 0.042612 cons_dist: 0.002611, loss_weight: 0.073162
[22:31:22.057] iteration 4607 : loss : 0.044781 cons_dist: 0.003580, loss_weight: 0.073162
[22:31:22.977] iteration 4608 : loss : 0.039873 cons_dist: 0.001377, loss_weight: 0.073162
[22:31:24.557] iteration 4609 : loss : 0.056141 cons_dist: 0.001210, loss_weight: 0.073162
[22:31:25.475] iteration 4610 : loss : 0.041631 cons_dist: 0.007052, loss_weight: 0.073162
[22:31:26.397] iteration 4611 : loss : 0.034486 cons_dist: 0.000609, loss_weight: 0.073162
[22:31:27.314] iteration 4612 : loss : 0.049492 cons_dist: 0.001214, loss_weight: 0.073162
[22:31:28.232] iteration 4613 : loss : 0.048181 cons_dist: 0.002609, loss_weight: 0.073162
[22:31:29.149] iteration 4614 : loss : 0.058848 cons_dist: 0.008578, loss_weight: 0.073162
[22:31:30.068] iteration 4615 : loss : 0.038425 cons_dist: 0.000453, loss_weight: 0.073162
[22:31:30.988] iteration 4616 : loss : 0.046770 cons_dist: 0.002303, loss_weight: 0.073162
[22:31:31.906] iteration 4617 : loss : 0.044916 cons_dist: 0.008399, loss_weight: 0.073162
[22:31:32.823] iteration 4618 : loss : 0.035635 cons_dist: 0.000607, loss_weight: 0.073162
[22:31:33.739] iteration 4619 : loss : 0.153869 cons_dist: 0.004027, loss_weight: 0.073162
[22:31:34.658] iteration 4620 : loss : 0.039850 cons_dist: 0.002730, loss_weight: 0.073162
[22:31:36.156] iteration 4621 : loss : 0.040713 cons_dist: 0.001221, loss_weight: 0.073162
[22:31:37.074] iteration 4622 : loss : 0.043779 cons_dist: 0.024119, loss_weight: 0.073162
[22:31:37.993] iteration 4623 : loss : 0.035868 cons_dist: 0.002509, loss_weight: 0.073162
[22:31:38.911] iteration 4624 : loss : 0.057424 cons_dist: 0.001367, loss_weight: 0.073162
[22:31:39.829] iteration 4625 : loss : 0.037197 cons_dist: 0.001074, loss_weight: 0.073162
[22:31:40.747] iteration 4626 : loss : 0.055085 cons_dist: 0.003540, loss_weight: 0.073162
[22:31:41.664] iteration 4627 : loss : 0.081292 cons_dist: 0.001270, loss_weight: 0.073162
[22:31:42.581] iteration 4628 : loss : 0.046057 cons_dist: 0.000920, loss_weight: 0.073162
[22:31:43.498] iteration 4629 : loss : 0.066899 cons_dist: 0.024334, loss_weight: 0.073162
[22:31:44.417] iteration 4630 : loss : 0.039174 cons_dist: 0.006218, loss_weight: 0.073162
[22:31:45.335] iteration 4631 : loss : 0.038398 cons_dist: 0.000596, loss_weight: 0.073162
[22:31:46.252] iteration 4632 : loss : 0.031653 cons_dist: 0.001959, loss_weight: 0.073162
[22:31:47.823] iteration 4633 : loss : 0.039343 cons_dist: 0.002514, loss_weight: 0.073162
[22:31:48.738] iteration 4634 : loss : 0.045968 cons_dist: 0.001791, loss_weight: 0.073162
[22:31:49.654] iteration 4635 : loss : 0.036254 cons_dist: 0.001692, loss_weight: 0.073162
[22:31:50.570] iteration 4636 : loss : 0.040741 cons_dist: 0.001702, loss_weight: 0.073162
[22:31:51.486] iteration 4637 : loss : 0.046158 cons_dist: 0.009233, loss_weight: 0.073162
[22:31:52.402] iteration 4638 : loss : 0.042777 cons_dist: 0.000994, loss_weight: 0.073162
[22:31:53.320] iteration 4639 : loss : 0.043637 cons_dist: 0.000943, loss_weight: 0.073162
[22:31:54.237] iteration 4640 : loss : 0.160414 cons_dist: 0.003581, loss_weight: 0.073162
[22:31:55.154] iteration 4641 : loss : 0.048581 cons_dist: 0.005583, loss_weight: 0.073162
[22:31:56.070] iteration 4642 : loss : 0.039066 cons_dist: 0.007721, loss_weight: 0.073162
[22:31:56.987] iteration 4643 : loss : 0.046242 cons_dist: 0.004104, loss_weight: 0.073162
[22:31:57.903] iteration 4644 : loss : 0.042774 cons_dist: 0.001098, loss_weight: 0.073162
[22:31:59.472] iteration 4645 : loss : 0.041708 cons_dist: 0.001083, loss_weight: 0.073162
[22:32:00.388] iteration 4646 : loss : 0.048663 cons_dist: 0.001475, loss_weight: 0.073162
[22:32:01.306] iteration 4647 : loss : 0.035859 cons_dist: 0.001204, loss_weight: 0.073162
[22:32:02.222] iteration 4648 : loss : 0.037939 cons_dist: 0.024683, loss_weight: 0.073162
[22:32:03.138] iteration 4649 : loss : 0.063369 cons_dist: 0.001353, loss_weight: 0.073162
[22:32:04.055] iteration 4650 : loss : 0.041527 cons_dist: 0.019043, loss_weight: 0.073162
[22:32:05.138] iteration 4651 : loss : 0.033297 cons_dist: 0.004097, loss_weight: 0.077637
[22:32:06.055] iteration 4652 : loss : 0.040820 cons_dist: 0.000630, loss_weight: 0.077637
[22:32:07.003] iteration 4653 : loss : 0.035811 cons_dist: 0.001998, loss_weight: 0.077637
[22:32:07.921] iteration 4654 : loss : 0.028035 cons_dist: 0.003477, loss_weight: 0.077637
[22:32:08.839] iteration 4655 : loss : 0.044510 cons_dist: 0.000464, loss_weight: 0.077637
[22:32:09.757] iteration 4656 : loss : 0.044138 cons_dist: 0.005483, loss_weight: 0.077637
[22:32:11.363] iteration 4657 : loss : 0.047699 cons_dist: 0.002093, loss_weight: 0.077637
[22:32:12.281] iteration 4658 : loss : 0.038232 cons_dist: 0.004291, loss_weight: 0.077637
[22:32:13.199] iteration 4659 : loss : 0.046381 cons_dist: 0.008961, loss_weight: 0.077637
[22:32:14.118] iteration 4660 : loss : 0.032329 cons_dist: 0.000569, loss_weight: 0.077637
[22:32:15.037] iteration 4661 : loss : 0.034409 cons_dist: 0.001171, loss_weight: 0.077637
[22:32:15.954] iteration 4662 : loss : 0.052635 cons_dist: 0.001419, loss_weight: 0.077637
[22:32:16.873] iteration 4663 : loss : 0.034166 cons_dist: 0.000717, loss_weight: 0.077637
[22:32:17.791] iteration 4664 : loss : 0.041480 cons_dist: 0.003839, loss_weight: 0.077637
[22:32:18.710] iteration 4665 : loss : 0.034728 cons_dist: 0.000739, loss_weight: 0.077637
[22:32:19.629] iteration 4666 : loss : 0.056239 cons_dist: 0.002724, loss_weight: 0.077637
[22:32:20.547] iteration 4667 : loss : 0.057338 cons_dist: 0.000590, loss_weight: 0.077637
[22:32:21.465] iteration 4668 : loss : 0.044803 cons_dist: 0.005063, loss_weight: 0.077637
[22:32:22.996] iteration 4669 : loss : 0.047058 cons_dist: 0.051548, loss_weight: 0.077637
[22:32:23.914] iteration 4670 : loss : 0.052982 cons_dist: 0.000559, loss_weight: 0.077637
[22:32:24.832] iteration 4671 : loss : 0.052769 cons_dist: 0.005010, loss_weight: 0.077637
[22:32:25.750] iteration 4672 : loss : 0.042316 cons_dist: 0.001435, loss_weight: 0.077637
[22:32:26.667] iteration 4673 : loss : 0.039695 cons_dist: 0.005132, loss_weight: 0.077637
[22:32:27.584] iteration 4674 : loss : 0.045774 cons_dist: 0.006161, loss_weight: 0.077637
[22:32:28.501] iteration 4675 : loss : 0.044422 cons_dist: 0.001259, loss_weight: 0.077637
[22:32:29.419] iteration 4676 : loss : 0.037901 cons_dist: 0.000687, loss_weight: 0.077637
[22:32:30.335] iteration 4677 : loss : 0.045441 cons_dist: 0.004185, loss_weight: 0.077637
[22:32:31.252] iteration 4678 : loss : 0.041878 cons_dist: 0.003572, loss_weight: 0.077637
[22:32:32.170] iteration 4679 : loss : 0.040798 cons_dist: 0.003372, loss_weight: 0.077637
[22:32:33.087] iteration 4680 : loss : 0.033762 cons_dist: 0.001524, loss_weight: 0.077637
[22:32:34.675] iteration 4681 : loss : 0.034491 cons_dist: 0.003622, loss_weight: 0.077637
[22:32:35.592] iteration 4682 : loss : 0.041550 cons_dist: 0.006169, loss_weight: 0.077637
[22:32:36.508] iteration 4683 : loss : 0.031373 cons_dist: 0.002191, loss_weight: 0.077637
[22:32:37.424] iteration 4684 : loss : 0.085919 cons_dist: 0.001563, loss_weight: 0.077637
[22:32:38.341] iteration 4685 : loss : 0.039380 cons_dist: 0.001879, loss_weight: 0.077637
[22:32:39.256] iteration 4686 : loss : 0.044744 cons_dist: 0.001617, loss_weight: 0.077637
[22:32:40.173] iteration 4687 : loss : 0.041740 cons_dist: 0.000490, loss_weight: 0.077637
[22:32:41.090] iteration 4688 : loss : 0.062219 cons_dist: 0.001801, loss_weight: 0.077637
[22:32:42.008] iteration 4689 : loss : 0.037358 cons_dist: 0.001821, loss_weight: 0.077637
[22:32:42.926] iteration 4690 : loss : 0.044470 cons_dist: 0.002207, loss_weight: 0.077637
[22:32:43.842] iteration 4691 : loss : 0.056039 cons_dist: 0.000794, loss_weight: 0.077637
[22:32:44.760] iteration 4692 : loss : 0.042661 cons_dist: 0.003732, loss_weight: 0.077637
[22:32:46.309] iteration 4693 : loss : 0.039542 cons_dist: 0.041799, loss_weight: 0.077637
[22:32:47.224] iteration 4694 : loss : 0.043549 cons_dist: 0.002284, loss_weight: 0.077637
[22:32:48.140] iteration 4695 : loss : 0.046956 cons_dist: 0.001660, loss_weight: 0.077637
[22:32:49.057] iteration 4696 : loss : 0.050488 cons_dist: 0.000581, loss_weight: 0.077637
[22:32:49.974] iteration 4697 : loss : 0.066416 cons_dist: 0.045443, loss_weight: 0.077637
[22:32:50.890] iteration 4698 : loss : 0.031539 cons_dist: 0.031125, loss_weight: 0.077637
[22:32:51.808] iteration 4699 : loss : 0.035353 cons_dist: 0.005696, loss_weight: 0.077637
[22:32:52.726] iteration 4700 : loss : 0.059308 cons_dist: 0.031117, loss_weight: 0.077637
[22:32:53.804] iteration 4701 : loss : 0.068279 cons_dist: 0.002101, loss_weight: 0.077637
[22:32:54.721] iteration 4702 : loss : 0.052259 cons_dist: 0.005520, loss_weight: 0.077637
[22:32:55.638] iteration 4703 : loss : 0.036008 cons_dist: 0.002247, loss_weight: 0.077637
[22:32:56.556] iteration 4704 : loss : 0.037190 cons_dist: 0.005384, loss_weight: 0.077637
[22:32:58.191] iteration 4705 : loss : 0.037385 cons_dist: 0.001509, loss_weight: 0.077637
[22:32:59.107] iteration 4706 : loss : 0.056148 cons_dist: 0.006755, loss_weight: 0.077637
[22:33:00.024] iteration 4707 : loss : 0.047837 cons_dist: 0.004422, loss_weight: 0.077637
[22:33:00.940] iteration 4708 : loss : 0.034288 cons_dist: 0.002044, loss_weight: 0.077637
[22:33:01.856] iteration 4709 : loss : 0.056193 cons_dist: 0.001825, loss_weight: 0.077637
[22:33:02.773] iteration 4710 : loss : 0.035902 cons_dist: 0.009455, loss_weight: 0.077637
[22:33:03.690] iteration 4711 : loss : 0.035089 cons_dist: 0.000788, loss_weight: 0.077637
[22:33:04.607] iteration 4712 : loss : 0.040225 cons_dist: 0.000603, loss_weight: 0.077637
[22:33:05.523] iteration 4713 : loss : 0.031267 cons_dist: 0.003207, loss_weight: 0.077637
[22:33:06.440] iteration 4714 : loss : 0.044048 cons_dist: 0.005602, loss_weight: 0.077637
[22:33:07.357] iteration 4715 : loss : 0.037133 cons_dist: 0.005932, loss_weight: 0.077637
[22:33:08.274] iteration 4716 : loss : 0.070132 cons_dist: 0.004357, loss_weight: 0.077637
[22:33:09.893] iteration 4717 : loss : 0.052281 cons_dist: 0.002267, loss_weight: 0.077637
[22:33:10.811] iteration 4718 : loss : 0.045548 cons_dist: 0.002072, loss_weight: 0.077637
[22:33:11.729] iteration 4719 : loss : 0.037385 cons_dist: 0.000663, loss_weight: 0.077637
[22:33:12.648] iteration 4720 : loss : 0.050484 cons_dist: 0.009193, loss_weight: 0.077637
[22:33:13.565] iteration 4721 : loss : 0.036548 cons_dist: 0.003889, loss_weight: 0.077637
[22:33:14.484] iteration 4722 : loss : 0.039987 cons_dist: 0.002339, loss_weight: 0.077637
[22:33:15.409] iteration 4723 : loss : 0.039453 cons_dist: 0.001166, loss_weight: 0.077637
[22:33:16.323] iteration 4724 : loss : 0.042952 cons_dist: 0.001418, loss_weight: 0.077637
[22:33:17.240] iteration 4725 : loss : 0.037183 cons_dist: 0.001265, loss_weight: 0.077637
[22:33:18.155] iteration 4726 : loss : 0.043910 cons_dist: 0.001995, loss_weight: 0.077637
[22:33:19.072] iteration 4727 : loss : 0.047144 cons_dist: 0.005119, loss_weight: 0.077637
[22:33:19.989] iteration 4728 : loss : 0.035908 cons_dist: 0.006144, loss_weight: 0.077637
[22:33:21.645] iteration 4729 : loss : 0.038842 cons_dist: 0.009460, loss_weight: 0.077637
[22:33:22.564] iteration 4730 : loss : 0.034867 cons_dist: 0.002849, loss_weight: 0.077637
[22:33:23.483] iteration 4731 : loss : 0.039189 cons_dist: 0.000721, loss_weight: 0.077637
[22:33:24.402] iteration 4732 : loss : 0.031103 cons_dist: 0.001376, loss_weight: 0.077637
[22:33:25.323] iteration 4733 : loss : 0.038131 cons_dist: 0.009308, loss_weight: 0.077637
[22:33:26.242] iteration 4734 : loss : 0.073449 cons_dist: 0.002852, loss_weight: 0.077637
[22:33:27.158] iteration 4735 : loss : 0.037642 cons_dist: 0.004738, loss_weight: 0.077637
[22:33:28.075] iteration 4736 : loss : 0.058817 cons_dist: 0.003173, loss_weight: 0.077637
[22:33:28.993] iteration 4737 : loss : 0.035103 cons_dist: 0.003737, loss_weight: 0.077637
[22:33:29.910] iteration 4738 : loss : 0.034528 cons_dist: 0.001591, loss_weight: 0.077637
[22:33:30.827] iteration 4739 : loss : 0.035336 cons_dist: 0.001630, loss_weight: 0.077637
[22:33:31.745] iteration 4740 : loss : 0.053194 cons_dist: 0.002356, loss_weight: 0.077637
[22:33:33.376] iteration 4741 : loss : 0.038967 cons_dist: 0.004433, loss_weight: 0.077637
[22:33:34.294] iteration 4742 : loss : 0.036667 cons_dist: 0.001467, loss_weight: 0.077637
[22:33:35.211] iteration 4743 : loss : 0.066617 cons_dist: 0.003749, loss_weight: 0.077637
[22:33:36.129] iteration 4744 : loss : 0.038430 cons_dist: 0.000963, loss_weight: 0.077637
[22:33:37.049] iteration 4745 : loss : 0.053202 cons_dist: 0.002379, loss_weight: 0.077637
[22:33:37.965] iteration 4746 : loss : 0.044748 cons_dist: 0.008364, loss_weight: 0.077637
[22:33:38.882] iteration 4747 : loss : 0.058161 cons_dist: 0.000915, loss_weight: 0.077637
[22:33:39.856] iteration 4748 : loss : 0.037785 cons_dist: 0.002416, loss_weight: 0.077637
[22:33:40.773] iteration 4749 : loss : 0.044185 cons_dist: 0.003707, loss_weight: 0.077637
[22:33:41.691] iteration 4750 : loss : 0.031077 cons_dist: 0.000643, loss_weight: 0.077637
[22:33:42.774] iteration 4751 : loss : 0.045521 cons_dist: 0.002460, loss_weight: 0.077637
[22:33:43.692] iteration 4752 : loss : 0.055719 cons_dist: 0.008416, loss_weight: 0.077637
[22:33:45.226] iteration 4753 : loss : 0.047764 cons_dist: 0.000865, loss_weight: 0.077637
[22:33:46.144] iteration 4754 : loss : 0.039850 cons_dist: 0.003649, loss_weight: 0.077637
[22:33:47.066] iteration 4755 : loss : 0.049853 cons_dist: 0.004008, loss_weight: 0.077637
[22:33:47.984] iteration 4756 : loss : 0.043342 cons_dist: 0.005290, loss_weight: 0.077637
[22:33:48.902] iteration 4757 : loss : 0.040096 cons_dist: 0.003342, loss_weight: 0.077637
[22:33:49.820] iteration 4758 : loss : 0.045439 cons_dist: 0.001536, loss_weight: 0.077637
[22:33:50.739] iteration 4759 : loss : 0.042549 cons_dist: 0.010706, loss_weight: 0.077637
[22:33:51.657] iteration 4760 : loss : 0.035217 cons_dist: 0.001995, loss_weight: 0.077637
[22:33:52.575] iteration 4761 : loss : 0.033163 cons_dist: 0.000694, loss_weight: 0.077637
[22:33:53.493] iteration 4762 : loss : 0.060006 cons_dist: 0.001032, loss_weight: 0.077637
[22:33:54.411] iteration 4763 : loss : 0.042445 cons_dist: 0.011187, loss_weight: 0.077637
[22:33:55.330] iteration 4764 : loss : 0.041901 cons_dist: 0.009581, loss_weight: 0.077637
[22:33:56.921] iteration 4765 : loss : 0.048392 cons_dist: 0.005346, loss_weight: 0.077637
[22:33:57.838] iteration 4766 : loss : 0.042674 cons_dist: 0.001717, loss_weight: 0.077637
[22:33:58.755] iteration 4767 : loss : 0.047652 cons_dist: 0.001808, loss_weight: 0.077637
[22:33:59.671] iteration 4768 : loss : 0.037765 cons_dist: 0.002628, loss_weight: 0.077637
[22:34:00.587] iteration 4769 : loss : 0.050691 cons_dist: 0.000863, loss_weight: 0.077637
[22:34:01.507] iteration 4770 : loss : 0.056702 cons_dist: 0.001424, loss_weight: 0.077637
[22:34:02.424] iteration 4771 : loss : 0.033412 cons_dist: 0.004446, loss_weight: 0.077637
[22:34:03.339] iteration 4772 : loss : 0.038497 cons_dist: 0.001743, loss_weight: 0.077637
[22:34:04.255] iteration 4773 : loss : 0.040454 cons_dist: 0.007671, loss_weight: 0.077637
[22:34:05.172] iteration 4774 : loss : 0.032208 cons_dist: 0.001354, loss_weight: 0.077637
[22:34:06.090] iteration 4775 : loss : 0.047191 cons_dist: 0.001367, loss_weight: 0.077637
[22:34:07.005] iteration 4776 : loss : 0.036837 cons_dist: 0.009175, loss_weight: 0.077637
[22:34:08.502] iteration 4777 : loss : 0.047304 cons_dist: 0.002570, loss_weight: 0.077637
[22:34:09.470] iteration 4778 : loss : 0.047907 cons_dist: 0.000918, loss_weight: 0.077637
[22:34:10.389] iteration 4779 : loss : 0.039765 cons_dist: 0.000736, loss_weight: 0.077637
[22:34:11.307] iteration 4780 : loss : 0.056926 cons_dist: 0.003863, loss_weight: 0.077637
[22:34:12.225] iteration 4781 : loss : 0.037156 cons_dist: 0.002658, loss_weight: 0.077637
[22:34:13.143] iteration 4782 : loss : 0.072800 cons_dist: 0.003704, loss_weight: 0.077637
[22:34:14.061] iteration 4783 : loss : 0.046943 cons_dist: 0.001749, loss_weight: 0.077637
[22:34:15.002] iteration 4784 : loss : 0.040974 cons_dist: 0.045453, loss_weight: 0.077637
[22:34:15.920] iteration 4785 : loss : 0.041344 cons_dist: 0.000420, loss_weight: 0.077637
[22:34:16.835] iteration 4786 : loss : 0.034314 cons_dist: 0.001412, loss_weight: 0.077637
[22:34:17.752] iteration 4787 : loss : 0.040323 cons_dist: 0.005910, loss_weight: 0.077637
[22:34:18.669] iteration 4788 : loss : 0.046451 cons_dist: 0.012146, loss_weight: 0.077637
[22:34:20.227] iteration 4789 : loss : 0.064870 cons_dist: 0.018574, loss_weight: 0.077637
[22:34:21.146] iteration 4790 : loss : 0.039448 cons_dist: 0.002563, loss_weight: 0.077637
[22:34:22.064] iteration 4791 : loss : 0.038756 cons_dist: 0.002678, loss_weight: 0.077637
[22:34:22.983] iteration 4792 : loss : 0.027503 cons_dist: 0.001551, loss_weight: 0.077637
[22:34:23.900] iteration 4793 : loss : 0.165829 cons_dist: 0.002887, loss_weight: 0.077637
[22:34:24.818] iteration 4794 : loss : 0.037266 cons_dist: 0.005191, loss_weight: 0.077637
[22:34:25.737] iteration 4795 : loss : 0.034593 cons_dist: 0.000769, loss_weight: 0.077637
[22:34:26.654] iteration 4796 : loss : 0.036438 cons_dist: 0.003337, loss_weight: 0.077637
[22:34:27.573] iteration 4797 : loss : 0.043346 cons_dist: 0.001072, loss_weight: 0.077637
[22:34:28.490] iteration 4798 : loss : 0.039965 cons_dist: 0.002965, loss_weight: 0.077637
[22:34:29.409] iteration 4799 : loss : 0.043917 cons_dist: 0.001183, loss_weight: 0.077637
[22:34:30.327] iteration 4800 : loss : 0.189346 cons_dist: 0.002550, loss_weight: 0.077637
[22:34:33.193] iteration 4801 : loss : 0.038827 cons_dist: 0.002196, loss_weight: 0.081873
[22:34:34.111] iteration 4802 : loss : 0.047293 cons_dist: 0.000769, loss_weight: 0.081873
[22:34:35.029] iteration 4803 : loss : 0.040261 cons_dist: 0.004576, loss_weight: 0.081873
[22:34:35.946] iteration 4804 : loss : 0.047431 cons_dist: 0.003410, loss_weight: 0.081873
[22:34:36.864] iteration 4805 : loss : 0.038061 cons_dist: 0.007272, loss_weight: 0.081873
[22:34:37.781] iteration 4806 : loss : 0.041379 cons_dist: 0.001832, loss_weight: 0.081873
[22:34:38.700] iteration 4807 : loss : 0.086759 cons_dist: 0.004231, loss_weight: 0.081873
[22:34:39.618] iteration 4808 : loss : 0.040562 cons_dist: 0.003185, loss_weight: 0.081873
[22:34:40.536] iteration 4809 : loss : 0.041524 cons_dist: 0.001051, loss_weight: 0.081873
[22:34:41.454] iteration 4810 : loss : 0.044094 cons_dist: 0.038503, loss_weight: 0.081873
[22:34:42.375] iteration 4811 : loss : 0.038727 cons_dist: 0.001854, loss_weight: 0.081873
[22:34:43.292] iteration 4812 : loss : 0.058269 cons_dist: 0.013522, loss_weight: 0.081873
[22:34:44.884] iteration 4813 : loss : 0.071703 cons_dist: 0.004392, loss_weight: 0.081873
[22:34:45.800] iteration 4814 : loss : 0.055239 cons_dist: 0.004642, loss_weight: 0.081873
[22:34:46.719] iteration 4815 : loss : 0.035819 cons_dist: 0.015838, loss_weight: 0.081873
[22:34:47.635] iteration 4816 : loss : 0.051908 cons_dist: 0.000906, loss_weight: 0.081873
[22:34:48.552] iteration 4817 : loss : 0.038454 cons_dist: 0.024930, loss_weight: 0.081873
[22:34:49.469] iteration 4818 : loss : 0.058261 cons_dist: 0.015962, loss_weight: 0.081873
[22:34:50.388] iteration 4819 : loss : 0.051807 cons_dist: 0.001477, loss_weight: 0.081873
[22:34:51.304] iteration 4820 : loss : 0.033505 cons_dist: 0.000874, loss_weight: 0.081873
[22:34:52.221] iteration 4821 : loss : 0.038753 cons_dist: 0.007914, loss_weight: 0.081873
[22:34:53.138] iteration 4822 : loss : 0.034385 cons_dist: 0.001084, loss_weight: 0.081873
[22:34:54.055] iteration 4823 : loss : 0.046171 cons_dist: 0.002857, loss_weight: 0.081873
[22:34:54.972] iteration 4824 : loss : 0.038288 cons_dist: 0.001095, loss_weight: 0.081873
[22:34:56.578] iteration 4825 : loss : 0.038333 cons_dist: 0.000422, loss_weight: 0.081873
[22:34:57.495] iteration 4826 : loss : 0.041699 cons_dist: 0.000650, loss_weight: 0.081873
[22:34:58.414] iteration 4827 : loss : 0.040933 cons_dist: 0.001182, loss_weight: 0.081873
[22:34:59.333] iteration 4828 : loss : 0.037325 cons_dist: 0.001170, loss_weight: 0.081873
[22:35:00.251] iteration 4829 : loss : 0.044848 cons_dist: 0.008759, loss_weight: 0.081873
[22:35:01.169] iteration 4830 : loss : 0.045158 cons_dist: 0.000845, loss_weight: 0.081873
[22:35:02.088] iteration 4831 : loss : 0.071761 cons_dist: 0.002302, loss_weight: 0.081873
[22:35:03.006] iteration 4832 : loss : 0.039484 cons_dist: 0.042355, loss_weight: 0.081873
[22:35:03.925] iteration 4833 : loss : 0.042457 cons_dist: 0.006184, loss_weight: 0.081873
[22:35:04.842] iteration 4834 : loss : 0.033965 cons_dist: 0.002116, loss_weight: 0.081873
[22:35:05.758] iteration 4835 : loss : 0.032700 cons_dist: 0.008020, loss_weight: 0.081873
[22:35:06.676] iteration 4836 : loss : 0.041371 cons_dist: 0.006206, loss_weight: 0.081873
[22:35:08.270] iteration 4837 : loss : 0.038948 cons_dist: 0.002250, loss_weight: 0.081873
[22:35:09.188] iteration 4838 : loss : 0.037747 cons_dist: 0.003865, loss_weight: 0.081873
[22:35:10.107] iteration 4839 : loss : 0.043442 cons_dist: 0.000555, loss_weight: 0.081873
[22:35:11.026] iteration 4840 : loss : 0.041794 cons_dist: 0.004191, loss_weight: 0.081873
[22:35:11.943] iteration 4841 : loss : 0.047988 cons_dist: 0.003129, loss_weight: 0.081873
[22:35:12.861] iteration 4842 : loss : 0.041535 cons_dist: 0.001167, loss_weight: 0.081873
[22:35:13.780] iteration 4843 : loss : 0.044465 cons_dist: 0.001620, loss_weight: 0.081873
[22:35:14.699] iteration 4844 : loss : 0.032338 cons_dist: 0.001008, loss_weight: 0.081873
[22:35:15.616] iteration 4845 : loss : 0.059806 cons_dist: 0.003997, loss_weight: 0.081873
[22:35:16.537] iteration 4846 : loss : 0.037525 cons_dist: 0.001428, loss_weight: 0.081873
[22:35:17.454] iteration 4847 : loss : 0.050774 cons_dist: 0.001579, loss_weight: 0.081873
[22:35:18.376] iteration 4848 : loss : 0.040677 cons_dist: 0.001763, loss_weight: 0.081873
[22:35:19.914] iteration 4849 : loss : 0.037318 cons_dist: 0.002598, loss_weight: 0.081873
[22:35:20.833] iteration 4850 : loss : 0.048683 cons_dist: 0.001752, loss_weight: 0.081873
[22:35:21.895] iteration 4851 : loss : 0.034200 cons_dist: 0.001434, loss_weight: 0.081873
[22:35:22.812] iteration 4852 : loss : 0.038592 cons_dist: 0.000929, loss_weight: 0.081873
[22:35:23.730] iteration 4853 : loss : 0.036722 cons_dist: 0.021089, loss_weight: 0.081873
[22:35:24.648] iteration 4854 : loss : 0.042683 cons_dist: 0.000789, loss_weight: 0.081873
[22:35:25.565] iteration 4855 : loss : 0.031240 cons_dist: 0.002373, loss_weight: 0.081873
[22:35:26.482] iteration 4856 : loss : 0.036611 cons_dist: 0.000869, loss_weight: 0.081873
[22:35:27.398] iteration 4857 : loss : 0.051379 cons_dist: 0.008530, loss_weight: 0.081873
[22:35:28.314] iteration 4858 : loss : 0.051275 cons_dist: 0.000676, loss_weight: 0.081873
[22:35:29.231] iteration 4859 : loss : 0.044009 cons_dist: 0.000715, loss_weight: 0.081873
[22:35:30.148] iteration 4860 : loss : 0.046808 cons_dist: 0.021616, loss_weight: 0.081873
[22:35:31.827] iteration 4861 : loss : 0.045255 cons_dist: 0.003284, loss_weight: 0.081873
[22:35:32.746] iteration 4862 : loss : 0.036944 cons_dist: 0.000278, loss_weight: 0.081873
[22:35:33.665] iteration 4863 : loss : 0.036865 cons_dist: 0.002896, loss_weight: 0.081873
[22:35:34.583] iteration 4864 : loss : 0.042090 cons_dist: 0.003866, loss_weight: 0.081873
[22:35:35.500] iteration 4865 : loss : 0.041974 cons_dist: 0.001647, loss_weight: 0.081873
[22:35:36.417] iteration 4866 : loss : 0.056205 cons_dist: 0.001991, loss_weight: 0.081873
[22:35:37.335] iteration 4867 : loss : 0.038419 cons_dist: 0.008562, loss_weight: 0.081873
[22:35:38.252] iteration 4868 : loss : 0.033060 cons_dist: 0.001234, loss_weight: 0.081873
[22:35:39.169] iteration 4869 : loss : 0.054043 cons_dist: 0.001155, loss_weight: 0.081873
[22:35:40.087] iteration 4870 : loss : 0.144019 cons_dist: 0.002217, loss_weight: 0.081873
[22:35:41.003] iteration 4871 : loss : 0.056430 cons_dist: 0.003391, loss_weight: 0.081873
[22:35:41.919] iteration 4872 : loss : 0.040095 cons_dist: 0.004359, loss_weight: 0.081873
[22:35:43.417] iteration 4873 : loss : 0.058886 cons_dist: 0.001754, loss_weight: 0.081873
[22:35:44.335] iteration 4874 : loss : 0.040173 cons_dist: 0.001418, loss_weight: 0.081873
[22:35:45.254] iteration 4875 : loss : 0.041347 cons_dist: 0.002198, loss_weight: 0.081873
[22:35:46.174] iteration 4876 : loss : 0.040482 cons_dist: 0.005830, loss_weight: 0.081873
[22:35:47.092] iteration 4877 : loss : 0.054233 cons_dist: 0.001561, loss_weight: 0.081873
[22:35:48.010] iteration 4878 : loss : 0.040447 cons_dist: 0.001207, loss_weight: 0.081873
[22:35:48.928] iteration 4879 : loss : 0.045997 cons_dist: 0.000591, loss_weight: 0.081873
[22:35:49.847] iteration 4880 : loss : 0.047831 cons_dist: 0.000738, loss_weight: 0.081873
[22:35:50.764] iteration 4881 : loss : 0.064074 cons_dist: 0.001321, loss_weight: 0.081873
[22:35:51.682] iteration 4882 : loss : 0.044879 cons_dist: 0.002392, loss_weight: 0.081873
[22:35:52.600] iteration 4883 : loss : 0.041399 cons_dist: 0.006066, loss_weight: 0.081873
[22:35:53.519] iteration 4884 : loss : 0.037290 cons_dist: 0.003838, loss_weight: 0.081873
[22:35:55.127] iteration 4885 : loss : 0.043113 cons_dist: 0.001605, loss_weight: 0.081873
[22:35:56.046] iteration 4886 : loss : 0.080520 cons_dist: 0.003879, loss_weight: 0.081873
[22:35:56.964] iteration 4887 : loss : 0.050428 cons_dist: 0.004771, loss_weight: 0.081873
[22:35:57.882] iteration 4888 : loss : 0.036560 cons_dist: 0.001541, loss_weight: 0.081873
[22:35:58.799] iteration 4889 : loss : 0.053600 cons_dist: 0.001990, loss_weight: 0.081873
[22:35:59.716] iteration 4890 : loss : 0.038211 cons_dist: 0.003366, loss_weight: 0.081873
[22:36:00.633] iteration 4891 : loss : 0.041477 cons_dist: 0.003609, loss_weight: 0.081873
[22:36:01.550] iteration 4892 : loss : 0.038536 cons_dist: 0.001898, loss_weight: 0.081873
[22:36:02.468] iteration 4893 : loss : 0.038064 cons_dist: 0.000642, loss_weight: 0.081873
[22:36:03.386] iteration 4894 : loss : 0.039635 cons_dist: 0.006157, loss_weight: 0.081873
[22:36:04.303] iteration 4895 : loss : 0.041594 cons_dist: 0.002230, loss_weight: 0.081873
[22:36:05.220] iteration 4896 : loss : 0.053959 cons_dist: 0.001038, loss_weight: 0.081873
[22:36:06.780] iteration 4897 : loss : 0.047935 cons_dist: 0.005044, loss_weight: 0.081873
[22:36:07.698] iteration 4898 : loss : 0.039512 cons_dist: 0.001657, loss_weight: 0.081873
[22:36:08.617] iteration 4899 : loss : 0.077311 cons_dist: 0.014440, loss_weight: 0.081873
[22:36:09.535] iteration 4900 : loss : 0.051856 cons_dist: 0.065383, loss_weight: 0.081873
[22:36:10.603] iteration 4901 : loss : 0.039103 cons_dist: 0.003082, loss_weight: 0.081873
[22:36:11.519] iteration 4902 : loss : 0.039648 cons_dist: 0.000802, loss_weight: 0.081873
[22:36:12.436] iteration 4903 : loss : 0.042217 cons_dist: 0.001533, loss_weight: 0.081873
[22:36:13.356] iteration 4904 : loss : 0.041772 cons_dist: 0.037489, loss_weight: 0.081873
[22:36:14.273] iteration 4905 : loss : 0.032739 cons_dist: 0.004135, loss_weight: 0.081873
[22:36:15.192] iteration 4906 : loss : 0.035811 cons_dist: 0.000999, loss_weight: 0.081873
[22:36:16.110] iteration 4907 : loss : 0.046289 cons_dist: 0.012057, loss_weight: 0.081873
[22:36:17.029] iteration 4908 : loss : 0.066840 cons_dist: 0.021903, loss_weight: 0.081873
[22:36:18.623] iteration 4909 : loss : 0.043456 cons_dist: 0.002222, loss_weight: 0.081873
[22:36:19.541] iteration 4910 : loss : 0.038170 cons_dist: 0.004699, loss_weight: 0.081873
[22:36:20.521] iteration 4911 : loss : 0.059882 cons_dist: 0.006753, loss_weight: 0.081873
[22:36:21.440] iteration 4912 : loss : 0.032082 cons_dist: 0.001570, loss_weight: 0.081873
[22:36:22.359] iteration 4913 : loss : 0.051730 cons_dist: 0.006688, loss_weight: 0.081873
[22:36:23.277] iteration 4914 : loss : 0.038505 cons_dist: 0.024534, loss_weight: 0.081873
[22:36:24.196] iteration 4915 : loss : 0.036093 cons_dist: 0.005169, loss_weight: 0.081873
[22:36:25.114] iteration 4916 : loss : 0.039455 cons_dist: 0.000731, loss_weight: 0.081873
[22:36:26.073] iteration 4917 : loss : 0.036392 cons_dist: 0.004167, loss_weight: 0.081873
[22:36:26.993] iteration 4918 : loss : 0.037894 cons_dist: 0.003768, loss_weight: 0.081873
[22:36:27.910] iteration 4919 : loss : 0.037919 cons_dist: 0.002278, loss_weight: 0.081873
[22:36:28.826] iteration 4920 : loss : 0.051926 cons_dist: 0.001509, loss_weight: 0.081873
[22:36:30.370] iteration 4921 : loss : 0.032444 cons_dist: 0.001957, loss_weight: 0.081873
[22:36:31.288] iteration 4922 : loss : 0.041118 cons_dist: 0.005339, loss_weight: 0.081873
[22:36:32.205] iteration 4923 : loss : 0.040172 cons_dist: 0.003543, loss_weight: 0.081873
[22:36:33.123] iteration 4924 : loss : 0.057766 cons_dist: 0.001318, loss_weight: 0.081873
[22:36:34.041] iteration 4925 : loss : 0.055240 cons_dist: 0.002108, loss_weight: 0.081873
[22:36:34.959] iteration 4926 : loss : 0.043026 cons_dist: 0.003085, loss_weight: 0.081873
[22:36:35.876] iteration 4927 : loss : 0.036585 cons_dist: 0.005320, loss_weight: 0.081873
[22:36:36.795] iteration 4928 : loss : 0.045310 cons_dist: 0.002461, loss_weight: 0.081873
[22:36:37.712] iteration 4929 : loss : 0.026061 cons_dist: 0.001445, loss_weight: 0.081873
[22:36:38.630] iteration 4930 : loss : 0.052758 cons_dist: 0.003267, loss_weight: 0.081873
[22:36:39.549] iteration 4931 : loss : 0.048104 cons_dist: 0.002583, loss_weight: 0.081873
[22:36:40.466] iteration 4932 : loss : 0.092281 cons_dist: 0.001021, loss_weight: 0.081873
[22:36:41.995] iteration 4933 : loss : 0.042343 cons_dist: 0.008456, loss_weight: 0.081873
[22:36:42.911] iteration 4934 : loss : 0.056218 cons_dist: 0.000941, loss_weight: 0.081873
[22:36:43.829] iteration 4935 : loss : 0.032712 cons_dist: 0.000801, loss_weight: 0.081873
[22:36:44.744] iteration 4936 : loss : 0.073148 cons_dist: 0.002639, loss_weight: 0.081873
[22:36:45.661] iteration 4937 : loss : 0.045177 cons_dist: 0.002677, loss_weight: 0.081873
[22:36:46.578] iteration 4938 : loss : 0.034610 cons_dist: 0.008254, loss_weight: 0.081873
[22:36:47.497] iteration 4939 : loss : 0.036885 cons_dist: 0.002198, loss_weight: 0.081873
[22:36:48.415] iteration 4940 : loss : 0.041591 cons_dist: 0.000746, loss_weight: 0.081873
[22:36:49.332] iteration 4941 : loss : 0.038209 cons_dist: 0.001181, loss_weight: 0.081873
[22:36:50.251] iteration 4942 : loss : 0.048067 cons_dist: 0.029889, loss_weight: 0.081873
[22:36:51.168] iteration 4943 : loss : 0.051406 cons_dist: 0.002473, loss_weight: 0.081873
[22:36:52.086] iteration 4944 : loss : 0.035763 cons_dist: 0.003507, loss_weight: 0.081873
[22:36:53.574] iteration 4945 : loss : 0.038749 cons_dist: 0.011408, loss_weight: 0.081873
[22:36:54.491] iteration 4946 : loss : 0.036424 cons_dist: 0.004076, loss_weight: 0.081873
[22:36:55.409] iteration 4947 : loss : 0.045512 cons_dist: 0.001457, loss_weight: 0.081873
[22:36:56.327] iteration 4948 : loss : 0.047260 cons_dist: 0.040125, loss_weight: 0.081873
[22:36:57.245] iteration 4949 : loss : 0.047997 cons_dist: 0.004970, loss_weight: 0.081873
[22:36:58.162] iteration 4950 : loss : 0.039576 cons_dist: 0.000866, loss_weight: 0.081873
[22:36:59.234] iteration 4951 : loss : 0.051780 cons_dist: 0.001751, loss_weight: 0.085802
[22:37:00.152] iteration 4952 : loss : 0.040586 cons_dist: 0.000769, loss_weight: 0.085802
[22:37:01.070] iteration 4953 : loss : 0.036936 cons_dist: 0.002631, loss_weight: 0.085802
[22:37:01.989] iteration 4954 : loss : 0.056532 cons_dist: 0.001617, loss_weight: 0.085802
[22:37:02.907] iteration 4955 : loss : 0.045260 cons_dist: 0.001254, loss_weight: 0.085802
[22:37:03.824] iteration 4956 : loss : 0.035891 cons_dist: 0.001856, loss_weight: 0.085802
[22:37:05.402] iteration 4957 : loss : 0.053447 cons_dist: 0.011024, loss_weight: 0.085802
[22:37:06.317] iteration 4958 : loss : 0.041388 cons_dist: 0.001130, loss_weight: 0.085802
[22:37:07.234] iteration 4959 : loss : 0.042141 cons_dist: 0.001191, loss_weight: 0.085802
[22:37:08.150] iteration 4960 : loss : 0.039474 cons_dist: 0.039299, loss_weight: 0.085802
[22:37:09.069] iteration 4961 : loss : 0.046174 cons_dist: 0.000661, loss_weight: 0.085802
[22:37:09.985] iteration 4962 : loss : 0.037720 cons_dist: 0.006493, loss_weight: 0.085802
[22:37:10.901] iteration 4963 : loss : 0.052042 cons_dist: 0.002217, loss_weight: 0.085802
[22:37:11.818] iteration 4964 : loss : 0.042692 cons_dist: 0.044050, loss_weight: 0.085802
[22:37:12.737] iteration 4965 : loss : 0.038113 cons_dist: 0.000847, loss_weight: 0.085802
[22:37:13.656] iteration 4966 : loss : 0.060168 cons_dist: 0.002342, loss_weight: 0.085802
[22:37:14.574] iteration 4967 : loss : 0.040225 cons_dist: 0.000835, loss_weight: 0.085802
[22:37:15.492] iteration 4968 : loss : 0.037443 cons_dist: 0.006750, loss_weight: 0.085802
[22:37:17.177] iteration 4969 : loss : 0.038468 cons_dist: 0.051501, loss_weight: 0.085802
[22:37:18.094] iteration 4970 : loss : 0.044405 cons_dist: 0.006639, loss_weight: 0.085802
[22:37:19.012] iteration 4971 : loss : 0.032750 cons_dist: 0.001294, loss_weight: 0.085802
[22:37:19.932] iteration 4972 : loss : 0.038754 cons_dist: 0.004387, loss_weight: 0.085802
[22:37:20.849] iteration 4973 : loss : 0.053367 cons_dist: 0.016337, loss_weight: 0.085802
[22:37:21.767] iteration 4974 : loss : 0.035270 cons_dist: 0.000908, loss_weight: 0.085802
[22:37:22.685] iteration 4975 : loss : 0.034617 cons_dist: 0.004271, loss_weight: 0.085802
[22:37:23.603] iteration 4976 : loss : 0.047465 cons_dist: 0.000883, loss_weight: 0.085802
[22:37:24.522] iteration 4977 : loss : 0.046709 cons_dist: 0.002791, loss_weight: 0.085802
[22:37:25.440] iteration 4978 : loss : 0.038983 cons_dist: 0.001277, loss_weight: 0.085802
[22:37:26.357] iteration 4979 : loss : 0.057285 cons_dist: 0.001435, loss_weight: 0.085802
[22:37:27.275] iteration 4980 : loss : 0.037278 cons_dist: 0.000894, loss_weight: 0.085802
[22:37:28.908] iteration 4981 : loss : 0.051599 cons_dist: 0.010813, loss_weight: 0.085802
[22:37:29.827] iteration 4982 : loss : 0.048663 cons_dist: 0.001362, loss_weight: 0.085802
[22:37:30.747] iteration 4983 : loss : 0.050551 cons_dist: 0.003883, loss_weight: 0.085802
[22:37:31.667] iteration 4984 : loss : 0.050072 cons_dist: 0.003678, loss_weight: 0.085802
[22:37:32.584] iteration 4985 : loss : 0.047287 cons_dist: 0.002870, loss_weight: 0.085802
[22:37:33.502] iteration 4986 : loss : 0.041291 cons_dist: 0.003345, loss_weight: 0.085802
[22:37:34.420] iteration 4987 : loss : 0.058644 cons_dist: 0.009127, loss_weight: 0.085802
[22:37:35.338] iteration 4988 : loss : 0.047706 cons_dist: 0.004381, loss_weight: 0.085802
[22:37:36.256] iteration 4989 : loss : 0.031415 cons_dist: 0.010969, loss_weight: 0.085802
[22:37:37.173] iteration 4990 : loss : 0.048489 cons_dist: 0.000884, loss_weight: 0.085802
[22:37:38.091] iteration 4991 : loss : 0.039513 cons_dist: 0.002041, loss_weight: 0.085802
[22:37:39.009] iteration 4992 : loss : 0.043596 cons_dist: 0.001911, loss_weight: 0.085802
[22:37:40.582] iteration 4993 : loss : 0.043809 cons_dist: 0.001779, loss_weight: 0.085802
[22:37:41.500] iteration 4994 : loss : 0.035975 cons_dist: 0.015912, loss_weight: 0.085802
[22:37:42.416] iteration 4995 : loss : 0.044210 cons_dist: 0.004164, loss_weight: 0.085802
[22:37:43.332] iteration 4996 : loss : 0.041790 cons_dist: 0.001234, loss_weight: 0.085802
[22:37:44.247] iteration 4997 : loss : 0.044145 cons_dist: 0.003027, loss_weight: 0.085802
[22:37:45.163] iteration 4998 : loss : 0.036897 cons_dist: 0.003639, loss_weight: 0.085802
[22:37:46.078] iteration 4999 : loss : 0.051284 cons_dist: 0.001270, loss_weight: 0.085802
[22:37:46.994] iteration 5000 : loss : 0.038595 cons_dist: 0.011041, loss_weight: 0.085802
[22:37:47.219] save model to model/LA_vnet_25_labeled/UAMT/iter_5000.pth
[22:37:49.315] iteration 5001 : loss : 0.037457 cons_dist: 0.000924, loss_weight: 0.085802
[22:37:50.231] iteration 5002 : loss : 0.045058 cons_dist: 0.000619, loss_weight: 0.085802
[22:37:51.151] iteration 5003 : loss : 0.047405 cons_dist: 0.001035, loss_weight: 0.085802
[22:37:52.067] iteration 5004 : loss : 0.041197 cons_dist: 0.045024, loss_weight: 0.085802
[22:37:53.680] iteration 5005 : loss : 0.051865 cons_dist: 0.040274, loss_weight: 0.085802
[22:37:54.598] iteration 5006 : loss : 0.035542 cons_dist: 0.001488, loss_weight: 0.085802
[22:37:55.517] iteration 5007 : loss : 0.039867 cons_dist: 0.004557, loss_weight: 0.085802
[22:37:56.435] iteration 5008 : loss : 0.041200 cons_dist: 0.004198, loss_weight: 0.085802
[22:37:57.352] iteration 5009 : loss : 0.029086 cons_dist: 0.006094, loss_weight: 0.085802
[22:37:58.270] iteration 5010 : loss : 0.045000 cons_dist: 0.004890, loss_weight: 0.085802
[22:37:59.188] iteration 5011 : loss : 0.051694 cons_dist: 0.002841, loss_weight: 0.085802
[22:38:00.106] iteration 5012 : loss : 0.036943 cons_dist: 0.003945, loss_weight: 0.085802
[22:38:01.025] iteration 5013 : loss : 0.040560 cons_dist: 0.003431, loss_weight: 0.085802
[22:38:01.943] iteration 5014 : loss : 0.054285 cons_dist: 0.001424, loss_weight: 0.085802
[22:38:02.861] iteration 5015 : loss : 0.062516 cons_dist: 0.001382, loss_weight: 0.085802
[22:38:03.778] iteration 5016 : loss : 0.044266 cons_dist: 0.001180, loss_weight: 0.085802
[22:38:05.340] iteration 5017 : loss : 0.051092 cons_dist: 0.004569, loss_weight: 0.085802
[22:38:06.257] iteration 5018 : loss : 0.038917 cons_dist: 0.001598, loss_weight: 0.085802
[22:38:07.172] iteration 5019 : loss : 0.059347 cons_dist: 0.004031, loss_weight: 0.085802
[22:38:08.089] iteration 5020 : loss : 0.057050 cons_dist: 0.001945, loss_weight: 0.085802
[22:38:09.005] iteration 5021 : loss : 0.054698 cons_dist: 0.001622, loss_weight: 0.085802
[22:38:09.923] iteration 5022 : loss : 0.045260 cons_dist: 0.001259, loss_weight: 0.085802
[22:38:10.840] iteration 5023 : loss : 0.032535 cons_dist: 0.001786, loss_weight: 0.085802
[22:38:11.758] iteration 5024 : loss : 0.039789 cons_dist: 0.002699, loss_weight: 0.085802
[22:38:12.676] iteration 5025 : loss : 0.047237 cons_dist: 0.002157, loss_weight: 0.085802
[22:38:13.596] iteration 5026 : loss : 0.038324 cons_dist: 0.009685, loss_weight: 0.085802
[22:38:14.514] iteration 5027 : loss : 0.035614 cons_dist: 0.002527, loss_weight: 0.085802
[22:38:15.433] iteration 5028 : loss : 0.039983 cons_dist: 0.003072, loss_weight: 0.085802
[22:38:16.968] iteration 5029 : loss : 0.052864 cons_dist: 0.001012, loss_weight: 0.085802
[22:38:17.884] iteration 5030 : loss : 0.044577 cons_dist: 0.000393, loss_weight: 0.085802
[22:38:18.805] iteration 5031 : loss : 0.040758 cons_dist: 0.001648, loss_weight: 0.085802
[22:38:19.724] iteration 5032 : loss : 0.041821 cons_dist: 0.000918, loss_weight: 0.085802
[22:38:20.642] iteration 5033 : loss : 0.075341 cons_dist: 0.004356, loss_weight: 0.085802
[22:38:21.560] iteration 5034 : loss : 0.046603 cons_dist: 0.006188, loss_weight: 0.085802
[22:38:22.479] iteration 5035 : loss : 0.055891 cons_dist: 0.000581, loss_weight: 0.085802
[22:38:23.397] iteration 5036 : loss : 0.030755 cons_dist: 0.001482, loss_weight: 0.085802
[22:38:24.317] iteration 5037 : loss : 0.039621 cons_dist: 0.001493, loss_weight: 0.085802
[22:38:25.235] iteration 5038 : loss : 0.048250 cons_dist: 0.001636, loss_weight: 0.085802
[22:38:26.153] iteration 5039 : loss : 0.037304 cons_dist: 0.000998, loss_weight: 0.085802
[22:38:27.071] iteration 5040 : loss : 0.045768 cons_dist: 0.001503, loss_weight: 0.085802
[22:38:28.537] iteration 5041 : loss : 0.066712 cons_dist: 0.003993, loss_weight: 0.085802
[22:38:29.454] iteration 5042 : loss : 0.046895 cons_dist: 0.017395, loss_weight: 0.085802
[22:38:30.371] iteration 5043 : loss : 0.043081 cons_dist: 0.001380, loss_weight: 0.085802
[22:38:31.289] iteration 5044 : loss : 0.043795 cons_dist: 0.014055, loss_weight: 0.085802
[22:38:32.205] iteration 5045 : loss : 0.057158 cons_dist: 0.003802, loss_weight: 0.085802
[22:38:33.122] iteration 5046 : loss : 0.061387 cons_dist: 0.003965, loss_weight: 0.085802
[22:38:34.040] iteration 5047 : loss : 0.038323 cons_dist: 0.000424, loss_weight: 0.085802
[22:38:34.956] iteration 5048 : loss : 0.044445 cons_dist: 0.010132, loss_weight: 0.085802
[22:38:35.872] iteration 5049 : loss : 0.039278 cons_dist: 0.005106, loss_weight: 0.085802
[22:38:36.788] iteration 5050 : loss : 0.043873 cons_dist: 0.003506, loss_weight: 0.085802
[22:38:37.856] iteration 5051 : loss : 0.042879 cons_dist: 0.004500, loss_weight: 0.085802
[22:38:38.774] iteration 5052 : loss : 0.055118 cons_dist: 0.006605, loss_weight: 0.085802
[22:38:40.304] iteration 5053 : loss : 0.040943 cons_dist: 0.006009, loss_weight: 0.085802
[22:38:41.222] iteration 5054 : loss : 0.031302 cons_dist: 0.000934, loss_weight: 0.085802
[22:38:42.140] iteration 5055 : loss : 0.038267 cons_dist: 0.000670, loss_weight: 0.085802
[22:38:43.059] iteration 5056 : loss : 0.030115 cons_dist: 0.003936, loss_weight: 0.085802
[22:38:43.976] iteration 5057 : loss : 0.037996 cons_dist: 0.003965, loss_weight: 0.085802
[22:38:44.892] iteration 5058 : loss : 0.038224 cons_dist: 0.000628, loss_weight: 0.085802
[22:38:45.810] iteration 5059 : loss : 0.042998 cons_dist: 0.051080, loss_weight: 0.085802
[22:38:46.727] iteration 5060 : loss : 0.045485 cons_dist: 0.002312, loss_weight: 0.085802
[22:38:47.646] iteration 5061 : loss : 0.039042 cons_dist: 0.002594, loss_weight: 0.085802
[22:38:48.563] iteration 5062 : loss : 0.045833 cons_dist: 0.032573, loss_weight: 0.085802
[22:38:49.480] iteration 5063 : loss : 0.035942 cons_dist: 0.002282, loss_weight: 0.085802
[22:38:50.397] iteration 5064 : loss : 0.040810 cons_dist: 0.004274, loss_weight: 0.085802
[22:38:51.947] iteration 5065 : loss : 0.040442 cons_dist: 0.006344, loss_weight: 0.085802
[22:38:52.863] iteration 5066 : loss : 0.043613 cons_dist: 0.000544, loss_weight: 0.085802
[22:38:53.779] iteration 5067 : loss : 0.045025 cons_dist: 0.002650, loss_weight: 0.085802
[22:38:54.696] iteration 5068 : loss : 0.037042 cons_dist: 0.003689, loss_weight: 0.085802
[22:38:55.613] iteration 5069 : loss : 0.046255 cons_dist: 0.004079, loss_weight: 0.085802
[22:38:56.529] iteration 5070 : loss : 0.043429 cons_dist: 0.007691, loss_weight: 0.085802
[22:38:57.445] iteration 5071 : loss : 0.040971 cons_dist: 0.004640, loss_weight: 0.085802
[22:38:58.362] iteration 5072 : loss : 0.038709 cons_dist: 0.007123, loss_weight: 0.085802
[22:38:59.282] iteration 5073 : loss : 0.042315 cons_dist: 0.020681, loss_weight: 0.085802
[22:39:00.199] iteration 5074 : loss : 0.036889 cons_dist: 0.004195, loss_weight: 0.085802
[22:39:01.117] iteration 5075 : loss : 0.044562 cons_dist: 0.026185, loss_weight: 0.085802
[22:39:02.033] iteration 5076 : loss : 0.050902 cons_dist: 0.017723, loss_weight: 0.085802
[22:39:03.588] iteration 5077 : loss : 0.043834 cons_dist: 0.001194, loss_weight: 0.085802
[22:39:04.509] iteration 5078 : loss : 0.036708 cons_dist: 0.000699, loss_weight: 0.085802
[22:39:05.428] iteration 5079 : loss : 0.037982 cons_dist: 0.000910, loss_weight: 0.085802
[22:39:06.346] iteration 5080 : loss : 0.036218 cons_dist: 0.004582, loss_weight: 0.085802
[22:39:07.264] iteration 5081 : loss : 0.036747 cons_dist: 0.001418, loss_weight: 0.085802
[22:39:08.184] iteration 5082 : loss : 0.036156 cons_dist: 0.001942, loss_weight: 0.085802
[22:39:09.103] iteration 5083 : loss : 0.056063 cons_dist: 0.001900, loss_weight: 0.085802
[22:39:10.021] iteration 5084 : loss : 0.045213 cons_dist: 0.000812, loss_weight: 0.085802
[22:39:10.939] iteration 5085 : loss : 0.031308 cons_dist: 0.004186, loss_weight: 0.085802
[22:39:11.857] iteration 5086 : loss : 0.033436 cons_dist: 0.001922, loss_weight: 0.085802
[22:39:12.775] iteration 5087 : loss : 0.060775 cons_dist: 0.000842, loss_weight: 0.085802
[22:39:13.692] iteration 5088 : loss : 0.047567 cons_dist: 0.010582, loss_weight: 0.085802
[22:39:15.280] iteration 5089 : loss : 0.050833 cons_dist: 0.001754, loss_weight: 0.085802
[22:39:16.198] iteration 5090 : loss : 0.045275 cons_dist: 0.022176, loss_weight: 0.085802
[22:39:17.117] iteration 5091 : loss : 0.052315 cons_dist: 0.035478, loss_weight: 0.085802
[22:39:18.035] iteration 5092 : loss : 0.043794 cons_dist: 0.003339, loss_weight: 0.085802
[22:39:18.954] iteration 5093 : loss : 0.060862 cons_dist: 0.017561, loss_weight: 0.085802
[22:39:19.871] iteration 5094 : loss : 0.035035 cons_dist: 0.000956, loss_weight: 0.085802
[22:39:20.790] iteration 5095 : loss : 0.049219 cons_dist: 0.001839, loss_weight: 0.085802
[22:39:21.708] iteration 5096 : loss : 0.038484 cons_dist: 0.001328, loss_weight: 0.085802
[22:39:22.626] iteration 5097 : loss : 0.041803 cons_dist: 0.004545, loss_weight: 0.085802
[22:39:23.543] iteration 5098 : loss : 0.035057 cons_dist: 0.000966, loss_weight: 0.085802
[22:39:24.459] iteration 5099 : loss : 0.047150 cons_dist: 0.002061, loss_weight: 0.085802
[22:39:25.376] iteration 5100 : loss : 0.047455 cons_dist: 0.002716, loss_weight: 0.085802
[22:39:27.188] iteration 5101 : loss : 0.038496 cons_dist: 0.000588, loss_weight: 0.089360
[22:39:28.105] iteration 5102 : loss : 0.044373 cons_dist: 0.002113, loss_weight: 0.089360
[22:39:29.022] iteration 5103 : loss : 0.042255 cons_dist: 0.003849, loss_weight: 0.089360
[22:39:29.938] iteration 5104 : loss : 0.034395 cons_dist: 0.043736, loss_weight: 0.089360
[22:39:30.854] iteration 5105 : loss : 0.039474 cons_dist: 0.005822, loss_weight: 0.089360
[22:39:31.772] iteration 5106 : loss : 0.040434 cons_dist: 0.003090, loss_weight: 0.089360
[22:39:32.688] iteration 5107 : loss : 0.041177 cons_dist: 0.001624, loss_weight: 0.089360
[22:39:33.605] iteration 5108 : loss : 0.037061 cons_dist: 0.001219, loss_weight: 0.089360
[22:39:34.522] iteration 5109 : loss : 0.041946 cons_dist: 0.004124, loss_weight: 0.089360
[22:39:35.437] iteration 5110 : loss : 0.040663 cons_dist: 0.003727, loss_weight: 0.089360
[22:39:36.354] iteration 5111 : loss : 0.044979 cons_dist: 0.001001, loss_weight: 0.089360
[22:39:37.271] iteration 5112 : loss : 0.037150 cons_dist: 0.000404, loss_weight: 0.089360
[22:39:38.853] iteration 5113 : loss : 0.037048 cons_dist: 0.001369, loss_weight: 0.089360
[22:39:39.772] iteration 5114 : loss : 0.048280 cons_dist: 0.001189, loss_weight: 0.089360
[22:39:40.690] iteration 5115 : loss : 0.038191 cons_dist: 0.004601, loss_weight: 0.089360
[22:39:41.608] iteration 5116 : loss : 0.035125 cons_dist: 0.024203, loss_weight: 0.089360
[22:39:42.526] iteration 5117 : loss : 0.031370 cons_dist: 0.001967, loss_weight: 0.089360
[22:39:43.444] iteration 5118 : loss : 0.043297 cons_dist: 0.004564, loss_weight: 0.089360
[22:39:44.362] iteration 5119 : loss : 0.043408 cons_dist: 0.000577, loss_weight: 0.089360
[22:39:45.280] iteration 5120 : loss : 0.044847 cons_dist: 0.047262, loss_weight: 0.089360
[22:39:46.199] iteration 5121 : loss : 0.038737 cons_dist: 0.016882, loss_weight: 0.089360
[22:39:47.116] iteration 5122 : loss : 0.056843 cons_dist: 0.005844, loss_weight: 0.089360
[22:39:48.034] iteration 5123 : loss : 0.043144 cons_dist: 0.001338, loss_weight: 0.089360
[22:39:48.951] iteration 5124 : loss : 0.039488 cons_dist: 0.000601, loss_weight: 0.089360
[22:39:50.509] iteration 5125 : loss : 0.040151 cons_dist: 0.004973, loss_weight: 0.089360
[22:39:51.427] iteration 5126 : loss : 0.036564 cons_dist: 0.001258, loss_weight: 0.089360
[22:39:52.344] iteration 5127 : loss : 0.035425 cons_dist: 0.002322, loss_weight: 0.089360
[22:39:53.263] iteration 5128 : loss : 0.038980 cons_dist: 0.003306, loss_weight: 0.089360
[22:39:54.179] iteration 5129 : loss : 0.044900 cons_dist: 0.011685, loss_weight: 0.089360
[22:39:55.097] iteration 5130 : loss : 0.041407 cons_dist: 0.002738, loss_weight: 0.089360
[22:39:56.016] iteration 5131 : loss : 0.049006 cons_dist: 0.001821, loss_weight: 0.089360
[22:39:56.933] iteration 5132 : loss : 0.041288 cons_dist: 0.002960, loss_weight: 0.089360
[22:39:57.851] iteration 5133 : loss : 0.051736 cons_dist: 0.001800, loss_weight: 0.089360
[22:39:58.770] iteration 5134 : loss : 0.036577 cons_dist: 0.007587, loss_weight: 0.089360
[22:39:59.688] iteration 5135 : loss : 0.039884 cons_dist: 0.007097, loss_weight: 0.089360
[22:40:00.608] iteration 5136 : loss : 0.042539 cons_dist: 0.004118, loss_weight: 0.089360
[22:40:02.118] iteration 5137 : loss : 0.057862 cons_dist: 0.002400, loss_weight: 0.089360
[22:40:03.035] iteration 5138 : loss : 0.051858 cons_dist: 0.002268, loss_weight: 0.089360
[22:40:03.952] iteration 5139 : loss : 0.039739 cons_dist: 0.012223, loss_weight: 0.089360
[22:40:04.867] iteration 5140 : loss : 0.037892 cons_dist: 0.012014, loss_weight: 0.089360
[22:40:05.784] iteration 5141 : loss : 0.041318 cons_dist: 0.001779, loss_weight: 0.089360
[22:40:06.700] iteration 5142 : loss : 0.044666 cons_dist: 0.005413, loss_weight: 0.089360
[22:40:07.615] iteration 5143 : loss : 0.030970 cons_dist: 0.004241, loss_weight: 0.089360
[22:40:08.558] iteration 5144 : loss : 0.041305 cons_dist: 0.001698, loss_weight: 0.089360
[22:40:09.475] iteration 5145 : loss : 0.034033 cons_dist: 0.003096, loss_weight: 0.089360
[22:40:10.391] iteration 5146 : loss : 0.042053 cons_dist: 0.015018, loss_weight: 0.089360
[22:40:11.306] iteration 5147 : loss : 0.038348 cons_dist: 0.001058, loss_weight: 0.089360
[22:40:12.223] iteration 5148 : loss : 0.047586 cons_dist: 0.001353, loss_weight: 0.089360
[22:40:13.902] iteration 5149 : loss : 0.033155 cons_dist: 0.004958, loss_weight: 0.089360
[22:40:14.820] iteration 5150 : loss : 0.037167 cons_dist: 0.001943, loss_weight: 0.089360
[22:40:15.873] iteration 5151 : loss : 0.040318 cons_dist: 0.001449, loss_weight: 0.089360
[22:40:16.791] iteration 5152 : loss : 0.041118 cons_dist: 0.001359, loss_weight: 0.089360
[22:40:17.710] iteration 5153 : loss : 0.040897 cons_dist: 0.001425, loss_weight: 0.089360
[22:40:18.629] iteration 5154 : loss : 0.056504 cons_dist: 0.002863, loss_weight: 0.089360
[22:40:19.548] iteration 5155 : loss : 0.054696 cons_dist: 0.035043, loss_weight: 0.089360
[22:40:20.465] iteration 5156 : loss : 0.052047 cons_dist: 0.003793, loss_weight: 0.089360
[22:40:21.383] iteration 5157 : loss : 0.045256 cons_dist: 0.003464, loss_weight: 0.089360
[22:40:22.301] iteration 5158 : loss : 0.044581 cons_dist: 0.050966, loss_weight: 0.089360
[22:40:23.220] iteration 5159 : loss : 0.053147 cons_dist: 0.003443, loss_weight: 0.089360
[22:40:24.139] iteration 5160 : loss : 0.041532 cons_dist: 0.003944, loss_weight: 0.089360
[22:40:25.727] iteration 5161 : loss : 0.033688 cons_dist: 0.005142, loss_weight: 0.089360
[22:40:26.644] iteration 5162 : loss : 0.038078 cons_dist: 0.002060, loss_weight: 0.089360
[22:40:27.562] iteration 5163 : loss : 0.037429 cons_dist: 0.002127, loss_weight: 0.089360
[22:40:28.480] iteration 5164 : loss : 0.045937 cons_dist: 0.004688, loss_weight: 0.089360
[22:40:29.399] iteration 5165 : loss : 0.058354 cons_dist: 0.011094, loss_weight: 0.089360
[22:40:30.317] iteration 5166 : loss : 0.024699 cons_dist: 0.004051, loss_weight: 0.089360
[22:40:31.235] iteration 5167 : loss : 0.079957 cons_dist: 0.009659, loss_weight: 0.089360
[22:40:32.152] iteration 5168 : loss : 0.049907 cons_dist: 0.005512, loss_weight: 0.089360
[22:40:33.073] iteration 5169 : loss : 0.042002 cons_dist: 0.001946, loss_weight: 0.089360
[22:40:33.991] iteration 5170 : loss : 0.037244 cons_dist: 0.002409, loss_weight: 0.089360
[22:40:34.909] iteration 5171 : loss : 0.037227 cons_dist: 0.014038, loss_weight: 0.089360
[22:40:35.827] iteration 5172 : loss : 0.058346 cons_dist: 0.001007, loss_weight: 0.089360
[22:40:37.395] iteration 5173 : loss : 0.034717 cons_dist: 0.003789, loss_weight: 0.089360
[22:40:38.311] iteration 5174 : loss : 0.033168 cons_dist: 0.000635, loss_weight: 0.089360
[22:40:39.229] iteration 5175 : loss : 0.036112 cons_dist: 0.001355, loss_weight: 0.089360
[22:40:40.147] iteration 5176 : loss : 0.065966 cons_dist: 0.005692, loss_weight: 0.089360
[22:40:41.064] iteration 5177 : loss : 0.065310 cons_dist: 0.001638, loss_weight: 0.089360
[22:40:41.982] iteration 5178 : loss : 0.034564 cons_dist: 0.004195, loss_weight: 0.089360
[22:40:42.900] iteration 5179 : loss : 0.069779 cons_dist: 0.001062, loss_weight: 0.089360
[22:40:43.818] iteration 5180 : loss : 0.050096 cons_dist: 0.030473, loss_weight: 0.089360
[22:40:44.736] iteration 5181 : loss : 0.034955 cons_dist: 0.003411, loss_weight: 0.089360
[22:40:45.654] iteration 5182 : loss : 0.060162 cons_dist: 0.002836, loss_weight: 0.089360
[22:40:46.571] iteration 5183 : loss : 0.043339 cons_dist: 0.004984, loss_weight: 0.089360
[22:40:47.488] iteration 5184 : loss : 0.040641 cons_dist: 0.066897, loss_weight: 0.089360
[22:40:49.156] iteration 5185 : loss : 0.039238 cons_dist: 0.001227, loss_weight: 0.089360
[22:40:50.072] iteration 5186 : loss : 0.039582 cons_dist: 0.001745, loss_weight: 0.089360
[22:40:50.988] iteration 5187 : loss : 0.041326 cons_dist: 0.003335, loss_weight: 0.089360
[22:40:51.905] iteration 5188 : loss : 0.056214 cons_dist: 0.001034, loss_weight: 0.089360
[22:40:52.820] iteration 5189 : loss : 0.050869 cons_dist: 0.000951, loss_weight: 0.089360
[22:40:53.737] iteration 5190 : loss : 0.031845 cons_dist: 0.001262, loss_weight: 0.089360
[22:40:54.654] iteration 5191 : loss : 0.042405 cons_dist: 0.012005, loss_weight: 0.089360
[22:40:55.571] iteration 5192 : loss : 0.034471 cons_dist: 0.017410, loss_weight: 0.089360
[22:40:56.487] iteration 5193 : loss : 0.054847 cons_dist: 0.001926, loss_weight: 0.089360
[22:40:57.404] iteration 5194 : loss : 0.035758 cons_dist: 0.000985, loss_weight: 0.089360
[22:40:58.323] iteration 5195 : loss : 0.044953 cons_dist: 0.001499, loss_weight: 0.089360
[22:40:59.238] iteration 5196 : loss : 0.039395 cons_dist: 0.002655, loss_weight: 0.089360
[22:41:00.819] iteration 5197 : loss : 0.043881 cons_dist: 0.001048, loss_weight: 0.089360
[22:41:01.738] iteration 5198 : loss : 0.051529 cons_dist: 0.002284, loss_weight: 0.089360
[22:41:02.655] iteration 5199 : loss : 0.039652 cons_dist: 0.000641, loss_weight: 0.089360
[22:41:03.573] iteration 5200 : loss : 0.041114 cons_dist: 0.007476, loss_weight: 0.089360
[22:41:05.788] iteration 5201 : loss : 0.039969 cons_dist: 0.001447, loss_weight: 0.089360
[22:41:06.706] iteration 5202 : loss : 0.049148 cons_dist: 0.001219, loss_weight: 0.089360
[22:41:07.625] iteration 5203 : loss : 0.047128 cons_dist: 0.009182, loss_weight: 0.089360
[22:41:08.543] iteration 5204 : loss : 0.064799 cons_dist: 0.007961, loss_weight: 0.089360
[22:41:09.461] iteration 5205 : loss : 0.041542 cons_dist: 0.000750, loss_weight: 0.089360
[22:41:10.380] iteration 5206 : loss : 0.048509 cons_dist: 0.002156, loss_weight: 0.089360
[22:41:11.296] iteration 5207 : loss : 0.039842 cons_dist: 0.014948, loss_weight: 0.089360
[22:41:12.214] iteration 5208 : loss : 0.052485 cons_dist: 0.000725, loss_weight: 0.089360
[22:41:13.813] iteration 5209 : loss : 0.042355 cons_dist: 0.007880, loss_weight: 0.089360
[22:41:14.730] iteration 5210 : loss : 0.051855 cons_dist: 0.005581, loss_weight: 0.089360
[22:41:15.648] iteration 5211 : loss : 0.037064 cons_dist: 0.003196, loss_weight: 0.089360
[22:41:16.568] iteration 5212 : loss : 0.041323 cons_dist: 0.016847, loss_weight: 0.089360
[22:41:17.486] iteration 5213 : loss : 0.056656 cons_dist: 0.002111, loss_weight: 0.089360
[22:41:18.405] iteration 5214 : loss : 0.041073 cons_dist: 0.002061, loss_weight: 0.089360
[22:41:19.323] iteration 5215 : loss : 0.037961 cons_dist: 0.003093, loss_weight: 0.089360
[22:41:20.242] iteration 5216 : loss : 0.039228 cons_dist: 0.001060, loss_weight: 0.089360
[22:41:21.162] iteration 5217 : loss : 0.040816 cons_dist: 0.003010, loss_weight: 0.089360
[22:41:22.080] iteration 5218 : loss : 0.042524 cons_dist: 0.002894, loss_weight: 0.089360
[22:41:22.998] iteration 5219 : loss : 0.033776 cons_dist: 0.001959, loss_weight: 0.089360
[22:41:23.915] iteration 5220 : loss : 0.037107 cons_dist: 0.001652, loss_weight: 0.089360
[22:41:25.505] iteration 5221 : loss : 0.045285 cons_dist: 0.009134, loss_weight: 0.089360
[22:41:26.423] iteration 5222 : loss : 0.046749 cons_dist: 0.001266, loss_weight: 0.089360
[22:41:27.340] iteration 5223 : loss : 0.046673 cons_dist: 0.001972, loss_weight: 0.089360
[22:41:28.259] iteration 5224 : loss : 0.038109 cons_dist: 0.001561, loss_weight: 0.089360
[22:41:29.177] iteration 5225 : loss : 0.054010 cons_dist: 0.002790, loss_weight: 0.089360
[22:41:30.095] iteration 5226 : loss : 0.046553 cons_dist: 0.008000, loss_weight: 0.089360
[22:41:31.013] iteration 5227 : loss : 0.038565 cons_dist: 0.001049, loss_weight: 0.089360
[22:41:31.930] iteration 5228 : loss : 0.035690 cons_dist: 0.001783, loss_weight: 0.089360
[22:41:32.848] iteration 5229 : loss : 0.069696 cons_dist: 0.001090, loss_weight: 0.089360
[22:41:33.766] iteration 5230 : loss : 0.037835 cons_dist: 0.003934, loss_weight: 0.089360
[22:41:34.684] iteration 5231 : loss : 0.036171 cons_dist: 0.002770, loss_weight: 0.089360
[22:41:35.604] iteration 5232 : loss : 0.048033 cons_dist: 0.032014, loss_weight: 0.089360
[22:41:37.256] iteration 5233 : loss : 0.142879 cons_dist: 0.001949, loss_weight: 0.089360
[22:41:38.171] iteration 5234 : loss : 0.040503 cons_dist: 0.001573, loss_weight: 0.089360
[22:41:39.088] iteration 5235 : loss : 0.041148 cons_dist: 0.001737, loss_weight: 0.089360
[22:41:40.004] iteration 5236 : loss : 0.048155 cons_dist: 0.001967, loss_weight: 0.089360
[22:41:40.919] iteration 5237 : loss : 0.042192 cons_dist: 0.000951, loss_weight: 0.089360
[22:41:41.835] iteration 5238 : loss : 0.054710 cons_dist: 0.002957, loss_weight: 0.089360
[22:41:42.752] iteration 5239 : loss : 0.039321 cons_dist: 0.002337, loss_weight: 0.089360
[22:41:43.669] iteration 5240 : loss : 0.058518 cons_dist: 0.004860, loss_weight: 0.089360
[22:41:44.586] iteration 5241 : loss : 0.055409 cons_dist: 0.005778, loss_weight: 0.089360
[22:41:45.502] iteration 5242 : loss : 0.033739 cons_dist: 0.009935, loss_weight: 0.089360
[22:41:46.422] iteration 5243 : loss : 0.037515 cons_dist: 0.001029, loss_weight: 0.089360
[22:41:47.338] iteration 5244 : loss : 0.054032 cons_dist: 0.039392, loss_weight: 0.089360
[22:41:48.848] iteration 5245 : loss : 0.039691 cons_dist: 0.003913, loss_weight: 0.089360
[22:41:49.766] iteration 5246 : loss : 0.038377 cons_dist: 0.008192, loss_weight: 0.089360
[22:41:50.684] iteration 5247 : loss : 0.051761 cons_dist: 0.000655, loss_weight: 0.089360
[22:41:51.603] iteration 5248 : loss : 0.045608 cons_dist: 0.000831, loss_weight: 0.089360
[22:41:52.521] iteration 5249 : loss : 0.036682 cons_dist: 0.002622, loss_weight: 0.089360
[22:41:53.440] iteration 5250 : loss : 0.036570 cons_dist: 0.002154, loss_weight: 0.089360
[22:41:54.517] iteration 5251 : loss : 0.050164 cons_dist: 0.006735, loss_weight: 0.092485
[22:41:55.435] iteration 5252 : loss : 0.043610 cons_dist: 0.026121, loss_weight: 0.092485
[22:41:56.353] iteration 5253 : loss : 0.040660 cons_dist: 0.023277, loss_weight: 0.092485
[22:41:57.271] iteration 5254 : loss : 0.042435 cons_dist: 0.002795, loss_weight: 0.092485
[22:41:58.188] iteration 5255 : loss : 0.040448 cons_dist: 0.002018, loss_weight: 0.092485
[22:41:59.106] iteration 5256 : loss : 0.046466 cons_dist: 0.000773, loss_weight: 0.092485
[22:42:00.772] iteration 5257 : loss : 0.041331 cons_dist: 0.001037, loss_weight: 0.092485
[22:42:01.691] iteration 5258 : loss : 0.286245 cons_dist: 0.001424, loss_weight: 0.092485
[22:42:02.608] iteration 5259 : loss : 0.040702 cons_dist: 0.005182, loss_weight: 0.092485
[22:42:03.527] iteration 5260 : loss : 0.051882 cons_dist: 0.029338, loss_weight: 0.092485
[22:42:04.443] iteration 5261 : loss : 0.046222 cons_dist: 0.000809, loss_weight: 0.092485
[22:42:05.361] iteration 5262 : loss : 0.043693 cons_dist: 0.004053, loss_weight: 0.092485
[22:42:06.279] iteration 5263 : loss : 0.039077 cons_dist: 0.004116, loss_weight: 0.092485
[22:42:07.198] iteration 5264 : loss : 0.046767 cons_dist: 0.010483, loss_weight: 0.092485
[22:42:08.115] iteration 5265 : loss : 0.048136 cons_dist: 0.004196, loss_weight: 0.092485
[22:42:09.032] iteration 5266 : loss : 0.038060 cons_dist: 0.001671, loss_weight: 0.092485
[22:42:09.949] iteration 5267 : loss : 0.041951 cons_dist: 0.008388, loss_weight: 0.092485
[22:42:10.867] iteration 5268 : loss : 0.041081 cons_dist: 0.002100, loss_weight: 0.092485
[22:42:12.423] iteration 5269 : loss : 0.046876 cons_dist: 0.003579, loss_weight: 0.092485
[22:42:13.341] iteration 5270 : loss : 0.031657 cons_dist: 0.010451, loss_weight: 0.092485
[22:42:14.258] iteration 5271 : loss : 0.151979 cons_dist: 0.002799, loss_weight: 0.092485
[22:42:15.175] iteration 5272 : loss : 0.032331 cons_dist: 0.002522, loss_weight: 0.092485
[22:42:16.094] iteration 5273 : loss : 0.043733 cons_dist: 0.002481, loss_weight: 0.092485
[22:42:17.011] iteration 5274 : loss : 0.118786 cons_dist: 0.001315, loss_weight: 0.092485
[22:42:17.931] iteration 5275 : loss : 0.041906 cons_dist: 0.001182, loss_weight: 0.092485
[22:42:18.848] iteration 5276 : loss : 0.039439 cons_dist: 0.014529, loss_weight: 0.092485
[22:42:19.766] iteration 5277 : loss : 0.039891 cons_dist: 0.001359, loss_weight: 0.092485
[22:42:20.683] iteration 5278 : loss : 0.036036 cons_dist: 0.000523, loss_weight: 0.092485
[22:42:21.602] iteration 5279 : loss : 0.041406 cons_dist: 0.000759, loss_weight: 0.092485
[22:42:22.522] iteration 5280 : loss : 0.050424 cons_dist: 0.001797, loss_weight: 0.092485
[22:42:24.152] iteration 5281 : loss : 0.049312 cons_dist: 0.001735, loss_weight: 0.092485
[22:42:25.067] iteration 5282 : loss : 0.039612 cons_dist: 0.009576, loss_weight: 0.092485
[22:42:25.983] iteration 5283 : loss : 0.038312 cons_dist: 0.001934, loss_weight: 0.092485
[22:42:26.900] iteration 5284 : loss : 0.048203 cons_dist: 0.025937, loss_weight: 0.092485
[22:42:27.816] iteration 5285 : loss : 0.040031 cons_dist: 0.003221, loss_weight: 0.092485
[22:42:28.732] iteration 5286 : loss : 0.049081 cons_dist: 0.001095, loss_weight: 0.092485
[22:42:29.648] iteration 5287 : loss : 0.032340 cons_dist: 0.000484, loss_weight: 0.092485
[22:42:30.565] iteration 5288 : loss : 0.030137 cons_dist: 0.003735, loss_weight: 0.092485
[22:42:31.482] iteration 5289 : loss : 0.039711 cons_dist: 0.003359, loss_weight: 0.092485
[22:42:32.399] iteration 5290 : loss : 0.046794 cons_dist: 0.000359, loss_weight: 0.092485
[22:42:33.316] iteration 5291 : loss : 0.043323 cons_dist: 0.001781, loss_weight: 0.092485
[22:42:34.232] iteration 5292 : loss : 0.059080 cons_dist: 0.001256, loss_weight: 0.092485
[22:42:35.860] iteration 5293 : loss : 0.036798 cons_dist: 0.005084, loss_weight: 0.092485
[22:42:36.778] iteration 5294 : loss : 0.053837 cons_dist: 0.001229, loss_weight: 0.092485
[22:42:37.696] iteration 5295 : loss : 0.037870 cons_dist: 0.002663, loss_weight: 0.092485
[22:42:38.615] iteration 5296 : loss : 0.047735 cons_dist: 0.007390, loss_weight: 0.092485
[22:42:39.533] iteration 5297 : loss : 0.041607 cons_dist: 0.001595, loss_weight: 0.092485
[22:42:40.450] iteration 5298 : loss : 0.052071 cons_dist: 0.028040, loss_weight: 0.092485
[22:42:41.371] iteration 5299 : loss : 0.032613 cons_dist: 0.002208, loss_weight: 0.092485
[22:42:42.289] iteration 5300 : loss : 0.041513 cons_dist: 0.002844, loss_weight: 0.092485
[22:42:43.368] iteration 5301 : loss : 0.032875 cons_dist: 0.001116, loss_weight: 0.092485
[22:42:44.286] iteration 5302 : loss : 0.039402 cons_dist: 0.001873, loss_weight: 0.092485
[22:42:45.204] iteration 5303 : loss : 0.048257 cons_dist: 0.006046, loss_weight: 0.092485
[22:42:46.121] iteration 5304 : loss : 0.047510 cons_dist: 0.008423, loss_weight: 0.092485
[22:42:47.692] iteration 5305 : loss : 0.036554 cons_dist: 0.003715, loss_weight: 0.092485
[22:42:48.609] iteration 5306 : loss : 0.040872 cons_dist: 0.006127, loss_weight: 0.092485
[22:42:49.527] iteration 5307 : loss : 0.046315 cons_dist: 0.002370, loss_weight: 0.092485
[22:42:50.445] iteration 5308 : loss : 0.063758 cons_dist: 0.001627, loss_weight: 0.092485
[22:42:51.366] iteration 5309 : loss : 0.045626 cons_dist: 0.006841, loss_weight: 0.092485
[22:42:52.283] iteration 5310 : loss : 0.041165 cons_dist: 0.002742, loss_weight: 0.092485
[22:42:53.200] iteration 5311 : loss : 0.036565 cons_dist: 0.006636, loss_weight: 0.092485
[22:42:54.117] iteration 5312 : loss : 0.046982 cons_dist: 0.000843, loss_weight: 0.092485
[22:42:55.033] iteration 5313 : loss : 0.041507 cons_dist: 0.007213, loss_weight: 0.092485
[22:42:55.950] iteration 5314 : loss : 0.038075 cons_dist: 0.046614, loss_weight: 0.092485
[22:42:56.867] iteration 5315 : loss : 0.051935 cons_dist: 0.001747, loss_weight: 0.092485
[22:42:57.786] iteration 5316 : loss : 0.040661 cons_dist: 0.003823, loss_weight: 0.092485
[22:42:59.306] iteration 5317 : loss : 0.185478 cons_dist: 0.002078, loss_weight: 0.092485
[22:43:00.222] iteration 5318 : loss : 0.057838 cons_dist: 0.006544, loss_weight: 0.092485
[22:43:01.139] iteration 5319 : loss : 0.030376 cons_dist: 0.002178, loss_weight: 0.092485
[22:43:02.055] iteration 5320 : loss : 0.041181 cons_dist: 0.001717, loss_weight: 0.092485
[22:43:02.972] iteration 5321 : loss : 0.032025 cons_dist: 0.011149, loss_weight: 0.092485
[22:43:03.888] iteration 5322 : loss : 0.056779 cons_dist: 0.001461, loss_weight: 0.092485
[22:43:04.804] iteration 5323 : loss : 0.033766 cons_dist: 0.000562, loss_weight: 0.092485
[22:43:05.720] iteration 5324 : loss : 0.034088 cons_dist: 0.005368, loss_weight: 0.092485
[22:43:06.637] iteration 5325 : loss : 0.043623 cons_dist: 0.030854, loss_weight: 0.092485
[22:43:07.555] iteration 5326 : loss : 0.052366 cons_dist: 0.007068, loss_weight: 0.092485
[22:43:08.472] iteration 5327 : loss : 0.045628 cons_dist: 0.001465, loss_weight: 0.092485
[22:43:09.391] iteration 5328 : loss : 0.039352 cons_dist: 0.000681, loss_weight: 0.092485
[22:43:10.968] iteration 5329 : loss : 0.042549 cons_dist: 0.003223, loss_weight: 0.092485
[22:43:11.886] iteration 5330 : loss : 0.040030 cons_dist: 0.001174, loss_weight: 0.092485
[22:43:12.804] iteration 5331 : loss : 0.027020 cons_dist: 0.000944, loss_weight: 0.092485
[22:43:13.722] iteration 5332 : loss : 0.054441 cons_dist: 0.002616, loss_weight: 0.092485
[22:43:14.640] iteration 5333 : loss : 0.055599 cons_dist: 0.004988, loss_weight: 0.092485
[22:43:15.556] iteration 5334 : loss : 0.040403 cons_dist: 0.001615, loss_weight: 0.092485
[22:43:16.472] iteration 5335 : loss : 0.048171 cons_dist: 0.001574, loss_weight: 0.092485
[22:43:17.389] iteration 5336 : loss : 0.043276 cons_dist: 0.007207, loss_weight: 0.092485
[22:43:18.305] iteration 5337 : loss : 0.060476 cons_dist: 0.000714, loss_weight: 0.092485
[22:43:19.223] iteration 5338 : loss : 0.042057 cons_dist: 0.005571, loss_weight: 0.092485
[22:43:20.139] iteration 5339 : loss : 0.054093 cons_dist: 0.006381, loss_weight: 0.092485
[22:43:21.058] iteration 5340 : loss : 0.039287 cons_dist: 0.007635, loss_weight: 0.092485
[22:43:22.564] iteration 5341 : loss : 0.067641 cons_dist: 0.002252, loss_weight: 0.092485
[22:43:23.481] iteration 5342 : loss : 0.038189 cons_dist: 0.000981, loss_weight: 0.092485
[22:43:24.399] iteration 5343 : loss : 0.050430 cons_dist: 0.002145, loss_weight: 0.092485
[22:43:25.318] iteration 5344 : loss : 0.044945 cons_dist: 0.000508, loss_weight: 0.092485
[22:43:26.237] iteration 5345 : loss : 0.031524 cons_dist: 0.000849, loss_weight: 0.092485
[22:43:27.153] iteration 5346 : loss : 0.062359 cons_dist: 0.002320, loss_weight: 0.092485
[22:43:28.070] iteration 5347 : loss : 0.051331 cons_dist: 0.001552, loss_weight: 0.092485
[22:43:28.986] iteration 5348 : loss : 0.043974 cons_dist: 0.001778, loss_weight: 0.092485
[22:43:29.903] iteration 5349 : loss : 0.037064 cons_dist: 0.004243, loss_weight: 0.092485
[22:43:30.819] iteration 5350 : loss : 0.041491 cons_dist: 0.001967, loss_weight: 0.092485
[22:43:31.888] iteration 5351 : loss : 0.038643 cons_dist: 0.005141, loss_weight: 0.092485
[22:43:32.807] iteration 5352 : loss : 0.038623 cons_dist: 0.002392, loss_weight: 0.092485
[22:43:34.319] iteration 5353 : loss : 0.038666 cons_dist: 0.004607, loss_weight: 0.092485
[22:43:35.237] iteration 5354 : loss : 0.034521 cons_dist: 0.002834, loss_weight: 0.092485
[22:43:36.156] iteration 5355 : loss : 0.044612 cons_dist: 0.002136, loss_weight: 0.092485
[22:43:37.075] iteration 5356 : loss : 0.047545 cons_dist: 0.001016, loss_weight: 0.092485
[22:43:37.993] iteration 5357 : loss : 0.044874 cons_dist: 0.004048, loss_weight: 0.092485
[22:43:38.912] iteration 5358 : loss : 0.033976 cons_dist: 0.000927, loss_weight: 0.092485
[22:43:39.830] iteration 5359 : loss : 0.039606 cons_dist: 0.002381, loss_weight: 0.092485
[22:43:40.748] iteration 5360 : loss : 0.038464 cons_dist: 0.005501, loss_weight: 0.092485
[22:43:41.666] iteration 5361 : loss : 0.040209 cons_dist: 0.001116, loss_weight: 0.092485
[22:43:42.583] iteration 5362 : loss : 0.035969 cons_dist: 0.006900, loss_weight: 0.092485
[22:43:43.501] iteration 5363 : loss : 0.071723 cons_dist: 0.004162, loss_weight: 0.092485
[22:43:44.420] iteration 5364 : loss : 0.167865 cons_dist: 0.020853, loss_weight: 0.092485
[22:43:45.994] iteration 5365 : loss : 0.036050 cons_dist: 0.003482, loss_weight: 0.092485
[22:43:46.911] iteration 5366 : loss : 0.046909 cons_dist: 0.004016, loss_weight: 0.092485
[22:43:47.829] iteration 5367 : loss : 0.044322 cons_dist: 0.009837, loss_weight: 0.092485
[22:43:48.745] iteration 5368 : loss : 0.061618 cons_dist: 0.002772, loss_weight: 0.092485
[22:43:49.662] iteration 5369 : loss : 0.242832 cons_dist: 0.006837, loss_weight: 0.092485
[22:43:50.580] iteration 5370 : loss : 0.037132 cons_dist: 0.000902, loss_weight: 0.092485
[22:43:51.499] iteration 5371 : loss : 0.048347 cons_dist: 0.000916, loss_weight: 0.092485
[22:43:52.415] iteration 5372 : loss : 0.027214 cons_dist: 0.002343, loss_weight: 0.092485
[22:43:53.331] iteration 5373 : loss : 0.047353 cons_dist: 0.006102, loss_weight: 0.092485
[22:43:54.248] iteration 5374 : loss : 0.048484 cons_dist: 0.002743, loss_weight: 0.092485
[22:43:55.167] iteration 5375 : loss : 0.049177 cons_dist: 0.001091, loss_weight: 0.092485
[22:43:56.085] iteration 5376 : loss : 0.048205 cons_dist: 0.000343, loss_weight: 0.092485
[22:43:57.661] iteration 5377 : loss : 0.043932 cons_dist: 0.002430, loss_weight: 0.092485
[22:43:58.579] iteration 5378 : loss : 0.042609 cons_dist: 0.001290, loss_weight: 0.092485
[22:43:59.498] iteration 5379 : loss : 0.043855 cons_dist: 0.001318, loss_weight: 0.092485
[22:44:00.415] iteration 5380 : loss : 0.055662 cons_dist: 0.013977, loss_weight: 0.092485
[22:44:01.333] iteration 5381 : loss : 0.041118 cons_dist: 0.002885, loss_weight: 0.092485
[22:44:02.249] iteration 5382 : loss : 0.033002 cons_dist: 0.000667, loss_weight: 0.092485
[22:44:03.167] iteration 5383 : loss : 0.040892 cons_dist: 0.003000, loss_weight: 0.092485
[22:44:04.084] iteration 5384 : loss : 0.039923 cons_dist: 0.002538, loss_weight: 0.092485
[22:44:05.001] iteration 5385 : loss : 0.047256 cons_dist: 0.006103, loss_weight: 0.092485
[22:44:05.918] iteration 5386 : loss : 0.041914 cons_dist: 0.001571, loss_weight: 0.092485
[22:44:06.834] iteration 5387 : loss : 0.042157 cons_dist: 0.002805, loss_weight: 0.092485
[22:44:07.751] iteration 5388 : loss : 0.049386 cons_dist: 0.001899, loss_weight: 0.092485
[22:44:09.450] iteration 5389 : loss : 0.047036 cons_dist: 0.003794, loss_weight: 0.092485
[22:44:10.371] iteration 5390 : loss : 0.035808 cons_dist: 0.007554, loss_weight: 0.092485
[22:44:11.289] iteration 5391 : loss : 0.053592 cons_dist: 0.001957, loss_weight: 0.092485
[22:44:12.207] iteration 5392 : loss : 0.045706 cons_dist: 0.001195, loss_weight: 0.092485
[22:44:13.126] iteration 5393 : loss : 0.043284 cons_dist: 0.002903, loss_weight: 0.092485
[22:44:14.043] iteration 5394 : loss : 0.052712 cons_dist: 0.004850, loss_weight: 0.092485
[22:44:14.958] iteration 5395 : loss : 0.051222 cons_dist: 0.001247, loss_weight: 0.092485
[22:44:15.876] iteration 5396 : loss : 0.039516 cons_dist: 0.008604, loss_weight: 0.092485
[22:44:16.792] iteration 5397 : loss : 0.037370 cons_dist: 0.001325, loss_weight: 0.092485
[22:44:17.709] iteration 5398 : loss : 0.041305 cons_dist: 0.027575, loss_weight: 0.092485
[22:44:18.626] iteration 5399 : loss : 0.033733 cons_dist: 0.004692, loss_weight: 0.092485
[22:44:19.546] iteration 5400 : loss : 0.035057 cons_dist: 0.008769, loss_weight: 0.092485
[22:44:22.439] iteration 5401 : loss : 0.063225 cons_dist: 0.002201, loss_weight: 0.095123
[22:44:23.356] iteration 5402 : loss : 0.037447 cons_dist: 0.002064, loss_weight: 0.095123
[22:44:24.273] iteration 5403 : loss : 0.041983 cons_dist: 0.001659, loss_weight: 0.095123
[22:44:25.192] iteration 5404 : loss : 0.064626 cons_dist: 0.043551, loss_weight: 0.095123
[22:44:26.110] iteration 5405 : loss : 0.040061 cons_dist: 0.000542, loss_weight: 0.095123
[22:44:27.027] iteration 5406 : loss : 0.040464 cons_dist: 0.001037, loss_weight: 0.095123
[22:44:27.947] iteration 5407 : loss : 0.037361 cons_dist: 0.006848, loss_weight: 0.095123
[22:44:28.889] iteration 5408 : loss : 0.034767 cons_dist: 0.000564, loss_weight: 0.095123
[22:44:29.807] iteration 5409 : loss : 0.038989 cons_dist: 0.001253, loss_weight: 0.095123
[22:44:30.724] iteration 5410 : loss : 0.041735 cons_dist: 0.004931, loss_weight: 0.095123
[22:44:31.641] iteration 5411 : loss : 0.037955 cons_dist: 0.020424, loss_weight: 0.095123
[22:44:32.559] iteration 5412 : loss : 0.039596 cons_dist: 0.003186, loss_weight: 0.095123
[22:44:34.039] iteration 5413 : loss : 0.068535 cons_dist: 0.002129, loss_weight: 0.095123
[22:44:34.958] iteration 5414 : loss : 0.059212 cons_dist: 0.001115, loss_weight: 0.095123
[22:44:35.877] iteration 5415 : loss : 0.047334 cons_dist: 0.003411, loss_weight: 0.095123
[22:44:36.794] iteration 5416 : loss : 0.050019 cons_dist: 0.007844, loss_weight: 0.095123
[22:44:37.712] iteration 5417 : loss : 0.033725 cons_dist: 0.005734, loss_weight: 0.095123
[22:44:38.630] iteration 5418 : loss : 0.044652 cons_dist: 0.002696, loss_weight: 0.095123
[22:44:39.547] iteration 5419 : loss : 0.046308 cons_dist: 0.000791, loss_weight: 0.095123
[22:44:40.464] iteration 5420 : loss : 0.051899 cons_dist: 0.042548, loss_weight: 0.095123
[22:44:41.382] iteration 5421 : loss : 0.038177 cons_dist: 0.001899, loss_weight: 0.095123
[22:44:42.300] iteration 5422 : loss : 0.042205 cons_dist: 0.003666, loss_weight: 0.095123
[22:44:43.218] iteration 5423 : loss : 0.041607 cons_dist: 0.002623, loss_weight: 0.095123
[22:44:44.136] iteration 5424 : loss : 0.039510 cons_dist: 0.000976, loss_weight: 0.095123
[22:44:45.721] iteration 5425 : loss : 0.043104 cons_dist: 0.001771, loss_weight: 0.095123
[22:44:46.638] iteration 5426 : loss : 0.046410 cons_dist: 0.002138, loss_weight: 0.095123
[22:44:47.556] iteration 5427 : loss : 0.039392 cons_dist: 0.001144, loss_weight: 0.095123
[22:44:48.474] iteration 5428 : loss : 0.043525 cons_dist: 0.009111, loss_weight: 0.095123
[22:44:49.393] iteration 5429 : loss : 0.040528 cons_dist: 0.001997, loss_weight: 0.095123
[22:44:50.312] iteration 5430 : loss : 0.044209 cons_dist: 0.001413, loss_weight: 0.095123
[22:44:51.230] iteration 5431 : loss : 0.038775 cons_dist: 0.002419, loss_weight: 0.095123
[22:44:52.155] iteration 5432 : loss : 0.037510 cons_dist: 0.003755, loss_weight: 0.095123
[22:44:53.072] iteration 5433 : loss : 0.032730 cons_dist: 0.001868, loss_weight: 0.095123
[22:44:53.989] iteration 5434 : loss : 0.039997 cons_dist: 0.004751, loss_weight: 0.095123
[22:44:54.907] iteration 5435 : loss : 0.046824 cons_dist: 0.010454, loss_weight: 0.095123
[22:44:55.825] iteration 5436 : loss : 0.045565 cons_dist: 0.002253, loss_weight: 0.095123
[22:44:57.340] iteration 5437 : loss : 0.036487 cons_dist: 0.008346, loss_weight: 0.095123
[22:44:58.257] iteration 5438 : loss : 0.044443 cons_dist: 0.000716, loss_weight: 0.095123
[22:44:59.174] iteration 5439 : loss : 0.035821 cons_dist: 0.003762, loss_weight: 0.095123
[22:45:00.091] iteration 5440 : loss : 0.047111 cons_dist: 0.004702, loss_weight: 0.095123
[22:45:01.008] iteration 5441 : loss : 0.048817 cons_dist: 0.011783, loss_weight: 0.095123
[22:45:01.926] iteration 5442 : loss : 0.049920 cons_dist: 0.001104, loss_weight: 0.095123
[22:45:02.844] iteration 5443 : loss : 0.126437 cons_dist: 0.001099, loss_weight: 0.095123
[22:45:03.761] iteration 5444 : loss : 0.037204 cons_dist: 0.000774, loss_weight: 0.095123
[22:45:04.679] iteration 5445 : loss : 0.046569 cons_dist: 0.000444, loss_weight: 0.095123
[22:45:05.596] iteration 5446 : loss : 0.041074 cons_dist: 0.000898, loss_weight: 0.095123
[22:45:06.513] iteration 5447 : loss : 0.048504 cons_dist: 0.007048, loss_weight: 0.095123
[22:45:07.431] iteration 5448 : loss : 0.031907 cons_dist: 0.004640, loss_weight: 0.095123
[22:45:09.099] iteration 5449 : loss : 0.047862 cons_dist: 0.007180, loss_weight: 0.095123
[22:45:10.015] iteration 5450 : loss : 0.038506 cons_dist: 0.006490, loss_weight: 0.095123
[22:45:11.087] iteration 5451 : loss : 0.050695 cons_dist: 0.001456, loss_weight: 0.095123
[22:45:12.006] iteration 5452 : loss : 0.039072 cons_dist: 0.004977, loss_weight: 0.095123
[22:45:12.924] iteration 5453 : loss : 0.034873 cons_dist: 0.002374, loss_weight: 0.095123
[22:45:13.843] iteration 5454 : loss : 0.057566 cons_dist: 0.002434, loss_weight: 0.095123
[22:45:14.761] iteration 5455 : loss : 0.045443 cons_dist: 0.000831, loss_weight: 0.095123
[22:45:15.679] iteration 5456 : loss : 0.040870 cons_dist: 0.002751, loss_weight: 0.095123
[22:45:16.597] iteration 5457 : loss : 0.037333 cons_dist: 0.002750, loss_weight: 0.095123
[22:45:17.516] iteration 5458 : loss : 0.046497 cons_dist: 0.002097, loss_weight: 0.095123
[22:45:18.433] iteration 5459 : loss : 0.044649 cons_dist: 0.006703, loss_weight: 0.095123
[22:45:19.350] iteration 5460 : loss : 0.035759 cons_dist: 0.000438, loss_weight: 0.095123
[22:45:20.989] iteration 5461 : loss : 0.049861 cons_dist: 0.002409, loss_weight: 0.095123
[22:45:21.908] iteration 5462 : loss : 0.036311 cons_dist: 0.003155, loss_weight: 0.095123
[22:45:22.825] iteration 5463 : loss : 0.041480 cons_dist: 0.002340, loss_weight: 0.095123
[22:45:23.743] iteration 5464 : loss : 0.159995 cons_dist: 0.006377, loss_weight: 0.095123
[22:45:24.659] iteration 5465 : loss : 0.040573 cons_dist: 0.005166, loss_weight: 0.095123
[22:45:25.578] iteration 5466 : loss : 0.225558 cons_dist: 0.005409, loss_weight: 0.095123
[22:45:26.497] iteration 5467 : loss : 0.040083 cons_dist: 0.001789, loss_weight: 0.095123
[22:45:27.413] iteration 5468 : loss : 0.034832 cons_dist: 0.004674, loss_weight: 0.095123
[22:45:28.329] iteration 5469 : loss : 0.079558 cons_dist: 0.000589, loss_weight: 0.095123
[22:45:29.245] iteration 5470 : loss : 0.046069 cons_dist: 0.000694, loss_weight: 0.095123
[22:45:30.161] iteration 5471 : loss : 0.030069 cons_dist: 0.004401, loss_weight: 0.095123
[22:45:31.077] iteration 5472 : loss : 0.074754 cons_dist: 0.035350, loss_weight: 0.095123
[22:45:32.577] iteration 5473 : loss : 0.033795 cons_dist: 0.003995, loss_weight: 0.095123
[22:45:33.494] iteration 5474 : loss : 0.040331 cons_dist: 0.007192, loss_weight: 0.095123
[22:45:34.412] iteration 5475 : loss : 0.039873 cons_dist: 0.001311, loss_weight: 0.095123
[22:45:35.330] iteration 5476 : loss : 0.038562 cons_dist: 0.000988, loss_weight: 0.095123
[22:45:36.247] iteration 5477 : loss : 0.034084 cons_dist: 0.001989, loss_weight: 0.095123
[22:45:37.163] iteration 5478 : loss : 0.052783 cons_dist: 0.000458, loss_weight: 0.095123
[22:45:38.081] iteration 5479 : loss : 0.194243 cons_dist: 0.002339, loss_weight: 0.095123
[22:45:39.000] iteration 5480 : loss : 0.031897 cons_dist: 0.001874, loss_weight: 0.095123
[22:45:39.917] iteration 5481 : loss : 0.033468 cons_dist: 0.004227, loss_weight: 0.095123
[22:45:40.834] iteration 5482 : loss : 0.049454 cons_dist: 0.001793, loss_weight: 0.095123
[22:45:41.751] iteration 5483 : loss : 0.032448 cons_dist: 0.002667, loss_weight: 0.095123
[22:45:42.669] iteration 5484 : loss : 0.044675 cons_dist: 0.004003, loss_weight: 0.095123
[22:45:44.237] iteration 5485 : loss : 0.041243 cons_dist: 0.006006, loss_weight: 0.095123
[22:45:45.156] iteration 5486 : loss : 0.053964 cons_dist: 0.003385, loss_weight: 0.095123
[22:45:46.073] iteration 5487 : loss : 0.060500 cons_dist: 0.003425, loss_weight: 0.095123
[22:45:46.990] iteration 5488 : loss : 0.034093 cons_dist: 0.001868, loss_weight: 0.095123
[22:45:47.905] iteration 5489 : loss : 0.036584 cons_dist: 0.000790, loss_weight: 0.095123
[22:45:48.822] iteration 5490 : loss : 0.052869 cons_dist: 0.001099, loss_weight: 0.095123
[22:45:49.740] iteration 5491 : loss : 0.032674 cons_dist: 0.002899, loss_weight: 0.095123
[22:45:50.657] iteration 5492 : loss : 0.046788 cons_dist: 0.002551, loss_weight: 0.095123
[22:45:51.573] iteration 5493 : loss : 0.045508 cons_dist: 0.006941, loss_weight: 0.095123
[22:45:52.491] iteration 5494 : loss : 0.034288 cons_dist: 0.001747, loss_weight: 0.095123
[22:45:53.408] iteration 5495 : loss : 0.036808 cons_dist: 0.010939, loss_weight: 0.095123
[22:45:54.326] iteration 5496 : loss : 0.047335 cons_dist: 0.001871, loss_weight: 0.095123
[22:45:55.949] iteration 5497 : loss : 0.039217 cons_dist: 0.002298, loss_weight: 0.095123
[22:45:56.868] iteration 5498 : loss : 0.049035 cons_dist: 0.002143, loss_weight: 0.095123
[22:45:57.786] iteration 5499 : loss : 0.060135 cons_dist: 0.002871, loss_weight: 0.095123
[22:45:58.706] iteration 5500 : loss : 0.043501 cons_dist: 0.005104, loss_weight: 0.095123
[22:45:59.776] iteration 5501 : loss : 0.039710 cons_dist: 0.001074, loss_weight: 0.095123
[22:46:00.692] iteration 5502 : loss : 0.039085 cons_dist: 0.002103, loss_weight: 0.095123
[22:46:01.609] iteration 5503 : loss : 0.039028 cons_dist: 0.006489, loss_weight: 0.095123
[22:46:02.526] iteration 5504 : loss : 0.051292 cons_dist: 0.002295, loss_weight: 0.095123
[22:46:03.443] iteration 5505 : loss : 0.037762 cons_dist: 0.001127, loss_weight: 0.095123
[22:46:04.360] iteration 5506 : loss : 0.048189 cons_dist: 0.001527, loss_weight: 0.095123
[22:46:05.277] iteration 5507 : loss : 0.046691 cons_dist: 0.039350, loss_weight: 0.095123
[22:46:06.196] iteration 5508 : loss : 0.048532 cons_dist: 0.002793, loss_weight: 0.095123
[22:46:07.776] iteration 5509 : loss : 0.038892 cons_dist: 0.001236, loss_weight: 0.095123
[22:46:08.694] iteration 5510 : loss : 0.035687 cons_dist: 0.003311, loss_weight: 0.095123
[22:46:09.612] iteration 5511 : loss : 0.039496 cons_dist: 0.012369, loss_weight: 0.095123
[22:46:10.530] iteration 5512 : loss : 0.040085 cons_dist: 0.002589, loss_weight: 0.095123
[22:46:11.448] iteration 5513 : loss : 0.030709 cons_dist: 0.001162, loss_weight: 0.095123
[22:46:12.366] iteration 5514 : loss : 0.047375 cons_dist: 0.001414, loss_weight: 0.095123
[22:46:13.285] iteration 5515 : loss : 0.047971 cons_dist: 0.007461, loss_weight: 0.095123
[22:46:14.203] iteration 5516 : loss : 0.042826 cons_dist: 0.000869, loss_weight: 0.095123
[22:46:15.119] iteration 5517 : loss : 0.036428 cons_dist: 0.012468, loss_weight: 0.095123
[22:46:16.036] iteration 5518 : loss : 0.033008 cons_dist: 0.005289, loss_weight: 0.095123
[22:46:16.953] iteration 5519 : loss : 0.046775 cons_dist: 0.004635, loss_weight: 0.095123
[22:46:17.870] iteration 5520 : loss : 0.043254 cons_dist: 0.001600, loss_weight: 0.095123
[22:46:19.527] iteration 5521 : loss : 0.050149 cons_dist: 0.012374, loss_weight: 0.095123
[22:46:20.444] iteration 5522 : loss : 0.033565 cons_dist: 0.004965, loss_weight: 0.095123
[22:46:21.362] iteration 5523 : loss : 0.037347 cons_dist: 0.000952, loss_weight: 0.095123
[22:46:22.281] iteration 5524 : loss : 0.038626 cons_dist: 0.000750, loss_weight: 0.095123
[22:46:23.199] iteration 5525 : loss : 0.043727 cons_dist: 0.001275, loss_weight: 0.095123
[22:46:24.117] iteration 5526 : loss : 0.033566 cons_dist: 0.001717, loss_weight: 0.095123
[22:46:25.035] iteration 5527 : loss : 0.065787 cons_dist: 0.001813, loss_weight: 0.095123
[22:46:25.953] iteration 5528 : loss : 0.049480 cons_dist: 0.000963, loss_weight: 0.095123
[22:46:26.870] iteration 5529 : loss : 0.056917 cons_dist: 0.000973, loss_weight: 0.095123
[22:46:27.791] iteration 5530 : loss : 0.036919 cons_dist: 0.014358, loss_weight: 0.095123
[22:46:28.708] iteration 5531 : loss : 0.034726 cons_dist: 0.000905, loss_weight: 0.095123
[22:46:29.625] iteration 5532 : loss : 0.044216 cons_dist: 0.009599, loss_weight: 0.095123
[22:46:31.268] iteration 5533 : loss : 0.068449 cons_dist: 0.003603, loss_weight: 0.095123
[22:46:32.185] iteration 5534 : loss : 0.038718 cons_dist: 0.003664, loss_weight: 0.095123
[22:46:33.103] iteration 5535 : loss : 0.035134 cons_dist: 0.001972, loss_weight: 0.095123
[22:46:34.021] iteration 5536 : loss : 0.042742 cons_dist: 0.006025, loss_weight: 0.095123
[22:46:34.939] iteration 5537 : loss : 0.035730 cons_dist: 0.005840, loss_weight: 0.095123
[22:46:35.855] iteration 5538 : loss : 0.043365 cons_dist: 0.002485, loss_weight: 0.095123
[22:46:36.772] iteration 5539 : loss : 0.047169 cons_dist: 0.002788, loss_weight: 0.095123
[22:46:37.689] iteration 5540 : loss : 0.035349 cons_dist: 0.000926, loss_weight: 0.095123
[22:46:38.610] iteration 5541 : loss : 0.051662 cons_dist: 0.004417, loss_weight: 0.095123
[22:46:39.528] iteration 5542 : loss : 0.039771 cons_dist: 0.000993, loss_weight: 0.095123
[22:46:40.445] iteration 5543 : loss : 0.042504 cons_dist: 0.005099, loss_weight: 0.095123
[22:46:41.362] iteration 5544 : loss : 0.074640 cons_dist: 0.005216, loss_weight: 0.095123
[22:46:43.002] iteration 5545 : loss : 0.038780 cons_dist: 0.003784, loss_weight: 0.095123
[22:46:43.920] iteration 5546 : loss : 0.231090 cons_dist: 0.006560, loss_weight: 0.095123
[22:46:44.839] iteration 5547 : loss : 0.043037 cons_dist: 0.002732, loss_weight: 0.095123
[22:46:45.757] iteration 5548 : loss : 0.053150 cons_dist: 0.001557, loss_weight: 0.095123
[22:46:46.675] iteration 5549 : loss : 0.033964 cons_dist: 0.004181, loss_weight: 0.095123
[22:46:47.592] iteration 5550 : loss : 0.050336 cons_dist: 0.029058, loss_weight: 0.095123
[22:46:48.656] iteration 5551 : loss : 0.036878 cons_dist: 0.001218, loss_weight: 0.097227
[22:46:49.571] iteration 5552 : loss : 0.045057 cons_dist: 0.003595, loss_weight: 0.097227
[22:46:50.488] iteration 5553 : loss : 0.034029 cons_dist: 0.002923, loss_weight: 0.097227
[22:46:51.404] iteration 5554 : loss : 0.049472 cons_dist: 0.001085, loss_weight: 0.097227
[22:46:52.322] iteration 5555 : loss : 0.042598 cons_dist: 0.003137, loss_weight: 0.097227
[22:46:53.237] iteration 5556 : loss : 0.046852 cons_dist: 0.002357, loss_weight: 0.097227
[22:46:54.853] iteration 5557 : loss : 0.043712 cons_dist: 0.001826, loss_weight: 0.097227
[22:46:55.772] iteration 5558 : loss : 0.033635 cons_dist: 0.005041, loss_weight: 0.097227
[22:46:56.691] iteration 5559 : loss : 0.052377 cons_dist: 0.000665, loss_weight: 0.097227
[22:46:57.609] iteration 5560 : loss : 0.033429 cons_dist: 0.002291, loss_weight: 0.097227
[22:46:58.527] iteration 5561 : loss : 0.036157 cons_dist: 0.001466, loss_weight: 0.097227
[22:46:59.447] iteration 5562 : loss : 0.036701 cons_dist: 0.011418, loss_weight: 0.097227
[22:47:00.364] iteration 5563 : loss : 0.034422 cons_dist: 0.001943, loss_weight: 0.097227
[22:47:01.281] iteration 5564 : loss : 0.061978 cons_dist: 0.000565, loss_weight: 0.097227
[22:47:02.198] iteration 5565 : loss : 0.046644 cons_dist: 0.000577, loss_weight: 0.097227
[22:47:03.116] iteration 5566 : loss : 0.211235 cons_dist: 0.001424, loss_weight: 0.097227
[22:47:04.034] iteration 5567 : loss : 0.053121 cons_dist: 0.007326, loss_weight: 0.097227
[22:47:04.954] iteration 5568 : loss : 0.059612 cons_dist: 0.004687, loss_weight: 0.097227
[22:47:06.560] iteration 5569 : loss : 0.038268 cons_dist: 0.001531, loss_weight: 0.097227
[22:47:07.480] iteration 5570 : loss : 0.058707 cons_dist: 0.024120, loss_weight: 0.097227
[22:47:08.398] iteration 5571 : loss : 0.045369 cons_dist: 0.001663, loss_weight: 0.097227
[22:47:09.317] iteration 5572 : loss : 0.047320 cons_dist: 0.004561, loss_weight: 0.097227
[22:47:10.234] iteration 5573 : loss : 0.038013 cons_dist: 0.001907, loss_weight: 0.097227
[22:47:11.152] iteration 5574 : loss : 0.036005 cons_dist: 0.018597, loss_weight: 0.097227
[22:47:12.070] iteration 5575 : loss : 0.036513 cons_dist: 0.005961, loss_weight: 0.097227
[22:47:12.988] iteration 5576 : loss : 0.035727 cons_dist: 0.003846, loss_weight: 0.097227
[22:47:13.907] iteration 5577 : loss : 0.041510 cons_dist: 0.008283, loss_weight: 0.097227
[22:47:14.824] iteration 5578 : loss : 0.046648 cons_dist: 0.006350, loss_weight: 0.097227
[22:47:15.742] iteration 5579 : loss : 0.030012 cons_dist: 0.003073, loss_weight: 0.097227
[22:47:16.660] iteration 5580 : loss : 0.050897 cons_dist: 0.000474, loss_weight: 0.097227
[22:47:18.285] iteration 5581 : loss : 0.051207 cons_dist: 0.000525, loss_weight: 0.097227
[22:47:19.202] iteration 5582 : loss : 0.037449 cons_dist: 0.000829, loss_weight: 0.097227
[22:47:20.120] iteration 5583 : loss : 0.042895 cons_dist: 0.002324, loss_weight: 0.097227
[22:47:21.037] iteration 5584 : loss : 0.049986 cons_dist: 0.003752, loss_weight: 0.097227
[22:47:21.956] iteration 5585 : loss : 0.033245 cons_dist: 0.001728, loss_weight: 0.097227
[22:47:22.874] iteration 5586 : loss : 0.040647 cons_dist: 0.002630, loss_weight: 0.097227
[22:47:23.792] iteration 5587 : loss : 0.035162 cons_dist: 0.001006, loss_weight: 0.097227
[22:47:24.711] iteration 5588 : loss : 0.056074 cons_dist: 0.001505, loss_weight: 0.097227
[22:47:25.629] iteration 5589 : loss : 0.044981 cons_dist: 0.002007, loss_weight: 0.097227
[22:47:26.547] iteration 5590 : loss : 0.041856 cons_dist: 0.002497, loss_weight: 0.097227
[22:47:27.465] iteration 5591 : loss : 0.058500 cons_dist: 0.033846, loss_weight: 0.097227
[22:47:28.383] iteration 5592 : loss : 0.035905 cons_dist: 0.003901, loss_weight: 0.097227
[22:47:30.013] iteration 5593 : loss : 0.073841 cons_dist: 0.000965, loss_weight: 0.097227
[22:47:30.930] iteration 5594 : loss : 0.042736 cons_dist: 0.001919, loss_weight: 0.097227
[22:47:31.848] iteration 5595 : loss : 0.040318 cons_dist: 0.001766, loss_weight: 0.097227
[22:47:32.764] iteration 5596 : loss : 0.039659 cons_dist: 0.000784, loss_weight: 0.097227
[22:47:33.680] iteration 5597 : loss : 0.032783 cons_dist: 0.000931, loss_weight: 0.097227
[22:47:34.596] iteration 5598 : loss : 0.040579 cons_dist: 0.004408, loss_weight: 0.097227
[22:47:35.515] iteration 5599 : loss : 0.066130 cons_dist: 0.012202, loss_weight: 0.097227
[22:47:36.432] iteration 5600 : loss : 0.038242 cons_dist: 0.006078, loss_weight: 0.097227
[22:47:38.688] iteration 5601 : loss : 0.055940 cons_dist: 0.050328, loss_weight: 0.097227
[22:47:39.604] iteration 5602 : loss : 0.058668 cons_dist: 0.011604, loss_weight: 0.097227
[22:47:40.522] iteration 5603 : loss : 0.046584 cons_dist: 0.002118, loss_weight: 0.097227
[22:47:41.439] iteration 5604 : loss : 0.045199 cons_dist: 0.001791, loss_weight: 0.097227
[22:47:43.052] iteration 5605 : loss : 0.052289 cons_dist: 0.001993, loss_weight: 0.097227
[22:47:43.970] iteration 5606 : loss : 0.042693 cons_dist: 0.002468, loss_weight: 0.097227
[22:47:44.887] iteration 5607 : loss : 0.068229 cons_dist: 0.000857, loss_weight: 0.097227
[22:47:45.806] iteration 5608 : loss : 0.033295 cons_dist: 0.008852, loss_weight: 0.097227
[22:47:46.724] iteration 5609 : loss : 0.048054 cons_dist: 0.001789, loss_weight: 0.097227
[22:47:47.642] iteration 5610 : loss : 0.035854 cons_dist: 0.047826, loss_weight: 0.097227
[22:47:48.559] iteration 5611 : loss : 0.045154 cons_dist: 0.001934, loss_weight: 0.097227
[22:47:49.477] iteration 5612 : loss : 0.038879 cons_dist: 0.004402, loss_weight: 0.097227
[22:47:50.395] iteration 5613 : loss : 0.042278 cons_dist: 0.003803, loss_weight: 0.097227
[22:47:51.313] iteration 5614 : loss : 0.060420 cons_dist: 0.003642, loss_weight: 0.097227
[22:47:52.230] iteration 5615 : loss : 0.039336 cons_dist: 0.002415, loss_weight: 0.097227
[22:47:53.149] iteration 5616 : loss : 0.040245 cons_dist: 0.003229, loss_weight: 0.097227
[22:47:54.793] iteration 5617 : loss : 0.048755 cons_dist: 0.000750, loss_weight: 0.097227
[22:47:55.712] iteration 5618 : loss : 0.037720 cons_dist: 0.002232, loss_weight: 0.097227
[22:47:56.630] iteration 5619 : loss : 0.043365 cons_dist: 0.021879, loss_weight: 0.097227
[22:47:57.549] iteration 5620 : loss : 0.043549 cons_dist: 0.001506, loss_weight: 0.097227
[22:47:58.467] iteration 5621 : loss : 0.040825 cons_dist: 0.002081, loss_weight: 0.097227
[22:47:59.384] iteration 5622 : loss : 0.049937 cons_dist: 0.002774, loss_weight: 0.097227
[22:48:00.302] iteration 5623 : loss : 0.059689 cons_dist: 0.020868, loss_weight: 0.097227
[22:48:01.219] iteration 5624 : loss : 0.035544 cons_dist: 0.001120, loss_weight: 0.097227
[22:48:02.138] iteration 5625 : loss : 0.059978 cons_dist: 0.001664, loss_weight: 0.097227
[22:48:03.055] iteration 5626 : loss : 0.036489 cons_dist: 0.010864, loss_weight: 0.097227
[22:48:03.975] iteration 5627 : loss : 0.041949 cons_dist: 0.003483, loss_weight: 0.097227
[22:48:04.894] iteration 5628 : loss : 0.040396 cons_dist: 0.006394, loss_weight: 0.097227
[22:48:06.468] iteration 5629 : loss : 0.041069 cons_dist: 0.003439, loss_weight: 0.097227
[22:48:07.383] iteration 5630 : loss : 0.046171 cons_dist: 0.001432, loss_weight: 0.097227
[22:48:08.300] iteration 5631 : loss : 0.041187 cons_dist: 0.009834, loss_weight: 0.097227
[22:48:09.218] iteration 5632 : loss : 0.061756 cons_dist: 0.004076, loss_weight: 0.097227
[22:48:10.135] iteration 5633 : loss : 0.041542 cons_dist: 0.002732, loss_weight: 0.097227
[22:48:11.053] iteration 5634 : loss : 0.040786 cons_dist: 0.001342, loss_weight: 0.097227
[22:48:11.971] iteration 5635 : loss : 0.044000 cons_dist: 0.002081, loss_weight: 0.097227
[22:48:12.890] iteration 5636 : loss : 0.047268 cons_dist: 0.003102, loss_weight: 0.097227
[22:48:13.808] iteration 5637 : loss : 0.057002 cons_dist: 0.001890, loss_weight: 0.097227
[22:48:14.725] iteration 5638 : loss : 0.045833 cons_dist: 0.003841, loss_weight: 0.097227
[22:48:15.643] iteration 5639 : loss : 0.052596 cons_dist: 0.002022, loss_weight: 0.097227
[22:48:16.560] iteration 5640 : loss : 0.034086 cons_dist: 0.002855, loss_weight: 0.097227
[22:48:18.095] iteration 5641 : loss : 0.041140 cons_dist: 0.001917, loss_weight: 0.097227
[22:48:19.012] iteration 5642 : loss : 0.063071 cons_dist: 0.001904, loss_weight: 0.097227
[22:48:19.927] iteration 5643 : loss : 0.059911 cons_dist: 0.001549, loss_weight: 0.097227
[22:48:20.843] iteration 5644 : loss : 0.042503 cons_dist: 0.001469, loss_weight: 0.097227
[22:48:21.760] iteration 5645 : loss : 0.040078 cons_dist: 0.001512, loss_weight: 0.097227
[22:48:22.675] iteration 5646 : loss : 0.048585 cons_dist: 0.003675, loss_weight: 0.097227
[22:48:23.592] iteration 5647 : loss : 0.045319 cons_dist: 0.001410, loss_weight: 0.097227
[22:48:24.509] iteration 5648 : loss : 0.068168 cons_dist: 0.002496, loss_weight: 0.097227
[22:48:25.426] iteration 5649 : loss : 0.069224 cons_dist: 0.018658, loss_weight: 0.097227
[22:48:26.343] iteration 5650 : loss : 0.077734 cons_dist: 0.026640, loss_weight: 0.097227
[22:48:27.424] iteration 5651 : loss : 0.039126 cons_dist: 0.002552, loss_weight: 0.097227
[22:48:28.340] iteration 5652 : loss : 0.042763 cons_dist: 0.010276, loss_weight: 0.097227
[22:48:29.993] iteration 5653 : loss : 0.036696 cons_dist: 0.003011, loss_weight: 0.097227
[22:48:30.911] iteration 5654 : loss : 0.037024 cons_dist: 0.003837, loss_weight: 0.097227
[22:48:31.830] iteration 5655 : loss : 0.046260 cons_dist: 0.001803, loss_weight: 0.097227
[22:48:32.748] iteration 5656 : loss : 0.049739 cons_dist: 0.029398, loss_weight: 0.097227
[22:48:33.666] iteration 5657 : loss : 0.048686 cons_dist: 0.001383, loss_weight: 0.097227
[22:48:34.584] iteration 5658 : loss : 0.057646 cons_dist: 0.001163, loss_weight: 0.097227
[22:48:35.502] iteration 5659 : loss : 0.056693 cons_dist: 0.014102, loss_weight: 0.097227
[22:48:36.420] iteration 5660 : loss : 0.052896 cons_dist: 0.004542, loss_weight: 0.097227
[22:48:37.338] iteration 5661 : loss : 0.051301 cons_dist: 0.034267, loss_weight: 0.097227
[22:48:38.256] iteration 5662 : loss : 0.031801 cons_dist: 0.002366, loss_weight: 0.097227
[22:48:39.174] iteration 5663 : loss : 0.042904 cons_dist: 0.000809, loss_weight: 0.097227
[22:48:40.092] iteration 5664 : loss : 0.054143 cons_dist: 0.003669, loss_weight: 0.097227
[22:48:41.748] iteration 5665 : loss : 0.039210 cons_dist: 0.001634, loss_weight: 0.097227
[22:48:42.664] iteration 5666 : loss : 0.040530 cons_dist: 0.003575, loss_weight: 0.097227
[22:48:43.579] iteration 5667 : loss : 0.032120 cons_dist: 0.001653, loss_weight: 0.097227
[22:48:44.495] iteration 5668 : loss : 0.039786 cons_dist: 0.002705, loss_weight: 0.097227
[22:48:45.410] iteration 5669 : loss : 0.139850 cons_dist: 0.001368, loss_weight: 0.097227
[22:48:46.326] iteration 5670 : loss : 0.030045 cons_dist: 0.004323, loss_weight: 0.097227
[22:48:47.242] iteration 5671 : loss : 0.037996 cons_dist: 0.001464, loss_weight: 0.097227
[22:48:48.160] iteration 5672 : loss : 0.047978 cons_dist: 0.005191, loss_weight: 0.097227
[22:48:49.100] iteration 5673 : loss : 0.043427 cons_dist: 0.002509, loss_weight: 0.097227
[22:48:50.015] iteration 5674 : loss : 0.038170 cons_dist: 0.001676, loss_weight: 0.097227
[22:48:50.933] iteration 5675 : loss : 0.065509 cons_dist: 0.001383, loss_weight: 0.097227
[22:48:51.852] iteration 5676 : loss : 0.048162 cons_dist: 0.002433, loss_weight: 0.097227
[22:48:53.353] iteration 5677 : loss : 0.034593 cons_dist: 0.001828, loss_weight: 0.097227
[22:48:54.270] iteration 5678 : loss : 0.039791 cons_dist: 0.002950, loss_weight: 0.097227
[22:48:55.188] iteration 5679 : loss : 0.041003 cons_dist: 0.000575, loss_weight: 0.097227
[22:48:56.107] iteration 5680 : loss : 0.048816 cons_dist: 0.004593, loss_weight: 0.097227
[22:48:57.025] iteration 5681 : loss : 0.059892 cons_dist: 0.000857, loss_weight: 0.097227
[22:48:57.942] iteration 5682 : loss : 0.043566 cons_dist: 0.002819, loss_weight: 0.097227
[22:48:58.861] iteration 5683 : loss : 0.045628 cons_dist: 0.002128, loss_weight: 0.097227
[22:48:59.780] iteration 5684 : loss : 0.052867 cons_dist: 0.000514, loss_weight: 0.097227
[22:49:00.697] iteration 5685 : loss : 0.063579 cons_dist: 0.021719, loss_weight: 0.097227
[22:49:01.614] iteration 5686 : loss : 0.039075 cons_dist: 0.001283, loss_weight: 0.097227
[22:49:02.531] iteration 5687 : loss : 0.043872 cons_dist: 0.016836, loss_weight: 0.097227
[22:49:03.448] iteration 5688 : loss : 0.044657 cons_dist: 0.001674, loss_weight: 0.097227
[22:49:05.131] iteration 5689 : loss : 0.044225 cons_dist: 0.039547, loss_weight: 0.097227
[22:49:06.051] iteration 5690 : loss : 0.044472 cons_dist: 0.003556, loss_weight: 0.097227
[22:49:06.968] iteration 5691 : loss : 0.064734 cons_dist: 0.017896, loss_weight: 0.097227
[22:49:07.884] iteration 5692 : loss : 0.044843 cons_dist: 0.007901, loss_weight: 0.097227
[22:49:08.799] iteration 5693 : loss : 0.046619 cons_dist: 0.007207, loss_weight: 0.097227
[22:49:09.714] iteration 5694 : loss : 0.149336 cons_dist: 0.012641, loss_weight: 0.097227
[22:49:10.630] iteration 5695 : loss : 0.036634 cons_dist: 0.005529, loss_weight: 0.097227
[22:49:11.547] iteration 5696 : loss : 0.033845 cons_dist: 0.002053, loss_weight: 0.097227
[22:49:12.463] iteration 5697 : loss : 0.041522 cons_dist: 0.007065, loss_weight: 0.097227
[22:49:13.380] iteration 5698 : loss : 0.038473 cons_dist: 0.007724, loss_weight: 0.097227
[22:49:14.296] iteration 5699 : loss : 0.054379 cons_dist: 0.005870, loss_weight: 0.097227
[22:49:15.213] iteration 5700 : loss : 0.054467 cons_dist: 0.004836, loss_weight: 0.097227
[22:49:16.900] iteration 5701 : loss : 0.039701 cons_dist: 0.001953, loss_weight: 0.098758
[22:49:17.817] iteration 5702 : loss : 0.049012 cons_dist: 0.003148, loss_weight: 0.098758
[22:49:18.734] iteration 5703 : loss : 0.045550 cons_dist: 0.001581, loss_weight: 0.098758
[22:49:19.650] iteration 5704 : loss : 0.035173 cons_dist: 0.006028, loss_weight: 0.098758
[22:49:20.568] iteration 5705 : loss : 0.052644 cons_dist: 0.000951, loss_weight: 0.098758
[22:49:21.485] iteration 5706 : loss : 0.061358 cons_dist: 0.005839, loss_weight: 0.098758
[22:49:22.403] iteration 5707 : loss : 0.044795 cons_dist: 0.002316, loss_weight: 0.098758
[22:49:23.324] iteration 5708 : loss : 0.035387 cons_dist: 0.001223, loss_weight: 0.098758
[22:49:24.241] iteration 5709 : loss : 0.043102 cons_dist: 0.000989, loss_weight: 0.098758
[22:49:25.157] iteration 5710 : loss : 0.036077 cons_dist: 0.002899, loss_weight: 0.098758
[22:49:26.074] iteration 5711 : loss : 0.061353 cons_dist: 0.006522, loss_weight: 0.098758
[22:49:26.993] iteration 5712 : loss : 0.047289 cons_dist: 0.001429, loss_weight: 0.098758
[22:49:28.557] iteration 5713 : loss : 0.042524 cons_dist: 0.000773, loss_weight: 0.098758
[22:49:29.475] iteration 5714 : loss : 0.054535 cons_dist: 0.021329, loss_weight: 0.098758
[22:49:30.394] iteration 5715 : loss : 0.029286 cons_dist: 0.003315, loss_weight: 0.098758
[22:49:31.312] iteration 5716 : loss : 0.040230 cons_dist: 0.001923, loss_weight: 0.098758
[22:49:32.231] iteration 5717 : loss : 0.037505 cons_dist: 0.001438, loss_weight: 0.098758
[22:49:33.150] iteration 5718 : loss : 0.042648 cons_dist: 0.005724, loss_weight: 0.098758
[22:49:34.068] iteration 5719 : loss : 0.046248 cons_dist: 0.005536, loss_weight: 0.098758
[22:49:34.986] iteration 5720 : loss : 0.038418 cons_dist: 0.004351, loss_weight: 0.098758
[22:49:35.904] iteration 5721 : loss : 0.047483 cons_dist: 0.002033, loss_weight: 0.098758
[22:49:36.821] iteration 5722 : loss : 0.039567 cons_dist: 0.000384, loss_weight: 0.098758
[22:49:37.739] iteration 5723 : loss : 0.073717 cons_dist: 0.003855, loss_weight: 0.098758
[22:49:38.656] iteration 5724 : loss : 0.048774 cons_dist: 0.002374, loss_weight: 0.098758
[22:49:40.184] iteration 5725 : loss : 0.036664 cons_dist: 0.002970, loss_weight: 0.098758
[22:49:41.101] iteration 5726 : loss : 0.049991 cons_dist: 0.001951, loss_weight: 0.098758
[22:49:42.019] iteration 5727 : loss : 0.043546 cons_dist: 0.004124, loss_weight: 0.098758
[22:49:42.936] iteration 5728 : loss : 0.049170 cons_dist: 0.002093, loss_weight: 0.098758
[22:49:43.854] iteration 5729 : loss : 0.033160 cons_dist: 0.004452, loss_weight: 0.098758
[22:49:44.771] iteration 5730 : loss : 0.043901 cons_dist: 0.001911, loss_weight: 0.098758
[22:49:45.689] iteration 5731 : loss : 0.033084 cons_dist: 0.003761, loss_weight: 0.098758
[22:49:46.607] iteration 5732 : loss : 0.050593 cons_dist: 0.002108, loss_weight: 0.098758
[22:49:47.524] iteration 5733 : loss : 0.028855 cons_dist: 0.006305, loss_weight: 0.098758
[22:49:48.442] iteration 5734 : loss : 0.035262 cons_dist: 0.000777, loss_weight: 0.098758
[22:49:49.360] iteration 5735 : loss : 0.041202 cons_dist: 0.005764, loss_weight: 0.098758
[22:49:50.278] iteration 5736 : loss : 0.029293 cons_dist: 0.015564, loss_weight: 0.098758
[22:49:51.831] iteration 5737 : loss : 0.049405 cons_dist: 0.005493, loss_weight: 0.098758
[22:49:52.749] iteration 5738 : loss : 0.037020 cons_dist: 0.004020, loss_weight: 0.098758
[22:49:53.667] iteration 5739 : loss : 0.045183 cons_dist: 0.001818, loss_weight: 0.098758
[22:49:54.586] iteration 5740 : loss : 0.030908 cons_dist: 0.005106, loss_weight: 0.098758
[22:49:55.505] iteration 5741 : loss : 0.041599 cons_dist: 0.005566, loss_weight: 0.098758
[22:49:56.423] iteration 5742 : loss : 0.036302 cons_dist: 0.002704, loss_weight: 0.098758
[22:49:57.341] iteration 5743 : loss : 0.039630 cons_dist: 0.002365, loss_weight: 0.098758
[22:49:58.259] iteration 5744 : loss : 0.049404 cons_dist: 0.000989, loss_weight: 0.098758
[22:49:59.176] iteration 5745 : loss : 0.040297 cons_dist: 0.004393, loss_weight: 0.098758
[22:50:00.095] iteration 5746 : loss : 0.038241 cons_dist: 0.002205, loss_weight: 0.098758
[22:50:01.015] iteration 5747 : loss : 0.038928 cons_dist: 0.037719, loss_weight: 0.098758
[22:50:01.932] iteration 5748 : loss : 0.053003 cons_dist: 0.001358, loss_weight: 0.098758
[22:50:03.584] iteration 5749 : loss : 0.064255 cons_dist: 0.002467, loss_weight: 0.098758
[22:50:04.498] iteration 5750 : loss : 0.034859 cons_dist: 0.001196, loss_weight: 0.098758
[22:50:05.564] iteration 5751 : loss : 0.038455 cons_dist: 0.001295, loss_weight: 0.098758
[22:50:06.480] iteration 5752 : loss : 0.061520 cons_dist: 0.002149, loss_weight: 0.098758
[22:50:07.394] iteration 5753 : loss : 0.034308 cons_dist: 0.000557, loss_weight: 0.098758
[22:50:08.311] iteration 5754 : loss : 0.031899 cons_dist: 0.002202, loss_weight: 0.098758
[22:50:09.229] iteration 5755 : loss : 0.049808 cons_dist: 0.002012, loss_weight: 0.098758
[22:50:10.147] iteration 5756 : loss : 0.036194 cons_dist: 0.012465, loss_weight: 0.098758
[22:50:11.064] iteration 5757 : loss : 0.032602 cons_dist: 0.003973, loss_weight: 0.098758
[22:50:11.980] iteration 5758 : loss : 0.039486 cons_dist: 0.002207, loss_weight: 0.098758
[22:50:12.898] iteration 5759 : loss : 0.063380 cons_dist: 0.001834, loss_weight: 0.098758
[22:50:13.816] iteration 5760 : loss : 0.053822 cons_dist: 0.008192, loss_weight: 0.098758
[22:50:15.443] iteration 5761 : loss : 0.035142 cons_dist: 0.001362, loss_weight: 0.098758
[22:50:16.360] iteration 5762 : loss : 0.039414 cons_dist: 0.022471, loss_weight: 0.098758
[22:50:17.277] iteration 5763 : loss : 0.037802 cons_dist: 0.001754, loss_weight: 0.098758
[22:50:18.194] iteration 5764 : loss : 0.040242 cons_dist: 0.006377, loss_weight: 0.098758
[22:50:19.112] iteration 5765 : loss : 0.046827 cons_dist: 0.009963, loss_weight: 0.098758
[22:50:20.030] iteration 5766 : loss : 0.041392 cons_dist: 0.003660, loss_weight: 0.098758
[22:50:20.947] iteration 5767 : loss : 0.052152 cons_dist: 0.001674, loss_weight: 0.098758
[22:50:21.866] iteration 5768 : loss : 0.050547 cons_dist: 0.001769, loss_weight: 0.098758
[22:50:22.784] iteration 5769 : loss : 0.045260 cons_dist: 0.002759, loss_weight: 0.098758
[22:50:23.702] iteration 5770 : loss : 0.046298 cons_dist: 0.000893, loss_weight: 0.098758
[22:50:24.620] iteration 5771 : loss : 0.052997 cons_dist: 0.006966, loss_weight: 0.098758
[22:50:25.538] iteration 5772 : loss : 0.070386 cons_dist: 0.007552, loss_weight: 0.098758
[22:50:27.144] iteration 5773 : loss : 0.037806 cons_dist: 0.001780, loss_weight: 0.098758
[22:50:28.061] iteration 5774 : loss : 0.214940 cons_dist: 0.002781, loss_weight: 0.098758
[22:50:28.979] iteration 5775 : loss : 0.046732 cons_dist: 0.002022, loss_weight: 0.098758
[22:50:29.897] iteration 5776 : loss : 0.045745 cons_dist: 0.000983, loss_weight: 0.098758
[22:50:30.815] iteration 5777 : loss : 0.045330 cons_dist: 0.001292, loss_weight: 0.098758
[22:50:31.732] iteration 5778 : loss : 0.043073 cons_dist: 0.003425, loss_weight: 0.098758
[22:50:32.650] iteration 5779 : loss : 0.038447 cons_dist: 0.001347, loss_weight: 0.098758
[22:50:33.568] iteration 5780 : loss : 0.044509 cons_dist: 0.045033, loss_weight: 0.098758
[22:50:34.486] iteration 5781 : loss : 0.036782 cons_dist: 0.003056, loss_weight: 0.098758
[22:50:35.404] iteration 5782 : loss : 0.057499 cons_dist: 0.009068, loss_weight: 0.098758
[22:50:36.323] iteration 5783 : loss : 0.046914 cons_dist: 0.002428, loss_weight: 0.098758
[22:50:37.240] iteration 5784 : loss : 0.052477 cons_dist: 0.006955, loss_weight: 0.098758
[22:50:38.743] iteration 5785 : loss : 0.043194 cons_dist: 0.001137, loss_weight: 0.098758
[22:50:39.661] iteration 5786 : loss : 0.035552 cons_dist: 0.038753, loss_weight: 0.098758
[22:50:40.580] iteration 5787 : loss : 0.035086 cons_dist: 0.002156, loss_weight: 0.098758
[22:50:41.502] iteration 5788 : loss : 0.030566 cons_dist: 0.003401, loss_weight: 0.098758
[22:50:42.418] iteration 5789 : loss : 0.057682 cons_dist: 0.002091, loss_weight: 0.098758
[22:50:43.334] iteration 5790 : loss : 0.041425 cons_dist: 0.003924, loss_weight: 0.098758
[22:50:44.252] iteration 5791 : loss : 0.036426 cons_dist: 0.001979, loss_weight: 0.098758
[22:50:45.168] iteration 5792 : loss : 0.042085 cons_dist: 0.006002, loss_weight: 0.098758
[22:50:46.085] iteration 5793 : loss : 0.035262 cons_dist: 0.026668, loss_weight: 0.098758
[22:50:47.002] iteration 5794 : loss : 0.051635 cons_dist: 0.003411, loss_weight: 0.098758
[22:50:47.922] iteration 5795 : loss : 0.040256 cons_dist: 0.054458, loss_weight: 0.098758
[22:50:48.838] iteration 5796 : loss : 0.039881 cons_dist: 0.002861, loss_weight: 0.098758
[22:50:50.459] iteration 5797 : loss : 0.039215 cons_dist: 0.001205, loss_weight: 0.098758
[22:50:51.378] iteration 5798 : loss : 0.046970 cons_dist: 0.006478, loss_weight: 0.098758
[22:50:52.295] iteration 5799 : loss : 0.051459 cons_dist: 0.002363, loss_weight: 0.098758
[22:50:53.213] iteration 5800 : loss : 0.038720 cons_dist: 0.000889, loss_weight: 0.098758
[22:50:55.434] iteration 5801 : loss : 0.038661 cons_dist: 0.043411, loss_weight: 0.098758
[22:50:56.351] iteration 5802 : loss : 0.035987 cons_dist: 0.001944, loss_weight: 0.098758
[22:50:57.267] iteration 5803 : loss : 0.037283 cons_dist: 0.000788, loss_weight: 0.098758
[22:50:58.183] iteration 5804 : loss : 0.045574 cons_dist: 0.003907, loss_weight: 0.098758
[22:50:59.099] iteration 5805 : loss : 0.048329 cons_dist: 0.005529, loss_weight: 0.098758
[22:51:00.015] iteration 5806 : loss : 0.040506 cons_dist: 0.001322, loss_weight: 0.098758
[22:51:00.931] iteration 5807 : loss : 0.036525 cons_dist: 0.002749, loss_weight: 0.098758
[22:51:01.848] iteration 5808 : loss : 0.032361 cons_dist: 0.000944, loss_weight: 0.098758
[22:51:03.345] iteration 5809 : loss : 0.052631 cons_dist: 0.039733, loss_weight: 0.098758
[22:51:04.263] iteration 5810 : loss : 0.038528 cons_dist: 0.043667, loss_weight: 0.098758
[22:51:05.180] iteration 5811 : loss : 0.036181 cons_dist: 0.005060, loss_weight: 0.098758
[22:51:06.098] iteration 5812 : loss : 0.036528 cons_dist: 0.001010, loss_weight: 0.098758
[22:51:07.016] iteration 5813 : loss : 0.034066 cons_dist: 0.004892, loss_weight: 0.098758
[22:51:07.934] iteration 5814 : loss : 0.057410 cons_dist: 0.005286, loss_weight: 0.098758
[22:51:08.852] iteration 5815 : loss : 0.035367 cons_dist: 0.006938, loss_weight: 0.098758
[22:51:09.769] iteration 5816 : loss : 0.045769 cons_dist: 0.002209, loss_weight: 0.098758
[22:51:10.687] iteration 5817 : loss : 0.030995 cons_dist: 0.028597, loss_weight: 0.098758
[22:51:11.605] iteration 5818 : loss : 0.033221 cons_dist: 0.002041, loss_weight: 0.098758
[22:51:12.522] iteration 5819 : loss : 0.042111 cons_dist: 0.000813, loss_weight: 0.098758
[22:51:13.440] iteration 5820 : loss : 0.034295 cons_dist: 0.002355, loss_weight: 0.098758
[22:51:14.953] iteration 5821 : loss : 0.037281 cons_dist: 0.013390, loss_weight: 0.098758
[22:51:15.869] iteration 5822 : loss : 0.042238 cons_dist: 0.002600, loss_weight: 0.098758
[22:51:16.786] iteration 5823 : loss : 0.051581 cons_dist: 0.002189, loss_weight: 0.098758
[22:51:17.703] iteration 5824 : loss : 0.070124 cons_dist: 0.001419, loss_weight: 0.098758
[22:51:18.618] iteration 5825 : loss : 0.054327 cons_dist: 0.000689, loss_weight: 0.098758
[22:51:19.535] iteration 5826 : loss : 0.039175 cons_dist: 0.001554, loss_weight: 0.098758
[22:51:20.450] iteration 5827 : loss : 0.038208 cons_dist: 0.003090, loss_weight: 0.098758
[22:51:21.365] iteration 5828 : loss : 0.044257 cons_dist: 0.001768, loss_weight: 0.098758
[22:51:22.282] iteration 5829 : loss : 0.180374 cons_dist: 0.009273, loss_weight: 0.098758
[22:51:23.199] iteration 5830 : loss : 0.041146 cons_dist: 0.022173, loss_weight: 0.098758
[22:51:24.117] iteration 5831 : loss : 0.037107 cons_dist: 0.001318, loss_weight: 0.098758
[22:51:25.034] iteration 5832 : loss : 0.038183 cons_dist: 0.004663, loss_weight: 0.098758
[22:51:26.541] iteration 5833 : loss : 0.030226 cons_dist: 0.004876, loss_weight: 0.098758
[22:51:27.458] iteration 5834 : loss : 0.039033 cons_dist: 0.003582, loss_weight: 0.098758
[22:51:28.374] iteration 5835 : loss : 0.040067 cons_dist: 0.000936, loss_weight: 0.098758
[22:51:29.290] iteration 5836 : loss : 0.059285 cons_dist: 0.003705, loss_weight: 0.098758
[22:51:30.206] iteration 5837 : loss : 0.049521 cons_dist: 0.003350, loss_weight: 0.098758
[22:51:31.123] iteration 5838 : loss : 0.139950 cons_dist: 0.016135, loss_weight: 0.098758
[22:51:32.040] iteration 5839 : loss : 0.040879 cons_dist: 0.001467, loss_weight: 0.098758
[22:51:32.957] iteration 5840 : loss : 0.062392 cons_dist: 0.002592, loss_weight: 0.098758
[22:51:33.875] iteration 5841 : loss : 0.040738 cons_dist: 0.015412, loss_weight: 0.098758
[22:51:34.793] iteration 5842 : loss : 0.043853 cons_dist: 0.001025, loss_weight: 0.098758
[22:51:35.709] iteration 5843 : loss : 0.036915 cons_dist: 0.001496, loss_weight: 0.098758
[22:51:36.626] iteration 5844 : loss : 0.040301 cons_dist: 0.001972, loss_weight: 0.098758
[22:51:38.129] iteration 5845 : loss : 0.044990 cons_dist: 0.001513, loss_weight: 0.098758
[22:51:39.047] iteration 5846 : loss : 0.031254 cons_dist: 0.007896, loss_weight: 0.098758
[22:51:39.991] iteration 5847 : loss : 0.044500 cons_dist: 0.005817, loss_weight: 0.098758
[22:51:40.910] iteration 5848 : loss : 0.056698 cons_dist: 0.017895, loss_weight: 0.098758
[22:51:41.826] iteration 5849 : loss : 0.055625 cons_dist: 0.000741, loss_weight: 0.098758
[22:51:42.744] iteration 5850 : loss : 0.054582 cons_dist: 0.002252, loss_weight: 0.098758
[22:51:43.828] iteration 5851 : loss : 0.036694 cons_dist: 0.002573, loss_weight: 0.099688
[22:51:44.746] iteration 5852 : loss : 0.048803 cons_dist: 0.000962, loss_weight: 0.099688
[22:51:45.664] iteration 5853 : loss : 0.044975 cons_dist: 0.019703, loss_weight: 0.099688
[22:51:46.582] iteration 5854 : loss : 0.058769 cons_dist: 0.002282, loss_weight: 0.099688
[22:51:47.499] iteration 5855 : loss : 0.047546 cons_dist: 0.020407, loss_weight: 0.099688
[22:51:48.416] iteration 5856 : loss : 0.037459 cons_dist: 0.007357, loss_weight: 0.099688
[22:51:50.065] iteration 5857 : loss : 0.040854 cons_dist: 0.009613, loss_weight: 0.099688
[22:51:50.982] iteration 5858 : loss : 0.038760 cons_dist: 0.005701, loss_weight: 0.099688
[22:51:51.899] iteration 5859 : loss : 0.057496 cons_dist: 0.002051, loss_weight: 0.099688
[22:51:52.816] iteration 5860 : loss : 0.053967 cons_dist: 0.022014, loss_weight: 0.099688
[22:51:53.733] iteration 5861 : loss : 0.043889 cons_dist: 0.002403, loss_weight: 0.099688
[22:51:54.649] iteration 5862 : loss : 0.032117 cons_dist: 0.001549, loss_weight: 0.099688
[22:51:55.567] iteration 5863 : loss : 0.051955 cons_dist: 0.001374, loss_weight: 0.099688
[22:51:56.484] iteration 5864 : loss : 0.039778 cons_dist: 0.001648, loss_weight: 0.099688
[22:51:57.401] iteration 5865 : loss : 0.036445 cons_dist: 0.001521, loss_weight: 0.099688
[22:51:58.317] iteration 5866 : loss : 0.038168 cons_dist: 0.000785, loss_weight: 0.099688
[22:51:59.235] iteration 5867 : loss : 0.047568 cons_dist: 0.007065, loss_weight: 0.099688
[22:52:00.152] iteration 5868 : loss : 0.043659 cons_dist: 0.001976, loss_weight: 0.099688
[22:52:01.732] iteration 5869 : loss : 0.047102 cons_dist: 0.009113, loss_weight: 0.099688
[22:52:02.650] iteration 5870 : loss : 0.228285 cons_dist: 0.001749, loss_weight: 0.099688
[22:52:03.568] iteration 5871 : loss : 0.036639 cons_dist: 0.000730, loss_weight: 0.099688
[22:52:04.488] iteration 5872 : loss : 0.049233 cons_dist: 0.000866, loss_weight: 0.099688
[22:52:05.405] iteration 5873 : loss : 0.034462 cons_dist: 0.001220, loss_weight: 0.099688
[22:52:06.322] iteration 5874 : loss : 0.048476 cons_dist: 0.001159, loss_weight: 0.099688
[22:52:07.238] iteration 5875 : loss : 0.060785 cons_dist: 0.048254, loss_weight: 0.099688
[22:52:08.155] iteration 5876 : loss : 0.035283 cons_dist: 0.001680, loss_weight: 0.099688
[22:52:09.071] iteration 5877 : loss : 0.031930 cons_dist: 0.000598, loss_weight: 0.099688
[22:52:09.987] iteration 5878 : loss : 0.045145 cons_dist: 0.004541, loss_weight: 0.099688
[22:52:10.906] iteration 5879 : loss : 0.041393 cons_dist: 0.001198, loss_weight: 0.099688
[22:52:11.822] iteration 5880 : loss : 0.054795 cons_dist: 0.003721, loss_weight: 0.099688
[22:52:13.353] iteration 5881 : loss : 0.032664 cons_dist: 0.004618, loss_weight: 0.099688
[22:52:14.271] iteration 5882 : loss : 0.057506 cons_dist: 0.001376, loss_weight: 0.099688
[22:52:15.187] iteration 5883 : loss : 0.072162 cons_dist: 0.007558, loss_weight: 0.099688
[22:52:16.103] iteration 5884 : loss : 0.052497 cons_dist: 0.002081, loss_weight: 0.099688
[22:52:17.020] iteration 5885 : loss : 0.049996 cons_dist: 0.002228, loss_weight: 0.099688
[22:52:17.936] iteration 5886 : loss : 0.043561 cons_dist: 0.046403, loss_weight: 0.099688
[22:52:18.849] iteration 5887 : loss : 0.046810 cons_dist: 0.031968, loss_weight: 0.099688
[22:52:19.767] iteration 5888 : loss : 0.047156 cons_dist: 0.002966, loss_weight: 0.099688
[22:52:20.683] iteration 5889 : loss : 0.032839 cons_dist: 0.000616, loss_weight: 0.099688
[22:52:21.600] iteration 5890 : loss : 0.043955 cons_dist: 0.002399, loss_weight: 0.099688
[22:52:22.518] iteration 5891 : loss : 0.037373 cons_dist: 0.001974, loss_weight: 0.099688
[22:52:23.434] iteration 5892 : loss : 0.038810 cons_dist: 0.003872, loss_weight: 0.099688
[22:52:25.012] iteration 5893 : loss : 0.049599 cons_dist: 0.004765, loss_weight: 0.099688
[22:52:25.930] iteration 5894 : loss : 0.040832 cons_dist: 0.003979, loss_weight: 0.099688
[22:52:26.847] iteration 5895 : loss : 0.035522 cons_dist: 0.008814, loss_weight: 0.099688
[22:52:27.766] iteration 5896 : loss : 0.060369 cons_dist: 0.001970, loss_weight: 0.099688
[22:52:28.684] iteration 5897 : loss : 0.044552 cons_dist: 0.007695, loss_weight: 0.099688
[22:52:29.601] iteration 5898 : loss : 0.052803 cons_dist: 0.001113, loss_weight: 0.099688
[22:52:30.519] iteration 5899 : loss : 0.043196 cons_dist: 0.005151, loss_weight: 0.099688
[22:52:31.436] iteration 5900 : loss : 0.038458 cons_dist: 0.007534, loss_weight: 0.099688
[22:52:32.505] iteration 5901 : loss : 0.035032 cons_dist: 0.007141, loss_weight: 0.099688
[22:52:33.421] iteration 5902 : loss : 0.042151 cons_dist: 0.013324, loss_weight: 0.099688
[22:52:34.337] iteration 5903 : loss : 0.052293 cons_dist: 0.001064, loss_weight: 0.099688
[22:52:35.252] iteration 5904 : loss : 0.054847 cons_dist: 0.006373, loss_weight: 0.099688
[22:52:36.851] iteration 5905 : loss : 0.067220 cons_dist: 0.026965, loss_weight: 0.099688
[22:52:37.769] iteration 5906 : loss : 0.055146 cons_dist: 0.002464, loss_weight: 0.099688
[22:52:38.687] iteration 5907 : loss : 0.036222 cons_dist: 0.002153, loss_weight: 0.099688
[22:52:39.641] iteration 5908 : loss : 0.034360 cons_dist: 0.001869, loss_weight: 0.099688
[22:52:40.561] iteration 5909 : loss : 0.041400 cons_dist: 0.000876, loss_weight: 0.099688
[22:52:41.480] iteration 5910 : loss : 0.241224 cons_dist: 0.016699, loss_weight: 0.099688
[22:52:42.398] iteration 5911 : loss : 0.038782 cons_dist: 0.001278, loss_weight: 0.099688
[22:52:43.315] iteration 5912 : loss : 0.043295 cons_dist: 0.003297, loss_weight: 0.099688
[22:52:44.234] iteration 5913 : loss : 0.044946 cons_dist: 0.011877, loss_weight: 0.099688
[22:52:45.152] iteration 5914 : loss : 0.045797 cons_dist: 0.001376, loss_weight: 0.099688
[22:52:46.070] iteration 5915 : loss : 0.044031 cons_dist: 0.001600, loss_weight: 0.099688
[22:52:46.988] iteration 5916 : loss : 0.029823 cons_dist: 0.001290, loss_weight: 0.099688
[22:52:48.593] iteration 5917 : loss : 0.036072 cons_dist: 0.001067, loss_weight: 0.099688
[22:52:49.510] iteration 5918 : loss : 0.040460 cons_dist: 0.001864, loss_weight: 0.099688
[22:52:50.427] iteration 5919 : loss : 0.032612 cons_dist: 0.004362, loss_weight: 0.099688
[22:52:51.345] iteration 5920 : loss : 0.035172 cons_dist: 0.001560, loss_weight: 0.099688
[22:52:52.263] iteration 5921 : loss : 0.032890 cons_dist: 0.001770, loss_weight: 0.099688
[22:52:53.182] iteration 5922 : loss : 0.037599 cons_dist: 0.000741, loss_weight: 0.099688
[22:52:54.100] iteration 5923 : loss : 0.049691 cons_dist: 0.003942, loss_weight: 0.099688
[22:52:55.019] iteration 5924 : loss : 0.038626 cons_dist: 0.004037, loss_weight: 0.099688
[22:52:55.937] iteration 5925 : loss : 0.052719 cons_dist: 0.018738, loss_weight: 0.099688
[22:52:56.855] iteration 5926 : loss : 0.042158 cons_dist: 0.005047, loss_weight: 0.099688
[22:52:57.777] iteration 5927 : loss : 0.049933 cons_dist: 0.004377, loss_weight: 0.099688
[22:52:58.695] iteration 5928 : loss : 0.042667 cons_dist: 0.002207, loss_weight: 0.099688
[22:53:00.209] iteration 5929 : loss : 0.034477 cons_dist: 0.001282, loss_weight: 0.099688
[22:53:01.126] iteration 5930 : loss : 0.039279 cons_dist: 0.000644, loss_weight: 0.099688
[22:53:02.045] iteration 5931 : loss : 0.042095 cons_dist: 0.002255, loss_weight: 0.099688
[22:53:02.964] iteration 5932 : loss : 0.045766 cons_dist: 0.002457, loss_weight: 0.099688
[22:53:03.882] iteration 5933 : loss : 0.061811 cons_dist: 0.001906, loss_weight: 0.099688
[22:53:04.799] iteration 5934 : loss : 0.035405 cons_dist: 0.001579, loss_weight: 0.099688
[22:53:05.717] iteration 5935 : loss : 0.033455 cons_dist: 0.001899, loss_weight: 0.099688
[22:53:06.636] iteration 5936 : loss : 0.038061 cons_dist: 0.001624, loss_weight: 0.099688
[22:53:07.554] iteration 5937 : loss : 0.040325 cons_dist: 0.009950, loss_weight: 0.099688
[22:53:08.473] iteration 5938 : loss : 0.054710 cons_dist: 0.001826, loss_weight: 0.099688
[22:53:09.391] iteration 5939 : loss : 0.057817 cons_dist: 0.027168, loss_weight: 0.099688
[22:53:10.307] iteration 5940 : loss : 0.048184 cons_dist: 0.002093, loss_weight: 0.099688
[22:53:11.891] iteration 5941 : loss : 0.042762 cons_dist: 0.006045, loss_weight: 0.099688
[22:53:12.809] iteration 5942 : loss : 0.035694 cons_dist: 0.002841, loss_weight: 0.099688
[22:53:13.727] iteration 5943 : loss : 0.046531 cons_dist: 0.001098, loss_weight: 0.099688
[22:53:14.645] iteration 5944 : loss : 0.047654 cons_dist: 0.003216, loss_weight: 0.099688
[22:53:15.563] iteration 5945 : loss : 0.030837 cons_dist: 0.001090, loss_weight: 0.099688
[22:53:16.481] iteration 5946 : loss : 0.041456 cons_dist: 0.004165, loss_weight: 0.099688
[22:53:17.397] iteration 5947 : loss : 0.041081 cons_dist: 0.000552, loss_weight: 0.099688
[22:53:18.315] iteration 5948 : loss : 0.039105 cons_dist: 0.002852, loss_weight: 0.099688
[22:53:19.234] iteration 5949 : loss : 0.041621 cons_dist: 0.004085, loss_weight: 0.099688
[22:53:20.153] iteration 5950 : loss : 0.046694 cons_dist: 0.008792, loss_weight: 0.099688
[22:53:21.243] iteration 5951 : loss : 0.043846 cons_dist: 0.002008, loss_weight: 0.099688
[22:53:22.162] iteration 5952 : loss : 0.043497 cons_dist: 0.004557, loss_weight: 0.099688
[22:53:23.845] iteration 5953 : loss : 0.046440 cons_dist: 0.001085, loss_weight: 0.099688
[22:53:24.763] iteration 5954 : loss : 0.034670 cons_dist: 0.002229, loss_weight: 0.099688
[22:53:25.681] iteration 5955 : loss : 0.040220 cons_dist: 0.004031, loss_weight: 0.099688
[22:53:26.600] iteration 5956 : loss : 0.047573 cons_dist: 0.001081, loss_weight: 0.099688
[22:53:27.518] iteration 5957 : loss : 0.045051 cons_dist: 0.000660, loss_weight: 0.099688
[22:53:28.436] iteration 5958 : loss : 0.043162 cons_dist: 0.031054, loss_weight: 0.099688
[22:53:29.354] iteration 5959 : loss : 0.049512 cons_dist: 0.006471, loss_weight: 0.099688
[22:53:30.272] iteration 5960 : loss : 0.040254 cons_dist: 0.001644, loss_weight: 0.099688
[22:53:31.190] iteration 5961 : loss : 0.033716 cons_dist: 0.001472, loss_weight: 0.099688
[22:53:32.108] iteration 5962 : loss : 0.084214 cons_dist: 0.010463, loss_weight: 0.099688
[22:53:33.026] iteration 5963 : loss : 0.031488 cons_dist: 0.002074, loss_weight: 0.099688
[22:53:33.943] iteration 5964 : loss : 0.052853 cons_dist: 0.003007, loss_weight: 0.099688
[22:53:35.604] iteration 5965 : loss : 0.034345 cons_dist: 0.033846, loss_weight: 0.099688
[22:53:36.520] iteration 5966 : loss : 0.046343 cons_dist: 0.001197, loss_weight: 0.099688
[22:53:37.439] iteration 5967 : loss : 0.030196 cons_dist: 0.001055, loss_weight: 0.099688
[22:53:38.357] iteration 5968 : loss : 0.053682 cons_dist: 0.001622, loss_weight: 0.099688
[22:53:39.274] iteration 5969 : loss : 0.033134 cons_dist: 0.003456, loss_weight: 0.099688
[22:53:40.192] iteration 5970 : loss : 0.045249 cons_dist: 0.008524, loss_weight: 0.099688
[22:53:41.110] iteration 5971 : loss : 0.047608 cons_dist: 0.005894, loss_weight: 0.099688
[22:53:42.028] iteration 5972 : loss : 0.038171 cons_dist: 0.000765, loss_weight: 0.099688
[22:53:42.946] iteration 5973 : loss : 0.051998 cons_dist: 0.002614, loss_weight: 0.099688
[22:53:43.863] iteration 5974 : loss : 0.035917 cons_dist: 0.001263, loss_weight: 0.099688
[22:53:44.782] iteration 5975 : loss : 0.047746 cons_dist: 0.001470, loss_weight: 0.099688
[22:53:45.699] iteration 5976 : loss : 0.034718 cons_dist: 0.000961, loss_weight: 0.099688
[22:53:47.303] iteration 5977 : loss : 0.035730 cons_dist: 0.002538, loss_weight: 0.099688
[22:53:48.223] iteration 5978 : loss : 0.034579 cons_dist: 0.001861, loss_weight: 0.099688
[22:53:49.141] iteration 5979 : loss : 0.041094 cons_dist: 0.016400, loss_weight: 0.099688
[22:53:50.061] iteration 5980 : loss : 0.034655 cons_dist: 0.002200, loss_weight: 0.099688
[22:53:50.978] iteration 5981 : loss : 0.050120 cons_dist: 0.002175, loss_weight: 0.099688
[22:53:51.899] iteration 5982 : loss : 0.046418 cons_dist: 0.001643, loss_weight: 0.099688
[22:53:52.816] iteration 5983 : loss : 0.053871 cons_dist: 0.048458, loss_weight: 0.099688
[22:53:53.733] iteration 5984 : loss : 0.033393 cons_dist: 0.000676, loss_weight: 0.099688
[22:53:54.651] iteration 5985 : loss : 0.048255 cons_dist: 0.008620, loss_weight: 0.099688
[22:53:55.569] iteration 5986 : loss : 0.040189 cons_dist: 0.002616, loss_weight: 0.099688
[22:53:56.486] iteration 5987 : loss : 0.050006 cons_dist: 0.000858, loss_weight: 0.099688
[22:53:57.404] iteration 5988 : loss : 0.042775 cons_dist: 0.003827, loss_weight: 0.099688
[22:53:58.911] iteration 5989 : loss : 0.038434 cons_dist: 0.001297, loss_weight: 0.099688
[22:53:59.828] iteration 5990 : loss : 0.039026 cons_dist: 0.001455, loss_weight: 0.099688
[22:54:00.746] iteration 5991 : loss : 0.043887 cons_dist: 0.001219, loss_weight: 0.099688
[22:54:01.665] iteration 5992 : loss : 0.038271 cons_dist: 0.002156, loss_weight: 0.099688
[22:54:02.582] iteration 5993 : loss : 0.046525 cons_dist: 0.000905, loss_weight: 0.099688
[22:54:03.501] iteration 5994 : loss : 0.049085 cons_dist: 0.003019, loss_weight: 0.099688
[22:54:04.420] iteration 5995 : loss : 0.037232 cons_dist: 0.006284, loss_weight: 0.099688
[22:54:05.337] iteration 5996 : loss : 0.040483 cons_dist: 0.005419, loss_weight: 0.099688
[22:54:06.256] iteration 5997 : loss : 0.042385 cons_dist: 0.003320, loss_weight: 0.099688
[22:54:07.174] iteration 5998 : loss : 0.028855 cons_dist: 0.000853, loss_weight: 0.099688
[22:54:08.091] iteration 5999 : loss : 0.052997 cons_dist: 0.001541, loss_weight: 0.099688
[22:54:09.009] iteration 6000 : loss : 0.036733 cons_dist: 0.015761, loss_weight: 0.099688
[22:54:09.235] save model to model/LA_vnet_25_labeled/UAMT/iter_6000.pth
[22:54:10.621] save model to model/LA_vnet_25_labeled/UAMT/iter_6000.pth