[903821]: / model / LA_vnet_25_labeled / MT / log.txt

Download this file

6009 lines (6008 with data), 545.8 kB

[15:56:27.712] Namespace(base_lr=0.01, batch_size=4, consistency=0.1, consistency_rampup=40.0, consistency_type='mse', dataset_name='LA', deterministic=1, ema_decay=0.99, exp='vnet', gpu='1', labeled_bs=2, labelnum=25, max_iterations=6000, max_samples=123, model='MT', root_path='/data/omnisky/postgraduate/Yb/data_set/LASet/data', seed=1337)
[15:56:30.467] 12 itertations per epoch
[15:56:31.950] iteration 1 : loss : 0.648477 cons_dist: 0.044150, loss_weight: 0.000674
[15:56:32.431] iteration 2 : loss : 0.709815 cons_dist: 0.025248, loss_weight: 0.000674
[15:56:32.911] iteration 3 : loss : 0.649714 cons_dist: 0.017119, loss_weight: 0.000674
[15:56:33.391] iteration 4 : loss : 0.653799 cons_dist: 0.023971, loss_weight: 0.000674
[15:56:33.874] iteration 5 : loss : 0.585859 cons_dist: 0.036402, loss_weight: 0.000674
[15:56:34.359] iteration 6 : loss : 0.570653 cons_dist: 0.034763, loss_weight: 0.000674
[15:56:34.842] iteration 7 : loss : 0.580970 cons_dist: 0.029051, loss_weight: 0.000674
[15:56:35.326] iteration 8 : loss : 0.642537 cons_dist: 0.036631, loss_weight: 0.000674
[15:56:35.810] iteration 9 : loss : 0.525277 cons_dist: 0.031650, loss_weight: 0.000674
[15:56:36.295] iteration 10 : loss : 0.572216 cons_dist: 0.032061, loss_weight: 0.000674
[15:56:36.779] iteration 11 : loss : 0.560257 cons_dist: 0.023680, loss_weight: 0.000674
[15:56:37.262] iteration 12 : loss : 0.492421 cons_dist: 0.034016, loss_weight: 0.000674
[15:56:38.428] iteration 13 : loss : 0.548039 cons_dist: 0.029095, loss_weight: 0.000674
[15:56:38.913] iteration 14 : loss : 0.577137 cons_dist: 0.045273, loss_weight: 0.000674
[15:56:39.397] iteration 15 : loss : 0.470491 cons_dist: 0.053113, loss_weight: 0.000674
[15:56:39.882] iteration 16 : loss : 0.491094 cons_dist: 0.085049, loss_weight: 0.000674
[15:56:40.367] iteration 17 : loss : 0.477193 cons_dist: 0.022060, loss_weight: 0.000674
[15:56:40.851] iteration 18 : loss : 0.491101 cons_dist: 0.013518, loss_weight: 0.000674
[15:56:41.337] iteration 19 : loss : 0.569773 cons_dist: 0.041151, loss_weight: 0.000674
[15:56:41.823] iteration 20 : loss : 0.417073 cons_dist: 0.052431, loss_weight: 0.000674
[15:56:42.309] iteration 21 : loss : 0.539605 cons_dist: 0.020000, loss_weight: 0.000674
[15:56:42.794] iteration 22 : loss : 0.455076 cons_dist: 0.021375, loss_weight: 0.000674
[15:56:43.277] iteration 23 : loss : 0.500122 cons_dist: 0.029475, loss_weight: 0.000674
[15:56:43.765] iteration 24 : loss : 0.459218 cons_dist: 0.045018, loss_weight: 0.000674
[15:56:44.807] iteration 25 : loss : 0.511832 cons_dist: 0.009777, loss_weight: 0.000674
[15:56:45.295] iteration 26 : loss : 0.457977 cons_dist: 0.019040, loss_weight: 0.000674
[15:56:45.784] iteration 27 : loss : 0.424166 cons_dist: 0.022586, loss_weight: 0.000674
[15:56:46.273] iteration 28 : loss : 0.536869 cons_dist: 0.008872, loss_weight: 0.000674
[15:56:46.762] iteration 29 : loss : 0.436043 cons_dist: 0.041638, loss_weight: 0.000674
[15:56:47.251] iteration 30 : loss : 0.408515 cons_dist: 0.026659, loss_weight: 0.000674
[15:56:47.740] iteration 31 : loss : 0.418751 cons_dist: 0.042765, loss_weight: 0.000674
[15:56:48.229] iteration 32 : loss : 0.505696 cons_dist: 0.041467, loss_weight: 0.000674
[15:56:48.719] iteration 33 : loss : 0.477593 cons_dist: 0.020972, loss_weight: 0.000674
[15:56:49.210] iteration 34 : loss : 0.392926 cons_dist: 0.006496, loss_weight: 0.000674
[15:56:49.700] iteration 35 : loss : 0.457566 cons_dist: 0.044271, loss_weight: 0.000674
[15:56:50.191] iteration 36 : loss : 0.497561 cons_dist: 0.041152, loss_weight: 0.000674
[15:56:51.374] iteration 37 : loss : 0.461411 cons_dist: 0.014133, loss_weight: 0.000674
[15:56:51.865] iteration 38 : loss : 0.445934 cons_dist: 0.036819, loss_weight: 0.000674
[15:56:52.356] iteration 39 : loss : 0.386164 cons_dist: 0.015422, loss_weight: 0.000674
[15:56:52.847] iteration 40 : loss : 0.411082 cons_dist: 0.022163, loss_weight: 0.000674
[15:56:53.337] iteration 41 : loss : 0.471823 cons_dist: 0.016071, loss_weight: 0.000674
[15:56:53.830] iteration 42 : loss : 0.475148 cons_dist: 0.025940, loss_weight: 0.000674
[15:56:54.321] iteration 43 : loss : 0.488992 cons_dist: 0.006365, loss_weight: 0.000674
[15:56:54.811] iteration 44 : loss : 0.454688 cons_dist: 0.024240, loss_weight: 0.000674
[15:56:55.302] iteration 45 : loss : 0.474545 cons_dist: 0.019787, loss_weight: 0.000674
[15:56:55.793] iteration 46 : loss : 0.442238 cons_dist: 0.023929, loss_weight: 0.000674
[15:56:56.286] iteration 47 : loss : 0.418999 cons_dist: 0.022504, loss_weight: 0.000674
[15:56:56.779] iteration 48 : loss : 0.391609 cons_dist: 0.016974, loss_weight: 0.000674
[15:56:57.877] iteration 49 : loss : 0.410659 cons_dist: 0.010969, loss_weight: 0.000674
[15:56:58.370] iteration 50 : loss : 0.359104 cons_dist: 0.020274, loss_weight: 0.000674
[15:56:58.862] iteration 51 : loss : 0.418731 cons_dist: 0.013001, loss_weight: 0.000674
[15:56:59.353] iteration 52 : loss : 0.381354 cons_dist: 0.016904, loss_weight: 0.000674
[15:56:59.845] iteration 53 : loss : 0.381915 cons_dist: 0.044375, loss_weight: 0.000674
[15:57:00.336] iteration 54 : loss : 0.436514 cons_dist: 0.028224, loss_weight: 0.000674
[15:57:00.828] iteration 55 : loss : 0.451901 cons_dist: 0.020617, loss_weight: 0.000674
[15:57:01.322] iteration 56 : loss : 0.426974 cons_dist: 0.029302, loss_weight: 0.000674
[15:57:01.814] iteration 57 : loss : 0.400519 cons_dist: 0.029110, loss_weight: 0.000674
[15:57:02.307] iteration 58 : loss : 0.432629 cons_dist: 0.021573, loss_weight: 0.000674
[15:57:02.800] iteration 59 : loss : 0.365300 cons_dist: 0.030445, loss_weight: 0.000674
[15:57:03.291] iteration 60 : loss : 0.338824 cons_dist: 0.023359, loss_weight: 0.000674
[15:57:04.349] iteration 61 : loss : 0.356231 cons_dist: 0.013227, loss_weight: 0.000674
[15:57:04.837] iteration 62 : loss : 0.414767 cons_dist: 0.035914, loss_weight: 0.000674
[15:57:05.330] iteration 63 : loss : 0.408223 cons_dist: 0.035547, loss_weight: 0.000674
[15:57:05.823] iteration 64 : loss : 0.491308 cons_dist: 0.026142, loss_weight: 0.000674
[15:57:06.316] iteration 65 : loss : 0.418071 cons_dist: 0.027987, loss_weight: 0.000674
[15:57:06.808] iteration 66 : loss : 0.385550 cons_dist: 0.022990, loss_weight: 0.000674
[15:57:07.297] iteration 67 : loss : 0.411125 cons_dist: 0.043140, loss_weight: 0.000674
[15:57:07.791] iteration 68 : loss : 0.395957 cons_dist: 0.015035, loss_weight: 0.000674
[15:57:08.285] iteration 69 : loss : 0.356897 cons_dist: 0.018758, loss_weight: 0.000674
[15:57:08.781] iteration 70 : loss : 0.323601 cons_dist: 0.039703, loss_weight: 0.000674
[15:57:09.275] iteration 71 : loss : 0.383676 cons_dist: 0.021489, loss_weight: 0.000674
[15:57:09.769] iteration 72 : loss : 0.366240 cons_dist: 0.027232, loss_weight: 0.000674
[15:57:10.819] iteration 73 : loss : 0.359850 cons_dist: 0.022482, loss_weight: 0.000674
[15:57:11.313] iteration 74 : loss : 0.430192 cons_dist: 0.061481, loss_weight: 0.000674
[15:57:11.807] iteration 75 : loss : 0.321042 cons_dist: 0.022424, loss_weight: 0.000674
[15:57:12.301] iteration 76 : loss : 0.347472 cons_dist: 0.039269, loss_weight: 0.000674
[15:57:12.796] iteration 77 : loss : 0.382438 cons_dist: 0.025227, loss_weight: 0.000674
[15:57:13.289] iteration 78 : loss : 0.358113 cons_dist: 0.050389, loss_weight: 0.000674
[15:57:13.784] iteration 79 : loss : 0.385775 cons_dist: 0.031213, loss_weight: 0.000674
[15:57:14.278] iteration 80 : loss : 0.272690 cons_dist: 0.019309, loss_weight: 0.000674
[15:57:14.771] iteration 81 : loss : 0.379270 cons_dist: 0.026147, loss_weight: 0.000674
[15:57:15.265] iteration 82 : loss : 0.316919 cons_dist: 0.051965, loss_weight: 0.000674
[15:57:15.759] iteration 83 : loss : 0.503321 cons_dist: 0.030285, loss_weight: 0.000674
[15:57:16.254] iteration 84 : loss : 0.451086 cons_dist: 0.048170, loss_weight: 0.000674
[15:57:17.337] iteration 85 : loss : 0.338464 cons_dist: 0.033277, loss_weight: 0.000674
[15:57:17.831] iteration 86 : loss : 0.351295 cons_dist: 0.033827, loss_weight: 0.000674
[15:57:18.325] iteration 87 : loss : 0.354481 cons_dist: 0.036570, loss_weight: 0.000674
[15:57:18.819] iteration 88 : loss : 0.409962 cons_dist: 0.041982, loss_weight: 0.000674
[15:57:19.312] iteration 89 : loss : 0.344759 cons_dist: 0.043198, loss_weight: 0.000674
[15:57:19.806] iteration 90 : loss : 0.368085 cons_dist: 0.021286, loss_weight: 0.000674
[15:57:20.300] iteration 91 : loss : 0.307361 cons_dist: 0.039350, loss_weight: 0.000674
[15:57:20.794] iteration 92 : loss : 0.372177 cons_dist: 0.021101, loss_weight: 0.000674
[15:57:21.287] iteration 93 : loss : 0.367131 cons_dist: 0.047356, loss_weight: 0.000674
[15:57:21.780] iteration 94 : loss : 0.356172 cons_dist: 0.023712, loss_weight: 0.000674
[15:57:22.274] iteration 95 : loss : 0.334040 cons_dist: 0.031416, loss_weight: 0.000674
[15:57:22.768] iteration 96 : loss : 0.294406 cons_dist: 0.032064, loss_weight: 0.000674
[15:57:23.852] iteration 97 : loss : 0.229262 cons_dist: 0.033155, loss_weight: 0.000674
[15:57:24.345] iteration 98 : loss : 0.331929 cons_dist: 0.040775, loss_weight: 0.000674
[15:57:24.838] iteration 99 : loss : 0.265603 cons_dist: 0.046609, loss_weight: 0.000674
[15:57:25.332] iteration 100 : loss : 0.334522 cons_dist: 0.064605, loss_weight: 0.000674
[15:57:25.826] iteration 101 : loss : 0.251576 cons_dist: 0.035708, loss_weight: 0.000674
[15:57:26.320] iteration 102 : loss : 0.336359 cons_dist: 0.027269, loss_weight: 0.000674
[15:57:26.813] iteration 103 : loss : 0.318532 cons_dist: 0.056472, loss_weight: 0.000674
[15:57:27.307] iteration 104 : loss : 0.367804 cons_dist: 0.057696, loss_weight: 0.000674
[15:57:27.801] iteration 105 : loss : 0.296974 cons_dist: 0.040820, loss_weight: 0.000674
[15:57:28.295] iteration 106 : loss : 0.256728 cons_dist: 0.027058, loss_weight: 0.000674
[15:57:28.789] iteration 107 : loss : 0.390670 cons_dist: 0.030224, loss_weight: 0.000674
[15:57:29.282] iteration 108 : loss : 0.283724 cons_dist: 0.031906, loss_weight: 0.000674
[15:57:30.379] iteration 109 : loss : 0.318193 cons_dist: 0.013188, loss_weight: 0.000674
[15:57:30.872] iteration 110 : loss : 0.321989 cons_dist: 0.040445, loss_weight: 0.000674
[15:57:31.365] iteration 111 : loss : 0.252262 cons_dist: 0.025816, loss_weight: 0.000674
[15:57:31.859] iteration 112 : loss : 0.276297 cons_dist: 0.026259, loss_weight: 0.000674
[15:57:32.355] iteration 113 : loss : 0.350535 cons_dist: 0.054691, loss_weight: 0.000674
[15:57:32.848] iteration 114 : loss : 0.469497 cons_dist: 0.025910, loss_weight: 0.000674
[15:57:33.342] iteration 115 : loss : 0.380641 cons_dist: 0.024348, loss_weight: 0.000674
[15:57:33.836] iteration 116 : loss : 0.258691 cons_dist: 0.038025, loss_weight: 0.000674
[15:57:34.330] iteration 117 : loss : 0.333549 cons_dist: 0.029778, loss_weight: 0.000674
[15:57:34.823] iteration 118 : loss : 0.447818 cons_dist: 0.044200, loss_weight: 0.000674
[15:57:35.317] iteration 119 : loss : 0.312722 cons_dist: 0.029076, loss_weight: 0.000674
[15:57:35.812] iteration 120 : loss : 0.378245 cons_dist: 0.031124, loss_weight: 0.000674
[15:57:36.916] iteration 121 : loss : 0.293497 cons_dist: 0.029302, loss_weight: 0.000674
[15:57:37.408] iteration 122 : loss : 0.272785 cons_dist: 0.058348, loss_weight: 0.000674
[15:57:37.900] iteration 123 : loss : 0.243119 cons_dist: 0.022363, loss_weight: 0.000674
[15:57:38.393] iteration 124 : loss : 0.310323 cons_dist: 0.028418, loss_weight: 0.000674
[15:57:38.887] iteration 125 : loss : 0.300452 cons_dist: 0.029556, loss_weight: 0.000674
[15:57:39.379] iteration 126 : loss : 0.373803 cons_dist: 0.034184, loss_weight: 0.000674
[15:57:39.869] iteration 127 : loss : 0.289454 cons_dist: 0.026570, loss_weight: 0.000674
[15:57:40.361] iteration 128 : loss : 0.399014 cons_dist: 0.039122, loss_weight: 0.000674
[15:57:40.852] iteration 129 : loss : 0.246836 cons_dist: 0.067886, loss_weight: 0.000674
[15:57:41.345] iteration 130 : loss : 0.325384 cons_dist: 0.089152, loss_weight: 0.000674
[15:57:41.838] iteration 131 : loss : 0.295964 cons_dist: 0.049815, loss_weight: 0.000674
[15:57:42.330] iteration 132 : loss : 0.280650 cons_dist: 0.046948, loss_weight: 0.000674
[15:57:43.455] iteration 133 : loss : 0.358560 cons_dist: 0.039207, loss_weight: 0.000674
[15:57:43.944] iteration 134 : loss : 0.318291 cons_dist: 0.041923, loss_weight: 0.000674
[15:57:44.435] iteration 135 : loss : 0.298840 cons_dist: 0.037540, loss_weight: 0.000674
[15:57:44.927] iteration 136 : loss : 0.283336 cons_dist: 0.035514, loss_weight: 0.000674
[15:57:45.420] iteration 137 : loss : 0.256806 cons_dist: 0.034815, loss_weight: 0.000674
[15:57:45.913] iteration 138 : loss : 0.298737 cons_dist: 0.022775, loss_weight: 0.000674
[15:57:46.406] iteration 139 : loss : 0.293647 cons_dist: 0.032764, loss_weight: 0.000674
[15:57:46.898] iteration 140 : loss : 0.238255 cons_dist: 0.033133, loss_weight: 0.000674
[15:57:47.390] iteration 141 : loss : 0.269490 cons_dist: 0.036220, loss_weight: 0.000674
[15:57:47.881] iteration 142 : loss : 0.242558 cons_dist: 0.020722, loss_weight: 0.000674
[15:57:48.374] iteration 143 : loss : 0.272343 cons_dist: 0.061971, loss_weight: 0.000674
[15:57:48.867] iteration 144 : loss : 0.229818 cons_dist: 0.021104, loss_weight: 0.000674
[15:57:49.918] iteration 145 : loss : 0.338999 cons_dist: 0.034648, loss_weight: 0.000674
[15:57:50.411] iteration 146 : loss : 0.383322 cons_dist: 0.026913, loss_weight: 0.000674
[15:57:50.903] iteration 147 : loss : 0.334933 cons_dist: 0.047460, loss_weight: 0.000674
[15:57:51.395] iteration 148 : loss : 0.280643 cons_dist: 0.038575, loss_weight: 0.000674
[15:57:51.887] iteration 149 : loss : 0.260897 cons_dist: 0.038383, loss_weight: 0.000674
[15:57:52.379] iteration 150 : loss : 0.342915 cons_dist: 0.062100, loss_weight: 0.000674
[15:57:52.871] iteration 151 : loss : 0.294666 cons_dist: 0.038302, loss_weight: 0.000862
[15:57:53.364] iteration 152 : loss : 0.230607 cons_dist: 0.030993, loss_weight: 0.000862
[15:57:53.905] iteration 153 : loss : 0.175884 cons_dist: 0.025199, loss_weight: 0.000862
[15:57:54.397] iteration 154 : loss : 0.265537 cons_dist: 0.020391, loss_weight: 0.000862
[15:57:54.890] iteration 155 : loss : 0.191165 cons_dist: 0.038767, loss_weight: 0.000862
[15:57:55.383] iteration 156 : loss : 0.393855 cons_dist: 0.043342, loss_weight: 0.000862
[15:57:56.455] iteration 157 : loss : 0.423011 cons_dist: 0.027426, loss_weight: 0.000862
[15:57:56.948] iteration 158 : loss : 0.193679 cons_dist: 0.031393, loss_weight: 0.000862
[15:57:57.441] iteration 159 : loss : 0.425113 cons_dist: 0.040912, loss_weight: 0.000862
[15:57:57.933] iteration 160 : loss : 0.240071 cons_dist: 0.032969, loss_weight: 0.000862
[15:57:58.424] iteration 161 : loss : 0.322302 cons_dist: 0.029402, loss_weight: 0.000862
[15:57:58.916] iteration 162 : loss : 0.291232 cons_dist: 0.041603, loss_weight: 0.000862
[15:57:59.409] iteration 163 : loss : 0.237641 cons_dist: 0.028258, loss_weight: 0.000862
[15:57:59.901] iteration 164 : loss : 0.264790 cons_dist: 0.041429, loss_weight: 0.000862
[15:58:00.393] iteration 165 : loss : 0.209737 cons_dist: 0.024648, loss_weight: 0.000862
[15:58:00.884] iteration 166 : loss : 0.242255 cons_dist: 0.016677, loss_weight: 0.000862
[15:58:01.376] iteration 167 : loss : 0.237871 cons_dist: 0.025835, loss_weight: 0.000862
[15:58:01.869] iteration 168 : loss : 0.182970 cons_dist: 0.054414, loss_weight: 0.000862
[15:58:03.007] iteration 169 : loss : 0.298688 cons_dist: 0.048622, loss_weight: 0.000862
[15:58:03.499] iteration 170 : loss : 0.168794 cons_dist: 0.045064, loss_weight: 0.000862
[15:58:03.991] iteration 171 : loss : 0.164428 cons_dist: 0.043162, loss_weight: 0.000862
[15:58:04.482] iteration 172 : loss : 0.186933 cons_dist: 0.022079, loss_weight: 0.000862
[15:58:04.973] iteration 173 : loss : 0.183427 cons_dist: 0.032806, loss_weight: 0.000862
[15:58:05.464] iteration 174 : loss : 0.133971 cons_dist: 0.057896, loss_weight: 0.000862
[15:58:05.956] iteration 175 : loss : 0.382985 cons_dist: 0.031603, loss_weight: 0.000862
[15:58:06.447] iteration 176 : loss : 0.193524 cons_dist: 0.026972, loss_weight: 0.000862
[15:58:06.940] iteration 177 : loss : 0.167823 cons_dist: 0.028019, loss_weight: 0.000862
[15:58:07.433] iteration 178 : loss : 0.228360 cons_dist: 0.040907, loss_weight: 0.000862
[15:58:07.924] iteration 179 : loss : 0.314112 cons_dist: 0.031107, loss_weight: 0.000862
[15:58:08.416] iteration 180 : loss : 0.286992 cons_dist: 0.025067, loss_weight: 0.000862
[15:58:09.531] iteration 181 : loss : 0.227022 cons_dist: 0.020796, loss_weight: 0.000862
[15:58:10.022] iteration 182 : loss : 0.277307 cons_dist: 0.070965, loss_weight: 0.000862
[15:58:10.515] iteration 183 : loss : 0.329093 cons_dist: 0.029085, loss_weight: 0.000862
[15:58:11.007] iteration 184 : loss : 0.220430 cons_dist: 0.037702, loss_weight: 0.000862
[15:58:11.500] iteration 185 : loss : 0.175428 cons_dist: 0.014365, loss_weight: 0.000862
[15:58:11.991] iteration 186 : loss : 0.205488 cons_dist: 0.015208, loss_weight: 0.000862
[15:58:12.483] iteration 187 : loss : 0.192303 cons_dist: 0.019782, loss_weight: 0.000862
[15:58:12.974] iteration 188 : loss : 0.229138 cons_dist: 0.031138, loss_weight: 0.000862
[15:58:13.466] iteration 189 : loss : 0.273431 cons_dist: 0.016457, loss_weight: 0.000862
[15:58:13.958] iteration 190 : loss : 0.252594 cons_dist: 0.024849, loss_weight: 0.000862
[15:58:14.450] iteration 191 : loss : 0.204576 cons_dist: 0.027990, loss_weight: 0.000862
[15:58:14.944] iteration 192 : loss : 0.225385 cons_dist: 0.020918, loss_weight: 0.000862
[15:58:16.061] iteration 193 : loss : 0.208686 cons_dist: 0.024906, loss_weight: 0.000862
[15:58:16.552] iteration 194 : loss : 0.174484 cons_dist: 0.043594, loss_weight: 0.000862
[15:58:17.044] iteration 195 : loss : 0.238388 cons_dist: 0.056903, loss_weight: 0.000862
[15:58:17.535] iteration 196 : loss : 0.206215 cons_dist: 0.044148, loss_weight: 0.000862
[15:58:18.026] iteration 197 : loss : 0.401593 cons_dist: 0.020863, loss_weight: 0.000862
[15:58:18.518] iteration 198 : loss : 0.211069 cons_dist: 0.103845, loss_weight: 0.000862
[15:58:19.011] iteration 199 : loss : 0.275685 cons_dist: 0.046752, loss_weight: 0.000862
[15:58:19.503] iteration 200 : loss : 0.214178 cons_dist: 0.022582, loss_weight: 0.000862
[15:58:19.995] iteration 201 : loss : 0.252937 cons_dist: 0.021171, loss_weight: 0.000862
[15:58:20.488] iteration 202 : loss : 0.275142 cons_dist: 0.021589, loss_weight: 0.000862
[15:58:20.979] iteration 203 : loss : 0.166804 cons_dist: 0.016169, loss_weight: 0.000862
[15:58:21.471] iteration 204 : loss : 0.248500 cons_dist: 0.032395, loss_weight: 0.000862
[15:58:22.513] iteration 205 : loss : 0.226749 cons_dist: 0.055128, loss_weight: 0.000862
[15:58:23.006] iteration 206 : loss : 0.177603 cons_dist: 0.037675, loss_weight: 0.000862
[15:58:23.498] iteration 207 : loss : 0.183998 cons_dist: 0.030395, loss_weight: 0.000862
[15:58:23.990] iteration 208 : loss : 0.155456 cons_dist: 0.060770, loss_weight: 0.000862
[15:58:24.482] iteration 209 : loss : 0.177400 cons_dist: 0.017864, loss_weight: 0.000862
[15:58:24.973] iteration 210 : loss : 0.200119 cons_dist: 0.038614, loss_weight: 0.000862
[15:58:25.465] iteration 211 : loss : 0.334749 cons_dist: 0.031898, loss_weight: 0.000862
[15:58:25.958] iteration 212 : loss : 0.206726 cons_dist: 0.013955, loss_weight: 0.000862
[15:58:26.450] iteration 213 : loss : 0.182800 cons_dist: 0.022754, loss_weight: 0.000862
[15:58:26.942] iteration 214 : loss : 0.201886 cons_dist: 0.027974, loss_weight: 0.000862
[15:58:27.434] iteration 215 : loss : 0.283948 cons_dist: 0.028849, loss_weight: 0.000862
[15:58:27.925] iteration 216 : loss : 0.215717 cons_dist: 0.023775, loss_weight: 0.000862
[15:58:29.113] iteration 217 : loss : 0.184515 cons_dist: 0.013362, loss_weight: 0.000862
[15:58:29.605] iteration 218 : loss : 0.271642 cons_dist: 0.027368, loss_weight: 0.000862
[15:58:30.097] iteration 219 : loss : 0.198671 cons_dist: 0.019409, loss_weight: 0.000862
[15:58:30.589] iteration 220 : loss : 0.268760 cons_dist: 0.025632, loss_weight: 0.000862
[15:58:31.080] iteration 221 : loss : 0.213166 cons_dist: 0.027024, loss_weight: 0.000862
[15:58:31.571] iteration 222 : loss : 0.235197 cons_dist: 0.020760, loss_weight: 0.000862
[15:58:32.061] iteration 223 : loss : 0.187166 cons_dist: 0.029075, loss_weight: 0.000862
[15:58:32.553] iteration 224 : loss : 0.131356 cons_dist: 0.027202, loss_weight: 0.000862
[15:58:33.047] iteration 225 : loss : 0.161592 cons_dist: 0.034636, loss_weight: 0.000862
[15:58:33.539] iteration 226 : loss : 0.480262 cons_dist: 0.032073, loss_weight: 0.000862
[15:58:34.031] iteration 227 : loss : 0.205928 cons_dist: 0.019661, loss_weight: 0.000862
[15:58:34.523] iteration 228 : loss : 0.179649 cons_dist: 0.029680, loss_weight: 0.000862
[15:58:35.563] iteration 229 : loss : 0.260363 cons_dist: 0.025858, loss_weight: 0.000862
[15:58:36.051] iteration 230 : loss : 0.174189 cons_dist: 0.010404, loss_weight: 0.000862
[15:58:36.543] iteration 231 : loss : 0.235250 cons_dist: 0.016643, loss_weight: 0.000862
[15:58:37.034] iteration 232 : loss : 0.305302 cons_dist: 0.015741, loss_weight: 0.000862
[15:58:37.526] iteration 233 : loss : 0.163879 cons_dist: 0.026586, loss_weight: 0.000862
[15:58:38.017] iteration 234 : loss : 0.229110 cons_dist: 0.019411, loss_weight: 0.000862
[15:58:38.510] iteration 235 : loss : 0.168302 cons_dist: 0.019898, loss_weight: 0.000862
[15:58:39.002] iteration 236 : loss : 0.193122 cons_dist: 0.037309, loss_weight: 0.000862
[15:58:39.494] iteration 237 : loss : 0.199608 cons_dist: 0.067122, loss_weight: 0.000862
[15:58:39.986] iteration 238 : loss : 0.172167 cons_dist: 0.053442, loss_weight: 0.000862
[15:58:40.477] iteration 239 : loss : 0.185449 cons_dist: 0.016175, loss_weight: 0.000862
[15:58:40.968] iteration 240 : loss : 0.205946 cons_dist: 0.017715, loss_weight: 0.000862
[15:58:42.062] iteration 241 : loss : 0.117156 cons_dist: 0.017671, loss_weight: 0.000862
[15:58:42.552] iteration 242 : loss : 0.174223 cons_dist: 0.008350, loss_weight: 0.000862
[15:58:43.044] iteration 243 : loss : 0.195716 cons_dist: 0.014226, loss_weight: 0.000862
[15:58:43.535] iteration 244 : loss : 0.189591 cons_dist: 0.037716, loss_weight: 0.000862
[15:58:44.028] iteration 245 : loss : 0.195150 cons_dist: 0.018866, loss_weight: 0.000862
[15:58:44.521] iteration 246 : loss : 0.219961 cons_dist: 0.019889, loss_weight: 0.000862
[15:58:45.012] iteration 247 : loss : 0.239068 cons_dist: 0.014380, loss_weight: 0.000862
[15:58:45.504] iteration 248 : loss : 0.298515 cons_dist: 0.020980, loss_weight: 0.000862
[15:58:45.995] iteration 249 : loss : 0.122171 cons_dist: 0.020334, loss_weight: 0.000862
[15:58:46.486] iteration 250 : loss : 0.175442 cons_dist: 0.010081, loss_weight: 0.000862
[15:58:46.979] iteration 251 : loss : 0.182952 cons_dist: 0.030688, loss_weight: 0.000862
[15:58:47.471] iteration 252 : loss : 0.193464 cons_dist: 0.049916, loss_weight: 0.000862
[15:58:48.559] iteration 253 : loss : 0.109380 cons_dist: 0.015082, loss_weight: 0.000862
[15:58:49.050] iteration 254 : loss : 0.169305 cons_dist: 0.015325, loss_weight: 0.000862
[15:58:49.541] iteration 255 : loss : 0.128389 cons_dist: 0.017459, loss_weight: 0.000862
[15:58:50.034] iteration 256 : loss : 0.129861 cons_dist: 0.018624, loss_weight: 0.000862
[15:58:50.527] iteration 257 : loss : 0.227302 cons_dist: 0.014619, loss_weight: 0.000862
[15:58:51.019] iteration 258 : loss : 0.168410 cons_dist: 0.011973, loss_weight: 0.000862
[15:58:51.510] iteration 259 : loss : 0.156535 cons_dist: 0.016855, loss_weight: 0.000862
[15:58:52.001] iteration 260 : loss : 0.279634 cons_dist: 0.015612, loss_weight: 0.000862
[15:58:52.493] iteration 261 : loss : 0.225251 cons_dist: 0.007667, loss_weight: 0.000862
[15:58:52.986] iteration 262 : loss : 0.164157 cons_dist: 0.047742, loss_weight: 0.000862
[15:58:53.479] iteration 263 : loss : 0.219997 cons_dist: 0.041457, loss_weight: 0.000862
[15:58:53.971] iteration 264 : loss : 0.301186 cons_dist: 0.010613, loss_weight: 0.000862
[15:58:55.069] iteration 265 : loss : 0.169177 cons_dist: 0.049456, loss_weight: 0.000862
[15:58:55.560] iteration 266 : loss : 0.171171 cons_dist: 0.011827, loss_weight: 0.000862
[15:58:56.052] iteration 267 : loss : 0.148823 cons_dist: 0.013387, loss_weight: 0.000862
[15:58:56.543] iteration 268 : loss : 0.188863 cons_dist: 0.048873, loss_weight: 0.000862
[15:58:57.035] iteration 269 : loss : 0.227004 cons_dist: 0.011303, loss_weight: 0.000862
[15:58:57.528] iteration 270 : loss : 0.229789 cons_dist: 0.029808, loss_weight: 0.000862
[15:58:58.020] iteration 271 : loss : 0.168363 cons_dist: 0.016537, loss_weight: 0.000862
[15:58:58.512] iteration 272 : loss : 0.182064 cons_dist: 0.022872, loss_weight: 0.000862
[15:58:59.004] iteration 273 : loss : 0.247183 cons_dist: 0.031867, loss_weight: 0.000862
[15:58:59.495] iteration 274 : loss : 0.165764 cons_dist: 0.037988, loss_weight: 0.000862
[15:58:59.986] iteration 275 : loss : 0.230745 cons_dist: 0.016264, loss_weight: 0.000862
[15:59:00.478] iteration 276 : loss : 0.243804 cons_dist: 0.015205, loss_weight: 0.000862
[15:59:01.640] iteration 277 : loss : 0.216829 cons_dist: 0.032091, loss_weight: 0.000862
[15:59:02.133] iteration 278 : loss : 0.112329 cons_dist: 0.019266, loss_weight: 0.000862
[15:59:02.624] iteration 279 : loss : 0.204940 cons_dist: 0.063361, loss_weight: 0.000862
[15:59:03.115] iteration 280 : loss : 0.198290 cons_dist: 0.044752, loss_weight: 0.000862
[15:59:03.607] iteration 281 : loss : 0.146393 cons_dist: 0.020189, loss_weight: 0.000862
[15:59:04.099] iteration 282 : loss : 0.157169 cons_dist: 0.009521, loss_weight: 0.000862
[15:59:04.591] iteration 283 : loss : 0.154247 cons_dist: 0.006942, loss_weight: 0.000862
[15:59:05.083] iteration 284 : loss : 0.243959 cons_dist: 0.014019, loss_weight: 0.000862
[15:59:05.575] iteration 285 : loss : 0.217530 cons_dist: 0.020504, loss_weight: 0.000862
[15:59:06.067] iteration 286 : loss : 0.183964 cons_dist: 0.015532, loss_weight: 0.000862
[15:59:06.559] iteration 287 : loss : 0.323222 cons_dist: 0.011914, loss_weight: 0.000862
[15:59:07.050] iteration 288 : loss : 0.152250 cons_dist: 0.024604, loss_weight: 0.000862
[15:59:08.108] iteration 289 : loss : 0.122026 cons_dist: 0.046024, loss_weight: 0.000862
[15:59:08.598] iteration 290 : loss : 0.215051 cons_dist: 0.012554, loss_weight: 0.000862
[15:59:09.090] iteration 291 : loss : 0.138894 cons_dist: 0.010570, loss_weight: 0.000862
[15:59:09.582] iteration 292 : loss : 0.123212 cons_dist: 0.010821, loss_weight: 0.000862
[15:59:10.074] iteration 293 : loss : 0.228669 cons_dist: 0.008586, loss_weight: 0.000862
[15:59:10.566] iteration 294 : loss : 0.155301 cons_dist: 0.025117, loss_weight: 0.000862
[15:59:11.058] iteration 295 : loss : 0.147481 cons_dist: 0.017614, loss_weight: 0.000862
[15:59:11.549] iteration 296 : loss : 0.159474 cons_dist: 0.020889, loss_weight: 0.000862
[15:59:12.041] iteration 297 : loss : 0.162674 cons_dist: 0.009105, loss_weight: 0.000862
[15:59:12.533] iteration 298 : loss : 0.313852 cons_dist: 0.030018, loss_weight: 0.000862
[15:59:13.025] iteration 299 : loss : 0.214182 cons_dist: 0.018922, loss_weight: 0.000862
[15:59:13.517] iteration 300 : loss : 0.179905 cons_dist: 0.013037, loss_weight: 0.000862
[15:59:14.671] iteration 301 : loss : 0.182746 cons_dist: 0.011503, loss_weight: 0.001097
[15:59:15.162] iteration 302 : loss : 0.136308 cons_dist: 0.019971, loss_weight: 0.001097
[15:59:15.654] iteration 303 : loss : 0.133004 cons_dist: 0.031303, loss_weight: 0.001097
[15:59:16.146] iteration 304 : loss : 0.109258 cons_dist: 0.022792, loss_weight: 0.001097
[15:59:16.637] iteration 305 : loss : 0.170593 cons_dist: 0.033548, loss_weight: 0.001097
[15:59:17.128] iteration 306 : loss : 0.103213 cons_dist: 0.008238, loss_weight: 0.001097
[15:59:17.619] iteration 307 : loss : 0.312423 cons_dist: 0.015778, loss_weight: 0.001097
[15:59:18.112] iteration 308 : loss : 0.257456 cons_dist: 0.036442, loss_weight: 0.001097
[15:59:18.604] iteration 309 : loss : 0.173116 cons_dist: 0.013175, loss_weight: 0.001097
[15:59:19.096] iteration 310 : loss : 0.185180 cons_dist: 0.015146, loss_weight: 0.001097
[15:59:19.588] iteration 311 : loss : 0.278165 cons_dist: 0.012372, loss_weight: 0.001097
[15:59:20.078] iteration 312 : loss : 0.143229 cons_dist: 0.016800, loss_weight: 0.001097
[15:59:21.166] iteration 313 : loss : 0.180367 cons_dist: 0.007015, loss_weight: 0.001097
[15:59:21.658] iteration 314 : loss : 0.240128 cons_dist: 0.017614, loss_weight: 0.001097
[15:59:22.150] iteration 315 : loss : 0.161570 cons_dist: 0.008074, loss_weight: 0.001097
[15:59:22.641] iteration 316 : loss : 0.209039 cons_dist: 0.022718, loss_weight: 0.001097
[15:59:23.133] iteration 317 : loss : 0.175007 cons_dist: 0.036411, loss_weight: 0.001097
[15:59:23.625] iteration 318 : loss : 0.162513 cons_dist: 0.014224, loss_weight: 0.001097
[15:59:24.117] iteration 319 : loss : 0.178767 cons_dist: 0.064167, loss_weight: 0.001097
[15:59:24.609] iteration 320 : loss : 0.130711 cons_dist: 0.012854, loss_weight: 0.001097
[15:59:25.100] iteration 321 : loss : 0.095355 cons_dist: 0.007410, loss_weight: 0.001097
[15:59:25.591] iteration 322 : loss : 0.132353 cons_dist: 0.010231, loss_weight: 0.001097
[15:59:26.082] iteration 323 : loss : 0.146466 cons_dist: 0.011241, loss_weight: 0.001097
[15:59:26.573] iteration 324 : loss : 0.234160 cons_dist: 0.026762, loss_weight: 0.001097
[15:59:27.671] iteration 325 : loss : 0.252989 cons_dist: 0.027256, loss_weight: 0.001097
[15:59:28.162] iteration 326 : loss : 0.183486 cons_dist: 0.007509, loss_weight: 0.001097
[15:59:28.653] iteration 327 : loss : 0.204150 cons_dist: 0.008475, loss_weight: 0.001097
[15:59:29.144] iteration 328 : loss : 0.133388 cons_dist: 0.016226, loss_weight: 0.001097
[15:59:29.636] iteration 329 : loss : 0.119523 cons_dist: 0.016214, loss_weight: 0.001097
[15:59:30.128] iteration 330 : loss : 0.181212 cons_dist: 0.033703, loss_weight: 0.001097
[15:59:30.620] iteration 331 : loss : 0.171980 cons_dist: 0.013651, loss_weight: 0.001097
[15:59:31.111] iteration 332 : loss : 0.222147 cons_dist: 0.046314, loss_weight: 0.001097
[15:59:31.602] iteration 333 : loss : 0.130227 cons_dist: 0.023120, loss_weight: 0.001097
[15:59:32.094] iteration 334 : loss : 0.205845 cons_dist: 0.016277, loss_weight: 0.001097
[15:59:32.585] iteration 335 : loss : 0.257036 cons_dist: 0.023583, loss_weight: 0.001097
[15:59:33.078] iteration 336 : loss : 0.176488 cons_dist: 0.029021, loss_weight: 0.001097
[15:59:34.298] iteration 337 : loss : 0.120291 cons_dist: 0.019258, loss_weight: 0.001097
[15:59:34.790] iteration 338 : loss : 0.121106 cons_dist: 0.019638, loss_weight: 0.001097
[15:59:35.283] iteration 339 : loss : 0.226053 cons_dist: 0.014274, loss_weight: 0.001097
[15:59:35.774] iteration 340 : loss : 0.101573 cons_dist: 0.021080, loss_weight: 0.001097
[15:59:36.266] iteration 341 : loss : 0.132276 cons_dist: 0.029162, loss_weight: 0.001097
[15:59:36.757] iteration 342 : loss : 0.102195 cons_dist: 0.011517, loss_weight: 0.001097
[15:59:37.248] iteration 343 : loss : 0.196850 cons_dist: 0.017983, loss_weight: 0.001097
[15:59:37.739] iteration 344 : loss : 0.132605 cons_dist: 0.007852, loss_weight: 0.001097
[15:59:38.231] iteration 345 : loss : 0.130663 cons_dist: 0.009069, loss_weight: 0.001097
[15:59:38.723] iteration 346 : loss : 0.283153 cons_dist: 0.033988, loss_weight: 0.001097
[15:59:39.217] iteration 347 : loss : 0.167859 cons_dist: 0.020771, loss_weight: 0.001097
[15:59:39.708] iteration 348 : loss : 0.230933 cons_dist: 0.028329, loss_weight: 0.001097
[15:59:40.796] iteration 349 : loss : 0.142456 cons_dist: 0.014127, loss_weight: 0.001097
[15:59:41.288] iteration 350 : loss : 0.147359 cons_dist: 0.021078, loss_weight: 0.001097
[15:59:41.780] iteration 351 : loss : 0.086094 cons_dist: 0.011945, loss_weight: 0.001097
[15:59:42.272] iteration 352 : loss : 0.140243 cons_dist: 0.016699, loss_weight: 0.001097
[15:59:42.764] iteration 353 : loss : 0.135290 cons_dist: 0.012232, loss_weight: 0.001097
[15:59:43.256] iteration 354 : loss : 0.194901 cons_dist: 0.044435, loss_weight: 0.001097
[15:59:43.747] iteration 355 : loss : 0.137538 cons_dist: 0.013599, loss_weight: 0.001097
[15:59:44.238] iteration 356 : loss : 0.159100 cons_dist: 0.028355, loss_weight: 0.001097
[15:59:44.730] iteration 357 : loss : 0.176259 cons_dist: 0.022025, loss_weight: 0.001097
[15:59:45.222] iteration 358 : loss : 0.171144 cons_dist: 0.038272, loss_weight: 0.001097
[15:59:45.714] iteration 359 : loss : 0.170348 cons_dist: 0.027472, loss_weight: 0.001097
[15:59:46.206] iteration 360 : loss : 0.098122 cons_dist: 0.041005, loss_weight: 0.001097
[15:59:47.336] iteration 361 : loss : 0.123517 cons_dist: 0.019315, loss_weight: 0.001097
[15:59:47.827] iteration 362 : loss : 0.135509 cons_dist: 0.014420, loss_weight: 0.001097
[15:59:48.317] iteration 363 : loss : 0.238470 cons_dist: 0.043590, loss_weight: 0.001097
[15:59:48.808] iteration 364 : loss : 0.196375 cons_dist: 0.039798, loss_weight: 0.001097
[15:59:49.299] iteration 365 : loss : 0.134541 cons_dist: 0.031790, loss_weight: 0.001097
[15:59:49.792] iteration 366 : loss : 0.275690 cons_dist: 0.032911, loss_weight: 0.001097
[15:59:50.283] iteration 367 : loss : 0.100537 cons_dist: 0.014349, loss_weight: 0.001097
[15:59:50.775] iteration 368 : loss : 0.087568 cons_dist: 0.016723, loss_weight: 0.001097
[15:59:51.266] iteration 369 : loss : 0.130151 cons_dist: 0.011129, loss_weight: 0.001097
[15:59:51.757] iteration 370 : loss : 0.185198 cons_dist: 0.012226, loss_weight: 0.001097
[15:59:52.248] iteration 371 : loss : 0.280855 cons_dist: 0.043609, loss_weight: 0.001097
[15:59:52.740] iteration 372 : loss : 0.179458 cons_dist: 0.016779, loss_weight: 0.001097
[15:59:53.885] iteration 373 : loss : 0.219829 cons_dist: 0.023049, loss_weight: 0.001097
[15:59:54.377] iteration 374 : loss : 0.211173 cons_dist: 0.035988, loss_weight: 0.001097
[15:59:54.868] iteration 375 : loss : 0.195311 cons_dist: 0.009858, loss_weight: 0.001097
[15:59:55.359] iteration 376 : loss : 0.120339 cons_dist: 0.025490, loss_weight: 0.001097
[15:59:55.851] iteration 377 : loss : 0.176622 cons_dist: 0.022718, loss_weight: 0.001097
[15:59:56.342] iteration 378 : loss : 0.105285 cons_dist: 0.005852, loss_weight: 0.001097
[15:59:56.834] iteration 379 : loss : 0.130079 cons_dist: 0.032775, loss_weight: 0.001097
[15:59:57.326] iteration 380 : loss : 0.105715 cons_dist: 0.023424, loss_weight: 0.001097
[15:59:57.818] iteration 381 : loss : 0.362411 cons_dist: 0.017818, loss_weight: 0.001097
[15:59:58.309] iteration 382 : loss : 0.121759 cons_dist: 0.012854, loss_weight: 0.001097
[15:59:58.800] iteration 383 : loss : 0.201011 cons_dist: 0.010067, loss_weight: 0.001097
[15:59:59.292] iteration 384 : loss : 0.193147 cons_dist: 0.021509, loss_weight: 0.001097
[16:00:00.459] iteration 385 : loss : 0.129095 cons_dist: 0.013870, loss_weight: 0.001097
[16:00:00.947] iteration 386 : loss : 0.110236 cons_dist: 0.011722, loss_weight: 0.001097
[16:00:01.439] iteration 387 : loss : 0.160672 cons_dist: 0.027738, loss_weight: 0.001097
[16:00:01.931] iteration 388 : loss : 0.192929 cons_dist: 0.029981, loss_weight: 0.001097
[16:00:02.422] iteration 389 : loss : 0.184000 cons_dist: 0.017145, loss_weight: 0.001097
[16:00:02.913] iteration 390 : loss : 0.184798 cons_dist: 0.009159, loss_weight: 0.001097
[16:00:03.404] iteration 391 : loss : 0.066460 cons_dist: 0.006845, loss_weight: 0.001097
[16:00:03.895] iteration 392 : loss : 0.075460 cons_dist: 0.008278, loss_weight: 0.001097
[16:00:04.387] iteration 393 : loss : 0.164700 cons_dist: 0.015085, loss_weight: 0.001097
[16:00:04.879] iteration 394 : loss : 0.115785 cons_dist: 0.011241, loss_weight: 0.001097
[16:00:05.371] iteration 395 : loss : 0.235184 cons_dist: 0.025065, loss_weight: 0.001097
[16:00:05.864] iteration 396 : loss : 0.132794 cons_dist: 0.015731, loss_weight: 0.001097
[16:00:06.954] iteration 397 : loss : 0.150501 cons_dist: 0.018382, loss_weight: 0.001097
[16:00:07.442] iteration 398 : loss : 0.147431 cons_dist: 0.014445, loss_weight: 0.001097
[16:00:07.935] iteration 399 : loss : 0.129184 cons_dist: 0.052896, loss_weight: 0.001097
[16:00:08.426] iteration 400 : loss : 0.127324 cons_dist: 0.012272, loss_weight: 0.001097
[16:00:08.917] iteration 401 : loss : 0.107305 cons_dist: 0.014154, loss_weight: 0.001097
[16:00:09.408] iteration 402 : loss : 0.104056 cons_dist: 0.016112, loss_weight: 0.001097
[16:00:09.900] iteration 403 : loss : 0.119166 cons_dist: 0.014129, loss_weight: 0.001097
[16:00:10.391] iteration 404 : loss : 0.115015 cons_dist: 0.019298, loss_weight: 0.001097
[16:00:10.883] iteration 405 : loss : 0.102291 cons_dist: 0.019673, loss_weight: 0.001097
[16:00:11.376] iteration 406 : loss : 0.202393 cons_dist: 0.017937, loss_weight: 0.001097
[16:00:11.867] iteration 407 : loss : 0.140654 cons_dist: 0.022838, loss_weight: 0.001097
[16:00:12.359] iteration 408 : loss : 0.302061 cons_dist: 0.007173, loss_weight: 0.001097
[16:00:13.459] iteration 409 : loss : 0.105104 cons_dist: 0.012453, loss_weight: 0.001097
[16:00:13.948] iteration 410 : loss : 0.132671 cons_dist: 0.013723, loss_weight: 0.001097
[16:00:14.439] iteration 411 : loss : 0.106106 cons_dist: 0.032759, loss_weight: 0.001097
[16:00:14.930] iteration 412 : loss : 0.117087 cons_dist: 0.015334, loss_weight: 0.001097
[16:00:15.422] iteration 413 : loss : 0.120579 cons_dist: 0.019410, loss_weight: 0.001097
[16:00:15.914] iteration 414 : loss : 0.215007 cons_dist: 0.030940, loss_weight: 0.001097
[16:00:16.406] iteration 415 : loss : 0.143777 cons_dist: 0.014426, loss_weight: 0.001097
[16:00:16.898] iteration 416 : loss : 0.122914 cons_dist: 0.013031, loss_weight: 0.001097
[16:00:17.389] iteration 417 : loss : 0.110109 cons_dist: 0.009260, loss_weight: 0.001097
[16:00:17.880] iteration 418 : loss : 0.183576 cons_dist: 0.024102, loss_weight: 0.001097
[16:00:18.371] iteration 419 : loss : 0.128354 cons_dist: 0.005850, loss_weight: 0.001097
[16:00:18.864] iteration 420 : loss : 0.132519 cons_dist: 0.037676, loss_weight: 0.001097
[16:00:20.029] iteration 421 : loss : 0.158709 cons_dist: 0.011449, loss_weight: 0.001097
[16:00:20.520] iteration 422 : loss : 0.136870 cons_dist: 0.006431, loss_weight: 0.001097
[16:00:21.011] iteration 423 : loss : 0.112893 cons_dist: 0.008626, loss_weight: 0.001097
[16:00:21.502] iteration 424 : loss : 0.099422 cons_dist: 0.021515, loss_weight: 0.001097
[16:00:21.994] iteration 425 : loss : 0.123802 cons_dist: 0.038496, loss_weight: 0.001097
[16:00:22.486] iteration 426 : loss : 0.091287 cons_dist: 0.019155, loss_weight: 0.001097
[16:00:22.978] iteration 427 : loss : 0.141785 cons_dist: 0.026306, loss_weight: 0.001097
[16:00:23.470] iteration 428 : loss : 0.182893 cons_dist: 0.007644, loss_weight: 0.001097
[16:00:23.961] iteration 429 : loss : 0.072149 cons_dist: 0.022712, loss_weight: 0.001097
[16:00:24.452] iteration 430 : loss : 0.111024 cons_dist: 0.008578, loss_weight: 0.001097
[16:00:24.943] iteration 431 : loss : 0.091906 cons_dist: 0.035396, loss_weight: 0.001097
[16:00:25.435] iteration 432 : loss : 0.141894 cons_dist: 0.020147, loss_weight: 0.001097
[16:00:26.542] iteration 433 : loss : 0.170520 cons_dist: 0.077084, loss_weight: 0.001097
[16:00:27.033] iteration 434 : loss : 0.134227 cons_dist: 0.007994, loss_weight: 0.001097
[16:00:27.524] iteration 435 : loss : 0.177711 cons_dist: 0.012994, loss_weight: 0.001097
[16:00:28.015] iteration 436 : loss : 0.149752 cons_dist: 0.011842, loss_weight: 0.001097
[16:00:28.506] iteration 437 : loss : 0.220762 cons_dist: 0.013486, loss_weight: 0.001097
[16:00:28.998] iteration 438 : loss : 0.102983 cons_dist: 0.004280, loss_weight: 0.001097
[16:00:29.490] iteration 439 : loss : 0.148483 cons_dist: 0.018489, loss_weight: 0.001097
[16:00:29.982] iteration 440 : loss : 0.141543 cons_dist: 0.009194, loss_weight: 0.001097
[16:00:30.474] iteration 441 : loss : 0.109528 cons_dist: 0.011138, loss_weight: 0.001097
[16:00:30.965] iteration 442 : loss : 0.120335 cons_dist: 0.016854, loss_weight: 0.001097
[16:00:31.455] iteration 443 : loss : 0.109275 cons_dist: 0.007296, loss_weight: 0.001097
[16:00:31.946] iteration 444 : loss : 0.122167 cons_dist: 0.019110, loss_weight: 0.001097
[16:00:33.137] iteration 445 : loss : 0.103102 cons_dist: 0.018143, loss_weight: 0.001097
[16:00:33.628] iteration 446 : loss : 0.127906 cons_dist: 0.026454, loss_weight: 0.001097
[16:00:34.118] iteration 447 : loss : 0.208457 cons_dist: 0.010853, loss_weight: 0.001097
[16:00:34.609] iteration 448 : loss : 0.094549 cons_dist: 0.006104, loss_weight: 0.001097
[16:00:35.100] iteration 449 : loss : 0.110567 cons_dist: 0.019154, loss_weight: 0.001097
[16:00:35.590] iteration 450 : loss : 0.156645 cons_dist: 0.008519, loss_weight: 0.001097
[16:00:36.082] iteration 451 : loss : 0.101598 cons_dist: 0.007157, loss_weight: 0.001387
[16:00:36.574] iteration 452 : loss : 0.112262 cons_dist: 0.020331, loss_weight: 0.001387
[16:00:37.065] iteration 453 : loss : 0.091103 cons_dist: 0.008207, loss_weight: 0.001387
[16:00:37.557] iteration 454 : loss : 0.163277 cons_dist: 0.011737, loss_weight: 0.001387
[16:00:38.048] iteration 455 : loss : 0.135325 cons_dist: 0.007178, loss_weight: 0.001387
[16:00:38.539] iteration 456 : loss : 0.188802 cons_dist: 0.018663, loss_weight: 0.001387
[16:00:39.670] iteration 457 : loss : 0.116094 cons_dist: 0.014152, loss_weight: 0.001387
[16:00:40.162] iteration 458 : loss : 0.164570 cons_dist: 0.006893, loss_weight: 0.001387
[16:00:40.653] iteration 459 : loss : 0.119875 cons_dist: 0.007007, loss_weight: 0.001387
[16:00:41.143] iteration 460 : loss : 0.170088 cons_dist: 0.022645, loss_weight: 0.001387
[16:00:41.634] iteration 461 : loss : 0.140799 cons_dist: 0.019567, loss_weight: 0.001387
[16:00:42.125] iteration 462 : loss : 0.134455 cons_dist: 0.027106, loss_weight: 0.001387
[16:00:42.616] iteration 463 : loss : 0.169793 cons_dist: 0.016800, loss_weight: 0.001387
[16:00:43.109] iteration 464 : loss : 0.135567 cons_dist: 0.007607, loss_weight: 0.001387
[16:00:43.601] iteration 465 : loss : 0.078202 cons_dist: 0.021247, loss_weight: 0.001387
[16:00:44.093] iteration 466 : loss : 0.129846 cons_dist: 0.008332, loss_weight: 0.001387
[16:00:44.585] iteration 467 : loss : 0.159509 cons_dist: 0.010909, loss_weight: 0.001387
[16:00:45.077] iteration 468 : loss : 0.198027 cons_dist: 0.012987, loss_weight: 0.001387
[16:00:46.170] iteration 469 : loss : 0.134063 cons_dist: 0.006462, loss_weight: 0.001387
[16:00:46.661] iteration 470 : loss : 0.129932 cons_dist: 0.010404, loss_weight: 0.001387
[16:00:47.153] iteration 471 : loss : 0.145162 cons_dist: 0.042408, loss_weight: 0.001387
[16:00:47.644] iteration 472 : loss : 0.113965 cons_dist: 0.010710, loss_weight: 0.001387
[16:00:48.135] iteration 473 : loss : 0.135034 cons_dist: 0.054933, loss_weight: 0.001387
[16:00:48.626] iteration 474 : loss : 0.146410 cons_dist: 0.007251, loss_weight: 0.001387
[16:00:49.117] iteration 475 : loss : 0.122938 cons_dist: 0.002760, loss_weight: 0.001387
[16:00:49.608] iteration 476 : loss : 0.077385 cons_dist: 0.016785, loss_weight: 0.001387
[16:00:50.099] iteration 477 : loss : 0.134799 cons_dist: 0.026166, loss_weight: 0.001387
[16:00:50.591] iteration 478 : loss : 0.099402 cons_dist: 0.006553, loss_weight: 0.001387
[16:00:51.084] iteration 479 : loss : 0.211713 cons_dist: 0.019209, loss_weight: 0.001387
[16:00:51.575] iteration 480 : loss : 0.084064 cons_dist: 0.008951, loss_weight: 0.001387
[16:00:52.653] iteration 481 : loss : 0.098869 cons_dist: 0.006965, loss_weight: 0.001387
[16:00:53.144] iteration 482 : loss : 0.122889 cons_dist: 0.006053, loss_weight: 0.001387
[16:00:53.634] iteration 483 : loss : 0.156313 cons_dist: 0.003738, loss_weight: 0.001387
[16:00:54.124] iteration 484 : loss : 0.109018 cons_dist: 0.019673, loss_weight: 0.001387
[16:00:54.616] iteration 485 : loss : 0.151298 cons_dist: 0.007950, loss_weight: 0.001387
[16:00:55.106] iteration 486 : loss : 0.088825 cons_dist: 0.007737, loss_weight: 0.001387
[16:00:55.597] iteration 487 : loss : 0.103207 cons_dist: 0.027556, loss_weight: 0.001387
[16:00:56.089] iteration 488 : loss : 0.146456 cons_dist: 0.038868, loss_weight: 0.001387
[16:00:56.581] iteration 489 : loss : 0.093245 cons_dist: 0.030459, loss_weight: 0.001387
[16:00:57.073] iteration 490 : loss : 0.119085 cons_dist: 0.008344, loss_weight: 0.001387
[16:00:57.565] iteration 491 : loss : 0.108271 cons_dist: 0.008161, loss_weight: 0.001387
[16:00:58.056] iteration 492 : loss : 0.123598 cons_dist: 0.019050, loss_weight: 0.001387
[16:00:59.137] iteration 493 : loss : 0.099088 cons_dist: 0.025975, loss_weight: 0.001387
[16:00:59.628] iteration 494 : loss : 0.084606 cons_dist: 0.005565, loss_weight: 0.001387
[16:01:00.119] iteration 495 : loss : 0.106409 cons_dist: 0.018367, loss_weight: 0.001387
[16:01:00.612] iteration 496 : loss : 0.099045 cons_dist: 0.007972, loss_weight: 0.001387
[16:01:01.104] iteration 497 : loss : 0.109926 cons_dist: 0.008389, loss_weight: 0.001387
[16:01:01.596] iteration 498 : loss : 0.119345 cons_dist: 0.014552, loss_weight: 0.001387
[16:01:02.087] iteration 499 : loss : 0.116727 cons_dist: 0.015135, loss_weight: 0.001387
[16:01:02.579] iteration 500 : loss : 0.156765 cons_dist: 0.006697, loss_weight: 0.001387
[16:01:03.069] iteration 501 : loss : 0.112491 cons_dist: 0.018686, loss_weight: 0.001387
[16:01:03.561] iteration 502 : loss : 0.100897 cons_dist: 0.004680, loss_weight: 0.001387
[16:01:04.054] iteration 503 : loss : 0.087381 cons_dist: 0.045267, loss_weight: 0.001387
[16:01:04.546] iteration 504 : loss : 0.126425 cons_dist: 0.007939, loss_weight: 0.001387
[16:01:05.590] iteration 505 : loss : 0.095648 cons_dist: 0.011147, loss_weight: 0.001387
[16:01:06.080] iteration 506 : loss : 0.114084 cons_dist: 0.022923, loss_weight: 0.001387
[16:01:06.570] iteration 507 : loss : 0.172838 cons_dist: 0.018432, loss_weight: 0.001387
[16:01:07.062] iteration 508 : loss : 0.085123 cons_dist: 0.005303, loss_weight: 0.001387
[16:01:07.554] iteration 509 : loss : 0.099277 cons_dist: 0.005154, loss_weight: 0.001387
[16:01:08.047] iteration 510 : loss : 0.141241 cons_dist: 0.007674, loss_weight: 0.001387
[16:01:08.538] iteration 511 : loss : 0.068067 cons_dist: 0.012925, loss_weight: 0.001387
[16:01:09.030] iteration 512 : loss : 0.104835 cons_dist: 0.010185, loss_weight: 0.001387
[16:01:09.521] iteration 513 : loss : 0.095501 cons_dist: 0.008754, loss_weight: 0.001387
[16:01:10.012] iteration 514 : loss : 0.142074 cons_dist: 0.010248, loss_weight: 0.001387
[16:01:10.505] iteration 515 : loss : 0.199576 cons_dist: 0.020224, loss_weight: 0.001387
[16:01:10.997] iteration 516 : loss : 0.134819 cons_dist: 0.080426, loss_weight: 0.001387
[16:01:12.032] iteration 517 : loss : 0.147293 cons_dist: 0.005160, loss_weight: 0.001387
[16:01:12.523] iteration 518 : loss : 0.169192 cons_dist: 0.008646, loss_weight: 0.001387
[16:01:13.014] iteration 519 : loss : 0.091655 cons_dist: 0.012491, loss_weight: 0.001387
[16:01:13.505] iteration 520 : loss : 0.355677 cons_dist: 0.006512, loss_weight: 0.001387
[16:01:13.997] iteration 521 : loss : 0.118353 cons_dist: 0.081145, loss_weight: 0.001387
[16:01:14.488] iteration 522 : loss : 0.121057 cons_dist: 0.016979, loss_weight: 0.001387
[16:01:14.979] iteration 523 : loss : 0.112838 cons_dist: 0.030616, loss_weight: 0.001387
[16:01:15.472] iteration 524 : loss : 0.104022 cons_dist: 0.029294, loss_weight: 0.001387
[16:01:15.964] iteration 525 : loss : 0.126422 cons_dist: 0.029292, loss_weight: 0.001387
[16:01:16.455] iteration 526 : loss : 0.190630 cons_dist: 0.015366, loss_weight: 0.001387
[16:01:16.946] iteration 527 : loss : 0.136858 cons_dist: 0.015631, loss_weight: 0.001387
[16:01:17.437] iteration 528 : loss : 0.144029 cons_dist: 0.008949, loss_weight: 0.001387
[16:01:18.507] iteration 529 : loss : 0.161551 cons_dist: 0.024424, loss_weight: 0.001387
[16:01:18.998] iteration 530 : loss : 0.238110 cons_dist: 0.016374, loss_weight: 0.001387
[16:01:19.489] iteration 531 : loss : 0.159652 cons_dist: 0.012382, loss_weight: 0.001387
[16:01:19.981] iteration 532 : loss : 0.101419 cons_dist: 0.007113, loss_weight: 0.001387
[16:01:20.471] iteration 533 : loss : 0.124102 cons_dist: 0.011960, loss_weight: 0.001387
[16:01:20.962] iteration 534 : loss : 0.126059 cons_dist: 0.021822, loss_weight: 0.001387
[16:01:21.454] iteration 535 : loss : 0.157062 cons_dist: 0.033696, loss_weight: 0.001387
[16:01:21.946] iteration 536 : loss : 0.112363 cons_dist: 0.011948, loss_weight: 0.001387
[16:01:22.439] iteration 537 : loss : 0.113348 cons_dist: 0.007797, loss_weight: 0.001387
[16:01:22.930] iteration 538 : loss : 0.169138 cons_dist: 0.012552, loss_weight: 0.001387
[16:01:23.421] iteration 539 : loss : 0.111184 cons_dist: 0.005880, loss_weight: 0.001387
[16:01:23.912] iteration 540 : loss : 0.118721 cons_dist: 0.010531, loss_weight: 0.001387
[16:01:25.067] iteration 541 : loss : 0.082501 cons_dist: 0.011493, loss_weight: 0.001387
[16:01:25.558] iteration 542 : loss : 0.127670 cons_dist: 0.033707, loss_weight: 0.001387
[16:01:26.049] iteration 543 : loss : 0.197674 cons_dist: 0.010125, loss_weight: 0.001387
[16:01:26.541] iteration 544 : loss : 0.245190 cons_dist: 0.014126, loss_weight: 0.001387
[16:01:27.034] iteration 545 : loss : 0.130089 cons_dist: 0.011129, loss_weight: 0.001387
[16:01:27.526] iteration 546 : loss : 0.109149 cons_dist: 0.013506, loss_weight: 0.001387
[16:01:28.017] iteration 547 : loss : 0.107163 cons_dist: 0.022110, loss_weight: 0.001387
[16:01:28.509] iteration 548 : loss : 0.142508 cons_dist: 0.009269, loss_weight: 0.001387
[16:01:29.000] iteration 549 : loss : 0.112146 cons_dist: 0.007605, loss_weight: 0.001387
[16:01:29.490] iteration 550 : loss : 0.097788 cons_dist: 0.005009, loss_weight: 0.001387
[16:01:29.981] iteration 551 : loss : 0.107952 cons_dist: 0.013315, loss_weight: 0.001387
[16:01:30.473] iteration 552 : loss : 0.094456 cons_dist: 0.007138, loss_weight: 0.001387
[16:01:31.613] iteration 553 : loss : 0.148097 cons_dist: 0.016334, loss_weight: 0.001387
[16:01:32.106] iteration 554 : loss : 0.100526 cons_dist: 0.008571, loss_weight: 0.001387
[16:01:32.597] iteration 555 : loss : 0.090084 cons_dist: 0.005171, loss_weight: 0.001387
[16:01:33.088] iteration 556 : loss : 0.076888 cons_dist: 0.007768, loss_weight: 0.001387
[16:01:33.578] iteration 557 : loss : 0.137570 cons_dist: 0.026119, loss_weight: 0.001387
[16:01:34.070] iteration 558 : loss : 0.110845 cons_dist: 0.018547, loss_weight: 0.001387
[16:01:34.561] iteration 559 : loss : 0.127627 cons_dist: 0.015691, loss_weight: 0.001387
[16:01:35.053] iteration 560 : loss : 0.188340 cons_dist: 0.012212, loss_weight: 0.001387
[16:01:35.546] iteration 561 : loss : 0.115230 cons_dist: 0.014545, loss_weight: 0.001387
[16:01:36.037] iteration 562 : loss : 0.212693 cons_dist: 0.008405, loss_weight: 0.001387
[16:01:36.529] iteration 563 : loss : 0.110339 cons_dist: 0.034879, loss_weight: 0.001387
[16:01:37.020] iteration 564 : loss : 0.099530 cons_dist: 0.007754, loss_weight: 0.001387
[16:01:38.131] iteration 565 : loss : 0.133485 cons_dist: 0.008018, loss_weight: 0.001387
[16:01:38.619] iteration 566 : loss : 0.114634 cons_dist: 0.011376, loss_weight: 0.001387
[16:01:39.111] iteration 567 : loss : 0.101707 cons_dist: 0.006369, loss_weight: 0.001387
[16:01:39.602] iteration 568 : loss : 0.084821 cons_dist: 0.005417, loss_weight: 0.001387
[16:01:40.094] iteration 569 : loss : 0.101313 cons_dist: 0.008906, loss_weight: 0.001387
[16:01:40.585] iteration 570 : loss : 0.106096 cons_dist: 0.018139, loss_weight: 0.001387
[16:01:41.077] iteration 571 : loss : 0.097951 cons_dist: 0.006084, loss_weight: 0.001387
[16:01:41.569] iteration 572 : loss : 0.128672 cons_dist: 0.009433, loss_weight: 0.001387
[16:01:42.061] iteration 573 : loss : 0.155084 cons_dist: 0.007936, loss_weight: 0.001387
[16:01:42.553] iteration 574 : loss : 0.083268 cons_dist: 0.011292, loss_weight: 0.001387
[16:01:43.045] iteration 575 : loss : 0.214460 cons_dist: 0.005991, loss_weight: 0.001387
[16:01:43.536] iteration 576 : loss : 0.091752 cons_dist: 0.016001, loss_weight: 0.001387
[16:01:44.687] iteration 577 : loss : 0.133109 cons_dist: 0.010152, loss_weight: 0.001387
[16:01:45.179] iteration 578 : loss : 0.207857 cons_dist: 0.014260, loss_weight: 0.001387
[16:01:45.671] iteration 579 : loss : 0.103288 cons_dist: 0.016892, loss_weight: 0.001387
[16:01:46.162] iteration 580 : loss : 0.093754 cons_dist: 0.034478, loss_weight: 0.001387
[16:01:46.653] iteration 581 : loss : 0.148409 cons_dist: 0.040757, loss_weight: 0.001387
[16:01:47.143] iteration 582 : loss : 0.115599 cons_dist: 0.013536, loss_weight: 0.001387
[16:01:47.634] iteration 583 : loss : 0.150827 cons_dist: 0.028809, loss_weight: 0.001387
[16:01:48.125] iteration 584 : loss : 0.077812 cons_dist: 0.010106, loss_weight: 0.001387
[16:01:48.616] iteration 585 : loss : 0.141380 cons_dist: 0.003893, loss_weight: 0.001387
[16:01:49.109] iteration 586 : loss : 0.081972 cons_dist: 0.016391, loss_weight: 0.001387
[16:01:49.601] iteration 587 : loss : 0.087519 cons_dist: 0.005669, loss_weight: 0.001387
[16:01:50.093] iteration 588 : loss : 0.105186 cons_dist: 0.011541, loss_weight: 0.001387
[16:01:51.224] iteration 589 : loss : 0.160171 cons_dist: 0.009851, loss_weight: 0.001387
[16:01:51.718] iteration 590 : loss : 0.090394 cons_dist: 0.014904, loss_weight: 0.001387
[16:01:52.211] iteration 591 : loss : 0.121738 cons_dist: 0.008912, loss_weight: 0.001387
[16:01:52.703] iteration 592 : loss : 0.122434 cons_dist: 0.006650, loss_weight: 0.001387
[16:01:53.194] iteration 593 : loss : 0.078781 cons_dist: 0.019501, loss_weight: 0.001387
[16:01:53.684] iteration 594 : loss : 0.106547 cons_dist: 0.011236, loss_weight: 0.001387
[16:01:54.175] iteration 595 : loss : 0.091874 cons_dist: 0.013272, loss_weight: 0.001387
[16:01:54.667] iteration 596 : loss : 0.112513 cons_dist: 0.015208, loss_weight: 0.001387
[16:01:55.159] iteration 597 : loss : 0.116863 cons_dist: 0.006999, loss_weight: 0.001387
[16:01:55.651] iteration 598 : loss : 0.093451 cons_dist: 0.010345, loss_weight: 0.001387
[16:01:56.144] iteration 599 : loss : 0.082170 cons_dist: 0.011922, loss_weight: 0.001387
[16:01:56.635] iteration 600 : loss : 0.075984 cons_dist: 0.009232, loss_weight: 0.001387
[16:01:57.827] iteration 601 : loss : 0.119126 cons_dist: 0.008657, loss_weight: 0.001742
[16:01:58.321] iteration 602 : loss : 0.091918 cons_dist: 0.043986, loss_weight: 0.001742
[16:01:58.813] iteration 603 : loss : 0.111969 cons_dist: 0.014690, loss_weight: 0.001742
[16:01:59.304] iteration 604 : loss : 0.113266 cons_dist: 0.009544, loss_weight: 0.001742
[16:01:59.794] iteration 605 : loss : 0.135668 cons_dist: 0.010081, loss_weight: 0.001742
[16:02:00.285] iteration 606 : loss : 0.085483 cons_dist: 0.004523, loss_weight: 0.001742
[16:02:00.776] iteration 607 : loss : 0.096316 cons_dist: 0.011276, loss_weight: 0.001742
[16:02:01.268] iteration 608 : loss : 0.069732 cons_dist: 0.014949, loss_weight: 0.001742
[16:02:01.759] iteration 609 : loss : 0.168483 cons_dist: 0.006879, loss_weight: 0.001742
[16:02:02.251] iteration 610 : loss : 0.083172 cons_dist: 0.006894, loss_weight: 0.001742
[16:02:02.743] iteration 611 : loss : 0.096551 cons_dist: 0.007962, loss_weight: 0.001742
[16:02:03.235] iteration 612 : loss : 0.074578 cons_dist: 0.008112, loss_weight: 0.001742
[16:02:04.340] iteration 613 : loss : 0.084511 cons_dist: 0.017236, loss_weight: 0.001742
[16:02:04.830] iteration 614 : loss : 0.075492 cons_dist: 0.010689, loss_weight: 0.001742
[16:02:05.321] iteration 615 : loss : 0.089168 cons_dist: 0.007736, loss_weight: 0.001742
[16:02:05.812] iteration 616 : loss : 0.130055 cons_dist: 0.008141, loss_weight: 0.001742
[16:02:06.304] iteration 617 : loss : 0.065839 cons_dist: 0.004886, loss_weight: 0.001742
[16:02:06.796] iteration 618 : loss : 0.093228 cons_dist: 0.010505, loss_weight: 0.001742
[16:02:07.287] iteration 619 : loss : 0.140834 cons_dist: 0.009132, loss_weight: 0.001742
[16:02:07.779] iteration 620 : loss : 0.094828 cons_dist: 0.016002, loss_weight: 0.001742
[16:02:08.270] iteration 621 : loss : 0.106592 cons_dist: 0.013313, loss_weight: 0.001742
[16:02:08.762] iteration 622 : loss : 0.056199 cons_dist: 0.024196, loss_weight: 0.001742
[16:02:09.253] iteration 623 : loss : 0.098550 cons_dist: 0.008660, loss_weight: 0.001742
[16:02:09.746] iteration 624 : loss : 0.103371 cons_dist: 0.016473, loss_weight: 0.001742
[16:02:10.864] iteration 625 : loss : 0.121100 cons_dist: 0.016630, loss_weight: 0.001742
[16:02:11.355] iteration 626 : loss : 0.064610 cons_dist: 0.012201, loss_weight: 0.001742
[16:02:11.847] iteration 627 : loss : 0.066530 cons_dist: 0.006314, loss_weight: 0.001742
[16:02:12.339] iteration 628 : loss : 0.095219 cons_dist: 0.005413, loss_weight: 0.001742
[16:02:12.829] iteration 629 : loss : 0.098632 cons_dist: 0.017104, loss_weight: 0.001742
[16:02:13.320] iteration 630 : loss : 0.096606 cons_dist: 0.003111, loss_weight: 0.001742
[16:02:13.812] iteration 631 : loss : 0.096634 cons_dist: 0.010722, loss_weight: 0.001742
[16:02:14.305] iteration 632 : loss : 0.166689 cons_dist: 0.038182, loss_weight: 0.001742
[16:02:14.797] iteration 633 : loss : 0.117145 cons_dist: 0.009041, loss_weight: 0.001742
[16:02:15.288] iteration 634 : loss : 0.134831 cons_dist: 0.011579, loss_weight: 0.001742
[16:02:15.779] iteration 635 : loss : 0.084800 cons_dist: 0.011247, loss_weight: 0.001742
[16:02:16.269] iteration 636 : loss : 0.100347 cons_dist: 0.017950, loss_weight: 0.001742
[16:02:17.305] iteration 637 : loss : 0.067150 cons_dist: 0.006716, loss_weight: 0.001742
[16:02:17.796] iteration 638 : loss : 0.082484 cons_dist: 0.005164, loss_weight: 0.001742
[16:02:18.288] iteration 639 : loss : 0.114623 cons_dist: 0.013186, loss_weight: 0.001742
[16:02:18.780] iteration 640 : loss : 0.096637 cons_dist: 0.021871, loss_weight: 0.001742
[16:02:19.272] iteration 641 : loss : 0.097482 cons_dist: 0.009979, loss_weight: 0.001742
[16:02:19.764] iteration 642 : loss : 0.055043 cons_dist: 0.006921, loss_weight: 0.001742
[16:02:20.256] iteration 643 : loss : 0.086494 cons_dist: 0.009925, loss_weight: 0.001742
[16:02:20.747] iteration 644 : loss : 0.151949 cons_dist: 0.032067, loss_weight: 0.001742
[16:02:21.238] iteration 645 : loss : 0.097324 cons_dist: 0.006641, loss_weight: 0.001742
[16:02:21.729] iteration 646 : loss : 0.093136 cons_dist: 0.024162, loss_weight: 0.001742
[16:02:22.222] iteration 647 : loss : 0.127432 cons_dist: 0.022109, loss_weight: 0.001742
[16:02:22.714] iteration 648 : loss : 0.099234 cons_dist: 0.017805, loss_weight: 0.001742
[16:02:23.934] iteration 649 : loss : 0.119402 cons_dist: 0.006020, loss_weight: 0.001742
[16:02:24.420] iteration 650 : loss : 0.225073 cons_dist: 0.008284, loss_weight: 0.001742
[16:02:24.912] iteration 651 : loss : 0.129334 cons_dist: 0.056959, loss_weight: 0.001742
[16:02:25.403] iteration 652 : loss : 0.073552 cons_dist: 0.008285, loss_weight: 0.001742
[16:02:25.894] iteration 653 : loss : 0.144217 cons_dist: 0.015275, loss_weight: 0.001742
[16:02:26.385] iteration 654 : loss : 0.107957 cons_dist: 0.007855, loss_weight: 0.001742
[16:02:26.876] iteration 655 : loss : 0.091544 cons_dist: 0.014781, loss_weight: 0.001742
[16:02:27.368] iteration 656 : loss : 0.084122 cons_dist: 0.009937, loss_weight: 0.001742
[16:02:27.860] iteration 657 : loss : 0.120802 cons_dist: 0.010506, loss_weight: 0.001742
[16:02:28.352] iteration 658 : loss : 0.086261 cons_dist: 0.028900, loss_weight: 0.001742
[16:02:28.845] iteration 659 : loss : 0.086146 cons_dist: 0.035995, loss_weight: 0.001742
[16:02:29.336] iteration 660 : loss : 0.467104 cons_dist: 0.012802, loss_weight: 0.001742
[16:02:30.445] iteration 661 : loss : 0.075441 cons_dist: 0.019267, loss_weight: 0.001742
[16:02:30.932] iteration 662 : loss : 0.085236 cons_dist: 0.012287, loss_weight: 0.001742
[16:02:31.425] iteration 663 : loss : 0.335619 cons_dist: 0.021536, loss_weight: 0.001742
[16:02:31.916] iteration 664 : loss : 0.134226 cons_dist: 0.004788, loss_weight: 0.001742
[16:02:32.408] iteration 665 : loss : 0.099459 cons_dist: 0.017470, loss_weight: 0.001742
[16:02:32.898] iteration 666 : loss : 0.090775 cons_dist: 0.018715, loss_weight: 0.001742
[16:02:33.389] iteration 667 : loss : 0.291800 cons_dist: 0.013168, loss_weight: 0.001742
[16:02:33.881] iteration 668 : loss : 0.119638 cons_dist: 0.009235, loss_weight: 0.001742
[16:02:34.373] iteration 669 : loss : 0.250330 cons_dist: 0.021527, loss_weight: 0.001742
[16:02:34.865] iteration 670 : loss : 0.168140 cons_dist: 0.028578, loss_weight: 0.001742
[16:02:35.358] iteration 671 : loss : 0.160478 cons_dist: 0.009082, loss_weight: 0.001742
[16:02:35.850] iteration 672 : loss : 0.200411 cons_dist: 0.018595, loss_weight: 0.001742
[16:02:36.906] iteration 673 : loss : 0.221850 cons_dist: 0.050362, loss_weight: 0.001742
[16:02:37.396] iteration 674 : loss : 0.177046 cons_dist: 0.014415, loss_weight: 0.001742
[16:02:37.887] iteration 675 : loss : 0.171620 cons_dist: 0.051914, loss_weight: 0.001742
[16:02:38.378] iteration 676 : loss : 0.237944 cons_dist: 0.073246, loss_weight: 0.001742
[16:02:38.870] iteration 677 : loss : 0.805132 cons_dist: 0.065937, loss_weight: 0.001742
[16:02:39.363] iteration 678 : loss : 0.167347 cons_dist: 0.040108, loss_weight: 0.001742
[16:02:39.855] iteration 679 : loss : 0.137897 cons_dist: 0.019776, loss_weight: 0.001742
[16:02:40.346] iteration 680 : loss : 0.206659 cons_dist: 0.022937, loss_weight: 0.001742
[16:02:40.838] iteration 681 : loss : 0.102384 cons_dist: 0.020644, loss_weight: 0.001742
[16:02:41.330] iteration 682 : loss : 0.149386 cons_dist: 0.028295, loss_weight: 0.001742
[16:02:41.822] iteration 683 : loss : 0.298250 cons_dist: 0.018008, loss_weight: 0.001742
[16:02:42.314] iteration 684 : loss : 0.192646 cons_dist: 0.015643, loss_weight: 0.001742
[16:02:43.521] iteration 685 : loss : 0.469140 cons_dist: 0.028400, loss_weight: 0.001742
[16:02:44.011] iteration 686 : loss : 0.098436 cons_dist: 0.018172, loss_weight: 0.001742
[16:02:44.502] iteration 687 : loss : 0.128417 cons_dist: 0.021383, loss_weight: 0.001742
[16:02:44.993] iteration 688 : loss : 0.141086 cons_dist: 0.026221, loss_weight: 0.001742
[16:02:45.484] iteration 689 : loss : 0.128737 cons_dist: 0.037351, loss_weight: 0.001742
[16:02:45.975] iteration 690 : loss : 0.177412 cons_dist: 0.018598, loss_weight: 0.001742
[16:02:46.467] iteration 691 : loss : 0.177341 cons_dist: 0.021891, loss_weight: 0.001742
[16:02:46.959] iteration 692 : loss : 0.327304 cons_dist: 0.050825, loss_weight: 0.001742
[16:02:47.451] iteration 693 : loss : 0.193440 cons_dist: 0.023796, loss_weight: 0.001742
[16:02:47.943] iteration 694 : loss : 0.232862 cons_dist: 0.019752, loss_weight: 0.001742
[16:02:48.434] iteration 695 : loss : 0.131076 cons_dist: 0.015653, loss_weight: 0.001742
[16:02:48.926] iteration 696 : loss : 0.088923 cons_dist: 0.033327, loss_weight: 0.001742
[16:02:49.974] iteration 697 : loss : 0.219828 cons_dist: 0.022993, loss_weight: 0.001742
[16:02:50.466] iteration 698 : loss : 0.141100 cons_dist: 0.006009, loss_weight: 0.001742
[16:02:50.957] iteration 699 : loss : 0.197913 cons_dist: 0.036812, loss_weight: 0.001742
[16:02:51.448] iteration 700 : loss : 0.129830 cons_dist: 0.015702, loss_weight: 0.001742
[16:02:51.940] iteration 701 : loss : 0.094994 cons_dist: 0.027347, loss_weight: 0.001742
[16:02:52.431] iteration 702 : loss : 0.106198 cons_dist: 0.010968, loss_weight: 0.001742
[16:02:52.921] iteration 703 : loss : 0.142123 cons_dist: 0.014255, loss_weight: 0.001742
[16:02:53.413] iteration 704 : loss : 0.169104 cons_dist: 0.010712, loss_weight: 0.001742
[16:02:53.906] iteration 705 : loss : 0.130277 cons_dist: 0.018559, loss_weight: 0.001742
[16:02:54.398] iteration 706 : loss : 0.107097 cons_dist: 0.020841, loss_weight: 0.001742
[16:02:54.889] iteration 707 : loss : 0.117530 cons_dist: 0.011207, loss_weight: 0.001742
[16:02:55.381] iteration 708 : loss : 0.152530 cons_dist: 0.014714, loss_weight: 0.001742
[16:02:56.476] iteration 709 : loss : 0.125087 cons_dist: 0.016907, loss_weight: 0.001742
[16:02:56.967] iteration 710 : loss : 0.110963 cons_dist: 0.014356, loss_weight: 0.001742
[16:02:57.458] iteration 711 : loss : 0.091407 cons_dist: 0.015065, loss_weight: 0.001742
[16:02:57.949] iteration 712 : loss : 0.363487 cons_dist: 0.007936, loss_weight: 0.001742
[16:02:58.440] iteration 713 : loss : 0.104042 cons_dist: 0.007052, loss_weight: 0.001742
[16:02:58.930] iteration 714 : loss : 0.218721 cons_dist: 0.027448, loss_weight: 0.001742
[16:02:59.420] iteration 715 : loss : 0.209636 cons_dist: 0.029211, loss_weight: 0.001742
[16:02:59.912] iteration 716 : loss : 0.096051 cons_dist: 0.004490, loss_weight: 0.001742
[16:03:00.403] iteration 717 : loss : 0.194467 cons_dist: 0.026881, loss_weight: 0.001742
[16:03:00.896] iteration 718 : loss : 0.146117 cons_dist: 0.012361, loss_weight: 0.001742
[16:03:01.388] iteration 719 : loss : 0.133846 cons_dist: 0.069992, loss_weight: 0.001742
[16:03:01.880] iteration 720 : loss : 0.122804 cons_dist: 0.006692, loss_weight: 0.001742
[16:03:02.991] iteration 721 : loss : 0.107919 cons_dist: 0.014906, loss_weight: 0.001742
[16:03:03.483] iteration 722 : loss : 0.243680 cons_dist: 0.007579, loss_weight: 0.001742
[16:03:03.974] iteration 723 : loss : 0.118273 cons_dist: 0.006801, loss_weight: 0.001742
[16:03:04.466] iteration 724 : loss : 0.080690 cons_dist: 0.011522, loss_weight: 0.001742
[16:03:04.957] iteration 725 : loss : 0.097946 cons_dist: 0.014445, loss_weight: 0.001742
[16:03:05.448] iteration 726 : loss : 0.092877 cons_dist: 0.031097, loss_weight: 0.001742
[16:03:05.939] iteration 727 : loss : 0.157255 cons_dist: 0.004905, loss_weight: 0.001742
[16:03:06.433] iteration 728 : loss : 0.115642 cons_dist: 0.006181, loss_weight: 0.001742
[16:03:06.926] iteration 729 : loss : 0.077935 cons_dist: 0.025644, loss_weight: 0.001742
[16:03:07.418] iteration 730 : loss : 0.122827 cons_dist: 0.061521, loss_weight: 0.001742
[16:03:07.909] iteration 731 : loss : 0.144725 cons_dist: 0.016521, loss_weight: 0.001742
[16:03:08.401] iteration 732 : loss : 0.135067 cons_dist: 0.003269, loss_weight: 0.001742
[16:03:09.566] iteration 733 : loss : 0.107778 cons_dist: 0.007103, loss_weight: 0.001742
[16:03:10.060] iteration 734 : loss : 0.097171 cons_dist: 0.014039, loss_weight: 0.001742
[16:03:10.552] iteration 735 : loss : 0.089580 cons_dist: 0.025082, loss_weight: 0.001742
[16:03:11.044] iteration 736 : loss : 0.109239 cons_dist: 0.007878, loss_weight: 0.001742
[16:03:11.535] iteration 737 : loss : 0.112186 cons_dist: 0.007059, loss_weight: 0.001742
[16:03:12.026] iteration 738 : loss : 0.112781 cons_dist: 0.022375, loss_weight: 0.001742
[16:03:12.517] iteration 739 : loss : 0.090169 cons_dist: 0.011100, loss_weight: 0.001742
[16:03:13.007] iteration 740 : loss : 0.076295 cons_dist: 0.015805, loss_weight: 0.001742
[16:03:13.499] iteration 741 : loss : 0.111736 cons_dist: 0.017244, loss_weight: 0.001742
[16:03:13.989] iteration 742 : loss : 0.347561 cons_dist: 0.017070, loss_weight: 0.001742
[16:03:14.480] iteration 743 : loss : 0.138630 cons_dist: 0.037754, loss_weight: 0.001742
[16:03:14.972] iteration 744 : loss : 0.075944 cons_dist: 0.008233, loss_weight: 0.001742
[16:03:16.103] iteration 745 : loss : 0.098459 cons_dist: 0.010139, loss_weight: 0.001742
[16:03:16.594] iteration 746 : loss : 0.078338 cons_dist: 0.013220, loss_weight: 0.001742
[16:03:17.085] iteration 747 : loss : 0.183935 cons_dist: 0.014799, loss_weight: 0.001742
[16:03:17.577] iteration 748 : loss : 0.085126 cons_dist: 0.019140, loss_weight: 0.001742
[16:03:18.069] iteration 749 : loss : 0.070705 cons_dist: 0.017721, loss_weight: 0.001742
[16:03:18.561] iteration 750 : loss : 0.122500 cons_dist: 0.003499, loss_weight: 0.001742
[16:03:19.054] iteration 751 : loss : 0.087056 cons_dist: 0.017669, loss_weight: 0.002175
[16:03:19.545] iteration 752 : loss : 0.078017 cons_dist: 0.018447, loss_weight: 0.002175
[16:03:20.037] iteration 753 : loss : 0.094547 cons_dist: 0.006553, loss_weight: 0.002175
[16:03:20.528] iteration 754 : loss : 0.175539 cons_dist: 0.013235, loss_weight: 0.002175
[16:03:21.021] iteration 755 : loss : 0.197510 cons_dist: 0.021276, loss_weight: 0.002175
[16:03:21.513] iteration 756 : loss : 0.066072 cons_dist: 0.009867, loss_weight: 0.002175
[16:03:22.666] iteration 757 : loss : 0.133645 cons_dist: 0.018169, loss_weight: 0.002175
[16:03:23.159] iteration 758 : loss : 0.089908 cons_dist: 0.029903, loss_weight: 0.002175
[16:03:23.650] iteration 759 : loss : 0.129681 cons_dist: 0.013058, loss_weight: 0.002175
[16:03:24.142] iteration 760 : loss : 0.136407 cons_dist: 0.024347, loss_weight: 0.002175
[16:03:24.633] iteration 761 : loss : 0.077656 cons_dist: 0.019940, loss_weight: 0.002175
[16:03:25.124] iteration 762 : loss : 0.108452 cons_dist: 0.018477, loss_weight: 0.002175
[16:03:25.616] iteration 763 : loss : 0.101219 cons_dist: 0.012683, loss_weight: 0.002175
[16:03:26.108] iteration 764 : loss : 0.074733 cons_dist: 0.008496, loss_weight: 0.002175
[16:03:26.600] iteration 765 : loss : 0.123106 cons_dist: 0.047422, loss_weight: 0.002175
[16:03:27.092] iteration 766 : loss : 0.110880 cons_dist: 0.007330, loss_weight: 0.002175
[16:03:27.584] iteration 767 : loss : 0.082356 cons_dist: 0.009763, loss_weight: 0.002175
[16:03:28.075] iteration 768 : loss : 0.119852 cons_dist: 0.003699, loss_weight: 0.002175
[16:03:29.074] iteration 769 : loss : 0.105836 cons_dist: 0.017616, loss_weight: 0.002175
[16:03:29.562] iteration 770 : loss : 0.108222 cons_dist: 0.005422, loss_weight: 0.002175
[16:03:30.053] iteration 771 : loss : 0.086456 cons_dist: 0.014588, loss_weight: 0.002175
[16:03:30.544] iteration 772 : loss : 0.062551 cons_dist: 0.008903, loss_weight: 0.002175
[16:03:31.037] iteration 773 : loss : 0.138779 cons_dist: 0.005032, loss_weight: 0.002175
[16:03:31.528] iteration 774 : loss : 0.116509 cons_dist: 0.009196, loss_weight: 0.002175
[16:03:32.020] iteration 775 : loss : 0.110658 cons_dist: 0.024959, loss_weight: 0.002175
[16:03:32.510] iteration 776 : loss : 0.180790 cons_dist: 0.010444, loss_weight: 0.002175
[16:03:33.002] iteration 777 : loss : 0.081690 cons_dist: 0.008357, loss_weight: 0.002175
[16:03:33.492] iteration 778 : loss : 0.151193 cons_dist: 0.014973, loss_weight: 0.002175
[16:03:33.984] iteration 779 : loss : 0.122877 cons_dist: 0.009198, loss_weight: 0.002175
[16:03:34.476] iteration 780 : loss : 0.100219 cons_dist: 0.016626, loss_weight: 0.002175
[16:03:35.586] iteration 781 : loss : 0.056999 cons_dist: 0.007980, loss_weight: 0.002175
[16:03:36.075] iteration 782 : loss : 0.072717 cons_dist: 0.077696, loss_weight: 0.002175
[16:03:36.565] iteration 783 : loss : 0.088794 cons_dist: 0.008547, loss_weight: 0.002175
[16:03:37.056] iteration 784 : loss : 0.088027 cons_dist: 0.008390, loss_weight: 0.002175
[16:03:37.548] iteration 785 : loss : 0.135367 cons_dist: 0.023111, loss_weight: 0.002175
[16:03:38.040] iteration 786 : loss : 0.086135 cons_dist: 0.006714, loss_weight: 0.002175
[16:03:38.532] iteration 787 : loss : 0.085779 cons_dist: 0.007530, loss_weight: 0.002175
[16:03:39.024] iteration 788 : loss : 0.107852 cons_dist: 0.004260, loss_weight: 0.002175
[16:03:39.515] iteration 789 : loss : 0.092957 cons_dist: 0.006348, loss_weight: 0.002175
[16:03:40.006] iteration 790 : loss : 0.057586 cons_dist: 0.030801, loss_weight: 0.002175
[16:03:40.497] iteration 791 : loss : 0.101722 cons_dist: 0.005395, loss_weight: 0.002175
[16:03:40.990] iteration 792 : loss : 0.112303 cons_dist: 0.020359, loss_weight: 0.002175
[16:03:42.036] iteration 793 : loss : 0.072378 cons_dist: 0.006656, loss_weight: 0.002175
[16:03:42.527] iteration 794 : loss : 0.138159 cons_dist: 0.013728, loss_weight: 0.002175
[16:03:43.017] iteration 795 : loss : 0.074174 cons_dist: 0.042443, loss_weight: 0.002175
[16:03:43.509] iteration 796 : loss : 0.098894 cons_dist: 0.029243, loss_weight: 0.002175
[16:03:44.001] iteration 797 : loss : 0.099348 cons_dist: 0.006844, loss_weight: 0.002175
[16:03:44.493] iteration 798 : loss : 0.108783 cons_dist: 0.006325, loss_weight: 0.002175
[16:03:44.985] iteration 799 : loss : 0.088001 cons_dist: 0.029849, loss_weight: 0.002175
[16:03:45.476] iteration 800 : loss : 0.065600 cons_dist: 0.011093, loss_weight: 0.002175
[16:03:46.735] save best model to model/LA_vnet_25_labeled/MT/iter_800_dice_0.8930715322494507.pth
[16:03:47.226] iteration 801 : loss : 0.128844 cons_dist: 0.010422, loss_weight: 0.002175
[16:03:47.717] iteration 802 : loss : 0.177684 cons_dist: 0.011932, loss_weight: 0.002175
[16:03:48.208] iteration 803 : loss : 0.107361 cons_dist: 0.009471, loss_weight: 0.002175
[16:03:48.699] iteration 804 : loss : 0.072473 cons_dist: 0.004941, loss_weight: 0.002175
[16:03:49.896] iteration 805 : loss : 0.131243 cons_dist: 0.010118, loss_weight: 0.002175
[16:03:50.387] iteration 806 : loss : 0.070580 cons_dist: 0.004132, loss_weight: 0.002175
[16:03:50.878] iteration 807 : loss : 0.119638 cons_dist: 0.005376, loss_weight: 0.002175
[16:03:51.369] iteration 808 : loss : 0.054444 cons_dist: 0.029657, loss_weight: 0.002175
[16:03:51.862] iteration 809 : loss : 0.096665 cons_dist: 0.002648, loss_weight: 0.002175
[16:03:52.354] iteration 810 : loss : 0.080126 cons_dist: 0.036720, loss_weight: 0.002175
[16:03:52.846] iteration 811 : loss : 0.111987 cons_dist: 0.009446, loss_weight: 0.002175
[16:03:53.361] iteration 812 : loss : 0.098100 cons_dist: 0.020990, loss_weight: 0.002175
[16:03:53.852] iteration 813 : loss : 0.128322 cons_dist: 0.008764, loss_weight: 0.002175
[16:03:54.343] iteration 814 : loss : 0.085294 cons_dist: 0.009118, loss_weight: 0.002175
[16:03:54.836] iteration 815 : loss : 0.132453 cons_dist: 0.023269, loss_weight: 0.002175
[16:03:55.328] iteration 816 : loss : 0.257068 cons_dist: 0.056867, loss_weight: 0.002175
[16:03:56.447] iteration 817 : loss : 0.073230 cons_dist: 0.009372, loss_weight: 0.002175
[16:03:56.937] iteration 818 : loss : 0.069324 cons_dist: 0.017446, loss_weight: 0.002175
[16:03:57.428] iteration 819 : loss : 0.117669 cons_dist: 0.012125, loss_weight: 0.002175
[16:03:57.919] iteration 820 : loss : 0.119394 cons_dist: 0.009000, loss_weight: 0.002175
[16:03:58.410] iteration 821 : loss : 0.076881 cons_dist: 0.004930, loss_weight: 0.002175
[16:03:58.901] iteration 822 : loss : 0.060948 cons_dist: 0.016346, loss_weight: 0.002175
[16:03:59.394] iteration 823 : loss : 0.120257 cons_dist: 0.022293, loss_weight: 0.002175
[16:03:59.885] iteration 824 : loss : 0.094271 cons_dist: 0.012789, loss_weight: 0.002175
[16:04:00.377] iteration 825 : loss : 0.087322 cons_dist: 0.008482, loss_weight: 0.002175
[16:04:00.868] iteration 826 : loss : 0.100093 cons_dist: 0.017640, loss_weight: 0.002175
[16:04:01.358] iteration 827 : loss : 0.055667 cons_dist: 0.008050, loss_weight: 0.002175
[16:04:01.849] iteration 828 : loss : 0.119911 cons_dist: 0.007323, loss_weight: 0.002175
[16:04:02.895] iteration 829 : loss : 0.073898 cons_dist: 0.004764, loss_weight: 0.002175
[16:04:03.387] iteration 830 : loss : 0.081224 cons_dist: 0.005984, loss_weight: 0.002175
[16:04:03.877] iteration 831 : loss : 0.118661 cons_dist: 0.004952, loss_weight: 0.002175
[16:04:04.370] iteration 832 : loss : 0.059825 cons_dist: 0.005281, loss_weight: 0.002175
[16:04:04.861] iteration 833 : loss : 0.081798 cons_dist: 0.011628, loss_weight: 0.002175
[16:04:05.352] iteration 834 : loss : 0.091989 cons_dist: 0.004564, loss_weight: 0.002175
[16:04:05.842] iteration 835 : loss : 0.066432 cons_dist: 0.002971, loss_weight: 0.002175
[16:04:06.334] iteration 836 : loss : 0.096295 cons_dist: 0.012060, loss_weight: 0.002175
[16:04:06.825] iteration 837 : loss : 0.108244 cons_dist: 0.018927, loss_weight: 0.002175
[16:04:07.318] iteration 838 : loss : 0.131979 cons_dist: 0.014951, loss_weight: 0.002175
[16:04:07.810] iteration 839 : loss : 0.115538 cons_dist: 0.012574, loss_weight: 0.002175
[16:04:08.301] iteration 840 : loss : 0.088101 cons_dist: 0.012273, loss_weight: 0.002175
[16:04:09.468] iteration 841 : loss : 0.082858 cons_dist: 0.008789, loss_weight: 0.002175
[16:04:09.958] iteration 842 : loss : 0.095684 cons_dist: 0.006304, loss_weight: 0.002175
[16:04:10.448] iteration 843 : loss : 0.196936 cons_dist: 0.014157, loss_weight: 0.002175
[16:04:10.939] iteration 844 : loss : 0.057053 cons_dist: 0.010097, loss_weight: 0.002175
[16:04:11.431] iteration 845 : loss : 0.091435 cons_dist: 0.016081, loss_weight: 0.002175
[16:04:11.923] iteration 846 : loss : 0.067765 cons_dist: 0.010390, loss_weight: 0.002175
[16:04:12.415] iteration 847 : loss : 0.054673 cons_dist: 0.016256, loss_weight: 0.002175
[16:04:12.906] iteration 848 : loss : 0.080605 cons_dist: 0.007401, loss_weight: 0.002175
[16:04:13.398] iteration 849 : loss : 0.105401 cons_dist: 0.013251, loss_weight: 0.002175
[16:04:13.889] iteration 850 : loss : 0.054464 cons_dist: 0.008225, loss_weight: 0.002175
[16:04:14.379] iteration 851 : loss : 0.064876 cons_dist: 0.003943, loss_weight: 0.002175
[16:04:14.871] iteration 852 : loss : 0.120049 cons_dist: 0.011532, loss_weight: 0.002175
[16:04:16.007] iteration 853 : loss : 0.094849 cons_dist: 0.013227, loss_weight: 0.002175
[16:04:16.497] iteration 854 : loss : 0.160283 cons_dist: 0.019719, loss_weight: 0.002175
[16:04:16.987] iteration 855 : loss : 0.072681 cons_dist: 0.018003, loss_weight: 0.002175
[16:04:17.478] iteration 856 : loss : 0.089249 cons_dist: 0.011885, loss_weight: 0.002175
[16:04:17.969] iteration 857 : loss : 0.058910 cons_dist: 0.026342, loss_weight: 0.002175
[16:04:18.460] iteration 858 : loss : 0.055222 cons_dist: 0.011210, loss_weight: 0.002175
[16:04:18.952] iteration 859 : loss : 0.070055 cons_dist: 0.010072, loss_weight: 0.002175
[16:04:19.444] iteration 860 : loss : 0.118357 cons_dist: 0.029910, loss_weight: 0.002175
[16:04:19.936] iteration 861 : loss : 0.060642 cons_dist: 0.017495, loss_weight: 0.002175
[16:04:20.428] iteration 862 : loss : 0.107318 cons_dist: 0.009873, loss_weight: 0.002175
[16:04:20.919] iteration 863 : loss : 0.138911 cons_dist: 0.010108, loss_weight: 0.002175
[16:04:21.409] iteration 864 : loss : 0.113561 cons_dist: 0.002626, loss_weight: 0.002175
[16:04:22.505] iteration 865 : loss : 0.108817 cons_dist: 0.013742, loss_weight: 0.002175
[16:04:22.996] iteration 866 : loss : 0.062005 cons_dist: 0.016513, loss_weight: 0.002175
[16:04:23.487] iteration 867 : loss : 0.062265 cons_dist: 0.011871, loss_weight: 0.002175
[16:04:23.979] iteration 868 : loss : 0.163625 cons_dist: 0.008871, loss_weight: 0.002175
[16:04:24.471] iteration 869 : loss : 0.081844 cons_dist: 0.013725, loss_weight: 0.002175
[16:04:24.962] iteration 870 : loss : 0.101107 cons_dist: 0.017620, loss_weight: 0.002175
[16:04:25.454] iteration 871 : loss : 0.159689 cons_dist: 0.011846, loss_weight: 0.002175
[16:04:25.944] iteration 872 : loss : 0.075121 cons_dist: 0.011904, loss_weight: 0.002175
[16:04:26.436] iteration 873 : loss : 0.119937 cons_dist: 0.003754, loss_weight: 0.002175
[16:04:26.928] iteration 874 : loss : 0.141354 cons_dist: 0.014309, loss_weight: 0.002175
[16:04:27.421] iteration 875 : loss : 0.070618 cons_dist: 0.006933, loss_weight: 0.002175
[16:04:27.913] iteration 876 : loss : 0.089184 cons_dist: 0.012729, loss_weight: 0.002175
[16:04:28.976] iteration 877 : loss : 0.075020 cons_dist: 0.005485, loss_weight: 0.002175
[16:04:29.467] iteration 878 : loss : 0.078544 cons_dist: 0.014971, loss_weight: 0.002175
[16:04:29.958] iteration 879 : loss : 0.087886 cons_dist: 0.024287, loss_weight: 0.002175
[16:04:30.449] iteration 880 : loss : 0.220490 cons_dist: 0.009139, loss_weight: 0.002175
[16:04:30.942] iteration 881 : loss : 0.119664 cons_dist: 0.014694, loss_weight: 0.002175
[16:04:31.435] iteration 882 : loss : 0.129992 cons_dist: 0.015625, loss_weight: 0.002175
[16:04:31.926] iteration 883 : loss : 0.206164 cons_dist: 0.006403, loss_weight: 0.002175
[16:04:32.417] iteration 884 : loss : 0.073817 cons_dist: 0.025406, loss_weight: 0.002175
[16:04:32.908] iteration 885 : loss : 0.128215 cons_dist: 0.009835, loss_weight: 0.002175
[16:04:33.399] iteration 886 : loss : 0.090402 cons_dist: 0.025228, loss_weight: 0.002175
[16:04:33.890] iteration 887 : loss : 0.091016 cons_dist: 0.012857, loss_weight: 0.002175
[16:04:34.382] iteration 888 : loss : 0.078609 cons_dist: 0.024566, loss_weight: 0.002175
[16:04:35.464] iteration 889 : loss : 0.102884 cons_dist: 0.021449, loss_weight: 0.002175
[16:04:35.957] iteration 890 : loss : 0.070947 cons_dist: 0.010674, loss_weight: 0.002175
[16:04:36.448] iteration 891 : loss : 0.073994 cons_dist: 0.004480, loss_weight: 0.002175
[16:04:36.939] iteration 892 : loss : 0.132308 cons_dist: 0.011913, loss_weight: 0.002175
[16:04:37.430] iteration 893 : loss : 0.093297 cons_dist: 0.032452, loss_weight: 0.002175
[16:04:37.921] iteration 894 : loss : 0.172888 cons_dist: 0.007233, loss_weight: 0.002175
[16:04:38.412] iteration 895 : loss : 0.069607 cons_dist: 0.011454, loss_weight: 0.002175
[16:04:38.905] iteration 896 : loss : 0.104875 cons_dist: 0.007400, loss_weight: 0.002175
[16:04:39.396] iteration 897 : loss : 0.127823 cons_dist: 0.023951, loss_weight: 0.002175
[16:04:39.888] iteration 898 : loss : 0.077972 cons_dist: 0.008083, loss_weight: 0.002175
[16:04:40.380] iteration 899 : loss : 0.098910 cons_dist: 0.004535, loss_weight: 0.002175
[16:04:40.871] iteration 900 : loss : 0.067363 cons_dist: 0.012145, loss_weight: 0.002175
[16:04:41.981] iteration 901 : loss : 0.114970 cons_dist: 0.003502, loss_weight: 0.002698
[16:04:42.473] iteration 902 : loss : 0.157262 cons_dist: 0.018227, loss_weight: 0.002698
[16:04:42.964] iteration 903 : loss : 0.184089 cons_dist: 0.014913, loss_weight: 0.002698
[16:04:43.455] iteration 904 : loss : 0.120566 cons_dist: 0.084630, loss_weight: 0.002698
[16:04:43.946] iteration 905 : loss : 0.104704 cons_dist: 0.018849, loss_weight: 0.002698
[16:04:44.437] iteration 906 : loss : 0.133078 cons_dist: 0.025273, loss_weight: 0.002698
[16:04:44.928] iteration 907 : loss : 0.067577 cons_dist: 0.018059, loss_weight: 0.002698
[16:04:45.420] iteration 908 : loss : 0.214297 cons_dist: 0.008901, loss_weight: 0.002698
[16:04:45.912] iteration 909 : loss : 0.136059 cons_dist: 0.015115, loss_weight: 0.002698
[16:04:46.404] iteration 910 : loss : 0.075079 cons_dist: 0.012636, loss_weight: 0.002698
[16:04:46.896] iteration 911 : loss : 0.068114 cons_dist: 0.005457, loss_weight: 0.002698
[16:04:47.387] iteration 912 : loss : 0.087581 cons_dist: 0.009560, loss_weight: 0.002698
[16:04:48.597] iteration 913 : loss : 0.091328 cons_dist: 0.003698, loss_weight: 0.002698
[16:04:49.089] iteration 914 : loss : 0.108199 cons_dist: 0.018264, loss_weight: 0.002698
[16:04:49.580] iteration 915 : loss : 0.114578 cons_dist: 0.007235, loss_weight: 0.002698
[16:04:50.071] iteration 916 : loss : 0.088541 cons_dist: 0.002155, loss_weight: 0.002698
[16:04:50.562] iteration 917 : loss : 0.164726 cons_dist: 0.006089, loss_weight: 0.002698
[16:04:51.054] iteration 918 : loss : 0.102080 cons_dist: 0.024215, loss_weight: 0.002698
[16:04:51.546] iteration 919 : loss : 0.098175 cons_dist: 0.023019, loss_weight: 0.002698
[16:04:52.037] iteration 920 : loss : 0.087826 cons_dist: 0.009010, loss_weight: 0.002698
[16:04:52.529] iteration 921 : loss : 0.115733 cons_dist: 0.018964, loss_weight: 0.002698
[16:04:53.019] iteration 922 : loss : 0.095583 cons_dist: 0.008388, loss_weight: 0.002698
[16:04:53.510] iteration 923 : loss : 0.089423 cons_dist: 0.005455, loss_weight: 0.002698
[16:04:54.001] iteration 924 : loss : 0.072451 cons_dist: 0.005444, loss_weight: 0.002698
[16:04:55.210] iteration 925 : loss : 0.074587 cons_dist: 0.004426, loss_weight: 0.002698
[16:04:55.700] iteration 926 : loss : 0.108579 cons_dist: 0.041801, loss_weight: 0.002698
[16:04:56.191] iteration 927 : loss : 0.067700 cons_dist: 0.007714, loss_weight: 0.002698
[16:04:56.682] iteration 928 : loss : 0.090127 cons_dist: 0.010758, loss_weight: 0.002698
[16:04:57.173] iteration 929 : loss : 0.081182 cons_dist: 0.005387, loss_weight: 0.002698
[16:04:57.664] iteration 930 : loss : 0.111542 cons_dist: 0.065474, loss_weight: 0.002698
[16:04:58.156] iteration 931 : loss : 0.154744 cons_dist: 0.017359, loss_weight: 0.002698
[16:04:58.648] iteration 932 : loss : 0.108065 cons_dist: 0.010169, loss_weight: 0.002698
[16:04:59.140] iteration 933 : loss : 0.122508 cons_dist: 0.010818, loss_weight: 0.002698
[16:04:59.632] iteration 934 : loss : 0.090927 cons_dist: 0.008627, loss_weight: 0.002698
[16:05:00.123] iteration 935 : loss : 0.082752 cons_dist: 0.015171, loss_weight: 0.002698
[16:05:00.614] iteration 936 : loss : 0.112207 cons_dist: 0.009758, loss_weight: 0.002698
[16:05:01.770] iteration 937 : loss : 0.081800 cons_dist: 0.005850, loss_weight: 0.002698
[16:05:02.261] iteration 938 : loss : 0.077300 cons_dist: 0.006872, loss_weight: 0.002698
[16:05:02.752] iteration 939 : loss : 0.066538 cons_dist: 0.005482, loss_weight: 0.002698
[16:05:03.243] iteration 940 : loss : 0.054939 cons_dist: 0.003309, loss_weight: 0.002698
[16:05:03.735] iteration 941 : loss : 0.109500 cons_dist: 0.003652, loss_weight: 0.002698
[16:05:04.227] iteration 942 : loss : 0.070723 cons_dist: 0.014472, loss_weight: 0.002698
[16:05:04.719] iteration 943 : loss : 0.071128 cons_dist: 0.020014, loss_weight: 0.002698
[16:05:05.210] iteration 944 : loss : 0.069408 cons_dist: 0.005273, loss_weight: 0.002698
[16:05:05.702] iteration 945 : loss : 0.111034 cons_dist: 0.005819, loss_weight: 0.002698
[16:05:06.193] iteration 946 : loss : 0.065155 cons_dist: 0.003431, loss_weight: 0.002698
[16:05:06.684] iteration 947 : loss : 0.106636 cons_dist: 0.003983, loss_weight: 0.002698
[16:05:07.176] iteration 948 : loss : 0.059173 cons_dist: 0.008781, loss_weight: 0.002698
[16:05:08.279] iteration 949 : loss : 0.097431 cons_dist: 0.005080, loss_weight: 0.002698
[16:05:08.771] iteration 950 : loss : 0.068712 cons_dist: 0.006462, loss_weight: 0.002698
[16:05:09.262] iteration 951 : loss : 0.118898 cons_dist: 0.033354, loss_weight: 0.002698
[16:05:09.755] iteration 952 : loss : 0.099707 cons_dist: 0.005895, loss_weight: 0.002698
[16:05:10.246] iteration 953 : loss : 0.103889 cons_dist: 0.008290, loss_weight: 0.002698
[16:05:10.736] iteration 954 : loss : 0.095382 cons_dist: 0.002654, loss_weight: 0.002698
[16:05:11.228] iteration 955 : loss : 0.078115 cons_dist: 0.009767, loss_weight: 0.002698
[16:05:11.720] iteration 956 : loss : 0.100512 cons_dist: 0.005266, loss_weight: 0.002698
[16:05:12.212] iteration 957 : loss : 0.086509 cons_dist: 0.006420, loss_weight: 0.002698
[16:05:12.703] iteration 958 : loss : 0.073532 cons_dist: 0.008029, loss_weight: 0.002698
[16:05:13.195] iteration 959 : loss : 0.073701 cons_dist: 0.015033, loss_weight: 0.002698
[16:05:13.686] iteration 960 : loss : 0.077837 cons_dist: 0.005064, loss_weight: 0.002698
[16:05:14.878] iteration 961 : loss : 0.079244 cons_dist: 0.006216, loss_weight: 0.002698
[16:05:15.369] iteration 962 : loss : 0.082854 cons_dist: 0.010722, loss_weight: 0.002698
[16:05:15.860] iteration 963 : loss : 0.100844 cons_dist: 0.024854, loss_weight: 0.002698
[16:05:16.351] iteration 964 : loss : 0.087795 cons_dist: 0.004373, loss_weight: 0.002698
[16:05:16.843] iteration 965 : loss : 0.085997 cons_dist: 0.005969, loss_weight: 0.002698
[16:05:17.334] iteration 966 : loss : 0.067898 cons_dist: 0.004209, loss_weight: 0.002698
[16:05:17.825] iteration 967 : loss : 0.076337 cons_dist: 0.018139, loss_weight: 0.002698
[16:05:18.316] iteration 968 : loss : 0.065949 cons_dist: 0.003764, loss_weight: 0.002698
[16:05:18.806] iteration 969 : loss : 0.081101 cons_dist: 0.018020, loss_weight: 0.002698
[16:05:19.298] iteration 970 : loss : 0.053894 cons_dist: 0.004610, loss_weight: 0.002698
[16:05:19.790] iteration 971 : loss : 0.153386 cons_dist: 0.003682, loss_weight: 0.002698
[16:05:20.282] iteration 972 : loss : 0.064675 cons_dist: 0.007793, loss_weight: 0.002698
[16:05:21.437] iteration 973 : loss : 0.060531 cons_dist: 0.017362, loss_weight: 0.002698
[16:05:21.928] iteration 974 : loss : 0.212647 cons_dist: 0.035582, loss_weight: 0.002698
[16:05:22.421] iteration 975 : loss : 0.239900 cons_dist: 0.010957, loss_weight: 0.002698
[16:05:22.912] iteration 976 : loss : 0.132904 cons_dist: 0.026141, loss_weight: 0.002698
[16:05:23.404] iteration 977 : loss : 0.134028 cons_dist: 0.013752, loss_weight: 0.002698
[16:05:23.895] iteration 978 : loss : 0.147778 cons_dist: 0.012132, loss_weight: 0.002698
[16:05:24.387] iteration 979 : loss : 0.065174 cons_dist: 0.038441, loss_weight: 0.002698
[16:05:24.877] iteration 980 : loss : 0.248081 cons_dist: 0.030513, loss_weight: 0.002698
[16:05:25.368] iteration 981 : loss : 0.105305 cons_dist: 0.009557, loss_weight: 0.002698
[16:05:25.858] iteration 982 : loss : 0.101890 cons_dist: 0.008318, loss_weight: 0.002698
[16:05:26.350] iteration 983 : loss : 0.167834 cons_dist: 0.012878, loss_weight: 0.002698
[16:05:26.843] iteration 984 : loss : 0.089383 cons_dist: 0.022193, loss_weight: 0.002698
[16:05:28.015] iteration 985 : loss : 0.074801 cons_dist: 0.005227, loss_weight: 0.002698
[16:05:28.507] iteration 986 : loss : 0.095286 cons_dist: 0.015820, loss_weight: 0.002698
[16:05:28.999] iteration 987 : loss : 0.137263 cons_dist: 0.012345, loss_weight: 0.002698
[16:05:29.490] iteration 988 : loss : 0.086651 cons_dist: 0.024417, loss_weight: 0.002698
[16:05:29.981] iteration 989 : loss : 0.123249 cons_dist: 0.008521, loss_weight: 0.002698
[16:05:30.472] iteration 990 : loss : 0.123591 cons_dist: 0.021794, loss_weight: 0.002698
[16:05:30.963] iteration 991 : loss : 0.160054 cons_dist: 0.006391, loss_weight: 0.002698
[16:05:31.453] iteration 992 : loss : 0.071758 cons_dist: 0.007227, loss_weight: 0.002698
[16:05:31.943] iteration 993 : loss : 0.083393 cons_dist: 0.011965, loss_weight: 0.002698
[16:05:32.435] iteration 994 : loss : 0.131621 cons_dist: 0.011013, loss_weight: 0.002698
[16:05:32.926] iteration 995 : loss : 0.115181 cons_dist: 0.013669, loss_weight: 0.002698
[16:05:33.418] iteration 996 : loss : 0.097530 cons_dist: 0.026025, loss_weight: 0.002698
[16:05:34.575] iteration 997 : loss : 0.097133 cons_dist: 0.018298, loss_weight: 0.002698
[16:05:35.066] iteration 998 : loss : 0.102113 cons_dist: 0.027864, loss_weight: 0.002698
[16:05:35.557] iteration 999 : loss : 0.089489 cons_dist: 0.009476, loss_weight: 0.002698
[16:05:36.047] iteration 1000 : loss : 0.104851 cons_dist: 0.003718, loss_weight: 0.002698
[16:05:37.698] iteration 1001 : loss : 0.075807 cons_dist: 0.014067, loss_weight: 0.002698
[16:05:38.188] iteration 1002 : loss : 0.108129 cons_dist: 0.008888, loss_weight: 0.002698
[16:05:38.679] iteration 1003 : loss : 0.152720 cons_dist: 0.008226, loss_weight: 0.002698
[16:05:39.170] iteration 1004 : loss : 0.096156 cons_dist: 0.007374, loss_weight: 0.002698
[16:05:39.660] iteration 1005 : loss : 0.173696 cons_dist: 0.007161, loss_weight: 0.002698
[16:05:40.152] iteration 1006 : loss : 0.091207 cons_dist: 0.015768, loss_weight: 0.002698
[16:05:40.645] iteration 1007 : loss : 0.063857 cons_dist: 0.009313, loss_weight: 0.002698
[16:05:41.136] iteration 1008 : loss : 0.134143 cons_dist: 0.009554, loss_weight: 0.002698
[16:05:42.257] iteration 1009 : loss : 0.155196 cons_dist: 0.008234, loss_weight: 0.002698
[16:05:42.748] iteration 1010 : loss : 0.088210 cons_dist: 0.003514, loss_weight: 0.002698
[16:05:43.238] iteration 1011 : loss : 0.082278 cons_dist: 0.015519, loss_weight: 0.002698
[16:05:43.730] iteration 1012 : loss : 0.105165 cons_dist: 0.010985, loss_weight: 0.002698
[16:05:44.222] iteration 1013 : loss : 0.096221 cons_dist: 0.008569, loss_weight: 0.002698
[16:05:44.714] iteration 1014 : loss : 0.070643 cons_dist: 0.009727, loss_weight: 0.002698
[16:05:45.205] iteration 1015 : loss : 0.126096 cons_dist: 0.004642, loss_weight: 0.002698
[16:05:45.695] iteration 1016 : loss : 0.117063 cons_dist: 0.004728, loss_weight: 0.002698
[16:05:46.186] iteration 1017 : loss : 0.095531 cons_dist: 0.009099, loss_weight: 0.002698
[16:05:46.677] iteration 1018 : loss : 0.113813 cons_dist: 0.002901, loss_weight: 0.002698
[16:05:47.168] iteration 1019 : loss : 0.189612 cons_dist: 0.036554, loss_weight: 0.002698
[16:05:47.658] iteration 1020 : loss : 0.077036 cons_dist: 0.012204, loss_weight: 0.002698
[16:05:48.698] iteration 1021 : loss : 0.065201 cons_dist: 0.009265, loss_weight: 0.002698
[16:05:49.186] iteration 1022 : loss : 0.092223 cons_dist: 0.030571, loss_weight: 0.002698
[16:05:49.677] iteration 1023 : loss : 0.139516 cons_dist: 0.024573, loss_weight: 0.002698
[16:05:50.169] iteration 1024 : loss : 0.092801 cons_dist: 0.005437, loss_weight: 0.002698
[16:05:50.661] iteration 1025 : loss : 0.092053 cons_dist: 0.039803, loss_weight: 0.002698
[16:05:51.152] iteration 1026 : loss : 0.085680 cons_dist: 0.011126, loss_weight: 0.002698
[16:05:51.643] iteration 1027 : loss : 0.083908 cons_dist: 0.004623, loss_weight: 0.002698
[16:05:52.134] iteration 1028 : loss : 0.078695 cons_dist: 0.002827, loss_weight: 0.002698
[16:05:52.624] iteration 1029 : loss : 0.085175 cons_dist: 0.006007, loss_weight: 0.002698
[16:05:53.115] iteration 1030 : loss : 0.084437 cons_dist: 0.003661, loss_weight: 0.002698
[16:05:53.606] iteration 1031 : loss : 0.062692 cons_dist: 0.071514, loss_weight: 0.002698
[16:05:54.097] iteration 1032 : loss : 0.088681 cons_dist: 0.006498, loss_weight: 0.002698
[16:05:55.131] iteration 1033 : loss : 0.071485 cons_dist: 0.025254, loss_weight: 0.002698
[16:05:55.621] iteration 1034 : loss : 0.067537 cons_dist: 0.004107, loss_weight: 0.002698
[16:05:56.113] iteration 1035 : loss : 0.094670 cons_dist: 0.003614, loss_weight: 0.002698
[16:05:56.604] iteration 1036 : loss : 0.070735 cons_dist: 0.016533, loss_weight: 0.002698
[16:05:57.096] iteration 1037 : loss : 0.074966 cons_dist: 0.027071, loss_weight: 0.002698
[16:05:57.588] iteration 1038 : loss : 0.061341 cons_dist: 0.013417, loss_weight: 0.002698
[16:05:58.078] iteration 1039 : loss : 0.101356 cons_dist: 0.027746, loss_weight: 0.002698
[16:05:58.570] iteration 1040 : loss : 0.066892 cons_dist: 0.007996, loss_weight: 0.002698
[16:05:59.061] iteration 1041 : loss : 0.093319 cons_dist: 0.014747, loss_weight: 0.002698
[16:05:59.553] iteration 1042 : loss : 0.113268 cons_dist: 0.010311, loss_weight: 0.002698
[16:06:00.046] iteration 1043 : loss : 0.064445 cons_dist: 0.013556, loss_weight: 0.002698
[16:06:00.538] iteration 1044 : loss : 0.107433 cons_dist: 0.005140, loss_weight: 0.002698
[16:06:01.713] iteration 1045 : loss : 0.055259 cons_dist: 0.004918, loss_weight: 0.002698
[16:06:02.202] iteration 1046 : loss : 0.073031 cons_dist: 0.003786, loss_weight: 0.002698
[16:06:02.694] iteration 1047 : loss : 0.095560 cons_dist: 0.002084, loss_weight: 0.002698
[16:06:03.185] iteration 1048 : loss : 0.087284 cons_dist: 0.005420, loss_weight: 0.002698
[16:06:03.677] iteration 1049 : loss : 0.078789 cons_dist: 0.008680, loss_weight: 0.002698
[16:06:04.167] iteration 1050 : loss : 0.094063 cons_dist: 0.004920, loss_weight: 0.002698
[16:06:04.659] iteration 1051 : loss : 0.117265 cons_dist: 0.008580, loss_weight: 0.003327
[16:06:05.150] iteration 1052 : loss : 0.097661 cons_dist: 0.025379, loss_weight: 0.003327
[16:06:05.641] iteration 1053 : loss : 0.044046 cons_dist: 0.004121, loss_weight: 0.003327
[16:06:06.134] iteration 1054 : loss : 0.078152 cons_dist: 0.008775, loss_weight: 0.003327
[16:06:06.626] iteration 1055 : loss : 0.064084 cons_dist: 0.004224, loss_weight: 0.003327
[16:06:07.118] iteration 1056 : loss : 0.065718 cons_dist: 0.005119, loss_weight: 0.003327
[16:06:08.184] iteration 1057 : loss : 0.066085 cons_dist: 0.010755, loss_weight: 0.003327
[16:06:08.676] iteration 1058 : loss : 0.090465 cons_dist: 0.006284, loss_weight: 0.003327
[16:06:09.169] iteration 1059 : loss : 0.113432 cons_dist: 0.011992, loss_weight: 0.003327
[16:06:09.661] iteration 1060 : loss : 0.215898 cons_dist: 0.005838, loss_weight: 0.003327
[16:06:10.153] iteration 1061 : loss : 0.115663 cons_dist: 0.013001, loss_weight: 0.003327
[16:06:10.645] iteration 1062 : loss : 0.056423 cons_dist: 0.005543, loss_weight: 0.003327
[16:06:11.136] iteration 1063 : loss : 0.284887 cons_dist: 0.011241, loss_weight: 0.003327
[16:06:11.626] iteration 1064 : loss : 0.075258 cons_dist: 0.004242, loss_weight: 0.003327
[16:06:12.119] iteration 1065 : loss : 0.082738 cons_dist: 0.004485, loss_weight: 0.003327
[16:06:12.611] iteration 1066 : loss : 0.078306 cons_dist: 0.005656, loss_weight: 0.003327
[16:06:13.104] iteration 1067 : loss : 0.060920 cons_dist: 0.003246, loss_weight: 0.003327
[16:06:13.595] iteration 1068 : loss : 0.083499 cons_dist: 0.025928, loss_weight: 0.003327
[16:06:14.723] iteration 1069 : loss : 0.116839 cons_dist: 0.002409, loss_weight: 0.003327
[16:06:15.216] iteration 1070 : loss : 0.085141 cons_dist: 0.001551, loss_weight: 0.003327
[16:06:15.708] iteration 1071 : loss : 0.101994 cons_dist: 0.008915, loss_weight: 0.003327
[16:06:16.200] iteration 1072 : loss : 0.090922 cons_dist: 0.002155, loss_weight: 0.003327
[16:06:16.691] iteration 1073 : loss : 0.060880 cons_dist: 0.016479, loss_weight: 0.003327
[16:06:17.182] iteration 1074 : loss : 0.096364 cons_dist: 0.017290, loss_weight: 0.003327
[16:06:17.673] iteration 1075 : loss : 0.075263 cons_dist: 0.008409, loss_weight: 0.003327
[16:06:18.164] iteration 1076 : loss : 0.090214 cons_dist: 0.014203, loss_weight: 0.003327
[16:06:18.655] iteration 1077 : loss : 0.090668 cons_dist: 0.012556, loss_weight: 0.003327
[16:06:19.147] iteration 1078 : loss : 0.051023 cons_dist: 0.003833, loss_weight: 0.003327
[16:06:19.639] iteration 1079 : loss : 0.051330 cons_dist: 0.004716, loss_weight: 0.003327
[16:06:20.131] iteration 1080 : loss : 0.076092 cons_dist: 0.006923, loss_weight: 0.003327
[16:06:21.315] iteration 1081 : loss : 0.058888 cons_dist: 0.003420, loss_weight: 0.003327
[16:06:21.806] iteration 1082 : loss : 0.105760 cons_dist: 0.011692, loss_weight: 0.003327
[16:06:22.297] iteration 1083 : loss : 0.070938 cons_dist: 0.005773, loss_weight: 0.003327
[16:06:22.788] iteration 1084 : loss : 0.086554 cons_dist: 0.008235, loss_weight: 0.003327
[16:06:23.280] iteration 1085 : loss : 0.059758 cons_dist: 0.014851, loss_weight: 0.003327
[16:06:23.772] iteration 1086 : loss : 0.069255 cons_dist: 0.015186, loss_weight: 0.003327
[16:06:24.265] iteration 1087 : loss : 0.046862 cons_dist: 0.011711, loss_weight: 0.003327
[16:06:24.756] iteration 1088 : loss : 0.071373 cons_dist: 0.002240, loss_weight: 0.003327
[16:06:25.248] iteration 1089 : loss : 0.071020 cons_dist: 0.007149, loss_weight: 0.003327
[16:06:25.739] iteration 1090 : loss : 0.194961 cons_dist: 0.009007, loss_weight: 0.003327
[16:06:26.230] iteration 1091 : loss : 0.071626 cons_dist: 0.005294, loss_weight: 0.003327
[16:06:26.721] iteration 1092 : loss : 0.093775 cons_dist: 0.005299, loss_weight: 0.003327
[16:06:27.767] iteration 1093 : loss : 0.060838 cons_dist: 0.005833, loss_weight: 0.003327
[16:06:28.259] iteration 1094 : loss : 0.059800 cons_dist: 0.002877, loss_weight: 0.003327
[16:06:28.750] iteration 1095 : loss : 0.074092 cons_dist: 0.033854, loss_weight: 0.003327
[16:06:29.242] iteration 1096 : loss : 0.088703 cons_dist: 0.003171, loss_weight: 0.003327
[16:06:29.733] iteration 1097 : loss : 0.061924 cons_dist: 0.002830, loss_weight: 0.003327
[16:06:30.225] iteration 1098 : loss : 0.067871 cons_dist: 0.011258, loss_weight: 0.003327
[16:06:30.716] iteration 1099 : loss : 0.057008 cons_dist: 0.010581, loss_weight: 0.003327
[16:06:31.208] iteration 1100 : loss : 0.102147 cons_dist: 0.008604, loss_weight: 0.003327
[16:06:31.699] iteration 1101 : loss : 0.082673 cons_dist: 0.004882, loss_weight: 0.003327
[16:06:32.192] iteration 1102 : loss : 0.051173 cons_dist: 0.008359, loss_weight: 0.003327
[16:06:32.684] iteration 1103 : loss : 0.061540 cons_dist: 0.007398, loss_weight: 0.003327
[16:06:33.177] iteration 1104 : loss : 0.123099 cons_dist: 0.013286, loss_weight: 0.003327
[16:06:34.270] iteration 1105 : loss : 0.079019 cons_dist: 0.006700, loss_weight: 0.003327
[16:06:34.762] iteration 1106 : loss : 0.090925 cons_dist: 0.008139, loss_weight: 0.003327
[16:06:35.254] iteration 1107 : loss : 0.065068 cons_dist: 0.016999, loss_weight: 0.003327
[16:06:35.745] iteration 1108 : loss : 0.071287 cons_dist: 0.003704, loss_weight: 0.003327
[16:06:36.237] iteration 1109 : loss : 0.075826 cons_dist: 0.008625, loss_weight: 0.003327
[16:06:36.728] iteration 1110 : loss : 0.063701 cons_dist: 0.005433, loss_weight: 0.003327
[16:06:37.219] iteration 1111 : loss : 0.074254 cons_dist: 0.012760, loss_weight: 0.003327
[16:06:37.712] iteration 1112 : loss : 0.054068 cons_dist: 0.003921, loss_weight: 0.003327
[16:06:38.204] iteration 1113 : loss : 0.072413 cons_dist: 0.009137, loss_weight: 0.003327
[16:06:38.696] iteration 1114 : loss : 0.046231 cons_dist: 0.006948, loss_weight: 0.003327
[16:06:39.188] iteration 1115 : loss : 0.092968 cons_dist: 0.005603, loss_weight: 0.003327
[16:06:39.679] iteration 1116 : loss : 0.057460 cons_dist: 0.008554, loss_weight: 0.003327
[16:06:40.846] iteration 1117 : loss : 0.097993 cons_dist: 0.005694, loss_weight: 0.003327
[16:06:41.340] iteration 1118 : loss : 0.086566 cons_dist: 0.005070, loss_weight: 0.003327
[16:06:41.849] iteration 1119 : loss : 0.073246 cons_dist: 0.005125, loss_weight: 0.003327
[16:06:42.341] iteration 1120 : loss : 0.060946 cons_dist: 0.012515, loss_weight: 0.003327
[16:06:42.832] iteration 1121 : loss : 0.071285 cons_dist: 0.001851, loss_weight: 0.003327
[16:06:43.323] iteration 1122 : loss : 0.086793 cons_dist: 0.039782, loss_weight: 0.003327
[16:06:43.814] iteration 1123 : loss : 0.171563 cons_dist: 0.014923, loss_weight: 0.003327
[16:06:44.307] iteration 1124 : loss : 0.127391 cons_dist: 0.008313, loss_weight: 0.003327
[16:06:44.798] iteration 1125 : loss : 0.075971 cons_dist: 0.008088, loss_weight: 0.003327
[16:06:45.289] iteration 1126 : loss : 0.059609 cons_dist: 0.004551, loss_weight: 0.003327
[16:06:45.780] iteration 1127 : loss : 0.085374 cons_dist: 0.003707, loss_weight: 0.003327
[16:06:46.271] iteration 1128 : loss : 0.073541 cons_dist: 0.000955, loss_weight: 0.003327
[16:06:47.502] iteration 1129 : loss : 0.170797 cons_dist: 0.005562, loss_weight: 0.003327
[16:06:47.993] iteration 1130 : loss : 0.090512 cons_dist: 0.008464, loss_weight: 0.003327
[16:06:48.485] iteration 1131 : loss : 0.074203 cons_dist: 0.001724, loss_weight: 0.003327
[16:06:48.975] iteration 1132 : loss : 0.107879 cons_dist: 0.005312, loss_weight: 0.003327
[16:06:49.468] iteration 1133 : loss : 0.068440 cons_dist: 0.006453, loss_weight: 0.003327
[16:06:49.960] iteration 1134 : loss : 0.060331 cons_dist: 0.002817, loss_weight: 0.003327
[16:06:50.453] iteration 1135 : loss : 0.079307 cons_dist: 0.010254, loss_weight: 0.003327
[16:06:50.945] iteration 1136 : loss : 0.133731 cons_dist: 0.010641, loss_weight: 0.003327
[16:06:51.437] iteration 1137 : loss : 0.082263 cons_dist: 0.002415, loss_weight: 0.003327
[16:06:51.928] iteration 1138 : loss : 0.069686 cons_dist: 0.011509, loss_weight: 0.003327
[16:06:52.420] iteration 1139 : loss : 0.095701 cons_dist: 0.003786, loss_weight: 0.003327
[16:06:52.911] iteration 1140 : loss : 0.152735 cons_dist: 0.002979, loss_weight: 0.003327
[16:06:54.077] iteration 1141 : loss : 0.108115 cons_dist: 0.016714, loss_weight: 0.003327
[16:06:54.570] iteration 1142 : loss : 0.080790 cons_dist: 0.005194, loss_weight: 0.003327
[16:06:55.060] iteration 1143 : loss : 0.063258 cons_dist: 0.010437, loss_weight: 0.003327
[16:06:55.552] iteration 1144 : loss : 0.128353 cons_dist: 0.012016, loss_weight: 0.003327
[16:06:56.043] iteration 1145 : loss : 0.077504 cons_dist: 0.003670, loss_weight: 0.003327
[16:06:56.534] iteration 1146 : loss : 0.097926 cons_dist: 0.010436, loss_weight: 0.003327
[16:06:57.026] iteration 1147 : loss : 0.054128 cons_dist: 0.015044, loss_weight: 0.003327
[16:06:57.519] iteration 1148 : loss : 0.083139 cons_dist: 0.008121, loss_weight: 0.003327
[16:06:58.011] iteration 1149 : loss : 0.140726 cons_dist: 0.010281, loss_weight: 0.003327
[16:06:58.503] iteration 1150 : loss : 0.059395 cons_dist: 0.004269, loss_weight: 0.003327
[16:06:58.994] iteration 1151 : loss : 0.098024 cons_dist: 0.009740, loss_weight: 0.003327
[16:06:59.485] iteration 1152 : loss : 0.100956 cons_dist: 0.010081, loss_weight: 0.003327
[16:07:00.568] iteration 1153 : loss : 0.090552 cons_dist: 0.014508, loss_weight: 0.003327
[16:07:01.060] iteration 1154 : loss : 0.093303 cons_dist: 0.006929, loss_weight: 0.003327
[16:07:01.551] iteration 1155 : loss : 0.063438 cons_dist: 0.006322, loss_weight: 0.003327
[16:07:02.042] iteration 1156 : loss : 0.077423 cons_dist: 0.007439, loss_weight: 0.003327
[16:07:02.534] iteration 1157 : loss : 0.130850 cons_dist: 0.011407, loss_weight: 0.003327
[16:07:03.025] iteration 1158 : loss : 0.065420 cons_dist: 0.012755, loss_weight: 0.003327
[16:07:03.517] iteration 1159 : loss : 0.064078 cons_dist: 0.020131, loss_weight: 0.003327
[16:07:04.009] iteration 1160 : loss : 0.075250 cons_dist: 0.006612, loss_weight: 0.003327
[16:07:04.501] iteration 1161 : loss : 0.224159 cons_dist: 0.012266, loss_weight: 0.003327
[16:07:04.992] iteration 1162 : loss : 0.068242 cons_dist: 0.010503, loss_weight: 0.003327
[16:07:05.483] iteration 1163 : loss : 0.108845 cons_dist: 0.006719, loss_weight: 0.003327
[16:07:05.974] iteration 1164 : loss : 0.068813 cons_dist: 0.035774, loss_weight: 0.003327
[16:07:07.039] iteration 1165 : loss : 0.057284 cons_dist: 0.036858, loss_weight: 0.003327
[16:07:07.531] iteration 1166 : loss : 0.069287 cons_dist: 0.004826, loss_weight: 0.003327
[16:07:08.021] iteration 1167 : loss : 0.093462 cons_dist: 0.021596, loss_weight: 0.003327
[16:07:08.513] iteration 1168 : loss : 0.084929 cons_dist: 0.017266, loss_weight: 0.003327
[16:07:09.004] iteration 1169 : loss : 0.152784 cons_dist: 0.008221, loss_weight: 0.003327
[16:07:09.495] iteration 1170 : loss : 0.066536 cons_dist: 0.004811, loss_weight: 0.003327
[16:07:09.987] iteration 1171 : loss : 0.070417 cons_dist: 0.008040, loss_weight: 0.003327
[16:07:10.479] iteration 1172 : loss : 0.086241 cons_dist: 0.005618, loss_weight: 0.003327
[16:07:10.971] iteration 1173 : loss : 0.087475 cons_dist: 0.004501, loss_weight: 0.003327
[16:07:11.463] iteration 1174 : loss : 0.050778 cons_dist: 0.009951, loss_weight: 0.003327
[16:07:11.955] iteration 1175 : loss : 0.071757 cons_dist: 0.008921, loss_weight: 0.003327
[16:07:12.447] iteration 1176 : loss : 0.060304 cons_dist: 0.007357, loss_weight: 0.003327
[16:07:13.622] iteration 1177 : loss : 0.065784 cons_dist: 0.005359, loss_weight: 0.003327
[16:07:14.112] iteration 1178 : loss : 0.087132 cons_dist: 0.001718, loss_weight: 0.003327
[16:07:14.603] iteration 1179 : loss : 0.090875 cons_dist: 0.004959, loss_weight: 0.003327
[16:07:15.094] iteration 1180 : loss : 0.105455 cons_dist: 0.004105, loss_weight: 0.003327
[16:07:15.586] iteration 1181 : loss : 0.051918 cons_dist: 0.025650, loss_weight: 0.003327
[16:07:16.078] iteration 1182 : loss : 0.055696 cons_dist: 0.004148, loss_weight: 0.003327
[16:07:16.571] iteration 1183 : loss : 0.069637 cons_dist: 0.004564, loss_weight: 0.003327
[16:07:17.063] iteration 1184 : loss : 0.090998 cons_dist: 0.002962, loss_weight: 0.003327
[16:07:17.554] iteration 1185 : loss : 0.066447 cons_dist: 0.007658, loss_weight: 0.003327
[16:07:18.046] iteration 1186 : loss : 0.090795 cons_dist: 0.016301, loss_weight: 0.003327
[16:07:18.537] iteration 1187 : loss : 0.076730 cons_dist: 0.009060, loss_weight: 0.003327
[16:07:19.028] iteration 1188 : loss : 0.087454 cons_dist: 0.009656, loss_weight: 0.003327
[16:07:20.160] iteration 1189 : loss : 0.079117 cons_dist: 0.002687, loss_weight: 0.003327
[16:07:20.650] iteration 1190 : loss : 0.083938 cons_dist: 0.007073, loss_weight: 0.003327
[16:07:21.140] iteration 1191 : loss : 0.059462 cons_dist: 0.002303, loss_weight: 0.003327
[16:07:21.632] iteration 1192 : loss : 0.162707 cons_dist: 0.011437, loss_weight: 0.003327
[16:07:22.125] iteration 1193 : loss : 0.068015 cons_dist: 0.007818, loss_weight: 0.003327
[16:07:22.617] iteration 1194 : loss : 0.072204 cons_dist: 0.010383, loss_weight: 0.003327
[16:07:23.109] iteration 1195 : loss : 0.087016 cons_dist: 0.003871, loss_weight: 0.003327
[16:07:23.601] iteration 1196 : loss : 0.075210 cons_dist: 0.004864, loss_weight: 0.003327
[16:07:24.092] iteration 1197 : loss : 0.191344 cons_dist: 0.005104, loss_weight: 0.003327
[16:07:24.583] iteration 1198 : loss : 0.092395 cons_dist: 0.006758, loss_weight: 0.003327
[16:07:25.074] iteration 1199 : loss : 0.058919 cons_dist: 0.009712, loss_weight: 0.003327
[16:07:25.566] iteration 1200 : loss : 0.055984 cons_dist: 0.007911, loss_weight: 0.003327
[16:07:26.883] save best model to model/LA_vnet_25_labeled/MT/iter_1200_dice_0.909171998500824.pth
[16:07:27.932] iteration 1201 : loss : 0.100343 cons_dist: 0.003022, loss_weight: 0.004076
[16:07:28.423] iteration 1202 : loss : 0.062174 cons_dist: 0.014115, loss_weight: 0.004076
[16:07:28.913] iteration 1203 : loss : 0.063898 cons_dist: 0.006012, loss_weight: 0.004076
[16:07:29.404] iteration 1204 : loss : 0.075140 cons_dist: 0.020813, loss_weight: 0.004076
[16:07:29.894] iteration 1205 : loss : 0.083307 cons_dist: 0.002678, loss_weight: 0.004076
[16:07:30.385] iteration 1206 : loss : 0.067865 cons_dist: 0.004296, loss_weight: 0.004076
[16:07:30.876] iteration 1207 : loss : 0.071373 cons_dist: 0.002663, loss_weight: 0.004076
[16:07:31.367] iteration 1208 : loss : 0.110683 cons_dist: 0.004217, loss_weight: 0.004076
[16:07:31.859] iteration 1209 : loss : 0.095190 cons_dist: 0.011098, loss_weight: 0.004076
[16:07:32.352] iteration 1210 : loss : 0.072426 cons_dist: 0.006014, loss_weight: 0.004076
[16:07:32.845] iteration 1211 : loss : 0.078455 cons_dist: 0.026404, loss_weight: 0.004076
[16:07:33.336] iteration 1212 : loss : 0.075471 cons_dist: 0.002669, loss_weight: 0.004076
[16:07:34.429] iteration 1213 : loss : 0.065573 cons_dist: 0.009155, loss_weight: 0.004076
[16:07:34.921] iteration 1214 : loss : 0.068078 cons_dist: 0.004902, loss_weight: 0.004076
[16:07:35.412] iteration 1215 : loss : 0.102193 cons_dist: 0.006237, loss_weight: 0.004076
[16:07:35.902] iteration 1216 : loss : 0.089242 cons_dist: 0.003191, loss_weight: 0.004076
[16:07:36.394] iteration 1217 : loss : 0.056028 cons_dist: 0.001919, loss_weight: 0.004076
[16:07:36.884] iteration 1218 : loss : 0.061069 cons_dist: 0.004088, loss_weight: 0.004076
[16:07:37.374] iteration 1219 : loss : 0.057687 cons_dist: 0.004429, loss_weight: 0.004076
[16:07:37.865] iteration 1220 : loss : 0.047395 cons_dist: 0.077640, loss_weight: 0.004076
[16:07:38.356] iteration 1221 : loss : 0.059890 cons_dist: 0.006292, loss_weight: 0.004076
[16:07:38.848] iteration 1222 : loss : 0.070543 cons_dist: 0.006119, loss_weight: 0.004076
[16:07:39.340] iteration 1223 : loss : 0.180480 cons_dist: 0.012566, loss_weight: 0.004076
[16:07:39.832] iteration 1224 : loss : 0.064189 cons_dist: 0.002346, loss_weight: 0.004076
[16:07:40.952] iteration 1225 : loss : 0.054299 cons_dist: 0.024890, loss_weight: 0.004076
[16:07:41.442] iteration 1226 : loss : 0.245887 cons_dist: 0.006202, loss_weight: 0.004076
[16:07:41.933] iteration 1227 : loss : 0.087952 cons_dist: 0.010021, loss_weight: 0.004076
[16:07:42.425] iteration 1228 : loss : 0.071191 cons_dist: 0.008915, loss_weight: 0.004076
[16:07:42.916] iteration 1229 : loss : 0.070026 cons_dist: 0.007847, loss_weight: 0.004076
[16:07:43.407] iteration 1230 : loss : 0.069460 cons_dist: 0.009565, loss_weight: 0.004076
[16:07:43.898] iteration 1231 : loss : 0.053409 cons_dist: 0.013640, loss_weight: 0.004076
[16:07:44.391] iteration 1232 : loss : 0.050898 cons_dist: 0.008846, loss_weight: 0.004076
[16:07:44.882] iteration 1233 : loss : 0.085294 cons_dist: 0.004171, loss_weight: 0.004076
[16:07:45.373] iteration 1234 : loss : 0.094188 cons_dist: 0.004588, loss_weight: 0.004076
[16:07:45.864] iteration 1235 : loss : 0.081715 cons_dist: 0.011270, loss_weight: 0.004076
[16:07:46.356] iteration 1236 : loss : 0.108451 cons_dist: 0.007315, loss_weight: 0.004076
[16:07:47.460] iteration 1237 : loss : 0.105584 cons_dist: 0.009034, loss_weight: 0.004076
[16:07:47.952] iteration 1238 : loss : 0.051060 cons_dist: 0.004658, loss_weight: 0.004076
[16:07:48.444] iteration 1239 : loss : 0.057090 cons_dist: 0.005102, loss_weight: 0.004076
[16:07:48.934] iteration 1240 : loss : 0.109854 cons_dist: 0.044175, loss_weight: 0.004076
[16:07:49.425] iteration 1241 : loss : 0.040420 cons_dist: 0.003324, loss_weight: 0.004076
[16:07:49.916] iteration 1242 : loss : 0.049626 cons_dist: 0.011678, loss_weight: 0.004076
[16:07:50.407] iteration 1243 : loss : 0.049313 cons_dist: 0.004205, loss_weight: 0.004076
[16:07:50.899] iteration 1244 : loss : 0.047783 cons_dist: 0.002399, loss_weight: 0.004076
[16:07:51.391] iteration 1245 : loss : 0.065338 cons_dist: 0.014299, loss_weight: 0.004076
[16:07:51.883] iteration 1246 : loss : 0.084868 cons_dist: 0.002864, loss_weight: 0.004076
[16:07:52.374] iteration 1247 : loss : 0.071142 cons_dist: 0.003519, loss_weight: 0.004076
[16:07:52.866] iteration 1248 : loss : 0.057521 cons_dist: 0.021020, loss_weight: 0.004076
[16:07:54.064] iteration 1249 : loss : 0.084129 cons_dist: 0.002466, loss_weight: 0.004076
[16:07:54.555] iteration 1250 : loss : 0.034575 cons_dist: 0.003118, loss_weight: 0.004076
[16:07:55.046] iteration 1251 : loss : 0.126979 cons_dist: 0.006776, loss_weight: 0.004076
[16:07:55.537] iteration 1252 : loss : 0.077920 cons_dist: 0.002116, loss_weight: 0.004076
[16:07:56.029] iteration 1253 : loss : 0.126782 cons_dist: 0.069787, loss_weight: 0.004076
[16:07:56.522] iteration 1254 : loss : 0.115129 cons_dist: 0.040505, loss_weight: 0.004076
[16:07:57.014] iteration 1255 : loss : 0.069441 cons_dist: 0.032007, loss_weight: 0.004076
[16:07:57.504] iteration 1256 : loss : 0.090498 cons_dist: 0.006778, loss_weight: 0.004076
[16:07:57.995] iteration 1257 : loss : 0.076506 cons_dist: 0.030175, loss_weight: 0.004076
[16:07:58.486] iteration 1258 : loss : 0.058271 cons_dist: 0.013288, loss_weight: 0.004076
[16:07:58.976] iteration 1259 : loss : 0.065269 cons_dist: 0.007839, loss_weight: 0.004076
[16:07:59.468] iteration 1260 : loss : 0.063897 cons_dist: 0.008139, loss_weight: 0.004076
[16:08:00.594] iteration 1261 : loss : 0.081577 cons_dist: 0.015978, loss_weight: 0.004076
[16:08:01.086] iteration 1262 : loss : 0.048776 cons_dist: 0.004885, loss_weight: 0.004076
[16:08:01.576] iteration 1263 : loss : 0.056197 cons_dist: 0.007857, loss_weight: 0.004076
[16:08:02.068] iteration 1264 : loss : 0.064599 cons_dist: 0.003805, loss_weight: 0.004076
[16:08:02.558] iteration 1265 : loss : 0.068536 cons_dist: 0.006697, loss_weight: 0.004076
[16:08:03.049] iteration 1266 : loss : 0.048718 cons_dist: 0.004663, loss_weight: 0.004076
[16:08:03.540] iteration 1267 : loss : 0.079771 cons_dist: 0.006590, loss_weight: 0.004076
[16:08:04.031] iteration 1268 : loss : 0.103672 cons_dist: 0.002196, loss_weight: 0.004076
[16:08:04.524] iteration 1269 : loss : 0.062631 cons_dist: 0.008723, loss_weight: 0.004076
[16:08:05.016] iteration 1270 : loss : 0.095666 cons_dist: 0.015002, loss_weight: 0.004076
[16:08:05.508] iteration 1271 : loss : 0.080621 cons_dist: 0.004658, loss_weight: 0.004076
[16:08:05.999] iteration 1272 : loss : 0.073219 cons_dist: 0.005649, loss_weight: 0.004076
[16:08:07.168] iteration 1273 : loss : 0.082263 cons_dist: 0.010305, loss_weight: 0.004076
[16:08:07.659] iteration 1274 : loss : 0.068079 cons_dist: 0.004296, loss_weight: 0.004076
[16:08:08.149] iteration 1275 : loss : 0.070182 cons_dist: 0.005324, loss_weight: 0.004076
[16:08:08.639] iteration 1276 : loss : 0.044116 cons_dist: 0.004775, loss_weight: 0.004076
[16:08:09.130] iteration 1277 : loss : 0.065889 cons_dist: 0.004873, loss_weight: 0.004076
[16:08:09.622] iteration 1278 : loss : 0.060577 cons_dist: 0.006145, loss_weight: 0.004076
[16:08:10.115] iteration 1279 : loss : 0.075046 cons_dist: 0.005966, loss_weight: 0.004076
[16:08:10.606] iteration 1280 : loss : 0.051192 cons_dist: 0.003730, loss_weight: 0.004076
[16:08:11.097] iteration 1281 : loss : 0.117894 cons_dist: 0.003490, loss_weight: 0.004076
[16:08:11.588] iteration 1282 : loss : 0.066864 cons_dist: 0.011601, loss_weight: 0.004076
[16:08:12.079] iteration 1283 : loss : 0.105585 cons_dist: 0.006728, loss_weight: 0.004076
[16:08:12.571] iteration 1284 : loss : 0.044794 cons_dist: 0.024762, loss_weight: 0.004076
[16:08:13.734] iteration 1285 : loss : 0.052600 cons_dist: 0.009262, loss_weight: 0.004076
[16:08:14.225] iteration 1286 : loss : 0.065904 cons_dist: 0.003051, loss_weight: 0.004076
[16:08:14.716] iteration 1287 : loss : 0.060570 cons_dist: 0.014213, loss_weight: 0.004076
[16:08:15.206] iteration 1288 : loss : 0.064735 cons_dist: 0.007255, loss_weight: 0.004076
[16:08:15.697] iteration 1289 : loss : 0.082455 cons_dist: 0.020820, loss_weight: 0.004076
[16:08:16.188] iteration 1290 : loss : 0.069770 cons_dist: 0.035472, loss_weight: 0.004076
[16:08:16.678] iteration 1291 : loss : 0.083032 cons_dist: 0.009307, loss_weight: 0.004076
[16:08:17.169] iteration 1292 : loss : 0.057871 cons_dist: 0.003468, loss_weight: 0.004076
[16:08:17.661] iteration 1293 : loss : 0.078552 cons_dist: 0.009280, loss_weight: 0.004076
[16:08:18.153] iteration 1294 : loss : 0.070695 cons_dist: 0.003918, loss_weight: 0.004076
[16:08:18.645] iteration 1295 : loss : 0.065260 cons_dist: 0.001985, loss_weight: 0.004076
[16:08:19.136] iteration 1296 : loss : 0.076222 cons_dist: 0.003477, loss_weight: 0.004076
[16:08:20.311] iteration 1297 : loss : 0.060052 cons_dist: 0.011291, loss_weight: 0.004076
[16:08:20.798] iteration 1298 : loss : 0.050027 cons_dist: 0.001683, loss_weight: 0.004076
[16:08:21.290] iteration 1299 : loss : 0.088676 cons_dist: 0.006306, loss_weight: 0.004076
[16:08:21.781] iteration 1300 : loss : 0.102475 cons_dist: 0.007170, loss_weight: 0.004076
[16:08:22.272] iteration 1301 : loss : 0.096116 cons_dist: 0.006053, loss_weight: 0.004076
[16:08:22.763] iteration 1302 : loss : 0.067899 cons_dist: 0.004324, loss_weight: 0.004076
[16:08:23.254] iteration 1303 : loss : 0.102053 cons_dist: 0.009237, loss_weight: 0.004076
[16:08:23.747] iteration 1304 : loss : 0.077707 cons_dist: 0.002178, loss_weight: 0.004076
[16:08:24.239] iteration 1305 : loss : 0.116997 cons_dist: 0.001254, loss_weight: 0.004076
[16:08:24.732] iteration 1306 : loss : 0.081039 cons_dist: 0.005587, loss_weight: 0.004076
[16:08:25.223] iteration 1307 : loss : 0.056470 cons_dist: 0.002426, loss_weight: 0.004076
[16:08:25.713] iteration 1308 : loss : 0.060492 cons_dist: 0.011108, loss_weight: 0.004076
[16:08:26.820] iteration 1309 : loss : 0.103282 cons_dist: 0.009908, loss_weight: 0.004076
[16:08:27.307] iteration 1310 : loss : 0.071104 cons_dist: 0.005143, loss_weight: 0.004076
[16:08:27.800] iteration 1311 : loss : 0.064370 cons_dist: 0.012621, loss_weight: 0.004076
[16:08:28.291] iteration 1312 : loss : 0.062488 cons_dist: 0.003615, loss_weight: 0.004076
[16:08:28.783] iteration 1313 : loss : 0.045742 cons_dist: 0.004357, loss_weight: 0.004076
[16:08:29.274] iteration 1314 : loss : 0.050412 cons_dist: 0.020565, loss_weight: 0.004076
[16:08:29.765] iteration 1315 : loss : 0.056397 cons_dist: 0.003915, loss_weight: 0.004076
[16:08:30.256] iteration 1316 : loss : 0.093549 cons_dist: 0.011497, loss_weight: 0.004076
[16:08:30.747] iteration 1317 : loss : 0.054056 cons_dist: 0.003927, loss_weight: 0.004076
[16:08:31.238] iteration 1318 : loss : 0.069288 cons_dist: 0.002637, loss_weight: 0.004076
[16:08:31.731] iteration 1319 : loss : 0.079532 cons_dist: 0.005230, loss_weight: 0.004076
[16:08:32.225] iteration 1320 : loss : 0.057820 cons_dist: 0.013647, loss_weight: 0.004076
[16:08:33.275] iteration 1321 : loss : 0.076079 cons_dist: 0.010115, loss_weight: 0.004076
[16:08:33.766] iteration 1322 : loss : 0.076446 cons_dist: 0.007419, loss_weight: 0.004076
[16:08:34.258] iteration 1323 : loss : 0.105020 cons_dist: 0.004133, loss_weight: 0.004076
[16:08:34.750] iteration 1324 : loss : 0.060543 cons_dist: 0.013594, loss_weight: 0.004076
[16:08:35.241] iteration 1325 : loss : 0.074434 cons_dist: 0.006033, loss_weight: 0.004076
[16:08:35.732] iteration 1326 : loss : 0.199475 cons_dist: 0.004823, loss_weight: 0.004076
[16:08:36.223] iteration 1327 : loss : 0.068104 cons_dist: 0.014691, loss_weight: 0.004076
[16:08:36.714] iteration 1328 : loss : 0.053225 cons_dist: 0.012049, loss_weight: 0.004076
[16:08:37.206] iteration 1329 : loss : 0.050822 cons_dist: 0.014270, loss_weight: 0.004076
[16:08:37.698] iteration 1330 : loss : 0.044303 cons_dist: 0.012410, loss_weight: 0.004076
[16:08:38.191] iteration 1331 : loss : 0.051998 cons_dist: 0.007070, loss_weight: 0.004076
[16:08:38.683] iteration 1332 : loss : 0.076918 cons_dist: 0.006810, loss_weight: 0.004076
[16:08:39.719] iteration 1333 : loss : 0.075609 cons_dist: 0.011535, loss_weight: 0.004076
[16:08:40.211] iteration 1334 : loss : 0.055660 cons_dist: 0.017438, loss_weight: 0.004076
[16:08:40.702] iteration 1335 : loss : 0.043440 cons_dist: 0.019256, loss_weight: 0.004076
[16:08:41.193] iteration 1336 : loss : 0.093797 cons_dist: 0.003191, loss_weight: 0.004076
[16:08:41.683] iteration 1337 : loss : 0.086084 cons_dist: 0.022356, loss_weight: 0.004076
[16:08:42.174] iteration 1338 : loss : 0.086058 cons_dist: 0.010832, loss_weight: 0.004076
[16:08:42.665] iteration 1339 : loss : 0.075514 cons_dist: 0.006117, loss_weight: 0.004076
[16:08:43.157] iteration 1340 : loss : 0.050368 cons_dist: 0.007755, loss_weight: 0.004076
[16:08:43.650] iteration 1341 : loss : 0.062639 cons_dist: 0.016665, loss_weight: 0.004076
[16:08:44.142] iteration 1342 : loss : 0.064757 cons_dist: 0.013394, loss_weight: 0.004076
[16:08:44.633] iteration 1343 : loss : 0.047449 cons_dist: 0.005943, loss_weight: 0.004076
[16:08:45.125] iteration 1344 : loss : 0.060768 cons_dist: 0.010082, loss_weight: 0.004076
[16:08:46.219] iteration 1345 : loss : 0.071056 cons_dist: 0.002105, loss_weight: 0.004076
[16:08:46.711] iteration 1346 : loss : 0.087434 cons_dist: 0.002239, loss_weight: 0.004076
[16:08:47.202] iteration 1347 : loss : 0.052604 cons_dist: 0.003617, loss_weight: 0.004076
[16:08:47.694] iteration 1348 : loss : 0.078537 cons_dist: 0.012981, loss_weight: 0.004076
[16:08:48.185] iteration 1349 : loss : 0.067452 cons_dist: 0.004477, loss_weight: 0.004076
[16:08:48.676] iteration 1350 : loss : 0.079633 cons_dist: 0.002113, loss_weight: 0.004076
[16:08:49.167] iteration 1351 : loss : 0.055785 cons_dist: 0.032711, loss_weight: 0.004963
[16:08:49.658] iteration 1352 : loss : 0.081077 cons_dist: 0.001294, loss_weight: 0.004963
[16:08:50.151] iteration 1353 : loss : 0.044398 cons_dist: 0.031050, loss_weight: 0.004963
[16:08:50.644] iteration 1354 : loss : 0.060204 cons_dist: 0.013880, loss_weight: 0.004963
[16:08:51.136] iteration 1355 : loss : 0.062806 cons_dist: 0.006001, loss_weight: 0.004963
[16:08:51.627] iteration 1356 : loss : 0.089709 cons_dist: 0.001364, loss_weight: 0.004963
[16:08:52.662] iteration 1357 : loss : 0.074749 cons_dist: 0.010279, loss_weight: 0.004963
[16:08:53.154] iteration 1358 : loss : 0.068298 cons_dist: 0.035846, loss_weight: 0.004963
[16:08:53.651] iteration 1359 : loss : 0.067871 cons_dist: 0.006265, loss_weight: 0.004963
[16:08:54.143] iteration 1360 : loss : 0.090976 cons_dist: 0.002151, loss_weight: 0.004963
[16:08:54.635] iteration 1361 : loss : 0.076997 cons_dist: 0.012361, loss_weight: 0.004963
[16:08:55.127] iteration 1362 : loss : 0.142483 cons_dist: 0.003503, loss_weight: 0.004963
[16:08:55.618] iteration 1363 : loss : 0.074796 cons_dist: 0.040101, loss_weight: 0.004963
[16:08:56.108] iteration 1364 : loss : 0.052903 cons_dist: 0.005416, loss_weight: 0.004963
[16:08:56.599] iteration 1365 : loss : 0.047259 cons_dist: 0.040342, loss_weight: 0.004963
[16:08:57.091] iteration 1366 : loss : 0.065589 cons_dist: 0.017384, loss_weight: 0.004963
[16:08:57.584] iteration 1367 : loss : 0.084011 cons_dist: 0.002705, loss_weight: 0.004963
[16:08:58.076] iteration 1368 : loss : 0.086912 cons_dist: 0.006800, loss_weight: 0.004963
[16:08:59.295] iteration 1369 : loss : 0.069660 cons_dist: 0.004984, loss_weight: 0.004963
[16:08:59.785] iteration 1370 : loss : 0.063750 cons_dist: 0.041802, loss_weight: 0.004963
[16:09:00.276] iteration 1371 : loss : 0.080545 cons_dist: 0.005059, loss_weight: 0.004963
[16:09:00.767] iteration 1372 : loss : 0.070401 cons_dist: 0.003782, loss_weight: 0.004963
[16:09:01.258] iteration 1373 : loss : 0.057433 cons_dist: 0.005275, loss_weight: 0.004963
[16:09:01.749] iteration 1374 : loss : 0.061008 cons_dist: 0.004352, loss_weight: 0.004963
[16:09:02.241] iteration 1375 : loss : 0.096505 cons_dist: 0.005004, loss_weight: 0.004963
[16:09:02.733] iteration 1376 : loss : 0.060745 cons_dist: 0.006364, loss_weight: 0.004963
[16:09:03.226] iteration 1377 : loss : 0.103712 cons_dist: 0.011005, loss_weight: 0.004963
[16:09:03.717] iteration 1378 : loss : 0.049456 cons_dist: 0.003307, loss_weight: 0.004963
[16:09:04.209] iteration 1379 : loss : 0.046785 cons_dist: 0.002357, loss_weight: 0.004963
[16:09:04.700] iteration 1380 : loss : 0.072457 cons_dist: 0.006201, loss_weight: 0.004963
[16:09:05.869] iteration 1381 : loss : 0.065816 cons_dist: 0.024133, loss_weight: 0.004963
[16:09:06.361] iteration 1382 : loss : 0.072696 cons_dist: 0.005039, loss_weight: 0.004963
[16:09:06.853] iteration 1383 : loss : 0.057556 cons_dist: 0.003031, loss_weight: 0.004963
[16:09:07.345] iteration 1384 : loss : 0.080964 cons_dist: 0.003731, loss_weight: 0.004963
[16:09:07.836] iteration 1385 : loss : 0.076076 cons_dist: 0.010136, loss_weight: 0.004963
[16:09:08.327] iteration 1386 : loss : 0.071873 cons_dist: 0.006709, loss_weight: 0.004963
[16:09:08.818] iteration 1387 : loss : 0.058921 cons_dist: 0.002948, loss_weight: 0.004963
[16:09:09.311] iteration 1388 : loss : 0.068198 cons_dist: 0.070507, loss_weight: 0.004963
[16:09:09.804] iteration 1389 : loss : 0.065987 cons_dist: 0.008559, loss_weight: 0.004963
[16:09:10.295] iteration 1390 : loss : 0.072274 cons_dist: 0.007842, loss_weight: 0.004963
[16:09:10.786] iteration 1391 : loss : 0.054086 cons_dist: 0.002368, loss_weight: 0.004963
[16:09:11.278] iteration 1392 : loss : 0.059061 cons_dist: 0.004225, loss_weight: 0.004963
[16:09:12.490] iteration 1393 : loss : 0.055603 cons_dist: 0.002499, loss_weight: 0.004963
[16:09:12.981] iteration 1394 : loss : 0.062986 cons_dist: 0.002600, loss_weight: 0.004963
[16:09:13.472] iteration 1395 : loss : 0.074003 cons_dist: 0.006013, loss_weight: 0.004963
[16:09:13.964] iteration 1396 : loss : 0.072044 cons_dist: 0.004828, loss_weight: 0.004963
[16:09:14.455] iteration 1397 : loss : 0.056797 cons_dist: 0.002227, loss_weight: 0.004963
[16:09:14.947] iteration 1398 : loss : 0.050377 cons_dist: 0.013841, loss_weight: 0.004963
[16:09:15.452] iteration 1399 : loss : 0.101472 cons_dist: 0.001482, loss_weight: 0.004963
[16:09:15.945] iteration 1400 : loss : 0.072191 cons_dist: 0.007957, loss_weight: 0.004963
[16:09:17.227] save best model to model/LA_vnet_25_labeled/MT/iter_1400_dice_0.9223133325576782.pth
[16:09:17.719] iteration 1401 : loss : 0.120068 cons_dist: 0.010349, loss_weight: 0.004963
[16:09:18.210] iteration 1402 : loss : 0.091627 cons_dist: 0.003952, loss_weight: 0.004963
[16:09:18.702] iteration 1403 : loss : 0.116868 cons_dist: 0.003039, loss_weight: 0.004963
[16:09:19.193] iteration 1404 : loss : 0.055189 cons_dist: 0.002348, loss_weight: 0.004963
[16:09:20.307] iteration 1405 : loss : 0.048919 cons_dist: 0.004840, loss_weight: 0.004963
[16:09:20.799] iteration 1406 : loss : 0.079424 cons_dist: 0.003278, loss_weight: 0.004963
[16:09:21.291] iteration 1407 : loss : 0.050811 cons_dist: 0.001603, loss_weight: 0.004963
[16:09:21.784] iteration 1408 : loss : 0.065027 cons_dist: 0.002357, loss_weight: 0.004963
[16:09:22.275] iteration 1409 : loss : 0.054713 cons_dist: 0.002980, loss_weight: 0.004963
[16:09:22.766] iteration 1410 : loss : 0.069521 cons_dist: 0.040979, loss_weight: 0.004963
[16:09:23.258] iteration 1411 : loss : 0.095946 cons_dist: 0.009296, loss_weight: 0.004963
[16:09:23.750] iteration 1412 : loss : 0.057768 cons_dist: 0.011956, loss_weight: 0.004963
[16:09:24.242] iteration 1413 : loss : 0.095863 cons_dist: 0.004085, loss_weight: 0.004963
[16:09:24.734] iteration 1414 : loss : 0.052254 cons_dist: 0.003036, loss_weight: 0.004963
[16:09:25.225] iteration 1415 : loss : 0.072021 cons_dist: 0.004226, loss_weight: 0.004963
[16:09:25.716] iteration 1416 : loss : 0.118778 cons_dist: 0.005400, loss_weight: 0.004963
[16:09:26.741] iteration 1417 : loss : 0.032676 cons_dist: 0.005738, loss_weight: 0.004963
[16:09:27.233] iteration 1418 : loss : 0.060887 cons_dist: 0.013449, loss_weight: 0.004963
[16:09:27.726] iteration 1419 : loss : 0.065831 cons_dist: 0.004578, loss_weight: 0.004963
[16:09:28.217] iteration 1420 : loss : 0.050931 cons_dist: 0.002793, loss_weight: 0.004963
[16:09:28.708] iteration 1421 : loss : 0.053116 cons_dist: 0.003324, loss_weight: 0.004963
[16:09:29.200] iteration 1422 : loss : 0.059805 cons_dist: 0.018813, loss_weight: 0.004963
[16:09:29.691] iteration 1423 : loss : 0.170885 cons_dist: 0.009597, loss_weight: 0.004963
[16:09:30.185] iteration 1424 : loss : 0.074074 cons_dist: 0.002883, loss_weight: 0.004963
[16:09:30.677] iteration 1425 : loss : 0.075129 cons_dist: 0.005121, loss_weight: 0.004963
[16:09:31.169] iteration 1426 : loss : 0.067854 cons_dist: 0.005718, loss_weight: 0.004963
[16:09:31.661] iteration 1427 : loss : 0.056355 cons_dist: 0.008138, loss_weight: 0.004963
[16:09:32.152] iteration 1428 : loss : 0.070143 cons_dist: 0.002200, loss_weight: 0.004963
[16:09:33.270] iteration 1429 : loss : 0.076507 cons_dist: 0.005642, loss_weight: 0.004963
[16:09:33.760] iteration 1430 : loss : 0.089687 cons_dist: 0.003345, loss_weight: 0.004963
[16:09:34.252] iteration 1431 : loss : 0.058334 cons_dist: 0.004362, loss_weight: 0.004963
[16:09:34.742] iteration 1432 : loss : 0.080262 cons_dist: 0.005722, loss_weight: 0.004963
[16:09:35.234] iteration 1433 : loss : 0.077748 cons_dist: 0.002885, loss_weight: 0.004963
[16:09:35.726] iteration 1434 : loss : 0.048505 cons_dist: 0.002140, loss_weight: 0.004963
[16:09:36.218] iteration 1435 : loss : 0.074688 cons_dist: 0.002452, loss_weight: 0.004963
[16:09:36.710] iteration 1436 : loss : 0.042815 cons_dist: 0.007383, loss_weight: 0.004963
[16:09:37.201] iteration 1437 : loss : 0.072971 cons_dist: 0.002851, loss_weight: 0.004963
[16:09:37.692] iteration 1438 : loss : 0.091976 cons_dist: 0.001915, loss_weight: 0.004963
[16:09:38.183] iteration 1439 : loss : 0.101267 cons_dist: 0.008361, loss_weight: 0.004963
[16:09:38.673] iteration 1440 : loss : 0.068643 cons_dist: 0.008359, loss_weight: 0.004963
[16:09:39.728] iteration 1441 : loss : 0.070573 cons_dist: 0.005583, loss_weight: 0.004963
[16:09:40.220] iteration 1442 : loss : 0.073920 cons_dist: 0.002301, loss_weight: 0.004963
[16:09:40.711] iteration 1443 : loss : 0.090177 cons_dist: 0.019266, loss_weight: 0.004963
[16:09:41.203] iteration 1444 : loss : 0.062002 cons_dist: 0.006311, loss_weight: 0.004963
[16:09:41.696] iteration 1445 : loss : 0.055665 cons_dist: 0.005974, loss_weight: 0.004963
[16:09:42.188] iteration 1446 : loss : 0.069951 cons_dist: 0.002140, loss_weight: 0.004963
[16:09:42.679] iteration 1447 : loss : 0.058568 cons_dist: 0.003482, loss_weight: 0.004963
[16:09:43.170] iteration 1448 : loss : 0.050014 cons_dist: 0.011467, loss_weight: 0.004963
[16:09:43.661] iteration 1449 : loss : 0.051325 cons_dist: 0.001804, loss_weight: 0.004963
[16:09:44.153] iteration 1450 : loss : 0.061258 cons_dist: 0.008399, loss_weight: 0.004963
[16:09:44.645] iteration 1451 : loss : 0.051561 cons_dist: 0.010859, loss_weight: 0.004963
[16:09:45.138] iteration 1452 : loss : 0.085211 cons_dist: 0.005448, loss_weight: 0.004963
[16:09:46.263] iteration 1453 : loss : 0.059804 cons_dist: 0.010567, loss_weight: 0.004963
[16:09:46.756] iteration 1454 : loss : 0.077864 cons_dist: 0.008018, loss_weight: 0.004963
[16:09:47.247] iteration 1455 : loss : 0.063675 cons_dist: 0.007921, loss_weight: 0.004963
[16:09:47.739] iteration 1456 : loss : 0.082657 cons_dist: 0.008037, loss_weight: 0.004963
[16:09:48.232] iteration 1457 : loss : 0.068526 cons_dist: 0.011392, loss_weight: 0.004963
[16:09:48.725] iteration 1458 : loss : 0.053831 cons_dist: 0.024539, loss_weight: 0.004963
[16:09:49.217] iteration 1459 : loss : 0.076159 cons_dist: 0.004336, loss_weight: 0.004963
[16:09:49.709] iteration 1460 : loss : 0.071510 cons_dist: 0.005728, loss_weight: 0.004963
[16:09:50.200] iteration 1461 : loss : 0.081282 cons_dist: 0.002287, loss_weight: 0.004963
[16:09:50.692] iteration 1462 : loss : 0.097069 cons_dist: 0.003787, loss_weight: 0.004963
[16:09:51.185] iteration 1463 : loss : 0.047524 cons_dist: 0.005165, loss_weight: 0.004963
[16:09:51.678] iteration 1464 : loss : 0.059591 cons_dist: 0.004631, loss_weight: 0.004963
[16:09:52.889] iteration 1465 : loss : 0.078522 cons_dist: 0.010546, loss_weight: 0.004963
[16:09:53.378] iteration 1466 : loss : 0.112740 cons_dist: 0.003091, loss_weight: 0.004963
[16:09:53.869] iteration 1467 : loss : 0.077922 cons_dist: 0.004771, loss_weight: 0.004963
[16:09:54.362] iteration 1468 : loss : 0.137248 cons_dist: 0.009358, loss_weight: 0.004963
[16:09:54.853] iteration 1469 : loss : 0.054653 cons_dist: 0.003438, loss_weight: 0.004963
[16:09:55.345] iteration 1470 : loss : 0.050877 cons_dist: 0.015981, loss_weight: 0.004963
[16:09:55.836] iteration 1471 : loss : 0.081156 cons_dist: 0.001883, loss_weight: 0.004963
[16:09:56.328] iteration 1472 : loss : 0.059116 cons_dist: 0.002825, loss_weight: 0.004963
[16:09:56.819] iteration 1473 : loss : 0.094612 cons_dist: 0.005259, loss_weight: 0.004963
[16:09:57.310] iteration 1474 : loss : 0.074376 cons_dist: 0.002893, loss_weight: 0.004963
[16:09:57.802] iteration 1475 : loss : 0.057336 cons_dist: 0.002818, loss_weight: 0.004963
[16:09:58.294] iteration 1476 : loss : 0.059980 cons_dist: 0.001382, loss_weight: 0.004963
[16:09:59.410] iteration 1477 : loss : 0.048393 cons_dist: 0.013453, loss_weight: 0.004963
[16:09:59.902] iteration 1478 : loss : 0.071196 cons_dist: 0.002365, loss_weight: 0.004963
[16:10:00.395] iteration 1479 : loss : 0.045044 cons_dist: 0.004731, loss_weight: 0.004963
[16:10:00.886] iteration 1480 : loss : 0.060745 cons_dist: 0.007248, loss_weight: 0.004963
[16:10:01.377] iteration 1481 : loss : 0.081609 cons_dist: 0.006436, loss_weight: 0.004963
[16:10:01.869] iteration 1482 : loss : 0.080192 cons_dist: 0.004379, loss_weight: 0.004963
[16:10:02.360] iteration 1483 : loss : 0.091031 cons_dist: 0.017376, loss_weight: 0.004963
[16:10:02.851] iteration 1484 : loss : 0.058304 cons_dist: 0.003121, loss_weight: 0.004963
[16:10:03.344] iteration 1485 : loss : 0.065172 cons_dist: 0.010383, loss_weight: 0.004963
[16:10:03.836] iteration 1486 : loss : 0.056407 cons_dist: 0.004717, loss_weight: 0.004963
[16:10:04.328] iteration 1487 : loss : 0.052997 cons_dist: 0.021852, loss_weight: 0.004963
[16:10:04.820] iteration 1488 : loss : 0.060989 cons_dist: 0.004699, loss_weight: 0.004963
[16:10:05.853] iteration 1489 : loss : 0.056095 cons_dist: 0.007709, loss_weight: 0.004963
[16:10:06.344] iteration 1490 : loss : 0.074653 cons_dist: 0.008541, loss_weight: 0.004963
[16:10:06.835] iteration 1491 : loss : 0.059300 cons_dist: 0.002420, loss_weight: 0.004963
[16:10:07.326] iteration 1492 : loss : 0.063679 cons_dist: 0.006219, loss_weight: 0.004963
[16:10:07.818] iteration 1493 : loss : 0.055535 cons_dist: 0.016794, loss_weight: 0.004963
[16:10:08.310] iteration 1494 : loss : 0.073005 cons_dist: 0.003279, loss_weight: 0.004963
[16:10:08.803] iteration 1495 : loss : 0.055623 cons_dist: 0.004211, loss_weight: 0.004963
[16:10:09.293] iteration 1496 : loss : 0.083808 cons_dist: 0.005504, loss_weight: 0.004963
[16:10:09.784] iteration 1497 : loss : 0.049487 cons_dist: 0.003002, loss_weight: 0.004963
[16:10:10.276] iteration 1498 : loss : 0.072068 cons_dist: 0.012110, loss_weight: 0.004963
[16:10:10.767] iteration 1499 : loss : 0.071109 cons_dist: 0.003665, loss_weight: 0.004963
[16:10:11.260] iteration 1500 : loss : 0.060546 cons_dist: 0.003048, loss_weight: 0.004963
[16:10:12.371] iteration 1501 : loss : 0.053232 cons_dist: 0.029908, loss_weight: 0.006005
[16:10:12.862] iteration 1502 : loss : 0.054375 cons_dist: 0.010293, loss_weight: 0.006005
[16:10:13.354] iteration 1503 : loss : 0.053684 cons_dist: 0.011702, loss_weight: 0.006005
[16:10:13.847] iteration 1504 : loss : 0.056879 cons_dist: 0.006560, loss_weight: 0.006005
[16:10:14.338] iteration 1505 : loss : 0.054652 cons_dist: 0.011004, loss_weight: 0.006005
[16:10:14.830] iteration 1506 : loss : 0.059391 cons_dist: 0.003968, loss_weight: 0.006005
[16:10:15.321] iteration 1507 : loss : 0.050582 cons_dist: 0.008891, loss_weight: 0.006005
[16:10:15.813] iteration 1508 : loss : 0.096068 cons_dist: 0.008836, loss_weight: 0.006005
[16:10:16.303] iteration 1509 : loss : 0.055188 cons_dist: 0.004430, loss_weight: 0.006005
[16:10:16.794] iteration 1510 : loss : 0.071784 cons_dist: 0.005766, loss_weight: 0.006005
[16:10:17.286] iteration 1511 : loss : 0.061858 cons_dist: 0.056004, loss_weight: 0.006005
[16:10:17.779] iteration 1512 : loss : 0.055623 cons_dist: 0.005914, loss_weight: 0.006005
[16:10:19.020] iteration 1513 : loss : 0.049747 cons_dist: 0.005334, loss_weight: 0.006005
[16:10:19.512] iteration 1514 : loss : 0.070400 cons_dist: 0.014296, loss_weight: 0.006005
[16:10:20.003] iteration 1515 : loss : 0.061620 cons_dist: 0.011635, loss_weight: 0.006005
[16:10:20.494] iteration 1516 : loss : 0.053559 cons_dist: 0.016396, loss_weight: 0.006005
[16:10:20.985] iteration 1517 : loss : 0.121136 cons_dist: 0.005704, loss_weight: 0.006005
[16:10:21.476] iteration 1518 : loss : 0.075194 cons_dist: 0.016703, loss_weight: 0.006005
[16:10:21.967] iteration 1519 : loss : 0.085556 cons_dist: 0.002277, loss_weight: 0.006005
[16:10:22.460] iteration 1520 : loss : 0.076781 cons_dist: 0.006963, loss_weight: 0.006005
[16:10:22.952] iteration 1521 : loss : 0.039328 cons_dist: 0.009306, loss_weight: 0.006005
[16:10:23.444] iteration 1522 : loss : 0.054596 cons_dist: 0.001510, loss_weight: 0.006005
[16:10:23.935] iteration 1523 : loss : 0.085959 cons_dist: 0.003502, loss_weight: 0.006005
[16:10:24.427] iteration 1524 : loss : 0.111241 cons_dist: 0.006471, loss_weight: 0.006005
[16:10:25.458] iteration 1525 : loss : 0.069337 cons_dist: 0.005983, loss_weight: 0.006005
[16:10:25.948] iteration 1526 : loss : 0.044451 cons_dist: 0.011026, loss_weight: 0.006005
[16:10:26.439] iteration 1527 : loss : 0.078485 cons_dist: 0.005517, loss_weight: 0.006005
[16:10:26.931] iteration 1528 : loss : 0.082144 cons_dist: 0.006406, loss_weight: 0.006005
[16:10:27.424] iteration 1529 : loss : 0.068582 cons_dist: 0.002082, loss_weight: 0.006005
[16:10:27.917] iteration 1530 : loss : 0.064753 cons_dist: 0.005988, loss_weight: 0.006005
[16:10:28.409] iteration 1531 : loss : 0.054742 cons_dist: 0.006302, loss_weight: 0.006005
[16:10:28.900] iteration 1532 : loss : 0.057614 cons_dist: 0.002560, loss_weight: 0.006005
[16:10:29.392] iteration 1533 : loss : 0.079822 cons_dist: 0.006819, loss_weight: 0.006005
[16:10:29.883] iteration 1534 : loss : 0.051449 cons_dist: 0.008105, loss_weight: 0.006005
[16:10:30.375] iteration 1535 : loss : 0.056236 cons_dist: 0.009142, loss_weight: 0.006005
[16:10:30.867] iteration 1536 : loss : 0.051188 cons_dist: 0.002495, loss_weight: 0.006005
[16:10:31.907] iteration 1537 : loss : 0.045273 cons_dist: 0.002613, loss_weight: 0.006005
[16:10:32.399] iteration 1538 : loss : 0.076929 cons_dist: 0.003827, loss_weight: 0.006005
[16:10:32.890] iteration 1539 : loss : 0.042604 cons_dist: 0.003714, loss_weight: 0.006005
[16:10:33.381] iteration 1540 : loss : 0.078622 cons_dist: 0.009220, loss_weight: 0.006005
[16:10:33.872] iteration 1541 : loss : 0.055424 cons_dist: 0.011514, loss_weight: 0.006005
[16:10:34.364] iteration 1542 : loss : 0.059351 cons_dist: 0.010634, loss_weight: 0.006005
[16:10:34.856] iteration 1543 : loss : 0.061768 cons_dist: 0.003497, loss_weight: 0.006005
[16:10:35.348] iteration 1544 : loss : 0.064709 cons_dist: 0.002399, loss_weight: 0.006005
[16:10:35.840] iteration 1545 : loss : 0.061610 cons_dist: 0.007291, loss_weight: 0.006005
[16:10:36.332] iteration 1546 : loss : 0.088427 cons_dist: 0.005663, loss_weight: 0.006005
[16:10:36.824] iteration 1547 : loss : 0.071184 cons_dist: 0.003913, loss_weight: 0.006005
[16:10:37.315] iteration 1548 : loss : 0.090278 cons_dist: 0.008106, loss_weight: 0.006005
[16:10:38.471] iteration 1549 : loss : 0.068315 cons_dist: 0.006526, loss_weight: 0.006005
[16:10:38.962] iteration 1550 : loss : 0.048823 cons_dist: 0.019298, loss_weight: 0.006005
[16:10:39.454] iteration 1551 : loss : 0.060401 cons_dist: 0.005604, loss_weight: 0.006005
[16:10:39.947] iteration 1552 : loss : 0.073240 cons_dist: 0.007195, loss_weight: 0.006005
[16:10:40.438] iteration 1553 : loss : 0.043917 cons_dist: 0.002737, loss_weight: 0.006005
[16:10:40.930] iteration 1554 : loss : 0.065662 cons_dist: 0.002609, loss_weight: 0.006005
[16:10:41.421] iteration 1555 : loss : 0.042155 cons_dist: 0.002834, loss_weight: 0.006005
[16:10:41.913] iteration 1556 : loss : 0.057447 cons_dist: 0.008112, loss_weight: 0.006005
[16:10:42.405] iteration 1557 : loss : 0.097732 cons_dist: 0.004477, loss_weight: 0.006005
[16:10:42.898] iteration 1558 : loss : 0.039054 cons_dist: 0.002312, loss_weight: 0.006005
[16:10:43.390] iteration 1559 : loss : 0.048762 cons_dist: 0.016138, loss_weight: 0.006005
[16:10:43.882] iteration 1560 : loss : 0.074835 cons_dist: 0.005831, loss_weight: 0.006005
[16:10:45.005] iteration 1561 : loss : 0.066131 cons_dist: 0.003627, loss_weight: 0.006005
[16:10:45.495] iteration 1562 : loss : 0.045590 cons_dist: 0.005690, loss_weight: 0.006005
[16:10:45.985] iteration 1563 : loss : 0.070629 cons_dist: 0.002023, loss_weight: 0.006005
[16:10:46.477] iteration 1564 : loss : 0.050114 cons_dist: 0.009878, loss_weight: 0.006005
[16:10:46.970] iteration 1565 : loss : 0.056934 cons_dist: 0.007288, loss_weight: 0.006005
[16:10:47.463] iteration 1566 : loss : 0.048827 cons_dist: 0.024666, loss_weight: 0.006005
[16:10:47.955] iteration 1567 : loss : 0.067501 cons_dist: 0.004025, loss_weight: 0.006005
[16:10:48.446] iteration 1568 : loss : 0.071110 cons_dist: 0.006115, loss_weight: 0.006005
[16:10:48.938] iteration 1569 : loss : 0.054639 cons_dist: 0.007086, loss_weight: 0.006005
[16:10:49.429] iteration 1570 : loss : 0.066081 cons_dist: 0.003840, loss_weight: 0.006005
[16:10:49.921] iteration 1571 : loss : 0.048485 cons_dist: 0.004232, loss_weight: 0.006005
[16:10:50.413] iteration 1572 : loss : 0.082236 cons_dist: 0.003501, loss_weight: 0.006005
[16:10:51.492] iteration 1573 : loss : 0.082049 cons_dist: 0.024259, loss_weight: 0.006005
[16:10:51.985] iteration 1574 : loss : 0.058524 cons_dist: 0.004127, loss_weight: 0.006005
[16:10:52.476] iteration 1575 : loss : 0.063402 cons_dist: 0.005952, loss_weight: 0.006005
[16:10:52.968] iteration 1576 : loss : 0.055628 cons_dist: 0.007646, loss_weight: 0.006005
[16:10:53.459] iteration 1577 : loss : 0.064941 cons_dist: 0.004075, loss_weight: 0.006005
[16:10:53.952] iteration 1578 : loss : 0.055295 cons_dist: 0.000700, loss_weight: 0.006005
[16:10:54.444] iteration 1579 : loss : 0.046356 cons_dist: 0.013013, loss_weight: 0.006005
[16:10:54.936] iteration 1580 : loss : 0.068912 cons_dist: 0.002857, loss_weight: 0.006005
[16:10:55.427] iteration 1581 : loss : 0.064877 cons_dist: 0.005328, loss_weight: 0.006005
[16:10:55.919] iteration 1582 : loss : 0.070953 cons_dist: 0.013025, loss_weight: 0.006005
[16:10:56.411] iteration 1583 : loss : 0.039381 cons_dist: 0.002461, loss_weight: 0.006005
[16:10:56.902] iteration 1584 : loss : 0.082394 cons_dist: 0.003442, loss_weight: 0.006005
[16:10:57.959] iteration 1585 : loss : 0.057985 cons_dist: 0.011610, loss_weight: 0.006005
[16:10:58.451] iteration 1586 : loss : 0.056772 cons_dist: 0.004938, loss_weight: 0.006005
[16:10:58.941] iteration 1587 : loss : 0.042803 cons_dist: 0.002356, loss_weight: 0.006005
[16:10:59.433] iteration 1588 : loss : 0.078550 cons_dist: 0.003259, loss_weight: 0.006005
[16:10:59.925] iteration 1589 : loss : 0.051822 cons_dist: 0.001977, loss_weight: 0.006005
[16:11:00.417] iteration 1590 : loss : 0.044301 cons_dist: 0.011834, loss_weight: 0.006005
[16:11:00.910] iteration 1591 : loss : 0.050678 cons_dist: 0.003229, loss_weight: 0.006005
[16:11:01.402] iteration 1592 : loss : 0.038420 cons_dist: 0.005440, loss_weight: 0.006005
[16:11:01.895] iteration 1593 : loss : 0.053972 cons_dist: 0.006752, loss_weight: 0.006005
[16:11:02.386] iteration 1594 : loss : 0.049230 cons_dist: 0.014965, loss_weight: 0.006005
[16:11:02.877] iteration 1595 : loss : 0.071419 cons_dist: 0.007341, loss_weight: 0.006005
[16:11:03.369] iteration 1596 : loss : 0.058032 cons_dist: 0.009501, loss_weight: 0.006005
[16:11:04.486] iteration 1597 : loss : 0.058439 cons_dist: 0.003590, loss_weight: 0.006005
[16:11:04.977] iteration 1598 : loss : 0.047782 cons_dist: 0.002199, loss_weight: 0.006005
[16:11:05.469] iteration 1599 : loss : 0.056542 cons_dist: 0.004708, loss_weight: 0.006005
[16:11:05.962] iteration 1600 : loss : 0.075637 cons_dist: 0.004670, loss_weight: 0.006005
[16:11:07.581] iteration 1601 : loss : 0.043586 cons_dist: 0.014932, loss_weight: 0.006005
[16:11:08.073] iteration 1602 : loss : 0.078187 cons_dist: 0.006116, loss_weight: 0.006005
[16:11:08.564] iteration 1603 : loss : 0.054250 cons_dist: 0.009856, loss_weight: 0.006005
[16:11:09.054] iteration 1604 : loss : 0.087997 cons_dist: 0.012189, loss_weight: 0.006005
[16:11:09.545] iteration 1605 : loss : 0.100166 cons_dist: 0.003229, loss_weight: 0.006005
[16:11:10.038] iteration 1606 : loss : 0.058838 cons_dist: 0.004473, loss_weight: 0.006005
[16:11:10.530] iteration 1607 : loss : 0.058998 cons_dist: 0.005061, loss_weight: 0.006005
[16:11:11.022] iteration 1608 : loss : 0.054792 cons_dist: 0.005529, loss_weight: 0.006005
[16:11:12.116] iteration 1609 : loss : 0.108673 cons_dist: 0.006088, loss_weight: 0.006005
[16:11:12.603] iteration 1610 : loss : 0.055118 cons_dist: 0.003984, loss_weight: 0.006005
[16:11:13.095] iteration 1611 : loss : 0.067391 cons_dist: 0.012371, loss_weight: 0.006005
[16:11:13.586] iteration 1612 : loss : 0.063986 cons_dist: 0.003136, loss_weight: 0.006005
[16:11:14.077] iteration 1613 : loss : 0.041746 cons_dist: 0.003579, loss_weight: 0.006005
[16:11:14.569] iteration 1614 : loss : 0.048631 cons_dist: 0.007398, loss_weight: 0.006005
[16:11:15.061] iteration 1615 : loss : 0.049659 cons_dist: 0.004347, loss_weight: 0.006005
[16:11:15.553] iteration 1616 : loss : 0.066872 cons_dist: 0.003220, loss_weight: 0.006005
[16:11:16.046] iteration 1617 : loss : 0.071502 cons_dist: 0.004596, loss_weight: 0.006005
[16:11:16.539] iteration 1618 : loss : 0.060945 cons_dist: 0.002564, loss_weight: 0.006005
[16:11:17.031] iteration 1619 : loss : 0.069980 cons_dist: 0.004929, loss_weight: 0.006005
[16:11:17.523] iteration 1620 : loss : 0.044377 cons_dist: 0.004012, loss_weight: 0.006005
[16:11:18.656] iteration 1621 : loss : 0.099621 cons_dist: 0.006894, loss_weight: 0.006005
[16:11:19.149] iteration 1622 : loss : 0.046342 cons_dist: 0.009413, loss_weight: 0.006005
[16:11:19.641] iteration 1623 : loss : 0.048066 cons_dist: 0.009830, loss_weight: 0.006005
[16:11:20.133] iteration 1624 : loss : 0.079061 cons_dist: 0.005580, loss_weight: 0.006005
[16:11:20.625] iteration 1625 : loss : 0.076510 cons_dist: 0.006178, loss_weight: 0.006005
[16:11:21.116] iteration 1626 : loss : 0.069521 cons_dist: 0.007641, loss_weight: 0.006005
[16:11:21.607] iteration 1627 : loss : 0.062144 cons_dist: 0.008112, loss_weight: 0.006005
[16:11:22.098] iteration 1628 : loss : 0.088788 cons_dist: 0.002271, loss_weight: 0.006005
[16:11:22.590] iteration 1629 : loss : 0.048889 cons_dist: 0.002456, loss_weight: 0.006005
[16:11:23.081] iteration 1630 : loss : 0.047933 cons_dist: 0.004095, loss_weight: 0.006005
[16:11:23.573] iteration 1631 : loss : 0.043469 cons_dist: 0.001688, loss_weight: 0.006005
[16:11:24.066] iteration 1632 : loss : 0.058394 cons_dist: 0.008079, loss_weight: 0.006005
[16:11:25.241] iteration 1633 : loss : 0.075575 cons_dist: 0.002339, loss_weight: 0.006005
[16:11:25.733] iteration 1634 : loss : 0.101667 cons_dist: 0.004084, loss_weight: 0.006005
[16:11:26.225] iteration 1635 : loss : 0.051197 cons_dist: 0.006134, loss_weight: 0.006005
[16:11:26.717] iteration 1636 : loss : 0.068902 cons_dist: 0.010961, loss_weight: 0.006005
[16:11:27.208] iteration 1637 : loss : 0.049531 cons_dist: 0.004537, loss_weight: 0.006005
[16:11:27.699] iteration 1638 : loss : 0.072544 cons_dist: 0.004838, loss_weight: 0.006005
[16:11:28.190] iteration 1639 : loss : 0.046945 cons_dist: 0.006305, loss_weight: 0.006005
[16:11:28.682] iteration 1640 : loss : 0.041311 cons_dist: 0.001092, loss_weight: 0.006005
[16:11:29.173] iteration 1641 : loss : 0.076529 cons_dist: 0.005306, loss_weight: 0.006005
[16:11:29.666] iteration 1642 : loss : 0.064749 cons_dist: 0.007290, loss_weight: 0.006005
[16:11:30.157] iteration 1643 : loss : 0.067993 cons_dist: 0.007332, loss_weight: 0.006005
[16:11:30.649] iteration 1644 : loss : 0.050749 cons_dist: 0.001033, loss_weight: 0.006005
[16:11:31.751] iteration 1645 : loss : 0.050304 cons_dist: 0.005984, loss_weight: 0.006005
[16:11:32.242] iteration 1646 : loss : 0.048172 cons_dist: 0.002841, loss_weight: 0.006005
[16:11:32.734] iteration 1647 : loss : 0.071051 cons_dist: 0.002123, loss_weight: 0.006005
[16:11:33.228] iteration 1648 : loss : 0.051245 cons_dist: 0.004076, loss_weight: 0.006005
[16:11:33.720] iteration 1649 : loss : 0.053822 cons_dist: 0.007871, loss_weight: 0.006005
[16:11:34.210] iteration 1650 : loss : 0.072104 cons_dist: 0.006794, loss_weight: 0.006005
[16:11:34.702] iteration 1651 : loss : 0.056780 cons_dist: 0.003797, loss_weight: 0.007221
[16:11:35.193] iteration 1652 : loss : 0.057428 cons_dist: 0.017857, loss_weight: 0.007221
[16:11:35.686] iteration 1653 : loss : 0.051178 cons_dist: 0.002739, loss_weight: 0.007221
[16:11:36.178] iteration 1654 : loss : 0.092103 cons_dist: 0.007531, loss_weight: 0.007221
[16:11:36.670] iteration 1655 : loss : 0.060535 cons_dist: 0.002727, loss_weight: 0.007221
[16:11:37.162] iteration 1656 : loss : 0.058413 cons_dist: 0.009865, loss_weight: 0.007221
[16:11:38.390] iteration 1657 : loss : 0.086531 cons_dist: 0.017896, loss_weight: 0.007221
[16:11:38.883] iteration 1658 : loss : 0.061149 cons_dist: 0.004573, loss_weight: 0.007221
[16:11:39.374] iteration 1659 : loss : 0.062780 cons_dist: 0.005975, loss_weight: 0.007221
[16:11:39.865] iteration 1660 : loss : 0.051196 cons_dist: 0.034572, loss_weight: 0.007221
[16:11:40.356] iteration 1661 : loss : 0.074012 cons_dist: 0.002241, loss_weight: 0.007221
[16:11:40.847] iteration 1662 : loss : 0.078271 cons_dist: 0.006176, loss_weight: 0.007221
[16:11:41.337] iteration 1663 : loss : 0.067795 cons_dist: 0.007975, loss_weight: 0.007221
[16:11:41.828] iteration 1664 : loss : 0.059978 cons_dist: 0.005786, loss_weight: 0.007221
[16:11:42.320] iteration 1665 : loss : 0.056865 cons_dist: 0.005703, loss_weight: 0.007221
[16:11:42.812] iteration 1666 : loss : 0.072326 cons_dist: 0.009082, loss_weight: 0.007221
[16:11:43.304] iteration 1667 : loss : 0.059554 cons_dist: 0.008662, loss_weight: 0.007221
[16:11:43.796] iteration 1668 : loss : 0.047132 cons_dist: 0.048732, loss_weight: 0.007221
[16:11:44.858] iteration 1669 : loss : 0.045467 cons_dist: 0.030207, loss_weight: 0.007221
[16:11:45.348] iteration 1670 : loss : 0.063170 cons_dist: 0.012228, loss_weight: 0.007221
[16:11:45.839] iteration 1671 : loss : 0.060961 cons_dist: 0.004381, loss_weight: 0.007221
[16:11:46.330] iteration 1672 : loss : 0.047349 cons_dist: 0.007315, loss_weight: 0.007221
[16:11:46.822] iteration 1673 : loss : 0.054058 cons_dist: 0.005048, loss_weight: 0.007221
[16:11:47.315] iteration 1674 : loss : 0.060649 cons_dist: 0.002277, loss_weight: 0.007221
[16:11:47.806] iteration 1675 : loss : 0.073368 cons_dist: 0.003017, loss_weight: 0.007221
[16:11:48.298] iteration 1676 : loss : 0.136036 cons_dist: 0.004156, loss_weight: 0.007221
[16:11:48.790] iteration 1677 : loss : 0.075264 cons_dist: 0.006544, loss_weight: 0.007221
[16:11:49.281] iteration 1678 : loss : 0.050036 cons_dist: 0.003991, loss_weight: 0.007221
[16:11:49.773] iteration 1679 : loss : 0.048731 cons_dist: 0.002944, loss_weight: 0.007221
[16:11:50.266] iteration 1680 : loss : 0.053482 cons_dist: 0.006116, loss_weight: 0.007221
[16:11:51.432] iteration 1681 : loss : 0.050507 cons_dist: 0.004120, loss_weight: 0.007221
[16:11:51.922] iteration 1682 : loss : 0.060681 cons_dist: 0.004827, loss_weight: 0.007221
[16:11:52.414] iteration 1683 : loss : 0.064881 cons_dist: 0.002133, loss_weight: 0.007221
[16:11:52.905] iteration 1684 : loss : 0.057046 cons_dist: 0.007851, loss_weight: 0.007221
[16:11:53.396] iteration 1685 : loss : 0.056048 cons_dist: 0.004386, loss_weight: 0.007221
[16:11:53.888] iteration 1686 : loss : 0.048159 cons_dist: 0.004677, loss_weight: 0.007221
[16:11:54.381] iteration 1687 : loss : 0.100267 cons_dist: 0.013350, loss_weight: 0.007221
[16:11:54.874] iteration 1688 : loss : 0.078478 cons_dist: 0.011575, loss_weight: 0.007221
[16:11:55.366] iteration 1689 : loss : 0.071973 cons_dist: 0.003852, loss_weight: 0.007221
[16:11:55.857] iteration 1690 : loss : 0.051002 cons_dist: 0.007712, loss_weight: 0.007221
[16:11:56.348] iteration 1691 : loss : 0.091907 cons_dist: 0.002677, loss_weight: 0.007221
[16:11:56.839] iteration 1692 : loss : 0.047141 cons_dist: 0.001983, loss_weight: 0.007221
[16:11:57.887] iteration 1693 : loss : 0.056086 cons_dist: 0.001814, loss_weight: 0.007221
[16:11:58.378] iteration 1694 : loss : 0.055887 cons_dist: 0.002979, loss_weight: 0.007221
[16:11:58.870] iteration 1695 : loss : 0.052270 cons_dist: 0.009928, loss_weight: 0.007221
[16:11:59.362] iteration 1696 : loss : 0.214188 cons_dist: 0.005750, loss_weight: 0.007221
[16:11:59.855] iteration 1697 : loss : 0.075945 cons_dist: 0.006667, loss_weight: 0.007221
[16:12:00.347] iteration 1698 : loss : 0.068908 cons_dist: 0.008801, loss_weight: 0.007221
[16:12:00.838] iteration 1699 : loss : 0.049784 cons_dist: 0.006016, loss_weight: 0.007221
[16:12:01.330] iteration 1700 : loss : 0.066968 cons_dist: 0.002370, loss_weight: 0.007221
[16:12:01.820] iteration 1701 : loss : 0.072708 cons_dist: 0.004993, loss_weight: 0.007221
[16:12:02.311] iteration 1702 : loss : 0.064301 cons_dist: 0.001636, loss_weight: 0.007221
[16:12:02.802] iteration 1703 : loss : 0.044688 cons_dist: 0.007998, loss_weight: 0.007221
[16:12:03.294] iteration 1704 : loss : 0.115185 cons_dist: 0.001584, loss_weight: 0.007221
[16:12:04.416] iteration 1705 : loss : 0.068229 cons_dist: 0.009238, loss_weight: 0.007221
[16:12:04.903] iteration 1706 : loss : 0.072594 cons_dist: 0.005653, loss_weight: 0.007221
[16:12:05.395] iteration 1707 : loss : 0.054745 cons_dist: 0.008461, loss_weight: 0.007221
[16:12:05.887] iteration 1708 : loss : 0.084178 cons_dist: 0.006781, loss_weight: 0.007221
[16:12:06.379] iteration 1709 : loss : 0.057349 cons_dist: 0.005310, loss_weight: 0.007221
[16:12:06.870] iteration 1710 : loss : 0.062229 cons_dist: 0.008836, loss_weight: 0.007221
[16:12:07.362] iteration 1711 : loss : 0.051276 cons_dist: 0.001578, loss_weight: 0.007221
[16:12:07.852] iteration 1712 : loss : 0.056139 cons_dist: 0.001956, loss_weight: 0.007221
[16:12:08.344] iteration 1713 : loss : 0.047886 cons_dist: 0.008977, loss_weight: 0.007221
[16:12:08.836] iteration 1714 : loss : 0.068095 cons_dist: 0.004181, loss_weight: 0.007221
[16:12:09.328] iteration 1715 : loss : 0.071017 cons_dist: 0.009113, loss_weight: 0.007221
[16:12:09.820] iteration 1716 : loss : 0.073000 cons_dist: 0.002855, loss_weight: 0.007221
[16:12:10.963] iteration 1717 : loss : 0.058487 cons_dist: 0.009442, loss_weight: 0.007221
[16:12:11.455] iteration 1718 : loss : 0.055177 cons_dist: 0.006681, loss_weight: 0.007221
[16:12:11.946] iteration 1719 : loss : 0.058967 cons_dist: 0.002825, loss_weight: 0.007221
[16:12:12.437] iteration 1720 : loss : 0.135475 cons_dist: 0.008083, loss_weight: 0.007221
[16:12:12.929] iteration 1721 : loss : 0.048971 cons_dist: 0.002497, loss_weight: 0.007221
[16:12:13.421] iteration 1722 : loss : 0.058621 cons_dist: 0.007555, loss_weight: 0.007221
[16:12:13.914] iteration 1723 : loss : 0.069210 cons_dist: 0.014799, loss_weight: 0.007221
[16:12:14.406] iteration 1724 : loss : 0.050090 cons_dist: 0.003663, loss_weight: 0.007221
[16:12:14.897] iteration 1725 : loss : 0.063271 cons_dist: 0.012597, loss_weight: 0.007221
[16:12:15.389] iteration 1726 : loss : 0.052405 cons_dist: 0.002536, loss_weight: 0.007221
[16:12:15.881] iteration 1727 : loss : 0.043280 cons_dist: 0.007133, loss_weight: 0.007221
[16:12:16.373] iteration 1728 : loss : 0.055488 cons_dist: 0.003226, loss_weight: 0.007221
[16:12:17.549] iteration 1729 : loss : 0.065888 cons_dist: 0.010939, loss_weight: 0.007221
[16:12:18.039] iteration 1730 : loss : 0.043277 cons_dist: 0.003723, loss_weight: 0.007221
[16:12:18.530] iteration 1731 : loss : 0.070187 cons_dist: 0.004803, loss_weight: 0.007221
[16:12:19.023] iteration 1732 : loss : 0.069342 cons_dist: 0.002443, loss_weight: 0.007221
[16:12:19.515] iteration 1733 : loss : 0.038599 cons_dist: 0.002019, loss_weight: 0.007221
[16:12:20.007] iteration 1734 : loss : 0.047550 cons_dist: 0.002920, loss_weight: 0.007221
[16:12:20.497] iteration 1735 : loss : 0.052755 cons_dist: 0.018373, loss_weight: 0.007221
[16:12:20.989] iteration 1736 : loss : 0.096302 cons_dist: 0.021710, loss_weight: 0.007221
[16:12:21.480] iteration 1737 : loss : 0.061608 cons_dist: 0.009398, loss_weight: 0.007221
[16:12:21.972] iteration 1738 : loss : 0.044501 cons_dist: 0.005044, loss_weight: 0.007221
[16:12:22.465] iteration 1739 : loss : 0.041557 cons_dist: 0.006812, loss_weight: 0.007221
[16:12:22.957] iteration 1740 : loss : 0.090026 cons_dist: 0.012634, loss_weight: 0.007221
[16:12:24.167] iteration 1741 : loss : 0.043398 cons_dist: 0.003883, loss_weight: 0.007221
[16:12:24.659] iteration 1742 : loss : 0.061515 cons_dist: 0.005322, loss_weight: 0.007221
[16:12:25.151] iteration 1743 : loss : 0.051899 cons_dist: 0.002179, loss_weight: 0.007221
[16:12:25.643] iteration 1744 : loss : 0.067733 cons_dist: 0.002566, loss_weight: 0.007221
[16:12:26.137] iteration 1745 : loss : 0.081917 cons_dist: 0.002001, loss_weight: 0.007221
[16:12:26.629] iteration 1746 : loss : 0.050354 cons_dist: 0.031385, loss_weight: 0.007221
[16:12:27.119] iteration 1747 : loss : 0.040502 cons_dist: 0.002257, loss_weight: 0.007221
[16:12:27.611] iteration 1748 : loss : 0.068003 cons_dist: 0.006818, loss_weight: 0.007221
[16:12:28.104] iteration 1749 : loss : 0.071013 cons_dist: 0.001504, loss_weight: 0.007221
[16:12:28.597] iteration 1750 : loss : 0.070859 cons_dist: 0.003432, loss_weight: 0.007221
[16:12:29.088] iteration 1751 : loss : 0.068473 cons_dist: 0.005286, loss_weight: 0.007221
[16:12:29.579] iteration 1752 : loss : 0.058914 cons_dist: 0.005300, loss_weight: 0.007221
[16:12:30.809] iteration 1753 : loss : 0.050863 cons_dist: 0.006285, loss_weight: 0.007221
[16:12:31.303] iteration 1754 : loss : 0.073322 cons_dist: 0.003528, loss_weight: 0.007221
[16:12:31.795] iteration 1755 : loss : 0.065574 cons_dist: 0.021865, loss_weight: 0.007221
[16:12:32.287] iteration 1756 : loss : 0.053380 cons_dist: 0.001819, loss_weight: 0.007221
[16:12:32.778] iteration 1757 : loss : 0.053471 cons_dist: 0.012157, loss_weight: 0.007221
[16:12:33.269] iteration 1758 : loss : 0.071720 cons_dist: 0.003413, loss_weight: 0.007221
[16:12:33.759] iteration 1759 : loss : 0.050427 cons_dist: 0.006643, loss_weight: 0.007221
[16:12:34.251] iteration 1760 : loss : 0.099582 cons_dist: 0.046644, loss_weight: 0.007221
[16:12:34.743] iteration 1761 : loss : 0.059112 cons_dist: 0.001628, loss_weight: 0.007221
[16:12:35.236] iteration 1762 : loss : 0.044767 cons_dist: 0.001925, loss_weight: 0.007221
[16:12:35.728] iteration 1763 : loss : 0.057574 cons_dist: 0.005476, loss_weight: 0.007221
[16:12:36.220] iteration 1764 : loss : 0.061914 cons_dist: 0.027333, loss_weight: 0.007221
[16:12:37.336] iteration 1765 : loss : 0.044520 cons_dist: 0.002259, loss_weight: 0.007221
[16:12:37.826] iteration 1766 : loss : 0.052328 cons_dist: 0.007120, loss_weight: 0.007221
[16:12:38.317] iteration 1767 : loss : 0.046172 cons_dist: 0.003101, loss_weight: 0.007221
[16:12:38.808] iteration 1768 : loss : 0.048722 cons_dist: 0.009973, loss_weight: 0.007221
[16:12:39.299] iteration 1769 : loss : 0.071087 cons_dist: 0.005360, loss_weight: 0.007221
[16:12:39.791] iteration 1770 : loss : 0.062408 cons_dist: 0.015546, loss_weight: 0.007221
[16:12:40.283] iteration 1771 : loss : 0.050215 cons_dist: 0.021002, loss_weight: 0.007221
[16:12:40.775] iteration 1772 : loss : 0.060379 cons_dist: 0.017208, loss_weight: 0.007221
[16:12:41.267] iteration 1773 : loss : 0.073615 cons_dist: 0.020912, loss_weight: 0.007221
[16:12:41.758] iteration 1774 : loss : 0.072155 cons_dist: 0.002339, loss_weight: 0.007221
[16:12:42.249] iteration 1775 : loss : 0.075269 cons_dist: 0.003214, loss_weight: 0.007221
[16:12:42.741] iteration 1776 : loss : 0.063726 cons_dist: 0.003891, loss_weight: 0.007221
[16:12:43.916] iteration 1777 : loss : 0.046955 cons_dist: 0.012221, loss_weight: 0.007221
[16:12:44.408] iteration 1778 : loss : 0.044350 cons_dist: 0.002328, loss_weight: 0.007221
[16:12:44.900] iteration 1779 : loss : 0.066253 cons_dist: 0.009042, loss_weight: 0.007221
[16:12:45.393] iteration 1780 : loss : 0.058873 cons_dist: 0.009925, loss_weight: 0.007221
[16:12:45.885] iteration 1781 : loss : 0.085714 cons_dist: 0.001592, loss_weight: 0.007221
[16:12:46.376] iteration 1782 : loss : 0.053439 cons_dist: 0.003846, loss_weight: 0.007221
[16:12:46.867] iteration 1783 : loss : 0.046920 cons_dist: 0.003730, loss_weight: 0.007221
[16:12:47.358] iteration 1784 : loss : 0.057978 cons_dist: 0.005822, loss_weight: 0.007221
[16:12:47.849] iteration 1785 : loss : 0.062421 cons_dist: 0.005126, loss_weight: 0.007221
[16:12:48.341] iteration 1786 : loss : 0.049831 cons_dist: 0.001273, loss_weight: 0.007221
[16:12:48.833] iteration 1787 : loss : 0.055552 cons_dist: 0.003244, loss_weight: 0.007221
[16:12:49.325] iteration 1788 : loss : 0.061823 cons_dist: 0.011968, loss_weight: 0.007221
[16:12:50.367] iteration 1789 : loss : 0.051775 cons_dist: 0.003048, loss_weight: 0.007221
[16:12:50.858] iteration 1790 : loss : 0.050288 cons_dist: 0.001615, loss_weight: 0.007221
[16:12:51.348] iteration 1791 : loss : 0.057836 cons_dist: 0.004698, loss_weight: 0.007221
[16:12:51.840] iteration 1792 : loss : 0.058986 cons_dist: 0.003624, loss_weight: 0.007221
[16:12:52.331] iteration 1793 : loss : 0.037336 cons_dist: 0.001403, loss_weight: 0.007221
[16:12:52.823] iteration 1794 : loss : 0.046003 cons_dist: 0.004545, loss_weight: 0.007221
[16:12:53.315] iteration 1795 : loss : 0.042272 cons_dist: 0.009781, loss_weight: 0.007221
[16:12:53.807] iteration 1796 : loss : 0.044706 cons_dist: 0.006536, loss_weight: 0.007221
[16:12:54.299] iteration 1797 : loss : 0.059058 cons_dist: 0.002305, loss_weight: 0.007221
[16:12:54.789] iteration 1798 : loss : 0.082380 cons_dist: 0.006152, loss_weight: 0.007221
[16:12:55.281] iteration 1799 : loss : 0.076805 cons_dist: 0.002965, loss_weight: 0.007221
[16:12:55.772] iteration 1800 : loss : 0.165331 cons_dist: 0.002253, loss_weight: 0.007221
[16:12:58.046] iteration 1801 : loss : 0.061584 cons_dist: 0.005029, loss_weight: 0.008629
[16:12:58.538] iteration 1802 : loss : 0.091445 cons_dist: 0.004816, loss_weight: 0.008629
[16:12:59.030] iteration 1803 : loss : 0.069267 cons_dist: 0.005097, loss_weight: 0.008629
[16:12:59.522] iteration 1804 : loss : 0.059701 cons_dist: 0.008801, loss_weight: 0.008629
[16:13:00.014] iteration 1805 : loss : 0.050731 cons_dist: 0.002707, loss_weight: 0.008629
[16:13:00.504] iteration 1806 : loss : 0.062886 cons_dist: 0.001773, loss_weight: 0.008629
[16:13:00.995] iteration 1807 : loss : 0.045356 cons_dist: 0.003365, loss_weight: 0.008629
[16:13:01.487] iteration 1808 : loss : 0.044156 cons_dist: 0.003154, loss_weight: 0.008629
[16:13:01.977] iteration 1809 : loss : 0.060174 cons_dist: 0.002649, loss_weight: 0.008629
[16:13:02.469] iteration 1810 : loss : 0.083011 cons_dist: 0.001975, loss_weight: 0.008629
[16:13:02.962] iteration 1811 : loss : 0.048689 cons_dist: 0.011782, loss_weight: 0.008629
[16:13:03.455] iteration 1812 : loss : 0.052731 cons_dist: 0.005637, loss_weight: 0.008629
[16:13:04.502] iteration 1813 : loss : 0.066414 cons_dist: 0.004139, loss_weight: 0.008629
[16:13:04.992] iteration 1814 : loss : 0.081523 cons_dist: 0.004696, loss_weight: 0.008629
[16:13:05.483] iteration 1815 : loss : 0.045373 cons_dist: 0.010314, loss_weight: 0.008629
[16:13:05.975] iteration 1816 : loss : 0.057610 cons_dist: 0.004678, loss_weight: 0.008629
[16:13:06.467] iteration 1817 : loss : 0.086662 cons_dist: 0.000956, loss_weight: 0.008629
[16:13:06.959] iteration 1818 : loss : 0.050888 cons_dist: 0.003232, loss_weight: 0.008629
[16:13:07.450] iteration 1819 : loss : 0.056280 cons_dist: 0.002356, loss_weight: 0.008629
[16:13:07.942] iteration 1820 : loss : 0.041148 cons_dist: 0.008438, loss_weight: 0.008629
[16:13:08.432] iteration 1821 : loss : 0.091198 cons_dist: 0.004420, loss_weight: 0.008629
[16:13:08.923] iteration 1822 : loss : 0.056203 cons_dist: 0.009103, loss_weight: 0.008629
[16:13:09.415] iteration 1823 : loss : 0.038341 cons_dist: 0.006012, loss_weight: 0.008629
[16:13:09.907] iteration 1824 : loss : 0.051405 cons_dist: 0.009390, loss_weight: 0.008629
[16:13:11.080] iteration 1825 : loss : 0.058453 cons_dist: 0.007683, loss_weight: 0.008629
[16:13:11.570] iteration 1826 : loss : 0.057040 cons_dist: 0.003168, loss_weight: 0.008629
[16:13:12.061] iteration 1827 : loss : 0.051164 cons_dist: 0.008089, loss_weight: 0.008629
[16:13:12.552] iteration 1828 : loss : 0.043726 cons_dist: 0.008270, loss_weight: 0.008629
[16:13:13.045] iteration 1829 : loss : 0.066775 cons_dist: 0.003939, loss_weight: 0.008629
[16:13:13.536] iteration 1830 : loss : 0.038616 cons_dist: 0.003354, loss_weight: 0.008629
[16:13:14.028] iteration 1831 : loss : 0.047814 cons_dist: 0.003549, loss_weight: 0.008629
[16:13:14.519] iteration 1832 : loss : 0.060779 cons_dist: 0.007300, loss_weight: 0.008629
[16:13:15.010] iteration 1833 : loss : 0.042734 cons_dist: 0.004768, loss_weight: 0.008629
[16:13:15.501] iteration 1834 : loss : 0.041704 cons_dist: 0.006162, loss_weight: 0.008629
[16:13:15.992] iteration 1835 : loss : 0.091577 cons_dist: 0.001844, loss_weight: 0.008629
[16:13:16.483] iteration 1836 : loss : 0.040674 cons_dist: 0.007429, loss_weight: 0.008629
[16:13:17.617] iteration 1837 : loss : 0.047471 cons_dist: 0.003331, loss_weight: 0.008629
[16:13:18.108] iteration 1838 : loss : 0.059593 cons_dist: 0.002235, loss_weight: 0.008629
[16:13:18.599] iteration 1839 : loss : 0.033869 cons_dist: 0.024207, loss_weight: 0.008629
[16:13:19.090] iteration 1840 : loss : 0.056406 cons_dist: 0.011267, loss_weight: 0.008629
[16:13:19.581] iteration 1841 : loss : 0.105927 cons_dist: 0.001183, loss_weight: 0.008629
[16:13:20.073] iteration 1842 : loss : 0.046661 cons_dist: 0.002033, loss_weight: 0.008629
[16:13:20.565] iteration 1843 : loss : 0.066082 cons_dist: 0.002303, loss_weight: 0.008629
[16:13:21.057] iteration 1844 : loss : 0.067094 cons_dist: 0.008585, loss_weight: 0.008629
[16:13:21.550] iteration 1845 : loss : 0.055241 cons_dist: 0.006618, loss_weight: 0.008629
[16:13:22.041] iteration 1846 : loss : 0.053729 cons_dist: 0.005162, loss_weight: 0.008629
[16:13:22.532] iteration 1847 : loss : 0.041078 cons_dist: 0.006327, loss_weight: 0.008629
[16:13:23.023] iteration 1848 : loss : 0.060407 cons_dist: 0.050155, loss_weight: 0.008629
[16:13:24.056] iteration 1849 : loss : 0.048407 cons_dist: 0.001854, loss_weight: 0.008629
[16:13:24.548] iteration 1850 : loss : 0.053008 cons_dist: 0.001052, loss_weight: 0.008629
[16:13:25.039] iteration 1851 : loss : 0.069512 cons_dist: 0.008089, loss_weight: 0.008629
[16:13:25.531] iteration 1852 : loss : 0.084715 cons_dist: 0.001195, loss_weight: 0.008629
[16:13:26.023] iteration 1853 : loss : 0.042889 cons_dist: 0.036419, loss_weight: 0.008629
[16:13:26.516] iteration 1854 : loss : 0.077187 cons_dist: 0.001468, loss_weight: 0.008629
[16:13:27.007] iteration 1855 : loss : 0.081591 cons_dist: 0.002895, loss_weight: 0.008629
[16:13:27.499] iteration 1856 : loss : 0.090014 cons_dist: 0.008525, loss_weight: 0.008629
[16:13:27.991] iteration 1857 : loss : 0.049803 cons_dist: 0.005259, loss_weight: 0.008629
[16:13:28.482] iteration 1858 : loss : 0.044463 cons_dist: 0.007254, loss_weight: 0.008629
[16:13:28.974] iteration 1859 : loss : 0.054831 cons_dist: 0.006695, loss_weight: 0.008629
[16:13:29.468] iteration 1860 : loss : 0.056962 cons_dist: 0.012446, loss_weight: 0.008629
[16:13:30.602] iteration 1861 : loss : 0.061792 cons_dist: 0.006666, loss_weight: 0.008629
[16:13:31.093] iteration 1862 : loss : 0.038200 cons_dist: 0.001040, loss_weight: 0.008629
[16:13:31.585] iteration 1863 : loss : 0.051230 cons_dist: 0.003840, loss_weight: 0.008629
[16:13:32.076] iteration 1864 : loss : 0.045921 cons_dist: 0.001770, loss_weight: 0.008629
[16:13:32.567] iteration 1865 : loss : 0.042256 cons_dist: 0.032136, loss_weight: 0.008629
[16:13:33.058] iteration 1866 : loss : 0.045966 cons_dist: 0.003124, loss_weight: 0.008629
[16:13:33.550] iteration 1867 : loss : 0.053087 cons_dist: 0.002966, loss_weight: 0.008629
[16:13:34.043] iteration 1868 : loss : 0.065197 cons_dist: 0.004969, loss_weight: 0.008629
[16:13:34.536] iteration 1869 : loss : 0.049311 cons_dist: 0.001260, loss_weight: 0.008629
[16:13:35.027] iteration 1870 : loss : 0.104341 cons_dist: 0.002031, loss_weight: 0.008629
[16:13:35.519] iteration 1871 : loss : 0.052741 cons_dist: 0.011246, loss_weight: 0.008629
[16:13:36.010] iteration 1872 : loss : 0.054388 cons_dist: 0.009816, loss_weight: 0.008629
[16:13:37.034] iteration 1873 : loss : 0.040036 cons_dist: 0.005445, loss_weight: 0.008629
[16:13:37.525] iteration 1874 : loss : 0.102475 cons_dist: 0.003858, loss_weight: 0.008629
[16:13:38.017] iteration 1875 : loss : 0.069691 cons_dist: 0.002034, loss_weight: 0.008629
[16:13:38.509] iteration 1876 : loss : 0.053508 cons_dist: 0.006312, loss_weight: 0.008629
[16:13:39.001] iteration 1877 : loss : 0.060543 cons_dist: 0.007741, loss_weight: 0.008629
[16:13:39.492] iteration 1878 : loss : 0.063069 cons_dist: 0.006075, loss_weight: 0.008629
[16:13:39.983] iteration 1879 : loss : 0.047820 cons_dist: 0.001716, loss_weight: 0.008629
[16:13:40.474] iteration 1880 : loss : 0.043011 cons_dist: 0.001343, loss_weight: 0.008629
[16:13:40.966] iteration 1881 : loss : 0.060116 cons_dist: 0.006298, loss_weight: 0.008629
[16:13:41.458] iteration 1882 : loss : 0.045855 cons_dist: 0.001374, loss_weight: 0.008629
[16:13:41.950] iteration 1883 : loss : 0.049264 cons_dist: 0.005330, loss_weight: 0.008629
[16:13:42.441] iteration 1884 : loss : 0.106997 cons_dist: 0.003119, loss_weight: 0.008629
[16:13:43.558] iteration 1885 : loss : 0.111241 cons_dist: 0.007286, loss_weight: 0.008629
[16:13:44.049] iteration 1886 : loss : 0.033332 cons_dist: 0.014907, loss_weight: 0.008629
[16:13:44.539] iteration 1887 : loss : 0.042506 cons_dist: 0.015586, loss_weight: 0.008629
[16:13:45.030] iteration 1888 : loss : 0.083682 cons_dist: 0.002991, loss_weight: 0.008629
[16:13:45.521] iteration 1889 : loss : 0.044759 cons_dist: 0.003322, loss_weight: 0.008629
[16:13:46.013] iteration 1890 : loss : 0.050224 cons_dist: 0.007495, loss_weight: 0.008629
[16:13:46.506] iteration 1891 : loss : 0.055213 cons_dist: 0.009610, loss_weight: 0.008629
[16:13:46.998] iteration 1892 : loss : 0.080452 cons_dist: 0.002330, loss_weight: 0.008629
[16:13:47.491] iteration 1893 : loss : 0.050313 cons_dist: 0.002207, loss_weight: 0.008629
[16:13:47.983] iteration 1894 : loss : 0.068996 cons_dist: 0.013968, loss_weight: 0.008629
[16:13:48.475] iteration 1895 : loss : 0.052305 cons_dist: 0.007517, loss_weight: 0.008629
[16:13:48.965] iteration 1896 : loss : 0.043764 cons_dist: 0.015071, loss_weight: 0.008629
[16:13:50.085] iteration 1897 : loss : 0.054503 cons_dist: 0.004198, loss_weight: 0.008629
[16:13:50.578] iteration 1898 : loss : 0.107193 cons_dist: 0.004142, loss_weight: 0.008629
[16:13:51.070] iteration 1899 : loss : 0.038803 cons_dist: 0.003568, loss_weight: 0.008629
[16:13:51.561] iteration 1900 : loss : 0.078578 cons_dist: 0.003198, loss_weight: 0.008629
[16:13:52.053] iteration 1901 : loss : 0.054776 cons_dist: 0.007118, loss_weight: 0.008629
[16:13:52.544] iteration 1902 : loss : 0.064880 cons_dist: 0.002985, loss_weight: 0.008629
[16:13:53.035] iteration 1903 : loss : 0.063874 cons_dist: 0.006694, loss_weight: 0.008629
[16:13:53.527] iteration 1904 : loss : 0.044198 cons_dist: 0.001555, loss_weight: 0.008629
[16:13:54.020] iteration 1905 : loss : 0.056929 cons_dist: 0.003819, loss_weight: 0.008629
[16:13:54.512] iteration 1906 : loss : 0.078222 cons_dist: 0.003482, loss_weight: 0.008629
[16:13:55.004] iteration 1907 : loss : 0.075580 cons_dist: 0.002807, loss_weight: 0.008629
[16:13:55.495] iteration 1908 : loss : 0.047255 cons_dist: 0.001873, loss_weight: 0.008629
[16:13:56.636] iteration 1909 : loss : 0.083853 cons_dist: 0.005129, loss_weight: 0.008629
[16:13:57.127] iteration 1910 : loss : 0.061172 cons_dist: 0.003912, loss_weight: 0.008629
[16:13:57.618] iteration 1911 : loss : 0.050927 cons_dist: 0.009284, loss_weight: 0.008629
[16:13:58.110] iteration 1912 : loss : 0.046475 cons_dist: 0.005184, loss_weight: 0.008629
[16:13:58.603] iteration 1913 : loss : 0.053176 cons_dist: 0.007925, loss_weight: 0.008629
[16:13:59.094] iteration 1914 : loss : 0.051160 cons_dist: 0.001071, loss_weight: 0.008629
[16:13:59.586] iteration 1915 : loss : 0.048030 cons_dist: 0.004058, loss_weight: 0.008629
[16:14:00.078] iteration 1916 : loss : 0.049820 cons_dist: 0.002703, loss_weight: 0.008629
[16:14:00.568] iteration 1917 : loss : 0.074556 cons_dist: 0.003154, loss_weight: 0.008629
[16:14:01.060] iteration 1918 : loss : 0.043650 cons_dist: 0.004545, loss_weight: 0.008629
[16:14:01.552] iteration 1919 : loss : 0.072684 cons_dist: 0.009889, loss_weight: 0.008629
[16:14:02.044] iteration 1920 : loss : 0.037336 cons_dist: 0.005615, loss_weight: 0.008629
[16:14:03.132] iteration 1921 : loss : 0.054171 cons_dist: 0.003601, loss_weight: 0.008629
[16:14:03.623] iteration 1922 : loss : 0.077388 cons_dist: 0.007246, loss_weight: 0.008629
[16:14:04.114] iteration 1923 : loss : 0.060570 cons_dist: 0.003897, loss_weight: 0.008629
[16:14:04.605] iteration 1924 : loss : 0.059533 cons_dist: 0.004379, loss_weight: 0.008629
[16:14:05.098] iteration 1925 : loss : 0.161987 cons_dist: 0.003317, loss_weight: 0.008629
[16:14:05.590] iteration 1926 : loss : 0.036202 cons_dist: 0.001234, loss_weight: 0.008629
[16:14:06.083] iteration 1927 : loss : 0.073617 cons_dist: 0.002938, loss_weight: 0.008629
[16:14:06.574] iteration 1928 : loss : 0.251784 cons_dist: 0.004439, loss_weight: 0.008629
[16:14:07.065] iteration 1929 : loss : 0.061847 cons_dist: 0.004708, loss_weight: 0.008629
[16:14:07.556] iteration 1930 : loss : 0.065553 cons_dist: 0.004453, loss_weight: 0.008629
[16:14:08.047] iteration 1931 : loss : 0.045899 cons_dist: 0.004047, loss_weight: 0.008629
[16:14:08.538] iteration 1932 : loss : 0.056393 cons_dist: 0.004843, loss_weight: 0.008629
[16:14:09.649] iteration 1933 : loss : 0.062421 cons_dist: 0.006732, loss_weight: 0.008629
[16:14:10.140] iteration 1934 : loss : 0.045662 cons_dist: 0.006419, loss_weight: 0.008629
[16:14:10.631] iteration 1935 : loss : 0.062670 cons_dist: 0.002638, loss_weight: 0.008629
[16:14:11.122] iteration 1936 : loss : 0.065520 cons_dist: 0.005226, loss_weight: 0.008629
[16:14:11.614] iteration 1937 : loss : 0.056335 cons_dist: 0.008532, loss_weight: 0.008629
[16:14:12.106] iteration 1938 : loss : 0.062096 cons_dist: 0.007625, loss_weight: 0.008629
[16:14:12.597] iteration 1939 : loss : 0.052952 cons_dist: 0.005732, loss_weight: 0.008629
[16:14:13.089] iteration 1940 : loss : 0.045043 cons_dist: 0.006652, loss_weight: 0.008629
[16:14:13.580] iteration 1941 : loss : 0.045121 cons_dist: 0.003457, loss_weight: 0.008629
[16:14:14.071] iteration 1942 : loss : 0.035028 cons_dist: 0.001118, loss_weight: 0.008629
[16:14:14.562] iteration 1943 : loss : 0.058521 cons_dist: 0.011739, loss_weight: 0.008629
[16:14:15.054] iteration 1944 : loss : 0.065159 cons_dist: 0.003025, loss_weight: 0.008629
[16:14:16.168] iteration 1945 : loss : 0.057029 cons_dist: 0.016661, loss_weight: 0.008629
[16:14:16.659] iteration 1946 : loss : 0.046026 cons_dist: 0.008125, loss_weight: 0.008629
[16:14:17.151] iteration 1947 : loss : 0.047603 cons_dist: 0.004932, loss_weight: 0.008629
[16:14:17.643] iteration 1948 : loss : 0.090597 cons_dist: 0.002948, loss_weight: 0.008629
[16:14:18.136] iteration 1949 : loss : 0.055585 cons_dist: 0.004888, loss_weight: 0.008629
[16:14:18.628] iteration 1950 : loss : 0.072493 cons_dist: 0.006821, loss_weight: 0.008629
[16:14:19.120] iteration 1951 : loss : 0.050808 cons_dist: 0.004231, loss_weight: 0.010248
[16:14:19.611] iteration 1952 : loss : 0.050402 cons_dist: 0.013390, loss_weight: 0.010248
[16:14:20.102] iteration 1953 : loss : 0.116109 cons_dist: 0.002207, loss_weight: 0.010248
[16:14:20.593] iteration 1954 : loss : 0.048839 cons_dist: 0.005036, loss_weight: 0.010248
[16:14:21.085] iteration 1955 : loss : 0.123848 cons_dist: 0.008972, loss_weight: 0.010248
[16:14:21.576] iteration 1956 : loss : 0.052188 cons_dist: 0.010297, loss_weight: 0.010248
[16:14:22.697] iteration 1957 : loss : 0.047958 cons_dist: 0.007150, loss_weight: 0.010248
[16:14:23.190] iteration 1958 : loss : 0.091804 cons_dist: 0.009882, loss_weight: 0.010248
[16:14:23.681] iteration 1959 : loss : 0.043243 cons_dist: 0.005326, loss_weight: 0.010248
[16:14:24.173] iteration 1960 : loss : 0.078842 cons_dist: 0.003694, loss_weight: 0.010248
[16:14:24.665] iteration 1961 : loss : 0.041687 cons_dist: 0.003477, loss_weight: 0.010248
[16:14:25.156] iteration 1962 : loss : 0.047390 cons_dist: 0.002252, loss_weight: 0.010248
[16:14:25.648] iteration 1963 : loss : 0.052565 cons_dist: 0.016105, loss_weight: 0.010248
[16:14:26.139] iteration 1964 : loss : 0.050941 cons_dist: 0.018614, loss_weight: 0.010248
[16:14:26.629] iteration 1965 : loss : 0.091961 cons_dist: 0.005979, loss_weight: 0.010248
[16:14:27.121] iteration 1966 : loss : 0.143261 cons_dist: 0.005550, loss_weight: 0.010248
[16:14:27.613] iteration 1967 : loss : 0.053446 cons_dist: 0.003710, loss_weight: 0.010248
[16:14:28.106] iteration 1968 : loss : 0.034031 cons_dist: 0.004303, loss_weight: 0.010248
[16:14:29.262] iteration 1969 : loss : 0.048310 cons_dist: 0.004448, loss_weight: 0.010248
[16:14:29.754] iteration 1970 : loss : 0.059843 cons_dist: 0.006281, loss_weight: 0.010248
[16:14:30.245] iteration 1971 : loss : 0.060573 cons_dist: 0.004100, loss_weight: 0.010248
[16:14:30.737] iteration 1972 : loss : 0.048315 cons_dist: 0.034856, loss_weight: 0.010248
[16:14:31.229] iteration 1973 : loss : 0.056391 cons_dist: 0.004543, loss_weight: 0.010248
[16:14:31.720] iteration 1974 : loss : 0.039408 cons_dist: 0.002677, loss_weight: 0.010248
[16:14:32.210] iteration 1975 : loss : 0.059820 cons_dist: 0.013560, loss_weight: 0.010248
[16:14:32.701] iteration 1976 : loss : 0.073962 cons_dist: 0.001318, loss_weight: 0.010248
[16:14:33.193] iteration 1977 : loss : 0.053981 cons_dist: 0.032404, loss_weight: 0.010248
[16:14:33.686] iteration 1978 : loss : 0.069182 cons_dist: 0.006645, loss_weight: 0.010248
[16:14:34.178] iteration 1979 : loss : 0.057030 cons_dist: 0.003659, loss_weight: 0.010248
[16:14:34.670] iteration 1980 : loss : 0.069684 cons_dist: 0.015364, loss_weight: 0.010248
[16:14:35.785] iteration 1981 : loss : 0.052592 cons_dist: 0.008870, loss_weight: 0.010248
[16:14:36.276] iteration 1982 : loss : 0.062092 cons_dist: 0.002627, loss_weight: 0.010248
[16:14:36.767] iteration 1983 : loss : 0.054618 cons_dist: 0.007800, loss_weight: 0.010248
[16:14:37.258] iteration 1984 : loss : 0.081207 cons_dist: 0.008369, loss_weight: 0.010248
[16:14:37.750] iteration 1985 : loss : 0.029358 cons_dist: 0.001420, loss_weight: 0.010248
[16:14:38.243] iteration 1986 : loss : 0.054404 cons_dist: 0.005600, loss_weight: 0.010248
[16:14:38.735] iteration 1987 : loss : 0.055475 cons_dist: 0.013449, loss_weight: 0.010248
[16:14:39.227] iteration 1988 : loss : 0.050743 cons_dist: 0.027194, loss_weight: 0.010248
[16:14:39.719] iteration 1989 : loss : 0.073319 cons_dist: 0.007137, loss_weight: 0.010248
[16:14:40.210] iteration 1990 : loss : 0.069936 cons_dist: 0.003399, loss_weight: 0.010248
[16:14:40.701] iteration 1991 : loss : 0.039408 cons_dist: 0.003761, loss_weight: 0.010248
[16:14:41.194] iteration 1992 : loss : 0.054104 cons_dist: 0.003692, loss_weight: 0.010248
[16:14:42.372] iteration 1993 : loss : 0.045755 cons_dist: 0.002117, loss_weight: 0.010248
[16:14:42.859] iteration 1994 : loss : 0.070355 cons_dist: 0.002741, loss_weight: 0.010248
[16:14:43.351] iteration 1995 : loss : 0.046421 cons_dist: 0.001815, loss_weight: 0.010248
[16:14:43.843] iteration 1996 : loss : 0.044697 cons_dist: 0.022537, loss_weight: 0.010248
[16:14:44.335] iteration 1997 : loss : 0.054330 cons_dist: 0.005376, loss_weight: 0.010248
[16:14:44.825] iteration 1998 : loss : 0.053356 cons_dist: 0.005379, loss_weight: 0.010248
[16:14:45.317] iteration 1999 : loss : 0.061883 cons_dist: 0.002085, loss_weight: 0.010248
[16:14:45.808] iteration 2000 : loss : 0.048870 cons_dist: 0.004735, loss_weight: 0.010248
[16:14:47.435] iteration 2001 : loss : 0.069870 cons_dist: 0.001520, loss_weight: 0.010248
[16:14:47.926] iteration 2002 : loss : 0.034887 cons_dist: 0.009988, loss_weight: 0.010248
[16:14:48.417] iteration 2003 : loss : 0.060182 cons_dist: 0.007479, loss_weight: 0.010248
[16:14:48.909] iteration 2004 : loss : 0.062519 cons_dist: 0.003733, loss_weight: 0.010248
[16:14:50.024] iteration 2005 : loss : 0.048367 cons_dist: 0.001926, loss_weight: 0.010248
[16:14:50.516] iteration 2006 : loss : 0.076036 cons_dist: 0.012741, loss_weight: 0.010248
[16:14:51.004] iteration 2007 : loss : 0.069664 cons_dist: 0.006596, loss_weight: 0.010248
[16:14:51.495] iteration 2008 : loss : 0.049984 cons_dist: 0.007126, loss_weight: 0.010248
[16:14:51.988] iteration 2009 : loss : 0.045453 cons_dist: 0.004479, loss_weight: 0.010248
[16:14:52.479] iteration 2010 : loss : 0.055649 cons_dist: 0.008293, loss_weight: 0.010248
[16:14:52.970] iteration 2011 : loss : 0.041960 cons_dist: 0.001961, loss_weight: 0.010248
[16:14:53.462] iteration 2012 : loss : 0.068257 cons_dist: 0.005477, loss_weight: 0.010248
[16:14:53.953] iteration 2013 : loss : 0.054495 cons_dist: 0.009638, loss_weight: 0.010248
[16:14:54.444] iteration 2014 : loss : 0.071323 cons_dist: 0.002897, loss_weight: 0.010248
[16:14:54.936] iteration 2015 : loss : 0.058930 cons_dist: 0.008416, loss_weight: 0.010248
[16:14:55.428] iteration 2016 : loss : 0.045377 cons_dist: 0.003006, loss_weight: 0.010248
[16:14:56.564] iteration 2017 : loss : 0.058266 cons_dist: 0.001448, loss_weight: 0.010248
[16:14:57.056] iteration 2018 : loss : 0.056483 cons_dist: 0.001297, loss_weight: 0.010248
[16:14:57.547] iteration 2019 : loss : 0.051036 cons_dist: 0.001800, loss_weight: 0.010248
[16:14:58.039] iteration 2020 : loss : 0.071376 cons_dist: 0.002046, loss_weight: 0.010248
[16:14:58.530] iteration 2021 : loss : 0.046753 cons_dist: 0.003311, loss_weight: 0.010248
[16:14:59.021] iteration 2022 : loss : 0.052424 cons_dist: 0.001800, loss_weight: 0.010248
[16:14:59.512] iteration 2023 : loss : 0.064039 cons_dist: 0.002716, loss_weight: 0.010248
[16:15:00.003] iteration 2024 : loss : 0.046395 cons_dist: 0.007341, loss_weight: 0.010248
[16:15:00.496] iteration 2025 : loss : 0.045854 cons_dist: 0.003911, loss_weight: 0.010248
[16:15:00.988] iteration 2026 : loss : 0.041038 cons_dist: 0.010944, loss_weight: 0.010248
[16:15:01.479] iteration 2027 : loss : 0.049793 cons_dist: 0.005836, loss_weight: 0.010248
[16:15:01.971] iteration 2028 : loss : 0.047749 cons_dist: 0.040682, loss_weight: 0.010248
[16:15:03.065] iteration 2029 : loss : 0.062563 cons_dist: 0.003089, loss_weight: 0.010248
[16:15:03.557] iteration 2030 : loss : 0.052886 cons_dist: 0.007754, loss_weight: 0.010248
[16:15:04.047] iteration 2031 : loss : 0.061577 cons_dist: 0.006354, loss_weight: 0.010248
[16:15:04.539] iteration 2032 : loss : 0.067315 cons_dist: 0.005207, loss_weight: 0.010248
[16:15:05.030] iteration 2033 : loss : 0.038124 cons_dist: 0.005998, loss_weight: 0.010248
[16:15:05.522] iteration 2034 : loss : 0.056306 cons_dist: 0.006642, loss_weight: 0.010248
[16:15:06.014] iteration 2035 : loss : 0.049983 cons_dist: 0.005967, loss_weight: 0.010248
[16:15:06.506] iteration 2036 : loss : 0.062120 cons_dist: 0.004482, loss_weight: 0.010248
[16:15:06.998] iteration 2037 : loss : 0.048713 cons_dist: 0.004143, loss_weight: 0.010248
[16:15:07.489] iteration 2038 : loss : 0.068799 cons_dist: 0.004242, loss_weight: 0.010248
[16:15:07.981] iteration 2039 : loss : 0.056502 cons_dist: 0.002862, loss_weight: 0.010248
[16:15:08.471] iteration 2040 : loss : 0.063843 cons_dist: 0.004921, loss_weight: 0.010248
[16:15:09.582] iteration 2041 : loss : 0.063961 cons_dist: 0.002347, loss_weight: 0.010248
[16:15:10.072] iteration 2042 : loss : 0.044576 cons_dist: 0.002221, loss_weight: 0.010248
[16:15:10.563] iteration 2043 : loss : 0.058061 cons_dist: 0.004053, loss_weight: 0.010248
[16:15:11.054] iteration 2044 : loss : 0.043255 cons_dist: 0.000987, loss_weight: 0.010248
[16:15:11.545] iteration 2045 : loss : 0.046196 cons_dist: 0.005141, loss_weight: 0.010248
[16:15:12.037] iteration 2046 : loss : 0.047501 cons_dist: 0.006125, loss_weight: 0.010248
[16:15:12.528] iteration 2047 : loss : 0.061651 cons_dist: 0.043223, loss_weight: 0.010248
[16:15:13.020] iteration 2048 : loss : 0.047390 cons_dist: 0.007873, loss_weight: 0.010248
[16:15:13.512] iteration 2049 : loss : 0.042960 cons_dist: 0.010830, loss_weight: 0.010248
[16:15:14.004] iteration 2050 : loss : 0.049006 cons_dist: 0.004782, loss_weight: 0.010248
[16:15:14.496] iteration 2051 : loss : 0.080134 cons_dist: 0.060932, loss_weight: 0.010248
[16:15:14.988] iteration 2052 : loss : 0.045496 cons_dist: 0.003326, loss_weight: 0.010248
[16:15:16.102] iteration 2053 : loss : 0.041768 cons_dist: 0.001296, loss_weight: 0.010248
[16:15:16.594] iteration 2054 : loss : 0.065884 cons_dist: 0.005434, loss_weight: 0.010248
[16:15:17.085] iteration 2055 : loss : 0.042939 cons_dist: 0.003074, loss_weight: 0.010248
[16:15:17.576] iteration 2056 : loss : 0.045224 cons_dist: 0.042034, loss_weight: 0.010248
[16:15:18.069] iteration 2057 : loss : 0.063509 cons_dist: 0.029310, loss_weight: 0.010248
[16:15:18.562] iteration 2058 : loss : 0.039418 cons_dist: 0.006888, loss_weight: 0.010248
[16:15:19.055] iteration 2059 : loss : 0.048830 cons_dist: 0.002651, loss_weight: 0.010248
[16:15:19.546] iteration 2060 : loss : 0.044469 cons_dist: 0.001043, loss_weight: 0.010248
[16:15:20.038] iteration 2061 : loss : 0.041193 cons_dist: 0.005336, loss_weight: 0.010248
[16:15:20.529] iteration 2062 : loss : 0.057904 cons_dist: 0.001203, loss_weight: 0.010248
[16:15:21.022] iteration 2063 : loss : 0.059268 cons_dist: 0.005368, loss_weight: 0.010248
[16:15:21.515] iteration 2064 : loss : 0.047659 cons_dist: 0.001832, loss_weight: 0.010248
[16:15:22.725] iteration 2065 : loss : 0.049289 cons_dist: 0.004265, loss_weight: 0.010248
[16:15:23.217] iteration 2066 : loss : 0.051345 cons_dist: 0.002194, loss_weight: 0.010248
[16:15:23.710] iteration 2067 : loss : 0.063045 cons_dist: 0.005663, loss_weight: 0.010248
[16:15:24.202] iteration 2068 : loss : 0.085675 cons_dist: 0.007446, loss_weight: 0.010248
[16:15:24.693] iteration 2069 : loss : 0.041833 cons_dist: 0.009707, loss_weight: 0.010248
[16:15:25.184] iteration 2070 : loss : 0.062097 cons_dist: 0.003460, loss_weight: 0.010248
[16:15:25.675] iteration 2071 : loss : 0.041285 cons_dist: 0.004054, loss_weight: 0.010248
[16:15:26.166] iteration 2072 : loss : 0.052898 cons_dist: 0.003886, loss_weight: 0.010248
[16:15:26.657] iteration 2073 : loss : 0.053099 cons_dist: 0.001563, loss_weight: 0.010248
[16:15:27.149] iteration 2074 : loss : 0.048913 cons_dist: 0.027796, loss_weight: 0.010248
[16:15:27.641] iteration 2075 : loss : 0.043260 cons_dist: 0.002117, loss_weight: 0.010248
[16:15:28.132] iteration 2076 : loss : 0.054060 cons_dist: 0.004390, loss_weight: 0.010248
[16:15:29.312] iteration 2077 : loss : 0.038569 cons_dist: 0.000825, loss_weight: 0.010248
[16:15:29.804] iteration 2078 : loss : 0.047305 cons_dist: 0.004038, loss_weight: 0.010248
[16:15:30.295] iteration 2079 : loss : 0.053830 cons_dist: 0.055239, loss_weight: 0.010248
[16:15:30.786] iteration 2080 : loss : 0.061733 cons_dist: 0.002257, loss_weight: 0.010248
[16:15:31.278] iteration 2081 : loss : 0.056908 cons_dist: 0.001447, loss_weight: 0.010248
[16:15:31.768] iteration 2082 : loss : 0.062115 cons_dist: 0.001982, loss_weight: 0.010248
[16:15:32.261] iteration 2083 : loss : 0.078895 cons_dist: 0.006405, loss_weight: 0.010248
[16:15:32.754] iteration 2084 : loss : 0.060141 cons_dist: 0.006411, loss_weight: 0.010248
[16:15:33.247] iteration 2085 : loss : 0.059134 cons_dist: 0.003677, loss_weight: 0.010248
[16:15:33.739] iteration 2086 : loss : 0.056226 cons_dist: 0.009333, loss_weight: 0.010248
[16:15:34.231] iteration 2087 : loss : 0.059151 cons_dist: 0.008267, loss_weight: 0.010248
[16:15:34.722] iteration 2088 : loss : 0.076576 cons_dist: 0.004051, loss_weight: 0.010248
[16:15:35.859] iteration 2089 : loss : 0.073808 cons_dist: 0.005515, loss_weight: 0.010248
[16:15:36.350] iteration 2090 : loss : 0.050299 cons_dist: 0.002842, loss_weight: 0.010248
[16:15:36.841] iteration 2091 : loss : 0.045282 cons_dist: 0.003677, loss_weight: 0.010248
[16:15:37.332] iteration 2092 : loss : 0.054717 cons_dist: 0.003086, loss_weight: 0.010248
[16:15:37.823] iteration 2093 : loss : 0.063152 cons_dist: 0.008576, loss_weight: 0.010248
[16:15:38.315] iteration 2094 : loss : 0.048874 cons_dist: 0.007565, loss_weight: 0.010248
[16:15:38.808] iteration 2095 : loss : 0.065368 cons_dist: 0.005651, loss_weight: 0.010248
[16:15:39.300] iteration 2096 : loss : 0.053431 cons_dist: 0.014117, loss_weight: 0.010248
[16:15:39.791] iteration 2097 : loss : 0.067814 cons_dist: 0.010255, loss_weight: 0.010248
[16:15:40.282] iteration 2098 : loss : 0.074033 cons_dist: 0.009186, loss_weight: 0.010248
[16:15:40.773] iteration 2099 : loss : 0.192840 cons_dist: 0.003549, loss_weight: 0.010248
[16:15:41.265] iteration 2100 : loss : 0.039026 cons_dist: 0.003412, loss_weight: 0.010248
[16:15:42.387] iteration 2101 : loss : 0.064627 cons_dist: 0.003613, loss_weight: 0.012094
[16:15:42.879] iteration 2102 : loss : 0.049285 cons_dist: 0.004532, loss_weight: 0.012094
[16:15:43.371] iteration 2103 : loss : 0.048482 cons_dist: 0.007318, loss_weight: 0.012094
[16:15:43.862] iteration 2104 : loss : 0.052263 cons_dist: 0.006153, loss_weight: 0.012094
[16:15:44.353] iteration 2105 : loss : 0.044304 cons_dist: 0.010568, loss_weight: 0.012094
[16:15:44.843] iteration 2106 : loss : 0.045265 cons_dist: 0.005658, loss_weight: 0.012094
[16:15:45.335] iteration 2107 : loss : 0.055150 cons_dist: 0.003385, loss_weight: 0.012094
[16:15:45.828] iteration 2108 : loss : 0.042789 cons_dist: 0.017595, loss_weight: 0.012094
[16:15:46.320] iteration 2109 : loss : 0.050962 cons_dist: 0.003724, loss_weight: 0.012094
[16:15:46.813] iteration 2110 : loss : 0.067502 cons_dist: 0.004676, loss_weight: 0.012094
[16:15:47.305] iteration 2111 : loss : 0.062878 cons_dist: 0.002165, loss_weight: 0.012094
[16:15:47.795] iteration 2112 : loss : 0.046553 cons_dist: 0.061435, loss_weight: 0.012094
[16:15:48.915] iteration 2113 : loss : 0.062252 cons_dist: 0.005286, loss_weight: 0.012094
[16:15:49.408] iteration 2114 : loss : 0.088576 cons_dist: 0.005944, loss_weight: 0.012094
[16:15:49.899] iteration 2115 : loss : 0.047617 cons_dist: 0.001534, loss_weight: 0.012094
[16:15:50.392] iteration 2116 : loss : 0.039703 cons_dist: 0.042731, loss_weight: 0.012094
[16:15:50.885] iteration 2117 : loss : 0.047964 cons_dist: 0.003127, loss_weight: 0.012094
[16:15:51.377] iteration 2118 : loss : 0.068546 cons_dist: 0.002757, loss_weight: 0.012094
[16:15:51.869] iteration 2119 : loss : 0.043356 cons_dist: 0.005775, loss_weight: 0.012094
[16:15:52.360] iteration 2120 : loss : 0.063666 cons_dist: 0.004077, loss_weight: 0.012094
[16:15:52.852] iteration 2121 : loss : 0.061041 cons_dist: 0.005532, loss_weight: 0.012094
[16:15:53.343] iteration 2122 : loss : 0.102225 cons_dist: 0.009587, loss_weight: 0.012094
[16:15:53.836] iteration 2123 : loss : 0.073028 cons_dist: 0.014569, loss_weight: 0.012094
[16:15:54.328] iteration 2124 : loss : 0.074551 cons_dist: 0.012485, loss_weight: 0.012094
[16:15:55.451] iteration 2125 : loss : 0.055453 cons_dist: 0.001526, loss_weight: 0.012094
[16:15:55.939] iteration 2126 : loss : 0.049792 cons_dist: 0.017324, loss_weight: 0.012094
[16:15:56.429] iteration 2127 : loss : 0.046377 cons_dist: 0.001891, loss_weight: 0.012094
[16:15:56.920] iteration 2128 : loss : 0.056373 cons_dist: 0.016790, loss_weight: 0.012094
[16:15:57.412] iteration 2129 : loss : 0.043805 cons_dist: 0.003118, loss_weight: 0.012094
[16:15:57.904] iteration 2130 : loss : 0.047991 cons_dist: 0.002097, loss_weight: 0.012094
[16:15:58.396] iteration 2131 : loss : 0.053389 cons_dist: 0.006643, loss_weight: 0.012094
[16:15:58.888] iteration 2132 : loss : 0.041084 cons_dist: 0.003711, loss_weight: 0.012094
[16:15:59.380] iteration 2133 : loss : 0.161033 cons_dist: 0.002016, loss_weight: 0.012094
[16:15:59.871] iteration 2134 : loss : 0.044890 cons_dist: 0.002699, loss_weight: 0.012094
[16:16:00.362] iteration 2135 : loss : 0.048899 cons_dist: 0.035152, loss_weight: 0.012094
[16:16:00.854] iteration 2136 : loss : 0.048141 cons_dist: 0.003197, loss_weight: 0.012094
[16:16:02.036] iteration 2137 : loss : 0.040663 cons_dist: 0.016622, loss_weight: 0.012094
[16:16:02.528] iteration 2138 : loss : 0.063222 cons_dist: 0.006081, loss_weight: 0.012094
[16:16:03.019] iteration 2139 : loss : 0.050652 cons_dist: 0.007940, loss_weight: 0.012094
[16:16:03.509] iteration 2140 : loss : 0.047369 cons_dist: 0.008197, loss_weight: 0.012094
[16:16:04.001] iteration 2141 : loss : 0.067736 cons_dist: 0.002790, loss_weight: 0.012094
[16:16:04.492] iteration 2142 : loss : 0.049320 cons_dist: 0.024885, loss_weight: 0.012094
[16:16:04.983] iteration 2143 : loss : 0.047816 cons_dist: 0.004554, loss_weight: 0.012094
[16:16:05.476] iteration 2144 : loss : 0.059237 cons_dist: 0.002933, loss_weight: 0.012094
[16:16:05.968] iteration 2145 : loss : 0.043716 cons_dist: 0.005894, loss_weight: 0.012094
[16:16:06.460] iteration 2146 : loss : 0.082261 cons_dist: 0.006826, loss_weight: 0.012094
[16:16:06.951] iteration 2147 : loss : 0.081734 cons_dist: 0.005131, loss_weight: 0.012094
[16:16:07.443] iteration 2148 : loss : 0.051379 cons_dist: 0.003137, loss_weight: 0.012094
[16:16:08.659] iteration 2149 : loss : 0.095522 cons_dist: 0.002038, loss_weight: 0.012094
[16:16:09.149] iteration 2150 : loss : 0.040216 cons_dist: 0.004066, loss_weight: 0.012094
[16:16:09.640] iteration 2151 : loss : 0.044069 cons_dist: 0.006993, loss_weight: 0.012094
[16:16:10.131] iteration 2152 : loss : 0.056745 cons_dist: 0.004861, loss_weight: 0.012094
[16:16:10.624] iteration 2153 : loss : 0.069003 cons_dist: 0.002060, loss_weight: 0.012094
[16:16:11.116] iteration 2154 : loss : 0.045034 cons_dist: 0.002174, loss_weight: 0.012094
[16:16:11.608] iteration 2155 : loss : 0.047116 cons_dist: 0.002598, loss_weight: 0.012094
[16:16:12.099] iteration 2156 : loss : 0.070984 cons_dist: 0.005804, loss_weight: 0.012094
[16:16:12.590] iteration 2157 : loss : 0.065240 cons_dist: 0.015791, loss_weight: 0.012094
[16:16:13.081] iteration 2158 : loss : 0.075482 cons_dist: 0.001294, loss_weight: 0.012094
[16:16:13.573] iteration 2159 : loss : 0.057282 cons_dist: 0.001982, loss_weight: 0.012094
[16:16:14.066] iteration 2160 : loss : 0.046910 cons_dist: 0.002846, loss_weight: 0.012094
[16:16:15.174] iteration 2161 : loss : 0.047372 cons_dist: 0.003593, loss_weight: 0.012094
[16:16:15.662] iteration 2162 : loss : 0.040936 cons_dist: 0.016480, loss_weight: 0.012094
[16:16:16.154] iteration 2163 : loss : 0.050409 cons_dist: 0.026905, loss_weight: 0.012094
[16:16:16.645] iteration 2164 : loss : 0.047275 cons_dist: 0.002241, loss_weight: 0.012094
[16:16:17.136] iteration 2165 : loss : 0.062676 cons_dist: 0.011381, loss_weight: 0.012094
[16:16:17.628] iteration 2166 : loss : 0.054334 cons_dist: 0.009463, loss_weight: 0.012094
[16:16:18.120] iteration 2167 : loss : 0.046979 cons_dist: 0.014911, loss_weight: 0.012094
[16:16:18.611] iteration 2168 : loss : 0.055511 cons_dist: 0.002899, loss_weight: 0.012094
[16:16:19.103] iteration 2169 : loss : 0.059251 cons_dist: 0.004211, loss_weight: 0.012094
[16:16:19.594] iteration 2170 : loss : 0.050455 cons_dist: 0.002078, loss_weight: 0.012094
[16:16:20.085] iteration 2171 : loss : 0.067191 cons_dist: 0.004937, loss_weight: 0.012094
[16:16:20.576] iteration 2172 : loss : 0.043559 cons_dist: 0.002149, loss_weight: 0.012094
[16:16:21.697] iteration 2173 : loss : 0.040789 cons_dist: 0.007249, loss_weight: 0.012094
[16:16:22.184] iteration 2174 : loss : 0.055333 cons_dist: 0.003236, loss_weight: 0.012094
[16:16:22.677] iteration 2175 : loss : 0.046126 cons_dist: 0.002136, loss_weight: 0.012094
[16:16:23.169] iteration 2176 : loss : 0.050580 cons_dist: 0.001701, loss_weight: 0.012094
[16:16:23.661] iteration 2177 : loss : 0.084320 cons_dist: 0.005236, loss_weight: 0.012094
[16:16:24.152] iteration 2178 : loss : 0.053363 cons_dist: 0.001142, loss_weight: 0.012094
[16:16:24.643] iteration 2179 : loss : 0.039079 cons_dist: 0.002771, loss_weight: 0.012094
[16:16:25.135] iteration 2180 : loss : 0.054981 cons_dist: 0.004840, loss_weight: 0.012094
[16:16:25.626] iteration 2181 : loss : 0.052892 cons_dist: 0.002469, loss_weight: 0.012094
[16:16:26.117] iteration 2182 : loss : 0.059746 cons_dist: 0.003040, loss_weight: 0.012094
[16:16:26.611] iteration 2183 : loss : 0.045112 cons_dist: 0.001334, loss_weight: 0.012094
[16:16:27.103] iteration 2184 : loss : 0.142619 cons_dist: 0.001820, loss_weight: 0.012094
[16:16:28.208] iteration 2185 : loss : 0.051801 cons_dist: 0.003955, loss_weight: 0.012094
[16:16:28.697] iteration 2186 : loss : 0.041606 cons_dist: 0.005289, loss_weight: 0.012094
[16:16:29.189] iteration 2187 : loss : 0.050838 cons_dist: 0.001055, loss_weight: 0.012094
[16:16:29.680] iteration 2188 : loss : 0.044220 cons_dist: 0.007729, loss_weight: 0.012094
[16:16:30.173] iteration 2189 : loss : 0.053483 cons_dist: 0.004421, loss_weight: 0.012094
[16:16:30.665] iteration 2190 : loss : 0.044080 cons_dist: 0.011218, loss_weight: 0.012094
[16:16:31.157] iteration 2191 : loss : 0.039167 cons_dist: 0.009695, loss_weight: 0.012094
[16:16:31.649] iteration 2192 : loss : 0.045859 cons_dist: 0.009642, loss_weight: 0.012094
[16:16:32.140] iteration 2193 : loss : 0.051389 cons_dist: 0.000992, loss_weight: 0.012094
[16:16:32.632] iteration 2194 : loss : 0.058610 cons_dist: 0.010450, loss_weight: 0.012094
[16:16:33.125] iteration 2195 : loss : 0.045621 cons_dist: 0.009554, loss_weight: 0.012094
[16:16:33.618] iteration 2196 : loss : 0.076868 cons_dist: 0.001107, loss_weight: 0.012094
[16:16:34.720] iteration 2197 : loss : 0.053706 cons_dist: 0.018450, loss_weight: 0.012094
[16:16:35.212] iteration 2198 : loss : 0.050934 cons_dist: 0.003289, loss_weight: 0.012094
[16:16:35.702] iteration 2199 : loss : 0.048731 cons_dist: 0.020623, loss_weight: 0.012094
[16:16:36.192] iteration 2200 : loss : 0.041032 cons_dist: 0.003252, loss_weight: 0.012094
[16:16:37.837] iteration 2201 : loss : 0.038977 cons_dist: 0.002483, loss_weight: 0.012094
[16:16:38.329] iteration 2202 : loss : 0.052267 cons_dist: 0.002239, loss_weight: 0.012094
[16:16:38.820] iteration 2203 : loss : 0.049679 cons_dist: 0.020580, loss_weight: 0.012094
[16:16:39.311] iteration 2204 : loss : 0.044123 cons_dist: 0.003558, loss_weight: 0.012094
[16:16:39.802] iteration 2205 : loss : 0.047008 cons_dist: 0.003697, loss_weight: 0.012094
[16:16:40.293] iteration 2206 : loss : 0.060120 cons_dist: 0.002119, loss_weight: 0.012094
[16:16:40.783] iteration 2207 : loss : 0.048620 cons_dist: 0.001911, loss_weight: 0.012094
[16:16:41.275] iteration 2208 : loss : 0.071267 cons_dist: 0.002453, loss_weight: 0.012094
[16:16:42.376] iteration 2209 : loss : 0.043674 cons_dist: 0.007903, loss_weight: 0.012094
[16:16:42.868] iteration 2210 : loss : 0.050270 cons_dist: 0.032220, loss_weight: 0.012094
[16:16:43.360] iteration 2211 : loss : 0.084945 cons_dist: 0.002459, loss_weight: 0.012094
[16:16:43.851] iteration 2212 : loss : 0.048170 cons_dist: 0.003750, loss_weight: 0.012094
[16:16:44.343] iteration 2213 : loss : 0.042218 cons_dist: 0.001879, loss_weight: 0.012094
[16:16:44.834] iteration 2214 : loss : 0.057147 cons_dist: 0.004697, loss_weight: 0.012094
[16:16:45.326] iteration 2215 : loss : 0.070954 cons_dist: 0.001957, loss_weight: 0.012094
[16:16:45.817] iteration 2216 : loss : 0.053240 cons_dist: 0.002048, loss_weight: 0.012094
[16:16:46.308] iteration 2217 : loss : 0.045060 cons_dist: 0.004916, loss_weight: 0.012094
[16:16:46.799] iteration 2218 : loss : 0.047568 cons_dist: 0.004904, loss_weight: 0.012094
[16:16:47.291] iteration 2219 : loss : 0.075953 cons_dist: 0.003156, loss_weight: 0.012094
[16:16:47.784] iteration 2220 : loss : 0.080690 cons_dist: 0.020995, loss_weight: 0.012094
[16:16:48.892] iteration 2221 : loss : 0.049309 cons_dist: 0.007527, loss_weight: 0.012094
[16:16:49.383] iteration 2222 : loss : 0.061454 cons_dist: 0.013342, loss_weight: 0.012094
[16:16:49.875] iteration 2223 : loss : 0.039585 cons_dist: 0.001748, loss_weight: 0.012094
[16:16:50.368] iteration 2224 : loss : 0.049930 cons_dist: 0.004052, loss_weight: 0.012094
[16:16:50.859] iteration 2225 : loss : 0.039015 cons_dist: 0.002918, loss_weight: 0.012094
[16:16:51.350] iteration 2226 : loss : 0.043511 cons_dist: 0.002332, loss_weight: 0.012094
[16:16:51.841] iteration 2227 : loss : 0.039057 cons_dist: 0.002221, loss_weight: 0.012094
[16:16:52.332] iteration 2228 : loss : 0.050440 cons_dist: 0.007806, loss_weight: 0.012094
[16:16:52.824] iteration 2229 : loss : 0.040571 cons_dist: 0.012779, loss_weight: 0.012094
[16:16:53.316] iteration 2230 : loss : 0.111556 cons_dist: 0.013679, loss_weight: 0.012094
[16:16:53.808] iteration 2231 : loss : 0.050522 cons_dist: 0.002931, loss_weight: 0.012094
[16:16:54.300] iteration 2232 : loss : 0.059129 cons_dist: 0.007547, loss_weight: 0.012094
[16:16:55.417] iteration 2233 : loss : 0.055927 cons_dist: 0.004611, loss_weight: 0.012094
[16:16:55.908] iteration 2234 : loss : 0.042010 cons_dist: 0.003109, loss_weight: 0.012094
[16:16:56.398] iteration 2235 : loss : 0.041720 cons_dist: 0.007742, loss_weight: 0.012094
[16:16:56.890] iteration 2236 : loss : 0.049306 cons_dist: 0.065375, loss_weight: 0.012094
[16:16:57.382] iteration 2237 : loss : 0.039463 cons_dist: 0.005621, loss_weight: 0.012094
[16:16:57.876] iteration 2238 : loss : 0.057446 cons_dist: 0.001489, loss_weight: 0.012094
[16:16:58.368] iteration 2239 : loss : 0.055177 cons_dist: 0.006581, loss_weight: 0.012094
[16:16:58.859] iteration 2240 : loss : 0.056248 cons_dist: 0.001729, loss_weight: 0.012094
[16:16:59.351] iteration 2241 : loss : 0.065991 cons_dist: 0.003210, loss_weight: 0.012094
[16:16:59.842] iteration 2242 : loss : 0.071455 cons_dist: 0.005377, loss_weight: 0.012094
[16:17:00.333] iteration 2243 : loss : 0.056611 cons_dist: 0.004981, loss_weight: 0.012094
[16:17:00.826] iteration 2244 : loss : 0.241291 cons_dist: 0.008729, loss_weight: 0.012094
[16:17:01.915] iteration 2245 : loss : 0.041311 cons_dist: 0.003497, loss_weight: 0.012094
[16:17:02.406] iteration 2246 : loss : 0.054758 cons_dist: 0.004504, loss_weight: 0.012094
[16:17:02.898] iteration 2247 : loss : 0.068248 cons_dist: 0.001869, loss_weight: 0.012094
[16:17:03.390] iteration 2248 : loss : 0.076677 cons_dist: 0.003452, loss_weight: 0.012094
[16:17:03.883] iteration 2249 : loss : 0.054720 cons_dist: 0.003952, loss_weight: 0.012094
[16:17:04.375] iteration 2250 : loss : 0.105305 cons_dist: 0.005123, loss_weight: 0.012094
[16:17:04.865] iteration 2251 : loss : 0.045170 cons_dist: 0.004954, loss_weight: 0.014183
[16:17:05.356] iteration 2252 : loss : 0.048490 cons_dist: 0.001721, loss_weight: 0.014183
[16:17:05.847] iteration 2253 : loss : 0.051483 cons_dist: 0.003580, loss_weight: 0.014183
[16:17:06.338] iteration 2254 : loss : 0.044423 cons_dist: 0.001860, loss_weight: 0.014183
[16:17:06.830] iteration 2255 : loss : 0.055453 cons_dist: 0.003261, loss_weight: 0.014183
[16:17:07.322] iteration 2256 : loss : 0.055169 cons_dist: 0.002238, loss_weight: 0.014183
[16:17:08.439] iteration 2257 : loss : 0.055809 cons_dist: 0.003242, loss_weight: 0.014183
[16:17:08.932] iteration 2258 : loss : 0.066052 cons_dist: 0.015070, loss_weight: 0.014183
[16:17:09.423] iteration 2259 : loss : 0.049379 cons_dist: 0.002842, loss_weight: 0.014183
[16:17:09.915] iteration 2260 : loss : 0.040307 cons_dist: 0.002818, loss_weight: 0.014183
[16:17:10.405] iteration 2261 : loss : 0.088206 cons_dist: 0.005368, loss_weight: 0.014183
[16:17:10.897] iteration 2262 : loss : 0.056402 cons_dist: 0.001703, loss_weight: 0.014183
[16:17:11.388] iteration 2263 : loss : 0.062506 cons_dist: 0.019646, loss_weight: 0.014183
[16:17:11.881] iteration 2264 : loss : 0.049718 cons_dist: 0.005618, loss_weight: 0.014183
[16:17:12.374] iteration 2265 : loss : 0.038942 cons_dist: 0.015308, loss_weight: 0.014183
[16:17:12.866] iteration 2266 : loss : 0.042891 cons_dist: 0.007547, loss_weight: 0.014183
[16:17:13.357] iteration 2267 : loss : 0.045154 cons_dist: 0.005078, loss_weight: 0.014183
[16:17:13.848] iteration 2268 : loss : 0.082431 cons_dist: 0.004003, loss_weight: 0.014183
[16:17:14.904] iteration 2269 : loss : 0.081356 cons_dist: 0.010019, loss_weight: 0.014183
[16:17:15.395] iteration 2270 : loss : 0.066759 cons_dist: 0.004670, loss_weight: 0.014183
[16:17:15.887] iteration 2271 : loss : 0.064386 cons_dist: 0.002292, loss_weight: 0.014183
[16:17:16.379] iteration 2272 : loss : 0.042348 cons_dist: 0.003283, loss_weight: 0.014183
[16:17:16.870] iteration 2273 : loss : 0.040292 cons_dist: 0.001302, loss_weight: 0.014183
[16:17:17.362] iteration 2274 : loss : 0.042080 cons_dist: 0.001945, loss_weight: 0.014183
[16:17:17.852] iteration 2275 : loss : 0.056141 cons_dist: 0.003655, loss_weight: 0.014183
[16:17:18.344] iteration 2276 : loss : 0.050548 cons_dist: 0.005582, loss_weight: 0.014183
[16:17:18.835] iteration 2277 : loss : 0.054440 cons_dist: 0.002386, loss_weight: 0.014183
[16:17:19.327] iteration 2278 : loss : 0.045128 cons_dist: 0.004091, loss_weight: 0.014183
[16:17:19.820] iteration 2279 : loss : 0.056098 cons_dist: 0.006934, loss_weight: 0.014183
[16:17:20.312] iteration 2280 : loss : 0.044079 cons_dist: 0.002325, loss_weight: 0.014183
[16:17:21.316] iteration 2281 : loss : 0.046795 cons_dist: 0.004465, loss_weight: 0.014183
[16:17:21.806] iteration 2282 : loss : 0.061689 cons_dist: 0.007173, loss_weight: 0.014183
[16:17:22.297] iteration 2283 : loss : 0.150842 cons_dist: 0.001812, loss_weight: 0.014183
[16:17:22.788] iteration 2284 : loss : 0.060967 cons_dist: 0.002425, loss_weight: 0.014183
[16:17:23.280] iteration 2285 : loss : 0.053491 cons_dist: 0.010701, loss_weight: 0.014183
[16:17:23.772] iteration 2286 : loss : 0.046906 cons_dist: 0.004199, loss_weight: 0.014183
[16:17:24.265] iteration 2287 : loss : 0.038360 cons_dist: 0.001763, loss_weight: 0.014183
[16:17:24.756] iteration 2288 : loss : 0.056617 cons_dist: 0.023229, loss_weight: 0.014183
[16:17:25.248] iteration 2289 : loss : 0.045122 cons_dist: 0.003323, loss_weight: 0.014183
[16:17:25.740] iteration 2290 : loss : 0.045941 cons_dist: 0.003099, loss_weight: 0.014183
[16:17:26.231] iteration 2291 : loss : 0.042461 cons_dist: 0.003245, loss_weight: 0.014183
[16:17:26.724] iteration 2292 : loss : 0.055033 cons_dist: 0.003242, loss_weight: 0.014183
[16:17:27.814] iteration 2293 : loss : 0.045524 cons_dist: 0.004006, loss_weight: 0.014183
[16:17:28.305] iteration 2294 : loss : 0.055926 cons_dist: 0.004534, loss_weight: 0.014183
[16:17:28.796] iteration 2295 : loss : 0.046048 cons_dist: 0.004021, loss_weight: 0.014183
[16:17:29.288] iteration 2296 : loss : 0.050631 cons_dist: 0.002143, loss_weight: 0.014183
[16:17:29.781] iteration 2297 : loss : 0.043322 cons_dist: 0.001670, loss_weight: 0.014183
[16:17:30.273] iteration 2298 : loss : 0.047491 cons_dist: 0.016522, loss_weight: 0.014183
[16:17:30.766] iteration 2299 : loss : 0.052419 cons_dist: 0.001480, loss_weight: 0.014183
[16:17:31.257] iteration 2300 : loss : 0.237076 cons_dist: 0.017664, loss_weight: 0.014183
[16:17:31.747] iteration 2301 : loss : 0.060071 cons_dist: 0.008579, loss_weight: 0.014183
[16:17:32.239] iteration 2302 : loss : 0.131046 cons_dist: 0.002987, loss_weight: 0.014183
[16:17:32.730] iteration 2303 : loss : 0.035230 cons_dist: 0.002542, loss_weight: 0.014183
[16:17:33.223] iteration 2304 : loss : 0.044553 cons_dist: 0.003656, loss_weight: 0.014183
[16:17:34.371] iteration 2305 : loss : 0.046309 cons_dist: 0.009452, loss_weight: 0.014183
[16:17:34.859] iteration 2306 : loss : 0.061516 cons_dist: 0.048595, loss_weight: 0.014183
[16:17:35.350] iteration 2307 : loss : 0.046335 cons_dist: 0.005772, loss_weight: 0.014183
[16:17:35.840] iteration 2308 : loss : 0.043635 cons_dist: 0.012696, loss_weight: 0.014183
[16:17:36.332] iteration 2309 : loss : 0.061615 cons_dist: 0.008555, loss_weight: 0.014183
[16:17:36.823] iteration 2310 : loss : 0.055155 cons_dist: 0.006769, loss_weight: 0.014183
[16:17:37.316] iteration 2311 : loss : 0.045086 cons_dist: 0.013720, loss_weight: 0.014183
[16:17:37.807] iteration 2312 : loss : 0.068402 cons_dist: 0.000903, loss_weight: 0.014183
[16:17:38.299] iteration 2313 : loss : 0.043677 cons_dist: 0.001554, loss_weight: 0.014183
[16:17:38.790] iteration 2314 : loss : 0.049654 cons_dist: 0.002234, loss_weight: 0.014183
[16:17:39.282] iteration 2315 : loss : 0.048428 cons_dist: 0.010395, loss_weight: 0.014183
[16:17:39.773] iteration 2316 : loss : 0.045220 cons_dist: 0.001981, loss_weight: 0.014183
[16:17:40.820] iteration 2317 : loss : 0.139676 cons_dist: 0.001662, loss_weight: 0.014183
[16:17:41.311] iteration 2318 : loss : 0.051258 cons_dist: 0.016203, loss_weight: 0.014183
[16:17:41.803] iteration 2319 : loss : 0.048849 cons_dist: 0.005566, loss_weight: 0.014183
[16:17:42.294] iteration 2320 : loss : 0.073428 cons_dist: 0.008040, loss_weight: 0.014183
[16:17:42.785] iteration 2321 : loss : 0.081665 cons_dist: 0.027397, loss_weight: 0.014183
[16:17:43.277] iteration 2322 : loss : 0.059101 cons_dist: 0.010266, loss_weight: 0.014183
[16:17:43.770] iteration 2323 : loss : 0.045248 cons_dist: 0.009243, loss_weight: 0.014183
[16:17:44.262] iteration 2324 : loss : 0.044804 cons_dist: 0.002551, loss_weight: 0.014183
[16:17:44.754] iteration 2325 : loss : 0.054460 cons_dist: 0.004829, loss_weight: 0.014183
[16:17:45.246] iteration 2326 : loss : 0.051180 cons_dist: 0.016484, loss_weight: 0.014183
[16:17:45.737] iteration 2327 : loss : 0.087847 cons_dist: 0.002542, loss_weight: 0.014183
[16:17:46.228] iteration 2328 : loss : 0.043371 cons_dist: 0.001371, loss_weight: 0.014183
[16:17:47.331] iteration 2329 : loss : 0.172917 cons_dist: 0.002322, loss_weight: 0.014183
[16:17:47.823] iteration 2330 : loss : 0.066560 cons_dist: 0.004343, loss_weight: 0.014183
[16:17:48.315] iteration 2331 : loss : 0.049382 cons_dist: 0.042898, loss_weight: 0.014183
[16:17:48.808] iteration 2332 : loss : 0.040810 cons_dist: 0.002899, loss_weight: 0.014183
[16:17:49.300] iteration 2333 : loss : 0.040701 cons_dist: 0.003292, loss_weight: 0.014183
[16:17:49.791] iteration 2334 : loss : 0.064017 cons_dist: 0.005613, loss_weight: 0.014183
[16:17:50.283] iteration 2335 : loss : 0.036556 cons_dist: 0.007144, loss_weight: 0.014183
[16:17:50.774] iteration 2336 : loss : 0.056061 cons_dist: 0.001986, loss_weight: 0.014183
[16:17:51.266] iteration 2337 : loss : 0.061272 cons_dist: 0.005555, loss_weight: 0.014183
[16:17:51.758] iteration 2338 : loss : 0.041872 cons_dist: 0.006113, loss_weight: 0.014183
[16:17:52.250] iteration 2339 : loss : 0.079076 cons_dist: 0.002410, loss_weight: 0.014183
[16:17:52.742] iteration 2340 : loss : 0.040761 cons_dist: 0.000985, loss_weight: 0.014183
[16:17:53.907] iteration 2341 : loss : 0.040548 cons_dist: 0.002433, loss_weight: 0.014183
[16:17:54.398] iteration 2342 : loss : 0.040542 cons_dist: 0.003184, loss_weight: 0.014183
[16:17:54.889] iteration 2343 : loss : 0.063641 cons_dist: 0.004692, loss_weight: 0.014183
[16:17:55.380] iteration 2344 : loss : 0.045491 cons_dist: 0.001680, loss_weight: 0.014183
[16:17:55.872] iteration 2345 : loss : 0.065282 cons_dist: 0.002427, loss_weight: 0.014183
[16:17:56.364] iteration 2346 : loss : 0.059348 cons_dist: 0.002708, loss_weight: 0.014183
[16:17:56.856] iteration 2347 : loss : 0.048057 cons_dist: 0.003794, loss_weight: 0.014183
[16:17:57.348] iteration 2348 : loss : 0.054658 cons_dist: 0.005257, loss_weight: 0.014183
[16:17:57.839] iteration 2349 : loss : 0.035646 cons_dist: 0.004640, loss_weight: 0.014183
[16:17:58.330] iteration 2350 : loss : 0.039172 cons_dist: 0.001555, loss_weight: 0.014183
[16:17:58.822] iteration 2351 : loss : 0.067951 cons_dist: 0.003249, loss_weight: 0.014183
[16:17:59.314] iteration 2352 : loss : 0.040923 cons_dist: 0.004722, loss_weight: 0.014183
[16:18:00.409] iteration 2353 : loss : 0.046576 cons_dist: 0.008770, loss_weight: 0.014183
[16:18:00.902] iteration 2354 : loss : 0.038356 cons_dist: 0.005511, loss_weight: 0.014183
[16:18:01.395] iteration 2355 : loss : 0.048473 cons_dist: 0.006410, loss_weight: 0.014183
[16:18:01.886] iteration 2356 : loss : 0.058026 cons_dist: 0.003045, loss_weight: 0.014183
[16:18:02.379] iteration 2357 : loss : 0.076065 cons_dist: 0.004287, loss_weight: 0.014183
[16:18:02.870] iteration 2358 : loss : 0.044515 cons_dist: 0.001400, loss_weight: 0.014183
[16:18:03.361] iteration 2359 : loss : 0.039596 cons_dist: 0.002175, loss_weight: 0.014183
[16:18:03.852] iteration 2360 : loss : 0.060252 cons_dist: 0.007060, loss_weight: 0.014183
[16:18:04.345] iteration 2361 : loss : 0.049829 cons_dist: 0.000695, loss_weight: 0.014183
[16:18:04.837] iteration 2362 : loss : 0.054605 cons_dist: 0.001697, loss_weight: 0.014183
[16:18:05.329] iteration 2363 : loss : 0.055959 cons_dist: 0.002887, loss_weight: 0.014183
[16:18:05.821] iteration 2364 : loss : 0.053489 cons_dist: 0.003108, loss_weight: 0.014183
[16:18:06.892] iteration 2365 : loss : 0.057674 cons_dist: 0.004457, loss_weight: 0.014183
[16:18:07.384] iteration 2366 : loss : 0.047689 cons_dist: 0.001312, loss_weight: 0.014183
[16:18:07.875] iteration 2367 : loss : 0.041092 cons_dist: 0.001528, loss_weight: 0.014183
[16:18:08.366] iteration 2368 : loss : 0.044823 cons_dist: 0.009332, loss_weight: 0.014183
[16:18:08.857] iteration 2369 : loss : 0.052700 cons_dist: 0.028666, loss_weight: 0.014183
[16:18:09.348] iteration 2370 : loss : 0.056617 cons_dist: 0.007352, loss_weight: 0.014183
[16:18:09.838] iteration 2371 : loss : 0.055292 cons_dist: 0.002266, loss_weight: 0.014183
[16:18:10.329] iteration 2372 : loss : 0.044354 cons_dist: 0.003822, loss_weight: 0.014183
[16:18:10.821] iteration 2373 : loss : 0.038799 cons_dist: 0.005340, loss_weight: 0.014183
[16:18:11.314] iteration 2374 : loss : 0.074356 cons_dist: 0.009362, loss_weight: 0.014183
[16:18:11.806] iteration 2375 : loss : 0.036298 cons_dist: 0.002991, loss_weight: 0.014183
[16:18:12.298] iteration 2376 : loss : 0.045616 cons_dist: 0.008821, loss_weight: 0.014183
[16:18:13.423] iteration 2377 : loss : 0.041316 cons_dist: 0.002033, loss_weight: 0.014183
[16:18:13.914] iteration 2378 : loss : 0.070756 cons_dist: 0.004656, loss_weight: 0.014183
[16:18:14.406] iteration 2379 : loss : 0.045327 cons_dist: 0.011953, loss_weight: 0.014183
[16:18:14.899] iteration 2380 : loss : 0.044860 cons_dist: 0.003824, loss_weight: 0.014183
[16:18:15.390] iteration 2381 : loss : 0.067658 cons_dist: 0.004908, loss_weight: 0.014183
[16:18:15.881] iteration 2382 : loss : 0.050527 cons_dist: 0.003768, loss_weight: 0.014183
[16:18:16.373] iteration 2383 : loss : 0.040425 cons_dist: 0.001144, loss_weight: 0.014183
[16:18:16.864] iteration 2384 : loss : 0.085443 cons_dist: 0.007440, loss_weight: 0.014183
[16:18:17.355] iteration 2385 : loss : 0.152976 cons_dist: 0.002041, loss_weight: 0.014183
[16:18:17.848] iteration 2386 : loss : 0.039073 cons_dist: 0.005067, loss_weight: 0.014183
[16:18:18.340] iteration 2387 : loss : 0.049514 cons_dist: 0.009020, loss_weight: 0.014183
[16:18:18.831] iteration 2388 : loss : 0.052376 cons_dist: 0.002643, loss_weight: 0.014183
[16:18:19.972] iteration 2389 : loss : 0.054499 cons_dist: 0.011807, loss_weight: 0.014183
[16:18:20.459] iteration 2390 : loss : 0.050594 cons_dist: 0.002859, loss_weight: 0.014183
[16:18:20.950] iteration 2391 : loss : 0.058903 cons_dist: 0.004594, loss_weight: 0.014183
[16:18:21.441] iteration 2392 : loss : 0.053427 cons_dist: 0.011006, loss_weight: 0.014183
[16:18:21.932] iteration 2393 : loss : 0.045425 cons_dist: 0.003691, loss_weight: 0.014183
[16:18:22.423] iteration 2394 : loss : 0.051437 cons_dist: 0.043917, loss_weight: 0.014183
[16:18:22.915] iteration 2395 : loss : 0.053622 cons_dist: 0.004021, loss_weight: 0.014183
[16:18:23.408] iteration 2396 : loss : 0.038519 cons_dist: 0.003679, loss_weight: 0.014183
[16:18:23.899] iteration 2397 : loss : 0.047937 cons_dist: 0.002685, loss_weight: 0.014183
[16:18:24.391] iteration 2398 : loss : 0.056537 cons_dist: 0.002703, loss_weight: 0.014183
[16:18:24.882] iteration 2399 : loss : 0.048758 cons_dist: 0.002213, loss_weight: 0.014183
[16:18:25.374] iteration 2400 : loss : 0.037418 cons_dist: 0.002918, loss_weight: 0.014183
[16:18:27.570] iteration 2401 : loss : 0.075399 cons_dist: 0.002964, loss_weight: 0.016530
[16:18:28.061] iteration 2402 : loss : 0.055256 cons_dist: 0.003654, loss_weight: 0.016530
[16:18:28.551] iteration 2403 : loss : 0.071781 cons_dist: 0.002220, loss_weight: 0.016530
[16:18:29.043] iteration 2404 : loss : 0.051141 cons_dist: 0.003749, loss_weight: 0.016530
[16:18:29.536] iteration 2405 : loss : 0.042659 cons_dist: 0.009003, loss_weight: 0.016530
[16:18:30.028] iteration 2406 : loss : 0.044169 cons_dist: 0.013035, loss_weight: 0.016530
[16:18:30.520] iteration 2407 : loss : 0.042969 cons_dist: 0.003065, loss_weight: 0.016530
[16:18:31.011] iteration 2408 : loss : 0.043435 cons_dist: 0.003573, loss_weight: 0.016530
[16:18:31.502] iteration 2409 : loss : 0.039176 cons_dist: 0.002028, loss_weight: 0.016530
[16:18:31.993] iteration 2410 : loss : 0.221887 cons_dist: 0.010872, loss_weight: 0.016530
[16:18:32.485] iteration 2411 : loss : 0.047194 cons_dist: 0.002621, loss_weight: 0.016530
[16:18:32.977] iteration 2412 : loss : 0.256755 cons_dist: 0.001387, loss_weight: 0.016530
[16:18:34.140] iteration 2413 : loss : 0.049301 cons_dist: 0.003232, loss_weight: 0.016530
[16:18:34.631] iteration 2414 : loss : 0.057198 cons_dist: 0.004085, loss_weight: 0.016530
[16:18:35.122] iteration 2415 : loss : 0.034533 cons_dist: 0.003317, loss_weight: 0.016530
[16:18:35.613] iteration 2416 : loss : 0.074828 cons_dist: 0.003968, loss_weight: 0.016530
[16:18:36.105] iteration 2417 : loss : 0.045423 cons_dist: 0.001728, loss_weight: 0.016530
[16:18:36.596] iteration 2418 : loss : 0.053444 cons_dist: 0.011684, loss_weight: 0.016530
[16:18:37.087] iteration 2419 : loss : 0.045761 cons_dist: 0.005179, loss_weight: 0.016530
[16:18:37.578] iteration 2420 : loss : 0.042862 cons_dist: 0.002032, loss_weight: 0.016530
[16:18:38.071] iteration 2421 : loss : 0.056515 cons_dist: 0.003259, loss_weight: 0.016530
[16:18:38.562] iteration 2422 : loss : 0.067515 cons_dist: 0.003793, loss_weight: 0.016530
[16:18:39.054] iteration 2423 : loss : 0.041942 cons_dist: 0.005932, loss_weight: 0.016530
[16:18:39.544] iteration 2424 : loss : 0.040715 cons_dist: 0.003269, loss_weight: 0.016530
[16:18:40.758] iteration 2425 : loss : 0.066745 cons_dist: 0.031708, loss_weight: 0.016530
[16:18:41.248] iteration 2426 : loss : 0.053682 cons_dist: 0.001999, loss_weight: 0.016530
[16:18:41.740] iteration 2427 : loss : 0.073280 cons_dist: 0.006871, loss_weight: 0.016530
[16:18:42.231] iteration 2428 : loss : 0.037038 cons_dist: 0.017439, loss_weight: 0.016530
[16:18:42.722] iteration 2429 : loss : 0.057249 cons_dist: 0.001798, loss_weight: 0.016530
[16:18:43.212] iteration 2430 : loss : 0.064111 cons_dist: 0.002673, loss_weight: 0.016530
[16:18:43.704] iteration 2431 : loss : 0.170039 cons_dist: 0.004191, loss_weight: 0.016530
[16:18:44.194] iteration 2432 : loss : 0.065917 cons_dist: 0.008021, loss_weight: 0.016530
[16:18:44.685] iteration 2433 : loss : 0.047528 cons_dist: 0.015172, loss_weight: 0.016530
[16:18:45.178] iteration 2434 : loss : 0.052731 cons_dist: 0.001467, loss_weight: 0.016530
[16:18:45.670] iteration 2435 : loss : 0.040723 cons_dist: 0.003150, loss_weight: 0.016530
[16:18:46.161] iteration 2436 : loss : 0.056486 cons_dist: 0.002721, loss_weight: 0.016530
[16:18:47.244] iteration 2437 : loss : 0.075943 cons_dist: 0.003293, loss_weight: 0.016530
[16:18:47.734] iteration 2438 : loss : 0.040599 cons_dist: 0.002177, loss_weight: 0.016530
[16:18:48.225] iteration 2439 : loss : 0.056059 cons_dist: 0.002716, loss_weight: 0.016530
[16:18:48.715] iteration 2440 : loss : 0.054114 cons_dist: 0.001743, loss_weight: 0.016530
[16:18:49.207] iteration 2441 : loss : 0.051228 cons_dist: 0.001577, loss_weight: 0.016530
[16:18:49.699] iteration 2442 : loss : 0.054280 cons_dist: 0.007453, loss_weight: 0.016530
[16:18:50.192] iteration 2443 : loss : 0.075481 cons_dist: 0.001551, loss_weight: 0.016530
[16:18:50.684] iteration 2444 : loss : 0.035455 cons_dist: 0.001906, loss_weight: 0.016530
[16:18:51.176] iteration 2445 : loss : 0.047157 cons_dist: 0.008892, loss_weight: 0.016530
[16:18:51.667] iteration 2446 : loss : 0.060825 cons_dist: 0.002460, loss_weight: 0.016530
[16:18:52.159] iteration 2447 : loss : 0.047914 cons_dist: 0.001430, loss_weight: 0.016530
[16:18:52.650] iteration 2448 : loss : 0.052441 cons_dist: 0.001438, loss_weight: 0.016530
[16:18:53.752] iteration 2449 : loss : 0.061118 cons_dist: 0.005600, loss_weight: 0.016530
[16:18:54.239] iteration 2450 : loss : 0.047911 cons_dist: 0.005225, loss_weight: 0.016530
[16:18:54.731] iteration 2451 : loss : 0.040440 cons_dist: 0.003268, loss_weight: 0.016530
[16:18:55.223] iteration 2452 : loss : 0.061495 cons_dist: 0.046086, loss_weight: 0.016530
[16:18:55.716] iteration 2453 : loss : 0.041397 cons_dist: 0.003583, loss_weight: 0.016530
[16:18:56.208] iteration 2454 : loss : 0.053484 cons_dist: 0.004552, loss_weight: 0.016530
[16:18:56.699] iteration 2455 : loss : 0.042978 cons_dist: 0.002216, loss_weight: 0.016530
[16:18:57.190] iteration 2456 : loss : 0.146023 cons_dist: 0.002331, loss_weight: 0.016530
[16:18:57.682] iteration 2457 : loss : 0.048124 cons_dist: 0.007863, loss_weight: 0.016530
[16:18:58.173] iteration 2458 : loss : 0.054263 cons_dist: 0.002169, loss_weight: 0.016530
[16:18:58.666] iteration 2459 : loss : 0.043891 cons_dist: 0.005739, loss_weight: 0.016530
[16:18:59.158] iteration 2460 : loss : 0.049542 cons_dist: 0.004233, loss_weight: 0.016530
[16:19:00.217] iteration 2461 : loss : 0.051078 cons_dist: 0.004830, loss_weight: 0.016530
[16:19:00.709] iteration 2462 : loss : 0.054217 cons_dist: 0.003328, loss_weight: 0.016530
[16:19:01.199] iteration 2463 : loss : 0.057542 cons_dist: 0.002322, loss_weight: 0.016530
[16:19:01.690] iteration 2464 : loss : 0.057707 cons_dist: 0.045285, loss_weight: 0.016530
[16:19:02.182] iteration 2465 : loss : 0.036773 cons_dist: 0.011701, loss_weight: 0.016530
[16:19:02.673] iteration 2466 : loss : 0.054485 cons_dist: 0.011324, loss_weight: 0.016530
[16:19:03.166] iteration 2467 : loss : 0.046933 cons_dist: 0.005142, loss_weight: 0.016530
[16:19:03.658] iteration 2468 : loss : 0.079540 cons_dist: 0.001605, loss_weight: 0.016530
[16:19:04.150] iteration 2469 : loss : 0.054900 cons_dist: 0.004537, loss_weight: 0.016530
[16:19:04.642] iteration 2470 : loss : 0.045920 cons_dist: 0.003746, loss_weight: 0.016530
[16:19:05.134] iteration 2471 : loss : 0.032879 cons_dist: 0.004117, loss_weight: 0.016530
[16:19:05.626] iteration 2472 : loss : 0.063465 cons_dist: 0.002459, loss_weight: 0.016530
[16:19:06.790] iteration 2473 : loss : 0.047889 cons_dist: 0.002760, loss_weight: 0.016530
[16:19:07.277] iteration 2474 : loss : 0.050845 cons_dist: 0.024065, loss_weight: 0.016530
[16:19:07.769] iteration 2475 : loss : 0.036901 cons_dist: 0.001783, loss_weight: 0.016530
[16:19:08.260] iteration 2476 : loss : 0.045852 cons_dist: 0.005527, loss_weight: 0.016530
[16:19:08.752] iteration 2477 : loss : 0.054153 cons_dist: 0.002306, loss_weight: 0.016530
[16:19:09.243] iteration 2478 : loss : 0.040334 cons_dist: 0.006458, loss_weight: 0.016530
[16:19:09.734] iteration 2479 : loss : 0.057794 cons_dist: 0.004321, loss_weight: 0.016530
[16:19:10.226] iteration 2480 : loss : 0.044021 cons_dist: 0.003734, loss_weight: 0.016530
[16:19:10.719] iteration 2481 : loss : 0.094056 cons_dist: 0.004997, loss_weight: 0.016530
[16:19:11.210] iteration 2482 : loss : 0.046683 cons_dist: 0.001656, loss_weight: 0.016530
[16:19:11.702] iteration 2483 : loss : 0.051617 cons_dist: 0.037113, loss_weight: 0.016530
[16:19:12.194] iteration 2484 : loss : 0.052941 cons_dist: 0.003629, loss_weight: 0.016530
[16:19:13.304] iteration 2485 : loss : 0.062269 cons_dist: 0.001571, loss_weight: 0.016530
[16:19:13.792] iteration 2486 : loss : 0.045689 cons_dist: 0.001951, loss_weight: 0.016530
[16:19:14.284] iteration 2487 : loss : 0.050785 cons_dist: 0.002036, loss_weight: 0.016530
[16:19:14.776] iteration 2488 : loss : 0.054562 cons_dist: 0.002467, loss_weight: 0.016530
[16:19:15.268] iteration 2489 : loss : 0.054432 cons_dist: 0.002412, loss_weight: 0.016530
[16:19:15.759] iteration 2490 : loss : 0.051240 cons_dist: 0.013944, loss_weight: 0.016530
[16:19:16.250] iteration 2491 : loss : 0.047201 cons_dist: 0.010787, loss_weight: 0.016530
[16:19:16.741] iteration 2492 : loss : 0.053041 cons_dist: 0.001977, loss_weight: 0.016530
[16:19:17.233] iteration 2493 : loss : 0.057579 cons_dist: 0.003119, loss_weight: 0.016530
[16:19:17.726] iteration 2494 : loss : 0.099812 cons_dist: 0.001668, loss_weight: 0.016530
[16:19:18.219] iteration 2495 : loss : 0.053911 cons_dist: 0.003957, loss_weight: 0.016530
[16:19:18.710] iteration 2496 : loss : 0.083038 cons_dist: 0.053570, loss_weight: 0.016530
[16:19:19.822] iteration 2497 : loss : 0.055553 cons_dist: 0.002099, loss_weight: 0.016530
[16:19:20.308] iteration 2498 : loss : 0.058297 cons_dist: 0.002282, loss_weight: 0.016530
[16:19:20.800] iteration 2499 : loss : 0.033750 cons_dist: 0.003639, loss_weight: 0.016530
[16:19:21.291] iteration 2500 : loss : 0.052792 cons_dist: 0.002994, loss_weight: 0.016530
[16:19:21.783] iteration 2501 : loss : 0.066101 cons_dist: 0.013374, loss_weight: 0.016530
[16:19:22.275] iteration 2502 : loss : 0.042974 cons_dist: 0.003074, loss_weight: 0.016530
[16:19:22.766] iteration 2503 : loss : 0.050797 cons_dist: 0.079948, loss_weight: 0.016530
[16:19:23.256] iteration 2504 : loss : 0.028241 cons_dist: 0.007138, loss_weight: 0.016530
[16:19:23.748] iteration 2505 : loss : 0.041156 cons_dist: 0.003803, loss_weight: 0.016530
[16:19:24.242] iteration 2506 : loss : 0.048257 cons_dist: 0.024193, loss_weight: 0.016530
[16:19:24.734] iteration 2507 : loss : 0.046370 cons_dist: 0.007174, loss_weight: 0.016530
[16:19:25.226] iteration 2508 : loss : 0.088758 cons_dist: 0.002459, loss_weight: 0.016530
[16:19:26.376] iteration 2509 : loss : 0.052550 cons_dist: 0.002057, loss_weight: 0.016530
[16:19:26.869] iteration 2510 : loss : 0.055142 cons_dist: 0.003598, loss_weight: 0.016530
[16:19:27.361] iteration 2511 : loss : 0.053768 cons_dist: 0.005183, loss_weight: 0.016530
[16:19:27.853] iteration 2512 : loss : 0.046179 cons_dist: 0.001562, loss_weight: 0.016530
[16:19:28.343] iteration 2513 : loss : 0.056223 cons_dist: 0.012068, loss_weight: 0.016530
[16:19:28.834] iteration 2514 : loss : 0.058880 cons_dist: 0.008727, loss_weight: 0.016530
[16:19:29.325] iteration 2515 : loss : 0.056669 cons_dist: 0.011968, loss_weight: 0.016530
[16:19:29.817] iteration 2516 : loss : 0.173074 cons_dist: 0.004935, loss_weight: 0.016530
[16:19:30.310] iteration 2517 : loss : 0.053025 cons_dist: 0.003219, loss_weight: 0.016530
[16:19:30.802] iteration 2518 : loss : 0.050332 cons_dist: 0.002992, loss_weight: 0.016530
[16:19:31.293] iteration 2519 : loss : 0.036230 cons_dist: 0.003753, loss_weight: 0.016530
[16:19:31.784] iteration 2520 : loss : 0.068579 cons_dist: 0.008912, loss_weight: 0.016530
[16:19:32.836] iteration 2521 : loss : 0.050494 cons_dist: 0.002451, loss_weight: 0.016530
[16:19:33.327] iteration 2522 : loss : 0.049969 cons_dist: 0.019694, loss_weight: 0.016530
[16:19:33.818] iteration 2523 : loss : 0.048283 cons_dist: 0.002251, loss_weight: 0.016530
[16:19:34.310] iteration 2524 : loss : 0.050809 cons_dist: 0.002100, loss_weight: 0.016530
[16:19:34.801] iteration 2525 : loss : 0.036700 cons_dist: 0.002265, loss_weight: 0.016530
[16:19:35.293] iteration 2526 : loss : 0.052979 cons_dist: 0.003309, loss_weight: 0.016530
[16:19:35.785] iteration 2527 : loss : 0.044650 cons_dist: 0.006677, loss_weight: 0.016530
[16:19:36.278] iteration 2528 : loss : 0.057268 cons_dist: 0.033182, loss_weight: 0.016530
[16:19:36.770] iteration 2529 : loss : 0.075662 cons_dist: 0.003367, loss_weight: 0.016530
[16:19:37.261] iteration 2530 : loss : 0.075997 cons_dist: 0.003318, loss_weight: 0.016530
[16:19:37.752] iteration 2531 : loss : 0.066418 cons_dist: 0.030349, loss_weight: 0.016530
[16:19:38.243] iteration 2532 : loss : 0.064352 cons_dist: 0.006118, loss_weight: 0.016530
[16:19:39.322] iteration 2533 : loss : 0.055392 cons_dist: 0.004505, loss_weight: 0.016530
[16:19:39.813] iteration 2534 : loss : 0.052386 cons_dist: 0.002336, loss_weight: 0.016530
[16:19:40.306] iteration 2535 : loss : 0.047875 cons_dist: 0.004417, loss_weight: 0.016530
[16:19:40.798] iteration 2536 : loss : 0.048480 cons_dist: 0.004634, loss_weight: 0.016530
[16:19:41.290] iteration 2537 : loss : 0.042382 cons_dist: 0.003834, loss_weight: 0.016530
[16:19:41.781] iteration 2538 : loss : 0.037482 cons_dist: 0.006346, loss_weight: 0.016530
[16:19:42.272] iteration 2539 : loss : 0.049544 cons_dist: 0.003807, loss_weight: 0.016530
[16:19:42.764] iteration 2540 : loss : 0.057347 cons_dist: 0.002618, loss_weight: 0.016530
[16:19:43.256] iteration 2541 : loss : 0.041138 cons_dist: 0.006061, loss_weight: 0.016530
[16:19:43.748] iteration 2542 : loss : 0.049740 cons_dist: 0.023488, loss_weight: 0.016530
[16:19:44.240] iteration 2543 : loss : 0.047209 cons_dist: 0.004683, loss_weight: 0.016530
[16:19:44.733] iteration 2544 : loss : 0.043467 cons_dist: 0.004115, loss_weight: 0.016530
[16:19:45.772] iteration 2545 : loss : 0.034961 cons_dist: 0.003761, loss_weight: 0.016530
[16:19:46.263] iteration 2546 : loss : 0.038080 cons_dist: 0.011323, loss_weight: 0.016530
[16:19:46.754] iteration 2547 : loss : 0.051738 cons_dist: 0.011617, loss_weight: 0.016530
[16:19:47.244] iteration 2548 : loss : 0.044876 cons_dist: 0.004499, loss_weight: 0.016530
[16:19:47.735] iteration 2549 : loss : 0.062560 cons_dist: 0.002924, loss_weight: 0.016530
[16:19:48.226] iteration 2550 : loss : 0.052485 cons_dist: 0.003693, loss_weight: 0.016530
[16:19:48.719] iteration 2551 : loss : 0.062302 cons_dist: 0.004567, loss_weight: 0.019145
[16:19:49.211] iteration 2552 : loss : 0.043357 cons_dist: 0.002974, loss_weight: 0.019145
[16:19:49.702] iteration 2553 : loss : 0.042447 cons_dist: 0.006030, loss_weight: 0.019145
[16:19:50.194] iteration 2554 : loss : 0.068636 cons_dist: 0.003297, loss_weight: 0.019145
[16:19:50.686] iteration 2555 : loss : 0.046322 cons_dist: 0.005888, loss_weight: 0.019145
[16:19:51.177] iteration 2556 : loss : 0.051187 cons_dist: 0.004650, loss_weight: 0.019145
[16:19:52.346] iteration 2557 : loss : 0.031956 cons_dist: 0.004740, loss_weight: 0.019145
[16:19:52.837] iteration 2558 : loss : 0.084215 cons_dist: 0.001976, loss_weight: 0.019145
[16:19:53.327] iteration 2559 : loss : 0.053045 cons_dist: 0.010656, loss_weight: 0.019145
[16:19:53.819] iteration 2560 : loss : 0.046572 cons_dist: 0.004343, loss_weight: 0.019145
[16:19:54.310] iteration 2561 : loss : 0.071090 cons_dist: 0.005801, loss_weight: 0.019145
[16:19:54.801] iteration 2562 : loss : 0.056200 cons_dist: 0.001460, loss_weight: 0.019145
[16:19:55.293] iteration 2563 : loss : 0.045901 cons_dist: 0.004394, loss_weight: 0.019145
[16:19:55.785] iteration 2564 : loss : 0.043257 cons_dist: 0.002918, loss_weight: 0.019145
[16:19:56.276] iteration 2565 : loss : 0.047873 cons_dist: 0.016870, loss_weight: 0.019145
[16:19:56.768] iteration 2566 : loss : 0.054258 cons_dist: 0.002185, loss_weight: 0.019145
[16:19:57.259] iteration 2567 : loss : 0.049546 cons_dist: 0.001294, loss_weight: 0.019145
[16:19:57.750] iteration 2568 : loss : 0.044007 cons_dist: 0.003311, loss_weight: 0.019145
[16:19:58.867] iteration 2569 : loss : 0.038390 cons_dist: 0.004981, loss_weight: 0.019145
[16:19:59.358] iteration 2570 : loss : 0.037563 cons_dist: 0.002462, loss_weight: 0.019145
[16:19:59.849] iteration 2571 : loss : 0.064068 cons_dist: 0.014428, loss_weight: 0.019145
[16:20:00.341] iteration 2572 : loss : 0.047549 cons_dist: 0.005685, loss_weight: 0.019145
[16:20:00.833] iteration 2573 : loss : 0.063671 cons_dist: 0.002484, loss_weight: 0.019145
[16:20:01.325] iteration 2574 : loss : 0.043954 cons_dist: 0.001950, loss_weight: 0.019145
[16:20:01.817] iteration 2575 : loss : 0.054126 cons_dist: 0.006829, loss_weight: 0.019145
[16:20:02.308] iteration 2576 : loss : 0.045125 cons_dist: 0.019087, loss_weight: 0.019145
[16:20:02.800] iteration 2577 : loss : 0.061044 cons_dist: 0.003702, loss_weight: 0.019145
[16:20:03.291] iteration 2578 : loss : 0.115516 cons_dist: 0.003077, loss_weight: 0.019145
[16:20:03.782] iteration 2579 : loss : 0.049284 cons_dist: 0.002065, loss_weight: 0.019145
[16:20:04.276] iteration 2580 : loss : 0.055785 cons_dist: 0.003454, loss_weight: 0.019145
[16:20:05.377] iteration 2581 : loss : 0.036425 cons_dist: 0.002700, loss_weight: 0.019145
[16:20:05.869] iteration 2582 : loss : 0.059582 cons_dist: 0.044611, loss_weight: 0.019145
[16:20:06.360] iteration 2583 : loss : 0.049996 cons_dist: 0.001885, loss_weight: 0.019145
[16:20:06.851] iteration 2584 : loss : 0.062706 cons_dist: 0.002278, loss_weight: 0.019145
[16:20:07.343] iteration 2585 : loss : 0.046202 cons_dist: 0.006522, loss_weight: 0.019145
[16:20:07.834] iteration 2586 : loss : 0.043639 cons_dist: 0.005763, loss_weight: 0.019145
[16:20:08.325] iteration 2587 : loss : 0.063176 cons_dist: 0.007212, loss_weight: 0.019145
[16:20:08.817] iteration 2588 : loss : 0.060499 cons_dist: 0.009032, loss_weight: 0.019145
[16:20:09.309] iteration 2589 : loss : 0.057149 cons_dist: 0.013458, loss_weight: 0.019145
[16:20:09.802] iteration 2590 : loss : 0.053648 cons_dist: 0.020923, loss_weight: 0.019145
[16:20:10.293] iteration 2591 : loss : 0.039610 cons_dist: 0.006612, loss_weight: 0.019145
[16:20:10.785] iteration 2592 : loss : 0.037844 cons_dist: 0.019028, loss_weight: 0.019145
[16:20:11.858] iteration 2593 : loss : 0.047490 cons_dist: 0.001881, loss_weight: 0.019145
[16:20:12.349] iteration 2594 : loss : 0.067034 cons_dist: 0.004854, loss_weight: 0.019145
[16:20:12.840] iteration 2595 : loss : 0.066895 cons_dist: 0.004427, loss_weight: 0.019145
[16:20:13.331] iteration 2596 : loss : 0.047820 cons_dist: 0.005298, loss_weight: 0.019145
[16:20:13.822] iteration 2597 : loss : 0.036578 cons_dist: 0.003367, loss_weight: 0.019145
[16:20:14.313] iteration 2598 : loss : 0.070812 cons_dist: 0.005537, loss_weight: 0.019145
[16:20:14.806] iteration 2599 : loss : 0.043380 cons_dist: 0.002415, loss_weight: 0.019145
[16:20:15.298] iteration 2600 : loss : 0.047672 cons_dist: 0.003948, loss_weight: 0.019145
[16:20:16.579] save best model to model/LA_vnet_25_labeled/MT/iter_2600_dice_0.9224892854690552.pth
[16:20:17.071] iteration 2601 : loss : 0.045500 cons_dist: 0.051791, loss_weight: 0.019145
[16:20:17.562] iteration 2602 : loss : 0.057267 cons_dist: 0.003997, loss_weight: 0.019145
[16:20:18.052] iteration 2603 : loss : 0.043272 cons_dist: 0.001538, loss_weight: 0.019145
[16:20:18.543] iteration 2604 : loss : 0.054150 cons_dist: 0.004747, loss_weight: 0.019145
[16:20:19.637] iteration 2605 : loss : 0.044630 cons_dist: 0.001566, loss_weight: 0.019145
[16:20:20.127] iteration 2606 : loss : 0.044756 cons_dist: 0.008660, loss_weight: 0.019145
[16:20:20.618] iteration 2607 : loss : 0.031836 cons_dist: 0.012854, loss_weight: 0.019145
[16:20:21.110] iteration 2608 : loss : 0.058978 cons_dist: 0.004326, loss_weight: 0.019145
[16:20:21.601] iteration 2609 : loss : 0.039501 cons_dist: 0.007928, loss_weight: 0.019145
[16:20:22.093] iteration 2610 : loss : 0.044006 cons_dist: 0.002259, loss_weight: 0.019145
[16:20:22.585] iteration 2611 : loss : 0.057626 cons_dist: 0.016906, loss_weight: 0.019145
[16:20:23.076] iteration 2612 : loss : 0.059018 cons_dist: 0.004292, loss_weight: 0.019145
[16:20:23.568] iteration 2613 : loss : 0.044504 cons_dist: 0.003812, loss_weight: 0.019145
[16:20:24.059] iteration 2614 : loss : 0.071702 cons_dist: 0.020973, loss_weight: 0.019145
[16:20:24.550] iteration 2615 : loss : 0.039391 cons_dist: 0.001991, loss_weight: 0.019145
[16:20:25.041] iteration 2616 : loss : 0.054360 cons_dist: 0.001385, loss_weight: 0.019145
[16:20:26.151] iteration 2617 : loss : 0.037370 cons_dist: 0.001051, loss_weight: 0.019145
[16:20:26.642] iteration 2618 : loss : 0.044673 cons_dist: 0.001597, loss_weight: 0.019145
[16:20:27.133] iteration 2619 : loss : 0.054259 cons_dist: 0.005968, loss_weight: 0.019145
[16:20:27.625] iteration 2620 : loss : 0.074942 cons_dist: 0.003015, loss_weight: 0.019145
[16:20:28.117] iteration 2621 : loss : 0.050857 cons_dist: 0.005891, loss_weight: 0.019145
[16:20:28.610] iteration 2622 : loss : 0.039626 cons_dist: 0.001946, loss_weight: 0.019145
[16:20:29.102] iteration 2623 : loss : 0.057458 cons_dist: 0.002178, loss_weight: 0.019145
[16:20:29.593] iteration 2624 : loss : 0.076157 cons_dist: 0.002183, loss_weight: 0.019145
[16:20:30.085] iteration 2625 : loss : 0.049643 cons_dist: 0.003978, loss_weight: 0.019145
[16:20:30.576] iteration 2626 : loss : 0.052281 cons_dist: 0.008435, loss_weight: 0.019145
[16:20:31.067] iteration 2627 : loss : 0.049836 cons_dist: 0.004144, loss_weight: 0.019145
[16:20:31.559] iteration 2628 : loss : 0.090055 cons_dist: 0.006795, loss_weight: 0.019145
[16:20:32.588] iteration 2629 : loss : 0.047462 cons_dist: 0.001866, loss_weight: 0.019145
[16:20:33.079] iteration 2630 : loss : 0.035595 cons_dist: 0.003132, loss_weight: 0.019145
[16:20:33.570] iteration 2631 : loss : 0.061085 cons_dist: 0.004773, loss_weight: 0.019145
[16:20:34.063] iteration 2632 : loss : 0.045290 cons_dist: 0.001211, loss_weight: 0.019145
[16:20:34.555] iteration 2633 : loss : 0.039468 cons_dist: 0.004230, loss_weight: 0.019145
[16:20:35.047] iteration 2634 : loss : 0.054007 cons_dist: 0.007856, loss_weight: 0.019145
[16:20:35.538] iteration 2635 : loss : 0.040806 cons_dist: 0.002407, loss_weight: 0.019145
[16:20:36.030] iteration 2636 : loss : 0.049129 cons_dist: 0.002468, loss_weight: 0.019145
[16:20:36.520] iteration 2637 : loss : 0.047444 cons_dist: 0.001619, loss_weight: 0.019145
[16:20:37.011] iteration 2638 : loss : 0.037851 cons_dist: 0.004132, loss_weight: 0.019145
[16:20:37.503] iteration 2639 : loss : 0.049541 cons_dist: 0.002022, loss_weight: 0.019145
[16:20:37.995] iteration 2640 : loss : 0.069838 cons_dist: 0.002394, loss_weight: 0.019145
[16:20:39.166] iteration 2641 : loss : 0.052711 cons_dist: 0.003007, loss_weight: 0.019145
[16:20:39.659] iteration 2642 : loss : 0.060579 cons_dist: 0.002078, loss_weight: 0.019145
[16:20:40.151] iteration 2643 : loss : 0.041407 cons_dist: 0.001764, loss_weight: 0.019145
[16:20:40.641] iteration 2644 : loss : 0.039143 cons_dist: 0.001599, loss_weight: 0.019145
[16:20:41.133] iteration 2645 : loss : 0.040998 cons_dist: 0.005934, loss_weight: 0.019145
[16:20:41.625] iteration 2646 : loss : 0.047210 cons_dist: 0.002109, loss_weight: 0.019145
[16:20:42.116] iteration 2647 : loss : 0.044821 cons_dist: 0.005553, loss_weight: 0.019145
[16:20:42.609] iteration 2648 : loss : 0.074252 cons_dist: 0.000940, loss_weight: 0.019145
[16:20:43.101] iteration 2649 : loss : 0.037015 cons_dist: 0.047947, loss_weight: 0.019145
[16:20:43.593] iteration 2650 : loss : 0.069463 cons_dist: 0.005773, loss_weight: 0.019145
[16:20:44.084] iteration 2651 : loss : 0.069409 cons_dist: 0.006644, loss_weight: 0.019145
[16:20:44.575] iteration 2652 : loss : 0.057130 cons_dist: 0.001817, loss_weight: 0.019145
[16:20:45.725] iteration 2653 : loss : 0.041631 cons_dist: 0.012455, loss_weight: 0.019145
[16:20:46.216] iteration 2654 : loss : 0.069546 cons_dist: 0.003317, loss_weight: 0.019145
[16:20:46.707] iteration 2655 : loss : 0.042021 cons_dist: 0.006183, loss_weight: 0.019145
[16:20:47.198] iteration 2656 : loss : 0.062334 cons_dist: 0.005262, loss_weight: 0.019145
[16:20:47.689] iteration 2657 : loss : 0.237624 cons_dist: 0.006975, loss_weight: 0.019145
[16:20:48.180] iteration 2658 : loss : 0.047429 cons_dist: 0.010838, loss_weight: 0.019145
[16:20:48.673] iteration 2659 : loss : 0.062094 cons_dist: 0.005563, loss_weight: 0.019145
[16:20:49.165] iteration 2660 : loss : 0.075522 cons_dist: 0.004402, loss_weight: 0.019145
[16:20:49.657] iteration 2661 : loss : 0.075451 cons_dist: 0.021779, loss_weight: 0.019145
[16:20:50.149] iteration 2662 : loss : 0.053432 cons_dist: 0.008404, loss_weight: 0.019145
[16:20:50.640] iteration 2663 : loss : 0.111283 cons_dist: 0.013046, loss_weight: 0.019145
[16:20:51.131] iteration 2664 : loss : 0.178114 cons_dist: 0.009442, loss_weight: 0.019145
[16:20:52.296] iteration 2665 : loss : 0.144366 cons_dist: 0.035225, loss_weight: 0.019145
[16:20:52.788] iteration 2666 : loss : 0.063691 cons_dist: 0.011422, loss_weight: 0.019145
[16:20:53.280] iteration 2667 : loss : 0.038926 cons_dist: 0.018818, loss_weight: 0.019145
[16:20:53.771] iteration 2668 : loss : 0.074045 cons_dist: 0.010080, loss_weight: 0.019145
[16:20:54.261] iteration 2669 : loss : 0.084695 cons_dist: 0.022157, loss_weight: 0.019145
[16:20:54.753] iteration 2670 : loss : 0.044646 cons_dist: 0.006434, loss_weight: 0.019145
[16:20:55.244] iteration 2671 : loss : 0.064261 cons_dist: 0.009162, loss_weight: 0.019145
[16:20:55.735] iteration 2672 : loss : 0.071123 cons_dist: 0.029329, loss_weight: 0.019145
[16:20:56.227] iteration 2673 : loss : 0.053333 cons_dist: 0.016253, loss_weight: 0.019145
[16:20:56.719] iteration 2674 : loss : 0.090001 cons_dist: 0.020870, loss_weight: 0.019145
[16:20:57.212] iteration 2675 : loss : 0.139274 cons_dist: 0.011596, loss_weight: 0.019145
[16:20:57.704] iteration 2676 : loss : 0.064549 cons_dist: 0.018511, loss_weight: 0.019145
[16:20:58.864] iteration 2677 : loss : 0.065975 cons_dist: 0.011619, loss_weight: 0.019145
[16:20:59.355] iteration 2678 : loss : 0.065825 cons_dist: 0.016292, loss_weight: 0.019145
[16:20:59.845] iteration 2679 : loss : 0.059921 cons_dist: 0.010905, loss_weight: 0.019145
[16:21:00.336] iteration 2680 : loss : 0.047905 cons_dist: 0.012812, loss_weight: 0.019145
[16:21:00.828] iteration 2681 : loss : 0.061878 cons_dist: 0.007052, loss_weight: 0.019145
[16:21:01.321] iteration 2682 : loss : 0.049699 cons_dist: 0.006007, loss_weight: 0.019145
[16:21:01.813] iteration 2683 : loss : 0.160207 cons_dist: 0.004207, loss_weight: 0.019145
[16:21:02.304] iteration 2684 : loss : 0.067897 cons_dist: 0.009815, loss_weight: 0.019145
[16:21:02.795] iteration 2685 : loss : 0.070129 cons_dist: 0.005920, loss_weight: 0.019145
[16:21:03.286] iteration 2686 : loss : 0.065139 cons_dist: 0.009483, loss_weight: 0.019145
[16:21:03.778] iteration 2687 : loss : 0.055293 cons_dist: 0.006388, loss_weight: 0.019145
[16:21:04.269] iteration 2688 : loss : 0.064900 cons_dist: 0.012777, loss_weight: 0.019145
[16:21:05.337] iteration 2689 : loss : 0.058279 cons_dist: 0.011116, loss_weight: 0.019145
[16:21:05.827] iteration 2690 : loss : 0.052956 cons_dist: 0.013137, loss_weight: 0.019145
[16:21:06.318] iteration 2691 : loss : 0.089031 cons_dist: 0.003651, loss_weight: 0.019145
[16:21:06.809] iteration 2692 : loss : 0.072588 cons_dist: 0.008876, loss_weight: 0.019145
[16:21:07.300] iteration 2693 : loss : 0.067314 cons_dist: 0.006722, loss_weight: 0.019145
[16:21:07.790] iteration 2694 : loss : 0.055396 cons_dist: 0.003004, loss_weight: 0.019145
[16:21:08.281] iteration 2695 : loss : 0.119748 cons_dist: 0.005816, loss_weight: 0.019145
[16:21:08.773] iteration 2696 : loss : 0.048814 cons_dist: 0.002040, loss_weight: 0.019145
[16:21:09.266] iteration 2697 : loss : 0.067063 cons_dist: 0.002933, loss_weight: 0.019145
[16:21:09.758] iteration 2698 : loss : 0.041907 cons_dist: 0.008308, loss_weight: 0.019145
[16:21:10.250] iteration 2699 : loss : 0.048338 cons_dist: 0.004386, loss_weight: 0.019145
[16:21:10.741] iteration 2700 : loss : 0.059312 cons_dist: 0.002988, loss_weight: 0.019145
[16:21:11.871] iteration 2701 : loss : 0.059845 cons_dist: 0.012028, loss_weight: 0.022036
[16:21:12.362] iteration 2702 : loss : 0.050171 cons_dist: 0.009514, loss_weight: 0.022036
[16:21:12.848] iteration 2703 : loss : 0.044129 cons_dist: 0.011375, loss_weight: 0.022036
[16:21:13.342] iteration 2704 : loss : 0.046519 cons_dist: 0.006075, loss_weight: 0.022036
[16:21:13.834] iteration 2705 : loss : 0.044685 cons_dist: 0.007662, loss_weight: 0.022036
[16:21:14.326] iteration 2706 : loss : 0.070292 cons_dist: 0.009749, loss_weight: 0.022036
[16:21:14.817] iteration 2707 : loss : 0.047982 cons_dist: 0.005557, loss_weight: 0.022036
[16:21:15.309] iteration 2708 : loss : 0.057996 cons_dist: 0.004477, loss_weight: 0.022036
[16:21:15.800] iteration 2709 : loss : 0.062178 cons_dist: 0.010467, loss_weight: 0.022036
[16:21:16.291] iteration 2710 : loss : 0.070308 cons_dist: 0.048862, loss_weight: 0.022036
[16:21:16.783] iteration 2711 : loss : 0.047025 cons_dist: 0.004369, loss_weight: 0.022036
[16:21:17.276] iteration 2712 : loss : 0.066029 cons_dist: 0.015320, loss_weight: 0.022036
[16:21:18.303] iteration 2713 : loss : 0.060106 cons_dist: 0.004995, loss_weight: 0.022036
[16:21:18.795] iteration 2714 : loss : 0.040767 cons_dist: 0.040622, loss_weight: 0.022036
[16:21:19.288] iteration 2715 : loss : 0.055708 cons_dist: 0.005956, loss_weight: 0.022036
[16:21:19.775] iteration 2716 : loss : 0.066962 cons_dist: 0.001306, loss_weight: 0.022036
[16:21:20.267] iteration 2717 : loss : 0.051876 cons_dist: 0.005080, loss_weight: 0.022036
[16:21:20.759] iteration 2718 : loss : 0.048031 cons_dist: 0.007967, loss_weight: 0.022036
[16:21:21.251] iteration 2719 : loss : 0.074477 cons_dist: 0.002922, loss_weight: 0.022036
[16:21:21.742] iteration 2720 : loss : 0.047440 cons_dist: 0.003100, loss_weight: 0.022036
[16:21:22.233] iteration 2721 : loss : 0.047090 cons_dist: 0.006441, loss_weight: 0.022036
[16:21:22.724] iteration 2722 : loss : 0.059026 cons_dist: 0.004368, loss_weight: 0.022036
[16:21:23.216] iteration 2723 : loss : 0.053487 cons_dist: 0.004414, loss_weight: 0.022036
[16:21:23.709] iteration 2724 : loss : 0.038935 cons_dist: 0.004892, loss_weight: 0.022036
[16:21:24.838] iteration 2725 : loss : 0.070134 cons_dist: 0.003143, loss_weight: 0.022036
[16:21:25.328] iteration 2726 : loss : 0.044190 cons_dist: 0.011052, loss_weight: 0.022036
[16:21:25.820] iteration 2727 : loss : 0.066049 cons_dist: 0.002365, loss_weight: 0.022036
[16:21:26.312] iteration 2728 : loss : 0.070721 cons_dist: 0.035927, loss_weight: 0.022036
[16:21:26.805] iteration 2729 : loss : 0.066416 cons_dist: 0.004476, loss_weight: 0.022036
[16:21:27.297] iteration 2730 : loss : 0.056641 cons_dist: 0.004646, loss_weight: 0.022036
[16:21:27.788] iteration 2731 : loss : 0.071476 cons_dist: 0.002745, loss_weight: 0.022036
[16:21:28.279] iteration 2732 : loss : 0.044883 cons_dist: 0.001966, loss_weight: 0.022036
[16:21:28.770] iteration 2733 : loss : 0.053257 cons_dist: 0.006690, loss_weight: 0.022036
[16:21:29.262] iteration 2734 : loss : 0.043280 cons_dist: 0.006994, loss_weight: 0.022036
[16:21:29.755] iteration 2735 : loss : 0.053452 cons_dist: 0.003726, loss_weight: 0.022036
[16:21:30.246] iteration 2736 : loss : 0.046719 cons_dist: 0.006063, loss_weight: 0.022036
[16:21:31.470] iteration 2737 : loss : 0.049922 cons_dist: 0.002274, loss_weight: 0.022036
[16:21:31.963] iteration 2738 : loss : 0.053346 cons_dist: 0.006164, loss_weight: 0.022036
[16:21:32.454] iteration 2739 : loss : 0.067753 cons_dist: 0.004112, loss_weight: 0.022036
[16:21:32.945] iteration 2740 : loss : 0.074835 cons_dist: 0.003228, loss_weight: 0.022036
[16:21:33.438] iteration 2741 : loss : 0.097667 cons_dist: 0.011089, loss_weight: 0.022036
[16:21:33.930] iteration 2742 : loss : 0.055900 cons_dist: 0.007688, loss_weight: 0.022036
[16:21:34.422] iteration 2743 : loss : 0.060095 cons_dist: 0.004770, loss_weight: 0.022036
[16:21:34.912] iteration 2744 : loss : 0.064951 cons_dist: 0.010757, loss_weight: 0.022036
[16:21:35.404] iteration 2745 : loss : 0.043819 cons_dist: 0.005572, loss_weight: 0.022036
[16:21:35.894] iteration 2746 : loss : 0.038880 cons_dist: 0.019286, loss_weight: 0.022036
[16:21:36.385] iteration 2747 : loss : 0.059740 cons_dist: 0.002552, loss_weight: 0.022036
[16:21:36.877] iteration 2748 : loss : 0.058121 cons_dist: 0.003318, loss_weight: 0.022036
[16:21:38.017] iteration 2749 : loss : 0.051940 cons_dist: 0.002797, loss_weight: 0.022036
[16:21:38.504] iteration 2750 : loss : 0.050643 cons_dist: 0.027238, loss_weight: 0.022036
[16:21:38.996] iteration 2751 : loss : 0.062769 cons_dist: 0.005100, loss_weight: 0.022036
[16:21:39.488] iteration 2752 : loss : 0.042969 cons_dist: 0.002199, loss_weight: 0.022036
[16:21:39.979] iteration 2753 : loss : 0.079304 cons_dist: 0.012848, loss_weight: 0.022036
[16:21:40.470] iteration 2754 : loss : 0.044835 cons_dist: 0.007388, loss_weight: 0.022036
[16:21:40.961] iteration 2755 : loss : 0.059784 cons_dist: 0.002059, loss_weight: 0.022036
[16:21:41.452] iteration 2756 : loss : 0.054260 cons_dist: 0.005831, loss_weight: 0.022036
[16:21:41.944] iteration 2757 : loss : 0.058903 cons_dist: 0.004818, loss_weight: 0.022036
[16:21:42.435] iteration 2758 : loss : 0.062366 cons_dist: 0.007992, loss_weight: 0.022036
[16:21:42.926] iteration 2759 : loss : 0.049882 cons_dist: 0.004877, loss_weight: 0.022036
[16:21:43.419] iteration 2760 : loss : 0.049119 cons_dist: 0.002162, loss_weight: 0.022036
[16:21:44.464] iteration 2761 : loss : 0.055393 cons_dist: 0.005575, loss_weight: 0.022036
[16:21:44.956] iteration 2762 : loss : 0.045231 cons_dist: 0.007690, loss_weight: 0.022036
[16:21:45.447] iteration 2763 : loss : 0.054484 cons_dist: 0.002840, loss_weight: 0.022036
[16:21:45.939] iteration 2764 : loss : 0.073260 cons_dist: 0.004289, loss_weight: 0.022036
[16:21:46.432] iteration 2765 : loss : 0.065332 cons_dist: 0.007146, loss_weight: 0.022036
[16:21:46.924] iteration 2766 : loss : 0.039372 cons_dist: 0.001643, loss_weight: 0.022036
[16:21:47.416] iteration 2767 : loss : 0.052807 cons_dist: 0.002217, loss_weight: 0.022036
[16:21:47.907] iteration 2768 : loss : 0.045434 cons_dist: 0.006957, loss_weight: 0.022036
[16:21:48.398] iteration 2769 : loss : 0.061700 cons_dist: 0.038270, loss_weight: 0.022036
[16:21:48.890] iteration 2770 : loss : 0.053101 cons_dist: 0.003599, loss_weight: 0.022036
[16:21:49.382] iteration 2771 : loss : 0.079617 cons_dist: 0.005018, loss_weight: 0.022036
[16:21:49.874] iteration 2772 : loss : 0.045156 cons_dist: 0.006243, loss_weight: 0.022036
[16:21:50.932] iteration 2773 : loss : 0.064247 cons_dist: 0.003495, loss_weight: 0.022036
[16:21:51.423] iteration 2774 : loss : 0.066475 cons_dist: 0.007418, loss_weight: 0.022036
[16:21:51.914] iteration 2775 : loss : 0.042648 cons_dist: 0.003685, loss_weight: 0.022036
[16:21:52.405] iteration 2776 : loss : 0.101305 cons_dist: 0.001604, loss_weight: 0.022036
[16:21:52.897] iteration 2777 : loss : 0.041694 cons_dist: 0.026643, loss_weight: 0.022036
[16:21:53.389] iteration 2778 : loss : 0.039150 cons_dist: 0.009608, loss_weight: 0.022036
[16:21:53.881] iteration 2779 : loss : 0.047016 cons_dist: 0.001880, loss_weight: 0.022036
[16:21:54.374] iteration 2780 : loss : 0.039839 cons_dist: 0.000999, loss_weight: 0.022036
[16:21:54.865] iteration 2781 : loss : 0.047236 cons_dist: 0.002213, loss_weight: 0.022036
[16:21:55.356] iteration 2782 : loss : 0.072011 cons_dist: 0.004694, loss_weight: 0.022036
[16:21:55.848] iteration 2783 : loss : 0.076603 cons_dist: 0.003951, loss_weight: 0.022036
[16:21:56.339] iteration 2784 : loss : 0.059834 cons_dist: 0.005295, loss_weight: 0.022036
[16:21:57.511] iteration 2785 : loss : 0.053305 cons_dist: 0.010908, loss_weight: 0.022036
[16:21:58.002] iteration 2786 : loss : 0.044812 cons_dist: 0.051267, loss_weight: 0.022036
[16:21:58.494] iteration 2787 : loss : 0.061042 cons_dist: 0.006983, loss_weight: 0.022036
[16:21:58.986] iteration 2788 : loss : 0.067880 cons_dist: 0.003589, loss_weight: 0.022036
[16:21:59.478] iteration 2789 : loss : 0.045914 cons_dist: 0.003000, loss_weight: 0.022036
[16:21:59.970] iteration 2790 : loss : 0.045251 cons_dist: 0.002098, loss_weight: 0.022036
[16:22:00.462] iteration 2791 : loss : 0.038989 cons_dist: 0.002464, loss_weight: 0.022036
[16:22:00.953] iteration 2792 : loss : 0.060943 cons_dist: 0.007751, loss_weight: 0.022036
[16:22:01.444] iteration 2793 : loss : 0.055408 cons_dist: 0.013548, loss_weight: 0.022036
[16:22:01.935] iteration 2794 : loss : 0.042026 cons_dist: 0.043936, loss_weight: 0.022036
[16:22:02.429] iteration 2795 : loss : 0.071074 cons_dist: 0.003790, loss_weight: 0.022036
[16:22:02.921] iteration 2796 : loss : 0.056755 cons_dist: 0.003664, loss_weight: 0.022036
[16:22:04.080] iteration 2797 : loss : 0.044673 cons_dist: 0.001488, loss_weight: 0.022036
[16:22:04.570] iteration 2798 : loss : 0.060205 cons_dist: 0.002232, loss_weight: 0.022036
[16:22:05.061] iteration 2799 : loss : 0.041053 cons_dist: 0.001243, loss_weight: 0.022036
[16:22:05.552] iteration 2800 : loss : 0.065265 cons_dist: 0.003019, loss_weight: 0.022036
[16:22:07.170] iteration 2801 : loss : 0.047849 cons_dist: 0.011030, loss_weight: 0.022036
[16:22:07.663] iteration 2802 : loss : 0.077348 cons_dist: 0.076928, loss_weight: 0.022036
[16:22:08.155] iteration 2803 : loss : 0.054691 cons_dist: 0.038723, loss_weight: 0.022036
[16:22:08.647] iteration 2804 : loss : 0.054604 cons_dist: 0.043877, loss_weight: 0.022036
[16:22:09.138] iteration 2805 : loss : 0.112474 cons_dist: 0.004796, loss_weight: 0.022036
[16:22:09.630] iteration 2806 : loss : 0.036602 cons_dist: 0.004624, loss_weight: 0.022036
[16:22:10.123] iteration 2807 : loss : 0.064014 cons_dist: 0.003662, loss_weight: 0.022036
[16:22:10.616] iteration 2808 : loss : 0.045358 cons_dist: 0.002936, loss_weight: 0.022036
[16:22:11.702] iteration 2809 : loss : 0.047719 cons_dist: 0.002161, loss_weight: 0.022036
[16:22:12.193] iteration 2810 : loss : 0.049933 cons_dist: 0.003630, loss_weight: 0.022036
[16:22:12.685] iteration 2811 : loss : 0.059855 cons_dist: 0.002015, loss_weight: 0.022036
[16:22:13.178] iteration 2812 : loss : 0.097676 cons_dist: 0.020181, loss_weight: 0.022036
[16:22:13.669] iteration 2813 : loss : 0.047690 cons_dist: 0.004753, loss_weight: 0.022036
[16:22:14.160] iteration 2814 : loss : 0.045338 cons_dist: 0.002399, loss_weight: 0.022036
[16:22:14.651] iteration 2815 : loss : 0.048707 cons_dist: 0.001164, loss_weight: 0.022036
[16:22:15.142] iteration 2816 : loss : 0.052951 cons_dist: 0.006136, loss_weight: 0.022036
[16:22:15.633] iteration 2817 : loss : 0.032180 cons_dist: 0.001508, loss_weight: 0.022036
[16:22:16.125] iteration 2818 : loss : 0.063194 cons_dist: 0.042625, loss_weight: 0.022036
[16:22:16.617] iteration 2819 : loss : 0.049429 cons_dist: 0.005228, loss_weight: 0.022036
[16:22:17.109] iteration 2820 : loss : 0.062683 cons_dist: 0.006544, loss_weight: 0.022036
[16:22:18.203] iteration 2821 : loss : 0.046198 cons_dist: 0.005937, loss_weight: 0.022036
[16:22:18.695] iteration 2822 : loss : 0.053182 cons_dist: 0.004530, loss_weight: 0.022036
[16:22:19.186] iteration 2823 : loss : 0.046232 cons_dist: 0.003141, loss_weight: 0.022036
[16:22:19.678] iteration 2824 : loss : 0.075399 cons_dist: 0.011611, loss_weight: 0.022036
[16:22:20.169] iteration 2825 : loss : 0.051465 cons_dist: 0.002548, loss_weight: 0.022036
[16:22:20.661] iteration 2826 : loss : 0.037384 cons_dist: 0.004028, loss_weight: 0.022036
[16:22:21.152] iteration 2827 : loss : 0.052818 cons_dist: 0.003691, loss_weight: 0.022036
[16:22:21.643] iteration 2828 : loss : 0.048892 cons_dist: 0.004461, loss_weight: 0.022036
[16:22:22.135] iteration 2829 : loss : 0.051589 cons_dist: 0.001801, loss_weight: 0.022036
[16:22:22.626] iteration 2830 : loss : 0.061677 cons_dist: 0.005084, loss_weight: 0.022036
[16:22:23.118] iteration 2831 : loss : 0.041831 cons_dist: 0.001769, loss_weight: 0.022036
[16:22:23.610] iteration 2832 : loss : 0.064522 cons_dist: 0.003831, loss_weight: 0.022036
[16:22:24.701] iteration 2833 : loss : 0.040865 cons_dist: 0.004974, loss_weight: 0.022036
[16:22:25.191] iteration 2834 : loss : 0.049237 cons_dist: 0.002464, loss_weight: 0.022036
[16:22:25.683] iteration 2835 : loss : 0.040720 cons_dist: 0.002197, loss_weight: 0.022036
[16:22:26.176] iteration 2836 : loss : 0.056461 cons_dist: 0.003758, loss_weight: 0.022036
[16:22:26.667] iteration 2837 : loss : 0.054136 cons_dist: 0.004916, loss_weight: 0.022036
[16:22:27.158] iteration 2838 : loss : 0.037787 cons_dist: 0.003548, loss_weight: 0.022036
[16:22:27.650] iteration 2839 : loss : 0.039510 cons_dist: 0.002901, loss_weight: 0.022036
[16:22:28.141] iteration 2840 : loss : 0.046759 cons_dist: 0.005190, loss_weight: 0.022036
[16:22:28.633] iteration 2841 : loss : 0.043941 cons_dist: 0.003752, loss_weight: 0.022036
[16:22:29.124] iteration 2842 : loss : 0.041859 cons_dist: 0.009100, loss_weight: 0.022036
[16:22:29.616] iteration 2843 : loss : 0.050579 cons_dist: 0.004539, loss_weight: 0.022036
[16:22:30.108] iteration 2844 : loss : 0.047260 cons_dist: 0.006621, loss_weight: 0.022036
[16:22:31.166] iteration 2845 : loss : 0.048952 cons_dist: 0.001963, loss_weight: 0.022036
[16:22:31.657] iteration 2846 : loss : 0.070650 cons_dist: 0.002586, loss_weight: 0.022036
[16:22:32.149] iteration 2847 : loss : 0.046858 cons_dist: 0.004353, loss_weight: 0.022036
[16:22:32.640] iteration 2848 : loss : 0.051505 cons_dist: 0.001953, loss_weight: 0.022036
[16:22:33.131] iteration 2849 : loss : 0.047625 cons_dist: 0.002700, loss_weight: 0.022036
[16:22:33.622] iteration 2850 : loss : 0.053258 cons_dist: 0.001586, loss_weight: 0.022036
[16:22:34.114] iteration 2851 : loss : 0.041408 cons_dist: 0.004379, loss_weight: 0.025205
[16:22:34.606] iteration 2852 : loss : 0.049210 cons_dist: 0.001597, loss_weight: 0.025205
[16:22:35.098] iteration 2853 : loss : 0.053949 cons_dist: 0.003053, loss_weight: 0.025205
[16:22:35.588] iteration 2854 : loss : 0.042724 cons_dist: 0.005832, loss_weight: 0.025205
[16:22:36.080] iteration 2855 : loss : 0.042012 cons_dist: 0.027642, loss_weight: 0.025205
[16:22:36.571] iteration 2856 : loss : 0.044249 cons_dist: 0.002481, loss_weight: 0.025205
[16:22:37.663] iteration 2857 : loss : 0.048764 cons_dist: 0.002410, loss_weight: 0.025205
[16:22:38.154] iteration 2858 : loss : 0.064131 cons_dist: 0.004467, loss_weight: 0.025205
[16:22:38.645] iteration 2859 : loss : 0.036741 cons_dist: 0.002407, loss_weight: 0.025205
[16:22:39.136] iteration 2860 : loss : 0.148622 cons_dist: 0.003564, loss_weight: 0.025205
[16:22:39.628] iteration 2861 : loss : 0.046254 cons_dist: 0.002264, loss_weight: 0.025205
[16:22:40.120] iteration 2862 : loss : 0.042741 cons_dist: 0.004533, loss_weight: 0.025205
[16:22:40.612] iteration 2863 : loss : 0.045413 cons_dist: 0.004336, loss_weight: 0.025205
[16:22:41.103] iteration 2864 : loss : 0.053352 cons_dist: 0.004379, loss_weight: 0.025205
[16:22:41.594] iteration 2865 : loss : 0.071751 cons_dist: 0.037188, loss_weight: 0.025205
[16:22:42.085] iteration 2866 : loss : 0.057788 cons_dist: 0.002375, loss_weight: 0.025205
[16:22:42.577] iteration 2867 : loss : 0.044467 cons_dist: 0.001983, loss_weight: 0.025205
[16:22:43.068] iteration 2868 : loss : 0.041145 cons_dist: 0.001763, loss_weight: 0.025205
[16:22:44.239] iteration 2869 : loss : 0.046342 cons_dist: 0.002639, loss_weight: 0.025205
[16:22:44.731] iteration 2870 : loss : 0.041443 cons_dist: 0.002400, loss_weight: 0.025205
[16:22:45.222] iteration 2871 : loss : 0.051960 cons_dist: 0.005154, loss_weight: 0.025205
[16:22:45.713] iteration 2872 : loss : 0.046987 cons_dist: 0.003703, loss_weight: 0.025205
[16:22:46.206] iteration 2873 : loss : 0.067982 cons_dist: 0.010536, loss_weight: 0.025205
[16:22:46.698] iteration 2874 : loss : 0.069428 cons_dist: 0.030946, loss_weight: 0.025205
[16:22:47.190] iteration 2875 : loss : 0.046374 cons_dist: 0.001258, loss_weight: 0.025205
[16:22:47.680] iteration 2876 : loss : 0.051157 cons_dist: 0.005524, loss_weight: 0.025205
[16:22:48.171] iteration 2877 : loss : 0.076894 cons_dist: 0.002595, loss_weight: 0.025205
[16:22:48.663] iteration 2878 : loss : 0.041198 cons_dist: 0.004202, loss_weight: 0.025205
[16:22:49.154] iteration 2879 : loss : 0.057354 cons_dist: 0.016635, loss_weight: 0.025205
[16:22:49.646] iteration 2880 : loss : 0.039472 cons_dist: 0.054121, loss_weight: 0.025205
[16:22:50.809] iteration 2881 : loss : 0.045468 cons_dist: 0.001778, loss_weight: 0.025205
[16:22:51.301] iteration 2882 : loss : 0.043070 cons_dist: 0.004677, loss_weight: 0.025205
[16:22:51.791] iteration 2883 : loss : 0.109843 cons_dist: 0.004881, loss_weight: 0.025205
[16:22:52.283] iteration 2884 : loss : 0.049613 cons_dist: 0.003034, loss_weight: 0.025205
[16:22:52.774] iteration 2885 : loss : 0.052631 cons_dist: 0.001458, loss_weight: 0.025205
[16:22:53.268] iteration 2886 : loss : 0.064237 cons_dist: 0.004030, loss_weight: 0.025205
[16:22:53.760] iteration 2887 : loss : 0.051251 cons_dist: 0.003539, loss_weight: 0.025205
[16:22:54.251] iteration 2888 : loss : 0.052213 cons_dist: 0.009441, loss_weight: 0.025205
[16:22:54.742] iteration 2889 : loss : 0.041880 cons_dist: 0.005032, loss_weight: 0.025205
[16:22:55.233] iteration 2890 : loss : 0.052963 cons_dist: 0.003040, loss_weight: 0.025205
[16:22:55.724] iteration 2891 : loss : 0.062830 cons_dist: 0.001838, loss_weight: 0.025205
[16:22:56.215] iteration 2892 : loss : 0.059910 cons_dist: 0.003054, loss_weight: 0.025205
[16:22:57.334] iteration 2893 : loss : 0.052340 cons_dist: 0.004812, loss_weight: 0.025205
[16:22:57.826] iteration 2894 : loss : 0.059264 cons_dist: 0.007875, loss_weight: 0.025205
[16:22:58.318] iteration 2895 : loss : 0.055457 cons_dist: 0.006582, loss_weight: 0.025205
[16:22:58.809] iteration 2896 : loss : 0.045730 cons_dist: 0.001799, loss_weight: 0.025205
[16:22:59.300] iteration 2897 : loss : 0.045765 cons_dist: 0.001389, loss_weight: 0.025205
[16:22:59.790] iteration 2898 : loss : 0.040954 cons_dist: 0.003933, loss_weight: 0.025205
[16:23:00.280] iteration 2899 : loss : 0.040242 cons_dist: 0.008397, loss_weight: 0.025205
[16:23:00.772] iteration 2900 : loss : 0.054111 cons_dist: 0.005349, loss_weight: 0.025205
[16:23:01.264] iteration 2901 : loss : 0.060125 cons_dist: 0.003324, loss_weight: 0.025205
[16:23:01.756] iteration 2902 : loss : 0.052796 cons_dist: 0.004795, loss_weight: 0.025205
[16:23:02.248] iteration 2903 : loss : 0.048257 cons_dist: 0.004272, loss_weight: 0.025205
[16:23:02.740] iteration 2904 : loss : 0.064529 cons_dist: 0.005697, loss_weight: 0.025205
[16:23:03.858] iteration 2905 : loss : 0.068294 cons_dist: 0.007046, loss_weight: 0.025205
[16:23:04.349] iteration 2906 : loss : 0.046732 cons_dist: 0.003935, loss_weight: 0.025205
[16:23:04.840] iteration 2907 : loss : 0.049604 cons_dist: 0.004469, loss_weight: 0.025205
[16:23:05.331] iteration 2908 : loss : 0.033919 cons_dist: 0.004204, loss_weight: 0.025205
[16:23:05.824] iteration 2909 : loss : 0.050459 cons_dist: 0.002640, loss_weight: 0.025205
[16:23:06.316] iteration 2910 : loss : 0.038833 cons_dist: 0.004183, loss_weight: 0.025205
[16:23:06.808] iteration 2911 : loss : 0.072686 cons_dist: 0.002457, loss_weight: 0.025205
[16:23:07.299] iteration 2912 : loss : 0.044376 cons_dist: 0.001304, loss_weight: 0.025205
[16:23:07.790] iteration 2913 : loss : 0.043286 cons_dist: 0.002200, loss_weight: 0.025205
[16:23:08.280] iteration 2914 : loss : 0.076409 cons_dist: 0.007536, loss_weight: 0.025205
[16:23:08.772] iteration 2915 : loss : 0.048752 cons_dist: 0.004153, loss_weight: 0.025205
[16:23:09.262] iteration 2916 : loss : 0.047341 cons_dist: 0.004055, loss_weight: 0.025205
[16:23:10.441] iteration 2917 : loss : 0.052828 cons_dist: 0.004083, loss_weight: 0.025205
[16:23:10.934] iteration 2918 : loss : 0.046215 cons_dist: 0.002552, loss_weight: 0.025205
[16:23:11.426] iteration 2919 : loss : 0.055008 cons_dist: 0.003986, loss_weight: 0.025205
[16:23:11.918] iteration 2920 : loss : 0.040196 cons_dist: 0.006244, loss_weight: 0.025205
[16:23:12.410] iteration 2921 : loss : 0.043571 cons_dist: 0.001542, loss_weight: 0.025205
[16:23:12.901] iteration 2922 : loss : 0.041314 cons_dist: 0.002988, loss_weight: 0.025205
[16:23:13.391] iteration 2923 : loss : 0.047622 cons_dist: 0.003177, loss_weight: 0.025205
[16:23:13.882] iteration 2924 : loss : 0.102105 cons_dist: 0.028649, loss_weight: 0.025205
[16:23:14.373] iteration 2925 : loss : 0.049182 cons_dist: 0.006489, loss_weight: 0.025205
[16:23:14.864] iteration 2926 : loss : 0.050843 cons_dist: 0.004414, loss_weight: 0.025205
[16:23:15.367] iteration 2927 : loss : 0.061539 cons_dist: 0.010369, loss_weight: 0.025205
[16:23:15.859] iteration 2928 : loss : 0.050071 cons_dist: 0.006059, loss_weight: 0.025205
[16:23:16.964] iteration 2929 : loss : 0.039353 cons_dist: 0.007441, loss_weight: 0.025205
[16:23:17.457] iteration 2930 : loss : 0.122312 cons_dist: 0.009934, loss_weight: 0.025205
[16:23:17.948] iteration 2931 : loss : 0.057247 cons_dist: 0.001943, loss_weight: 0.025205
[16:23:18.439] iteration 2932 : loss : 0.058202 cons_dist: 0.006926, loss_weight: 0.025205
[16:23:18.930] iteration 2933 : loss : 0.052983 cons_dist: 0.003595, loss_weight: 0.025205
[16:23:19.423] iteration 2934 : loss : 0.043577 cons_dist: 0.001785, loss_weight: 0.025205
[16:23:19.916] iteration 2935 : loss : 0.029706 cons_dist: 0.006758, loss_weight: 0.025205
[16:23:20.408] iteration 2936 : loss : 0.059358 cons_dist: 0.011323, loss_weight: 0.025205
[16:23:20.901] iteration 2937 : loss : 0.048261 cons_dist: 0.003998, loss_weight: 0.025205
[16:23:21.392] iteration 2938 : loss : 0.047093 cons_dist: 0.005073, loss_weight: 0.025205
[16:23:21.884] iteration 2939 : loss : 0.053007 cons_dist: 0.002345, loss_weight: 0.025205
[16:23:22.374] iteration 2940 : loss : 0.100226 cons_dist: 0.009893, loss_weight: 0.025205
[16:23:23.484] iteration 2941 : loss : 0.042498 cons_dist: 0.001596, loss_weight: 0.025205
[16:23:23.976] iteration 2942 : loss : 0.048057 cons_dist: 0.002450, loss_weight: 0.025205
[16:23:24.467] iteration 2943 : loss : 0.052792 cons_dist: 0.002181, loss_weight: 0.025205
[16:23:24.957] iteration 2944 : loss : 0.041872 cons_dist: 0.001470, loss_weight: 0.025205
[16:23:25.448] iteration 2945 : loss : 0.054963 cons_dist: 0.001060, loss_weight: 0.025205
[16:23:25.939] iteration 2946 : loss : 0.060164 cons_dist: 0.009188, loss_weight: 0.025205
[16:23:26.429] iteration 2947 : loss : 0.053679 cons_dist: 0.002472, loss_weight: 0.025205
[16:23:26.921] iteration 2948 : loss : 0.051388 cons_dist: 0.001307, loss_weight: 0.025205
[16:23:27.412] iteration 2949 : loss : 0.041955 cons_dist: 0.001864, loss_weight: 0.025205
[16:23:27.904] iteration 2950 : loss : 0.041405 cons_dist: 0.002342, loss_weight: 0.025205
[16:23:28.397] iteration 2951 : loss : 0.041176 cons_dist: 0.001057, loss_weight: 0.025205
[16:23:28.889] iteration 2952 : loss : 0.051210 cons_dist: 0.003292, loss_weight: 0.025205
[16:23:29.991] iteration 2953 : loss : 0.045447 cons_dist: 0.007958, loss_weight: 0.025205
[16:23:30.483] iteration 2954 : loss : 0.038311 cons_dist: 0.002243, loss_weight: 0.025205
[16:23:30.974] iteration 2955 : loss : 0.040436 cons_dist: 0.005419, loss_weight: 0.025205
[16:23:31.465] iteration 2956 : loss : 0.049140 cons_dist: 0.010401, loss_weight: 0.025205
[16:23:31.956] iteration 2957 : loss : 0.061172 cons_dist: 0.003865, loss_weight: 0.025205
[16:23:32.448] iteration 2958 : loss : 0.030966 cons_dist: 0.006081, loss_weight: 0.025205
[16:23:32.940] iteration 2959 : loss : 0.093944 cons_dist: 0.001812, loss_weight: 0.025205
[16:23:33.433] iteration 2960 : loss : 0.036526 cons_dist: 0.020208, loss_weight: 0.025205
[16:23:33.925] iteration 2961 : loss : 0.050036 cons_dist: 0.003556, loss_weight: 0.025205
[16:23:34.416] iteration 2962 : loss : 0.046105 cons_dist: 0.005199, loss_weight: 0.025205
[16:23:34.907] iteration 2963 : loss : 0.049686 cons_dist: 0.001760, loss_weight: 0.025205
[16:23:35.398] iteration 2964 : loss : 0.051642 cons_dist: 0.003234, loss_weight: 0.025205
[16:23:36.498] iteration 2965 : loss : 0.046344 cons_dist: 0.003167, loss_weight: 0.025205
[16:23:36.991] iteration 2966 : loss : 0.041551 cons_dist: 0.007793, loss_weight: 0.025205
[16:23:37.483] iteration 2967 : loss : 0.039356 cons_dist: 0.002544, loss_weight: 0.025205
[16:23:37.975] iteration 2968 : loss : 0.085364 cons_dist: 0.008251, loss_weight: 0.025205
[16:23:38.467] iteration 2969 : loss : 0.044629 cons_dist: 0.001434, loss_weight: 0.025205
[16:23:38.958] iteration 2970 : loss : 0.051519 cons_dist: 0.006266, loss_weight: 0.025205
[16:23:39.449] iteration 2971 : loss : 0.037097 cons_dist: 0.002795, loss_weight: 0.025205
[16:23:39.940] iteration 2972 : loss : 0.065939 cons_dist: 0.007197, loss_weight: 0.025205
[16:23:40.432] iteration 2973 : loss : 0.050534 cons_dist: 0.002722, loss_weight: 0.025205
[16:23:40.924] iteration 2974 : loss : 0.036568 cons_dist: 0.012706, loss_weight: 0.025205
[16:23:41.417] iteration 2975 : loss : 0.038404 cons_dist: 0.002876, loss_weight: 0.025205
[16:23:41.909] iteration 2976 : loss : 0.049546 cons_dist: 0.005914, loss_weight: 0.025205
[16:23:43.025] iteration 2977 : loss : 0.059235 cons_dist: 0.016620, loss_weight: 0.025205
[16:23:43.517] iteration 2978 : loss : 0.044140 cons_dist: 0.006600, loss_weight: 0.025205
[16:23:44.008] iteration 2979 : loss : 0.057386 cons_dist: 0.002326, loss_weight: 0.025205
[16:23:44.499] iteration 2980 : loss : 0.057855 cons_dist: 0.001336, loss_weight: 0.025205
[16:23:44.991] iteration 2981 : loss : 0.047365 cons_dist: 0.004381, loss_weight: 0.025205
[16:23:45.484] iteration 2982 : loss : 0.039953 cons_dist: 0.003048, loss_weight: 0.025205
[16:23:45.976] iteration 2983 : loss : 0.043452 cons_dist: 0.002588, loss_weight: 0.025205
[16:23:46.468] iteration 2984 : loss : 0.058303 cons_dist: 0.009044, loss_weight: 0.025205
[16:23:46.959] iteration 2985 : loss : 0.052519 cons_dist: 0.006727, loss_weight: 0.025205
[16:23:47.451] iteration 2986 : loss : 0.044605 cons_dist: 0.002308, loss_weight: 0.025205
[16:23:47.942] iteration 2987 : loss : 0.042717 cons_dist: 0.045984, loss_weight: 0.025205
[16:23:48.435] iteration 2988 : loss : 0.056428 cons_dist: 0.038991, loss_weight: 0.025205
[16:23:49.628] iteration 2989 : loss : 0.041978 cons_dist: 0.005688, loss_weight: 0.025205
[16:23:50.120] iteration 2990 : loss : 0.040585 cons_dist: 0.007250, loss_weight: 0.025205
[16:23:50.611] iteration 2991 : loss : 0.053102 cons_dist: 0.002557, loss_weight: 0.025205
[16:23:51.104] iteration 2992 : loss : 0.046339 cons_dist: 0.008908, loss_weight: 0.025205
[16:23:51.596] iteration 2993 : loss : 0.048702 cons_dist: 0.001654, loss_weight: 0.025205
[16:23:52.087] iteration 2994 : loss : 0.045892 cons_dist: 0.003818, loss_weight: 0.025205
[16:23:52.578] iteration 2995 : loss : 0.046382 cons_dist: 0.002513, loss_weight: 0.025205
[16:23:53.069] iteration 2996 : loss : 0.057710 cons_dist: 0.005692, loss_weight: 0.025205
[16:23:53.561] iteration 2997 : loss : 0.044983 cons_dist: 0.002051, loss_weight: 0.025205
[16:23:54.051] iteration 2998 : loss : 0.060726 cons_dist: 0.002854, loss_weight: 0.025205
[16:23:54.543] iteration 2999 : loss : 0.044701 cons_dist: 0.004679, loss_weight: 0.025205
[16:23:55.036] iteration 3000 : loss : 0.082252 cons_dist: 0.003426, loss_weight: 0.025205
[16:23:57.365] iteration 3001 : loss : 0.039446 cons_dist: 0.001366, loss_weight: 0.028650
[16:23:57.859] iteration 3002 : loss : 0.048753 cons_dist: 0.003493, loss_weight: 0.028650
[16:23:58.351] iteration 3003 : loss : 0.057011 cons_dist: 0.000869, loss_weight: 0.028650
[16:23:58.843] iteration 3004 : loss : 0.048255 cons_dist: 0.007372, loss_weight: 0.028650
[16:23:59.334] iteration 3005 : loss : 0.059842 cons_dist: 0.003710, loss_weight: 0.028650
[16:23:59.825] iteration 3006 : loss : 0.134735 cons_dist: 0.004464, loss_weight: 0.028650
[16:24:00.315] iteration 3007 : loss : 0.040426 cons_dist: 0.010015, loss_weight: 0.028650
[16:24:00.807] iteration 3008 : loss : 0.062450 cons_dist: 0.003705, loss_weight: 0.028650
[16:24:01.299] iteration 3009 : loss : 0.045561 cons_dist: 0.001430, loss_weight: 0.028650
[16:24:01.791] iteration 3010 : loss : 0.041218 cons_dist: 0.006919, loss_weight: 0.028650
[16:24:02.282] iteration 3011 : loss : 0.048632 cons_dist: 0.004013, loss_weight: 0.028650
[16:24:02.773] iteration 3012 : loss : 0.049565 cons_dist: 0.001091, loss_weight: 0.028650
[16:24:03.880] iteration 3013 : loss : 0.061909 cons_dist: 0.004776, loss_weight: 0.028650
[16:24:04.372] iteration 3014 : loss : 0.040466 cons_dist: 0.003766, loss_weight: 0.028650
[16:24:04.864] iteration 3015 : loss : 0.040765 cons_dist: 0.015791, loss_weight: 0.028650
[16:24:05.356] iteration 3016 : loss : 0.054845 cons_dist: 0.003829, loss_weight: 0.028650
[16:24:05.847] iteration 3017 : loss : 0.044428 cons_dist: 0.002698, loss_weight: 0.028650
[16:24:06.337] iteration 3018 : loss : 0.036761 cons_dist: 0.003426, loss_weight: 0.028650
[16:24:06.829] iteration 3019 : loss : 0.047619 cons_dist: 0.002380, loss_weight: 0.028650
[16:24:07.319] iteration 3020 : loss : 0.061544 cons_dist: 0.014487, loss_weight: 0.028650
[16:24:07.810] iteration 3021 : loss : 0.043883 cons_dist: 0.005469, loss_weight: 0.028650
[16:24:08.302] iteration 3022 : loss : 0.035555 cons_dist: 0.001089, loss_weight: 0.028650
[16:24:08.794] iteration 3023 : loss : 0.035821 cons_dist: 0.006336, loss_weight: 0.028650
[16:24:09.287] iteration 3024 : loss : 0.056027 cons_dist: 0.003379, loss_weight: 0.028650
[16:24:10.346] iteration 3025 : loss : 0.046245 cons_dist: 0.018914, loss_weight: 0.028650
[16:24:10.837] iteration 3026 : loss : 0.072053 cons_dist: 0.002985, loss_weight: 0.028650
[16:24:11.328] iteration 3027 : loss : 0.052129 cons_dist: 0.004836, loss_weight: 0.028650
[16:24:11.820] iteration 3028 : loss : 0.167633 cons_dist: 0.001866, loss_weight: 0.028650
[16:24:12.312] iteration 3029 : loss : 0.043509 cons_dist: 0.006378, loss_weight: 0.028650
[16:24:12.805] iteration 3030 : loss : 0.038453 cons_dist: 0.012768, loss_weight: 0.028650
[16:24:13.296] iteration 3031 : loss : 0.045670 cons_dist: 0.004055, loss_weight: 0.028650
[16:24:13.788] iteration 3032 : loss : 0.039639 cons_dist: 0.005150, loss_weight: 0.028650
[16:24:14.279] iteration 3033 : loss : 0.050301 cons_dist: 0.002449, loss_weight: 0.028650
[16:24:14.770] iteration 3034 : loss : 0.046451 cons_dist: 0.004078, loss_weight: 0.028650
[16:24:15.261] iteration 3035 : loss : 0.054003 cons_dist: 0.004352, loss_weight: 0.028650
[16:24:15.753] iteration 3036 : loss : 0.066872 cons_dist: 0.004622, loss_weight: 0.028650
[16:24:16.887] iteration 3037 : loss : 0.046672 cons_dist: 0.040066, loss_weight: 0.028650
[16:24:17.379] iteration 3038 : loss : 0.028820 cons_dist: 0.003724, loss_weight: 0.028650
[16:24:17.871] iteration 3039 : loss : 0.045850 cons_dist: 0.025690, loss_weight: 0.028650
[16:24:18.364] iteration 3040 : loss : 0.043741 cons_dist: 0.003371, loss_weight: 0.028650
[16:24:18.856] iteration 3041 : loss : 0.244564 cons_dist: 0.002270, loss_weight: 0.028650
[16:24:19.348] iteration 3042 : loss : 0.039952 cons_dist: 0.007722, loss_weight: 0.028650
[16:24:19.839] iteration 3043 : loss : 0.049201 cons_dist: 0.002072, loss_weight: 0.028650
[16:24:20.330] iteration 3044 : loss : 0.045057 cons_dist: 0.005515, loss_weight: 0.028650
[16:24:20.822] iteration 3045 : loss : 0.036477 cons_dist: 0.003545, loss_weight: 0.028650
[16:24:21.315] iteration 3046 : loss : 0.052047 cons_dist: 0.012194, loss_weight: 0.028650
[16:24:21.808] iteration 3047 : loss : 0.059522 cons_dist: 0.001550, loss_weight: 0.028650
[16:24:22.299] iteration 3048 : loss : 0.069817 cons_dist: 0.003143, loss_weight: 0.028650
[16:24:23.374] iteration 3049 : loss : 0.053141 cons_dist: 0.004099, loss_weight: 0.028650
[16:24:23.865] iteration 3050 : loss : 0.041353 cons_dist: 0.005378, loss_weight: 0.028650
[16:24:24.356] iteration 3051 : loss : 0.043580 cons_dist: 0.002780, loss_weight: 0.028650
[16:24:24.847] iteration 3052 : loss : 0.059115 cons_dist: 0.002752, loss_weight: 0.028650
[16:24:25.339] iteration 3053 : loss : 0.039376 cons_dist: 0.004010, loss_weight: 0.028650
[16:24:25.830] iteration 3054 : loss : 0.046188 cons_dist: 0.003330, loss_weight: 0.028650
[16:24:26.322] iteration 3055 : loss : 0.044585 cons_dist: 0.009584, loss_weight: 0.028650
[16:24:26.814] iteration 3056 : loss : 0.038741 cons_dist: 0.005690, loss_weight: 0.028650
[16:24:27.306] iteration 3057 : loss : 0.052379 cons_dist: 0.002333, loss_weight: 0.028650
[16:24:27.797] iteration 3058 : loss : 0.047372 cons_dist: 0.008934, loss_weight: 0.028650
[16:24:28.288] iteration 3059 : loss : 0.062336 cons_dist: 0.003653, loss_weight: 0.028650
[16:24:28.779] iteration 3060 : loss : 0.041111 cons_dist: 0.003564, loss_weight: 0.028650
[16:24:29.938] iteration 3061 : loss : 0.045129 cons_dist: 0.001141, loss_weight: 0.028650
[16:24:30.428] iteration 3062 : loss : 0.038595 cons_dist: 0.002285, loss_weight: 0.028650
[16:24:30.920] iteration 3063 : loss : 0.046377 cons_dist: 0.003267, loss_weight: 0.028650
[16:24:31.411] iteration 3064 : loss : 0.062942 cons_dist: 0.002824, loss_weight: 0.028650
[16:24:31.904] iteration 3065 : loss : 0.052866 cons_dist: 0.002487, loss_weight: 0.028650
[16:24:32.396] iteration 3066 : loss : 0.053190 cons_dist: 0.004294, loss_weight: 0.028650
[16:24:32.889] iteration 3067 : loss : 0.046193 cons_dist: 0.013153, loss_weight: 0.028650
[16:24:33.380] iteration 3068 : loss : 0.047207 cons_dist: 0.004087, loss_weight: 0.028650
[16:24:33.871] iteration 3069 : loss : 0.041897 cons_dist: 0.002131, loss_weight: 0.028650
[16:24:34.363] iteration 3070 : loss : 0.047510 cons_dist: 0.006164, loss_weight: 0.028650
[16:24:34.855] iteration 3071 : loss : 0.037966 cons_dist: 0.002850, loss_weight: 0.028650
[16:24:35.347] iteration 3072 : loss : 0.042199 cons_dist: 0.001418, loss_weight: 0.028650
[16:24:36.504] iteration 3073 : loss : 0.058358 cons_dist: 0.048254, loss_weight: 0.028650
[16:24:36.992] iteration 3074 : loss : 0.047185 cons_dist: 0.004412, loss_weight: 0.028650
[16:24:37.484] iteration 3075 : loss : 0.049855 cons_dist: 0.002580, loss_weight: 0.028650
[16:24:37.976] iteration 3076 : loss : 0.036011 cons_dist: 0.001780, loss_weight: 0.028650
[16:24:38.468] iteration 3077 : loss : 0.052788 cons_dist: 0.003498, loss_weight: 0.028650
[16:24:38.960] iteration 3078 : loss : 0.045820 cons_dist: 0.001368, loss_weight: 0.028650
[16:24:39.451] iteration 3079 : loss : 0.038933 cons_dist: 0.002122, loss_weight: 0.028650
[16:24:39.943] iteration 3080 : loss : 0.060948 cons_dist: 0.003459, loss_weight: 0.028650
[16:24:40.434] iteration 3081 : loss : 0.056504 cons_dist: 0.001395, loss_weight: 0.028650
[16:24:40.925] iteration 3082 : loss : 0.046564 cons_dist: 0.050742, loss_weight: 0.028650
[16:24:41.417] iteration 3083 : loss : 0.052330 cons_dist: 0.002602, loss_weight: 0.028650
[16:24:41.909] iteration 3084 : loss : 0.043997 cons_dist: 0.003155, loss_weight: 0.028650
[16:24:43.026] iteration 3085 : loss : 0.041151 cons_dist: 0.003567, loss_weight: 0.028650
[16:24:43.513] iteration 3086 : loss : 0.072305 cons_dist: 0.032007, loss_weight: 0.028650
[16:24:44.005] iteration 3087 : loss : 0.039167 cons_dist: 0.002849, loss_weight: 0.028650
[16:24:44.497] iteration 3088 : loss : 0.057138 cons_dist: 0.001542, loss_weight: 0.028650
[16:24:44.988] iteration 3089 : loss : 0.041308 cons_dist: 0.002026, loss_weight: 0.028650
[16:24:45.479] iteration 3090 : loss : 0.041703 cons_dist: 0.001355, loss_weight: 0.028650
[16:24:45.970] iteration 3091 : loss : 0.044901 cons_dist: 0.002553, loss_weight: 0.028650
[16:24:46.462] iteration 3092 : loss : 0.049367 cons_dist: 0.004834, loss_weight: 0.028650
[16:24:46.954] iteration 3093 : loss : 0.034117 cons_dist: 0.002123, loss_weight: 0.028650
[16:24:47.446] iteration 3094 : loss : 0.043950 cons_dist: 0.001515, loss_weight: 0.028650
[16:24:47.938] iteration 3095 : loss : 0.049236 cons_dist: 0.001783, loss_weight: 0.028650
[16:24:48.430] iteration 3096 : loss : 0.044970 cons_dist: 0.001877, loss_weight: 0.028650
[16:24:49.567] iteration 3097 : loss : 0.083953 cons_dist: 0.001982, loss_weight: 0.028650
[16:24:50.057] iteration 3098 : loss : 0.112835 cons_dist: 0.001454, loss_weight: 0.028650
[16:24:50.549] iteration 3099 : loss : 0.048290 cons_dist: 0.003554, loss_weight: 0.028650
[16:24:51.039] iteration 3100 : loss : 0.095977 cons_dist: 0.002835, loss_weight: 0.028650
[16:24:51.530] iteration 3101 : loss : 0.053136 cons_dist: 0.003306, loss_weight: 0.028650
[16:24:52.022] iteration 3102 : loss : 0.044000 cons_dist: 0.001874, loss_weight: 0.028650
[16:24:52.514] iteration 3103 : loss : 0.173394 cons_dist: 0.003992, loss_weight: 0.028650
[16:24:53.005] iteration 3104 : loss : 0.060135 cons_dist: 0.004728, loss_weight: 0.028650
[16:24:53.497] iteration 3105 : loss : 0.034417 cons_dist: 0.004942, loss_weight: 0.028650
[16:24:53.989] iteration 3106 : loss : 0.036347 cons_dist: 0.002624, loss_weight: 0.028650
[16:24:54.480] iteration 3107 : loss : 0.047360 cons_dist: 0.001686, loss_weight: 0.028650
[16:24:54.971] iteration 3108 : loss : 0.050670 cons_dist: 0.003147, loss_weight: 0.028650
[16:24:56.151] iteration 3109 : loss : 0.065796 cons_dist: 0.004962, loss_weight: 0.028650
[16:24:56.643] iteration 3110 : loss : 0.057424 cons_dist: 0.002646, loss_weight: 0.028650
[16:24:57.135] iteration 3111 : loss : 0.053974 cons_dist: 0.011406, loss_weight: 0.028650
[16:24:57.627] iteration 3112 : loss : 0.058738 cons_dist: 0.006688, loss_weight: 0.028650
[16:24:58.118] iteration 3113 : loss : 0.053338 cons_dist: 0.002038, loss_weight: 0.028650
[16:24:58.609] iteration 3114 : loss : 0.053189 cons_dist: 0.002785, loss_weight: 0.028650
[16:24:59.100] iteration 3115 : loss : 0.034705 cons_dist: 0.008895, loss_weight: 0.028650
[16:24:59.591] iteration 3116 : loss : 0.048485 cons_dist: 0.002290, loss_weight: 0.028650
[16:25:00.083] iteration 3117 : loss : 0.044945 cons_dist: 0.003441, loss_weight: 0.028650
[16:25:00.575] iteration 3118 : loss : 0.036731 cons_dist: 0.001951, loss_weight: 0.028650
[16:25:01.067] iteration 3119 : loss : 0.063191 cons_dist: 0.003162, loss_weight: 0.028650
[16:25:01.560] iteration 3120 : loss : 0.050243 cons_dist: 0.003806, loss_weight: 0.028650
[16:25:02.682] iteration 3121 : loss : 0.029133 cons_dist: 0.002101, loss_weight: 0.028650
[16:25:03.172] iteration 3122 : loss : 0.045483 cons_dist: 0.006487, loss_weight: 0.028650
[16:25:03.664] iteration 3123 : loss : 0.045653 cons_dist: 0.001827, loss_weight: 0.028650
[16:25:04.156] iteration 3124 : loss : 0.041348 cons_dist: 0.001973, loss_weight: 0.028650
[16:25:04.649] iteration 3125 : loss : 0.046086 cons_dist: 0.001265, loss_weight: 0.028650
[16:25:05.142] iteration 3126 : loss : 0.053405 cons_dist: 0.004577, loss_weight: 0.028650
[16:25:05.633] iteration 3127 : loss : 0.053434 cons_dist: 0.005974, loss_weight: 0.028650
[16:25:06.124] iteration 3128 : loss : 0.054897 cons_dist: 0.002071, loss_weight: 0.028650
[16:25:06.616] iteration 3129 : loss : 0.050540 cons_dist: 0.001156, loss_weight: 0.028650
[16:25:07.107] iteration 3130 : loss : 0.047569 cons_dist: 0.003296, loss_weight: 0.028650
[16:25:07.599] iteration 3131 : loss : 0.050614 cons_dist: 0.001540, loss_weight: 0.028650
[16:25:08.091] iteration 3132 : loss : 0.051187 cons_dist: 0.002389, loss_weight: 0.028650
[16:25:09.287] iteration 3133 : loss : 0.047335 cons_dist: 0.002548, loss_weight: 0.028650
[16:25:09.778] iteration 3134 : loss : 0.038401 cons_dist: 0.004350, loss_weight: 0.028650
[16:25:10.270] iteration 3135 : loss : 0.037010 cons_dist: 0.035169, loss_weight: 0.028650
[16:25:10.761] iteration 3136 : loss : 0.041664 cons_dist: 0.004460, loss_weight: 0.028650
[16:25:11.252] iteration 3137 : loss : 0.057804 cons_dist: 0.006283, loss_weight: 0.028650
[16:25:11.744] iteration 3138 : loss : 0.037015 cons_dist: 0.002626, loss_weight: 0.028650
[16:25:12.235] iteration 3139 : loss : 0.068933 cons_dist: 0.004416, loss_weight: 0.028650
[16:25:12.728] iteration 3140 : loss : 0.045810 cons_dist: 0.003295, loss_weight: 0.028650
[16:25:13.220] iteration 3141 : loss : 0.037696 cons_dist: 0.002602, loss_weight: 0.028650
[16:25:13.712] iteration 3142 : loss : 0.053970 cons_dist: 0.006038, loss_weight: 0.028650
[16:25:14.202] iteration 3143 : loss : 0.050377 cons_dist: 0.002926, loss_weight: 0.028650
[16:25:14.694] iteration 3144 : loss : 0.043991 cons_dist: 0.003622, loss_weight: 0.028650
[16:25:15.792] iteration 3145 : loss : 0.042632 cons_dist: 0.001423, loss_weight: 0.028650
[16:25:16.283] iteration 3146 : loss : 0.046968 cons_dist: 0.005124, loss_weight: 0.028650
[16:25:16.774] iteration 3147 : loss : 0.058215 cons_dist: 0.004914, loss_weight: 0.028650
[16:25:17.265] iteration 3148 : loss : 0.052181 cons_dist: 0.014554, loss_weight: 0.028650
[16:25:17.757] iteration 3149 : loss : 0.041784 cons_dist: 0.014008, loss_weight: 0.028650
[16:25:18.249] iteration 3150 : loss : 0.045824 cons_dist: 0.010904, loss_weight: 0.028650
[16:25:18.740] iteration 3151 : loss : 0.046029 cons_dist: 0.003717, loss_weight: 0.032364
[16:25:19.231] iteration 3152 : loss : 0.288426 cons_dist: 0.008236, loss_weight: 0.032364
[16:25:19.723] iteration 3153 : loss : 0.042727 cons_dist: 0.004532, loss_weight: 0.032364
[16:25:20.213] iteration 3154 : loss : 0.050037 cons_dist: 0.002567, loss_weight: 0.032364
[16:25:20.705] iteration 3155 : loss : 0.050055 cons_dist: 0.005982, loss_weight: 0.032364
[16:25:21.195] iteration 3156 : loss : 0.044020 cons_dist: 0.008751, loss_weight: 0.032364
[16:25:22.440] iteration 3157 : loss : 0.043710 cons_dist: 0.003074, loss_weight: 0.032364
[16:25:22.932] iteration 3158 : loss : 0.044001 cons_dist: 0.001963, loss_weight: 0.032364
[16:25:23.424] iteration 3159 : loss : 0.057715 cons_dist: 0.003934, loss_weight: 0.032364
[16:25:23.916] iteration 3160 : loss : 0.065527 cons_dist: 0.001597, loss_weight: 0.032364
[16:25:24.406] iteration 3161 : loss : 0.049961 cons_dist: 0.003729, loss_weight: 0.032364
[16:25:24.897] iteration 3162 : loss : 0.039726 cons_dist: 0.001447, loss_weight: 0.032364
[16:25:25.389] iteration 3163 : loss : 0.040112 cons_dist: 0.024904, loss_weight: 0.032364
[16:25:25.882] iteration 3164 : loss : 0.047630 cons_dist: 0.002058, loss_weight: 0.032364
[16:25:26.374] iteration 3165 : loss : 0.044448 cons_dist: 0.007823, loss_weight: 0.032364
[16:25:26.867] iteration 3166 : loss : 0.032381 cons_dist: 0.001508, loss_weight: 0.032364
[16:25:27.359] iteration 3167 : loss : 0.054412 cons_dist: 0.000814, loss_weight: 0.032364
[16:25:27.851] iteration 3168 : loss : 0.035377 cons_dist: 0.056024, loss_weight: 0.032364
[16:25:28.887] iteration 3169 : loss : 0.049733 cons_dist: 0.002551, loss_weight: 0.032364
[16:25:29.378] iteration 3170 : loss : 0.060312 cons_dist: 0.001019, loss_weight: 0.032364
[16:25:29.868] iteration 3171 : loss : 0.242151 cons_dist: 0.001394, loss_weight: 0.032364
[16:25:30.359] iteration 3172 : loss : 0.052323 cons_dist: 0.002068, loss_weight: 0.032364
[16:25:30.851] iteration 3173 : loss : 0.034384 cons_dist: 0.005729, loss_weight: 0.032364
[16:25:31.343] iteration 3174 : loss : 0.051667 cons_dist: 0.006840, loss_weight: 0.032364
[16:25:31.835] iteration 3175 : loss : 0.032544 cons_dist: 0.001946, loss_weight: 0.032364
[16:25:32.326] iteration 3176 : loss : 0.044369 cons_dist: 0.006607, loss_weight: 0.032364
[16:25:32.818] iteration 3177 : loss : 0.055800 cons_dist: 0.003066, loss_weight: 0.032364
[16:25:33.309] iteration 3178 : loss : 0.046947 cons_dist: 0.002118, loss_weight: 0.032364
[16:25:33.801] iteration 3179 : loss : 0.033802 cons_dist: 0.000688, loss_weight: 0.032364
[16:25:34.294] iteration 3180 : loss : 0.043596 cons_dist: 0.004378, loss_weight: 0.032364
[16:25:35.402] iteration 3181 : loss : 0.045138 cons_dist: 0.005807, loss_weight: 0.032364
[16:25:35.892] iteration 3182 : loss : 0.037204 cons_dist: 0.005023, loss_weight: 0.032364
[16:25:36.383] iteration 3183 : loss : 0.038348 cons_dist: 0.001046, loss_weight: 0.032364
[16:25:36.874] iteration 3184 : loss : 0.033558 cons_dist: 0.002416, loss_weight: 0.032364
[16:25:37.367] iteration 3185 : loss : 0.051139 cons_dist: 0.004092, loss_weight: 0.032364
[16:25:37.858] iteration 3186 : loss : 0.043653 cons_dist: 0.003410, loss_weight: 0.032364
[16:25:38.351] iteration 3187 : loss : 0.039756 cons_dist: 0.003809, loss_weight: 0.032364
[16:25:38.843] iteration 3188 : loss : 0.039413 cons_dist: 0.006866, loss_weight: 0.032364
[16:25:39.335] iteration 3189 : loss : 0.047544 cons_dist: 0.001281, loss_weight: 0.032364
[16:25:39.826] iteration 3190 : loss : 0.043319 cons_dist: 0.005429, loss_weight: 0.032364
[16:25:40.317] iteration 3191 : loss : 0.062415 cons_dist: 0.003768, loss_weight: 0.032364
[16:25:40.809] iteration 3192 : loss : 0.037126 cons_dist: 0.011085, loss_weight: 0.032364
[16:25:41.856] iteration 3193 : loss : 0.039284 cons_dist: 0.003037, loss_weight: 0.032364
[16:25:42.347] iteration 3194 : loss : 0.035197 cons_dist: 0.001284, loss_weight: 0.032364
[16:25:42.839] iteration 3195 : loss : 0.042643 cons_dist: 0.000723, loss_weight: 0.032364
[16:25:43.330] iteration 3196 : loss : 0.055095 cons_dist: 0.005986, loss_weight: 0.032364
[16:25:43.820] iteration 3197 : loss : 0.044232 cons_dist: 0.002563, loss_weight: 0.032364
[16:25:44.311] iteration 3198 : loss : 0.037738 cons_dist: 0.004380, loss_weight: 0.032364
[16:25:44.802] iteration 3199 : loss : 0.060457 cons_dist: 0.001864, loss_weight: 0.032364
[16:25:45.295] iteration 3200 : loss : 0.034579 cons_dist: 0.002154, loss_weight: 0.032364
[16:25:46.615] save best model to model/LA_vnet_25_labeled/MT/iter_3200_dice_0.927573561668396.pth
[16:25:47.107] iteration 3201 : loss : 0.063284 cons_dist: 0.004684, loss_weight: 0.032364
[16:25:47.598] iteration 3202 : loss : 0.049652 cons_dist: 0.002750, loss_weight: 0.032364
[16:25:48.089] iteration 3203 : loss : 0.036801 cons_dist: 0.000936, loss_weight: 0.032364
[16:25:48.581] iteration 3204 : loss : 0.041759 cons_dist: 0.005431, loss_weight: 0.032364
[16:25:49.624] iteration 3205 : loss : 0.045349 cons_dist: 0.002835, loss_weight: 0.032364
[16:25:50.116] iteration 3206 : loss : 0.050608 cons_dist: 0.001841, loss_weight: 0.032364
[16:25:50.608] iteration 3207 : loss : 0.037281 cons_dist: 0.004514, loss_weight: 0.032364
[16:25:51.099] iteration 3208 : loss : 0.036534 cons_dist: 0.013902, loss_weight: 0.032364
[16:25:51.592] iteration 3209 : loss : 0.052804 cons_dist: 0.001912, loss_weight: 0.032364
[16:25:52.083] iteration 3210 : loss : 0.047738 cons_dist: 0.006005, loss_weight: 0.032364
[16:25:52.574] iteration 3211 : loss : 0.053640 cons_dist: 0.002680, loss_weight: 0.032364
[16:25:53.066] iteration 3212 : loss : 0.041743 cons_dist: 0.003632, loss_weight: 0.032364
[16:25:53.557] iteration 3213 : loss : 0.052916 cons_dist: 0.005886, loss_weight: 0.032364
[16:25:54.049] iteration 3214 : loss : 0.057769 cons_dist: 0.003772, loss_weight: 0.032364
[16:25:54.542] iteration 3215 : loss : 0.042940 cons_dist: 0.004574, loss_weight: 0.032364
[16:25:55.033] iteration 3216 : loss : 0.053441 cons_dist: 0.003179, loss_weight: 0.032364
[16:25:56.155] iteration 3217 : loss : 0.043582 cons_dist: 0.002453, loss_weight: 0.032364
[16:25:56.646] iteration 3218 : loss : 0.092518 cons_dist: 0.004303, loss_weight: 0.032364
[16:25:57.138] iteration 3219 : loss : 0.052979 cons_dist: 0.004184, loss_weight: 0.032364
[16:25:57.630] iteration 3220 : loss : 0.035593 cons_dist: 0.002318, loss_weight: 0.032364
[16:25:58.122] iteration 3221 : loss : 0.055012 cons_dist: 0.003526, loss_weight: 0.032364
[16:25:58.614] iteration 3222 : loss : 0.038940 cons_dist: 0.007010, loss_weight: 0.032364
[16:25:59.106] iteration 3223 : loss : 0.043835 cons_dist: 0.002119, loss_weight: 0.032364
[16:25:59.598] iteration 3224 : loss : 0.066351 cons_dist: 0.003578, loss_weight: 0.032364
[16:26:00.089] iteration 3225 : loss : 0.040436 cons_dist: 0.005427, loss_weight: 0.032364
[16:26:00.581] iteration 3226 : loss : 0.044095 cons_dist: 0.004124, loss_weight: 0.032364
[16:26:01.074] iteration 3227 : loss : 0.051534 cons_dist: 0.011621, loss_weight: 0.032364
[16:26:01.566] iteration 3228 : loss : 0.049566 cons_dist: 0.002441, loss_weight: 0.032364
[16:26:02.722] iteration 3229 : loss : 0.041359 cons_dist: 0.032565, loss_weight: 0.032364
[16:26:03.213] iteration 3230 : loss : 0.077186 cons_dist: 0.001778, loss_weight: 0.032364
[16:26:03.704] iteration 3231 : loss : 0.057648 cons_dist: 0.026509, loss_weight: 0.032364
[16:26:04.195] iteration 3232 : loss : 0.036541 cons_dist: 0.004344, loss_weight: 0.032364
[16:26:04.686] iteration 3233 : loss : 0.075045 cons_dist: 0.008331, loss_weight: 0.032364
[16:26:05.177] iteration 3234 : loss : 0.047993 cons_dist: 0.003080, loss_weight: 0.032364
[16:26:05.670] iteration 3235 : loss : 0.038184 cons_dist: 0.001849, loss_weight: 0.032364
[16:26:06.162] iteration 3236 : loss : 0.044240 cons_dist: 0.002967, loss_weight: 0.032364
[16:26:06.653] iteration 3237 : loss : 0.029628 cons_dist: 0.002914, loss_weight: 0.032364
[16:26:07.145] iteration 3238 : loss : 0.043444 cons_dist: 0.004381, loss_weight: 0.032364
[16:26:07.636] iteration 3239 : loss : 0.038278 cons_dist: 0.003508, loss_weight: 0.032364
[16:26:08.128] iteration 3240 : loss : 0.055432 cons_dist: 0.003353, loss_weight: 0.032364
[16:26:09.307] iteration 3241 : loss : 0.052840 cons_dist: 0.001183, loss_weight: 0.032364
[16:26:09.795] iteration 3242 : loss : 0.043424 cons_dist: 0.007547, loss_weight: 0.032364
[16:26:10.288] iteration 3243 : loss : 0.040926 cons_dist: 0.001267, loss_weight: 0.032364
[16:26:10.780] iteration 3244 : loss : 0.062130 cons_dist: 0.003663, loss_weight: 0.032364
[16:26:11.272] iteration 3245 : loss : 0.040814 cons_dist: 0.002914, loss_weight: 0.032364
[16:26:11.763] iteration 3246 : loss : 0.059465 cons_dist: 0.003758, loss_weight: 0.032364
[16:26:12.254] iteration 3247 : loss : 0.040947 cons_dist: 0.002215, loss_weight: 0.032364
[16:26:12.746] iteration 3248 : loss : 0.039800 cons_dist: 0.002415, loss_weight: 0.032364
[16:26:13.237] iteration 3249 : loss : 0.037231 cons_dist: 0.001755, loss_weight: 0.032364
[16:26:13.728] iteration 3250 : loss : 0.051737 cons_dist: 0.023062, loss_weight: 0.032364
[16:26:14.221] iteration 3251 : loss : 0.037200 cons_dist: 0.028878, loss_weight: 0.032364
[16:26:14.713] iteration 3252 : loss : 0.041068 cons_dist: 0.004555, loss_weight: 0.032364
[16:26:15.822] iteration 3253 : loss : 0.034371 cons_dist: 0.005284, loss_weight: 0.032364
[16:26:16.310] iteration 3254 : loss : 0.060900 cons_dist: 0.002069, loss_weight: 0.032364
[16:26:16.801] iteration 3255 : loss : 0.037669 cons_dist: 0.009599, loss_weight: 0.032364
[16:26:17.294] iteration 3256 : loss : 0.047612 cons_dist: 0.004565, loss_weight: 0.032364
[16:26:17.786] iteration 3257 : loss : 0.035455 cons_dist: 0.002045, loss_weight: 0.032364
[16:26:18.277] iteration 3258 : loss : 0.070390 cons_dist: 0.026215, loss_weight: 0.032364
[16:26:18.769] iteration 3259 : loss : 0.044251 cons_dist: 0.002665, loss_weight: 0.032364
[16:26:19.260] iteration 3260 : loss : 0.054986 cons_dist: 0.001752, loss_weight: 0.032364
[16:26:19.751] iteration 3261 : loss : 0.033944 cons_dist: 0.002132, loss_weight: 0.032364
[16:26:20.243] iteration 3262 : loss : 0.043197 cons_dist: 0.001664, loss_weight: 0.032364
[16:26:20.736] iteration 3263 : loss : 0.037844 cons_dist: 0.004365, loss_weight: 0.032364
[16:26:21.227] iteration 3264 : loss : 0.037287 cons_dist: 0.014431, loss_weight: 0.032364
[16:26:22.419] iteration 3265 : loss : 0.039679 cons_dist: 0.004802, loss_weight: 0.032364
[16:26:22.910] iteration 3266 : loss : 0.050258 cons_dist: 0.001649, loss_weight: 0.032364
[16:26:23.402] iteration 3267 : loss : 0.037796 cons_dist: 0.001461, loss_weight: 0.032364
[16:26:23.893] iteration 3268 : loss : 0.048386 cons_dist: 0.001520, loss_weight: 0.032364
[16:26:24.384] iteration 3269 : loss : 0.035761 cons_dist: 0.002820, loss_weight: 0.032364
[16:26:24.874] iteration 3270 : loss : 0.050926 cons_dist: 0.006545, loss_weight: 0.032364
[16:26:25.366] iteration 3271 : loss : 0.043839 cons_dist: 0.004865, loss_weight: 0.032364
[16:26:25.856] iteration 3272 : loss : 0.046619 cons_dist: 0.004484, loss_weight: 0.032364
[16:26:26.348] iteration 3273 : loss : 0.040698 cons_dist: 0.005774, loss_weight: 0.032364
[16:26:26.840] iteration 3274 : loss : 0.035966 cons_dist: 0.001451, loss_weight: 0.032364
[16:26:27.332] iteration 3275 : loss : 0.052646 cons_dist: 0.002424, loss_weight: 0.032364
[16:26:27.825] iteration 3276 : loss : 0.036384 cons_dist: 0.009191, loss_weight: 0.032364
[16:26:28.941] iteration 3277 : loss : 0.040348 cons_dist: 0.004075, loss_weight: 0.032364
[16:26:29.432] iteration 3278 : loss : 0.037549 cons_dist: 0.001868, loss_weight: 0.032364
[16:26:29.923] iteration 3279 : loss : 0.041969 cons_dist: 0.001234, loss_weight: 0.032364
[16:26:30.414] iteration 3280 : loss : 0.039331 cons_dist: 0.001680, loss_weight: 0.032364
[16:26:30.906] iteration 3281 : loss : 0.047021 cons_dist: 0.027986, loss_weight: 0.032364
[16:26:31.398] iteration 3282 : loss : 0.046158 cons_dist: 0.006751, loss_weight: 0.032364
[16:26:31.891] iteration 3283 : loss : 0.272435 cons_dist: 0.013735, loss_weight: 0.032364
[16:26:32.384] iteration 3284 : loss : 0.034665 cons_dist: 0.004539, loss_weight: 0.032364
[16:26:32.875] iteration 3285 : loss : 0.055682 cons_dist: 0.005879, loss_weight: 0.032364
[16:26:33.367] iteration 3286 : loss : 0.051431 cons_dist: 0.011029, loss_weight: 0.032364
[16:26:33.858] iteration 3287 : loss : 0.044625 cons_dist: 0.001714, loss_weight: 0.032364
[16:26:34.350] iteration 3288 : loss : 0.042069 cons_dist: 0.003214, loss_weight: 0.032364
[16:26:35.449] iteration 3289 : loss : 0.045300 cons_dist: 0.001340, loss_weight: 0.032364
[16:26:35.942] iteration 3290 : loss : 0.036844 cons_dist: 0.018717, loss_weight: 0.032364
[16:26:36.434] iteration 3291 : loss : 0.052010 cons_dist: 0.002360, loss_weight: 0.032364
[16:26:36.926] iteration 3292 : loss : 0.040785 cons_dist: 0.002616, loss_weight: 0.032364
[16:26:37.417] iteration 3293 : loss : 0.050485 cons_dist: 0.000985, loss_weight: 0.032364
[16:26:37.908] iteration 3294 : loss : 0.035304 cons_dist: 0.003661, loss_weight: 0.032364
[16:26:38.399] iteration 3295 : loss : 0.056261 cons_dist: 0.013472, loss_weight: 0.032364
[16:26:38.891] iteration 3296 : loss : 0.052575 cons_dist: 0.001712, loss_weight: 0.032364
[16:26:39.384] iteration 3297 : loss : 0.047655 cons_dist: 0.002028, loss_weight: 0.032364
[16:26:39.877] iteration 3298 : loss : 0.071432 cons_dist: 0.004799, loss_weight: 0.032364
[16:26:40.369] iteration 3299 : loss : 0.043548 cons_dist: 0.002511, loss_weight: 0.032364
[16:26:40.860] iteration 3300 : loss : 0.039545 cons_dist: 0.004656, loss_weight: 0.032364
[16:26:41.971] iteration 3301 : loss : 0.057929 cons_dist: 0.004436, loss_weight: 0.036331
[16:26:42.462] iteration 3302 : loss : 0.039581 cons_dist: 0.006181, loss_weight: 0.036331
[16:26:42.954] iteration 3303 : loss : 0.037018 cons_dist: 0.005190, loss_weight: 0.036331
[16:26:43.445] iteration 3304 : loss : 0.042921 cons_dist: 0.004705, loss_weight: 0.036331
[16:26:43.936] iteration 3305 : loss : 0.050199 cons_dist: 0.001097, loss_weight: 0.036331
[16:26:44.425] iteration 3306 : loss : 0.038361 cons_dist: 0.001633, loss_weight: 0.036331
[16:26:44.917] iteration 3307 : loss : 0.052830 cons_dist: 0.001634, loss_weight: 0.036331
[16:26:45.409] iteration 3308 : loss : 0.030660 cons_dist: 0.007901, loss_weight: 0.036331
[16:26:45.902] iteration 3309 : loss : 0.048444 cons_dist: 0.004579, loss_weight: 0.036331
[16:26:46.395] iteration 3310 : loss : 0.064526 cons_dist: 0.010967, loss_weight: 0.036331
[16:26:46.886] iteration 3311 : loss : 0.042519 cons_dist: 0.001183, loss_weight: 0.036331
[16:26:47.378] iteration 3312 : loss : 0.049660 cons_dist: 0.031387, loss_weight: 0.036331
[16:26:48.394] iteration 3313 : loss : 0.042139 cons_dist: 0.005468, loss_weight: 0.036331
[16:26:48.885] iteration 3314 : loss : 0.034506 cons_dist: 0.004003, loss_weight: 0.036331
[16:26:49.376] iteration 3315 : loss : 0.041528 cons_dist: 0.059594, loss_weight: 0.036331
[16:26:49.867] iteration 3316 : loss : 0.048674 cons_dist: 0.002101, loss_weight: 0.036331
[16:26:50.358] iteration 3317 : loss : 0.037412 cons_dist: 0.009942, loss_weight: 0.036331
[16:26:50.849] iteration 3318 : loss : 0.061368 cons_dist: 0.003857, loss_weight: 0.036331
[16:26:51.341] iteration 3319 : loss : 0.045272 cons_dist: 0.003820, loss_weight: 0.036331
[16:26:51.833] iteration 3320 : loss : 0.067435 cons_dist: 0.001332, loss_weight: 0.036331
[16:26:52.326] iteration 3321 : loss : 0.035944 cons_dist: 0.005326, loss_weight: 0.036331
[16:26:52.817] iteration 3322 : loss : 0.046821 cons_dist: 0.003642, loss_weight: 0.036331
[16:26:53.309] iteration 3323 : loss : 0.045554 cons_dist: 0.002236, loss_weight: 0.036331
[16:26:53.801] iteration 3324 : loss : 0.039875 cons_dist: 0.002366, loss_weight: 0.036331
[16:26:54.952] iteration 3325 : loss : 0.042222 cons_dist: 0.001055, loss_weight: 0.036331
[16:26:55.444] iteration 3326 : loss : 0.047319 cons_dist: 0.007346, loss_weight: 0.036331
[16:26:55.936] iteration 3327 : loss : 0.087196 cons_dist: 0.002516, loss_weight: 0.036331
[16:26:56.427] iteration 3328 : loss : 0.048785 cons_dist: 0.002914, loss_weight: 0.036331
[16:26:56.918] iteration 3329 : loss : 0.037124 cons_dist: 0.005897, loss_weight: 0.036331
[16:26:57.409] iteration 3330 : loss : 0.035626 cons_dist: 0.025526, loss_weight: 0.036331
[16:26:57.901] iteration 3331 : loss : 0.060083 cons_dist: 0.011741, loss_weight: 0.036331
[16:26:58.392] iteration 3332 : loss : 0.075120 cons_dist: 0.004002, loss_weight: 0.036331
[16:26:58.885] iteration 3333 : loss : 0.053137 cons_dist: 0.051847, loss_weight: 0.036331
[16:26:59.377] iteration 3334 : loss : 0.046078 cons_dist: 0.003168, loss_weight: 0.036331
[16:26:59.869] iteration 3335 : loss : 0.052432 cons_dist: 0.002391, loss_weight: 0.036331
[16:27:00.361] iteration 3336 : loss : 0.034305 cons_dist: 0.001920, loss_weight: 0.036331
[16:27:01.404] iteration 3337 : loss : 0.045301 cons_dist: 0.002094, loss_weight: 0.036331
[16:27:01.895] iteration 3338 : loss : 0.047719 cons_dist: 0.002636, loss_weight: 0.036331
[16:27:02.388] iteration 3339 : loss : 0.051989 cons_dist: 0.003208, loss_weight: 0.036331
[16:27:02.879] iteration 3340 : loss : 0.054368 cons_dist: 0.006314, loss_weight: 0.036331
[16:27:03.371] iteration 3341 : loss : 0.081038 cons_dist: 0.049928, loss_weight: 0.036331
[16:27:03.862] iteration 3342 : loss : 0.051357 cons_dist: 0.009972, loss_weight: 0.036331
[16:27:04.353] iteration 3343 : loss : 0.049704 cons_dist: 0.015500, loss_weight: 0.036331
[16:27:04.844] iteration 3344 : loss : 0.045170 cons_dist: 0.003142, loss_weight: 0.036331
[16:27:05.337] iteration 3345 : loss : 0.056498 cons_dist: 0.003463, loss_weight: 0.036331
[16:27:05.829] iteration 3346 : loss : 0.044956 cons_dist: 0.002850, loss_weight: 0.036331
[16:27:06.321] iteration 3347 : loss : 0.045149 cons_dist: 0.004059, loss_weight: 0.036331
[16:27:06.813] iteration 3348 : loss : 0.048969 cons_dist: 0.004426, loss_weight: 0.036331
[16:27:07.989] iteration 3349 : loss : 0.067150 cons_dist: 0.003089, loss_weight: 0.036331
[16:27:08.480] iteration 3350 : loss : 0.067117 cons_dist: 0.002835, loss_weight: 0.036331
[16:27:08.972] iteration 3351 : loss : 0.040007 cons_dist: 0.002170, loss_weight: 0.036331
[16:27:09.463] iteration 3352 : loss : 0.057256 cons_dist: 0.003683, loss_weight: 0.036331
[16:27:09.954] iteration 3353 : loss : 0.060755 cons_dist: 0.001776, loss_weight: 0.036331
[16:27:10.445] iteration 3354 : loss : 0.053717 cons_dist: 0.006399, loss_weight: 0.036331
[16:27:10.937] iteration 3355 : loss : 0.035332 cons_dist: 0.005238, loss_weight: 0.036331
[16:27:11.430] iteration 3356 : loss : 0.045683 cons_dist: 0.004287, loss_weight: 0.036331
[16:27:11.922] iteration 3357 : loss : 0.045907 cons_dist: 0.002747, loss_weight: 0.036331
[16:27:12.413] iteration 3358 : loss : 0.033867 cons_dist: 0.002799, loss_weight: 0.036331
[16:27:12.904] iteration 3359 : loss : 0.051861 cons_dist: 0.001707, loss_weight: 0.036331
[16:27:13.396] iteration 3360 : loss : 0.045592 cons_dist: 0.002929, loss_weight: 0.036331
[16:27:14.431] iteration 3361 : loss : 0.056609 cons_dist: 0.006965, loss_weight: 0.036331
[16:27:14.921] iteration 3362 : loss : 0.041531 cons_dist: 0.002191, loss_weight: 0.036331
[16:27:15.413] iteration 3363 : loss : 0.044613 cons_dist: 0.003405, loss_weight: 0.036331
[16:27:15.905] iteration 3364 : loss : 0.047328 cons_dist: 0.002227, loss_weight: 0.036331
[16:27:16.398] iteration 3365 : loss : 0.037719 cons_dist: 0.002609, loss_weight: 0.036331
[16:27:16.889] iteration 3366 : loss : 0.054373 cons_dist: 0.002967, loss_weight: 0.036331
[16:27:17.381] iteration 3367 : loss : 0.039355 cons_dist: 0.005357, loss_weight: 0.036331
[16:27:17.872] iteration 3368 : loss : 0.039173 cons_dist: 0.056833, loss_weight: 0.036331
[16:27:18.363] iteration 3369 : loss : 0.048106 cons_dist: 0.001820, loss_weight: 0.036331
[16:27:18.855] iteration 3370 : loss : 0.051688 cons_dist: 0.007726, loss_weight: 0.036331
[16:27:19.347] iteration 3371 : loss : 0.056638 cons_dist: 0.002119, loss_weight: 0.036331
[16:27:19.839] iteration 3372 : loss : 0.042106 cons_dist: 0.002833, loss_weight: 0.036331
[16:27:20.999] iteration 3373 : loss : 0.044894 cons_dist: 0.001535, loss_weight: 0.036331
[16:27:21.490] iteration 3374 : loss : 0.042071 cons_dist: 0.001874, loss_weight: 0.036331
[16:27:21.981] iteration 3375 : loss : 0.040294 cons_dist: 0.001239, loss_weight: 0.036331
[16:27:22.473] iteration 3376 : loss : 0.036096 cons_dist: 0.009332, loss_weight: 0.036331
[16:27:22.963] iteration 3377 : loss : 0.044578 cons_dist: 0.001474, loss_weight: 0.036331
[16:27:23.455] iteration 3378 : loss : 0.041795 cons_dist: 0.004725, loss_weight: 0.036331
[16:27:23.947] iteration 3379 : loss : 0.046747 cons_dist: 0.005322, loss_weight: 0.036331
[16:27:24.440] iteration 3380 : loss : 0.051979 cons_dist: 0.002416, loss_weight: 0.036331
[16:27:24.931] iteration 3381 : loss : 0.043385 cons_dist: 0.002162, loss_weight: 0.036331
[16:27:25.422] iteration 3382 : loss : 0.046531 cons_dist: 0.001997, loss_weight: 0.036331
[16:27:25.913] iteration 3383 : loss : 0.051494 cons_dist: 0.003006, loss_weight: 0.036331
[16:27:26.404] iteration 3384 : loss : 0.054267 cons_dist: 0.002082, loss_weight: 0.036331
[16:27:27.517] iteration 3385 : loss : 0.050429 cons_dist: 0.003891, loss_weight: 0.036331
[16:27:28.008] iteration 3386 : loss : 0.031406 cons_dist: 0.004903, loss_weight: 0.036331
[16:27:28.499] iteration 3387 : loss : 0.044672 cons_dist: 0.002133, loss_weight: 0.036331
[16:27:28.991] iteration 3388 : loss : 0.035547 cons_dist: 0.004809, loss_weight: 0.036331
[16:27:29.483] iteration 3389 : loss : 0.043182 cons_dist: 0.002930, loss_weight: 0.036331
[16:27:29.975] iteration 3390 : loss : 0.052155 cons_dist: 0.006267, loss_weight: 0.036331
[16:27:30.467] iteration 3391 : loss : 0.049321 cons_dist: 0.000604, loss_weight: 0.036331
[16:27:30.958] iteration 3392 : loss : 0.041880 cons_dist: 0.001435, loss_weight: 0.036331
[16:27:31.449] iteration 3393 : loss : 0.046689 cons_dist: 0.001656, loss_weight: 0.036331
[16:27:31.940] iteration 3394 : loss : 0.042598 cons_dist: 0.001791, loss_weight: 0.036331
[16:27:32.432] iteration 3395 : loss : 0.054738 cons_dist: 0.003056, loss_weight: 0.036331
[16:27:32.925] iteration 3396 : loss : 0.036407 cons_dist: 0.001497, loss_weight: 0.036331
[16:27:33.949] iteration 3397 : loss : 0.033957 cons_dist: 0.003209, loss_weight: 0.036331
[16:27:34.441] iteration 3398 : loss : 0.038043 cons_dist: 0.004212, loss_weight: 0.036331
[16:27:34.932] iteration 3399 : loss : 0.038287 cons_dist: 0.013403, loss_weight: 0.036331
[16:27:35.422] iteration 3400 : loss : 0.042026 cons_dist: 0.007680, loss_weight: 0.036331
[16:27:37.041] iteration 3401 : loss : 0.066376 cons_dist: 0.003959, loss_weight: 0.036331
[16:27:37.533] iteration 3402 : loss : 0.045819 cons_dist: 0.002309, loss_weight: 0.036331
[16:27:38.024] iteration 3403 : loss : 0.034616 cons_dist: 0.002861, loss_weight: 0.036331
[16:27:38.516] iteration 3404 : loss : 0.048948 cons_dist: 0.001473, loss_weight: 0.036331
[16:27:39.008] iteration 3405 : loss : 0.048486 cons_dist: 0.019714, loss_weight: 0.036331
[16:27:39.501] iteration 3406 : loss : 0.063031 cons_dist: 0.018996, loss_weight: 0.036331
[16:27:39.993] iteration 3407 : loss : 0.044894 cons_dist: 0.002050, loss_weight: 0.036331
[16:27:40.484] iteration 3408 : loss : 0.050789 cons_dist: 0.008805, loss_weight: 0.036331
[16:27:41.534] iteration 3409 : loss : 0.068274 cons_dist: 0.003816, loss_weight: 0.036331
[16:27:42.027] iteration 3410 : loss : 0.037545 cons_dist: 0.003335, loss_weight: 0.036331
[16:27:42.518] iteration 3411 : loss : 0.040917 cons_dist: 0.002962, loss_weight: 0.036331
[16:27:43.010] iteration 3412 : loss : 0.040315 cons_dist: 0.001103, loss_weight: 0.036331
[16:27:43.500] iteration 3413 : loss : 0.049975 cons_dist: 0.009934, loss_weight: 0.036331
[16:27:43.991] iteration 3414 : loss : 0.058827 cons_dist: 0.003513, loss_weight: 0.036331
[16:27:44.483] iteration 3415 : loss : 0.034666 cons_dist: 0.002178, loss_weight: 0.036331
[16:27:44.974] iteration 3416 : loss : 0.040199 cons_dist: 0.003454, loss_weight: 0.036331
[16:27:45.466] iteration 3417 : loss : 0.038909 cons_dist: 0.006110, loss_weight: 0.036331
[16:27:45.959] iteration 3418 : loss : 0.044231 cons_dist: 0.001366, loss_weight: 0.036331
[16:27:46.450] iteration 3419 : loss : 0.035989 cons_dist: 0.008814, loss_weight: 0.036331
[16:27:46.942] iteration 3420 : loss : 0.041641 cons_dist: 0.002465, loss_weight: 0.036331
[16:27:48.101] iteration 3421 : loss : 0.041387 cons_dist: 0.001564, loss_weight: 0.036331
[16:27:48.593] iteration 3422 : loss : 0.031841 cons_dist: 0.007167, loss_weight: 0.036331
[16:27:49.083] iteration 3423 : loss : 0.042268 cons_dist: 0.003123, loss_weight: 0.036331
[16:27:49.575] iteration 3424 : loss : 0.073666 cons_dist: 0.002651, loss_weight: 0.036331
[16:27:50.068] iteration 3425 : loss : 0.041377 cons_dist: 0.004791, loss_weight: 0.036331
[16:27:50.560] iteration 3426 : loss : 0.044779 cons_dist: 0.001869, loss_weight: 0.036331
[16:27:51.052] iteration 3427 : loss : 0.066016 cons_dist: 0.006299, loss_weight: 0.036331
[16:27:51.544] iteration 3428 : loss : 0.039092 cons_dist: 0.001655, loss_weight: 0.036331
[16:27:52.034] iteration 3429 : loss : 0.036034 cons_dist: 0.001498, loss_weight: 0.036331
[16:27:52.525] iteration 3430 : loss : 0.069572 cons_dist: 0.006000, loss_weight: 0.036331
[16:27:53.016] iteration 3431 : loss : 0.052131 cons_dist: 0.001015, loss_weight: 0.036331
[16:27:53.508] iteration 3432 : loss : 0.054534 cons_dist: 0.006512, loss_weight: 0.036331
[16:27:54.688] iteration 3433 : loss : 0.041229 cons_dist: 0.004423, loss_weight: 0.036331
[16:27:55.180] iteration 3434 : loss : 0.038714 cons_dist: 0.001247, loss_weight: 0.036331
[16:27:55.673] iteration 3435 : loss : 0.035585 cons_dist: 0.002697, loss_weight: 0.036331
[16:27:56.165] iteration 3436 : loss : 0.040336 cons_dist: 0.002004, loss_weight: 0.036331
[16:27:56.657] iteration 3437 : loss : 0.059375 cons_dist: 0.005644, loss_weight: 0.036331
[16:27:57.147] iteration 3438 : loss : 0.048799 cons_dist: 0.004144, loss_weight: 0.036331
[16:27:57.639] iteration 3439 : loss : 0.054300 cons_dist: 0.005866, loss_weight: 0.036331
[16:27:58.130] iteration 3440 : loss : 0.040289 cons_dist: 0.001840, loss_weight: 0.036331
[16:27:58.622] iteration 3441 : loss : 0.098885 cons_dist: 0.004212, loss_weight: 0.036331
[16:27:59.114] iteration 3442 : loss : 0.038092 cons_dist: 0.002875, loss_weight: 0.036331
[16:27:59.606] iteration 3443 : loss : 0.038541 cons_dist: 0.005184, loss_weight: 0.036331
[16:28:00.099] iteration 3444 : loss : 0.054411 cons_dist: 0.007742, loss_weight: 0.036331
[16:28:01.201] iteration 3445 : loss : 0.040577 cons_dist: 0.002580, loss_weight: 0.036331
[16:28:01.693] iteration 3446 : loss : 0.048723 cons_dist: 0.002172, loss_weight: 0.036331
[16:28:02.184] iteration 3447 : loss : 0.034717 cons_dist: 0.003949, loss_weight: 0.036331
[16:28:02.675] iteration 3448 : loss : 0.040376 cons_dist: 0.003416, loss_weight: 0.036331
[16:28:03.166] iteration 3449 : loss : 0.044287 cons_dist: 0.002369, loss_weight: 0.036331
[16:28:03.658] iteration 3450 : loss : 0.033860 cons_dist: 0.005360, loss_weight: 0.036331
[16:28:04.151] iteration 3451 : loss : 0.036961 cons_dist: 0.003027, loss_weight: 0.040530
[16:28:04.643] iteration 3452 : loss : 0.057012 cons_dist: 0.010880, loss_weight: 0.040530
[16:28:05.134] iteration 3453 : loss : 0.049742 cons_dist: 0.002196, loss_weight: 0.040530
[16:28:05.626] iteration 3454 : loss : 0.036031 cons_dist: 0.001821, loss_weight: 0.040530
[16:28:06.118] iteration 3455 : loss : 0.087084 cons_dist: 0.002253, loss_weight: 0.040530
[16:28:06.609] iteration 3456 : loss : 0.035010 cons_dist: 0.001647, loss_weight: 0.040530
[16:28:07.698] iteration 3457 : loss : 0.046558 cons_dist: 0.002200, loss_weight: 0.040530
[16:28:08.189] iteration 3458 : loss : 0.058939 cons_dist: 0.002074, loss_weight: 0.040530
[16:28:08.680] iteration 3459 : loss : 0.033752 cons_dist: 0.004513, loss_weight: 0.040530
[16:28:09.172] iteration 3460 : loss : 0.025891 cons_dist: 0.002234, loss_weight: 0.040530
[16:28:09.663] iteration 3461 : loss : 0.050037 cons_dist: 0.002492, loss_weight: 0.040530
[16:28:10.156] iteration 3462 : loss : 0.040359 cons_dist: 0.002712, loss_weight: 0.040530
[16:28:10.649] iteration 3463 : loss : 0.044280 cons_dist: 0.002464, loss_weight: 0.040530
[16:28:11.141] iteration 3464 : loss : 0.051606 cons_dist: 0.008900, loss_weight: 0.040530
[16:28:11.631] iteration 3465 : loss : 0.048543 cons_dist: 0.003317, loss_weight: 0.040530
[16:28:12.122] iteration 3466 : loss : 0.047143 cons_dist: 0.004353, loss_weight: 0.040530
[16:28:12.614] iteration 3467 : loss : 0.051799 cons_dist: 0.001040, loss_weight: 0.040530
[16:28:13.106] iteration 3468 : loss : 0.035310 cons_dist: 0.002731, loss_weight: 0.040530
[16:28:14.282] iteration 3469 : loss : 0.037206 cons_dist: 0.035209, loss_weight: 0.040530
[16:28:14.769] iteration 3470 : loss : 0.043307 cons_dist: 0.002425, loss_weight: 0.040530
[16:28:15.261] iteration 3471 : loss : 0.041692 cons_dist: 0.001599, loss_weight: 0.040530
[16:28:15.753] iteration 3472 : loss : 0.045290 cons_dist: 0.003326, loss_weight: 0.040530
[16:28:16.245] iteration 3473 : loss : 0.056775 cons_dist: 0.009047, loss_weight: 0.040530
[16:28:16.737] iteration 3474 : loss : 0.044394 cons_dist: 0.001010, loss_weight: 0.040530
[16:28:17.227] iteration 3475 : loss : 0.043441 cons_dist: 0.045263, loss_weight: 0.040530
[16:28:17.719] iteration 3476 : loss : 0.035092 cons_dist: 0.002699, loss_weight: 0.040530
[16:28:18.209] iteration 3477 : loss : 0.040972 cons_dist: 0.005198, loss_weight: 0.040530
[16:28:18.700] iteration 3478 : loss : 0.057715 cons_dist: 0.001860, loss_weight: 0.040530
[16:28:19.193] iteration 3479 : loss : 0.049543 cons_dist: 0.001867, loss_weight: 0.040530
[16:28:19.686] iteration 3480 : loss : 0.039234 cons_dist: 0.007220, loss_weight: 0.040530
[16:28:20.803] iteration 3481 : loss : 0.034843 cons_dist: 0.004460, loss_weight: 0.040530
[16:28:21.290] iteration 3482 : loss : 0.052470 cons_dist: 0.003655, loss_weight: 0.040530
[16:28:21.782] iteration 3483 : loss : 0.037891 cons_dist: 0.006730, loss_weight: 0.040530
[16:28:22.314] iteration 3484 : loss : 0.044404 cons_dist: 0.002931, loss_weight: 0.040530
[16:28:22.805] iteration 3485 : loss : 0.032705 cons_dist: 0.006886, loss_weight: 0.040530
[16:28:23.297] iteration 3486 : loss : 0.067685 cons_dist: 0.007091, loss_weight: 0.040530
[16:28:23.788] iteration 3487 : loss : 0.045193 cons_dist: 0.019185, loss_weight: 0.040530
[16:28:24.279] iteration 3488 : loss : 0.038390 cons_dist: 0.004326, loss_weight: 0.040530
[16:28:24.772] iteration 3489 : loss : 0.038969 cons_dist: 0.002693, loss_weight: 0.040530
[16:28:25.265] iteration 3490 : loss : 0.031871 cons_dist: 0.003248, loss_weight: 0.040530
[16:28:25.757] iteration 3491 : loss : 0.040133 cons_dist: 0.002018, loss_weight: 0.040530
[16:28:26.247] iteration 3492 : loss : 0.053933 cons_dist: 0.001754, loss_weight: 0.040530
[16:28:27.285] iteration 3493 : loss : 0.048334 cons_dist: 0.002986, loss_weight: 0.040530
[16:28:27.777] iteration 3494 : loss : 0.050602 cons_dist: 0.005831, loss_weight: 0.040530
[16:28:28.268] iteration 3495 : loss : 0.033847 cons_dist: 0.002350, loss_weight: 0.040530
[16:28:28.760] iteration 3496 : loss : 0.044864 cons_dist: 0.002548, loss_weight: 0.040530
[16:28:29.252] iteration 3497 : loss : 0.054867 cons_dist: 0.001046, loss_weight: 0.040530
[16:28:29.744] iteration 3498 : loss : 0.050854 cons_dist: 0.002536, loss_weight: 0.040530
[16:28:30.236] iteration 3499 : loss : 0.050782 cons_dist: 0.004649, loss_weight: 0.040530
[16:28:30.727] iteration 3500 : loss : 0.037751 cons_dist: 0.014320, loss_weight: 0.040530
[16:28:31.218] iteration 3501 : loss : 0.048180 cons_dist: 0.003523, loss_weight: 0.040530
[16:28:31.709] iteration 3502 : loss : 0.047242 cons_dist: 0.002799, loss_weight: 0.040530
[16:28:32.200] iteration 3503 : loss : 0.049000 cons_dist: 0.015447, loss_weight: 0.040530
[16:28:32.693] iteration 3504 : loss : 0.043150 cons_dist: 0.001746, loss_weight: 0.040530
[16:28:33.753] iteration 3505 : loss : 0.032350 cons_dist: 0.003013, loss_weight: 0.040530
[16:28:34.244] iteration 3506 : loss : 0.036662 cons_dist: 0.007506, loss_weight: 0.040530
[16:28:34.735] iteration 3507 : loss : 0.049497 cons_dist: 0.001787, loss_weight: 0.040530
[16:28:35.226] iteration 3508 : loss : 0.034893 cons_dist: 0.002000, loss_weight: 0.040530
[16:28:35.717] iteration 3509 : loss : 0.054578 cons_dist: 0.001136, loss_weight: 0.040530
[16:28:36.209] iteration 3510 : loss : 0.053874 cons_dist: 0.003098, loss_weight: 0.040530
[16:28:36.700] iteration 3511 : loss : 0.047291 cons_dist: 0.002305, loss_weight: 0.040530
[16:28:37.193] iteration 3512 : loss : 0.043528 cons_dist: 0.005234, loss_weight: 0.040530
[16:28:37.684] iteration 3513 : loss : 0.048898 cons_dist: 0.005468, loss_weight: 0.040530
[16:28:38.178] iteration 3514 : loss : 0.063049 cons_dist: 0.002404, loss_weight: 0.040530
[16:28:38.669] iteration 3515 : loss : 0.038457 cons_dist: 0.002849, loss_weight: 0.040530
[16:28:39.160] iteration 3516 : loss : 0.037909 cons_dist: 0.002536, loss_weight: 0.040530
[16:28:40.216] iteration 3517 : loss : 0.061018 cons_dist: 0.001592, loss_weight: 0.040530
[16:28:40.707] iteration 3518 : loss : 0.044134 cons_dist: 0.001935, loss_weight: 0.040530
[16:28:41.198] iteration 3519 : loss : 0.042930 cons_dist: 0.002790, loss_weight: 0.040530
[16:28:41.690] iteration 3520 : loss : 0.054445 cons_dist: 0.003269, loss_weight: 0.040530
[16:28:42.183] iteration 3521 : loss : 0.045661 cons_dist: 0.006576, loss_weight: 0.040530
[16:28:42.675] iteration 3522 : loss : 0.043535 cons_dist: 0.003628, loss_weight: 0.040530
[16:28:43.166] iteration 3523 : loss : 0.038241 cons_dist: 0.001773, loss_weight: 0.040530
[16:28:43.657] iteration 3524 : loss : 0.066499 cons_dist: 0.004512, loss_weight: 0.040530
[16:28:44.148] iteration 3525 : loss : 0.045981 cons_dist: 0.003728, loss_weight: 0.040530
[16:28:44.639] iteration 3526 : loss : 0.038753 cons_dist: 0.001455, loss_weight: 0.040530
[16:28:45.131] iteration 3527 : loss : 0.043696 cons_dist: 0.001995, loss_weight: 0.040530
[16:28:45.624] iteration 3528 : loss : 0.037200 cons_dist: 0.001589, loss_weight: 0.040530
[16:28:46.739] iteration 3529 : loss : 0.050424 cons_dist: 0.001019, loss_weight: 0.040530
[16:28:47.231] iteration 3530 : loss : 0.052206 cons_dist: 0.004605, loss_weight: 0.040530
[16:28:47.724] iteration 3531 : loss : 0.035476 cons_dist: 0.002378, loss_weight: 0.040530
[16:28:48.215] iteration 3532 : loss : 0.053532 cons_dist: 0.001967, loss_weight: 0.040530
[16:28:48.707] iteration 3533 : loss : 0.057518 cons_dist: 0.005767, loss_weight: 0.040530
[16:28:49.197] iteration 3534 : loss : 0.044088 cons_dist: 0.002843, loss_weight: 0.040530
[16:28:49.689] iteration 3535 : loss : 0.035223 cons_dist: 0.008354, loss_weight: 0.040530
[16:28:50.180] iteration 3536 : loss : 0.028135 cons_dist: 0.001890, loss_weight: 0.040530
[16:28:50.671] iteration 3537 : loss : 0.036570 cons_dist: 0.003419, loss_weight: 0.040530
[16:28:51.164] iteration 3538 : loss : 0.031742 cons_dist: 0.022632, loss_weight: 0.040530
[16:28:51.657] iteration 3539 : loss : 0.068875 cons_dist: 0.008987, loss_weight: 0.040530
[16:28:52.149] iteration 3540 : loss : 0.053975 cons_dist: 0.014577, loss_weight: 0.040530
[16:28:53.324] iteration 3541 : loss : 0.036740 cons_dist: 0.003908, loss_weight: 0.040530
[16:28:53.815] iteration 3542 : loss : 0.053945 cons_dist: 0.018142, loss_weight: 0.040530
[16:28:54.306] iteration 3543 : loss : 0.045266 cons_dist: 0.004370, loss_weight: 0.040530
[16:28:54.797] iteration 3544 : loss : 0.045741 cons_dist: 0.006895, loss_weight: 0.040530
[16:28:55.289] iteration 3545 : loss : 0.035677 cons_dist: 0.003127, loss_weight: 0.040530
[16:28:55.781] iteration 3546 : loss : 0.038649 cons_dist: 0.002710, loss_weight: 0.040530
[16:28:56.273] iteration 3547 : loss : 0.051003 cons_dist: 0.001648, loss_weight: 0.040530
[16:28:56.766] iteration 3548 : loss : 0.044752 cons_dist: 0.001750, loss_weight: 0.040530
[16:28:57.257] iteration 3549 : loss : 0.056430 cons_dist: 0.006127, loss_weight: 0.040530
[16:28:57.749] iteration 3550 : loss : 0.038240 cons_dist: 0.055054, loss_weight: 0.040530
[16:28:58.240] iteration 3551 : loss : 0.047230 cons_dist: 0.002663, loss_weight: 0.040530
[16:28:58.732] iteration 3552 : loss : 0.034771 cons_dist: 0.005585, loss_weight: 0.040530
[16:28:59.907] iteration 3553 : loss : 0.039010 cons_dist: 0.000892, loss_weight: 0.040530
[16:29:00.400] iteration 3554 : loss : 0.066304 cons_dist: 0.007164, loss_weight: 0.040530
[16:29:00.891] iteration 3555 : loss : 0.042466 cons_dist: 0.016117, loss_weight: 0.040530
[16:29:01.383] iteration 3556 : loss : 0.039862 cons_dist: 0.001595, loss_weight: 0.040530
[16:29:01.876] iteration 3557 : loss : 0.055134 cons_dist: 0.002565, loss_weight: 0.040530
[16:29:02.368] iteration 3558 : loss : 0.044954 cons_dist: 0.009270, loss_weight: 0.040530
[16:29:02.859] iteration 3559 : loss : 0.041909 cons_dist: 0.005023, loss_weight: 0.040530
[16:29:03.351] iteration 3560 : loss : 0.035168 cons_dist: 0.005786, loss_weight: 0.040530
[16:29:03.841] iteration 3561 : loss : 0.051430 cons_dist: 0.006178, loss_weight: 0.040530
[16:29:04.332] iteration 3562 : loss : 0.034076 cons_dist: 0.002428, loss_weight: 0.040530
[16:29:04.824] iteration 3563 : loss : 0.038998 cons_dist: 0.004231, loss_weight: 0.040530
[16:29:05.316] iteration 3564 : loss : 0.055367 cons_dist: 0.003105, loss_weight: 0.040530
[16:29:06.377] iteration 3565 : loss : 0.038354 cons_dist: 0.006769, loss_weight: 0.040530
[16:29:06.869] iteration 3566 : loss : 0.057874 cons_dist: 0.030168, loss_weight: 0.040530
[16:29:07.360] iteration 3567 : loss : 0.046395 cons_dist: 0.002168, loss_weight: 0.040530
[16:29:07.851] iteration 3568 : loss : 0.208142 cons_dist: 0.009327, loss_weight: 0.040530
[16:29:08.343] iteration 3569 : loss : 0.042665 cons_dist: 0.001564, loss_weight: 0.040530
[16:29:08.833] iteration 3570 : loss : 0.047264 cons_dist: 0.004907, loss_weight: 0.040530
[16:29:09.325] iteration 3571 : loss : 0.030371 cons_dist: 0.003431, loss_weight: 0.040530
[16:29:09.817] iteration 3572 : loss : 0.034471 cons_dist: 0.004461, loss_weight: 0.040530
[16:29:10.310] iteration 3573 : loss : 0.039213 cons_dist: 0.002861, loss_weight: 0.040530
[16:29:10.802] iteration 3574 : loss : 0.042861 cons_dist: 0.002933, loss_weight: 0.040530
[16:29:11.293] iteration 3575 : loss : 0.061793 cons_dist: 0.003143, loss_weight: 0.040530
[16:29:11.785] iteration 3576 : loss : 0.052073 cons_dist: 0.003002, loss_weight: 0.040530
[16:29:12.949] iteration 3577 : loss : 0.188865 cons_dist: 0.002362, loss_weight: 0.040530
[16:29:13.442] iteration 3578 : loss : 0.046105 cons_dist: 0.000972, loss_weight: 0.040530
[16:29:13.934] iteration 3579 : loss : 0.044608 cons_dist: 0.002382, loss_weight: 0.040530
[16:29:14.426] iteration 3580 : loss : 0.042237 cons_dist: 0.001701, loss_weight: 0.040530
[16:29:14.918] iteration 3581 : loss : 0.042224 cons_dist: 0.003827, loss_weight: 0.040530
[16:29:15.409] iteration 3582 : loss : 0.044911 cons_dist: 0.001819, loss_weight: 0.040530
[16:29:15.901] iteration 3583 : loss : 0.044382 cons_dist: 0.002215, loss_weight: 0.040530
[16:29:16.392] iteration 3584 : loss : 0.061147 cons_dist: 0.025217, loss_weight: 0.040530
[16:29:16.884] iteration 3585 : loss : 0.035184 cons_dist: 0.006837, loss_weight: 0.040530
[16:29:17.377] iteration 3586 : loss : 0.045550 cons_dist: 0.004682, loss_weight: 0.040530
[16:29:17.870] iteration 3587 : loss : 0.041550 cons_dist: 0.002213, loss_weight: 0.040530
[16:29:18.362] iteration 3588 : loss : 0.063444 cons_dist: 0.014152, loss_weight: 0.040530
[16:29:19.447] iteration 3589 : loss : 0.037686 cons_dist: 0.002578, loss_weight: 0.040530
[16:29:19.939] iteration 3590 : loss : 0.037435 cons_dist: 0.003589, loss_weight: 0.040530
[16:29:20.430] iteration 3591 : loss : 0.036852 cons_dist: 0.002102, loss_weight: 0.040530
[16:29:20.922] iteration 3592 : loss : 0.038340 cons_dist: 0.002176, loss_weight: 0.040530
[16:29:21.414] iteration 3593 : loss : 0.046271 cons_dist: 0.002449, loss_weight: 0.040530
[16:29:21.905] iteration 3594 : loss : 0.205108 cons_dist: 0.001872, loss_weight: 0.040530
[16:29:22.397] iteration 3595 : loss : 0.049727 cons_dist: 0.002618, loss_weight: 0.040530
[16:29:22.888] iteration 3596 : loss : 0.036245 cons_dist: 0.002954, loss_weight: 0.040530
[16:29:23.380] iteration 3597 : loss : 0.041697 cons_dist: 0.002645, loss_weight: 0.040530
[16:29:23.873] iteration 3598 : loss : 0.044536 cons_dist: 0.004015, loss_weight: 0.040530
[16:29:24.365] iteration 3599 : loss : 0.042617 cons_dist: 0.001163, loss_weight: 0.040530
[16:29:24.858] iteration 3600 : loss : 0.043990 cons_dist: 0.001677, loss_weight: 0.040530
[16:29:27.134] iteration 3601 : loss : 0.039175 cons_dist: 0.002853, loss_weight: 0.044933
[16:29:27.625] iteration 3602 : loss : 0.032143 cons_dist: 0.003257, loss_weight: 0.044933
[16:29:28.117] iteration 3603 : loss : 0.045408 cons_dist: 0.003870, loss_weight: 0.044933
[16:29:28.607] iteration 3604 : loss : 0.048634 cons_dist: 0.002101, loss_weight: 0.044933
[16:29:29.099] iteration 3605 : loss : 0.043891 cons_dist: 0.004454, loss_weight: 0.044933
[16:29:29.590] iteration 3606 : loss : 0.033975 cons_dist: 0.012517, loss_weight: 0.044933
[16:29:30.081] iteration 3607 : loss : 0.034696 cons_dist: 0.004875, loss_weight: 0.044933
[16:29:30.573] iteration 3608 : loss : 0.045582 cons_dist: 0.002017, loss_weight: 0.044933
[16:29:31.065] iteration 3609 : loss : 0.075395 cons_dist: 0.003935, loss_weight: 0.044933
[16:29:31.557] iteration 3610 : loss : 0.033735 cons_dist: 0.001985, loss_weight: 0.044933
[16:29:32.049] iteration 3611 : loss : 0.051127 cons_dist: 0.002186, loss_weight: 0.044933
[16:29:32.540] iteration 3612 : loss : 0.038436 cons_dist: 0.002237, loss_weight: 0.044933
[16:29:33.670] iteration 3613 : loss : 0.053527 cons_dist: 0.004297, loss_weight: 0.044933
[16:29:34.157] iteration 3614 : loss : 0.044036 cons_dist: 0.001777, loss_weight: 0.044933
[16:29:34.649] iteration 3615 : loss : 0.049773 cons_dist: 0.001431, loss_weight: 0.044933
[16:29:35.142] iteration 3616 : loss : 0.043359 cons_dist: 0.009358, loss_weight: 0.044933
[16:29:35.633] iteration 3617 : loss : 0.029925 cons_dist: 0.003529, loss_weight: 0.044933
[16:29:36.124] iteration 3618 : loss : 0.089697 cons_dist: 0.001290, loss_weight: 0.044933
[16:29:36.616] iteration 3619 : loss : 0.053190 cons_dist: 0.008876, loss_weight: 0.044933
[16:29:37.108] iteration 3620 : loss : 0.042353 cons_dist: 0.003735, loss_weight: 0.044933
[16:29:37.600] iteration 3621 : loss : 0.054922 cons_dist: 0.001622, loss_weight: 0.044933
[16:29:38.092] iteration 3622 : loss : 0.035556 cons_dist: 0.004354, loss_weight: 0.044933
[16:29:38.584] iteration 3623 : loss : 0.042516 cons_dist: 0.005626, loss_weight: 0.044933
[16:29:39.075] iteration 3624 : loss : 0.046973 cons_dist: 0.007590, loss_weight: 0.044933
[16:29:40.194] iteration 3625 : loss : 0.050485 cons_dist: 0.039878, loss_weight: 0.044933
[16:29:40.686] iteration 3626 : loss : 0.063755 cons_dist: 0.001544, loss_weight: 0.044933
[16:29:41.177] iteration 3627 : loss : 0.051885 cons_dist: 0.000821, loss_weight: 0.044933
[16:29:41.669] iteration 3628 : loss : 0.048214 cons_dist: 0.004894, loss_weight: 0.044933
[16:29:42.161] iteration 3629 : loss : 0.029468 cons_dist: 0.000604, loss_weight: 0.044933
[16:29:42.652] iteration 3630 : loss : 0.032680 cons_dist: 0.002408, loss_weight: 0.044933
[16:29:43.142] iteration 3631 : loss : 0.036046 cons_dist: 0.003127, loss_weight: 0.044933
[16:29:43.634] iteration 3632 : loss : 0.037525 cons_dist: 0.004260, loss_weight: 0.044933
[16:29:44.125] iteration 3633 : loss : 0.078981 cons_dist: 0.008816, loss_weight: 0.044933
[16:29:44.617] iteration 3634 : loss : 0.045893 cons_dist: 0.030056, loss_weight: 0.044933
[16:29:45.110] iteration 3635 : loss : 0.049438 cons_dist: 0.001911, loss_weight: 0.044933
[16:29:45.602] iteration 3636 : loss : 0.038521 cons_dist: 0.001279, loss_weight: 0.044933
[16:29:46.663] iteration 3637 : loss : 0.104432 cons_dist: 0.002396, loss_weight: 0.044933
[16:29:47.154] iteration 3638 : loss : 0.040659 cons_dist: 0.004861, loss_weight: 0.044933
[16:29:47.645] iteration 3639 : loss : 0.041850 cons_dist: 0.007205, loss_weight: 0.044933
[16:29:48.137] iteration 3640 : loss : 0.100622 cons_dist: 0.004754, loss_weight: 0.044933
[16:29:48.629] iteration 3641 : loss : 0.044086 cons_dist: 0.004164, loss_weight: 0.044933
[16:29:49.121] iteration 3642 : loss : 0.047770 cons_dist: 0.051339, loss_weight: 0.044933
[16:29:49.612] iteration 3643 : loss : 0.054677 cons_dist: 0.003409, loss_weight: 0.044933
[16:29:50.103] iteration 3644 : loss : 0.038396 cons_dist: 0.001645, loss_weight: 0.044933
[16:29:50.594] iteration 3645 : loss : 0.036688 cons_dist: 0.002351, loss_weight: 0.044933
[16:29:51.086] iteration 3646 : loss : 0.044330 cons_dist: 0.002232, loss_weight: 0.044933
[16:29:51.578] iteration 3647 : loss : 0.037778 cons_dist: 0.006085, loss_weight: 0.044933
[16:29:52.070] iteration 3648 : loss : 0.042113 cons_dist: 0.003515, loss_weight: 0.044933
[16:29:53.179] iteration 3649 : loss : 0.037120 cons_dist: 0.002162, loss_weight: 0.044933
[16:29:53.668] iteration 3650 : loss : 0.036151 cons_dist: 0.006563, loss_weight: 0.044933
[16:29:54.159] iteration 3651 : loss : 0.055680 cons_dist: 0.003818, loss_weight: 0.044933
[16:29:54.651] iteration 3652 : loss : 0.044167 cons_dist: 0.004513, loss_weight: 0.044933
[16:29:55.143] iteration 3653 : loss : 0.042954 cons_dist: 0.003139, loss_weight: 0.044933
[16:29:55.634] iteration 3654 : loss : 0.038965 cons_dist: 0.001623, loss_weight: 0.044933
[16:29:56.126] iteration 3655 : loss : 0.040975 cons_dist: 0.001425, loss_weight: 0.044933
[16:29:56.618] iteration 3656 : loss : 0.038118 cons_dist: 0.001326, loss_weight: 0.044933
[16:29:57.109] iteration 3657 : loss : 0.033494 cons_dist: 0.005275, loss_weight: 0.044933
[16:29:57.600] iteration 3658 : loss : 0.035226 cons_dist: 0.002350, loss_weight: 0.044933
[16:29:58.091] iteration 3659 : loss : 0.051319 cons_dist: 0.030704, loss_weight: 0.044933
[16:29:58.582] iteration 3660 : loss : 0.035036 cons_dist: 0.019891, loss_weight: 0.044933
[16:29:59.788] iteration 3661 : loss : 0.050991 cons_dist: 0.006363, loss_weight: 0.044933
[16:30:00.279] iteration 3662 : loss : 0.084115 cons_dist: 0.002271, loss_weight: 0.044933
[16:30:00.770] iteration 3663 : loss : 0.043598 cons_dist: 0.005655, loss_weight: 0.044933
[16:30:01.260] iteration 3664 : loss : 0.046780 cons_dist: 0.003941, loss_weight: 0.044933
[16:30:01.751] iteration 3665 : loss : 0.043745 cons_dist: 0.004027, loss_weight: 0.044933
[16:30:02.242] iteration 3666 : loss : 0.031023 cons_dist: 0.002548, loss_weight: 0.044933
[16:30:02.734] iteration 3667 : loss : 0.029571 cons_dist: 0.003563, loss_weight: 0.044933
[16:30:03.226] iteration 3668 : loss : 0.081932 cons_dist: 0.009135, loss_weight: 0.044933
[16:30:03.718] iteration 3669 : loss : 0.039654 cons_dist: 0.004388, loss_weight: 0.044933
[16:30:04.211] iteration 3670 : loss : 0.038094 cons_dist: 0.004683, loss_weight: 0.044933
[16:30:04.702] iteration 3671 : loss : 0.038805 cons_dist: 0.012286, loss_weight: 0.044933
[16:30:05.193] iteration 3672 : loss : 0.046481 cons_dist: 0.002228, loss_weight: 0.044933
[16:30:06.404] iteration 3673 : loss : 0.035440 cons_dist: 0.004584, loss_weight: 0.044933
[16:30:06.896] iteration 3674 : loss : 0.061842 cons_dist: 0.002204, loss_weight: 0.044933
[16:30:07.387] iteration 3675 : loss : 0.049834 cons_dist: 0.003502, loss_weight: 0.044933
[16:30:07.879] iteration 3676 : loss : 0.039903 cons_dist: 0.003409, loss_weight: 0.044933
[16:30:08.370] iteration 3677 : loss : 0.035100 cons_dist: 0.001718, loss_weight: 0.044933
[16:30:08.862] iteration 3678 : loss : 0.037382 cons_dist: 0.003469, loss_weight: 0.044933
[16:30:09.354] iteration 3679 : loss : 0.048590 cons_dist: 0.001013, loss_weight: 0.044933
[16:30:09.847] iteration 3680 : loss : 0.038098 cons_dist: 0.004474, loss_weight: 0.044933
[16:30:10.339] iteration 3681 : loss : 0.054045 cons_dist: 0.009512, loss_weight: 0.044933
[16:30:10.831] iteration 3682 : loss : 0.040565 cons_dist: 0.008503, loss_weight: 0.044933
[16:30:11.323] iteration 3683 : loss : 0.048151 cons_dist: 0.004021, loss_weight: 0.044933
[16:30:11.813] iteration 3684 : loss : 0.040663 cons_dist: 0.003922, loss_weight: 0.044933
[16:30:12.918] iteration 3685 : loss : 0.048374 cons_dist: 0.005475, loss_weight: 0.044933
[16:30:13.411] iteration 3686 : loss : 0.042392 cons_dist: 0.012421, loss_weight: 0.044933
[16:30:13.904] iteration 3687 : loss : 0.041080 cons_dist: 0.001609, loss_weight: 0.044933
[16:30:14.395] iteration 3688 : loss : 0.033495 cons_dist: 0.014234, loss_weight: 0.044933
[16:30:14.886] iteration 3689 : loss : 0.037289 cons_dist: 0.005756, loss_weight: 0.044933
[16:30:15.378] iteration 3690 : loss : 0.033242 cons_dist: 0.001924, loss_weight: 0.044933
[16:30:15.869] iteration 3691 : loss : 0.038451 cons_dist: 0.001882, loss_weight: 0.044933
[16:30:16.360] iteration 3692 : loss : 0.053066 cons_dist: 0.001420, loss_weight: 0.044933
[16:30:16.851] iteration 3693 : loss : 0.042263 cons_dist: 0.006416, loss_weight: 0.044933
[16:30:17.343] iteration 3694 : loss : 0.051961 cons_dist: 0.001548, loss_weight: 0.044933
[16:30:17.836] iteration 3695 : loss : 0.058738 cons_dist: 0.001063, loss_weight: 0.044933
[16:30:18.329] iteration 3696 : loss : 0.116159 cons_dist: 0.001856, loss_weight: 0.044933
[16:30:19.506] iteration 3697 : loss : 0.045381 cons_dist: 0.002629, loss_weight: 0.044933
[16:30:19.999] iteration 3698 : loss : 0.034008 cons_dist: 0.002221, loss_weight: 0.044933
[16:30:20.490] iteration 3699 : loss : 0.044621 cons_dist: 0.013740, loss_weight: 0.044933
[16:30:20.982] iteration 3700 : loss : 0.042025 cons_dist: 0.000951, loss_weight: 0.044933
[16:30:21.473] iteration 3701 : loss : 0.050278 cons_dist: 0.005969, loss_weight: 0.044933
[16:30:21.965] iteration 3702 : loss : 0.046811 cons_dist: 0.004930, loss_weight: 0.044933
[16:30:22.457] iteration 3703 : loss : 0.037136 cons_dist: 0.002538, loss_weight: 0.044933
[16:30:22.949] iteration 3704 : loss : 0.048305 cons_dist: 0.002371, loss_weight: 0.044933
[16:30:23.441] iteration 3705 : loss : 0.037996 cons_dist: 0.004682, loss_weight: 0.044933
[16:30:23.933] iteration 3706 : loss : 0.039760 cons_dist: 0.007796, loss_weight: 0.044933
[16:30:24.424] iteration 3707 : loss : 0.051429 cons_dist: 0.000634, loss_weight: 0.044933
[16:30:24.915] iteration 3708 : loss : 0.037218 cons_dist: 0.005912, loss_weight: 0.044933
[16:30:26.095] iteration 3709 : loss : 0.038154 cons_dist: 0.001318, loss_weight: 0.044933
[16:30:26.588] iteration 3710 : loss : 0.039371 cons_dist: 0.012436, loss_weight: 0.044933
[16:30:27.081] iteration 3711 : loss : 0.059565 cons_dist: 0.003936, loss_weight: 0.044933
[16:30:27.574] iteration 3712 : loss : 0.048256 cons_dist: 0.002293, loss_weight: 0.044933
[16:30:28.066] iteration 3713 : loss : 0.037019 cons_dist: 0.001064, loss_weight: 0.044933
[16:30:28.557] iteration 3714 : loss : 0.047433 cons_dist: 0.005936, loss_weight: 0.044933
[16:30:29.049] iteration 3715 : loss : 0.048598 cons_dist: 0.001441, loss_weight: 0.044933
[16:30:29.541] iteration 3716 : loss : 0.054184 cons_dist: 0.001741, loss_weight: 0.044933
[16:30:30.033] iteration 3717 : loss : 0.038286 cons_dist: 0.014023, loss_weight: 0.044933
[16:30:30.577] iteration 3718 : loss : 0.047891 cons_dist: 0.003546, loss_weight: 0.044933
[16:30:31.070] iteration 3719 : loss : 0.038240 cons_dist: 0.038851, loss_weight: 0.044933
[16:30:31.561] iteration 3720 : loss : 0.054229 cons_dist: 0.005152, loss_weight: 0.044933
[16:30:32.659] iteration 3721 : loss : 0.052131 cons_dist: 0.000873, loss_weight: 0.044933
[16:30:33.150] iteration 3722 : loss : 0.037416 cons_dist: 0.001136, loss_weight: 0.044933
[16:30:33.641] iteration 3723 : loss : 0.040398 cons_dist: 0.002498, loss_weight: 0.044933
[16:30:34.132] iteration 3724 : loss : 0.057605 cons_dist: 0.002978, loss_weight: 0.044933
[16:30:34.624] iteration 3725 : loss : 0.049751 cons_dist: 0.005476, loss_weight: 0.044933
[16:30:35.116] iteration 3726 : loss : 0.039623 cons_dist: 0.019332, loss_weight: 0.044933
[16:30:35.608] iteration 3727 : loss : 0.068451 cons_dist: 0.003536, loss_weight: 0.044933
[16:30:36.100] iteration 3728 : loss : 0.096700 cons_dist: 0.003279, loss_weight: 0.044933
[16:30:36.591] iteration 3729 : loss : 0.039794 cons_dist: 0.000514, loss_weight: 0.044933
[16:30:37.082] iteration 3730 : loss : 0.039215 cons_dist: 0.003888, loss_weight: 0.044933
[16:30:37.573] iteration 3731 : loss : 0.038141 cons_dist: 0.001529, loss_weight: 0.044933
[16:30:38.065] iteration 3732 : loss : 0.042139 cons_dist: 0.004789, loss_weight: 0.044933
[16:30:39.127] iteration 3733 : loss : 0.045614 cons_dist: 0.004225, loss_weight: 0.044933
[16:30:39.619] iteration 3734 : loss : 0.041153 cons_dist: 0.002046, loss_weight: 0.044933
[16:30:40.111] iteration 3735 : loss : 0.050456 cons_dist: 0.002718, loss_weight: 0.044933
[16:30:40.602] iteration 3736 : loss : 0.051120 cons_dist: 0.004819, loss_weight: 0.044933
[16:30:41.093] iteration 3737 : loss : 0.040249 cons_dist: 0.001360, loss_weight: 0.044933
[16:30:41.584] iteration 3738 : loss : 0.051410 cons_dist: 0.009263, loss_weight: 0.044933
[16:30:42.074] iteration 3739 : loss : 0.037541 cons_dist: 0.001861, loss_weight: 0.044933
[16:30:42.565] iteration 3740 : loss : 0.037648 cons_dist: 0.007596, loss_weight: 0.044933
[16:30:43.057] iteration 3741 : loss : 0.041735 cons_dist: 0.004552, loss_weight: 0.044933
[16:30:43.550] iteration 3742 : loss : 0.038714 cons_dist: 0.002568, loss_weight: 0.044933
[16:30:44.042] iteration 3743 : loss : 0.056180 cons_dist: 0.006609, loss_weight: 0.044933
[16:30:44.534] iteration 3744 : loss : 0.036136 cons_dist: 0.000929, loss_weight: 0.044933
[16:30:45.633] iteration 3745 : loss : 0.036085 cons_dist: 0.003095, loss_weight: 0.044933
[16:30:46.124] iteration 3746 : loss : 0.054023 cons_dist: 0.005533, loss_weight: 0.044933
[16:30:46.615] iteration 3747 : loss : 0.033737 cons_dist: 0.002544, loss_weight: 0.044933
[16:30:47.107] iteration 3748 : loss : 0.040282 cons_dist: 0.047507, loss_weight: 0.044933
[16:30:47.598] iteration 3749 : loss : 0.034364 cons_dist: 0.007651, loss_weight: 0.044933
[16:30:48.091] iteration 3750 : loss : 0.030919 cons_dist: 0.004702, loss_weight: 0.044933
[16:30:48.582] iteration 3751 : loss : 0.048851 cons_dist: 0.004148, loss_weight: 0.049504
[16:30:49.074] iteration 3752 : loss : 0.047267 cons_dist: 0.001125, loss_weight: 0.049504
[16:30:49.565] iteration 3753 : loss : 0.031960 cons_dist: 0.008527, loss_weight: 0.049504
[16:30:50.056] iteration 3754 : loss : 0.037007 cons_dist: 0.001491, loss_weight: 0.049504
[16:30:50.548] iteration 3755 : loss : 0.043937 cons_dist: 0.003235, loss_weight: 0.049504
[16:30:51.040] iteration 3756 : loss : 0.047388 cons_dist: 0.003920, loss_weight: 0.049504
[16:30:52.125] iteration 3757 : loss : 0.030937 cons_dist: 0.002594, loss_weight: 0.049504
[16:30:52.617] iteration 3758 : loss : 0.045307 cons_dist: 0.009853, loss_weight: 0.049504
[16:30:53.108] iteration 3759 : loss : 0.040658 cons_dist: 0.012767, loss_weight: 0.049504
[16:30:53.599] iteration 3760 : loss : 0.050225 cons_dist: 0.005579, loss_weight: 0.049504
[16:30:54.092] iteration 3761 : loss : 0.041884 cons_dist: 0.000677, loss_weight: 0.049504
[16:30:54.584] iteration 3762 : loss : 0.064243 cons_dist: 0.002145, loss_weight: 0.049504
[16:30:55.077] iteration 3763 : loss : 0.033194 cons_dist: 0.002424, loss_weight: 0.049504
[16:30:55.568] iteration 3764 : loss : 0.037690 cons_dist: 0.002630, loss_weight: 0.049504
[16:30:56.060] iteration 3765 : loss : 0.040780 cons_dist: 0.007331, loss_weight: 0.049504
[16:30:56.551] iteration 3766 : loss : 0.049742 cons_dist: 0.001200, loss_weight: 0.049504
[16:30:57.043] iteration 3767 : loss : 0.040208 cons_dist: 0.003356, loss_weight: 0.049504
[16:30:57.535] iteration 3768 : loss : 0.034932 cons_dist: 0.001953, loss_weight: 0.049504
[16:30:58.605] iteration 3769 : loss : 0.031865 cons_dist: 0.004189, loss_weight: 0.049504
[16:30:59.096] iteration 3770 : loss : 0.046388 cons_dist: 0.010754, loss_weight: 0.049504
[16:30:59.588] iteration 3771 : loss : 0.029143 cons_dist: 0.000962, loss_weight: 0.049504
[16:31:00.080] iteration 3772 : loss : 0.034221 cons_dist: 0.003060, loss_weight: 0.049504
[16:31:00.572] iteration 3773 : loss : 0.035689 cons_dist: 0.016972, loss_weight: 0.049504
[16:31:01.064] iteration 3774 : loss : 0.046700 cons_dist: 0.006031, loss_weight: 0.049504
[16:31:01.555] iteration 3775 : loss : 0.042693 cons_dist: 0.005363, loss_weight: 0.049504
[16:31:02.047] iteration 3776 : loss : 0.047857 cons_dist: 0.003779, loss_weight: 0.049504
[16:31:02.538] iteration 3777 : loss : 0.032755 cons_dist: 0.005611, loss_weight: 0.049504
[16:31:03.030] iteration 3778 : loss : 0.049092 cons_dist: 0.001646, loss_weight: 0.049504
[16:31:03.522] iteration 3779 : loss : 0.052100 cons_dist: 0.001808, loss_weight: 0.049504
[16:31:04.014] iteration 3780 : loss : 0.041688 cons_dist: 0.002555, loss_weight: 0.049504
[16:31:05.159] iteration 3781 : loss : 0.035069 cons_dist: 0.006673, loss_weight: 0.049504
[16:31:05.650] iteration 3782 : loss : 0.036834 cons_dist: 0.001377, loss_weight: 0.049504
[16:31:06.141] iteration 3783 : loss : 0.041438 cons_dist: 0.002574, loss_weight: 0.049504
[16:31:06.634] iteration 3784 : loss : 0.040874 cons_dist: 0.005626, loss_weight: 0.049504
[16:31:07.126] iteration 3785 : loss : 0.043516 cons_dist: 0.002144, loss_weight: 0.049504
[16:31:07.618] iteration 3786 : loss : 0.061323 cons_dist: 0.002323, loss_weight: 0.049504
[16:31:08.109] iteration 3787 : loss : 0.043002 cons_dist: 0.009080, loss_weight: 0.049504
[16:31:08.600] iteration 3788 : loss : 0.036147 cons_dist: 0.001462, loss_weight: 0.049504
[16:31:09.091] iteration 3789 : loss : 0.054657 cons_dist: 0.004750, loss_weight: 0.049504
[16:31:09.582] iteration 3790 : loss : 0.036176 cons_dist: 0.001403, loss_weight: 0.049504
[16:31:10.074] iteration 3791 : loss : 0.043098 cons_dist: 0.001806, loss_weight: 0.049504
[16:31:10.567] iteration 3792 : loss : 0.041642 cons_dist: 0.003021, loss_weight: 0.049504
[16:31:11.617] iteration 3793 : loss : 0.039138 cons_dist: 0.003093, loss_weight: 0.049504
[16:31:12.109] iteration 3794 : loss : 0.046529 cons_dist: 0.002379, loss_weight: 0.049504
[16:31:12.602] iteration 3795 : loss : 0.168862 cons_dist: 0.001630, loss_weight: 0.049504
[16:31:13.094] iteration 3796 : loss : 0.038505 cons_dist: 0.002987, loss_weight: 0.049504
[16:31:13.585] iteration 3797 : loss : 0.038977 cons_dist: 0.002677, loss_weight: 0.049504
[16:31:14.076] iteration 3798 : loss : 0.040880 cons_dist: 0.001979, loss_weight: 0.049504
[16:31:14.567] iteration 3799 : loss : 0.046116 cons_dist: 0.002818, loss_weight: 0.049504
[16:31:15.059] iteration 3800 : loss : 0.065244 cons_dist: 0.006803, loss_weight: 0.049504
[16:31:16.678] iteration 3801 : loss : 0.036888 cons_dist: 0.003019, loss_weight: 0.049504
[16:31:17.169] iteration 3802 : loss : 0.039219 cons_dist: 0.003344, loss_weight: 0.049504
[16:31:17.660] iteration 3803 : loss : 0.041970 cons_dist: 0.008873, loss_weight: 0.049504
[16:31:18.151] iteration 3804 : loss : 0.037617 cons_dist: 0.001830, loss_weight: 0.049504
[16:31:19.295] iteration 3805 : loss : 0.041961 cons_dist: 0.003619, loss_weight: 0.049504
[16:31:19.782] iteration 3806 : loss : 0.031379 cons_dist: 0.006680, loss_weight: 0.049504
[16:31:20.274] iteration 3807 : loss : 0.050205 cons_dist: 0.005988, loss_weight: 0.049504
[16:31:20.766] iteration 3808 : loss : 0.055072 cons_dist: 0.001952, loss_weight: 0.049504
[16:31:21.258] iteration 3809 : loss : 0.036900 cons_dist: 0.002638, loss_weight: 0.049504
[16:31:21.749] iteration 3810 : loss : 0.036987 cons_dist: 0.001668, loss_weight: 0.049504
[16:31:22.240] iteration 3811 : loss : 0.038357 cons_dist: 0.003368, loss_weight: 0.049504
[16:31:22.732] iteration 3812 : loss : 0.041125 cons_dist: 0.004266, loss_weight: 0.049504
[16:31:23.222] iteration 3813 : loss : 0.042816 cons_dist: 0.009646, loss_weight: 0.049504
[16:31:23.714] iteration 3814 : loss : 0.040046 cons_dist: 0.007700, loss_weight: 0.049504
[16:31:24.207] iteration 3815 : loss : 0.037890 cons_dist: 0.002888, loss_weight: 0.049504
[16:31:24.699] iteration 3816 : loss : 0.050205 cons_dist: 0.002780, loss_weight: 0.049504
[16:31:25.853] iteration 3817 : loss : 0.035248 cons_dist: 0.004873, loss_weight: 0.049504
[16:31:26.346] iteration 3818 : loss : 0.035299 cons_dist: 0.003723, loss_weight: 0.049504
[16:31:26.839] iteration 3819 : loss : 0.037766 cons_dist: 0.002188, loss_weight: 0.049504
[16:31:27.330] iteration 3820 : loss : 0.041245 cons_dist: 0.002308, loss_weight: 0.049504
[16:31:27.821] iteration 3821 : loss : 0.037213 cons_dist: 0.002759, loss_weight: 0.049504
[16:31:28.313] iteration 3822 : loss : 0.035532 cons_dist: 0.002762, loss_weight: 0.049504
[16:31:28.804] iteration 3823 : loss : 0.042841 cons_dist: 0.002760, loss_weight: 0.049504
[16:31:29.295] iteration 3824 : loss : 0.039167 cons_dist: 0.003449, loss_weight: 0.049504
[16:31:29.787] iteration 3825 : loss : 0.050507 cons_dist: 0.001936, loss_weight: 0.049504
[16:31:30.278] iteration 3826 : loss : 0.043546 cons_dist: 0.001790, loss_weight: 0.049504
[16:31:30.771] iteration 3827 : loss : 0.159095 cons_dist: 0.018212, loss_weight: 0.049504
[16:31:31.263] iteration 3828 : loss : 0.033565 cons_dist: 0.004419, loss_weight: 0.049504
[16:31:32.282] iteration 3829 : loss : 0.032076 cons_dist: 0.002000, loss_weight: 0.049504
[16:31:32.774] iteration 3830 : loss : 0.041718 cons_dist: 0.007932, loss_weight: 0.049504
[16:31:33.265] iteration 3831 : loss : 0.040933 cons_dist: 0.005639, loss_weight: 0.049504
[16:31:33.756] iteration 3832 : loss : 0.045790 cons_dist: 0.005168, loss_weight: 0.049504
[16:31:34.248] iteration 3833 : loss : 0.040921 cons_dist: 0.005039, loss_weight: 0.049504
[16:31:34.740] iteration 3834 : loss : 0.037101 cons_dist: 0.002754, loss_weight: 0.049504
[16:31:35.233] iteration 3835 : loss : 0.042970 cons_dist: 0.040771, loss_weight: 0.049504
[16:31:35.725] iteration 3836 : loss : 0.039150 cons_dist: 0.004772, loss_weight: 0.049504
[16:31:36.216] iteration 3837 : loss : 0.042816 cons_dist: 0.004581, loss_weight: 0.049504
[16:31:36.707] iteration 3838 : loss : 0.036053 cons_dist: 0.003204, loss_weight: 0.049504
[16:31:37.199] iteration 3839 : loss : 0.040518 cons_dist: 0.005922, loss_weight: 0.049504
[16:31:37.692] iteration 3840 : loss : 0.038789 cons_dist: 0.003276, loss_weight: 0.049504
[16:31:38.847] iteration 3841 : loss : 0.043044 cons_dist: 0.002141, loss_weight: 0.049504
[16:31:39.340] iteration 3842 : loss : 0.041404 cons_dist: 0.000842, loss_weight: 0.049504
[16:31:39.831] iteration 3843 : loss : 0.028681 cons_dist: 0.012502, loss_weight: 0.049504
[16:31:40.323] iteration 3844 : loss : 0.037879 cons_dist: 0.006256, loss_weight: 0.049504
[16:31:40.813] iteration 3845 : loss : 0.037632 cons_dist: 0.008269, loss_weight: 0.049504
[16:31:41.304] iteration 3846 : loss : 0.046550 cons_dist: 0.003988, loss_weight: 0.049504
[16:31:41.795] iteration 3847 : loss : 0.036257 cons_dist: 0.003620, loss_weight: 0.049504
[16:31:42.286] iteration 3848 : loss : 0.048191 cons_dist: 0.010829, loss_weight: 0.049504
[16:31:42.777] iteration 3849 : loss : 0.031768 cons_dist: 0.002715, loss_weight: 0.049504
[16:31:43.268] iteration 3850 : loss : 0.032817 cons_dist: 0.004136, loss_weight: 0.049504
[16:31:43.761] iteration 3851 : loss : 0.045942 cons_dist: 0.005262, loss_weight: 0.049504
[16:31:44.253] iteration 3852 : loss : 0.045510 cons_dist: 0.006390, loss_weight: 0.049504
[16:31:45.412] iteration 3853 : loss : 0.042342 cons_dist: 0.033387, loss_weight: 0.049504
[16:31:45.902] iteration 3854 : loss : 0.037688 cons_dist: 0.029779, loss_weight: 0.049504
[16:31:46.393] iteration 3855 : loss : 0.028680 cons_dist: 0.017070, loss_weight: 0.049504
[16:31:46.884] iteration 3856 : loss : 0.053941 cons_dist: 0.001306, loss_weight: 0.049504
[16:31:47.376] iteration 3857 : loss : 0.050560 cons_dist: 0.030460, loss_weight: 0.049504
[16:31:47.868] iteration 3858 : loss : 0.040290 cons_dist: 0.005230, loss_weight: 0.049504
[16:31:48.360] iteration 3859 : loss : 0.043673 cons_dist: 0.002231, loss_weight: 0.049504
[16:31:48.851] iteration 3860 : loss : 0.078168 cons_dist: 0.003891, loss_weight: 0.049504
[16:31:49.343] iteration 3861 : loss : 0.038819 cons_dist: 0.002047, loss_weight: 0.049504
[16:31:49.834] iteration 3862 : loss : 0.033936 cons_dist: 0.005723, loss_weight: 0.049504
[16:31:50.325] iteration 3863 : loss : 0.041645 cons_dist: 0.002162, loss_weight: 0.049504
[16:31:50.816] iteration 3864 : loss : 0.041959 cons_dist: 0.001618, loss_weight: 0.049504
[16:31:51.864] iteration 3865 : loss : 0.043750 cons_dist: 0.002246, loss_weight: 0.049504
[16:31:52.351] iteration 3866 : loss : 0.034840 cons_dist: 0.004461, loss_weight: 0.049504
[16:31:52.842] iteration 3867 : loss : 0.038549 cons_dist: 0.002674, loss_weight: 0.049504
[16:31:53.334] iteration 3868 : loss : 0.033937 cons_dist: 0.012847, loss_weight: 0.049504
[16:31:53.825] iteration 3869 : loss : 0.047095 cons_dist: 0.003068, loss_weight: 0.049504
[16:31:54.316] iteration 3870 : loss : 0.048178 cons_dist: 0.004106, loss_weight: 0.049504
[16:31:54.808] iteration 3871 : loss : 0.047845 cons_dist: 0.002550, loss_weight: 0.049504
[16:31:55.300] iteration 3872 : loss : 0.032681 cons_dist: 0.010393, loss_weight: 0.049504
[16:31:55.792] iteration 3873 : loss : 0.047101 cons_dist: 0.003771, loss_weight: 0.049504
[16:31:56.284] iteration 3874 : loss : 0.040980 cons_dist: 0.001095, loss_weight: 0.049504
[16:31:56.775] iteration 3875 : loss : 0.046934 cons_dist: 0.004659, loss_weight: 0.049504
[16:31:57.266] iteration 3876 : loss : 0.045827 cons_dist: 0.001197, loss_weight: 0.049504
[16:31:58.398] iteration 3877 : loss : 0.039637 cons_dist: 0.009843, loss_weight: 0.049504
[16:31:58.891] iteration 3878 : loss : 0.041440 cons_dist: 0.002260, loss_weight: 0.049504
[16:31:59.383] iteration 3879 : loss : 0.034173 cons_dist: 0.002317, loss_weight: 0.049504
[16:31:59.875] iteration 3880 : loss : 0.052901 cons_dist: 0.002037, loss_weight: 0.049504
[16:32:00.367] iteration 3881 : loss : 0.035550 cons_dist: 0.011017, loss_weight: 0.049504
[16:32:00.858] iteration 3882 : loss : 0.042011 cons_dist: 0.000940, loss_weight: 0.049504
[16:32:01.350] iteration 3883 : loss : 0.039704 cons_dist: 0.002136, loss_weight: 0.049504
[16:32:01.841] iteration 3884 : loss : 0.043419 cons_dist: 0.033074, loss_weight: 0.049504
[16:32:02.332] iteration 3885 : loss : 0.147425 cons_dist: 0.003840, loss_weight: 0.049504
[16:32:02.825] iteration 3886 : loss : 0.041125 cons_dist: 0.005152, loss_weight: 0.049504
[16:32:03.318] iteration 3887 : loss : 0.044563 cons_dist: 0.011458, loss_weight: 0.049504
[16:32:03.810] iteration 3888 : loss : 0.041380 cons_dist: 0.003586, loss_weight: 0.049504
[16:32:04.924] iteration 3889 : loss : 0.044084 cons_dist: 0.028971, loss_weight: 0.049504
[16:32:05.416] iteration 3890 : loss : 0.041964 cons_dist: 0.004150, loss_weight: 0.049504
[16:32:05.907] iteration 3891 : loss : 0.042917 cons_dist: 0.001395, loss_weight: 0.049504
[16:32:06.398] iteration 3892 : loss : 0.037882 cons_dist: 0.001763, loss_weight: 0.049504
[16:32:06.890] iteration 3893 : loss : 0.046646 cons_dist: 0.001254, loss_weight: 0.049504
[16:32:07.381] iteration 3894 : loss : 0.053899 cons_dist: 0.002142, loss_weight: 0.049504
[16:32:07.874] iteration 3895 : loss : 0.033231 cons_dist: 0.002268, loss_weight: 0.049504
[16:32:08.366] iteration 3896 : loss : 0.044102 cons_dist: 0.003250, loss_weight: 0.049504
[16:32:08.858] iteration 3897 : loss : 0.046352 cons_dist: 0.004302, loss_weight: 0.049504
[16:32:09.351] iteration 3898 : loss : 0.036254 cons_dist: 0.013573, loss_weight: 0.049504
[16:32:09.843] iteration 3899 : loss : 0.040007 cons_dist: 0.003271, loss_weight: 0.049504
[16:32:10.334] iteration 3900 : loss : 0.037791 cons_dist: 0.002229, loss_weight: 0.049504
[16:32:11.379] iteration 3901 : loss : 0.036249 cons_dist: 0.002482, loss_weight: 0.054199
[16:32:11.870] iteration 3902 : loss : 0.030516 cons_dist: 0.002575, loss_weight: 0.054199
[16:32:12.361] iteration 3903 : loss : 0.046780 cons_dist: 0.012931, loss_weight: 0.054199
[16:32:12.852] iteration 3904 : loss : 0.041234 cons_dist: 0.003010, loss_weight: 0.054199
[16:32:13.345] iteration 3905 : loss : 0.037441 cons_dist: 0.001990, loss_weight: 0.054199
[16:32:13.837] iteration 3906 : loss : 0.040268 cons_dist: 0.005754, loss_weight: 0.054199
[16:32:14.329] iteration 3907 : loss : 0.043711 cons_dist: 0.006564, loss_weight: 0.054199
[16:32:14.821] iteration 3908 : loss : 0.044861 cons_dist: 0.011446, loss_weight: 0.054199
[16:32:15.312] iteration 3909 : loss : 0.057209 cons_dist: 0.003472, loss_weight: 0.054199
[16:32:15.805] iteration 3910 : loss : 0.038350 cons_dist: 0.002197, loss_weight: 0.054199
[16:32:16.297] iteration 3911 : loss : 0.045795 cons_dist: 0.000863, loss_weight: 0.054199
[16:32:16.789] iteration 3912 : loss : 0.035771 cons_dist: 0.005076, loss_weight: 0.054199
[16:32:17.962] iteration 3913 : loss : 0.034193 cons_dist: 0.007397, loss_weight: 0.054199
[16:32:18.454] iteration 3914 : loss : 0.039696 cons_dist: 0.006135, loss_weight: 0.054199
[16:32:18.946] iteration 3915 : loss : 0.041547 cons_dist: 0.002552, loss_weight: 0.054199
[16:32:19.438] iteration 3916 : loss : 0.109506 cons_dist: 0.002713, loss_weight: 0.054199
[16:32:19.929] iteration 3917 : loss : 0.035212 cons_dist: 0.002077, loss_weight: 0.054199
[16:32:20.420] iteration 3918 : loss : 0.032067 cons_dist: 0.004154, loss_weight: 0.054199
[16:32:20.911] iteration 3919 : loss : 0.035060 cons_dist: 0.002094, loss_weight: 0.054199
[16:32:21.402] iteration 3920 : loss : 0.039134 cons_dist: 0.003447, loss_weight: 0.054199
[16:32:21.893] iteration 3921 : loss : 0.046588 cons_dist: 0.012881, loss_weight: 0.054199
[16:32:22.386] iteration 3922 : loss : 0.036773 cons_dist: 0.007293, loss_weight: 0.054199
[16:32:22.879] iteration 3923 : loss : 0.039798 cons_dist: 0.001907, loss_weight: 0.054199
[16:32:23.370] iteration 3924 : loss : 0.042989 cons_dist: 0.001649, loss_weight: 0.054199
[16:32:24.470] iteration 3925 : loss : 0.045496 cons_dist: 0.002163, loss_weight: 0.054199
[16:32:24.961] iteration 3926 : loss : 0.045803 cons_dist: 0.007067, loss_weight: 0.054199
[16:32:25.453] iteration 3927 : loss : 0.047714 cons_dist: 0.012221, loss_weight: 0.054199
[16:32:25.944] iteration 3928 : loss : 0.042276 cons_dist: 0.005863, loss_weight: 0.054199
[16:32:26.436] iteration 3929 : loss : 0.049939 cons_dist: 0.002639, loss_weight: 0.054199
[16:32:26.927] iteration 3930 : loss : 0.038436 cons_dist: 0.005255, loss_weight: 0.054199
[16:32:27.420] iteration 3931 : loss : 0.040329 cons_dist: 0.001518, loss_weight: 0.054199
[16:32:27.912] iteration 3932 : loss : 0.042093 cons_dist: 0.001510, loss_weight: 0.054199
[16:32:28.404] iteration 3933 : loss : 0.039661 cons_dist: 0.002836, loss_weight: 0.054199
[16:32:28.896] iteration 3934 : loss : 0.041752 cons_dist: 0.002013, loss_weight: 0.054199
[16:32:29.387] iteration 3935 : loss : 0.051632 cons_dist: 0.001661, loss_weight: 0.054199
[16:32:29.878] iteration 3936 : loss : 0.037326 cons_dist: 0.005765, loss_weight: 0.054199
[16:32:30.904] iteration 3937 : loss : 0.051784 cons_dist: 0.001579, loss_weight: 0.054199
[16:32:31.396] iteration 3938 : loss : 0.046367 cons_dist: 0.015219, loss_weight: 0.054199
[16:32:31.887] iteration 3939 : loss : 0.057240 cons_dist: 0.002124, loss_weight: 0.054199
[16:32:32.379] iteration 3940 : loss : 0.032691 cons_dist: 0.002687, loss_weight: 0.054199
[16:32:32.869] iteration 3941 : loss : 0.060937 cons_dist: 0.001424, loss_weight: 0.054199
[16:32:33.361] iteration 3942 : loss : 0.044802 cons_dist: 0.001520, loss_weight: 0.054199
[16:32:33.852] iteration 3943 : loss : 0.049902 cons_dist: 0.029591, loss_weight: 0.054199
[16:32:34.344] iteration 3944 : loss : 0.044016 cons_dist: 0.004233, loss_weight: 0.054199
[16:32:34.835] iteration 3945 : loss : 0.047615 cons_dist: 0.001797, loss_weight: 0.054199
[16:32:35.328] iteration 3946 : loss : 0.046107 cons_dist: 0.001875, loss_weight: 0.054199
[16:32:35.820] iteration 3947 : loss : 0.043830 cons_dist: 0.001906, loss_weight: 0.054199
[16:32:36.311] iteration 3948 : loss : 0.044597 cons_dist: 0.001280, loss_weight: 0.054199
[16:32:37.346] iteration 3949 : loss : 0.036406 cons_dist: 0.005790, loss_weight: 0.054199
[16:32:37.838] iteration 3950 : loss : 0.036484 cons_dist: 0.001380, loss_weight: 0.054199
[16:32:38.329] iteration 3951 : loss : 0.039226 cons_dist: 0.004137, loss_weight: 0.054199
[16:32:38.821] iteration 3952 : loss : 0.037790 cons_dist: 0.003531, loss_weight: 0.054199
[16:32:39.312] iteration 3953 : loss : 0.028629 cons_dist: 0.002745, loss_weight: 0.054199
[16:32:39.804] iteration 3954 : loss : 0.048095 cons_dist: 0.005284, loss_weight: 0.054199
[16:32:40.297] iteration 3955 : loss : 0.040031 cons_dist: 0.001265, loss_weight: 0.054199
[16:32:40.789] iteration 3956 : loss : 0.037896 cons_dist: 0.001931, loss_weight: 0.054199
[16:32:41.280] iteration 3957 : loss : 0.033663 cons_dist: 0.000915, loss_weight: 0.054199
[16:32:41.772] iteration 3958 : loss : 0.043883 cons_dist: 0.001820, loss_weight: 0.054199
[16:32:42.264] iteration 3959 : loss : 0.067797 cons_dist: 0.006704, loss_weight: 0.054199
[16:32:42.755] iteration 3960 : loss : 0.044384 cons_dist: 0.001326, loss_weight: 0.054199
[16:32:43.928] iteration 3961 : loss : 0.062269 cons_dist: 0.008536, loss_weight: 0.054199
[16:32:44.418] iteration 3962 : loss : 0.031630 cons_dist: 0.002084, loss_weight: 0.054199
[16:32:44.910] iteration 3963 : loss : 0.036464 cons_dist: 0.002740, loss_weight: 0.054199
[16:32:45.403] iteration 3964 : loss : 0.054148 cons_dist: 0.002197, loss_weight: 0.054199
[16:32:45.895] iteration 3965 : loss : 0.071457 cons_dist: 0.001639, loss_weight: 0.054199
[16:32:46.386] iteration 3966 : loss : 0.044269 cons_dist: 0.004853, loss_weight: 0.054199
[16:32:46.878] iteration 3967 : loss : 0.057449 cons_dist: 0.010510, loss_weight: 0.054199
[16:32:47.369] iteration 3968 : loss : 0.048545 cons_dist: 0.001678, loss_weight: 0.054199
[16:32:47.861] iteration 3969 : loss : 0.045446 cons_dist: 0.003553, loss_weight: 0.054199
[16:32:48.353] iteration 3970 : loss : 0.049614 cons_dist: 0.002359, loss_weight: 0.054199
[16:32:48.845] iteration 3971 : loss : 0.031492 cons_dist: 0.002413, loss_weight: 0.054199
[16:32:49.338] iteration 3972 : loss : 0.028511 cons_dist: 0.003881, loss_weight: 0.054199
[16:32:50.500] iteration 3973 : loss : 0.039911 cons_dist: 0.003629, loss_weight: 0.054199
[16:32:50.994] iteration 3974 : loss : 0.039081 cons_dist: 0.001389, loss_weight: 0.054199
[16:32:51.486] iteration 3975 : loss : 0.047989 cons_dist: 0.002127, loss_weight: 0.054199
[16:32:51.979] iteration 3976 : loss : 0.035851 cons_dist: 0.002787, loss_weight: 0.054199
[16:32:52.471] iteration 3977 : loss : 0.101997 cons_dist: 0.003514, loss_weight: 0.054199
[16:32:52.962] iteration 3978 : loss : 0.028460 cons_dist: 0.003594, loss_weight: 0.054199
[16:32:53.453] iteration 3979 : loss : 0.049485 cons_dist: 0.002103, loss_weight: 0.054199
[16:32:53.944] iteration 3980 : loss : 0.040566 cons_dist: 0.001347, loss_weight: 0.054199
[16:32:54.436] iteration 3981 : loss : 0.044776 cons_dist: 0.026348, loss_weight: 0.054199
[16:32:54.927] iteration 3982 : loss : 0.038442 cons_dist: 0.001349, loss_weight: 0.054199
[16:32:55.418] iteration 3983 : loss : 0.052682 cons_dist: 0.016663, loss_weight: 0.054199
[16:32:55.910] iteration 3984 : loss : 0.055435 cons_dist: 0.009793, loss_weight: 0.054199
[16:32:57.019] iteration 3985 : loss : 0.042161 cons_dist: 0.005243, loss_weight: 0.054199
[16:32:57.511] iteration 3986 : loss : 0.051049 cons_dist: 0.002484, loss_weight: 0.054199
[16:32:58.003] iteration 3987 : loss : 0.054285 cons_dist: 0.004466, loss_weight: 0.054199
[16:32:58.495] iteration 3988 : loss : 0.046380 cons_dist: 0.003074, loss_weight: 0.054199
[16:32:58.987] iteration 3989 : loss : 0.036349 cons_dist: 0.006086, loss_weight: 0.054199
[16:32:59.479] iteration 3990 : loss : 0.055746 cons_dist: 0.003286, loss_weight: 0.054199
[16:32:59.971] iteration 3991 : loss : 0.044758 cons_dist: 0.009408, loss_weight: 0.054199
[16:33:00.462] iteration 3992 : loss : 0.043991 cons_dist: 0.005651, loss_weight: 0.054199
[16:33:00.954] iteration 3993 : loss : 0.049948 cons_dist: 0.002426, loss_weight: 0.054199
[16:33:01.445] iteration 3994 : loss : 0.041475 cons_dist: 0.022991, loss_weight: 0.054199
[16:33:01.936] iteration 3995 : loss : 0.034309 cons_dist: 0.004318, loss_weight: 0.054199
[16:33:02.428] iteration 3996 : loss : 0.036672 cons_dist: 0.005697, loss_weight: 0.054199
[16:33:03.476] iteration 3997 : loss : 0.038994 cons_dist: 0.007618, loss_weight: 0.054199
[16:33:03.968] iteration 3998 : loss : 0.032402 cons_dist: 0.003478, loss_weight: 0.054199
[16:33:04.459] iteration 3999 : loss : 0.036398 cons_dist: 0.006065, loss_weight: 0.054199
[16:33:04.950] iteration 4000 : loss : 0.037818 cons_dist: 0.012206, loss_weight: 0.054199
[16:33:06.567] iteration 4001 : loss : 0.041555 cons_dist: 0.003629, loss_weight: 0.054199
[16:33:07.059] iteration 4002 : loss : 0.038277 cons_dist: 0.002588, loss_weight: 0.054199
[16:33:07.551] iteration 4003 : loss : 0.084176 cons_dist: 0.002723, loss_weight: 0.054199
[16:33:08.042] iteration 4004 : loss : 0.044691 cons_dist: 0.004519, loss_weight: 0.054199
[16:33:08.533] iteration 4005 : loss : 0.063818 cons_dist: 0.004008, loss_weight: 0.054199
[16:33:09.025] iteration 4006 : loss : 0.060608 cons_dist: 0.004958, loss_weight: 0.054199
[16:33:09.518] iteration 4007 : loss : 0.035656 cons_dist: 0.005342, loss_weight: 0.054199
[16:33:10.009] iteration 4008 : loss : 0.041741 cons_dist: 0.000773, loss_weight: 0.054199
[16:33:11.041] iteration 4009 : loss : 0.051875 cons_dist: 0.001841, loss_weight: 0.054199
[16:33:11.532] iteration 4010 : loss : 0.046837 cons_dist: 0.005645, loss_weight: 0.054199
[16:33:12.023] iteration 4011 : loss : 0.034260 cons_dist: 0.001147, loss_weight: 0.054199
[16:33:12.514] iteration 4012 : loss : 0.057468 cons_dist: 0.044609, loss_weight: 0.054199
[16:33:13.005] iteration 4013 : loss : 0.040417 cons_dist: 0.002237, loss_weight: 0.054199
[16:33:13.496] iteration 4014 : loss : 0.030115 cons_dist: 0.001132, loss_weight: 0.054199
[16:33:13.986] iteration 4015 : loss : 0.033369 cons_dist: 0.006766, loss_weight: 0.054199
[16:33:14.477] iteration 4016 : loss : 0.039203 cons_dist: 0.004212, loss_weight: 0.054199
[16:33:14.967] iteration 4017 : loss : 0.046557 cons_dist: 0.002471, loss_weight: 0.054199
[16:33:15.459] iteration 4018 : loss : 0.033148 cons_dist: 0.003186, loss_weight: 0.054199
[16:33:15.951] iteration 4019 : loss : 0.065592 cons_dist: 0.002847, loss_weight: 0.054199
[16:33:16.443] iteration 4020 : loss : 0.039315 cons_dist: 0.006249, loss_weight: 0.054199
[16:33:17.446] iteration 4021 : loss : 0.034452 cons_dist: 0.003576, loss_weight: 0.054199
[16:33:17.937] iteration 4022 : loss : 0.033600 cons_dist: 0.002612, loss_weight: 0.054199
[16:33:18.427] iteration 4023 : loss : 0.031110 cons_dist: 0.002113, loss_weight: 0.054199
[16:33:18.918] iteration 4024 : loss : 0.031031 cons_dist: 0.001493, loss_weight: 0.054199
[16:33:19.409] iteration 4025 : loss : 0.044006 cons_dist: 0.005829, loss_weight: 0.054199
[16:33:19.902] iteration 4026 : loss : 0.035553 cons_dist: 0.001448, loss_weight: 0.054199
[16:33:20.394] iteration 4027 : loss : 0.035630 cons_dist: 0.006579, loss_weight: 0.054199
[16:33:20.886] iteration 4028 : loss : 0.039694 cons_dist: 0.008940, loss_weight: 0.054199
[16:33:21.377] iteration 4029 : loss : 0.061054 cons_dist: 0.030736, loss_weight: 0.054199
[16:33:21.867] iteration 4030 : loss : 0.037098 cons_dist: 0.002253, loss_weight: 0.054199
[16:33:22.358] iteration 4031 : loss : 0.036983 cons_dist: 0.000837, loss_weight: 0.054199
[16:33:22.848] iteration 4032 : loss : 0.043481 cons_dist: 0.004448, loss_weight: 0.054199
[16:33:23.874] iteration 4033 : loss : 0.037328 cons_dist: 0.002597, loss_weight: 0.054199
[16:33:24.366] iteration 4034 : loss : 0.034710 cons_dist: 0.000931, loss_weight: 0.054199
[16:33:24.857] iteration 4035 : loss : 0.035699 cons_dist: 0.001211, loss_weight: 0.054199
[16:33:25.347] iteration 4036 : loss : 0.048382 cons_dist: 0.001294, loss_weight: 0.054199
[16:33:25.838] iteration 4037 : loss : 0.042141 cons_dist: 0.004453, loss_weight: 0.054199
[16:33:26.329] iteration 4038 : loss : 0.039991 cons_dist: 0.006712, loss_weight: 0.054199
[16:33:26.820] iteration 4039 : loss : 0.035930 cons_dist: 0.004561, loss_weight: 0.054199
[16:33:27.311] iteration 4040 : loss : 0.061101 cons_dist: 0.002604, loss_weight: 0.054199
[16:33:27.802] iteration 4041 : loss : 0.033697 cons_dist: 0.002822, loss_weight: 0.054199
[16:33:28.294] iteration 4042 : loss : 0.038988 cons_dist: 0.005210, loss_weight: 0.054199
[16:33:28.786] iteration 4043 : loss : 0.061853 cons_dist: 0.006168, loss_weight: 0.054199
[16:33:29.277] iteration 4044 : loss : 0.053727 cons_dist: 0.036285, loss_weight: 0.054199
[16:33:30.316] iteration 4045 : loss : 0.045396 cons_dist: 0.000759, loss_weight: 0.054199
[16:33:30.807] iteration 4046 : loss : 0.038214 cons_dist: 0.044725, loss_weight: 0.054199
[16:33:31.298] iteration 4047 : loss : 0.049807 cons_dist: 0.003328, loss_weight: 0.054199
[16:33:31.788] iteration 4048 : loss : 0.035211 cons_dist: 0.001626, loss_weight: 0.054199
[16:33:32.281] iteration 4049 : loss : 0.053728 cons_dist: 0.002147, loss_weight: 0.054199
[16:33:32.772] iteration 4050 : loss : 0.034807 cons_dist: 0.002221, loss_weight: 0.054199
[16:33:33.265] iteration 4051 : loss : 0.034201 cons_dist: 0.001637, loss_weight: 0.058971
[16:33:33.757] iteration 4052 : loss : 0.041419 cons_dist: 0.003603, loss_weight: 0.058971
[16:33:34.248] iteration 4053 : loss : 0.040447 cons_dist: 0.004667, loss_weight: 0.058971
[16:33:34.739] iteration 4054 : loss : 0.034866 cons_dist: 0.001537, loss_weight: 0.058971
[16:33:35.229] iteration 4055 : loss : 0.031194 cons_dist: 0.001287, loss_weight: 0.058971
[16:33:35.721] iteration 4056 : loss : 0.037116 cons_dist: 0.001286, loss_weight: 0.058971
[16:33:36.766] iteration 4057 : loss : 0.038291 cons_dist: 0.002951, loss_weight: 0.058971
[16:33:37.258] iteration 4058 : loss : 0.033732 cons_dist: 0.002001, loss_weight: 0.058971
[16:33:37.750] iteration 4059 : loss : 0.036000 cons_dist: 0.001296, loss_weight: 0.058971
[16:33:38.241] iteration 4060 : loss : 0.031661 cons_dist: 0.002345, loss_weight: 0.058971
[16:33:38.732] iteration 4061 : loss : 0.034361 cons_dist: 0.002852, loss_weight: 0.058971
[16:33:39.223] iteration 4062 : loss : 0.046059 cons_dist: 0.002138, loss_weight: 0.058971
[16:33:39.714] iteration 4063 : loss : 0.040734 cons_dist: 0.000736, loss_weight: 0.058971
[16:33:40.204] iteration 4064 : loss : 0.036874 cons_dist: 0.004019, loss_weight: 0.058971
[16:33:40.696] iteration 4065 : loss : 0.046401 cons_dist: 0.003216, loss_weight: 0.058971
[16:33:41.188] iteration 4066 : loss : 0.150591 cons_dist: 0.062584, loss_weight: 0.058971
[16:33:41.679] iteration 4067 : loss : 0.172593 cons_dist: 0.004966, loss_weight: 0.058971
[16:33:42.171] iteration 4068 : loss : 0.038338 cons_dist: 0.001421, loss_weight: 0.058971
[16:33:43.255] iteration 4069 : loss : 0.043977 cons_dist: 0.001789, loss_weight: 0.058971
[16:33:43.746] iteration 4070 : loss : 0.035873 cons_dist: 0.006739, loss_weight: 0.058971
[16:33:44.237] iteration 4071 : loss : 0.045969 cons_dist: 0.004484, loss_weight: 0.058971
[16:33:44.729] iteration 4072 : loss : 0.037593 cons_dist: 0.029112, loss_weight: 0.058971
[16:33:45.220] iteration 4073 : loss : 0.041874 cons_dist: 0.010048, loss_weight: 0.058971
[16:33:45.711] iteration 4074 : loss : 0.037533 cons_dist: 0.010292, loss_weight: 0.058971
[16:33:46.203] iteration 4075 : loss : 0.062645 cons_dist: 0.006697, loss_weight: 0.058971
[16:33:46.695] iteration 4076 : loss : 0.033905 cons_dist: 0.005354, loss_weight: 0.058971
[16:33:47.187] iteration 4077 : loss : 0.037540 cons_dist: 0.001740, loss_weight: 0.058971
[16:33:47.677] iteration 4078 : loss : 0.041995 cons_dist: 0.001880, loss_weight: 0.058971
[16:33:48.169] iteration 4079 : loss : 0.039735 cons_dist: 0.047019, loss_weight: 0.058971
[16:33:48.659] iteration 4080 : loss : 0.045313 cons_dist: 0.006415, loss_weight: 0.058971
[16:33:49.727] iteration 4081 : loss : 0.050133 cons_dist: 0.006588, loss_weight: 0.058971
[16:33:50.214] iteration 4082 : loss : 0.040600 cons_dist: 0.002212, loss_weight: 0.058971
[16:33:50.706] iteration 4083 : loss : 0.035156 cons_dist: 0.007005, loss_weight: 0.058971
[16:33:51.197] iteration 4084 : loss : 0.057527 cons_dist: 0.005238, loss_weight: 0.058971
[16:33:51.688] iteration 4085 : loss : 0.043504 cons_dist: 0.001441, loss_weight: 0.058971
[16:33:52.178] iteration 4086 : loss : 0.036918 cons_dist: 0.002277, loss_weight: 0.058971
[16:33:52.669] iteration 4087 : loss : 0.039872 cons_dist: 0.001387, loss_weight: 0.058971
[16:33:53.160] iteration 4088 : loss : 0.039955 cons_dist: 0.001021, loss_weight: 0.058971
[16:33:53.652] iteration 4089 : loss : 0.064213 cons_dist: 0.001584, loss_weight: 0.058971
[16:33:54.143] iteration 4090 : loss : 0.040537 cons_dist: 0.004122, loss_weight: 0.058971
[16:33:54.634] iteration 4091 : loss : 0.040038 cons_dist: 0.002171, loss_weight: 0.058971
[16:33:55.125] iteration 4092 : loss : 0.048240 cons_dist: 0.012328, loss_weight: 0.058971
[16:33:56.161] iteration 4093 : loss : 0.046211 cons_dist: 0.006796, loss_weight: 0.058971
[16:33:56.653] iteration 4094 : loss : 0.052212 cons_dist: 0.002512, loss_weight: 0.058971
[16:33:57.143] iteration 4095 : loss : 0.036859 cons_dist: 0.005213, loss_weight: 0.058971
[16:33:57.635] iteration 4096 : loss : 0.039790 cons_dist: 0.001322, loss_weight: 0.058971
[16:33:58.124] iteration 4097 : loss : 0.034613 cons_dist: 0.001596, loss_weight: 0.058971
[16:33:58.614] iteration 4098 : loss : 0.038525 cons_dist: 0.001800, loss_weight: 0.058971
[16:33:59.105] iteration 4099 : loss : 0.033424 cons_dist: 0.002390, loss_weight: 0.058971
[16:33:59.596] iteration 4100 : loss : 0.042638 cons_dist: 0.003451, loss_weight: 0.058971
[16:34:00.088] iteration 4101 : loss : 0.029727 cons_dist: 0.000725, loss_weight: 0.058971
[16:34:00.580] iteration 4102 : loss : 0.037078 cons_dist: 0.002002, loss_weight: 0.058971
[16:34:01.071] iteration 4103 : loss : 0.036682 cons_dist: 0.009990, loss_weight: 0.058971
[16:34:01.562] iteration 4104 : loss : 0.031981 cons_dist: 0.004406, loss_weight: 0.058971
[16:34:02.751] iteration 4105 : loss : 0.037624 cons_dist: 0.002565, loss_weight: 0.058971
[16:34:03.238] iteration 4106 : loss : 0.036199 cons_dist: 0.002776, loss_weight: 0.058971
[16:34:03.729] iteration 4107 : loss : 0.047135 cons_dist: 0.002532, loss_weight: 0.058971
[16:34:04.220] iteration 4108 : loss : 0.042854 cons_dist: 0.007324, loss_weight: 0.058971
[16:34:04.711] iteration 4109 : loss : 0.054208 cons_dist: 0.004641, loss_weight: 0.058971
[16:34:05.203] iteration 4110 : loss : 0.037416 cons_dist: 0.003653, loss_weight: 0.058971
[16:34:05.693] iteration 4111 : loss : 0.043290 cons_dist: 0.003452, loss_weight: 0.058971
[16:34:06.184] iteration 4112 : loss : 0.036051 cons_dist: 0.002187, loss_weight: 0.058971
[16:34:06.675] iteration 4113 : loss : 0.044064 cons_dist: 0.003071, loss_weight: 0.058971
[16:34:07.165] iteration 4114 : loss : 0.043325 cons_dist: 0.001499, loss_weight: 0.058971
[16:34:07.656] iteration 4115 : loss : 0.113109 cons_dist: 0.003400, loss_weight: 0.058971
[16:34:08.146] iteration 4116 : loss : 0.044733 cons_dist: 0.001386, loss_weight: 0.058971
[16:34:09.308] iteration 4117 : loss : 0.042532 cons_dist: 0.001054, loss_weight: 0.058971
[16:34:09.800] iteration 4118 : loss : 0.035472 cons_dist: 0.002086, loss_weight: 0.058971
[16:34:10.290] iteration 4119 : loss : 0.045872 cons_dist: 0.006014, loss_weight: 0.058971
[16:34:10.782] iteration 4120 : loss : 0.032730 cons_dist: 0.001921, loss_weight: 0.058971
[16:34:11.313] iteration 4121 : loss : 0.033621 cons_dist: 0.000953, loss_weight: 0.058971
[16:34:11.803] iteration 4122 : loss : 0.036074 cons_dist: 0.004923, loss_weight: 0.058971
[16:34:12.293] iteration 4123 : loss : 0.036067 cons_dist: 0.006273, loss_weight: 0.058971
[16:34:12.784] iteration 4124 : loss : 0.051611 cons_dist: 0.001605, loss_weight: 0.058971
[16:34:13.275] iteration 4125 : loss : 0.182175 cons_dist: 0.005217, loss_weight: 0.058971
[16:34:13.767] iteration 4126 : loss : 0.043545 cons_dist: 0.001697, loss_weight: 0.058971
[16:34:14.258] iteration 4127 : loss : 0.034445 cons_dist: 0.004452, loss_weight: 0.058971
[16:34:14.748] iteration 4128 : loss : 0.034788 cons_dist: 0.001424, loss_weight: 0.058971
[16:34:15.801] iteration 4129 : loss : 0.035672 cons_dist: 0.003827, loss_weight: 0.058971
[16:34:16.292] iteration 4130 : loss : 0.038151 cons_dist: 0.001494, loss_weight: 0.058971
[16:34:16.783] iteration 4131 : loss : 0.051326 cons_dist: 0.004660, loss_weight: 0.058971
[16:34:17.273] iteration 4132 : loss : 0.032070 cons_dist: 0.002248, loss_weight: 0.058971
[16:34:17.763] iteration 4133 : loss : 0.037347 cons_dist: 0.001080, loss_weight: 0.058971
[16:34:18.253] iteration 4134 : loss : 0.038841 cons_dist: 0.003088, loss_weight: 0.058971
[16:34:18.744] iteration 4135 : loss : 0.042067 cons_dist: 0.003891, loss_weight: 0.058971
[16:34:19.234] iteration 4136 : loss : 0.033930 cons_dist: 0.001827, loss_weight: 0.058971
[16:34:19.723] iteration 4137 : loss : 0.056138 cons_dist: 0.027225, loss_weight: 0.058971
[16:34:20.213] iteration 4138 : loss : 0.035475 cons_dist: 0.006917, loss_weight: 0.058971
[16:34:20.704] iteration 4139 : loss : 0.030190 cons_dist: 0.005442, loss_weight: 0.058971
[16:34:21.196] iteration 4140 : loss : 0.033938 cons_dist: 0.001140, loss_weight: 0.058971
[16:34:22.354] iteration 4141 : loss : 0.032644 cons_dist: 0.001172, loss_weight: 0.058971
[16:34:22.845] iteration 4142 : loss : 0.051743 cons_dist: 0.002260, loss_weight: 0.058971
[16:34:23.336] iteration 4143 : loss : 0.045564 cons_dist: 0.002713, loss_weight: 0.058971
[16:34:23.826] iteration 4144 : loss : 0.043353 cons_dist: 0.001141, loss_weight: 0.058971
[16:34:24.316] iteration 4145 : loss : 0.031402 cons_dist: 0.001543, loss_weight: 0.058971
[16:34:24.806] iteration 4146 : loss : 0.032691 cons_dist: 0.005143, loss_weight: 0.058971
[16:34:25.296] iteration 4147 : loss : 0.031226 cons_dist: 0.001826, loss_weight: 0.058971
[16:34:25.786] iteration 4148 : loss : 0.038305 cons_dist: 0.001440, loss_weight: 0.058971
[16:34:26.277] iteration 4149 : loss : 0.037377 cons_dist: 0.003280, loss_weight: 0.058971
[16:34:26.767] iteration 4150 : loss : 0.077916 cons_dist: 0.001605, loss_weight: 0.058971
[16:34:27.258] iteration 4151 : loss : 0.028015 cons_dist: 0.002704, loss_weight: 0.058971
[16:34:27.750] iteration 4152 : loss : 0.035005 cons_dist: 0.003048, loss_weight: 0.058971
[16:34:28.883] iteration 4153 : loss : 0.051709 cons_dist: 0.002664, loss_weight: 0.058971
[16:34:29.373] iteration 4154 : loss : 0.029943 cons_dist: 0.002631, loss_weight: 0.058971
[16:34:29.863] iteration 4155 : loss : 0.093643 cons_dist: 0.001631, loss_weight: 0.058971
[16:34:30.352] iteration 4156 : loss : 0.044210 cons_dist: 0.002120, loss_weight: 0.058971
[16:34:30.843] iteration 4157 : loss : 0.034210 cons_dist: 0.001481, loss_weight: 0.058971
[16:34:31.334] iteration 4158 : loss : 0.038872 cons_dist: 0.001968, loss_weight: 0.058971
[16:34:31.825] iteration 4159 : loss : 0.049717 cons_dist: 0.000965, loss_weight: 0.058971
[16:34:32.316] iteration 4160 : loss : 0.037929 cons_dist: 0.003383, loss_weight: 0.058971
[16:34:32.807] iteration 4161 : loss : 0.035726 cons_dist: 0.001043, loss_weight: 0.058971
[16:34:33.297] iteration 4162 : loss : 0.034406 cons_dist: 0.006153, loss_weight: 0.058971
[16:34:33.787] iteration 4163 : loss : 0.037687 cons_dist: 0.001761, loss_weight: 0.058971
[16:34:34.278] iteration 4164 : loss : 0.042691 cons_dist: 0.004370, loss_weight: 0.058971
[16:34:35.400] iteration 4165 : loss : 0.040978 cons_dist: 0.001969, loss_weight: 0.058971
[16:34:35.889] iteration 4166 : loss : 0.038980 cons_dist: 0.000971, loss_weight: 0.058971
[16:34:36.379] iteration 4167 : loss : 0.037982 cons_dist: 0.003555, loss_weight: 0.058971
[16:34:36.869] iteration 4168 : loss : 0.033023 cons_dist: 0.003693, loss_weight: 0.058971
[16:34:37.360] iteration 4169 : loss : 0.033404 cons_dist: 0.013052, loss_weight: 0.058971
[16:34:37.851] iteration 4170 : loss : 0.029386 cons_dist: 0.008546, loss_weight: 0.058971
[16:34:38.342] iteration 4171 : loss : 0.042424 cons_dist: 0.002252, loss_weight: 0.058971
[16:34:38.833] iteration 4172 : loss : 0.049025 cons_dist: 0.006818, loss_weight: 0.058971
[16:34:39.324] iteration 4173 : loss : 0.052194 cons_dist: 0.001003, loss_weight: 0.058971
[16:34:39.814] iteration 4174 : loss : 0.044269 cons_dist: 0.002012, loss_weight: 0.058971
[16:34:40.305] iteration 4175 : loss : 0.036829 cons_dist: 0.000754, loss_weight: 0.058971
[16:34:40.796] iteration 4176 : loss : 0.042490 cons_dist: 0.003009, loss_weight: 0.058971
[16:34:41.974] iteration 4177 : loss : 0.034527 cons_dist: 0.001274, loss_weight: 0.058971
[16:34:42.464] iteration 4178 : loss : 0.048911 cons_dist: 0.004282, loss_weight: 0.058971
[16:34:42.954] iteration 4179 : loss : 0.039671 cons_dist: 0.004113, loss_weight: 0.058971
[16:34:43.444] iteration 4180 : loss : 0.034448 cons_dist: 0.001374, loss_weight: 0.058971
[16:34:43.934] iteration 4181 : loss : 0.034293 cons_dist: 0.001469, loss_weight: 0.058971
[16:34:44.424] iteration 4182 : loss : 0.039543 cons_dist: 0.001617, loss_weight: 0.058971
[16:34:44.914] iteration 4183 : loss : 0.033698 cons_dist: 0.001487, loss_weight: 0.058971
[16:34:45.405] iteration 4184 : loss : 0.046496 cons_dist: 0.001314, loss_weight: 0.058971
[16:34:45.896] iteration 4185 : loss : 0.170217 cons_dist: 0.007831, loss_weight: 0.058971
[16:34:46.387] iteration 4186 : loss : 0.036089 cons_dist: 0.005737, loss_weight: 0.058971
[16:34:46.878] iteration 4187 : loss : 0.049100 cons_dist: 0.005032, loss_weight: 0.058971
[16:34:47.369] iteration 4188 : loss : 0.034561 cons_dist: 0.003709, loss_weight: 0.058971
[16:34:48.594] iteration 4189 : loss : 0.041663 cons_dist: 0.003278, loss_weight: 0.058971
[16:34:49.084] iteration 4190 : loss : 0.045460 cons_dist: 0.003855, loss_weight: 0.058971
[16:34:49.574] iteration 4191 : loss : 0.039210 cons_dist: 0.007059, loss_weight: 0.058971
[16:34:50.064] iteration 4192 : loss : 0.033034 cons_dist: 0.004514, loss_weight: 0.058971
[16:34:50.553] iteration 4193 : loss : 0.044310 cons_dist: 0.001199, loss_weight: 0.058971
[16:34:51.043] iteration 4194 : loss : 0.045011 cons_dist: 0.004706, loss_weight: 0.058971
[16:34:51.533] iteration 4195 : loss : 0.040013 cons_dist: 0.002601, loss_weight: 0.058971
[16:34:52.023] iteration 4196 : loss : 0.039939 cons_dist: 0.002556, loss_weight: 0.058971
[16:34:52.513] iteration 4197 : loss : 0.034660 cons_dist: 0.006334, loss_weight: 0.058971
[16:34:53.004] iteration 4198 : loss : 0.033497 cons_dist: 0.001479, loss_weight: 0.058971
[16:34:53.496] iteration 4199 : loss : 0.030970 cons_dist: 0.003081, loss_weight: 0.058971
[16:34:53.987] iteration 4200 : loss : 0.040041 cons_dist: 0.003956, loss_weight: 0.058971
[16:34:56.198] iteration 4201 : loss : 0.059289 cons_dist: 0.000959, loss_weight: 0.063763
[16:34:56.689] iteration 4202 : loss : 0.050164 cons_dist: 0.003738, loss_weight: 0.063763
[16:34:57.179] iteration 4203 : loss : 0.038978 cons_dist: 0.002661, loss_weight: 0.063763
[16:34:57.671] iteration 4204 : loss : 0.060218 cons_dist: 0.003469, loss_weight: 0.063763
[16:34:58.162] iteration 4205 : loss : 0.037070 cons_dist: 0.002235, loss_weight: 0.063763
[16:34:58.653] iteration 4206 : loss : 0.038668 cons_dist: 0.005367, loss_weight: 0.063763
[16:34:59.144] iteration 4207 : loss : 0.033975 cons_dist: 0.006816, loss_weight: 0.063763
[16:34:59.635] iteration 4208 : loss : 0.051746 cons_dist: 0.006930, loss_weight: 0.063763
[16:35:00.125] iteration 4209 : loss : 0.038286 cons_dist: 0.005066, loss_weight: 0.063763
[16:35:00.617] iteration 4210 : loss : 0.054426 cons_dist: 0.003959, loss_weight: 0.063763
[16:35:01.106] iteration 4211 : loss : 0.049296 cons_dist: 0.009698, loss_weight: 0.063763
[16:35:01.596] iteration 4212 : loss : 0.041311 cons_dist: 0.002447, loss_weight: 0.063763
[16:35:02.625] iteration 4213 : loss : 0.028622 cons_dist: 0.002574, loss_weight: 0.063763
[16:35:03.116] iteration 4214 : loss : 0.031842 cons_dist: 0.002274, loss_weight: 0.063763
[16:35:03.606] iteration 4215 : loss : 0.047429 cons_dist: 0.005665, loss_weight: 0.063763
[16:35:04.097] iteration 4216 : loss : 0.041015 cons_dist: 0.014955, loss_weight: 0.063763
[16:35:04.587] iteration 4217 : loss : 0.028109 cons_dist: 0.001158, loss_weight: 0.063763
[16:35:05.078] iteration 4218 : loss : 0.045997 cons_dist: 0.005450, loss_weight: 0.063763
[16:35:05.569] iteration 4219 : loss : 0.044704 cons_dist: 0.008004, loss_weight: 0.063763
[16:35:06.060] iteration 4220 : loss : 0.036221 cons_dist: 0.002259, loss_weight: 0.063763
[16:35:06.551] iteration 4221 : loss : 0.043808 cons_dist: 0.001963, loss_weight: 0.063763
[16:35:07.042] iteration 4222 : loss : 0.041372 cons_dist: 0.001321, loss_weight: 0.063763
[16:35:07.533] iteration 4223 : loss : 0.048494 cons_dist: 0.006184, loss_weight: 0.063763
[16:35:08.023] iteration 4224 : loss : 0.048440 cons_dist: 0.003282, loss_weight: 0.063763
[16:35:09.138] iteration 4225 : loss : 0.035068 cons_dist: 0.003137, loss_weight: 0.063763
[16:35:09.629] iteration 4226 : loss : 0.044204 cons_dist: 0.001856, loss_weight: 0.063763
[16:35:10.120] iteration 4227 : loss : 0.049761 cons_dist: 0.000923, loss_weight: 0.063763
[16:35:10.610] iteration 4228 : loss : 0.042926 cons_dist: 0.001926, loss_weight: 0.063763
[16:35:11.100] iteration 4229 : loss : 0.042998 cons_dist: 0.012782, loss_weight: 0.063763
[16:35:11.589] iteration 4230 : loss : 0.059476 cons_dist: 0.006175, loss_weight: 0.063763
[16:35:12.081] iteration 4231 : loss : 0.040431 cons_dist: 0.002351, loss_weight: 0.063763
[16:35:12.572] iteration 4232 : loss : 0.036607 cons_dist: 0.003626, loss_weight: 0.063763
[16:35:13.063] iteration 4233 : loss : 0.035062 cons_dist: 0.000999, loss_weight: 0.063763
[16:35:13.554] iteration 4234 : loss : 0.039479 cons_dist: 0.001878, loss_weight: 0.063763
[16:35:14.045] iteration 4235 : loss : 0.031740 cons_dist: 0.002745, loss_weight: 0.063763
[16:35:14.536] iteration 4236 : loss : 0.042209 cons_dist: 0.001016, loss_weight: 0.063763
[16:35:15.677] iteration 4237 : loss : 0.083908 cons_dist: 0.036147, loss_weight: 0.063763
[16:35:16.168] iteration 4238 : loss : 0.035861 cons_dist: 0.001532, loss_weight: 0.063763
[16:35:16.657] iteration 4239 : loss : 0.056822 cons_dist: 0.004687, loss_weight: 0.063763
[16:35:17.147] iteration 4240 : loss : 0.046987 cons_dist: 0.007297, loss_weight: 0.063763
[16:35:17.637] iteration 4241 : loss : 0.053267 cons_dist: 0.022060, loss_weight: 0.063763
[16:35:18.127] iteration 4242 : loss : 0.039701 cons_dist: 0.010263, loss_weight: 0.063763
[16:35:18.619] iteration 4243 : loss : 0.036345 cons_dist: 0.009388, loss_weight: 0.063763
[16:35:19.111] iteration 4244 : loss : 0.032968 cons_dist: 0.004535, loss_weight: 0.063763
[16:35:19.602] iteration 4245 : loss : 0.051427 cons_dist: 0.001464, loss_weight: 0.063763
[16:35:20.093] iteration 4246 : loss : 0.047059 cons_dist: 0.008079, loss_weight: 0.063763
[16:35:20.583] iteration 4247 : loss : 0.033323 cons_dist: 0.002623, loss_weight: 0.063763
[16:35:21.073] iteration 4248 : loss : 0.044794 cons_dist: 0.056216, loss_weight: 0.063763
[16:35:22.212] iteration 4249 : loss : 0.037858 cons_dist: 0.006736, loss_weight: 0.063763
[16:35:22.703] iteration 4250 : loss : 0.035814 cons_dist: 0.004101, loss_weight: 0.063763
[16:35:23.195] iteration 4251 : loss : 0.037768 cons_dist: 0.008301, loss_weight: 0.063763
[16:35:23.686] iteration 4252 : loss : 0.038500 cons_dist: 0.001623, loss_weight: 0.063763
[16:35:24.177] iteration 4253 : loss : 0.048465 cons_dist: 0.005826, loss_weight: 0.063763
[16:35:24.667] iteration 4254 : loss : 0.039720 cons_dist: 0.002643, loss_weight: 0.063763
[16:35:25.157] iteration 4255 : loss : 0.040799 cons_dist: 0.003428, loss_weight: 0.063763
[16:35:25.648] iteration 4256 : loss : 0.037462 cons_dist: 0.011614, loss_weight: 0.063763
[16:35:26.138] iteration 4257 : loss : 0.035114 cons_dist: 0.008983, loss_weight: 0.063763
[16:35:26.628] iteration 4258 : loss : 0.038215 cons_dist: 0.001117, loss_weight: 0.063763
[16:35:27.118] iteration 4259 : loss : 0.042285 cons_dist: 0.000538, loss_weight: 0.063763
[16:35:27.608] iteration 4260 : loss : 0.038887 cons_dist: 0.003280, loss_weight: 0.063763
[16:35:28.656] iteration 4261 : loss : 0.042282 cons_dist: 0.004606, loss_weight: 0.063763
[16:35:29.146] iteration 4262 : loss : 0.043154 cons_dist: 0.005583, loss_weight: 0.063763
[16:35:29.637] iteration 4263 : loss : 0.044788 cons_dist: 0.003892, loss_weight: 0.063763
[16:35:30.127] iteration 4264 : loss : 0.031118 cons_dist: 0.003262, loss_weight: 0.063763
[16:35:30.618] iteration 4265 : loss : 0.052090 cons_dist: 0.003258, loss_weight: 0.063763
[16:35:31.108] iteration 4266 : loss : 0.038763 cons_dist: 0.006516, loss_weight: 0.063763
[16:35:31.598] iteration 4267 : loss : 0.035411 cons_dist: 0.001068, loss_weight: 0.063763
[16:35:32.088] iteration 4268 : loss : 0.035515 cons_dist: 0.008930, loss_weight: 0.063763
[16:35:32.578] iteration 4269 : loss : 0.144542 cons_dist: 0.003500, loss_weight: 0.063763
[16:35:33.068] iteration 4270 : loss : 0.035715 cons_dist: 0.003289, loss_weight: 0.063763
[16:35:33.558] iteration 4271 : loss : 0.030998 cons_dist: 0.002277, loss_weight: 0.063763
[16:35:34.049] iteration 4272 : loss : 0.034957 cons_dist: 0.003551, loss_weight: 0.063763
[16:35:35.238] iteration 4273 : loss : 0.036164 cons_dist: 0.003863, loss_weight: 0.063763
[16:35:35.728] iteration 4274 : loss : 0.040340 cons_dist: 0.002870, loss_weight: 0.063763
[16:35:36.219] iteration 4275 : loss : 0.036791 cons_dist: 0.006169, loss_weight: 0.063763
[16:35:36.708] iteration 4276 : loss : 0.029841 cons_dist: 0.001468, loss_weight: 0.063763
[16:35:37.198] iteration 4277 : loss : 0.051272 cons_dist: 0.003689, loss_weight: 0.063763
[16:35:37.689] iteration 4278 : loss : 0.038252 cons_dist: 0.003236, loss_weight: 0.063763
[16:35:38.180] iteration 4279 : loss : 0.041683 cons_dist: 0.002005, loss_weight: 0.063763
[16:35:38.671] iteration 4280 : loss : 0.041368 cons_dist: 0.003088, loss_weight: 0.063763
[16:35:39.162] iteration 4281 : loss : 0.042533 cons_dist: 0.000986, loss_weight: 0.063763
[16:35:39.652] iteration 4282 : loss : 0.040206 cons_dist: 0.002059, loss_weight: 0.063763
[16:35:40.143] iteration 4283 : loss : 0.048565 cons_dist: 0.001480, loss_weight: 0.063763
[16:35:40.633] iteration 4284 : loss : 0.058341 cons_dist: 0.001602, loss_weight: 0.063763
[16:35:41.807] iteration 4285 : loss : 0.041474 cons_dist: 0.001272, loss_weight: 0.063763
[16:35:42.297] iteration 4286 : loss : 0.046869 cons_dist: 0.009531, loss_weight: 0.063763
[16:35:42.788] iteration 4287 : loss : 0.050944 cons_dist: 0.003438, loss_weight: 0.063763
[16:35:43.278] iteration 4288 : loss : 0.037723 cons_dist: 0.002178, loss_weight: 0.063763
[16:35:43.768] iteration 4289 : loss : 0.038950 cons_dist: 0.003100, loss_weight: 0.063763
[16:35:44.258] iteration 4290 : loss : 0.039896 cons_dist: 0.015970, loss_weight: 0.063763
[16:35:44.748] iteration 4291 : loss : 0.047633 cons_dist: 0.002823, loss_weight: 0.063763
[16:35:45.239] iteration 4292 : loss : 0.038541 cons_dist: 0.001161, loss_weight: 0.063763
[16:35:45.729] iteration 4293 : loss : 0.037854 cons_dist: 0.002735, loss_weight: 0.063763
[16:35:46.220] iteration 4294 : loss : 0.034045 cons_dist: 0.002267, loss_weight: 0.063763
[16:35:46.711] iteration 4295 : loss : 0.046322 cons_dist: 0.001037, loss_weight: 0.063763
[16:35:47.202] iteration 4296 : loss : 0.030590 cons_dist: 0.005227, loss_weight: 0.063763
[16:35:48.282] iteration 4297 : loss : 0.041098 cons_dist: 0.003857, loss_weight: 0.063763
[16:35:48.774] iteration 4298 : loss : 0.049165 cons_dist: 0.001843, loss_weight: 0.063763
[16:35:49.264] iteration 4299 : loss : 0.033317 cons_dist: 0.001474, loss_weight: 0.063763
[16:35:49.755] iteration 4300 : loss : 0.034019 cons_dist: 0.002691, loss_weight: 0.063763
[16:35:50.245] iteration 4301 : loss : 0.045341 cons_dist: 0.005871, loss_weight: 0.063763
[16:35:50.735] iteration 4302 : loss : 0.046563 cons_dist: 0.002614, loss_weight: 0.063763
[16:35:51.226] iteration 4303 : loss : 0.027253 cons_dist: 0.005008, loss_weight: 0.063763
[16:35:51.715] iteration 4304 : loss : 0.035895 cons_dist: 0.006167, loss_weight: 0.063763
[16:35:52.205] iteration 4305 : loss : 0.037941 cons_dist: 0.005640, loss_weight: 0.063763
[16:35:52.695] iteration 4306 : loss : 0.041707 cons_dist: 0.004089, loss_weight: 0.063763
[16:35:53.185] iteration 4307 : loss : 0.037195 cons_dist: 0.007373, loss_weight: 0.063763
[16:35:53.676] iteration 4308 : loss : 0.032049 cons_dist: 0.004956, loss_weight: 0.063763
[16:35:54.796] iteration 4309 : loss : 0.031563 cons_dist: 0.001879, loss_weight: 0.063763
[16:35:55.286] iteration 4310 : loss : 0.030783 cons_dist: 0.000604, loss_weight: 0.063763
[16:35:55.775] iteration 4311 : loss : 0.040418 cons_dist: 0.002643, loss_weight: 0.063763
[16:35:56.265] iteration 4312 : loss : 0.048220 cons_dist: 0.002136, loss_weight: 0.063763
[16:35:56.756] iteration 4313 : loss : 0.036182 cons_dist: 0.001988, loss_weight: 0.063763
[16:35:57.247] iteration 4314 : loss : 0.031308 cons_dist: 0.003743, loss_weight: 0.063763
[16:35:57.737] iteration 4315 : loss : 0.040628 cons_dist: 0.003782, loss_weight: 0.063763
[16:35:58.229] iteration 4316 : loss : 0.039229 cons_dist: 0.002189, loss_weight: 0.063763
[16:35:58.720] iteration 4317 : loss : 0.028433 cons_dist: 0.001293, loss_weight: 0.063763
[16:35:59.212] iteration 4318 : loss : 0.045427 cons_dist: 0.002771, loss_weight: 0.063763
[16:35:59.703] iteration 4319 : loss : 0.035790 cons_dist: 0.002669, loss_weight: 0.063763
[16:36:00.193] iteration 4320 : loss : 0.045551 cons_dist: 0.003849, loss_weight: 0.063763
[16:36:01.219] iteration 4321 : loss : 0.033153 cons_dist: 0.001936, loss_weight: 0.063763
[16:36:01.709] iteration 4322 : loss : 0.037262 cons_dist: 0.003360, loss_weight: 0.063763
[16:36:02.200] iteration 4323 : loss : 0.045130 cons_dist: 0.036751, loss_weight: 0.063763
[16:36:02.690] iteration 4324 : loss : 0.061943 cons_dist: 0.025978, loss_weight: 0.063763
[16:36:03.181] iteration 4325 : loss : 0.033147 cons_dist: 0.006224, loss_weight: 0.063763
[16:36:03.673] iteration 4326 : loss : 0.034463 cons_dist: 0.006772, loss_weight: 0.063763
[16:36:04.163] iteration 4327 : loss : 0.034583 cons_dist: 0.001422, loss_weight: 0.063763
[16:36:04.654] iteration 4328 : loss : 0.050734 cons_dist: 0.006102, loss_weight: 0.063763
[16:36:05.144] iteration 4329 : loss : 0.033793 cons_dist: 0.006590, loss_weight: 0.063763
[16:36:05.634] iteration 4330 : loss : 0.034605 cons_dist: 0.004904, loss_weight: 0.063763
[16:36:06.125] iteration 4331 : loss : 0.110821 cons_dist: 0.006414, loss_weight: 0.063763
[16:36:06.616] iteration 4332 : loss : 0.035768 cons_dist: 0.005914, loss_weight: 0.063763
[16:36:07.706] iteration 4333 : loss : 0.041085 cons_dist: 0.008930, loss_weight: 0.063763
[16:36:08.195] iteration 4334 : loss : 0.034822 cons_dist: 0.001976, loss_weight: 0.063763
[16:36:08.685] iteration 4335 : loss : 0.043659 cons_dist: 0.001266, loss_weight: 0.063763
[16:36:09.175] iteration 4336 : loss : 0.182423 cons_dist: 0.004610, loss_weight: 0.063763
[16:36:09.665] iteration 4337 : loss : 0.050346 cons_dist: 0.007349, loss_weight: 0.063763
[16:36:10.155] iteration 4338 : loss : 0.053355 cons_dist: 0.000825, loss_weight: 0.063763
[16:36:10.646] iteration 4339 : loss : 0.034977 cons_dist: 0.002066, loss_weight: 0.063763
[16:36:11.137] iteration 4340 : loss : 0.037278 cons_dist: 0.004493, loss_weight: 0.063763
[16:36:11.629] iteration 4341 : loss : 0.049225 cons_dist: 0.003826, loss_weight: 0.063763
[16:36:12.120] iteration 4342 : loss : 0.038872 cons_dist: 0.003282, loss_weight: 0.063763
[16:36:12.610] iteration 4343 : loss : 0.042788 cons_dist: 0.062518, loss_weight: 0.063763
[16:36:13.101] iteration 4344 : loss : 0.044729 cons_dist: 0.003308, loss_weight: 0.063763
[16:36:14.262] iteration 4345 : loss : 0.039486 cons_dist: 0.005936, loss_weight: 0.063763
[16:36:14.752] iteration 4346 : loss : 0.034978 cons_dist: 0.002159, loss_weight: 0.063763
[16:36:15.242] iteration 4347 : loss : 0.037610 cons_dist: 0.010056, loss_weight: 0.063763
[16:36:15.732] iteration 4348 : loss : 0.043645 cons_dist: 0.004396, loss_weight: 0.063763
[16:36:16.223] iteration 4349 : loss : 0.038119 cons_dist: 0.033354, loss_weight: 0.063763
[16:36:16.715] iteration 4350 : loss : 0.054594 cons_dist: 0.002088, loss_weight: 0.063763
[16:36:17.206] iteration 4351 : loss : 0.043356 cons_dist: 0.001336, loss_weight: 0.068514
[16:36:17.697] iteration 4352 : loss : 0.037891 cons_dist: 0.000878, loss_weight: 0.068514
[16:36:18.187] iteration 4353 : loss : 0.049567 cons_dist: 0.003702, loss_weight: 0.068514
[16:36:18.678] iteration 4354 : loss : 0.033279 cons_dist: 0.005773, loss_weight: 0.068514
[16:36:19.168] iteration 4355 : loss : 0.042800 cons_dist: 0.001910, loss_weight: 0.068514
[16:36:19.657] iteration 4356 : loss : 0.033896 cons_dist: 0.005591, loss_weight: 0.068514
[16:36:20.713] iteration 4357 : loss : 0.034222 cons_dist: 0.000872, loss_weight: 0.068514
[16:36:21.203] iteration 4358 : loss : 0.037704 cons_dist: 0.003905, loss_weight: 0.068514
[16:36:21.694] iteration 4359 : loss : 0.039761 cons_dist: 0.003586, loss_weight: 0.068514
[16:36:22.184] iteration 4360 : loss : 0.035406 cons_dist: 0.003992, loss_weight: 0.068514
[16:36:22.675] iteration 4361 : loss : 0.037393 cons_dist: 0.006626, loss_weight: 0.068514
[16:36:23.166] iteration 4362 : loss : 0.040977 cons_dist: 0.003393, loss_weight: 0.068514
[16:36:23.658] iteration 4363 : loss : 0.031684 cons_dist: 0.005169, loss_weight: 0.068514
[16:36:24.149] iteration 4364 : loss : 0.035646 cons_dist: 0.004912, loss_weight: 0.068514
[16:36:24.640] iteration 4365 : loss : 0.038522 cons_dist: 0.005629, loss_weight: 0.068514
[16:36:25.130] iteration 4366 : loss : 0.054915 cons_dist: 0.007513, loss_weight: 0.068514
[16:36:25.620] iteration 4367 : loss : 0.047872 cons_dist: 0.003875, loss_weight: 0.068514
[16:36:26.110] iteration 4368 : loss : 0.044502 cons_dist: 0.004668, loss_weight: 0.068514
[16:36:27.234] iteration 4369 : loss : 0.049614 cons_dist: 0.005492, loss_weight: 0.068514
[16:36:27.726] iteration 4370 : loss : 0.037795 cons_dist: 0.001706, loss_weight: 0.068514
[16:36:28.216] iteration 4371 : loss : 0.051596 cons_dist: 0.001046, loss_weight: 0.068514
[16:36:28.707] iteration 4372 : loss : 0.037005 cons_dist: 0.001645, loss_weight: 0.068514
[16:36:29.197] iteration 4373 : loss : 0.047829 cons_dist: 0.007590, loss_weight: 0.068514
[16:36:29.687] iteration 4374 : loss : 0.047129 cons_dist: 0.000787, loss_weight: 0.068514
[16:36:30.177] iteration 4375 : loss : 0.040269 cons_dist: 0.001719, loss_weight: 0.068514
[16:36:30.668] iteration 4376 : loss : 0.032437 cons_dist: 0.001471, loss_weight: 0.068514
[16:36:31.158] iteration 4377 : loss : 0.033749 cons_dist: 0.002583, loss_weight: 0.068514
[16:36:31.649] iteration 4378 : loss : 0.037265 cons_dist: 0.003838, loss_weight: 0.068514
[16:36:32.142] iteration 4379 : loss : 0.036445 cons_dist: 0.002415, loss_weight: 0.068514
[16:36:32.634] iteration 4380 : loss : 0.031092 cons_dist: 0.001242, loss_weight: 0.068514
[16:36:33.734] iteration 4381 : loss : 0.036144 cons_dist: 0.007304, loss_weight: 0.068514
[16:36:34.224] iteration 4382 : loss : 0.046490 cons_dist: 0.002615, loss_weight: 0.068514
[16:36:34.715] iteration 4383 : loss : 0.053023 cons_dist: 0.001775, loss_weight: 0.068514
[16:36:35.206] iteration 4384 : loss : 0.036886 cons_dist: 0.002711, loss_weight: 0.068514
[16:36:35.698] iteration 4385 : loss : 0.039447 cons_dist: 0.004633, loss_weight: 0.068514
[16:36:36.189] iteration 4386 : loss : 0.025820 cons_dist: 0.001057, loss_weight: 0.068514
[16:36:36.680] iteration 4387 : loss : 0.058234 cons_dist: 0.034701, loss_weight: 0.068514
[16:36:37.171] iteration 4388 : loss : 0.037077 cons_dist: 0.004440, loss_weight: 0.068514
[16:36:37.662] iteration 4389 : loss : 0.038879 cons_dist: 0.001892, loss_weight: 0.068514
[16:36:38.152] iteration 4390 : loss : 0.034760 cons_dist: 0.001185, loss_weight: 0.068514
[16:36:38.642] iteration 4391 : loss : 0.039858 cons_dist: 0.001703, loss_weight: 0.068514
[16:36:39.133] iteration 4392 : loss : 0.043422 cons_dist: 0.006405, loss_weight: 0.068514
[16:36:40.246] iteration 4393 : loss : 0.033715 cons_dist: 0.006469, loss_weight: 0.068514
[16:36:40.736] iteration 4394 : loss : 0.034544 cons_dist: 0.004085, loss_weight: 0.068514
[16:36:41.226] iteration 4395 : loss : 0.035109 cons_dist: 0.010720, loss_weight: 0.068514
[16:36:41.717] iteration 4396 : loss : 0.044822 cons_dist: 0.003130, loss_weight: 0.068514
[16:36:42.209] iteration 4397 : loss : 0.039322 cons_dist: 0.000872, loss_weight: 0.068514
[16:36:42.700] iteration 4398 : loss : 0.050105 cons_dist: 0.004182, loss_weight: 0.068514
[16:36:43.191] iteration 4399 : loss : 0.055576 cons_dist: 0.003186, loss_weight: 0.068514
[16:36:43.681] iteration 4400 : loss : 0.041286 cons_dist: 0.001354, loss_weight: 0.068514
[16:36:45.275] iteration 4401 : loss : 0.034300 cons_dist: 0.004619, loss_weight: 0.068514
[16:36:45.766] iteration 4402 : loss : 0.038787 cons_dist: 0.000985, loss_weight: 0.068514
[16:36:46.257] iteration 4403 : loss : 0.049685 cons_dist: 0.001464, loss_weight: 0.068514
[16:36:46.749] iteration 4404 : loss : 0.035528 cons_dist: 0.006061, loss_weight: 0.068514
[16:36:47.906] iteration 4405 : loss : 0.044341 cons_dist: 0.039988, loss_weight: 0.068514
[16:36:48.396] iteration 4406 : loss : 0.046402 cons_dist: 0.002708, loss_weight: 0.068514
[16:36:48.886] iteration 4407 : loss : 0.032718 cons_dist: 0.003000, loss_weight: 0.068514
[16:36:49.376] iteration 4408 : loss : 0.041679 cons_dist: 0.003744, loss_weight: 0.068514
[16:36:49.866] iteration 4409 : loss : 0.044555 cons_dist: 0.001454, loss_weight: 0.068514
[16:36:50.356] iteration 4410 : loss : 0.031854 cons_dist: 0.001700, loss_weight: 0.068514
[16:36:50.846] iteration 4411 : loss : 0.031614 cons_dist: 0.001246, loss_weight: 0.068514
[16:36:51.336] iteration 4412 : loss : 0.034973 cons_dist: 0.001713, loss_weight: 0.068514
[16:36:51.826] iteration 4413 : loss : 0.052708 cons_dist: 0.001791, loss_weight: 0.068514
[16:36:52.317] iteration 4414 : loss : 0.042769 cons_dist: 0.004810, loss_weight: 0.068514
[16:36:52.809] iteration 4415 : loss : 0.040360 cons_dist: 0.002719, loss_weight: 0.068514
[16:36:53.301] iteration 4416 : loss : 0.042519 cons_dist: 0.001807, loss_weight: 0.068514
[16:36:54.363] iteration 4417 : loss : 0.033897 cons_dist: 0.001588, loss_weight: 0.068514
[16:36:54.854] iteration 4418 : loss : 0.027697 cons_dist: 0.002031, loss_weight: 0.068514
[16:36:55.344] iteration 4419 : loss : 0.120841 cons_dist: 0.004340, loss_weight: 0.068514
[16:36:55.835] iteration 4420 : loss : 0.041349 cons_dist: 0.003336, loss_weight: 0.068514
[16:36:56.327] iteration 4421 : loss : 0.033642 cons_dist: 0.001801, loss_weight: 0.068514
[16:36:56.818] iteration 4422 : loss : 0.067132 cons_dist: 0.002014, loss_weight: 0.068514
[16:36:57.309] iteration 4423 : loss : 0.034090 cons_dist: 0.006946, loss_weight: 0.068514
[16:36:57.801] iteration 4424 : loss : 0.035279 cons_dist: 0.003312, loss_weight: 0.068514
[16:36:58.292] iteration 4425 : loss : 0.029111 cons_dist: 0.003083, loss_weight: 0.068514
[16:36:58.782] iteration 4426 : loss : 0.030745 cons_dist: 0.005091, loss_weight: 0.068514
[16:36:59.273] iteration 4427 : loss : 0.039724 cons_dist: 0.002407, loss_weight: 0.068514
[16:36:59.765] iteration 4428 : loss : 0.038563 cons_dist: 0.008832, loss_weight: 0.068514
[16:37:00.884] iteration 4429 : loss : 0.030415 cons_dist: 0.002662, loss_weight: 0.068514
[16:37:01.374] iteration 4430 : loss : 0.047352 cons_dist: 0.002593, loss_weight: 0.068514
[16:37:01.866] iteration 4431 : loss : 0.034289 cons_dist: 0.003061, loss_weight: 0.068514
[16:37:02.357] iteration 4432 : loss : 0.036356 cons_dist: 0.008484, loss_weight: 0.068514
[16:37:02.848] iteration 4433 : loss : 0.036943 cons_dist: 0.003520, loss_weight: 0.068514
[16:37:03.338] iteration 4434 : loss : 0.034153 cons_dist: 0.001596, loss_weight: 0.068514
[16:37:03.829] iteration 4435 : loss : 0.041521 cons_dist: 0.002452, loss_weight: 0.068514
[16:37:04.319] iteration 4436 : loss : 0.037161 cons_dist: 0.002238, loss_weight: 0.068514
[16:37:04.810] iteration 4437 : loss : 0.041564 cons_dist: 0.003159, loss_weight: 0.068514
[16:37:05.300] iteration 4438 : loss : 0.038587 cons_dist: 0.005336, loss_weight: 0.068514
[16:37:05.790] iteration 4439 : loss : 0.032442 cons_dist: 0.008724, loss_weight: 0.068514
[16:37:06.281] iteration 4440 : loss : 0.036145 cons_dist: 0.003395, loss_weight: 0.068514
[16:37:07.338] iteration 4441 : loss : 0.038105 cons_dist: 0.001419, loss_weight: 0.068514
[16:37:07.828] iteration 4442 : loss : 0.045589 cons_dist: 0.002979, loss_weight: 0.068514
[16:37:08.320] iteration 4443 : loss : 0.030917 cons_dist: 0.001123, loss_weight: 0.068514
[16:37:08.812] iteration 4444 : loss : 0.029901 cons_dist: 0.004668, loss_weight: 0.068514
[16:37:09.302] iteration 4445 : loss : 0.042698 cons_dist: 0.003045, loss_weight: 0.068514
[16:37:09.793] iteration 4446 : loss : 0.029423 cons_dist: 0.002861, loss_weight: 0.068514
[16:37:10.283] iteration 4447 : loss : 0.035136 cons_dist: 0.001314, loss_weight: 0.068514
[16:37:10.773] iteration 4448 : loss : 0.040138 cons_dist: 0.005413, loss_weight: 0.068514
[16:37:11.264] iteration 4449 : loss : 0.063268 cons_dist: 0.012366, loss_weight: 0.068514
[16:37:11.754] iteration 4450 : loss : 0.031749 cons_dist: 0.002770, loss_weight: 0.068514
[16:37:12.244] iteration 4451 : loss : 0.049485 cons_dist: 0.007116, loss_weight: 0.068514
[16:37:12.734] iteration 4452 : loss : 0.040219 cons_dist: 0.001943, loss_weight: 0.068514
[16:37:13.798] iteration 4453 : loss : 0.039138 cons_dist: 0.006004, loss_weight: 0.068514
[16:37:14.288] iteration 4454 : loss : 0.043786 cons_dist: 0.001718, loss_weight: 0.068514
[16:37:14.778] iteration 4455 : loss : 0.040128 cons_dist: 0.002813, loss_weight: 0.068514
[16:37:15.268] iteration 4456 : loss : 0.054640 cons_dist: 0.001442, loss_weight: 0.068514
[16:37:15.758] iteration 4457 : loss : 0.030816 cons_dist: 0.002471, loss_weight: 0.068514
[16:37:16.249] iteration 4458 : loss : 0.057222 cons_dist: 0.007820, loss_weight: 0.068514
[16:37:16.741] iteration 4459 : loss : 0.035971 cons_dist: 0.003251, loss_weight: 0.068514
[16:37:17.232] iteration 4460 : loss : 0.041492 cons_dist: 0.004320, loss_weight: 0.068514
[16:37:17.724] iteration 4461 : loss : 0.038296 cons_dist: 0.007722, loss_weight: 0.068514
[16:37:18.215] iteration 4462 : loss : 0.047213 cons_dist: 0.002744, loss_weight: 0.068514
[16:37:18.705] iteration 4463 : loss : 0.030700 cons_dist: 0.014261, loss_weight: 0.068514
[16:37:19.195] iteration 4464 : loss : 0.032927 cons_dist: 0.062467, loss_weight: 0.068514
[16:37:20.300] iteration 4465 : loss : 0.039829 cons_dist: 0.002241, loss_weight: 0.068514
[16:37:20.791] iteration 4466 : loss : 0.042526 cons_dist: 0.002609, loss_weight: 0.068514
[16:37:21.282] iteration 4467 : loss : 0.030860 cons_dist: 0.003098, loss_weight: 0.068514
[16:37:21.772] iteration 4468 : loss : 0.041256 cons_dist: 0.002329, loss_weight: 0.068514
[16:37:22.262] iteration 4469 : loss : 0.044576 cons_dist: 0.002189, loss_weight: 0.068514
[16:37:22.752] iteration 4470 : loss : 0.043387 cons_dist: 0.001914, loss_weight: 0.068514
[16:37:23.242] iteration 4471 : loss : 0.039888 cons_dist: 0.004897, loss_weight: 0.068514
[16:37:23.733] iteration 4472 : loss : 0.043877 cons_dist: 0.009041, loss_weight: 0.068514
[16:37:24.224] iteration 4473 : loss : 0.039813 cons_dist: 0.002120, loss_weight: 0.068514
[16:37:24.716] iteration 4474 : loss : 0.056726 cons_dist: 0.002219, loss_weight: 0.068514
[16:37:25.207] iteration 4475 : loss : 0.036831 cons_dist: 0.002606, loss_weight: 0.068514
[16:37:25.701] iteration 4476 : loss : 0.034952 cons_dist: 0.002838, loss_weight: 0.068514
[16:37:26.767] iteration 4477 : loss : 0.039330 cons_dist: 0.002810, loss_weight: 0.068514
[16:37:27.258] iteration 4478 : loss : 0.034259 cons_dist: 0.002979, loss_weight: 0.068514
[16:37:27.748] iteration 4479 : loss : 0.041307 cons_dist: 0.002762, loss_weight: 0.068514
[16:37:28.239] iteration 4480 : loss : 0.031569 cons_dist: 0.001539, loss_weight: 0.068514
[16:37:28.729] iteration 4481 : loss : 0.047065 cons_dist: 0.003268, loss_weight: 0.068514
[16:37:29.219] iteration 4482 : loss : 0.028143 cons_dist: 0.002348, loss_weight: 0.068514
[16:37:29.709] iteration 4483 : loss : 0.041689 cons_dist: 0.002415, loss_weight: 0.068514
[16:37:30.199] iteration 4484 : loss : 0.038349 cons_dist: 0.002770, loss_weight: 0.068514
[16:37:30.689] iteration 4485 : loss : 0.042347 cons_dist: 0.003440, loss_weight: 0.068514
[16:37:31.179] iteration 4486 : loss : 0.041210 cons_dist: 0.004058, loss_weight: 0.068514
[16:37:31.671] iteration 4487 : loss : 0.038304 cons_dist: 0.008516, loss_weight: 0.068514
[16:37:32.162] iteration 4488 : loss : 0.035672 cons_dist: 0.004486, loss_weight: 0.068514
[16:37:33.378] iteration 4489 : loss : 0.032271 cons_dist: 0.002702, loss_weight: 0.068514
[16:37:33.868] iteration 4490 : loss : 0.043202 cons_dist: 0.003538, loss_weight: 0.068514
[16:37:34.358] iteration 4491 : loss : 0.030646 cons_dist: 0.004272, loss_weight: 0.068514
[16:37:34.848] iteration 4492 : loss : 0.027790 cons_dist: 0.002139, loss_weight: 0.068514
[16:37:35.339] iteration 4493 : loss : 0.037774 cons_dist: 0.002441, loss_weight: 0.068514
[16:37:35.829] iteration 4494 : loss : 0.045288 cons_dist: 0.008072, loss_weight: 0.068514
[16:37:36.318] iteration 4495 : loss : 0.041352 cons_dist: 0.066392, loss_weight: 0.068514
[16:37:36.809] iteration 4496 : loss : 0.036254 cons_dist: 0.006014, loss_weight: 0.068514
[16:37:37.301] iteration 4497 : loss : 0.031818 cons_dist: 0.002511, loss_weight: 0.068514
[16:37:37.791] iteration 4498 : loss : 0.058881 cons_dist: 0.001015, loss_weight: 0.068514
[16:37:38.282] iteration 4499 : loss : 0.033416 cons_dist: 0.002190, loss_weight: 0.068514
[16:37:38.773] iteration 4500 : loss : 0.034992 cons_dist: 0.002189, loss_weight: 0.068514
[16:37:39.995] iteration 4501 : loss : 0.037613 cons_dist: 0.014597, loss_weight: 0.073162
[16:37:40.485] iteration 4502 : loss : 0.043637 cons_dist: 0.003432, loss_weight: 0.073162
[16:37:40.977] iteration 4503 : loss : 0.067059 cons_dist: 0.006665, loss_weight: 0.073162
[16:37:41.468] iteration 4504 : loss : 0.029676 cons_dist: 0.005366, loss_weight: 0.073162
[16:37:41.959] iteration 4505 : loss : 0.047607 cons_dist: 0.001460, loss_weight: 0.073162
[16:37:42.450] iteration 4506 : loss : 0.031586 cons_dist: 0.001719, loss_weight: 0.073162
[16:37:42.940] iteration 4507 : loss : 0.049577 cons_dist: 0.003818, loss_weight: 0.073162
[16:37:43.431] iteration 4508 : loss : 0.035836 cons_dist: 0.006353, loss_weight: 0.073162
[16:37:43.922] iteration 4509 : loss : 0.042777 cons_dist: 0.001767, loss_weight: 0.073162
[16:37:44.412] iteration 4510 : loss : 0.040384 cons_dist: 0.005000, loss_weight: 0.073162
[16:37:44.903] iteration 4511 : loss : 0.036313 cons_dist: 0.023669, loss_weight: 0.073162
[16:37:45.394] iteration 4512 : loss : 0.036977 cons_dist: 0.003256, loss_weight: 0.073162
[16:37:46.460] iteration 4513 : loss : 0.038699 cons_dist: 0.002895, loss_weight: 0.073162
[16:37:46.950] iteration 4514 : loss : 0.036663 cons_dist: 0.054030, loss_weight: 0.073162
[16:37:47.440] iteration 4515 : loss : 0.037439 cons_dist: 0.004365, loss_weight: 0.073162
[16:37:47.931] iteration 4516 : loss : 0.036256 cons_dist: 0.002029, loss_weight: 0.073162
[16:37:48.423] iteration 4517 : loss : 0.034581 cons_dist: 0.004809, loss_weight: 0.073162
[16:37:48.915] iteration 4518 : loss : 0.057614 cons_dist: 0.002476, loss_weight: 0.073162
[16:37:49.406] iteration 4519 : loss : 0.036753 cons_dist: 0.003104, loss_weight: 0.073162
[16:37:49.897] iteration 4520 : loss : 0.034687 cons_dist: 0.001327, loss_weight: 0.073162
[16:37:50.388] iteration 4521 : loss : 0.055620 cons_dist: 0.002645, loss_weight: 0.073162
[16:37:50.880] iteration 4522 : loss : 0.031665 cons_dist: 0.001307, loss_weight: 0.073162
[16:37:51.370] iteration 4523 : loss : 0.028213 cons_dist: 0.002812, loss_weight: 0.073162
[16:37:51.861] iteration 4524 : loss : 0.033142 cons_dist: 0.005204, loss_weight: 0.073162
[16:37:52.985] iteration 4525 : loss : 0.035453 cons_dist: 0.004614, loss_weight: 0.073162
[16:37:53.475] iteration 4526 : loss : 0.039079 cons_dist: 0.003120, loss_weight: 0.073162
[16:37:53.964] iteration 4527 : loss : 0.039640 cons_dist: 0.002060, loss_weight: 0.073162
[16:37:54.455] iteration 4528 : loss : 0.044461 cons_dist: 0.004843, loss_weight: 0.073162
[16:37:54.944] iteration 4529 : loss : 0.051169 cons_dist: 0.002843, loss_weight: 0.073162
[16:37:55.435] iteration 4530 : loss : 0.044752 cons_dist: 0.004601, loss_weight: 0.073162
[16:37:55.926] iteration 4531 : loss : 0.045653 cons_dist: 0.002489, loss_weight: 0.073162
[16:37:56.417] iteration 4532 : loss : 0.042275 cons_dist: 0.002039, loss_weight: 0.073162
[16:37:56.909] iteration 4533 : loss : 0.047952 cons_dist: 0.005177, loss_weight: 0.073162
[16:37:57.401] iteration 4534 : loss : 0.041108 cons_dist: 0.005245, loss_weight: 0.073162
[16:37:57.892] iteration 4535 : loss : 0.030985 cons_dist: 0.003529, loss_weight: 0.073162
[16:37:58.382] iteration 4536 : loss : 0.046838 cons_dist: 0.002401, loss_weight: 0.073162
[16:37:59.520] iteration 4537 : loss : 0.062277 cons_dist: 0.003403, loss_weight: 0.073162
[16:38:00.011] iteration 4538 : loss : 0.041653 cons_dist: 0.002225, loss_weight: 0.073162
[16:38:00.502] iteration 4539 : loss : 0.040843 cons_dist: 0.002494, loss_weight: 0.073162
[16:38:00.993] iteration 4540 : loss : 0.037265 cons_dist: 0.005749, loss_weight: 0.073162
[16:38:01.485] iteration 4541 : loss : 0.035995 cons_dist: 0.003540, loss_weight: 0.073162
[16:38:01.976] iteration 4542 : loss : 0.040758 cons_dist: 0.009648, loss_weight: 0.073162
[16:38:02.467] iteration 4543 : loss : 0.032558 cons_dist: 0.005464, loss_weight: 0.073162
[16:38:02.957] iteration 4544 : loss : 0.045873 cons_dist: 0.001723, loss_weight: 0.073162
[16:38:03.448] iteration 4545 : loss : 0.033738 cons_dist: 0.003038, loss_weight: 0.073162
[16:38:03.938] iteration 4546 : loss : 0.041341 cons_dist: 0.001493, loss_weight: 0.073162
[16:38:04.429] iteration 4547 : loss : 0.050278 cons_dist: 0.003778, loss_weight: 0.073162
[16:38:04.919] iteration 4548 : loss : 0.041440 cons_dist: 0.004002, loss_weight: 0.073162
[16:38:06.106] iteration 4549 : loss : 0.030967 cons_dist: 0.003594, loss_weight: 0.073162
[16:38:06.596] iteration 4550 : loss : 0.040669 cons_dist: 0.002922, loss_weight: 0.073162
[16:38:07.086] iteration 4551 : loss : 0.040637 cons_dist: 0.001808, loss_weight: 0.073162
[16:38:07.577] iteration 4552 : loss : 0.030777 cons_dist: 0.002081, loss_weight: 0.073162
[16:38:08.067] iteration 4553 : loss : 0.053260 cons_dist: 0.003334, loss_weight: 0.073162
[16:38:08.557] iteration 4554 : loss : 0.051970 cons_dist: 0.027892, loss_weight: 0.073162
[16:38:09.048] iteration 4555 : loss : 0.037938 cons_dist: 0.000822, loss_weight: 0.073162
[16:38:09.538] iteration 4556 : loss : 0.049597 cons_dist: 0.003164, loss_weight: 0.073162
[16:38:10.028] iteration 4557 : loss : 0.038501 cons_dist: 0.005819, loss_weight: 0.073162
[16:38:10.520] iteration 4558 : loss : 0.052071 cons_dist: 0.002683, loss_weight: 0.073162
[16:38:11.011] iteration 4559 : loss : 0.032553 cons_dist: 0.014591, loss_weight: 0.073162
[16:38:11.502] iteration 4560 : loss : 0.040172 cons_dist: 0.002845, loss_weight: 0.073162
[16:38:12.601] iteration 4561 : loss : 0.035438 cons_dist: 0.000789, loss_weight: 0.073162
[16:38:13.091] iteration 4562 : loss : 0.035881 cons_dist: 0.032206, loss_weight: 0.073162
[16:38:13.581] iteration 4563 : loss : 0.039050 cons_dist: 0.002804, loss_weight: 0.073162
[16:38:14.071] iteration 4564 : loss : 0.039521 cons_dist: 0.001423, loss_weight: 0.073162
[16:38:14.561] iteration 4565 : loss : 0.039611 cons_dist: 0.002622, loss_weight: 0.073162
[16:38:15.051] iteration 4566 : loss : 0.050988 cons_dist: 0.005523, loss_weight: 0.073162
[16:38:15.541] iteration 4567 : loss : 0.045084 cons_dist: 0.002829, loss_weight: 0.073162
[16:38:16.032] iteration 4568 : loss : 0.037570 cons_dist: 0.001460, loss_weight: 0.073162
[16:38:16.523] iteration 4569 : loss : 0.030480 cons_dist: 0.006938, loss_weight: 0.073162
[16:38:17.013] iteration 4570 : loss : 0.040412 cons_dist: 0.001667, loss_weight: 0.073162
[16:38:17.505] iteration 4571 : loss : 0.046282 cons_dist: 0.007585, loss_weight: 0.073162
[16:38:17.997] iteration 4572 : loss : 0.041330 cons_dist: 0.002182, loss_weight: 0.073162
[16:38:19.087] iteration 4573 : loss : 0.036482 cons_dist: 0.002314, loss_weight: 0.073162
[16:38:19.578] iteration 4574 : loss : 0.047119 cons_dist: 0.001583, loss_weight: 0.073162
[16:38:20.068] iteration 4575 : loss : 0.038510 cons_dist: 0.005457, loss_weight: 0.073162
[16:38:20.559] iteration 4576 : loss : 0.039436 cons_dist: 0.004555, loss_weight: 0.073162
[16:38:21.050] iteration 4577 : loss : 0.038775 cons_dist: 0.006107, loss_weight: 0.073162
[16:38:21.540] iteration 4578 : loss : 0.035638 cons_dist: 0.002836, loss_weight: 0.073162
[16:38:22.030] iteration 4579 : loss : 0.043595 cons_dist: 0.006806, loss_weight: 0.073162
[16:38:22.520] iteration 4580 : loss : 0.040868 cons_dist: 0.033375, loss_weight: 0.073162
[16:38:23.011] iteration 4581 : loss : 0.037965 cons_dist: 0.005949, loss_weight: 0.073162
[16:38:23.502] iteration 4582 : loss : 0.060396 cons_dist: 0.002308, loss_weight: 0.073162
[16:38:23.993] iteration 4583 : loss : 0.044864 cons_dist: 0.003048, loss_weight: 0.073162
[16:38:24.485] iteration 4584 : loss : 0.052929 cons_dist: 0.071261, loss_weight: 0.073162
[16:38:25.617] iteration 4585 : loss : 0.041666 cons_dist: 0.001396, loss_weight: 0.073162
[16:38:26.107] iteration 4586 : loss : 0.047288 cons_dist: 0.001748, loss_weight: 0.073162
[16:38:26.596] iteration 4587 : loss : 0.038073 cons_dist: 0.002115, loss_weight: 0.073162
[16:38:27.087] iteration 4588 : loss : 0.038813 cons_dist: 0.007864, loss_weight: 0.073162
[16:38:27.577] iteration 4589 : loss : 0.045812 cons_dist: 0.004367, loss_weight: 0.073162
[16:38:28.067] iteration 4590 : loss : 0.039543 cons_dist: 0.003197, loss_weight: 0.073162
[16:38:28.558] iteration 4591 : loss : 0.041855 cons_dist: 0.009352, loss_weight: 0.073162
[16:38:29.048] iteration 4592 : loss : 0.045433 cons_dist: 0.003389, loss_weight: 0.073162
[16:38:29.538] iteration 4593 : loss : 0.036439 cons_dist: 0.002386, loss_weight: 0.073162
[16:38:30.028] iteration 4594 : loss : 0.026598 cons_dist: 0.004147, loss_weight: 0.073162
[16:38:30.520] iteration 4595 : loss : 0.049200 cons_dist: 0.003045, loss_weight: 0.073162
[16:38:31.011] iteration 4596 : loss : 0.037210 cons_dist: 0.003432, loss_weight: 0.073162
[16:38:32.043] iteration 4597 : loss : 0.033597 cons_dist: 0.004536, loss_weight: 0.073162
[16:38:32.535] iteration 4598 : loss : 0.034080 cons_dist: 0.001730, loss_weight: 0.073162
[16:38:33.026] iteration 4599 : loss : 0.034770 cons_dist: 0.006846, loss_weight: 0.073162
[16:38:33.517] iteration 4600 : loss : 0.043831 cons_dist: 0.005213, loss_weight: 0.073162
[16:38:35.138] iteration 4601 : loss : 0.040553 cons_dist: 0.004364, loss_weight: 0.073162
[16:38:35.629] iteration 4602 : loss : 0.037393 cons_dist: 0.002123, loss_weight: 0.073162
[16:38:36.119] iteration 4603 : loss : 0.044594 cons_dist: 0.003078, loss_weight: 0.073162
[16:38:36.609] iteration 4604 : loss : 0.031790 cons_dist: 0.005989, loss_weight: 0.073162
[16:38:37.098] iteration 4605 : loss : 0.040799 cons_dist: 0.002497, loss_weight: 0.073162
[16:38:37.589] iteration 4606 : loss : 0.040629 cons_dist: 0.023445, loss_weight: 0.073162
[16:38:38.079] iteration 4607 : loss : 0.040679 cons_dist: 0.002472, loss_weight: 0.073162
[16:38:38.570] iteration 4608 : loss : 0.033974 cons_dist: 0.004021, loss_weight: 0.073162
[16:38:39.693] iteration 4609 : loss : 0.046573 cons_dist: 0.002898, loss_weight: 0.073162
[16:38:40.184] iteration 4610 : loss : 0.036502 cons_dist: 0.016537, loss_weight: 0.073162
[16:38:40.675] iteration 4611 : loss : 0.031421 cons_dist: 0.001715, loss_weight: 0.073162
[16:38:41.165] iteration 4612 : loss : 0.035313 cons_dist: 0.001791, loss_weight: 0.073162
[16:38:41.656] iteration 4613 : loss : 0.047941 cons_dist: 0.034594, loss_weight: 0.073162
[16:38:42.146] iteration 4614 : loss : 0.045205 cons_dist: 0.002206, loss_weight: 0.073162
[16:38:42.637] iteration 4615 : loss : 0.037712 cons_dist: 0.002624, loss_weight: 0.073162
[16:38:43.128] iteration 4616 : loss : 0.040440 cons_dist: 0.037181, loss_weight: 0.073162
[16:38:43.619] iteration 4617 : loss : 0.045308 cons_dist: 0.002072, loss_weight: 0.073162
[16:38:44.110] iteration 4618 : loss : 0.030733 cons_dist: 0.004585, loss_weight: 0.073162
[16:38:44.601] iteration 4619 : loss : 0.094020 cons_dist: 0.037591, loss_weight: 0.073162
[16:38:45.093] iteration 4620 : loss : 0.035850 cons_dist: 0.004258, loss_weight: 0.073162
[16:38:46.287] iteration 4621 : loss : 0.042555 cons_dist: 0.003882, loss_weight: 0.073162
[16:38:46.778] iteration 4622 : loss : 0.044715 cons_dist: 0.001258, loss_weight: 0.073162
[16:38:47.267] iteration 4623 : loss : 0.031535 cons_dist: 0.004841, loss_weight: 0.073162
[16:38:47.758] iteration 4624 : loss : 0.042794 cons_dist: 0.002444, loss_weight: 0.073162
[16:38:48.249] iteration 4625 : loss : 0.027897 cons_dist: 0.003055, loss_weight: 0.073162
[16:38:48.740] iteration 4626 : loss : 0.042909 cons_dist: 0.002305, loss_weight: 0.073162
[16:38:49.232] iteration 4627 : loss : 0.037105 cons_dist: 0.001523, loss_weight: 0.073162
[16:38:49.723] iteration 4628 : loss : 0.033293 cons_dist: 0.002804, loss_weight: 0.073162
[16:38:50.213] iteration 4629 : loss : 0.052266 cons_dist: 0.004969, loss_weight: 0.073162
[16:38:50.704] iteration 4630 : loss : 0.041923 cons_dist: 0.004626, loss_weight: 0.073162
[16:38:51.194] iteration 4631 : loss : 0.035159 cons_dist: 0.002721, loss_weight: 0.073162
[16:38:51.684] iteration 4632 : loss : 0.028754 cons_dist: 0.001848, loss_weight: 0.073162
[16:38:52.791] iteration 4633 : loss : 0.042003 cons_dist: 0.013023, loss_weight: 0.073162
[16:38:53.281] iteration 4634 : loss : 0.035155 cons_dist: 0.009368, loss_weight: 0.073162
[16:38:53.771] iteration 4635 : loss : 0.035551 cons_dist: 0.058702, loss_weight: 0.073162
[16:38:54.261] iteration 4636 : loss : 0.027803 cons_dist: 0.001389, loss_weight: 0.073162
[16:38:54.750] iteration 4637 : loss : 0.064204 cons_dist: 0.007098, loss_weight: 0.073162
[16:38:55.242] iteration 4638 : loss : 0.034549 cons_dist: 0.002128, loss_weight: 0.073162
[16:38:55.733] iteration 4639 : loss : 0.043418 cons_dist: 0.008404, loss_weight: 0.073162
[16:38:56.225] iteration 4640 : loss : 0.039440 cons_dist: 0.001673, loss_weight: 0.073162
[16:38:56.716] iteration 4641 : loss : 0.037696 cons_dist: 0.007236, loss_weight: 0.073162
[16:38:57.207] iteration 4642 : loss : 0.060560 cons_dist: 0.021721, loss_weight: 0.073162
[16:38:57.698] iteration 4643 : loss : 0.045596 cons_dist: 0.051986, loss_weight: 0.073162
[16:38:58.189] iteration 4644 : loss : 0.034991 cons_dist: 0.002734, loss_weight: 0.073162
[16:38:59.368] iteration 4645 : loss : 0.039560 cons_dist: 0.001931, loss_weight: 0.073162
[16:38:59.858] iteration 4646 : loss : 0.042544 cons_dist: 0.003696, loss_weight: 0.073162
[16:39:00.350] iteration 4647 : loss : 0.033726 cons_dist: 0.004162, loss_weight: 0.073162
[16:39:00.842] iteration 4648 : loss : 0.034276 cons_dist: 0.002845, loss_weight: 0.073162
[16:39:01.334] iteration 4649 : loss : 0.035960 cons_dist: 0.001632, loss_weight: 0.073162
[16:39:01.825] iteration 4650 : loss : 0.033845 cons_dist: 0.020050, loss_weight: 0.073162
[16:39:02.315] iteration 4651 : loss : 0.040322 cons_dist: 0.001868, loss_weight: 0.077637
[16:39:02.806] iteration 4652 : loss : 0.030104 cons_dist: 0.005118, loss_weight: 0.077637
[16:39:03.296] iteration 4653 : loss : 0.032177 cons_dist: 0.003000, loss_weight: 0.077637
[16:39:03.786] iteration 4654 : loss : 0.026188 cons_dist: 0.005431, loss_weight: 0.077637
[16:39:04.276] iteration 4655 : loss : 0.036102 cons_dist: 0.001716, loss_weight: 0.077637
[16:39:04.768] iteration 4656 : loss : 0.045903 cons_dist: 0.004842, loss_weight: 0.077637
[16:39:05.948] iteration 4657 : loss : 0.036829 cons_dist: 0.002402, loss_weight: 0.077637
[16:39:06.439] iteration 4658 : loss : 0.039533 cons_dist: 0.000987, loss_weight: 0.077637
[16:39:06.930] iteration 4659 : loss : 0.038941 cons_dist: 0.008521, loss_weight: 0.077637
[16:39:07.420] iteration 4660 : loss : 0.030207 cons_dist: 0.000855, loss_weight: 0.077637
[16:39:07.911] iteration 4661 : loss : 0.032192 cons_dist: 0.004714, loss_weight: 0.077637
[16:39:08.402] iteration 4662 : loss : 0.042836 cons_dist: 0.002445, loss_weight: 0.077637
[16:39:08.893] iteration 4663 : loss : 0.038539 cons_dist: 0.003304, loss_weight: 0.077637
[16:39:09.385] iteration 4664 : loss : 0.141077 cons_dist: 0.021845, loss_weight: 0.077637
[16:39:09.877] iteration 4665 : loss : 0.031459 cons_dist: 0.003371, loss_weight: 0.077637
[16:39:10.368] iteration 4666 : loss : 0.041429 cons_dist: 0.003438, loss_weight: 0.077637
[16:39:10.858] iteration 4667 : loss : 0.049199 cons_dist: 0.001138, loss_weight: 0.077637
[16:39:11.349] iteration 4668 : loss : 0.037745 cons_dist: 0.004096, loss_weight: 0.077637
[16:39:12.464] iteration 4669 : loss : 0.033843 cons_dist: 0.004095, loss_weight: 0.077637
[16:39:12.954] iteration 4670 : loss : 0.045157 cons_dist: 0.001966, loss_weight: 0.077637
[16:39:13.444] iteration 4671 : loss : 0.056045 cons_dist: 0.002400, loss_weight: 0.077637
[16:39:13.934] iteration 4672 : loss : 0.034810 cons_dist: 0.000975, loss_weight: 0.077637
[16:39:14.424] iteration 4673 : loss : 0.033353 cons_dist: 0.002686, loss_weight: 0.077637
[16:39:14.914] iteration 4674 : loss : 0.032556 cons_dist: 0.003276, loss_weight: 0.077637
[16:39:15.405] iteration 4675 : loss : 0.041635 cons_dist: 0.001772, loss_weight: 0.077637
[16:39:15.896] iteration 4676 : loss : 0.038624 cons_dist: 0.006518, loss_weight: 0.077637
[16:39:16.387] iteration 4677 : loss : 0.040852 cons_dist: 0.002345, loss_weight: 0.077637
[16:39:16.878] iteration 4678 : loss : 0.034975 cons_dist: 0.003189, loss_weight: 0.077637
[16:39:17.371] iteration 4679 : loss : 0.050030 cons_dist: 0.001737, loss_weight: 0.077637
[16:39:17.863] iteration 4680 : loss : 0.031858 cons_dist: 0.003078, loss_weight: 0.077637
[16:39:19.055] iteration 4681 : loss : 0.033402 cons_dist: 0.003955, loss_weight: 0.077637
[16:39:19.546] iteration 4682 : loss : 0.024919 cons_dist: 0.001626, loss_weight: 0.077637
[16:39:20.035] iteration 4683 : loss : 0.077905 cons_dist: 0.002873, loss_weight: 0.077637
[16:39:20.525] iteration 4684 : loss : 0.044840 cons_dist: 0.002422, loss_weight: 0.077637
[16:39:21.015] iteration 4685 : loss : 0.040131 cons_dist: 0.002517, loss_weight: 0.077637
[16:39:21.506] iteration 4686 : loss : 0.038563 cons_dist: 0.004279, loss_weight: 0.077637
[16:39:21.997] iteration 4687 : loss : 0.033565 cons_dist: 0.010161, loss_weight: 0.077637
[16:39:22.487] iteration 4688 : loss : 0.044044 cons_dist: 0.005077, loss_weight: 0.077637
[16:39:22.978] iteration 4689 : loss : 0.037635 cons_dist: 0.002952, loss_weight: 0.077637
[16:39:23.469] iteration 4690 : loss : 0.043669 cons_dist: 0.002544, loss_weight: 0.077637
[16:39:23.961] iteration 4691 : loss : 0.051708 cons_dist: 0.002946, loss_weight: 0.077637
[16:39:24.452] iteration 4692 : loss : 0.031456 cons_dist: 0.009771, loss_weight: 0.077637
[16:39:25.575] iteration 4693 : loss : 0.028973 cons_dist: 0.009472, loss_weight: 0.077637
[16:39:26.065] iteration 4694 : loss : 0.042664 cons_dist: 0.001027, loss_weight: 0.077637
[16:39:26.555] iteration 4695 : loss : 0.039142 cons_dist: 0.004138, loss_weight: 0.077637
[16:39:27.045] iteration 4696 : loss : 0.033880 cons_dist: 0.002902, loss_weight: 0.077637
[16:39:27.536] iteration 4697 : loss : 0.070823 cons_dist: 0.002365, loss_weight: 0.077637
[16:39:28.026] iteration 4698 : loss : 0.039389 cons_dist: 0.000861, loss_weight: 0.077637
[16:39:28.517] iteration 4699 : loss : 0.039499 cons_dist: 0.002138, loss_weight: 0.077637
[16:39:29.009] iteration 4700 : loss : 0.188749 cons_dist: 0.005889, loss_weight: 0.077637
[16:39:29.501] iteration 4701 : loss : 0.042716 cons_dist: 0.004863, loss_weight: 0.077637
[16:39:29.991] iteration 4702 : loss : 0.067617 cons_dist: 0.004856, loss_weight: 0.077637
[16:39:30.481] iteration 4703 : loss : 0.034328 cons_dist: 0.003670, loss_weight: 0.077637
[16:39:30.971] iteration 4704 : loss : 0.034596 cons_dist: 0.066034, loss_weight: 0.077637
[16:39:32.097] iteration 4705 : loss : 0.033093 cons_dist: 0.006699, loss_weight: 0.077637
[16:39:32.587] iteration 4706 : loss : 0.042839 cons_dist: 0.001992, loss_weight: 0.077637
[16:39:33.078] iteration 4707 : loss : 0.040713 cons_dist: 0.006853, loss_weight: 0.077637
[16:39:33.569] iteration 4708 : loss : 0.036777 cons_dist: 0.002801, loss_weight: 0.077637
[16:39:34.059] iteration 4709 : loss : 0.052529 cons_dist: 0.003137, loss_weight: 0.077637
[16:39:34.550] iteration 4710 : loss : 0.032397 cons_dist: 0.008259, loss_weight: 0.077637
[16:39:35.041] iteration 4711 : loss : 0.037296 cons_dist: 0.007226, loss_weight: 0.077637
[16:39:35.532] iteration 4712 : loss : 0.035488 cons_dist: 0.001615, loss_weight: 0.077637
[16:39:36.025] iteration 4713 : loss : 0.034024 cons_dist: 0.006290, loss_weight: 0.077637
[16:39:36.516] iteration 4714 : loss : 0.044526 cons_dist: 0.001840, loss_weight: 0.077637
[16:39:37.007] iteration 4715 : loss : 0.045965 cons_dist: 0.002963, loss_weight: 0.077637
[16:39:37.497] iteration 4716 : loss : 0.059094 cons_dist: 0.002471, loss_weight: 0.077637
[16:39:38.552] iteration 4717 : loss : 0.044883 cons_dist: 0.006787, loss_weight: 0.077637
[16:39:39.042] iteration 4718 : loss : 0.034135 cons_dist: 0.003323, loss_weight: 0.077637
[16:39:39.532] iteration 4719 : loss : 0.039123 cons_dist: 0.001915, loss_weight: 0.077637
[16:39:40.022] iteration 4720 : loss : 0.043581 cons_dist: 0.003625, loss_weight: 0.077637
[16:39:40.513] iteration 4721 : loss : 0.034870 cons_dist: 0.066004, loss_weight: 0.077637
[16:39:41.006] iteration 4722 : loss : 0.043377 cons_dist: 0.001388, loss_weight: 0.077637
[16:39:41.498] iteration 4723 : loss : 0.035895 cons_dist: 0.001776, loss_weight: 0.077637
[16:39:41.989] iteration 4724 : loss : 0.043580 cons_dist: 0.003176, loss_weight: 0.077637
[16:39:42.479] iteration 4725 : loss : 0.040105 cons_dist: 0.001592, loss_weight: 0.077637
[16:39:42.970] iteration 4726 : loss : 0.042305 cons_dist: 0.002521, loss_weight: 0.077637
[16:39:43.461] iteration 4727 : loss : 0.040498 cons_dist: 0.001864, loss_weight: 0.077637
[16:39:43.952] iteration 4728 : loss : 0.034075 cons_dist: 0.002958, loss_weight: 0.077637
[16:39:45.091] iteration 4729 : loss : 0.041653 cons_dist: 0.004539, loss_weight: 0.077637
[16:39:45.582] iteration 4730 : loss : 0.029228 cons_dist: 0.001655, loss_weight: 0.077637
[16:39:46.073] iteration 4731 : loss : 0.035886 cons_dist: 0.003675, loss_weight: 0.077637
[16:39:46.563] iteration 4732 : loss : 0.095618 cons_dist: 0.001839, loss_weight: 0.077637
[16:39:47.054] iteration 4733 : loss : 0.035485 cons_dist: 0.003799, loss_weight: 0.077637
[16:39:47.544] iteration 4734 : loss : 0.068230 cons_dist: 0.001583, loss_weight: 0.077637
[16:39:48.035] iteration 4735 : loss : 0.038134 cons_dist: 0.000793, loss_weight: 0.077637
[16:39:48.526] iteration 4736 : loss : 0.040804 cons_dist: 0.003129, loss_weight: 0.077637
[16:39:49.017] iteration 4737 : loss : 0.032280 cons_dist: 0.007760, loss_weight: 0.077637
[16:39:49.510] iteration 4738 : loss : 0.025716 cons_dist: 0.005907, loss_weight: 0.077637
[16:39:50.002] iteration 4739 : loss : 0.028568 cons_dist: 0.002808, loss_weight: 0.077637
[16:39:50.493] iteration 4740 : loss : 0.041985 cons_dist: 0.004058, loss_weight: 0.077637
[16:39:51.589] iteration 4741 : loss : 0.036384 cons_dist: 0.006869, loss_weight: 0.077637
[16:39:52.079] iteration 4742 : loss : 0.148857 cons_dist: 0.005057, loss_weight: 0.077637
[16:39:52.569] iteration 4743 : loss : 0.038981 cons_dist: 0.000816, loss_weight: 0.077637
[16:39:53.060] iteration 4744 : loss : 0.081561 cons_dist: 0.006219, loss_weight: 0.077637
[16:39:53.552] iteration 4745 : loss : 0.042194 cons_dist: 0.005387, loss_weight: 0.077637
[16:39:54.044] iteration 4746 : loss : 0.043790 cons_dist: 0.008473, loss_weight: 0.077637
[16:39:54.535] iteration 4747 : loss : 0.065938 cons_dist: 0.001374, loss_weight: 0.077637
[16:39:55.026] iteration 4748 : loss : 0.030998 cons_dist: 0.004221, loss_weight: 0.077637
[16:39:55.516] iteration 4749 : loss : 0.042418 cons_dist: 0.007587, loss_weight: 0.077637
[16:39:56.007] iteration 4750 : loss : 0.028082 cons_dist: 0.001083, loss_weight: 0.077637
[16:39:56.498] iteration 4751 : loss : 0.047194 cons_dist: 0.002993, loss_weight: 0.077637
[16:39:56.990] iteration 4752 : loss : 0.053240 cons_dist: 0.021781, loss_weight: 0.077637
[16:39:58.151] iteration 4753 : loss : 0.040299 cons_dist: 0.001391, loss_weight: 0.077637
[16:39:58.642] iteration 4754 : loss : 0.034234 cons_dist: 0.006951, loss_weight: 0.077637
[16:39:59.132] iteration 4755 : loss : 0.047556 cons_dist: 0.002809, loss_weight: 0.077637
[16:39:59.623] iteration 4756 : loss : 0.037401 cons_dist: 0.004702, loss_weight: 0.077637
[16:40:00.114] iteration 4757 : loss : 0.036746 cons_dist: 0.003136, loss_weight: 0.077637
[16:40:00.605] iteration 4758 : loss : 0.041839 cons_dist: 0.002576, loss_weight: 0.077637
[16:40:01.095] iteration 4759 : loss : 0.036604 cons_dist: 0.006425, loss_weight: 0.077637
[16:40:01.586] iteration 4760 : loss : 0.051910 cons_dist: 0.002053, loss_weight: 0.077637
[16:40:02.077] iteration 4761 : loss : 0.029956 cons_dist: 0.001353, loss_weight: 0.077637
[16:40:02.570] iteration 4762 : loss : 0.049738 cons_dist: 0.005734, loss_weight: 0.077637
[16:40:03.063] iteration 4763 : loss : 0.033085 cons_dist: 0.003210, loss_weight: 0.077637
[16:40:03.554] iteration 4764 : loss : 0.034851 cons_dist: 0.004513, loss_weight: 0.077637
[16:40:04.686] iteration 4765 : loss : 0.037548 cons_dist: 0.003416, loss_weight: 0.077637
[16:40:05.177] iteration 4766 : loss : 0.040060 cons_dist: 0.005537, loss_weight: 0.077637
[16:40:05.697] iteration 4767 : loss : 0.039713 cons_dist: 0.001270, loss_weight: 0.077637
[16:40:06.189] iteration 4768 : loss : 0.030818 cons_dist: 0.001563, loss_weight: 0.077637
[16:40:06.680] iteration 4769 : loss : 0.041313 cons_dist: 0.001395, loss_weight: 0.077637
[16:40:07.171] iteration 4770 : loss : 0.042277 cons_dist: 0.002387, loss_weight: 0.077637
[16:40:07.662] iteration 4771 : loss : 0.031302 cons_dist: 0.004848, loss_weight: 0.077637
[16:40:08.153] iteration 4772 : loss : 0.036278 cons_dist: 0.002655, loss_weight: 0.077637
[16:40:08.643] iteration 4773 : loss : 0.039239 cons_dist: 0.004757, loss_weight: 0.077637
[16:40:09.135] iteration 4774 : loss : 0.033291 cons_dist: 0.002942, loss_weight: 0.077637
[16:40:09.626] iteration 4775 : loss : 0.048154 cons_dist: 0.004276, loss_weight: 0.077637
[16:40:10.118] iteration 4776 : loss : 0.037703 cons_dist: 0.009568, loss_weight: 0.077637
[16:40:11.213] iteration 4777 : loss : 0.033441 cons_dist: 0.002860, loss_weight: 0.077637
[16:40:11.704] iteration 4778 : loss : 0.038315 cons_dist: 0.001816, loss_weight: 0.077637
[16:40:12.195] iteration 4779 : loss : 0.034820 cons_dist: 0.004548, loss_weight: 0.077637
[16:40:12.686] iteration 4780 : loss : 0.049512 cons_dist: 0.002429, loss_weight: 0.077637
[16:40:13.176] iteration 4781 : loss : 0.039975 cons_dist: 0.001352, loss_weight: 0.077637
[16:40:13.667] iteration 4782 : loss : 0.038417 cons_dist: 0.002289, loss_weight: 0.077637
[16:40:14.157] iteration 4783 : loss : 0.034023 cons_dist: 0.001485, loss_weight: 0.077637
[16:40:14.648] iteration 4784 : loss : 0.031598 cons_dist: 0.002192, loss_weight: 0.077637
[16:40:15.139] iteration 4785 : loss : 0.038784 cons_dist: 0.071356, loss_weight: 0.077637
[16:40:15.631] iteration 4786 : loss : 0.033084 cons_dist: 0.003707, loss_weight: 0.077637
[16:40:16.123] iteration 4787 : loss : 0.046940 cons_dist: 0.005668, loss_weight: 0.077637
[16:40:16.614] iteration 4788 : loss : 0.038518 cons_dist: 0.007604, loss_weight: 0.077637
[16:40:17.739] iteration 4789 : loss : 0.063045 cons_dist: 0.007092, loss_weight: 0.077637
[16:40:18.230] iteration 4790 : loss : 0.040120 cons_dist: 0.002082, loss_weight: 0.077637
[16:40:18.722] iteration 4791 : loss : 0.028152 cons_dist: 0.008299, loss_weight: 0.077637
[16:40:19.214] iteration 4792 : loss : 0.028257 cons_dist: 0.001668, loss_weight: 0.077637
[16:40:19.705] iteration 4793 : loss : 0.044476 cons_dist: 0.002948, loss_weight: 0.077637
[16:40:20.195] iteration 4794 : loss : 0.039977 cons_dist: 0.006219, loss_weight: 0.077637
[16:40:20.686] iteration 4795 : loss : 0.029908 cons_dist: 0.005228, loss_weight: 0.077637
[16:40:21.178] iteration 4796 : loss : 0.040401 cons_dist: 0.004502, loss_weight: 0.077637
[16:40:21.669] iteration 4797 : loss : 0.037779 cons_dist: 0.001629, loss_weight: 0.077637
[16:40:22.189] iteration 4798 : loss : 0.035879 cons_dist: 0.003757, loss_weight: 0.077637
[16:40:22.680] iteration 4799 : loss : 0.038741 cons_dist: 0.001930, loss_weight: 0.077637
[16:40:23.172] iteration 4800 : loss : 0.033720 cons_dist: 0.001225, loss_weight: 0.077637
[16:40:25.460] iteration 4801 : loss : 0.058205 cons_dist: 0.002789, loss_weight: 0.081873
[16:40:25.950] iteration 4802 : loss : 0.051930 cons_dist: 0.004752, loss_weight: 0.081873
[16:40:26.439] iteration 4803 : loss : 0.040066 cons_dist: 0.006809, loss_weight: 0.081873
[16:40:26.930] iteration 4804 : loss : 0.040786 cons_dist: 0.001540, loss_weight: 0.081873
[16:40:27.420] iteration 4805 : loss : 0.033783 cons_dist: 0.004966, loss_weight: 0.081873
[16:40:27.913] iteration 4806 : loss : 0.038356 cons_dist: 0.001922, loss_weight: 0.081873
[16:40:28.404] iteration 4807 : loss : 0.050104 cons_dist: 0.003082, loss_weight: 0.081873
[16:40:28.896] iteration 4808 : loss : 0.030454 cons_dist: 0.005704, loss_weight: 0.081873
[16:40:29.387] iteration 4809 : loss : 0.033538 cons_dist: 0.001286, loss_weight: 0.081873
[16:40:29.878] iteration 4810 : loss : 0.039852 cons_dist: 0.007656, loss_weight: 0.081873
[16:40:30.369] iteration 4811 : loss : 0.034398 cons_dist: 0.008879, loss_weight: 0.081873
[16:40:30.860] iteration 4812 : loss : 0.043696 cons_dist: 0.012564, loss_weight: 0.081873
[16:40:31.960] iteration 4813 : loss : 0.046468 cons_dist: 0.006119, loss_weight: 0.081873
[16:40:32.451] iteration 4814 : loss : 0.042392 cons_dist: 0.002745, loss_weight: 0.081873
[16:40:32.942] iteration 4815 : loss : 0.040487 cons_dist: 0.008979, loss_weight: 0.081873
[16:40:33.433] iteration 4816 : loss : 0.038905 cons_dist: 0.004355, loss_weight: 0.081873
[16:40:33.925] iteration 4817 : loss : 0.031828 cons_dist: 0.002285, loss_weight: 0.081873
[16:40:34.416] iteration 4818 : loss : 0.040161 cons_dist: 0.007932, loss_weight: 0.081873
[16:40:34.908] iteration 4819 : loss : 0.048526 cons_dist: 0.001379, loss_weight: 0.081873
[16:40:35.398] iteration 4820 : loss : 0.032444 cons_dist: 0.031712, loss_weight: 0.081873
[16:40:35.888] iteration 4821 : loss : 0.132500 cons_dist: 0.002001, loss_weight: 0.081873
[16:40:36.379] iteration 4822 : loss : 0.027991 cons_dist: 0.001848, loss_weight: 0.081873
[16:40:36.869] iteration 4823 : loss : 0.038137 cons_dist: 0.009269, loss_weight: 0.081873
[16:40:37.361] iteration 4824 : loss : 0.034265 cons_dist: 0.002698, loss_weight: 0.081873
[16:40:38.412] iteration 4825 : loss : 0.038733 cons_dist: 0.006918, loss_weight: 0.081873
[16:40:38.904] iteration 4826 : loss : 0.036613 cons_dist: 0.001426, loss_weight: 0.081873
[16:40:39.394] iteration 4827 : loss : 0.038959 cons_dist: 0.001180, loss_weight: 0.081873
[16:40:39.885] iteration 4828 : loss : 0.033985 cons_dist: 0.002843, loss_weight: 0.081873
[16:40:40.375] iteration 4829 : loss : 0.040316 cons_dist: 0.002444, loss_weight: 0.081873
[16:40:40.865] iteration 4830 : loss : 0.040964 cons_dist: 0.001511, loss_weight: 0.081873
[16:40:41.355] iteration 4831 : loss : 0.050624 cons_dist: 0.004284, loss_weight: 0.081873
[16:40:41.846] iteration 4832 : loss : 0.031628 cons_dist: 0.001742, loss_weight: 0.081873
[16:40:42.336] iteration 4833 : loss : 0.037054 cons_dist: 0.003423, loss_weight: 0.081873
[16:40:42.829] iteration 4834 : loss : 0.031984 cons_dist: 0.002026, loss_weight: 0.081873
[16:40:43.320] iteration 4835 : loss : 0.113483 cons_dist: 0.014827, loss_weight: 0.081873
[16:40:43.812] iteration 4836 : loss : 0.038724 cons_dist: 0.001743, loss_weight: 0.081873
[16:40:44.913] iteration 4837 : loss : 0.037842 cons_dist: 0.001816, loss_weight: 0.081873
[16:40:45.403] iteration 4838 : loss : 0.040493 cons_dist: 0.001362, loss_weight: 0.081873
[16:40:45.892] iteration 4839 : loss : 0.031879 cons_dist: 0.002059, loss_weight: 0.081873
[16:40:46.384] iteration 4840 : loss : 0.043022 cons_dist: 0.003523, loss_weight: 0.081873
[16:40:46.876] iteration 4841 : loss : 0.046382 cons_dist: 0.009600, loss_weight: 0.081873
[16:40:47.367] iteration 4842 : loss : 0.032305 cons_dist: 0.001943, loss_weight: 0.081873
[16:40:47.859] iteration 4843 : loss : 0.037273 cons_dist: 0.000991, loss_weight: 0.081873
[16:40:48.352] iteration 4844 : loss : 0.034759 cons_dist: 0.001441, loss_weight: 0.081873
[16:40:48.842] iteration 4845 : loss : 0.049649 cons_dist: 0.004261, loss_weight: 0.081873
[16:40:49.332] iteration 4846 : loss : 0.033616 cons_dist: 0.001365, loss_weight: 0.081873
[16:40:49.823] iteration 4847 : loss : 0.047833 cons_dist: 0.002421, loss_weight: 0.081873
[16:40:50.314] iteration 4848 : loss : 0.035324 cons_dist: 0.002732, loss_weight: 0.081873
[16:40:51.380] iteration 4849 : loss : 0.034780 cons_dist: 0.001662, loss_weight: 0.081873
[16:40:51.871] iteration 4850 : loss : 0.037111 cons_dist: 0.002064, loss_weight: 0.081873
[16:40:52.361] iteration 4851 : loss : 0.029011 cons_dist: 0.001353, loss_weight: 0.081873
[16:40:52.852] iteration 4852 : loss : 0.036345 cons_dist: 0.005037, loss_weight: 0.081873
[16:40:53.343] iteration 4853 : loss : 0.035967 cons_dist: 0.005257, loss_weight: 0.081873
[16:40:53.834] iteration 4854 : loss : 0.037827 cons_dist: 0.002233, loss_weight: 0.081873
[16:40:54.325] iteration 4855 : loss : 0.034087 cons_dist: 0.003182, loss_weight: 0.081873
[16:40:54.817] iteration 4856 : loss : 0.035883 cons_dist: 0.002376, loss_weight: 0.081873
[16:40:55.309] iteration 4857 : loss : 0.045131 cons_dist: 0.005939, loss_weight: 0.081873
[16:40:55.800] iteration 4858 : loss : 0.061403 cons_dist: 0.000743, loss_weight: 0.081873
[16:40:56.290] iteration 4859 : loss : 0.036991 cons_dist: 0.000742, loss_weight: 0.081873
[16:40:56.781] iteration 4860 : loss : 0.046862 cons_dist: 0.004032, loss_weight: 0.081873
[16:40:57.896] iteration 4861 : loss : 0.034073 cons_dist: 0.004769, loss_weight: 0.081873
[16:40:58.386] iteration 4862 : loss : 0.036883 cons_dist: 0.002246, loss_weight: 0.081873
[16:40:58.877] iteration 4863 : loss : 0.038067 cons_dist: 0.006526, loss_weight: 0.081873
[16:40:59.368] iteration 4864 : loss : 0.037508 cons_dist: 0.002059, loss_weight: 0.081873
[16:40:59.860] iteration 4865 : loss : 0.044580 cons_dist: 0.002380, loss_weight: 0.081873
[16:41:00.351] iteration 4866 : loss : 0.045178 cons_dist: 0.000995, loss_weight: 0.081873
[16:41:00.842] iteration 4867 : loss : 0.036694 cons_dist: 0.012954, loss_weight: 0.081873
[16:41:01.333] iteration 4868 : loss : 0.031721 cons_dist: 0.002031, loss_weight: 0.081873
[16:41:01.824] iteration 4869 : loss : 0.044538 cons_dist: 0.003195, loss_weight: 0.081873
[16:41:02.315] iteration 4870 : loss : 0.034262 cons_dist: 0.000989, loss_weight: 0.081873
[16:41:02.805] iteration 4871 : loss : 0.051497 cons_dist: 0.008295, loss_weight: 0.081873
[16:41:03.296] iteration 4872 : loss : 0.036322 cons_dist: 0.005450, loss_weight: 0.081873
[16:41:04.332] iteration 4873 : loss : 0.030936 cons_dist: 0.001679, loss_weight: 0.081873
[16:41:04.823] iteration 4874 : loss : 0.039039 cons_dist: 0.008631, loss_weight: 0.081873
[16:41:05.314] iteration 4875 : loss : 0.035037 cons_dist: 0.002017, loss_weight: 0.081873
[16:41:05.805] iteration 4876 : loss : 0.032081 cons_dist: 0.011844, loss_weight: 0.081873
[16:41:06.295] iteration 4877 : loss : 0.251341 cons_dist: 0.005217, loss_weight: 0.081873
[16:41:06.787] iteration 4878 : loss : 0.047659 cons_dist: 0.038105, loss_weight: 0.081873
[16:41:07.278] iteration 4879 : loss : 0.034313 cons_dist: 0.005708, loss_weight: 0.081873
[16:41:07.770] iteration 4880 : loss : 0.044482 cons_dist: 0.002883, loss_weight: 0.081873
[16:41:08.261] iteration 4881 : loss : 0.028001 cons_dist: 0.003837, loss_weight: 0.081873
[16:41:08.753] iteration 4882 : loss : 0.056270 cons_dist: 0.003328, loss_weight: 0.081873
[16:41:09.245] iteration 4883 : loss : 0.102493 cons_dist: 0.004042, loss_weight: 0.081873
[16:41:09.736] iteration 4884 : loss : 0.036128 cons_dist: 0.024912, loss_weight: 0.081873
[16:41:10.792] iteration 4885 : loss : 0.042961 cons_dist: 0.002929, loss_weight: 0.081873
[16:41:11.282] iteration 4886 : loss : 0.034814 cons_dist: 0.006868, loss_weight: 0.081873
[16:41:11.773] iteration 4887 : loss : 0.046521 cons_dist: 0.003608, loss_weight: 0.081873
[16:41:12.263] iteration 4888 : loss : 0.032752 cons_dist: 0.002332, loss_weight: 0.081873
[16:41:12.754] iteration 4889 : loss : 0.032917 cons_dist: 0.004291, loss_weight: 0.081873
[16:41:13.247] iteration 4890 : loss : 0.033559 cons_dist: 0.005142, loss_weight: 0.081873
[16:41:13.738] iteration 4891 : loss : 0.039128 cons_dist: 0.003000, loss_weight: 0.081873
[16:41:14.230] iteration 4892 : loss : 0.032273 cons_dist: 0.005273, loss_weight: 0.081873
[16:41:14.721] iteration 4893 : loss : 0.063290 cons_dist: 0.006141, loss_weight: 0.081873
[16:41:15.211] iteration 4894 : loss : 0.029664 cons_dist: 0.002935, loss_weight: 0.081873
[16:41:15.758] iteration 4895 : loss : 0.036120 cons_dist: 0.004738, loss_weight: 0.081873
[16:41:16.250] iteration 4896 : loss : 0.040782 cons_dist: 0.007027, loss_weight: 0.081873
[16:41:17.363] iteration 4897 : loss : 0.037865 cons_dist: 0.031979, loss_weight: 0.081873
[16:41:17.853] iteration 4898 : loss : 0.032938 cons_dist: 0.001275, loss_weight: 0.081873
[16:41:18.343] iteration 4899 : loss : 0.052421 cons_dist: 0.021316, loss_weight: 0.081873
[16:41:18.834] iteration 4900 : loss : 0.048785 cons_dist: 0.010422, loss_weight: 0.081873
[16:41:19.325] iteration 4901 : loss : 0.231344 cons_dist: 0.002483, loss_weight: 0.081873
[16:41:19.817] iteration 4902 : loss : 0.034385 cons_dist: 0.002658, loss_weight: 0.081873
[16:41:20.309] iteration 4903 : loss : 0.038002 cons_dist: 0.002067, loss_weight: 0.081873
[16:41:20.800] iteration 4904 : loss : 0.034925 cons_dist: 0.005239, loss_weight: 0.081873
[16:41:21.291] iteration 4905 : loss : 0.033416 cons_dist: 0.003765, loss_weight: 0.081873
[16:41:21.782] iteration 4906 : loss : 0.036656 cons_dist: 0.001802, loss_weight: 0.081873
[16:41:22.273] iteration 4907 : loss : 0.036924 cons_dist: 0.003795, loss_weight: 0.081873
[16:41:22.764] iteration 4908 : loss : 0.068750 cons_dist: 0.023517, loss_weight: 0.081873
[16:41:23.974] iteration 4909 : loss : 0.046213 cons_dist: 0.007075, loss_weight: 0.081873
[16:41:24.464] iteration 4910 : loss : 0.037960 cons_dist: 0.005336, loss_weight: 0.081873
[16:41:24.954] iteration 4911 : loss : 0.034516 cons_dist: 0.005212, loss_weight: 0.081873
[16:41:25.444] iteration 4912 : loss : 0.050859 cons_dist: 0.004982, loss_weight: 0.081873
[16:41:25.935] iteration 4913 : loss : 0.044329 cons_dist: 0.002519, loss_weight: 0.081873
[16:41:26.426] iteration 4914 : loss : 0.036821 cons_dist: 0.015501, loss_weight: 0.081873
[16:41:26.918] iteration 4915 : loss : 0.035196 cons_dist: 0.004366, loss_weight: 0.081873
[16:41:27.410] iteration 4916 : loss : 0.041236 cons_dist: 0.071734, loss_weight: 0.081873
[16:41:27.901] iteration 4917 : loss : 0.042248 cons_dist: 0.003151, loss_weight: 0.081873
[16:41:28.392] iteration 4918 : loss : 0.031342 cons_dist: 0.003614, loss_weight: 0.081873
[16:41:28.883] iteration 4919 : loss : 0.035861 cons_dist: 0.002405, loss_weight: 0.081873
[16:41:29.374] iteration 4920 : loss : 0.042709 cons_dist: 0.004171, loss_weight: 0.081873
[16:41:30.425] iteration 4921 : loss : 0.030446 cons_dist: 0.001870, loss_weight: 0.081873
[16:41:30.917] iteration 4922 : loss : 0.072648 cons_dist: 0.015919, loss_weight: 0.081873
[16:41:31.407] iteration 4923 : loss : 0.035692 cons_dist: 0.005826, loss_weight: 0.081873
[16:41:31.897] iteration 4924 : loss : 0.056874 cons_dist: 0.006513, loss_weight: 0.081873
[16:41:32.387] iteration 4925 : loss : 0.053463 cons_dist: 0.031009, loss_weight: 0.081873
[16:41:32.877] iteration 4926 : loss : 0.040509 cons_dist: 0.001478, loss_weight: 0.081873
[16:41:33.368] iteration 4927 : loss : 0.035396 cons_dist: 0.001151, loss_weight: 0.081873
[16:41:33.859] iteration 4928 : loss : 0.041099 cons_dist: 0.000748, loss_weight: 0.081873
[16:41:34.351] iteration 4929 : loss : 0.025181 cons_dist: 0.002550, loss_weight: 0.081873
[16:41:34.843] iteration 4930 : loss : 0.043729 cons_dist: 0.001671, loss_weight: 0.081873
[16:41:35.334] iteration 4931 : loss : 0.047974 cons_dist: 0.005547, loss_weight: 0.081873
[16:41:35.826] iteration 4932 : loss : 0.070056 cons_dist: 0.001982, loss_weight: 0.081873
[16:41:36.892] iteration 4933 : loss : 0.038617 cons_dist: 0.007343, loss_weight: 0.081873
[16:41:37.384] iteration 4934 : loss : 0.052625 cons_dist: 0.002705, loss_weight: 0.081873
[16:41:37.876] iteration 4935 : loss : 0.036485 cons_dist: 0.004587, loss_weight: 0.081873
[16:41:38.368] iteration 4936 : loss : 0.045716 cons_dist: 0.002539, loss_weight: 0.081873
[16:41:38.859] iteration 4937 : loss : 0.042795 cons_dist: 0.002111, loss_weight: 0.081873
[16:41:39.351] iteration 4938 : loss : 0.029954 cons_dist: 0.003867, loss_weight: 0.081873
[16:41:39.841] iteration 4939 : loss : 0.035297 cons_dist: 0.010790, loss_weight: 0.081873
[16:41:40.331] iteration 4940 : loss : 0.037259 cons_dist: 0.003668, loss_weight: 0.081873
[16:41:40.821] iteration 4941 : loss : 0.034478 cons_dist: 0.002501, loss_weight: 0.081873
[16:41:41.312] iteration 4942 : loss : 0.036741 cons_dist: 0.005601, loss_weight: 0.081873
[16:41:41.803] iteration 4943 : loss : 0.044404 cons_dist: 0.002109, loss_weight: 0.081873
[16:41:42.294] iteration 4944 : loss : 0.035097 cons_dist: 0.004661, loss_weight: 0.081873
[16:41:43.334] iteration 4945 : loss : 0.042028 cons_dist: 0.007475, loss_weight: 0.081873
[16:41:43.825] iteration 4946 : loss : 0.028637 cons_dist: 0.006175, loss_weight: 0.081873
[16:41:44.316] iteration 4947 : loss : 0.035528 cons_dist: 0.002193, loss_weight: 0.081873
[16:41:44.806] iteration 4948 : loss : 0.035397 cons_dist: 0.006667, loss_weight: 0.081873
[16:41:45.297] iteration 4949 : loss : 0.040201 cons_dist: 0.015946, loss_weight: 0.081873
[16:41:45.787] iteration 4950 : loss : 0.035261 cons_dist: 0.007254, loss_weight: 0.081873
[16:41:46.278] iteration 4951 : loss : 0.047978 cons_dist: 0.003204, loss_weight: 0.085802
[16:41:46.769] iteration 4952 : loss : 0.032826 cons_dist: 0.001490, loss_weight: 0.085802
[16:41:47.263] iteration 4953 : loss : 0.035718 cons_dist: 0.003040, loss_weight: 0.085802
[16:41:47.754] iteration 4954 : loss : 0.044290 cons_dist: 0.005952, loss_weight: 0.085802
[16:41:48.245] iteration 4955 : loss : 0.047730 cons_dist: 0.004363, loss_weight: 0.085802
[16:41:48.736] iteration 4956 : loss : 0.032849 cons_dist: 0.003726, loss_weight: 0.085802
[16:41:49.882] iteration 4957 : loss : 0.044818 cons_dist: 0.004712, loss_weight: 0.085802
[16:41:50.373] iteration 4958 : loss : 0.036088 cons_dist: 0.003464, loss_weight: 0.085802
[16:41:50.862] iteration 4959 : loss : 0.037253 cons_dist: 0.002902, loss_weight: 0.085802
[16:41:51.353] iteration 4960 : loss : 0.032102 cons_dist: 0.001984, loss_weight: 0.085802
[16:41:51.844] iteration 4961 : loss : 0.040568 cons_dist: 0.005011, loss_weight: 0.085802
[16:41:52.335] iteration 4962 : loss : 0.029673 cons_dist: 0.008635, loss_weight: 0.085802
[16:41:52.827] iteration 4963 : loss : 0.045744 cons_dist: 0.004918, loss_weight: 0.085802
[16:41:53.318] iteration 4964 : loss : 0.036640 cons_dist: 0.004173, loss_weight: 0.085802
[16:41:53.810] iteration 4965 : loss : 0.032676 cons_dist: 0.001851, loss_weight: 0.085802
[16:41:54.302] iteration 4966 : loss : 0.064144 cons_dist: 0.002068, loss_weight: 0.085802
[16:41:54.793] iteration 4967 : loss : 0.037178 cons_dist: 0.005153, loss_weight: 0.085802
[16:41:55.284] iteration 4968 : loss : 0.034227 cons_dist: 0.017790, loss_weight: 0.085802
[16:41:56.442] iteration 4969 : loss : 0.031168 cons_dist: 0.002886, loss_weight: 0.085802
[16:41:56.931] iteration 4970 : loss : 0.042706 cons_dist: 0.002698, loss_weight: 0.085802
[16:41:57.422] iteration 4971 : loss : 0.035808 cons_dist: 0.003763, loss_weight: 0.085802
[16:41:57.914] iteration 4972 : loss : 0.040588 cons_dist: 0.012955, loss_weight: 0.085802
[16:41:58.406] iteration 4973 : loss : 0.039788 cons_dist: 0.004048, loss_weight: 0.085802
[16:41:58.898] iteration 4974 : loss : 0.035830 cons_dist: 0.002100, loss_weight: 0.085802
[16:41:59.388] iteration 4975 : loss : 0.036887 cons_dist: 0.004206, loss_weight: 0.085802
[16:41:59.880] iteration 4976 : loss : 0.035284 cons_dist: 0.003047, loss_weight: 0.085802
[16:42:00.369] iteration 4977 : loss : 0.041543 cons_dist: 0.003472, loss_weight: 0.085802
[16:42:00.860] iteration 4978 : loss : 0.048179 cons_dist: 0.002061, loss_weight: 0.085802
[16:42:01.351] iteration 4979 : loss : 0.059673 cons_dist: 0.004670, loss_weight: 0.085802
[16:42:01.842] iteration 4980 : loss : 0.032459 cons_dist: 0.001657, loss_weight: 0.085802
[16:42:02.901] iteration 4981 : loss : 0.035764 cons_dist: 0.002233, loss_weight: 0.085802
[16:42:03.392] iteration 4982 : loss : 0.041855 cons_dist: 0.003000, loss_weight: 0.085802
[16:42:03.882] iteration 4983 : loss : 0.037673 cons_dist: 0.008061, loss_weight: 0.085802
[16:42:04.373] iteration 4984 : loss : 0.051493 cons_dist: 0.003159, loss_weight: 0.085802
[16:42:04.863] iteration 4985 : loss : 0.045475 cons_dist: 0.004084, loss_weight: 0.085802
[16:42:05.354] iteration 4986 : loss : 0.035675 cons_dist: 0.002911, loss_weight: 0.085802
[16:42:05.844] iteration 4987 : loss : 0.053647 cons_dist: 0.007847, loss_weight: 0.085802
[16:42:06.336] iteration 4988 : loss : 0.042492 cons_dist: 0.002332, loss_weight: 0.085802
[16:42:06.828] iteration 4989 : loss : 0.033120 cons_dist: 0.009650, loss_weight: 0.085802
[16:42:07.319] iteration 4990 : loss : 0.034661 cons_dist: 0.019676, loss_weight: 0.085802
[16:42:07.810] iteration 4991 : loss : 0.037008 cons_dist: 0.005494, loss_weight: 0.085802
[16:42:08.301] iteration 4992 : loss : 0.041310 cons_dist: 0.005099, loss_weight: 0.085802
[16:42:09.410] iteration 4993 : loss : 0.039832 cons_dist: 0.005431, loss_weight: 0.085802
[16:42:09.900] iteration 4994 : loss : 0.046242 cons_dist: 0.005896, loss_weight: 0.085802
[16:42:10.390] iteration 4995 : loss : 0.035934 cons_dist: 0.010997, loss_weight: 0.085802
[16:42:10.880] iteration 4996 : loss : 0.041333 cons_dist: 0.003444, loss_weight: 0.085802
[16:42:11.370] iteration 4997 : loss : 0.039582 cons_dist: 0.003589, loss_weight: 0.085802
[16:42:11.861] iteration 4998 : loss : 0.038155 cons_dist: 0.021107, loss_weight: 0.085802
[16:42:12.352] iteration 4999 : loss : 0.054664 cons_dist: 0.001073, loss_weight: 0.085802
[16:42:12.844] iteration 5000 : loss : 0.032032 cons_dist: 0.003639, loss_weight: 0.085802
[16:42:14.480] iteration 5001 : loss : 0.035566 cons_dist: 0.001587, loss_weight: 0.085802
[16:42:14.969] iteration 5002 : loss : 0.058180 cons_dist: 0.000891, loss_weight: 0.085802
[16:42:15.460] iteration 5003 : loss : 0.041696 cons_dist: 0.005163, loss_weight: 0.085802
[16:42:15.950] iteration 5004 : loss : 0.040890 cons_dist: 0.002079, loss_weight: 0.085802
[16:42:17.122] iteration 5005 : loss : 0.053497 cons_dist: 0.006839, loss_weight: 0.085802
[16:42:17.612] iteration 5006 : loss : 0.035407 cons_dist: 0.037234, loss_weight: 0.085802
[16:42:18.102] iteration 5007 : loss : 0.032497 cons_dist: 0.004866, loss_weight: 0.085802
[16:42:18.592] iteration 5008 : loss : 0.037645 cons_dist: 0.003266, loss_weight: 0.085802
[16:42:19.083] iteration 5009 : loss : 0.029970 cons_dist: 0.003947, loss_weight: 0.085802
[16:42:19.574] iteration 5010 : loss : 0.038329 cons_dist: 0.005851, loss_weight: 0.085802
[16:42:20.066] iteration 5011 : loss : 0.038394 cons_dist: 0.001444, loss_weight: 0.085802
[16:42:20.557] iteration 5012 : loss : 0.071076 cons_dist: 0.001951, loss_weight: 0.085802
[16:42:21.048] iteration 5013 : loss : 0.033113 cons_dist: 0.004063, loss_weight: 0.085802
[16:42:21.538] iteration 5014 : loss : 0.034246 cons_dist: 0.002924, loss_weight: 0.085802
[16:42:22.028] iteration 5015 : loss : 0.050102 cons_dist: 0.001509, loss_weight: 0.085802
[16:42:22.519] iteration 5016 : loss : 0.040662 cons_dist: 0.002617, loss_weight: 0.085802
[16:42:23.585] iteration 5017 : loss : 0.039690 cons_dist: 0.003772, loss_weight: 0.085802
[16:42:24.076] iteration 5018 : loss : 0.039968 cons_dist: 0.002470, loss_weight: 0.085802
[16:42:24.567] iteration 5019 : loss : 0.053568 cons_dist: 0.001854, loss_weight: 0.085802
[16:42:25.057] iteration 5020 : loss : 0.048227 cons_dist: 0.003449, loss_weight: 0.085802
[16:42:25.549] iteration 5021 : loss : 0.046618 cons_dist: 0.002859, loss_weight: 0.085802
[16:42:26.039] iteration 5022 : loss : 0.042856 cons_dist: 0.005829, loss_weight: 0.085802
[16:42:26.530] iteration 5023 : loss : 0.034633 cons_dist: 0.002909, loss_weight: 0.085802
[16:42:27.020] iteration 5024 : loss : 0.038369 cons_dist: 0.013392, loss_weight: 0.085802
[16:42:27.510] iteration 5025 : loss : 0.053824 cons_dist: 0.003884, loss_weight: 0.085802
[16:42:28.000] iteration 5026 : loss : 0.036764 cons_dist: 0.001932, loss_weight: 0.085802
[16:42:28.490] iteration 5027 : loss : 0.033419 cons_dist: 0.001140, loss_weight: 0.085802
[16:42:28.981] iteration 5028 : loss : 0.037960 cons_dist: 0.002086, loss_weight: 0.085802
[16:42:30.086] iteration 5029 : loss : 0.044271 cons_dist: 0.003350, loss_weight: 0.085802
[16:42:30.577] iteration 5030 : loss : 0.036405 cons_dist: 0.002637, loss_weight: 0.085802
[16:42:31.067] iteration 5031 : loss : 0.039627 cons_dist: 0.003124, loss_weight: 0.085802
[16:42:31.558] iteration 5032 : loss : 0.036440 cons_dist: 0.004320, loss_weight: 0.085802
[16:42:32.048] iteration 5033 : loss : 0.046118 cons_dist: 0.007215, loss_weight: 0.085802
[16:42:32.539] iteration 5034 : loss : 0.042397 cons_dist: 0.008527, loss_weight: 0.085802
[16:42:33.030] iteration 5035 : loss : 0.037392 cons_dist: 0.001501, loss_weight: 0.085802
[16:42:33.521] iteration 5036 : loss : 0.027748 cons_dist: 0.001706, loss_weight: 0.085802
[16:42:34.012] iteration 5037 : loss : 0.034336 cons_dist: 0.013066, loss_weight: 0.085802
[16:42:34.504] iteration 5038 : loss : 0.043151 cons_dist: 0.001944, loss_weight: 0.085802
[16:42:34.995] iteration 5039 : loss : 0.035915 cons_dist: 0.003232, loss_weight: 0.085802
[16:42:35.486] iteration 5040 : loss : 0.039739 cons_dist: 0.002108, loss_weight: 0.085802
[16:42:36.663] iteration 5041 : loss : 0.130872 cons_dist: 0.009544, loss_weight: 0.085802
[16:42:37.154] iteration 5042 : loss : 0.050523 cons_dist: 0.012896, loss_weight: 0.085802
[16:42:37.644] iteration 5043 : loss : 0.049809 cons_dist: 0.008324, loss_weight: 0.085802
[16:42:38.134] iteration 5044 : loss : 0.039444 cons_dist: 0.006695, loss_weight: 0.085802
[16:42:38.625] iteration 5045 : loss : 0.032772 cons_dist: 0.001354, loss_weight: 0.085802
[16:42:39.115] iteration 5046 : loss : 0.047601 cons_dist: 0.004945, loss_weight: 0.085802
[16:42:39.605] iteration 5047 : loss : 0.035994 cons_dist: 0.000970, loss_weight: 0.085802
[16:42:40.096] iteration 5048 : loss : 0.036546 cons_dist: 0.001354, loss_weight: 0.085802
[16:42:40.587] iteration 5049 : loss : 0.033756 cons_dist: 0.001925, loss_weight: 0.085802
[16:42:41.077] iteration 5050 : loss : 0.034632 cons_dist: 0.001615, loss_weight: 0.085802
[16:42:41.567] iteration 5051 : loss : 0.041058 cons_dist: 0.004157, loss_weight: 0.085802
[16:42:42.057] iteration 5052 : loss : 0.046605 cons_dist: 0.004540, loss_weight: 0.085802
[16:42:43.202] iteration 5053 : loss : 0.035346 cons_dist: 0.005135, loss_weight: 0.085802
[16:42:43.693] iteration 5054 : loss : 0.055070 cons_dist: 0.002595, loss_weight: 0.085802
[16:42:44.185] iteration 5055 : loss : 0.036444 cons_dist: 0.001356, loss_weight: 0.085802
[16:42:44.675] iteration 5056 : loss : 0.028179 cons_dist: 0.004097, loss_weight: 0.085802
[16:42:45.165] iteration 5057 : loss : 0.037972 cons_dist: 0.027075, loss_weight: 0.085802
[16:42:45.656] iteration 5058 : loss : 0.033488 cons_dist: 0.001631, loss_weight: 0.085802
[16:42:46.146] iteration 5059 : loss : 0.029060 cons_dist: 0.001234, loss_weight: 0.085802
[16:42:46.643] iteration 5060 : loss : 0.054915 cons_dist: 0.007587, loss_weight: 0.085802
[16:42:47.134] iteration 5061 : loss : 0.035630 cons_dist: 0.003879, loss_weight: 0.085802
[16:42:47.624] iteration 5062 : loss : 0.061203 cons_dist: 0.001641, loss_weight: 0.085802
[16:42:48.115] iteration 5063 : loss : 0.035134 cons_dist: 0.001947, loss_weight: 0.085802
[16:42:48.607] iteration 5064 : loss : 0.032296 cons_dist: 0.004080, loss_weight: 0.085802
[16:42:49.731] iteration 5065 : loss : 0.040772 cons_dist: 0.006258, loss_weight: 0.085802
[16:42:50.220] iteration 5066 : loss : 0.037233 cons_dist: 0.001726, loss_weight: 0.085802
[16:42:50.711] iteration 5067 : loss : 0.039951 cons_dist: 0.007116, loss_weight: 0.085802
[16:42:51.200] iteration 5068 : loss : 0.035181 cons_dist: 0.003127, loss_weight: 0.085802
[16:42:51.690] iteration 5069 : loss : 0.036364 cons_dist: 0.004708, loss_weight: 0.085802
[16:42:52.180] iteration 5070 : loss : 0.151166 cons_dist: 0.002094, loss_weight: 0.085802
[16:42:52.671] iteration 5071 : loss : 0.037336 cons_dist: 0.004584, loss_weight: 0.085802
[16:42:53.163] iteration 5072 : loss : 0.035215 cons_dist: 0.001354, loss_weight: 0.085802
[16:42:53.655] iteration 5073 : loss : 0.036338 cons_dist: 0.022390, loss_weight: 0.085802
[16:42:54.145] iteration 5074 : loss : 0.042955 cons_dist: 0.012232, loss_weight: 0.085802
[16:42:54.636] iteration 5075 : loss : 0.037290 cons_dist: 0.000884, loss_weight: 0.085802
[16:42:55.126] iteration 5076 : loss : 0.074333 cons_dist: 0.003822, loss_weight: 0.085802
[16:42:56.166] iteration 5077 : loss : 0.034820 cons_dist: 0.002349, loss_weight: 0.085802
[16:42:56.656] iteration 5078 : loss : 0.030042 cons_dist: 0.000620, loss_weight: 0.085802
[16:42:57.146] iteration 5079 : loss : 0.028419 cons_dist: 0.000759, loss_weight: 0.085802
[16:42:57.637] iteration 5080 : loss : 0.029521 cons_dist: 0.000854, loss_weight: 0.085802
[16:42:58.128] iteration 5081 : loss : 0.034913 cons_dist: 0.001985, loss_weight: 0.085802
[16:42:58.620] iteration 5082 : loss : 0.039740 cons_dist: 0.003489, loss_weight: 0.085802
[16:42:59.111] iteration 5083 : loss : 0.041996 cons_dist: 0.003052, loss_weight: 0.085802
[16:42:59.603] iteration 5084 : loss : 0.039661 cons_dist: 0.002609, loss_weight: 0.085802
[16:43:00.094] iteration 5085 : loss : 0.031702 cons_dist: 0.007288, loss_weight: 0.085802
[16:43:00.585] iteration 5086 : loss : 0.028705 cons_dist: 0.007256, loss_weight: 0.085802
[16:43:01.076] iteration 5087 : loss : 0.060992 cons_dist: 0.001108, loss_weight: 0.085802
[16:43:01.567] iteration 5088 : loss : 0.042204 cons_dist: 0.002769, loss_weight: 0.085802
[16:43:02.617] iteration 5089 : loss : 0.040947 cons_dist: 0.001073, loss_weight: 0.085802
[16:43:03.108] iteration 5090 : loss : 0.034822 cons_dist: 0.001088, loss_weight: 0.085802
[16:43:03.598] iteration 5091 : loss : 0.040097 cons_dist: 0.005935, loss_weight: 0.085802
[16:43:04.088] iteration 5092 : loss : 0.038190 cons_dist: 0.000739, loss_weight: 0.085802
[16:43:04.578] iteration 5093 : loss : 0.032775 cons_dist: 0.005646, loss_weight: 0.085802
[16:43:05.068] iteration 5094 : loss : 0.029832 cons_dist: 0.001455, loss_weight: 0.085802
[16:43:05.560] iteration 5095 : loss : 0.043967 cons_dist: 0.001028, loss_weight: 0.085802
[16:43:06.051] iteration 5096 : loss : 0.040205 cons_dist: 0.002162, loss_weight: 0.085802
[16:43:06.543] iteration 5097 : loss : 0.034545 cons_dist: 0.002939, loss_weight: 0.085802
[16:43:07.034] iteration 5098 : loss : 0.100972 cons_dist: 0.002765, loss_weight: 0.085802
[16:43:07.525] iteration 5099 : loss : 0.031366 cons_dist: 0.001853, loss_weight: 0.085802
[16:43:08.015] iteration 5100 : loss : 0.040589 cons_dist: 0.011357, loss_weight: 0.085802
[16:43:09.065] iteration 5101 : loss : 0.037731 cons_dist: 0.001043, loss_weight: 0.089360
[16:43:09.556] iteration 5102 : loss : 0.035190 cons_dist: 0.003371, loss_weight: 0.089360
[16:43:10.046] iteration 5103 : loss : 0.051971 cons_dist: 0.001901, loss_weight: 0.089360
[16:43:10.536] iteration 5104 : loss : 0.030417 cons_dist: 0.003466, loss_weight: 0.089360
[16:43:11.027] iteration 5105 : loss : 0.031576 cons_dist: 0.007772, loss_weight: 0.089360
[16:43:11.517] iteration 5106 : loss : 0.036928 cons_dist: 0.004905, loss_weight: 0.089360
[16:43:12.007] iteration 5107 : loss : 0.036281 cons_dist: 0.001678, loss_weight: 0.089360
[16:43:12.499] iteration 5108 : loss : 0.034898 cons_dist: 0.002333, loss_weight: 0.089360
[16:43:12.990] iteration 5109 : loss : 0.030651 cons_dist: 0.002693, loss_weight: 0.089360
[16:43:13.482] iteration 5110 : loss : 0.037365 cons_dist: 0.007108, loss_weight: 0.089360
[16:43:13.974] iteration 5111 : loss : 0.038781 cons_dist: 0.001991, loss_weight: 0.089360
[16:43:14.465] iteration 5112 : loss : 0.047120 cons_dist: 0.000904, loss_weight: 0.089360
[16:43:15.572] iteration 5113 : loss : 0.054663 cons_dist: 0.000829, loss_weight: 0.089360
[16:43:16.064] iteration 5114 : loss : 0.045121 cons_dist: 0.002783, loss_weight: 0.089360
[16:43:16.556] iteration 5115 : loss : 0.028494 cons_dist: 0.001733, loss_weight: 0.089360
[16:43:17.047] iteration 5116 : loss : 0.029168 cons_dist: 0.002886, loss_weight: 0.089360
[16:43:17.537] iteration 5117 : loss : 0.028437 cons_dist: 0.005632, loss_weight: 0.089360
[16:43:18.028] iteration 5118 : loss : 0.041358 cons_dist: 0.007503, loss_weight: 0.089360
[16:43:18.518] iteration 5119 : loss : 0.044407 cons_dist: 0.003102, loss_weight: 0.089360
[16:43:19.009] iteration 5120 : loss : 0.031815 cons_dist: 0.004444, loss_weight: 0.089360
[16:43:19.499] iteration 5121 : loss : 0.030132 cons_dist: 0.002015, loss_weight: 0.089360
[16:43:19.990] iteration 5122 : loss : 0.053226 cons_dist: 0.001352, loss_weight: 0.089360
[16:43:20.480] iteration 5123 : loss : 0.038674 cons_dist: 0.002740, loss_weight: 0.089360
[16:43:20.972] iteration 5124 : loss : 0.178807 cons_dist: 0.001546, loss_weight: 0.089360
[16:43:22.024] iteration 5125 : loss : 0.034100 cons_dist: 0.002742, loss_weight: 0.089360
[16:43:22.515] iteration 5126 : loss : 0.033426 cons_dist: 0.003488, loss_weight: 0.089360
[16:43:23.006] iteration 5127 : loss : 0.028711 cons_dist: 0.002080, loss_weight: 0.089360
[16:43:23.498] iteration 5128 : loss : 0.036711 cons_dist: 0.002979, loss_weight: 0.089360
[16:43:23.989] iteration 5129 : loss : 0.039166 cons_dist: 0.014330, loss_weight: 0.089360
[16:43:24.480] iteration 5130 : loss : 0.049828 cons_dist: 0.004263, loss_weight: 0.089360
[16:43:24.971] iteration 5131 : loss : 0.043528 cons_dist: 0.001463, loss_weight: 0.089360
[16:43:25.462] iteration 5132 : loss : 0.035859 cons_dist: 0.001990, loss_weight: 0.089360
[16:43:25.952] iteration 5133 : loss : 0.044713 cons_dist: 0.004616, loss_weight: 0.089360
[16:43:26.443] iteration 5134 : loss : 0.036508 cons_dist: 0.002336, loss_weight: 0.089360
[16:43:26.933] iteration 5135 : loss : 0.033084 cons_dist: 0.002005, loss_weight: 0.089360
[16:43:27.424] iteration 5136 : loss : 0.035486 cons_dist: 0.001780, loss_weight: 0.089360
[16:43:28.526] iteration 5137 : loss : 0.040241 cons_dist: 0.029400, loss_weight: 0.089360
[16:43:29.017] iteration 5138 : loss : 0.042825 cons_dist: 0.002868, loss_weight: 0.089360
[16:43:29.508] iteration 5139 : loss : 0.031341 cons_dist: 0.001917, loss_weight: 0.089360
[16:43:29.999] iteration 5140 : loss : 0.032690 cons_dist: 0.003242, loss_weight: 0.089360
[16:43:30.490] iteration 5141 : loss : 0.038913 cons_dist: 0.003671, loss_weight: 0.089360
[16:43:30.980] iteration 5142 : loss : 0.040165 cons_dist: 0.003347, loss_weight: 0.089360
[16:43:31.470] iteration 5143 : loss : 0.027113 cons_dist: 0.002158, loss_weight: 0.089360
[16:43:31.961] iteration 5144 : loss : 0.053161 cons_dist: 0.003408, loss_weight: 0.089360
[16:43:32.451] iteration 5145 : loss : 0.027925 cons_dist: 0.001068, loss_weight: 0.089360
[16:43:32.941] iteration 5146 : loss : 0.034854 cons_dist: 0.013192, loss_weight: 0.089360
[16:43:33.431] iteration 5147 : loss : 0.034540 cons_dist: 0.000505, loss_weight: 0.089360
[16:43:33.923] iteration 5148 : loss : 0.034664 cons_dist: 0.002531, loss_weight: 0.089360
[16:43:35.107] iteration 5149 : loss : 0.023756 cons_dist: 0.001953, loss_weight: 0.089360
[16:43:35.598] iteration 5150 : loss : 0.056481 cons_dist: 0.003695, loss_weight: 0.089360
[16:43:36.089] iteration 5151 : loss : 0.111730 cons_dist: 0.001021, loss_weight: 0.089360
[16:43:36.578] iteration 5152 : loss : 0.038865 cons_dist: 0.008720, loss_weight: 0.089360
[16:43:37.068] iteration 5153 : loss : 0.038130 cons_dist: 0.002135, loss_weight: 0.089360
[16:43:37.559] iteration 5154 : loss : 0.032542 cons_dist: 0.002960, loss_weight: 0.089360
[16:43:38.048] iteration 5155 : loss : 0.040645 cons_dist: 0.004067, loss_weight: 0.089360
[16:43:38.538] iteration 5156 : loss : 0.037465 cons_dist: 0.004504, loss_weight: 0.089360
[16:43:39.028] iteration 5157 : loss : 0.035675 cons_dist: 0.003290, loss_weight: 0.089360
[16:43:39.518] iteration 5158 : loss : 0.038501 cons_dist: 0.034921, loss_weight: 0.089360
[16:43:40.009] iteration 5159 : loss : 0.061100 cons_dist: 0.001900, loss_weight: 0.089360
[16:43:40.501] iteration 5160 : loss : 0.042899 cons_dist: 0.002889, loss_weight: 0.089360
[16:43:41.536] iteration 5161 : loss : 0.030784 cons_dist: 0.006436, loss_weight: 0.089360
[16:43:42.027] iteration 5162 : loss : 0.032151 cons_dist: 0.002455, loss_weight: 0.089360
[16:43:42.517] iteration 5163 : loss : 0.034451 cons_dist: 0.001322, loss_weight: 0.089360
[16:43:43.008] iteration 5164 : loss : 0.045769 cons_dist: 0.015028, loss_weight: 0.089360
[16:43:43.497] iteration 5165 : loss : 0.049262 cons_dist: 0.002836, loss_weight: 0.089360
[16:43:43.988] iteration 5166 : loss : 0.022814 cons_dist: 0.002723, loss_weight: 0.089360
[16:43:44.478] iteration 5167 : loss : 0.041672 cons_dist: 0.002182, loss_weight: 0.089360
[16:43:44.969] iteration 5168 : loss : 0.232043 cons_dist: 0.006333, loss_weight: 0.089360
[16:43:45.459] iteration 5169 : loss : 0.042509 cons_dist: 0.005007, loss_weight: 0.089360
[16:43:45.950] iteration 5170 : loss : 0.034216 cons_dist: 0.002438, loss_weight: 0.089360
[16:43:46.440] iteration 5171 : loss : 0.034858 cons_dist: 0.007279, loss_weight: 0.089360
[16:43:46.931] iteration 5172 : loss : 0.035864 cons_dist: 0.001855, loss_weight: 0.089360
[16:43:48.003] iteration 5173 : loss : 0.039573 cons_dist: 0.000811, loss_weight: 0.089360
[16:43:48.494] iteration 5174 : loss : 0.036626 cons_dist: 0.002781, loss_weight: 0.089360
[16:43:48.983] iteration 5175 : loss : 0.035721 cons_dist: 0.001181, loss_weight: 0.089360
[16:43:49.473] iteration 5176 : loss : 0.037132 cons_dist: 0.063807, loss_weight: 0.089360
[16:43:49.963] iteration 5177 : loss : 0.038895 cons_dist: 0.001392, loss_weight: 0.089360
[16:43:50.454] iteration 5178 : loss : 0.035565 cons_dist: 0.001992, loss_weight: 0.089360
[16:43:50.944] iteration 5179 : loss : 0.034856 cons_dist: 0.002846, loss_weight: 0.089360
[16:43:51.435] iteration 5180 : loss : 0.046193 cons_dist: 0.002028, loss_weight: 0.089360
[16:43:51.927] iteration 5181 : loss : 0.030444 cons_dist: 0.007012, loss_weight: 0.089360
[16:43:52.419] iteration 5182 : loss : 0.042389 cons_dist: 0.002294, loss_weight: 0.089360
[16:43:52.911] iteration 5183 : loss : 0.030918 cons_dist: 0.008010, loss_weight: 0.089360
[16:43:53.402] iteration 5184 : loss : 0.030691 cons_dist: 0.002986, loss_weight: 0.089360
[16:43:54.503] iteration 5185 : loss : 0.028399 cons_dist: 0.001486, loss_weight: 0.089360
[16:43:54.994] iteration 5186 : loss : 0.036242 cons_dist: 0.004166, loss_weight: 0.089360
[16:43:55.483] iteration 5187 : loss : 0.033814 cons_dist: 0.001977, loss_weight: 0.089360
[16:43:55.974] iteration 5188 : loss : 0.031264 cons_dist: 0.000860, loss_weight: 0.089360
[16:43:56.465] iteration 5189 : loss : 0.039101 cons_dist: 0.001247, loss_weight: 0.089360
[16:43:56.956] iteration 5190 : loss : 0.025503 cons_dist: 0.005979, loss_weight: 0.089360
[16:43:57.447] iteration 5191 : loss : 0.036391 cons_dist: 0.004774, loss_weight: 0.089360
[16:43:57.939] iteration 5192 : loss : 0.029494 cons_dist: 0.000588, loss_weight: 0.089360
[16:43:58.430] iteration 5193 : loss : 0.040476 cons_dist: 0.006469, loss_weight: 0.089360
[16:43:58.921] iteration 5194 : loss : 0.031979 cons_dist: 0.001323, loss_weight: 0.089360
[16:43:59.411] iteration 5195 : loss : 0.042977 cons_dist: 0.002094, loss_weight: 0.089360
[16:43:59.902] iteration 5196 : loss : 0.033754 cons_dist: 0.001178, loss_weight: 0.089360
[16:44:00.991] iteration 5197 : loss : 0.034900 cons_dist: 0.001012, loss_weight: 0.089360
[16:44:01.481] iteration 5198 : loss : 0.042242 cons_dist: 0.008513, loss_weight: 0.089360
[16:44:01.971] iteration 5199 : loss : 0.032795 cons_dist: 0.001210, loss_weight: 0.089360
[16:44:02.461] iteration 5200 : loss : 0.034412 cons_dist: 0.001178, loss_weight: 0.089360
[16:44:04.105] iteration 5201 : loss : 0.029266 cons_dist: 0.003327, loss_weight: 0.089360
[16:44:04.596] iteration 5202 : loss : 0.048960 cons_dist: 0.002275, loss_weight: 0.089360
[16:44:05.087] iteration 5203 : loss : 0.036245 cons_dist: 0.001977, loss_weight: 0.089360
[16:44:05.578] iteration 5204 : loss : 0.030715 cons_dist: 0.002013, loss_weight: 0.089360
[16:44:06.069] iteration 5205 : loss : 0.035096 cons_dist: 0.001497, loss_weight: 0.089360
[16:44:06.560] iteration 5206 : loss : 0.108918 cons_dist: 0.005152, loss_weight: 0.089360
[16:44:07.052] iteration 5207 : loss : 0.061087 cons_dist: 0.002677, loss_weight: 0.089360
[16:44:07.542] iteration 5208 : loss : 0.172155 cons_dist: 0.001610, loss_weight: 0.089360
[16:44:08.700] iteration 5209 : loss : 0.059217 cons_dist: 0.003105, loss_weight: 0.089360
[16:44:09.191] iteration 5210 : loss : 0.038844 cons_dist: 0.070342, loss_weight: 0.089360
[16:44:09.682] iteration 5211 : loss : 0.032343 cons_dist: 0.012166, loss_weight: 0.089360
[16:44:10.171] iteration 5212 : loss : 0.031731 cons_dist: 0.003045, loss_weight: 0.089360
[16:44:10.662] iteration 5213 : loss : 0.041214 cons_dist: 0.004989, loss_weight: 0.089360
[16:44:11.153] iteration 5214 : loss : 0.038660 cons_dist: 0.001502, loss_weight: 0.089360
[16:44:11.644] iteration 5215 : loss : 0.029775 cons_dist: 0.001302, loss_weight: 0.089360
[16:44:12.135] iteration 5216 : loss : 0.033414 cons_dist: 0.001353, loss_weight: 0.089360
[16:44:12.626] iteration 5217 : loss : 0.035126 cons_dist: 0.006024, loss_weight: 0.089360
[16:44:13.116] iteration 5218 : loss : 0.038129 cons_dist: 0.003537, loss_weight: 0.089360
[16:44:13.607] iteration 5219 : loss : 0.025695 cons_dist: 0.003635, loss_weight: 0.089360
[16:44:14.098] iteration 5220 : loss : 0.038011 cons_dist: 0.003443, loss_weight: 0.089360
[16:44:15.215] iteration 5221 : loss : 0.040467 cons_dist: 0.012423, loss_weight: 0.089360
[16:44:15.705] iteration 5222 : loss : 0.042235 cons_dist: 0.001287, loss_weight: 0.089360
[16:44:16.195] iteration 5223 : loss : 0.045901 cons_dist: 0.009499, loss_weight: 0.089360
[16:44:16.685] iteration 5224 : loss : 0.036566 cons_dist: 0.001311, loss_weight: 0.089360
[16:44:17.175] iteration 5225 : loss : 0.033800 cons_dist: 0.003058, loss_weight: 0.089360
[16:44:17.665] iteration 5226 : loss : 0.038560 cons_dist: 0.003409, loss_weight: 0.089360
[16:44:18.155] iteration 5227 : loss : 0.037012 cons_dist: 0.007693, loss_weight: 0.089360
[16:44:18.646] iteration 5228 : loss : 0.035437 cons_dist: 0.004450, loss_weight: 0.089360
[16:44:19.137] iteration 5229 : loss : 0.040104 cons_dist: 0.001813, loss_weight: 0.089360
[16:44:19.628] iteration 5230 : loss : 0.128768 cons_dist: 0.001383, loss_weight: 0.089360
[16:44:20.120] iteration 5231 : loss : 0.032957 cons_dist: 0.002862, loss_weight: 0.089360
[16:44:20.611] iteration 5232 : loss : 0.033899 cons_dist: 0.003789, loss_weight: 0.089360
[16:44:21.777] iteration 5233 : loss : 0.033348 cons_dist: 0.001621, loss_weight: 0.089360
[16:44:22.268] iteration 5234 : loss : 0.036097 cons_dist: 0.000876, loss_weight: 0.089360
[16:44:22.759] iteration 5235 : loss : 0.033057 cons_dist: 0.002729, loss_weight: 0.089360
[16:44:23.251] iteration 5236 : loss : 0.055699 cons_dist: 0.002714, loss_weight: 0.089360
[16:44:23.743] iteration 5237 : loss : 0.037730 cons_dist: 0.001505, loss_weight: 0.089360
[16:44:24.233] iteration 5238 : loss : 0.035475 cons_dist: 0.004030, loss_weight: 0.089360
[16:44:24.724] iteration 5239 : loss : 0.029580 cons_dist: 0.005169, loss_weight: 0.089360
[16:44:25.215] iteration 5240 : loss : 0.041068 cons_dist: 0.004819, loss_weight: 0.089360
[16:44:25.704] iteration 5241 : loss : 0.037287 cons_dist: 0.003600, loss_weight: 0.089360
[16:44:26.195] iteration 5242 : loss : 0.028387 cons_dist: 0.008711, loss_weight: 0.089360
[16:44:26.686] iteration 5243 : loss : 0.045564 cons_dist: 0.002217, loss_weight: 0.089360
[16:44:27.177] iteration 5244 : loss : 0.042788 cons_dist: 0.001797, loss_weight: 0.089360
[16:44:28.228] iteration 5245 : loss : 0.034846 cons_dist: 0.003367, loss_weight: 0.089360
[16:44:28.718] iteration 5246 : loss : 0.035563 cons_dist: 0.007195, loss_weight: 0.089360
[16:44:29.208] iteration 5247 : loss : 0.029222 cons_dist: 0.002001, loss_weight: 0.089360
[16:44:29.699] iteration 5248 : loss : 0.035990 cons_dist: 0.003542, loss_weight: 0.089360
[16:44:30.190] iteration 5249 : loss : 0.031188 cons_dist: 0.005102, loss_weight: 0.089360
[16:44:30.681] iteration 5250 : loss : 0.037927 cons_dist: 0.001044, loss_weight: 0.089360
[16:44:31.173] iteration 5251 : loss : 0.041982 cons_dist: 0.000864, loss_weight: 0.092485
[16:44:31.664] iteration 5252 : loss : 0.211611 cons_dist: 0.007795, loss_weight: 0.092485
[16:44:32.156] iteration 5253 : loss : 0.034344 cons_dist: 0.015781, loss_weight: 0.092485
[16:44:32.646] iteration 5254 : loss : 0.035119 cons_dist: 0.001348, loss_weight: 0.092485
[16:44:33.136] iteration 5255 : loss : 0.031455 cons_dist: 0.002891, loss_weight: 0.092485
[16:44:33.626] iteration 5256 : loss : 0.037016 cons_dist: 0.019675, loss_weight: 0.092485
[16:44:34.728] iteration 5257 : loss : 0.034215 cons_dist: 0.003160, loss_weight: 0.092485
[16:44:35.219] iteration 5258 : loss : 0.036228 cons_dist: 0.001957, loss_weight: 0.092485
[16:44:35.712] iteration 5259 : loss : 0.030635 cons_dist: 0.004237, loss_weight: 0.092485
[16:44:36.203] iteration 5260 : loss : 0.036595 cons_dist: 0.009718, loss_weight: 0.092485
[16:44:36.694] iteration 5261 : loss : 0.052970 cons_dist: 0.008875, loss_weight: 0.092485
[16:44:37.184] iteration 5262 : loss : 0.031175 cons_dist: 0.005849, loss_weight: 0.092485
[16:44:37.675] iteration 5263 : loss : 0.026874 cons_dist: 0.002390, loss_weight: 0.092485
[16:44:38.166] iteration 5264 : loss : 0.035782 cons_dist: 0.007094, loss_weight: 0.092485
[16:44:38.656] iteration 5265 : loss : 0.036730 cons_dist: 0.003035, loss_weight: 0.092485
[16:44:39.148] iteration 5266 : loss : 0.044894 cons_dist: 0.004144, loss_weight: 0.092485
[16:44:39.665] iteration 5267 : loss : 0.039517 cons_dist: 0.002182, loss_weight: 0.092485
[16:44:40.157] iteration 5268 : loss : 0.037557 cons_dist: 0.001609, loss_weight: 0.092485
[16:44:41.365] iteration 5269 : loss : 0.039907 cons_dist: 0.002501, loss_weight: 0.092485
[16:44:41.855] iteration 5270 : loss : 0.029003 cons_dist: 0.005703, loss_weight: 0.092485
[16:44:42.346] iteration 5271 : loss : 0.028368 cons_dist: 0.004099, loss_weight: 0.092485
[16:44:42.837] iteration 5272 : loss : 0.032833 cons_dist: 0.003226, loss_weight: 0.092485
[16:44:43.329] iteration 5273 : loss : 0.038943 cons_dist: 0.013849, loss_weight: 0.092485
[16:44:43.820] iteration 5274 : loss : 0.040338 cons_dist: 0.002757, loss_weight: 0.092485
[16:44:44.311] iteration 5275 : loss : 0.037459 cons_dist: 0.006676, loss_weight: 0.092485
[16:44:44.801] iteration 5276 : loss : 0.032882 cons_dist: 0.005701, loss_weight: 0.092485
[16:44:45.292] iteration 5277 : loss : 0.034335 cons_dist: 0.004902, loss_weight: 0.092485
[16:44:45.782] iteration 5278 : loss : 0.031129 cons_dist: 0.001526, loss_weight: 0.092485
[16:44:46.273] iteration 5279 : loss : 0.031589 cons_dist: 0.006250, loss_weight: 0.092485
[16:44:46.764] iteration 5280 : loss : 0.043766 cons_dist: 0.006570, loss_weight: 0.092485
[16:44:47.877] iteration 5281 : loss : 0.036430 cons_dist: 0.004439, loss_weight: 0.092485
[16:44:48.367] iteration 5282 : loss : 0.045576 cons_dist: 0.007194, loss_weight: 0.092485
[16:44:48.857] iteration 5283 : loss : 0.031804 cons_dist: 0.002314, loss_weight: 0.092485
[16:44:49.348] iteration 5284 : loss : 0.038874 cons_dist: 0.002001, loss_weight: 0.092485
[16:44:49.839] iteration 5285 : loss : 0.031370 cons_dist: 0.004514, loss_weight: 0.092485
[16:44:50.343] iteration 5286 : loss : 0.038592 cons_dist: 0.001798, loss_weight: 0.092485
[16:44:50.833] iteration 5287 : loss : 0.036750 cons_dist: 0.001628, loss_weight: 0.092485
[16:44:51.323] iteration 5288 : loss : 0.026095 cons_dist: 0.003826, loss_weight: 0.092485
[16:44:51.813] iteration 5289 : loss : 0.045893 cons_dist: 0.002024, loss_weight: 0.092485
[16:44:52.303] iteration 5290 : loss : 0.039358 cons_dist: 0.013708, loss_weight: 0.092485
[16:44:52.794] iteration 5291 : loss : 0.032936 cons_dist: 0.003100, loss_weight: 0.092485
[16:44:53.285] iteration 5292 : loss : 0.041119 cons_dist: 0.001116, loss_weight: 0.092485
[16:44:54.397] iteration 5293 : loss : 0.032794 cons_dist: 0.001860, loss_weight: 0.092485
[16:44:54.888] iteration 5294 : loss : 0.040779 cons_dist: 0.002933, loss_weight: 0.092485
[16:44:55.378] iteration 5295 : loss : 0.029844 cons_dist: 0.002511, loss_weight: 0.092485
[16:44:55.868] iteration 5296 : loss : 0.041108 cons_dist: 0.003607, loss_weight: 0.092485
[16:44:56.359] iteration 5297 : loss : 0.036710 cons_dist: 0.022557, loss_weight: 0.092485
[16:44:56.850] iteration 5298 : loss : 0.038035 cons_dist: 0.011527, loss_weight: 0.092485
[16:44:57.341] iteration 5299 : loss : 0.032468 cons_dist: 0.002809, loss_weight: 0.092485
[16:44:57.832] iteration 5300 : loss : 0.030098 cons_dist: 0.002055, loss_weight: 0.092485
[16:44:58.324] iteration 5301 : loss : 0.047588 cons_dist: 0.003000, loss_weight: 0.092485
[16:44:58.815] iteration 5302 : loss : 0.042837 cons_dist: 0.004045, loss_weight: 0.092485
[16:44:59.306] iteration 5303 : loss : 0.037865 cons_dist: 0.004909, loss_weight: 0.092485
[16:44:59.797] iteration 5304 : loss : 0.042148 cons_dist: 0.003395, loss_weight: 0.092485
[16:45:00.836] iteration 5305 : loss : 0.031124 cons_dist: 0.009111, loss_weight: 0.092485
[16:45:01.327] iteration 5306 : loss : 0.037850 cons_dist: 0.006757, loss_weight: 0.092485
[16:45:01.817] iteration 5307 : loss : 0.040528 cons_dist: 0.002060, loss_weight: 0.092485
[16:45:02.307] iteration 5308 : loss : 0.055957 cons_dist: 0.010891, loss_weight: 0.092485
[16:45:02.797] iteration 5309 : loss : 0.037852 cons_dist: 0.006520, loss_weight: 0.092485
[16:45:03.288] iteration 5310 : loss : 0.031621 cons_dist: 0.004602, loss_weight: 0.092485
[16:45:03.778] iteration 5311 : loss : 0.036312 cons_dist: 0.002604, loss_weight: 0.092485
[16:45:04.268] iteration 5312 : loss : 0.034028 cons_dist: 0.005444, loss_weight: 0.092485
[16:45:04.758] iteration 5313 : loss : 0.117093 cons_dist: 0.038613, loss_weight: 0.092485
[16:45:05.248] iteration 5314 : loss : 0.028892 cons_dist: 0.003382, loss_weight: 0.092485
[16:45:05.738] iteration 5315 : loss : 0.059703 cons_dist: 0.002430, loss_weight: 0.092485
[16:45:06.229] iteration 5316 : loss : 0.036033 cons_dist: 0.002480, loss_weight: 0.092485
[16:45:07.270] iteration 5317 : loss : 0.046553 cons_dist: 0.002282, loss_weight: 0.092485
[16:45:07.762] iteration 5318 : loss : 0.046736 cons_dist: 0.007343, loss_weight: 0.092485
[16:45:08.253] iteration 5319 : loss : 0.029717 cons_dist: 0.005204, loss_weight: 0.092485
[16:45:08.744] iteration 5320 : loss : 0.030187 cons_dist: 0.002908, loss_weight: 0.092485
[16:45:09.234] iteration 5321 : loss : 0.044973 cons_dist: 0.005789, loss_weight: 0.092485
[16:45:09.724] iteration 5322 : loss : 0.045059 cons_dist: 0.001176, loss_weight: 0.092485
[16:45:10.214] iteration 5323 : loss : 0.037530 cons_dist: 0.002244, loss_weight: 0.092485
[16:45:10.704] iteration 5324 : loss : 0.029509 cons_dist: 0.005014, loss_weight: 0.092485
[16:45:11.196] iteration 5325 : loss : 0.029692 cons_dist: 0.006075, loss_weight: 0.092485
[16:45:11.691] iteration 5326 : loss : 0.041385 cons_dist: 0.001889, loss_weight: 0.092485
[16:45:12.182] iteration 5327 : loss : 0.040459 cons_dist: 0.001818, loss_weight: 0.092485
[16:45:12.672] iteration 5328 : loss : 0.043872 cons_dist: 0.003566, loss_weight: 0.092485
[16:45:13.709] iteration 5329 : loss : 0.039383 cons_dist: 0.006103, loss_weight: 0.092485
[16:45:14.200] iteration 5330 : loss : 0.035600 cons_dist: 0.004569, loss_weight: 0.092485
[16:45:14.690] iteration 5331 : loss : 0.024365 cons_dist: 0.001413, loss_weight: 0.092485
[16:45:15.180] iteration 5332 : loss : 0.028808 cons_dist: 0.004948, loss_weight: 0.092485
[16:45:15.670] iteration 5333 : loss : 0.050281 cons_dist: 0.026332, loss_weight: 0.092485
[16:45:16.161] iteration 5334 : loss : 0.029091 cons_dist: 0.002388, loss_weight: 0.092485
[16:45:16.654] iteration 5335 : loss : 0.045695 cons_dist: 0.001192, loss_weight: 0.092485
[16:45:17.145] iteration 5336 : loss : 0.038934 cons_dist: 0.004039, loss_weight: 0.092485
[16:45:17.636] iteration 5337 : loss : 0.037225 cons_dist: 0.002473, loss_weight: 0.092485
[16:45:18.127] iteration 5338 : loss : 0.041379 cons_dist: 0.007263, loss_weight: 0.092485
[16:45:18.617] iteration 5339 : loss : 0.050136 cons_dist: 0.002220, loss_weight: 0.092485
[16:45:19.107] iteration 5340 : loss : 0.033043 cons_dist: 0.009164, loss_weight: 0.092485
[16:45:20.214] iteration 5341 : loss : 0.035635 cons_dist: 0.004255, loss_weight: 0.092485
[16:45:20.706] iteration 5342 : loss : 0.036855 cons_dist: 0.001248, loss_weight: 0.092485
[16:45:21.196] iteration 5343 : loss : 0.042597 cons_dist: 0.005738, loss_weight: 0.092485
[16:45:21.688] iteration 5344 : loss : 0.038591 cons_dist: 0.001142, loss_weight: 0.092485
[16:45:22.179] iteration 5345 : loss : 0.029616 cons_dist: 0.003731, loss_weight: 0.092485
[16:45:22.669] iteration 5346 : loss : 0.050565 cons_dist: 0.010543, loss_weight: 0.092485
[16:45:23.159] iteration 5347 : loss : 0.047525 cons_dist: 0.004867, loss_weight: 0.092485
[16:45:23.651] iteration 5348 : loss : 0.040835 cons_dist: 0.004764, loss_weight: 0.092485
[16:45:24.142] iteration 5349 : loss : 0.040918 cons_dist: 0.002802, loss_weight: 0.092485
[16:45:24.634] iteration 5350 : loss : 0.035213 cons_dist: 0.003578, loss_weight: 0.092485
[16:45:25.125] iteration 5351 : loss : 0.042198 cons_dist: 0.032422, loss_weight: 0.092485
[16:45:25.616] iteration 5352 : loss : 0.034902 cons_dist: 0.004100, loss_weight: 0.092485
[16:45:26.730] iteration 5353 : loss : 0.032148 cons_dist: 0.006391, loss_weight: 0.092485
[16:45:27.220] iteration 5354 : loss : 0.031533 cons_dist: 0.001754, loss_weight: 0.092485
[16:45:27.711] iteration 5355 : loss : 0.041438 cons_dist: 0.001851, loss_weight: 0.092485
[16:45:28.201] iteration 5356 : loss : 0.035443 cons_dist: 0.002520, loss_weight: 0.092485
[16:45:28.691] iteration 5357 : loss : 0.077277 cons_dist: 0.003620, loss_weight: 0.092485
[16:45:29.182] iteration 5358 : loss : 0.028751 cons_dist: 0.002266, loss_weight: 0.092485
[16:45:29.672] iteration 5359 : loss : 0.067559 cons_dist: 0.005081, loss_weight: 0.092485
[16:45:30.162] iteration 5360 : loss : 0.029854 cons_dist: 0.002876, loss_weight: 0.092485
[16:45:30.653] iteration 5361 : loss : 0.050335 cons_dist: 0.028845, loss_weight: 0.092485
[16:45:31.145] iteration 5362 : loss : 0.035911 cons_dist: 0.003415, loss_weight: 0.092485
[16:45:31.636] iteration 5363 : loss : 0.042842 cons_dist: 0.006823, loss_weight: 0.092485
[16:45:32.127] iteration 5364 : loss : 0.045693 cons_dist: 0.014247, loss_weight: 0.092485
[16:45:33.183] iteration 5365 : loss : 0.026711 cons_dist: 0.007602, loss_weight: 0.092485
[16:45:33.673] iteration 5366 : loss : 0.042530 cons_dist: 0.000836, loss_weight: 0.092485
[16:45:34.163] iteration 5367 : loss : 0.037020 cons_dist: 0.003602, loss_weight: 0.092485
[16:45:34.653] iteration 5368 : loss : 0.046876 cons_dist: 0.002675, loss_weight: 0.092485
[16:45:35.144] iteration 5369 : loss : 0.194779 cons_dist: 0.012216, loss_weight: 0.092485
[16:45:35.634] iteration 5370 : loss : 0.029239 cons_dist: 0.001277, loss_weight: 0.092485
[16:45:36.125] iteration 5371 : loss : 0.045567 cons_dist: 0.017832, loss_weight: 0.092485
[16:45:36.616] iteration 5372 : loss : 0.030677 cons_dist: 0.001883, loss_weight: 0.092485
[16:45:37.109] iteration 5373 : loss : 0.034722 cons_dist: 0.003782, loss_weight: 0.092485
[16:45:37.601] iteration 5374 : loss : 0.036000 cons_dist: 0.004406, loss_weight: 0.092485
[16:45:38.090] iteration 5375 : loss : 0.040860 cons_dist: 0.009856, loss_weight: 0.092485
[16:45:38.581] iteration 5376 : loss : 0.045238 cons_dist: 0.001617, loss_weight: 0.092485
[16:45:39.645] iteration 5377 : loss : 0.055377 cons_dist: 0.021284, loss_weight: 0.092485
[16:45:40.135] iteration 5378 : loss : 0.036626 cons_dist: 0.005913, loss_weight: 0.092485
[16:45:40.625] iteration 5379 : loss : 0.039611 cons_dist: 0.004022, loss_weight: 0.092485
[16:45:41.117] iteration 5380 : loss : 0.038499 cons_dist: 0.013547, loss_weight: 0.092485
[16:45:41.609] iteration 5381 : loss : 0.049386 cons_dist: 0.009127, loss_weight: 0.092485
[16:45:42.100] iteration 5382 : loss : 0.028685 cons_dist: 0.001563, loss_weight: 0.092485
[16:45:42.591] iteration 5383 : loss : 0.045678 cons_dist: 0.002664, loss_weight: 0.092485
[16:45:43.081] iteration 5384 : loss : 0.036950 cons_dist: 0.003455, loss_weight: 0.092485
[16:45:43.572] iteration 5385 : loss : 0.046543 cons_dist: 0.004636, loss_weight: 0.092485
[16:45:44.063] iteration 5386 : loss : 0.041129 cons_dist: 0.001548, loss_weight: 0.092485
[16:45:44.553] iteration 5387 : loss : 0.038375 cons_dist: 0.001278, loss_weight: 0.092485
[16:45:45.044] iteration 5388 : loss : 0.042380 cons_dist: 0.002235, loss_weight: 0.092485
[16:45:46.211] iteration 5389 : loss : 0.058158 cons_dist: 0.002003, loss_weight: 0.092485
[16:45:46.701] iteration 5390 : loss : 0.028050 cons_dist: 0.002624, loss_weight: 0.092485
[16:45:47.191] iteration 5391 : loss : 0.042631 cons_dist: 0.004718, loss_weight: 0.092485
[16:45:47.682] iteration 5392 : loss : 0.035067 cons_dist: 0.001331, loss_weight: 0.092485
[16:45:48.173] iteration 5393 : loss : 0.041635 cons_dist: 0.002411, loss_weight: 0.092485
[16:45:48.664] iteration 5394 : loss : 0.047018 cons_dist: 0.003717, loss_weight: 0.092485
[16:45:49.156] iteration 5395 : loss : 0.065745 cons_dist: 0.006339, loss_weight: 0.092485
[16:45:49.647] iteration 5396 : loss : 0.032858 cons_dist: 0.006663, loss_weight: 0.092485
[16:45:50.140] iteration 5397 : loss : 0.035435 cons_dist: 0.001247, loss_weight: 0.092485
[16:45:50.631] iteration 5398 : loss : 0.028322 cons_dist: 0.005142, loss_weight: 0.092485
[16:45:51.121] iteration 5399 : loss : 0.030417 cons_dist: 0.003527, loss_weight: 0.092485
[16:45:51.612] iteration 5400 : loss : 0.031818 cons_dist: 0.005639, loss_weight: 0.092485
[16:45:53.910] iteration 5401 : loss : 0.075683 cons_dist: 0.002868, loss_weight: 0.095123
[16:45:54.401] iteration 5402 : loss : 0.033912 cons_dist: 0.001992, loss_weight: 0.095123
[16:45:54.891] iteration 5403 : loss : 0.145709 cons_dist: 0.001863, loss_weight: 0.095123
[16:45:55.382] iteration 5404 : loss : 0.035643 cons_dist: 0.002784, loss_weight: 0.095123
[16:45:55.873] iteration 5405 : loss : 0.033321 cons_dist: 0.002524, loss_weight: 0.095123
[16:45:56.363] iteration 5406 : loss : 0.039841 cons_dist: 0.003659, loss_weight: 0.095123
[16:45:56.853] iteration 5407 : loss : 0.036395 cons_dist: 0.001630, loss_weight: 0.095123
[16:45:57.344] iteration 5408 : loss : 0.032009 cons_dist: 0.001068, loss_weight: 0.095123
[16:45:57.834] iteration 5409 : loss : 0.038637 cons_dist: 0.002199, loss_weight: 0.095123
[16:45:58.324] iteration 5410 : loss : 0.029264 cons_dist: 0.008262, loss_weight: 0.095123
[16:45:58.813] iteration 5411 : loss : 0.036025 cons_dist: 0.012858, loss_weight: 0.095123
[16:45:59.303] iteration 5412 : loss : 0.035547 cons_dist: 0.003095, loss_weight: 0.095123
[16:46:00.428] iteration 5413 : loss : 0.030086 cons_dist: 0.005602, loss_weight: 0.095123
[16:46:00.919] iteration 5414 : loss : 0.054945 cons_dist: 0.001725, loss_weight: 0.095123
[16:46:01.410] iteration 5415 : loss : 0.038840 cons_dist: 0.001857, loss_weight: 0.095123
[16:46:01.901] iteration 5416 : loss : 0.043033 cons_dist: 0.005098, loss_weight: 0.095123
[16:46:02.392] iteration 5417 : loss : 0.030119 cons_dist: 0.001640, loss_weight: 0.095123
[16:46:02.883] iteration 5418 : loss : 0.032508 cons_dist: 0.002590, loss_weight: 0.095123
[16:46:03.374] iteration 5419 : loss : 0.030391 cons_dist: 0.001831, loss_weight: 0.095123
[16:46:03.865] iteration 5420 : loss : 0.031874 cons_dist: 0.003457, loss_weight: 0.095123
[16:46:04.357] iteration 5421 : loss : 0.037655 cons_dist: 0.031078, loss_weight: 0.095123
[16:46:04.847] iteration 5422 : loss : 0.035264 cons_dist: 0.002628, loss_weight: 0.095123
[16:46:05.336] iteration 5423 : loss : 0.035161 cons_dist: 0.003161, loss_weight: 0.095123
[16:46:05.827] iteration 5424 : loss : 0.034277 cons_dist: 0.002346, loss_weight: 0.095123
[16:46:06.993] iteration 5425 : loss : 0.034018 cons_dist: 0.001298, loss_weight: 0.095123
[16:46:07.483] iteration 5426 : loss : 0.036120 cons_dist: 0.001345, loss_weight: 0.095123
[16:46:07.974] iteration 5427 : loss : 0.037714 cons_dist: 0.002966, loss_weight: 0.095123
[16:46:08.464] iteration 5428 : loss : 0.042364 cons_dist: 0.004806, loss_weight: 0.095123
[16:46:08.954] iteration 5429 : loss : 0.030553 cons_dist: 0.003963, loss_weight: 0.095123
[16:46:09.444] iteration 5430 : loss : 0.039656 cons_dist: 0.002044, loss_weight: 0.095123
[16:46:09.934] iteration 5431 : loss : 0.035785 cons_dist: 0.001510, loss_weight: 0.095123
[16:46:10.424] iteration 5432 : loss : 0.042096 cons_dist: 0.000961, loss_weight: 0.095123
[16:46:10.915] iteration 5433 : loss : 0.031493 cons_dist: 0.001322, loss_weight: 0.095123
[16:46:11.405] iteration 5434 : loss : 0.033997 cons_dist: 0.004655, loss_weight: 0.095123
[16:46:11.895] iteration 5435 : loss : 0.039610 cons_dist: 0.005722, loss_weight: 0.095123
[16:46:12.386] iteration 5436 : loss : 0.034560 cons_dist: 0.003971, loss_weight: 0.095123
[16:46:13.494] iteration 5437 : loss : 0.031716 cons_dist: 0.005070, loss_weight: 0.095123
[16:46:13.980] iteration 5438 : loss : 0.043515 cons_dist: 0.002841, loss_weight: 0.095123
[16:46:14.471] iteration 5439 : loss : 0.030261 cons_dist: 0.002417, loss_weight: 0.095123
[16:46:14.961] iteration 5440 : loss : 0.034951 cons_dist: 0.001124, loss_weight: 0.095123
[16:46:15.451] iteration 5441 : loss : 0.053058 cons_dist: 0.089367, loss_weight: 0.095123
[16:46:15.941] iteration 5442 : loss : 0.032535 cons_dist: 0.000952, loss_weight: 0.095123
[16:46:16.432] iteration 5443 : loss : 0.035659 cons_dist: 0.003525, loss_weight: 0.095123
[16:46:16.922] iteration 5444 : loss : 0.029420 cons_dist: 0.004284, loss_weight: 0.095123
[16:46:17.413] iteration 5445 : loss : 0.035537 cons_dist: 0.002572, loss_weight: 0.095123
[16:46:17.905] iteration 5446 : loss : 0.029969 cons_dist: 0.001176, loss_weight: 0.095123
[16:46:18.396] iteration 5447 : loss : 0.057181 cons_dist: 0.030904, loss_weight: 0.095123
[16:46:18.888] iteration 5448 : loss : 0.028703 cons_dist: 0.004516, loss_weight: 0.095123
[16:46:19.968] iteration 5449 : loss : 0.046106 cons_dist: 0.008943, loss_weight: 0.095123
[16:46:20.460] iteration 5450 : loss : 0.034707 cons_dist: 0.003966, loss_weight: 0.095123
[16:46:20.951] iteration 5451 : loss : 0.032438 cons_dist: 0.002754, loss_weight: 0.095123
[16:46:21.442] iteration 5452 : loss : 0.032759 cons_dist: 0.001627, loss_weight: 0.095123
[16:46:21.934] iteration 5453 : loss : 0.032256 cons_dist: 0.003639, loss_weight: 0.095123
[16:46:22.453] iteration 5454 : loss : 0.047193 cons_dist: 0.002362, loss_weight: 0.095123
[16:46:22.944] iteration 5455 : loss : 0.047707 cons_dist: 0.002870, loss_weight: 0.095123
[16:46:23.434] iteration 5456 : loss : 0.170996 cons_dist: 0.003161, loss_weight: 0.095123
[16:46:23.925] iteration 5457 : loss : 0.035552 cons_dist: 0.003657, loss_weight: 0.095123
[16:46:24.416] iteration 5458 : loss : 0.040543 cons_dist: 0.004295, loss_weight: 0.095123
[16:46:24.908] iteration 5459 : loss : 0.033446 cons_dist: 0.001222, loss_weight: 0.095123
[16:46:25.399] iteration 5460 : loss : 0.035707 cons_dist: 0.000700, loss_weight: 0.095123
[16:46:26.582] iteration 5461 : loss : 0.038841 cons_dist: 0.002984, loss_weight: 0.095123
[16:46:27.072] iteration 5462 : loss : 0.028475 cons_dist: 0.005758, loss_weight: 0.095123
[16:46:27.563] iteration 5463 : loss : 0.031171 cons_dist: 0.005291, loss_weight: 0.095123
[16:46:28.054] iteration 5464 : loss : 0.038074 cons_dist: 0.002805, loss_weight: 0.095123
[16:46:28.544] iteration 5465 : loss : 0.033458 cons_dist: 0.002873, loss_weight: 0.095123
[16:46:29.035] iteration 5466 : loss : 0.038304 cons_dist: 0.012288, loss_weight: 0.095123
[16:46:29.528] iteration 5467 : loss : 0.029804 cons_dist: 0.003488, loss_weight: 0.095123
[16:46:30.019] iteration 5468 : loss : 0.026414 cons_dist: 0.002128, loss_weight: 0.095123
[16:46:30.510] iteration 5469 : loss : 0.035941 cons_dist: 0.002357, loss_weight: 0.095123
[16:46:31.000] iteration 5470 : loss : 0.030173 cons_dist: 0.000641, loss_weight: 0.095123
[16:46:31.492] iteration 5471 : loss : 0.033042 cons_dist: 0.000764, loss_weight: 0.095123
[16:46:31.982] iteration 5472 : loss : 0.054637 cons_dist: 0.003681, loss_weight: 0.095123
[16:46:32.996] iteration 5473 : loss : 0.031206 cons_dist: 0.003125, loss_weight: 0.095123
[16:46:33.487] iteration 5474 : loss : 0.036467 cons_dist: 0.005721, loss_weight: 0.095123
[16:46:33.977] iteration 5475 : loss : 0.037225 cons_dist: 0.002130, loss_weight: 0.095123
[16:46:34.467] iteration 5476 : loss : 0.033927 cons_dist: 0.005826, loss_weight: 0.095123
[16:46:34.957] iteration 5477 : loss : 0.053985 cons_dist: 0.003415, loss_weight: 0.095123
[16:46:35.447] iteration 5478 : loss : 0.049077 cons_dist: 0.000731, loss_weight: 0.095123
[16:46:35.937] iteration 5479 : loss : 0.039537 cons_dist: 0.001735, loss_weight: 0.095123
[16:46:36.427] iteration 5480 : loss : 0.033135 cons_dist: 0.001996, loss_weight: 0.095123
[16:46:36.918] iteration 5481 : loss : 0.028878 cons_dist: 0.003225, loss_weight: 0.095123
[16:46:37.410] iteration 5482 : loss : 0.032890 cons_dist: 0.001292, loss_weight: 0.095123
[16:46:37.902] iteration 5483 : loss : 0.051139 cons_dist: 0.032204, loss_weight: 0.095123
[16:46:38.392] iteration 5484 : loss : 0.041065 cons_dist: 0.002311, loss_weight: 0.095123
[16:46:39.540] iteration 5485 : loss : 0.040064 cons_dist: 0.012164, loss_weight: 0.095123
[16:46:40.027] iteration 5486 : loss : 0.030965 cons_dist: 0.002051, loss_weight: 0.095123
[16:46:40.518] iteration 5487 : loss : 0.028788 cons_dist: 0.001129, loss_weight: 0.095123
[16:46:41.009] iteration 5488 : loss : 0.030120 cons_dist: 0.004275, loss_weight: 0.095123
[16:46:41.500] iteration 5489 : loss : 0.027253 cons_dist: 0.001256, loss_weight: 0.095123
[16:46:41.991] iteration 5490 : loss : 0.052270 cons_dist: 0.003433, loss_weight: 0.095123
[16:46:42.481] iteration 5491 : loss : 0.038092 cons_dist: 0.003630, loss_weight: 0.095123
[16:46:42.972] iteration 5492 : loss : 0.036034 cons_dist: 0.002116, loss_weight: 0.095123
[16:46:43.463] iteration 5493 : loss : 0.028856 cons_dist: 0.002906, loss_weight: 0.095123
[16:46:43.953] iteration 5494 : loss : 0.027685 cons_dist: 0.003371, loss_weight: 0.095123
[16:46:44.443] iteration 5495 : loss : 0.030908 cons_dist: 0.002521, loss_weight: 0.095123
[16:46:44.933] iteration 5496 : loss : 0.036341 cons_dist: 0.001809, loss_weight: 0.095123
[16:46:46.090] iteration 5497 : loss : 0.037963 cons_dist: 0.001637, loss_weight: 0.095123
[16:46:46.581] iteration 5498 : loss : 0.037756 cons_dist: 0.002026, loss_weight: 0.095123
[16:46:47.072] iteration 5499 : loss : 0.042901 cons_dist: 0.001136, loss_weight: 0.095123
[16:46:47.563] iteration 5500 : loss : 0.044026 cons_dist: 0.001453, loss_weight: 0.095123
[16:46:48.054] iteration 5501 : loss : 0.033793 cons_dist: 0.004356, loss_weight: 0.095123
[16:46:48.546] iteration 5502 : loss : 0.030695 cons_dist: 0.001253, loss_weight: 0.095123
[16:46:49.037] iteration 5503 : loss : 0.031734 cons_dist: 0.001984, loss_weight: 0.095123
[16:46:49.528] iteration 5504 : loss : 0.049422 cons_dist: 0.002132, loss_weight: 0.095123
[16:46:50.018] iteration 5505 : loss : 0.030416 cons_dist: 0.002553, loss_weight: 0.095123
[16:46:50.509] iteration 5506 : loss : 0.031595 cons_dist: 0.001753, loss_weight: 0.095123
[16:46:50.999] iteration 5507 : loss : 0.039623 cons_dist: 0.001496, loss_weight: 0.095123
[16:46:51.490] iteration 5508 : loss : 0.030429 cons_dist: 0.004719, loss_weight: 0.095123
[16:46:52.547] iteration 5509 : loss : 0.037969 cons_dist: 0.001587, loss_weight: 0.095123
[16:46:53.037] iteration 5510 : loss : 0.029036 cons_dist: 0.002086, loss_weight: 0.095123
[16:46:53.526] iteration 5511 : loss : 0.034053 cons_dist: 0.005210, loss_weight: 0.095123
[16:46:54.016] iteration 5512 : loss : 0.031648 cons_dist: 0.002574, loss_weight: 0.095123
[16:46:54.506] iteration 5513 : loss : 0.025529 cons_dist: 0.004255, loss_weight: 0.095123
[16:46:54.996] iteration 5514 : loss : 0.035894 cons_dist: 0.002314, loss_weight: 0.095123
[16:46:55.487] iteration 5515 : loss : 0.041963 cons_dist: 0.016684, loss_weight: 0.095123
[16:46:55.978] iteration 5516 : loss : 0.034718 cons_dist: 0.001569, loss_weight: 0.095123
[16:46:56.470] iteration 5517 : loss : 0.031071 cons_dist: 0.006219, loss_weight: 0.095123
[16:46:56.961] iteration 5518 : loss : 0.028841 cons_dist: 0.001792, loss_weight: 0.095123
[16:46:57.452] iteration 5519 : loss : 0.037122 cons_dist: 0.003155, loss_weight: 0.095123
[16:46:57.943] iteration 5520 : loss : 0.035321 cons_dist: 0.004177, loss_weight: 0.095123
[16:46:59.037] iteration 5521 : loss : 0.041281 cons_dist: 0.005199, loss_weight: 0.095123
[16:46:59.528] iteration 5522 : loss : 0.032309 cons_dist: 0.001480, loss_weight: 0.095123
[16:47:00.018] iteration 5523 : loss : 0.030373 cons_dist: 0.001535, loss_weight: 0.095123
[16:47:00.508] iteration 5524 : loss : 0.030212 cons_dist: 0.001644, loss_weight: 0.095123
[16:47:00.998] iteration 5525 : loss : 0.034352 cons_dist: 0.004632, loss_weight: 0.095123
[16:47:01.489] iteration 5526 : loss : 0.029108 cons_dist: 0.001496, loss_weight: 0.095123
[16:47:01.980] iteration 5527 : loss : 0.041072 cons_dist: 0.002318, loss_weight: 0.095123
[16:47:02.470] iteration 5528 : loss : 0.040187 cons_dist: 0.017468, loss_weight: 0.095123
[16:47:02.961] iteration 5529 : loss : 0.039268 cons_dist: 0.002430, loss_weight: 0.095123
[16:47:03.453] iteration 5530 : loss : 0.027044 cons_dist: 0.003374, loss_weight: 0.095123
[16:47:03.944] iteration 5531 : loss : 0.032487 cons_dist: 0.004387, loss_weight: 0.095123
[16:47:04.435] iteration 5532 : loss : 0.033430 cons_dist: 0.001804, loss_weight: 0.095123
[16:47:05.572] iteration 5533 : loss : 0.040557 cons_dist: 0.006382, loss_weight: 0.095123
[16:47:06.064] iteration 5534 : loss : 0.035061 cons_dist: 0.002005, loss_weight: 0.095123
[16:47:06.554] iteration 5535 : loss : 0.032011 cons_dist: 0.002260, loss_weight: 0.095123
[16:47:07.044] iteration 5536 : loss : 0.037350 cons_dist: 0.006930, loss_weight: 0.095123
[16:47:07.535] iteration 5537 : loss : 0.167164 cons_dist: 0.001106, loss_weight: 0.095123
[16:47:08.025] iteration 5538 : loss : 0.031864 cons_dist: 0.001858, loss_weight: 0.095123
[16:47:08.516] iteration 5539 : loss : 0.075228 cons_dist: 0.004414, loss_weight: 0.095123
[16:47:09.007] iteration 5540 : loss : 0.048041 cons_dist: 0.001321, loss_weight: 0.095123
[16:47:09.497] iteration 5541 : loss : 0.047252 cons_dist: 0.001527, loss_weight: 0.095123
[16:47:09.990] iteration 5542 : loss : 0.031039 cons_dist: 0.003365, loss_weight: 0.095123
[16:47:10.481] iteration 5543 : loss : 0.036191 cons_dist: 0.001655, loss_weight: 0.095123
[16:47:10.973] iteration 5544 : loss : 0.031319 cons_dist: 0.007888, loss_weight: 0.095123
[16:47:12.150] iteration 5545 : loss : 0.041540 cons_dist: 0.002657, loss_weight: 0.095123
[16:47:12.641] iteration 5546 : loss : 0.027894 cons_dist: 0.001548, loss_weight: 0.095123
[16:47:13.133] iteration 5547 : loss : 0.031263 cons_dist: 0.005058, loss_weight: 0.095123
[16:47:13.623] iteration 5548 : loss : 0.037016 cons_dist: 0.001890, loss_weight: 0.095123
[16:47:14.114] iteration 5549 : loss : 0.026805 cons_dist: 0.004221, loss_weight: 0.095123
[16:47:14.605] iteration 5550 : loss : 0.031564 cons_dist: 0.003290, loss_weight: 0.095123
[16:47:15.096] iteration 5551 : loss : 0.034897 cons_dist: 0.001726, loss_weight: 0.097227
[16:47:15.585] iteration 5552 : loss : 0.035757 cons_dist: 0.000850, loss_weight: 0.097227
[16:47:16.075] iteration 5553 : loss : 0.027906 cons_dist: 0.007520, loss_weight: 0.097227
[16:47:16.565] iteration 5554 : loss : 0.044655 cons_dist: 0.002820, loss_weight: 0.097227
[16:47:17.055] iteration 5555 : loss : 0.029493 cons_dist: 0.001699, loss_weight: 0.097227
[16:47:17.546] iteration 5556 : loss : 0.033551 cons_dist: 0.002476, loss_weight: 0.097227
[16:47:18.668] iteration 5557 : loss : 0.052215 cons_dist: 0.003014, loss_weight: 0.097227
[16:47:19.159] iteration 5558 : loss : 0.033871 cons_dist: 0.003414, loss_weight: 0.097227
[16:47:19.650] iteration 5559 : loss : 0.042470 cons_dist: 0.001642, loss_weight: 0.097227
[16:47:20.142] iteration 5560 : loss : 0.029013 cons_dist: 0.002173, loss_weight: 0.097227
[16:47:20.633] iteration 5561 : loss : 0.028435 cons_dist: 0.008256, loss_weight: 0.097227
[16:47:21.124] iteration 5562 : loss : 0.026598 cons_dist: 0.007404, loss_weight: 0.097227
[16:47:21.615] iteration 5563 : loss : 0.031770 cons_dist: 0.003420, loss_weight: 0.097227
[16:47:22.105] iteration 5564 : loss : 0.057739 cons_dist: 0.001186, loss_weight: 0.097227
[16:47:22.595] iteration 5565 : loss : 0.028935 cons_dist: 0.000879, loss_weight: 0.097227
[16:47:23.084] iteration 5566 : loss : 0.039492 cons_dist: 0.001832, loss_weight: 0.097227
[16:47:23.574] iteration 5567 : loss : 0.045793 cons_dist: 0.001752, loss_weight: 0.097227
[16:47:24.065] iteration 5568 : loss : 0.036318 cons_dist: 0.007721, loss_weight: 0.097227
[16:47:25.253] iteration 5569 : loss : 0.033459 cons_dist: 0.005292, loss_weight: 0.097227
[16:47:25.743] iteration 5570 : loss : 0.045429 cons_dist: 0.001435, loss_weight: 0.097227
[16:47:26.232] iteration 5571 : loss : 0.037232 cons_dist: 0.001749, loss_weight: 0.097227
[16:47:26.722] iteration 5572 : loss : 0.038874 cons_dist: 0.002058, loss_weight: 0.097227
[16:47:27.213] iteration 5573 : loss : 0.032736 cons_dist: 0.002872, loss_weight: 0.097227
[16:47:27.702] iteration 5574 : loss : 0.028596 cons_dist: 0.002579, loss_weight: 0.097227
[16:47:28.192] iteration 5575 : loss : 0.032152 cons_dist: 0.005622, loss_weight: 0.097227
[16:47:28.683] iteration 5576 : loss : 0.027275 cons_dist: 0.006054, loss_weight: 0.097227
[16:47:29.175] iteration 5577 : loss : 0.038198 cons_dist: 0.007501, loss_weight: 0.097227
[16:47:29.667] iteration 5578 : loss : 0.044493 cons_dist: 0.002887, loss_weight: 0.097227
[16:47:30.158] iteration 5579 : loss : 0.028426 cons_dist: 0.004389, loss_weight: 0.097227
[16:47:30.649] iteration 5580 : loss : 0.036295 cons_dist: 0.000968, loss_weight: 0.097227
[16:47:31.725] iteration 5581 : loss : 0.047091 cons_dist: 0.001744, loss_weight: 0.097227
[16:47:32.215] iteration 5582 : loss : 0.037919 cons_dist: 0.001216, loss_weight: 0.097227
[16:47:32.706] iteration 5583 : loss : 0.033294 cons_dist: 0.003240, loss_weight: 0.097227
[16:47:33.196] iteration 5584 : loss : 0.033884 cons_dist: 0.002200, loss_weight: 0.097227
[16:47:33.687] iteration 5585 : loss : 0.029582 cons_dist: 0.001448, loss_weight: 0.097227
[16:47:34.178] iteration 5586 : loss : 0.032369 cons_dist: 0.002630, loss_weight: 0.097227
[16:47:34.669] iteration 5587 : loss : 0.032295 cons_dist: 0.001036, loss_weight: 0.097227
[16:47:35.160] iteration 5588 : loss : 0.098447 cons_dist: 0.001890, loss_weight: 0.097227
[16:47:35.652] iteration 5589 : loss : 0.035801 cons_dist: 0.001743, loss_weight: 0.097227
[16:47:36.144] iteration 5590 : loss : 0.033258 cons_dist: 0.003168, loss_weight: 0.097227
[16:47:36.635] iteration 5591 : loss : 0.039855 cons_dist: 0.001043, loss_weight: 0.097227
[16:47:37.126] iteration 5592 : loss : 0.035112 cons_dist: 0.003988, loss_weight: 0.097227
[16:47:38.163] iteration 5593 : loss : 0.042754 cons_dist: 0.001678, loss_weight: 0.097227
[16:47:38.650] iteration 5594 : loss : 0.033340 cons_dist: 0.004114, loss_weight: 0.097227
[16:47:39.141] iteration 5595 : loss : 0.034066 cons_dist: 0.003804, loss_weight: 0.097227
[16:47:39.631] iteration 5596 : loss : 0.027565 cons_dist: 0.001354, loss_weight: 0.097227
[16:47:40.122] iteration 5597 : loss : 0.029036 cons_dist: 0.004996, loss_weight: 0.097227
[16:47:40.612] iteration 5598 : loss : 0.034298 cons_dist: 0.002028, loss_weight: 0.097227
[16:47:41.104] iteration 5599 : loss : 0.039936 cons_dist: 0.002169, loss_weight: 0.097227
[16:47:41.596] iteration 5600 : loss : 0.037836 cons_dist: 0.003836, loss_weight: 0.097227
[16:47:43.230] iteration 5601 : loss : 0.039424 cons_dist: 0.015379, loss_weight: 0.097227
[16:47:43.721] iteration 5602 : loss : 0.033006 cons_dist: 0.002653, loss_weight: 0.097227
[16:47:44.212] iteration 5603 : loss : 0.035066 cons_dist: 0.000787, loss_weight: 0.097227
[16:47:44.703] iteration 5604 : loss : 0.034557 cons_dist: 0.003830, loss_weight: 0.097227
[16:47:45.760] iteration 5605 : loss : 0.043209 cons_dist: 0.000920, loss_weight: 0.097227
[16:47:46.250] iteration 5606 : loss : 0.028946 cons_dist: 0.012337, loss_weight: 0.097227
[16:47:46.741] iteration 5607 : loss : 0.041743 cons_dist: 0.001132, loss_weight: 0.097227
[16:47:47.233] iteration 5608 : loss : 0.048033 cons_dist: 0.004240, loss_weight: 0.097227
[16:47:47.725] iteration 5609 : loss : 0.036189 cons_dist: 0.003068, loss_weight: 0.097227
[16:47:48.215] iteration 5610 : loss : 0.027587 cons_dist: 0.004770, loss_weight: 0.097227
[16:47:48.706] iteration 5611 : loss : 0.036343 cons_dist: 0.003749, loss_weight: 0.097227
[16:47:49.197] iteration 5612 : loss : 0.040537 cons_dist: 0.002168, loss_weight: 0.097227
[16:47:49.688] iteration 5613 : loss : 0.027066 cons_dist: 0.001742, loss_weight: 0.097227
[16:47:50.178] iteration 5614 : loss : 0.034279 cons_dist: 0.004196, loss_weight: 0.097227
[16:47:50.669] iteration 5615 : loss : 0.031726 cons_dist: 0.007116, loss_weight: 0.097227
[16:47:51.160] iteration 5616 : loss : 0.035831 cons_dist: 0.003109, loss_weight: 0.097227
[16:47:52.304] iteration 5617 : loss : 0.025229 cons_dist: 0.001343, loss_weight: 0.097227
[16:47:52.794] iteration 5618 : loss : 0.031794 cons_dist: 0.001886, loss_weight: 0.097227
[16:47:53.285] iteration 5619 : loss : 0.031387 cons_dist: 0.006527, loss_weight: 0.097227
[16:47:53.776] iteration 5620 : loss : 0.036127 cons_dist: 0.003114, loss_weight: 0.097227
[16:47:54.266] iteration 5621 : loss : 0.032322 cons_dist: 0.001436, loss_weight: 0.097227
[16:47:54.756] iteration 5622 : loss : 0.032047 cons_dist: 0.001984, loss_weight: 0.097227
[16:47:55.246] iteration 5623 : loss : 0.040092 cons_dist: 0.014759, loss_weight: 0.097227
[16:47:55.735] iteration 5624 : loss : 0.028117 cons_dist: 0.001916, loss_weight: 0.097227
[16:47:56.227] iteration 5625 : loss : 0.040859 cons_dist: 0.030032, loss_weight: 0.097227
[16:47:56.718] iteration 5626 : loss : 0.027908 cons_dist: 0.001333, loss_weight: 0.097227
[16:47:57.210] iteration 5627 : loss : 0.035979 cons_dist: 0.003796, loss_weight: 0.097227
[16:47:57.702] iteration 5628 : loss : 0.029106 cons_dist: 0.002211, loss_weight: 0.097227
[16:47:58.808] iteration 5629 : loss : 0.033529 cons_dist: 0.006294, loss_weight: 0.097227
[16:47:59.330] iteration 5630 : loss : 0.037721 cons_dist: 0.023640, loss_weight: 0.097227
[16:47:59.821] iteration 5631 : loss : 0.037399 cons_dist: 0.009527, loss_weight: 0.097227
[16:48:00.311] iteration 5632 : loss : 0.036354 cons_dist: 0.006439, loss_weight: 0.097227
[16:48:00.803] iteration 5633 : loss : 0.039060 cons_dist: 0.003183, loss_weight: 0.097227
[16:48:01.293] iteration 5634 : loss : 0.028874 cons_dist: 0.001922, loss_weight: 0.097227
[16:48:01.783] iteration 5635 : loss : 0.041170 cons_dist: 0.013751, loss_weight: 0.097227
[16:48:02.273] iteration 5636 : loss : 0.056069 cons_dist: 0.002197, loss_weight: 0.097227
[16:48:02.763] iteration 5637 : loss : 0.046034 cons_dist: 0.002866, loss_weight: 0.097227
[16:48:03.254] iteration 5638 : loss : 0.039221 cons_dist: 0.001792, loss_weight: 0.097227
[16:48:03.745] iteration 5639 : loss : 0.041940 cons_dist: 0.001357, loss_weight: 0.097227
[16:48:04.237] iteration 5640 : loss : 0.033999 cons_dist: 0.002683, loss_weight: 0.097227
[16:48:05.268] iteration 5641 : loss : 0.037847 cons_dist: 0.002406, loss_weight: 0.097227
[16:48:05.758] iteration 5642 : loss : 0.049416 cons_dist: 0.003035, loss_weight: 0.097227
[16:48:06.249] iteration 5643 : loss : 0.038038 cons_dist: 0.001941, loss_weight: 0.097227
[16:48:06.741] iteration 5644 : loss : 0.037452 cons_dist: 0.001496, loss_weight: 0.097227
[16:48:07.232] iteration 5645 : loss : 0.032743 cons_dist: 0.001750, loss_weight: 0.097227
[16:48:07.723] iteration 5646 : loss : 0.032223 cons_dist: 0.003295, loss_weight: 0.097227
[16:48:08.214] iteration 5647 : loss : 0.032164 cons_dist: 0.002199, loss_weight: 0.097227
[16:48:08.705] iteration 5648 : loss : 0.033371 cons_dist: 0.002113, loss_weight: 0.097227
[16:48:09.195] iteration 5649 : loss : 0.042265 cons_dist: 0.014487, loss_weight: 0.097227
[16:48:09.687] iteration 5650 : loss : 0.032440 cons_dist: 0.006121, loss_weight: 0.097227
[16:48:10.178] iteration 5651 : loss : 0.031226 cons_dist: 0.001275, loss_weight: 0.097227
[16:48:10.668] iteration 5652 : loss : 0.043392 cons_dist: 0.004151, loss_weight: 0.097227
[16:48:11.804] iteration 5653 : loss : 0.029042 cons_dist: 0.002651, loss_weight: 0.097227
[16:48:12.294] iteration 5654 : loss : 0.031806 cons_dist: 0.003898, loss_weight: 0.097227
[16:48:12.785] iteration 5655 : loss : 0.037910 cons_dist: 0.002222, loss_weight: 0.097227
[16:48:13.277] iteration 5656 : loss : 0.037446 cons_dist: 0.002205, loss_weight: 0.097227
[16:48:13.768] iteration 5657 : loss : 0.041909 cons_dist: 0.001060, loss_weight: 0.097227
[16:48:14.260] iteration 5658 : loss : 0.037696 cons_dist: 0.002284, loss_weight: 0.097227
[16:48:14.752] iteration 5659 : loss : 0.172319 cons_dist: 0.013330, loss_weight: 0.097227
[16:48:15.243] iteration 5660 : loss : 0.041253 cons_dist: 0.005027, loss_weight: 0.097227
[16:48:15.734] iteration 5661 : loss : 0.034165 cons_dist: 0.005486, loss_weight: 0.097227
[16:48:16.225] iteration 5662 : loss : 0.026860 cons_dist: 0.002484, loss_weight: 0.097227
[16:48:16.715] iteration 5663 : loss : 0.123783 cons_dist: 0.002819, loss_weight: 0.097227
[16:48:17.207] iteration 5664 : loss : 0.041786 cons_dist: 0.005909, loss_weight: 0.097227
[16:48:18.331] iteration 5665 : loss : 0.036792 cons_dist: 0.001437, loss_weight: 0.097227
[16:48:18.822] iteration 5666 : loss : 0.033291 cons_dist: 0.002573, loss_weight: 0.097227
[16:48:19.314] iteration 5667 : loss : 0.027836 cons_dist: 0.002298, loss_weight: 0.097227
[16:48:19.806] iteration 5668 : loss : 0.035779 cons_dist: 0.001452, loss_weight: 0.097227
[16:48:20.297] iteration 5669 : loss : 0.030564 cons_dist: 0.007323, loss_weight: 0.097227
[16:48:20.787] iteration 5670 : loss : 0.028734 cons_dist: 0.000875, loss_weight: 0.097227
[16:48:21.278] iteration 5671 : loss : 0.030321 cons_dist: 0.002447, loss_weight: 0.097227
[16:48:21.770] iteration 5672 : loss : 0.033643 cons_dist: 0.002950, loss_weight: 0.097227
[16:48:22.261] iteration 5673 : loss : 0.035253 cons_dist: 0.001177, loss_weight: 0.097227
[16:48:22.751] iteration 5674 : loss : 0.036722 cons_dist: 0.001979, loss_weight: 0.097227
[16:48:23.242] iteration 5675 : loss : 0.044722 cons_dist: 0.004240, loss_weight: 0.097227
[16:48:23.733] iteration 5676 : loss : 0.033486 cons_dist: 0.003452, loss_weight: 0.097227
[16:48:24.900] iteration 5677 : loss : 0.030821 cons_dist: 0.001933, loss_weight: 0.097227
[16:48:25.392] iteration 5678 : loss : 0.032793 cons_dist: 0.002686, loss_weight: 0.097227
[16:48:25.883] iteration 5679 : loss : 0.031075 cons_dist: 0.002784, loss_weight: 0.097227
[16:48:26.374] iteration 5680 : loss : 0.028592 cons_dist: 0.012665, loss_weight: 0.097227
[16:48:26.865] iteration 5681 : loss : 0.034308 cons_dist: 0.001235, loss_weight: 0.097227
[16:48:27.355] iteration 5682 : loss : 0.027361 cons_dist: 0.002252, loss_weight: 0.097227
[16:48:27.846] iteration 5683 : loss : 0.035175 cons_dist: 0.000891, loss_weight: 0.097227
[16:48:28.336] iteration 5684 : loss : 0.032801 cons_dist: 0.001009, loss_weight: 0.097227
[16:48:28.827] iteration 5685 : loss : 0.045160 cons_dist: 0.016677, loss_weight: 0.097227
[16:48:29.318] iteration 5686 : loss : 0.034966 cons_dist: 0.001567, loss_weight: 0.097227
[16:48:29.810] iteration 5687 : loss : 0.034452 cons_dist: 0.007375, loss_weight: 0.097227
[16:48:30.302] iteration 5688 : loss : 0.039591 cons_dist: 0.001727, loss_weight: 0.097227
[16:48:31.539] iteration 5689 : loss : 0.042357 cons_dist: 0.033949, loss_weight: 0.097227
[16:48:32.030] iteration 5690 : loss : 0.030231 cons_dist: 0.001228, loss_weight: 0.097227
[16:48:32.521] iteration 5691 : loss : 0.043142 cons_dist: 0.006699, loss_weight: 0.097227
[16:48:33.011] iteration 5692 : loss : 0.038747 cons_dist: 0.006296, loss_weight: 0.097227
[16:48:33.502] iteration 5693 : loss : 0.039094 cons_dist: 0.002911, loss_weight: 0.097227
[16:48:33.992] iteration 5694 : loss : 0.029502 cons_dist: 0.000977, loss_weight: 0.097227
[16:48:34.483] iteration 5695 : loss : 0.042988 cons_dist: 0.011393, loss_weight: 0.097227
[16:48:34.974] iteration 5696 : loss : 0.025301 cons_dist: 0.005617, loss_weight: 0.097227
[16:48:35.465] iteration 5697 : loss : 0.033298 cons_dist: 0.003325, loss_weight: 0.097227
[16:48:35.957] iteration 5698 : loss : 0.031299 cons_dist: 0.001360, loss_weight: 0.097227
[16:48:36.448] iteration 5699 : loss : 0.044196 cons_dist: 0.004776, loss_weight: 0.097227
[16:48:36.939] iteration 5700 : loss : 0.049777 cons_dist: 0.004072, loss_weight: 0.097227
[16:48:38.103] iteration 5701 : loss : 0.035890 cons_dist: 0.002239, loss_weight: 0.098758
[16:48:38.591] iteration 5702 : loss : 0.062217 cons_dist: 0.002074, loss_weight: 0.098758
[16:48:39.081] iteration 5703 : loss : 0.030944 cons_dist: 0.004875, loss_weight: 0.098758
[16:48:39.570] iteration 5704 : loss : 0.031296 cons_dist: 0.003390, loss_weight: 0.098758
[16:48:40.061] iteration 5705 : loss : 0.037566 cons_dist: 0.002156, loss_weight: 0.098758
[16:48:40.552] iteration 5706 : loss : 0.039869 cons_dist: 0.002213, loss_weight: 0.098758
[16:48:41.044] iteration 5707 : loss : 0.035497 cons_dist: 0.027856, loss_weight: 0.098758
[16:48:41.536] iteration 5708 : loss : 0.033858 cons_dist: 0.003700, loss_weight: 0.098758
[16:48:42.026] iteration 5709 : loss : 0.034099 cons_dist: 0.003366, loss_weight: 0.098758
[16:48:42.518] iteration 5710 : loss : 0.033451 cons_dist: 0.004139, loss_weight: 0.098758
[16:48:43.008] iteration 5711 : loss : 0.034304 cons_dist: 0.011782, loss_weight: 0.098758
[16:48:43.499] iteration 5712 : loss : 0.048098 cons_dist: 0.075217, loss_weight: 0.098758
[16:48:44.552] iteration 5713 : loss : 0.035613 cons_dist: 0.002694, loss_weight: 0.098758
[16:48:45.042] iteration 5714 : loss : 0.044518 cons_dist: 0.021932, loss_weight: 0.098758
[16:48:45.533] iteration 5715 : loss : 0.028642 cons_dist: 0.001706, loss_weight: 0.098758
[16:48:46.024] iteration 5716 : loss : 0.032914 cons_dist: 0.001030, loss_weight: 0.098758
[16:48:46.514] iteration 5717 : loss : 0.028088 cons_dist: 0.001489, loss_weight: 0.098758
[16:48:47.004] iteration 5718 : loss : 0.037581 cons_dist: 0.001747, loss_weight: 0.098758
[16:48:47.495] iteration 5719 : loss : 0.041993 cons_dist: 0.003003, loss_weight: 0.098758
[16:48:47.987] iteration 5720 : loss : 0.044443 cons_dist: 0.001120, loss_weight: 0.098758
[16:48:48.478] iteration 5721 : loss : 0.035090 cons_dist: 0.004680, loss_weight: 0.098758
[16:48:48.968] iteration 5722 : loss : 0.034286 cons_dist: 0.005791, loss_weight: 0.098758
[16:48:49.459] iteration 5723 : loss : 0.041716 cons_dist: 0.001212, loss_weight: 0.098758
[16:48:49.950] iteration 5724 : loss : 0.041464 cons_dist: 0.005800, loss_weight: 0.098758
[16:48:51.001] iteration 5725 : loss : 0.028345 cons_dist: 0.001654, loss_weight: 0.098758
[16:48:51.492] iteration 5726 : loss : 0.046434 cons_dist: 0.007478, loss_weight: 0.098758
[16:48:51.983] iteration 5727 : loss : 0.036846 cons_dist: 0.002873, loss_weight: 0.098758
[16:48:52.473] iteration 5728 : loss : 0.038718 cons_dist: 0.001005, loss_weight: 0.098758
[16:48:52.964] iteration 5729 : loss : 0.029595 cons_dist: 0.006310, loss_weight: 0.098758
[16:48:53.455] iteration 5730 : loss : 0.036757 cons_dist: 0.001920, loss_weight: 0.098758
[16:48:53.946] iteration 5731 : loss : 0.025871 cons_dist: 0.002788, loss_weight: 0.098758
[16:48:54.438] iteration 5732 : loss : 0.055285 cons_dist: 0.003743, loss_weight: 0.098758
[16:48:54.930] iteration 5733 : loss : 0.026461 cons_dist: 0.003000, loss_weight: 0.098758
[16:48:55.421] iteration 5734 : loss : 0.029566 cons_dist: 0.001864, loss_weight: 0.098758
[16:48:55.913] iteration 5735 : loss : 0.031509 cons_dist: 0.014574, loss_weight: 0.098758
[16:48:56.403] iteration 5736 : loss : 0.027818 cons_dist: 0.003691, loss_weight: 0.098758
[16:48:57.430] iteration 5737 : loss : 0.032357 cons_dist: 0.001266, loss_weight: 0.098758
[16:48:57.922] iteration 5738 : loss : 0.036448 cons_dist: 0.001354, loss_weight: 0.098758
[16:48:58.413] iteration 5739 : loss : 0.041141 cons_dist: 0.027352, loss_weight: 0.098758
[16:48:58.904] iteration 5740 : loss : 0.026608 cons_dist: 0.002164, loss_weight: 0.098758
[16:48:59.395] iteration 5741 : loss : 0.036844 cons_dist: 0.001731, loss_weight: 0.098758
[16:48:59.885] iteration 5742 : loss : 0.031905 cons_dist: 0.001743, loss_weight: 0.098758
[16:49:00.376] iteration 5743 : loss : 0.033456 cons_dist: 0.003070, loss_weight: 0.098758
[16:49:00.866] iteration 5744 : loss : 0.033436 cons_dist: 0.001765, loss_weight: 0.098758
[16:49:01.357] iteration 5745 : loss : 0.034920 cons_dist: 0.002568, loss_weight: 0.098758
[16:49:01.848] iteration 5746 : loss : 0.033175 cons_dist: 0.002097, loss_weight: 0.098758
[16:49:02.340] iteration 5747 : loss : 0.029352 cons_dist: 0.002012, loss_weight: 0.098758
[16:49:02.831] iteration 5748 : loss : 0.057765 cons_dist: 0.001508, loss_weight: 0.098758
[16:49:03.969] iteration 5749 : loss : 0.041636 cons_dist: 0.003454, loss_weight: 0.098758
[16:49:04.459] iteration 5750 : loss : 0.031416 cons_dist: 0.006322, loss_weight: 0.098758
[16:49:04.949] iteration 5751 : loss : 0.032399 cons_dist: 0.001547, loss_weight: 0.098758
[16:49:05.439] iteration 5752 : loss : 0.037865 cons_dist: 0.005381, loss_weight: 0.098758
[16:49:05.930] iteration 5753 : loss : 0.027117 cons_dist: 0.002053, loss_weight: 0.098758
[16:49:06.422] iteration 5754 : loss : 0.030630 cons_dist: 0.003359, loss_weight: 0.098758
[16:49:06.912] iteration 5755 : loss : 0.037712 cons_dist: 0.001526, loss_weight: 0.098758
[16:49:07.402] iteration 5756 : loss : 0.028882 cons_dist: 0.003221, loss_weight: 0.098758
[16:49:07.893] iteration 5757 : loss : 0.029408 cons_dist: 0.004504, loss_weight: 0.098758
[16:49:08.384] iteration 5758 : loss : 0.035340 cons_dist: 0.002657, loss_weight: 0.098758
[16:49:08.875] iteration 5759 : loss : 0.029112 cons_dist: 0.000988, loss_weight: 0.098758
[16:49:09.391] iteration 5760 : loss : 0.044564 cons_dist: 0.007920, loss_weight: 0.098758
[16:49:10.512] iteration 5761 : loss : 0.028353 cons_dist: 0.007305, loss_weight: 0.098758
[16:49:11.002] iteration 5762 : loss : 0.029308 cons_dist: 0.000790, loss_weight: 0.098758
[16:49:11.492] iteration 5763 : loss : 0.032212 cons_dist: 0.001583, loss_weight: 0.098758
[16:49:11.982] iteration 5764 : loss : 0.029917 cons_dist: 0.003713, loss_weight: 0.098758
[16:49:12.473] iteration 5765 : loss : 0.037702 cons_dist: 0.007226, loss_weight: 0.098758
[16:49:12.964] iteration 5766 : loss : 0.032759 cons_dist: 0.007022, loss_weight: 0.098758
[16:49:13.456] iteration 5767 : loss : 0.039789 cons_dist: 0.002106, loss_weight: 0.098758
[16:49:13.947] iteration 5768 : loss : 0.037873 cons_dist: 0.005408, loss_weight: 0.098758
[16:49:14.454] iteration 5769 : loss : 0.035466 cons_dist: 0.000922, loss_weight: 0.098758
[16:49:14.945] iteration 5770 : loss : 0.033052 cons_dist: 0.001584, loss_weight: 0.098758
[16:49:15.436] iteration 5771 : loss : 0.036443 cons_dist: 0.004218, loss_weight: 0.098758
[16:49:15.928] iteration 5772 : loss : 0.048012 cons_dist: 0.004538, loss_weight: 0.098758
[16:49:17.023] iteration 5773 : loss : 0.033595 cons_dist: 0.002262, loss_weight: 0.098758
[16:49:17.513] iteration 5774 : loss : 0.036330 cons_dist: 0.002118, loss_weight: 0.098758
[16:49:18.004] iteration 5775 : loss : 0.035616 cons_dist: 0.001835, loss_weight: 0.098758
[16:49:18.494] iteration 5776 : loss : 0.032387 cons_dist: 0.001501, loss_weight: 0.098758
[16:49:18.985] iteration 5777 : loss : 0.034940 cons_dist: 0.001570, loss_weight: 0.098758
[16:49:19.476] iteration 5778 : loss : 0.070312 cons_dist: 0.004589, loss_weight: 0.098758
[16:49:19.968] iteration 5779 : loss : 0.033214 cons_dist: 0.001051, loss_weight: 0.098758
[16:49:20.460] iteration 5780 : loss : 0.031339 cons_dist: 0.002675, loss_weight: 0.098758
[16:49:20.951] iteration 5781 : loss : 0.031927 cons_dist: 0.001510, loss_weight: 0.098758
[16:49:21.442] iteration 5782 : loss : 0.042970 cons_dist: 0.003212, loss_weight: 0.098758
[16:49:21.932] iteration 5783 : loss : 0.038278 cons_dist: 0.003525, loss_weight: 0.098758
[16:49:22.423] iteration 5784 : loss : 0.031782 cons_dist: 0.009709, loss_weight: 0.098758
[16:49:23.530] iteration 5785 : loss : 0.029266 cons_dist: 0.002418, loss_weight: 0.098758
[16:49:24.022] iteration 5786 : loss : 0.051603 cons_dist: 0.001386, loss_weight: 0.098758
[16:49:24.514] iteration 5787 : loss : 0.029209 cons_dist: 0.002716, loss_weight: 0.098758
[16:49:25.005] iteration 5788 : loss : 0.029871 cons_dist: 0.003956, loss_weight: 0.098758
[16:49:25.496] iteration 5789 : loss : 0.041585 cons_dist: 0.001568, loss_weight: 0.098758
[16:49:25.986] iteration 5790 : loss : 0.033671 cons_dist: 0.002796, loss_weight: 0.098758
[16:49:26.477] iteration 5791 : loss : 0.030268 cons_dist: 0.001838, loss_weight: 0.098758
[16:49:26.967] iteration 5792 : loss : 0.029148 cons_dist: 0.001530, loss_weight: 0.098758
[16:49:27.458] iteration 5793 : loss : 0.028609 cons_dist: 0.000436, loss_weight: 0.098758
[16:49:27.949] iteration 5794 : loss : 0.042691 cons_dist: 0.003534, loss_weight: 0.098758
[16:49:28.440] iteration 5795 : loss : 0.030331 cons_dist: 0.005999, loss_weight: 0.098758
[16:49:28.931] iteration 5796 : loss : 0.027990 cons_dist: 0.004166, loss_weight: 0.098758
[16:49:29.985] iteration 5797 : loss : 0.032777 cons_dist: 0.002067, loss_weight: 0.098758
[16:49:30.476] iteration 5798 : loss : 0.047578 cons_dist: 0.003545, loss_weight: 0.098758
[16:49:30.968] iteration 5799 : loss : 0.040992 cons_dist: 0.001257, loss_weight: 0.098758
[16:49:31.460] iteration 5800 : loss : 0.034113 cons_dist: 0.005565, loss_weight: 0.098758
[16:49:33.103] iteration 5801 : loss : 0.029129 cons_dist: 0.001892, loss_weight: 0.098758
[16:49:33.593] iteration 5802 : loss : 0.029970 cons_dist: 0.001814, loss_weight: 0.098758
[16:49:34.084] iteration 5803 : loss : 0.027229 cons_dist: 0.003000, loss_weight: 0.098758
[16:49:34.574] iteration 5804 : loss : 0.037630 cons_dist: 0.002873, loss_weight: 0.098758
[16:49:35.065] iteration 5805 : loss : 0.033578 cons_dist: 0.005644, loss_weight: 0.098758
[16:49:35.557] iteration 5806 : loss : 0.033228 cons_dist: 0.002170, loss_weight: 0.098758
[16:49:36.048] iteration 5807 : loss : 0.039133 cons_dist: 0.009272, loss_weight: 0.098758
[16:49:36.540] iteration 5808 : loss : 0.030067 cons_dist: 0.001914, loss_weight: 0.098758
[16:49:37.636] iteration 5809 : loss : 0.044067 cons_dist: 0.001484, loss_weight: 0.098758
[16:49:38.128] iteration 5810 : loss : 0.029509 cons_dist: 0.002879, loss_weight: 0.098758
[16:49:38.619] iteration 5811 : loss : 0.032704 cons_dist: 0.004548, loss_weight: 0.098758
[16:49:39.110] iteration 5812 : loss : 0.023398 cons_dist: 0.001565, loss_weight: 0.098758
[16:49:39.600] iteration 5813 : loss : 0.029941 cons_dist: 0.002254, loss_weight: 0.098758
[16:49:40.091] iteration 5814 : loss : 0.054063 cons_dist: 0.036531, loss_weight: 0.098758
[16:49:40.581] iteration 5815 : loss : 0.027182 cons_dist: 0.002709, loss_weight: 0.098758
[16:49:41.073] iteration 5816 : loss : 0.034478 cons_dist: 0.003655, loss_weight: 0.098758
[16:49:41.566] iteration 5817 : loss : 0.026155 cons_dist: 0.001806, loss_weight: 0.098758
[16:49:42.056] iteration 5818 : loss : 0.029861 cons_dist: 0.000581, loss_weight: 0.098758
[16:49:42.547] iteration 5819 : loss : 0.035542 cons_dist: 0.018624, loss_weight: 0.098758
[16:49:43.037] iteration 5820 : loss : 0.024685 cons_dist: 0.001928, loss_weight: 0.098758
[16:49:44.212] iteration 5821 : loss : 0.029398 cons_dist: 0.010301, loss_weight: 0.098758
[16:49:44.703] iteration 5822 : loss : 0.030158 cons_dist: 0.007395, loss_weight: 0.098758
[16:49:45.193] iteration 5823 : loss : 0.033714 cons_dist: 0.002835, loss_weight: 0.098758
[16:49:45.684] iteration 5824 : loss : 0.029674 cons_dist: 0.002698, loss_weight: 0.098758
[16:49:46.174] iteration 5825 : loss : 0.042242 cons_dist: 0.002169, loss_weight: 0.098758
[16:49:46.664] iteration 5826 : loss : 0.032973 cons_dist: 0.003252, loss_weight: 0.098758
[16:49:47.153] iteration 5827 : loss : 0.036031 cons_dist: 0.002018, loss_weight: 0.098758
[16:49:47.644] iteration 5828 : loss : 0.036461 cons_dist: 0.003123, loss_weight: 0.098758
[16:49:48.136] iteration 5829 : loss : 0.034233 cons_dist: 0.010100, loss_weight: 0.098758
[16:49:48.628] iteration 5830 : loss : 0.030798 cons_dist: 0.001955, loss_weight: 0.098758
[16:49:49.119] iteration 5831 : loss : 0.030730 cons_dist: 0.006668, loss_weight: 0.098758
[16:49:49.611] iteration 5832 : loss : 0.111429 cons_dist: 0.001088, loss_weight: 0.098758
[16:49:50.704] iteration 5833 : loss : 0.020794 cons_dist: 0.001563, loss_weight: 0.098758
[16:49:51.195] iteration 5834 : loss : 0.033937 cons_dist: 0.004259, loss_weight: 0.098758
[16:49:51.685] iteration 5835 : loss : 0.029644 cons_dist: 0.001457, loss_weight: 0.098758
[16:49:52.176] iteration 5836 : loss : 0.033540 cons_dist: 0.002808, loss_weight: 0.098758
[16:49:52.667] iteration 5837 : loss : 0.031260 cons_dist: 0.002580, loss_weight: 0.098758
[16:49:53.157] iteration 5838 : loss : 0.038198 cons_dist: 0.009196, loss_weight: 0.098758
[16:49:53.647] iteration 5839 : loss : 0.028347 cons_dist: 0.001782, loss_weight: 0.098758
[16:49:54.137] iteration 5840 : loss : 0.040119 cons_dist: 0.001553, loss_weight: 0.098758
[16:49:54.632] iteration 5841 : loss : 0.032380 cons_dist: 0.007052, loss_weight: 0.098758
[16:49:55.125] iteration 5842 : loss : 0.033783 cons_dist: 0.001269, loss_weight: 0.098758
[16:49:55.616] iteration 5843 : loss : 0.030998 cons_dist: 0.002396, loss_weight: 0.098758
[16:49:56.106] iteration 5844 : loss : 0.038495 cons_dist: 0.005071, loss_weight: 0.098758
[16:49:57.156] iteration 5845 : loss : 0.036305 cons_dist: 0.001533, loss_weight: 0.098758
[16:49:57.648] iteration 5846 : loss : 0.028148 cons_dist: 0.004761, loss_weight: 0.098758
[16:49:58.138] iteration 5847 : loss : 0.064943 cons_dist: 0.001971, loss_weight: 0.098758
[16:49:58.628] iteration 5848 : loss : 0.047736 cons_dist: 0.013032, loss_weight: 0.098758
[16:49:59.119] iteration 5849 : loss : 0.032748 cons_dist: 0.001324, loss_weight: 0.098758
[16:49:59.610] iteration 5850 : loss : 0.034863 cons_dist: 0.001467, loss_weight: 0.098758
[16:50:00.100] iteration 5851 : loss : 0.031723 cons_dist: 0.003789, loss_weight: 0.099688
[16:50:00.591] iteration 5852 : loss : 0.043052 cons_dist: 0.008638, loss_weight: 0.099688
[16:50:01.081] iteration 5853 : loss : 0.039118 cons_dist: 0.002298, loss_weight: 0.099688
[16:50:01.574] iteration 5854 : loss : 0.033423 cons_dist: 0.007896, loss_weight: 0.099688
[16:50:02.066] iteration 5855 : loss : 0.033242 cons_dist: 0.022675, loss_weight: 0.099688
[16:50:02.557] iteration 5856 : loss : 0.030458 cons_dist: 0.008694, loss_weight: 0.099688
[16:50:03.759] iteration 5857 : loss : 0.037666 cons_dist: 0.027122, loss_weight: 0.099688
[16:50:04.249] iteration 5858 : loss : 0.027095 cons_dist: 0.003618, loss_weight: 0.099688
[16:50:04.740] iteration 5859 : loss : 0.033696 cons_dist: 0.001521, loss_weight: 0.099688
[16:50:05.230] iteration 5860 : loss : 0.039416 cons_dist: 0.008809, loss_weight: 0.099688
[16:50:05.721] iteration 5861 : loss : 0.036969 cons_dist: 0.006054, loss_weight: 0.099688
[16:50:06.213] iteration 5862 : loss : 0.027731 cons_dist: 0.002658, loss_weight: 0.099688
[16:50:06.704] iteration 5863 : loss : 0.037683 cons_dist: 0.002889, loss_weight: 0.099688
[16:50:07.194] iteration 5864 : loss : 0.031891 cons_dist: 0.003090, loss_weight: 0.099688
[16:50:07.686] iteration 5865 : loss : 0.031377 cons_dist: 0.001252, loss_weight: 0.099688
[16:50:08.175] iteration 5866 : loss : 0.039690 cons_dist: 0.001637, loss_weight: 0.099688
[16:50:08.666] iteration 5867 : loss : 0.039489 cons_dist: 0.002854, loss_weight: 0.099688
[16:50:09.157] iteration 5868 : loss : 0.032523 cons_dist: 0.007035, loss_weight: 0.099688
[16:50:10.304] iteration 5869 : loss : 0.045939 cons_dist: 0.003122, loss_weight: 0.099688
[16:50:10.795] iteration 5870 : loss : 0.037178 cons_dist: 0.002540, loss_weight: 0.099688
[16:50:11.286] iteration 5871 : loss : 0.027530 cons_dist: 0.002662, loss_weight: 0.099688
[16:50:11.776] iteration 5872 : loss : 0.028770 cons_dist: 0.001254, loss_weight: 0.099688
[16:50:12.266] iteration 5873 : loss : 0.030405 cons_dist: 0.001848, loss_weight: 0.099688
[16:50:12.757] iteration 5874 : loss : 0.044856 cons_dist: 0.001270, loss_weight: 0.099688
[16:50:13.248] iteration 5875 : loss : 0.036799 cons_dist: 0.002488, loss_weight: 0.099688
[16:50:13.739] iteration 5876 : loss : 0.031382 cons_dist: 0.002503, loss_weight: 0.099688
[16:50:14.231] iteration 5877 : loss : 0.024858 cons_dist: 0.001399, loss_weight: 0.099688
[16:50:14.722] iteration 5878 : loss : 0.033314 cons_dist: 0.001665, loss_weight: 0.099688
[16:50:15.213] iteration 5879 : loss : 0.031975 cons_dist: 0.008952, loss_weight: 0.099688
[16:50:15.703] iteration 5880 : loss : 0.035063 cons_dist: 0.006158, loss_weight: 0.099688
[16:50:16.817] iteration 5881 : loss : 0.025847 cons_dist: 0.001214, loss_weight: 0.099688
[16:50:17.309] iteration 5882 : loss : 0.032494 cons_dist: 0.009685, loss_weight: 0.099688
[16:50:17.800] iteration 5883 : loss : 0.036913 cons_dist: 0.003327, loss_weight: 0.099688
[16:50:18.291] iteration 5884 : loss : 0.031246 cons_dist: 0.001170, loss_weight: 0.099688
[16:50:18.781] iteration 5885 : loss : 0.031274 cons_dist: 0.004348, loss_weight: 0.099688
[16:50:19.272] iteration 5886 : loss : 0.029180 cons_dist: 0.002328, loss_weight: 0.099688
[16:50:19.762] iteration 5887 : loss : 0.025897 cons_dist: 0.003306, loss_weight: 0.099688
[16:50:20.254] iteration 5888 : loss : 0.032538 cons_dist: 0.001840, loss_weight: 0.099688
[16:50:20.743] iteration 5889 : loss : 0.030368 cons_dist: 0.003093, loss_weight: 0.099688
[16:50:21.234] iteration 5890 : loss : 0.031642 cons_dist: 0.001042, loss_weight: 0.099688
[16:50:21.726] iteration 5891 : loss : 0.037732 cons_dist: 0.004120, loss_weight: 0.099688
[16:50:22.217] iteration 5892 : loss : 0.029128 cons_dist: 0.002180, loss_weight: 0.099688
[16:50:23.413] iteration 5893 : loss : 0.040624 cons_dist: 0.005729, loss_weight: 0.099688
[16:50:23.904] iteration 5894 : loss : 0.036336 cons_dist: 0.020900, loss_weight: 0.099688
[16:50:24.396] iteration 5895 : loss : 0.030064 cons_dist: 0.003912, loss_weight: 0.099688
[16:50:24.886] iteration 5896 : loss : 0.043987 cons_dist: 0.001724, loss_weight: 0.099688
[16:50:25.376] iteration 5897 : loss : 0.037174 cons_dist: 0.002322, loss_weight: 0.099688
[16:50:25.868] iteration 5898 : loss : 0.036829 cons_dist: 0.075300, loss_weight: 0.099688
[16:50:26.359] iteration 5899 : loss : 0.038880 cons_dist: 0.008272, loss_weight: 0.099688
[16:50:26.849] iteration 5900 : loss : 0.032892 cons_dist: 0.009503, loss_weight: 0.099688
[16:50:27.339] iteration 5901 : loss : 0.034162 cons_dist: 0.003385, loss_weight: 0.099688
[16:50:27.830] iteration 5902 : loss : 0.130723 cons_dist: 0.004046, loss_weight: 0.099688
[16:50:28.321] iteration 5903 : loss : 0.029401 cons_dist: 0.002254, loss_weight: 0.099688
[16:50:28.813] iteration 5904 : loss : 0.043826 cons_dist: 0.002363, loss_weight: 0.099688
[16:50:29.930] iteration 5905 : loss : 0.041937 cons_dist: 0.003063, loss_weight: 0.099688
[16:50:30.422] iteration 5906 : loss : 0.032938 cons_dist: 0.001556, loss_weight: 0.099688
[16:50:30.913] iteration 5907 : loss : 0.127405 cons_dist: 0.001823, loss_weight: 0.099688
[16:50:31.404] iteration 5908 : loss : 0.027114 cons_dist: 0.001057, loss_weight: 0.099688
[16:50:31.895] iteration 5909 : loss : 0.030537 cons_dist: 0.002479, loss_weight: 0.099688
[16:50:32.387] iteration 5910 : loss : 0.037562 cons_dist: 0.006260, loss_weight: 0.099688
[16:50:32.878] iteration 5911 : loss : 0.037127 cons_dist: 0.001443, loss_weight: 0.099688
[16:50:33.368] iteration 5912 : loss : 0.039554 cons_dist: 0.004499, loss_weight: 0.099688
[16:50:33.859] iteration 5913 : loss : 0.033133 cons_dist: 0.008402, loss_weight: 0.099688
[16:50:34.349] iteration 5914 : loss : 0.036272 cons_dist: 0.001729, loss_weight: 0.099688
[16:50:34.839] iteration 5915 : loss : 0.027886 cons_dist: 0.002182, loss_weight: 0.099688
[16:50:35.329] iteration 5916 : loss : 0.025375 cons_dist: 0.004354, loss_weight: 0.099688
[16:50:36.416] iteration 5917 : loss : 0.032624 cons_dist: 0.001129, loss_weight: 0.099688
[16:50:36.906] iteration 5918 : loss : 0.027694 cons_dist: 0.001153, loss_weight: 0.099688
[16:50:37.396] iteration 5919 : loss : 0.027947 cons_dist: 0.003389, loss_weight: 0.099688
[16:50:37.887] iteration 5920 : loss : 0.030236 cons_dist: 0.001444, loss_weight: 0.099688
[16:50:38.378] iteration 5921 : loss : 0.021411 cons_dist: 0.004071, loss_weight: 0.099688
[16:50:38.869] iteration 5922 : loss : 0.030589 cons_dist: 0.001338, loss_weight: 0.099688
[16:50:39.359] iteration 5923 : loss : 0.034280 cons_dist: 0.001609, loss_weight: 0.099688
[16:50:39.850] iteration 5924 : loss : 0.030541 cons_dist: 0.013194, loss_weight: 0.099688
[16:50:40.341] iteration 5925 : loss : 0.033720 cons_dist: 0.002271, loss_weight: 0.099688
[16:50:40.831] iteration 5926 : loss : 0.043763 cons_dist: 0.003467, loss_weight: 0.099688
[16:50:41.321] iteration 5927 : loss : 0.049811 cons_dist: 0.003701, loss_weight: 0.099688
[16:50:41.813] iteration 5928 : loss : 0.053662 cons_dist: 0.003044, loss_weight: 0.099688
[16:50:42.941] iteration 5929 : loss : 0.026477 cons_dist: 0.003128, loss_weight: 0.099688
[16:50:43.430] iteration 5930 : loss : 0.030404 cons_dist: 0.001879, loss_weight: 0.099688
[16:50:43.921] iteration 5931 : loss : 0.034283 cons_dist: 0.078328, loss_weight: 0.099688
[16:50:44.411] iteration 5932 : loss : 0.035444 cons_dist: 0.003045, loss_weight: 0.099688
[16:50:44.901] iteration 5933 : loss : 0.041132 cons_dist: 0.005042, loss_weight: 0.099688
[16:50:45.393] iteration 5934 : loss : 0.031083 cons_dist: 0.003020, loss_weight: 0.099688
[16:50:45.885] iteration 5935 : loss : 0.028179 cons_dist: 0.005705, loss_weight: 0.099688
[16:50:46.378] iteration 5936 : loss : 0.030026 cons_dist: 0.001050, loss_weight: 0.099688
[16:50:46.868] iteration 5937 : loss : 0.028639 cons_dist: 0.001494, loss_weight: 0.099688
[16:50:47.358] iteration 5938 : loss : 0.056106 cons_dist: 0.001781, loss_weight: 0.099688
[16:50:47.849] iteration 5939 : loss : 0.029159 cons_dist: 0.003490, loss_weight: 0.099688
[16:50:48.340] iteration 5940 : loss : 0.036278 cons_dist: 0.003279, loss_weight: 0.099688
[16:50:49.386] iteration 5941 : loss : 0.036684 cons_dist: 0.004584, loss_weight: 0.099688
[16:50:49.877] iteration 5942 : loss : 0.029654 cons_dist: 0.002983, loss_weight: 0.099688
[16:50:50.367] iteration 5943 : loss : 0.037686 cons_dist: 0.001194, loss_weight: 0.099688
[16:50:50.856] iteration 5944 : loss : 0.043938 cons_dist: 0.006092, loss_weight: 0.099688
[16:50:51.347] iteration 5945 : loss : 0.026360 cons_dist: 0.001931, loss_weight: 0.099688
[16:50:51.838] iteration 5946 : loss : 0.031666 cons_dist: 0.005165, loss_weight: 0.099688
[16:50:52.328] iteration 5947 : loss : 0.035393 cons_dist: 0.001034, loss_weight: 0.099688
[16:50:52.819] iteration 5948 : loss : 0.027541 cons_dist: 0.013126, loss_weight: 0.099688
[16:50:53.310] iteration 5949 : loss : 0.034595 cons_dist: 0.002629, loss_weight: 0.099688
[16:50:53.802] iteration 5950 : loss : 0.033429 cons_dist: 0.008864, loss_weight: 0.099688
[16:50:54.293] iteration 5951 : loss : 0.045603 cons_dist: 0.000883, loss_weight: 0.099688
[16:50:54.784] iteration 5952 : loss : 0.040515 cons_dist: 0.001146, loss_weight: 0.099688
[16:50:55.821] iteration 5953 : loss : 0.044170 cons_dist: 0.001341, loss_weight: 0.099688
[16:50:56.312] iteration 5954 : loss : 0.028346 cons_dist: 0.003676, loss_weight: 0.099688
[16:50:56.801] iteration 5955 : loss : 0.028642 cons_dist: 0.005860, loss_weight: 0.099688
[16:50:57.292] iteration 5956 : loss : 0.039925 cons_dist: 0.006395, loss_weight: 0.099688
[16:50:57.782] iteration 5957 : loss : 0.031842 cons_dist: 0.001665, loss_weight: 0.099688
[16:50:58.274] iteration 5958 : loss : 0.040432 cons_dist: 0.016715, loss_weight: 0.099688
[16:50:58.765] iteration 5959 : loss : 0.033964 cons_dist: 0.003736, loss_weight: 0.099688
[16:50:59.256] iteration 5960 : loss : 0.028868 cons_dist: 0.002088, loss_weight: 0.099688
[16:50:59.749] iteration 5961 : loss : 0.024589 cons_dist: 0.002648, loss_weight: 0.099688
[16:51:00.240] iteration 5962 : loss : 0.031555 cons_dist: 0.005135, loss_weight: 0.099688
[16:51:00.730] iteration 5963 : loss : 0.024497 cons_dist: 0.001482, loss_weight: 0.099688
[16:51:01.221] iteration 5964 : loss : 0.040572 cons_dist: 0.002182, loss_weight: 0.099688
[16:51:02.408] iteration 5965 : loss : 0.057278 cons_dist: 0.005368, loss_weight: 0.099688
[16:51:02.899] iteration 5966 : loss : 0.036854 cons_dist: 0.001594, loss_weight: 0.099688
[16:51:03.392] iteration 5967 : loss : 0.029362 cons_dist: 0.002305, loss_weight: 0.099688
[16:51:03.882] iteration 5968 : loss : 0.033760 cons_dist: 0.002140, loss_weight: 0.099688
[16:51:04.378] iteration 5969 : loss : 0.029790 cons_dist: 0.002148, loss_weight: 0.099688
[16:51:04.868] iteration 5970 : loss : 0.040938 cons_dist: 0.002394, loss_weight: 0.099688
[16:51:05.358] iteration 5971 : loss : 0.042695 cons_dist: 0.005518, loss_weight: 0.099688
[16:51:05.848] iteration 5972 : loss : 0.034711 cons_dist: 0.001576, loss_weight: 0.099688
[16:51:06.339] iteration 5973 : loss : 0.042043 cons_dist: 0.001277, loss_weight: 0.099688
[16:51:06.831] iteration 5974 : loss : 0.029822 cons_dist: 0.001950, loss_weight: 0.099688
[16:51:07.323] iteration 5975 : loss : 0.034290 cons_dist: 0.001510, loss_weight: 0.099688
[16:51:07.813] iteration 5976 : loss : 0.032282 cons_dist: 0.003197, loss_weight: 0.099688
[16:51:08.840] iteration 5977 : loss : 0.027879 cons_dist: 0.001084, loss_weight: 0.099688
[16:51:09.330] iteration 5978 : loss : 0.029090 cons_dist: 0.002849, loss_weight: 0.099688
[16:51:09.821] iteration 5979 : loss : 0.030999 cons_dist: 0.003475, loss_weight: 0.099688
[16:51:10.312] iteration 5980 : loss : 0.027715 cons_dist: 0.003590, loss_weight: 0.099688
[16:51:10.804] iteration 5981 : loss : 0.131332 cons_dist: 0.007138, loss_weight: 0.099688
[16:51:11.295] iteration 5982 : loss : 0.040628 cons_dist: 0.008629, loss_weight: 0.099688
[16:51:11.786] iteration 5983 : loss : 0.035844 cons_dist: 0.003446, loss_weight: 0.099688
[16:51:12.277] iteration 5984 : loss : 0.027224 cons_dist: 0.001671, loss_weight: 0.099688
[16:51:12.767] iteration 5985 : loss : 0.042603 cons_dist: 0.003602, loss_weight: 0.099688
[16:51:13.258] iteration 5986 : loss : 0.029704 cons_dist: 0.003718, loss_weight: 0.099688
[16:51:13.749] iteration 5987 : loss : 0.035947 cons_dist: 0.003195, loss_weight: 0.099688
[16:51:14.240] iteration 5988 : loss : 0.261050 cons_dist: 0.002322, loss_weight: 0.099688
[16:51:15.246] iteration 5989 : loss : 0.036691 cons_dist: 0.004188, loss_weight: 0.099688
[16:51:15.737] iteration 5990 : loss : 0.036598 cons_dist: 0.002518, loss_weight: 0.099688
[16:51:16.226] iteration 5991 : loss : 0.033661 cons_dist: 0.002364, loss_weight: 0.099688
[16:51:16.716] iteration 5992 : loss : 0.035700 cons_dist: 0.003040, loss_weight: 0.099688
[16:51:17.207] iteration 5993 : loss : 0.036903 cons_dist: 0.003394, loss_weight: 0.099688
[16:51:17.698] iteration 5994 : loss : 0.032938 cons_dist: 0.001799, loss_weight: 0.099688
[16:51:18.188] iteration 5995 : loss : 0.032614 cons_dist: 0.010063, loss_weight: 0.099688
[16:51:18.678] iteration 5996 : loss : 0.039443 cons_dist: 0.006197, loss_weight: 0.099688
[16:51:19.169] iteration 5997 : loss : 0.037092 cons_dist: 0.011466, loss_weight: 0.099688
[16:51:19.662] iteration 5998 : loss : 0.025806 cons_dist: 0.001648, loss_weight: 0.099688
[16:51:20.153] iteration 5999 : loss : 0.039231 cons_dist: 0.001550, loss_weight: 0.099688
[16:51:20.644] iteration 6000 : loss : 0.032039 cons_dist: 0.002310, loss_weight: 0.099688
[16:51:21.916] save model to model/LA_vnet_25_labeled/MT/iter_6000.pth