|
a |
|
b/inference_URPC.py |
|
|
1 |
import os |
|
|
2 |
import argparse |
|
|
3 |
import torch |
|
|
4 |
from networks.unet_urpc import unet_3D_dv_semi |
|
|
5 |
from utils.test_patch import test_all_case |
|
|
6 |
|
|
|
7 |
parser = argparse.ArgumentParser() |
|
|
8 |
parser.add_argument('--dataset_name', type=str, default='LA', help='dataset_name') |
|
|
9 |
parser.add_argument('--root_path', type=str, default='/***/data_set/LASet/data/', help='Name of Experiment') |
|
|
10 |
parser.add_argument('--exp', type=str, default='vnet', help='exp_name') |
|
|
11 |
parser.add_argument('--model', type=str, default='URPC', help='model_name') |
|
|
12 |
parser.add_argument('--gpu', type=str, default='0', help='GPU to use') |
|
|
13 |
parser.add_argument('--detail', type=int, default=1, help='print metrics for every samples?') |
|
|
14 |
parser.add_argument('--labelnum', type=int, default=25, help='labeled data') |
|
|
15 |
parser.add_argument('--nms', type=int, default=0, help='apply NMS post-procssing?') |
|
|
16 |
|
|
|
17 |
FLAGS = parser.parse_args() |
|
|
18 |
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu |
|
|
19 |
test_save_path = 'predictions/URPC/' |
|
|
20 |
|
|
|
21 |
num_classes = 2 |
|
|
22 |
patch_size = (112, 112, 80) |
|
|
23 |
FLAGS.root_path = FLAGS.root_path |
|
|
24 |
with open(FLAGS.root_path + '/../test.list', 'r') as f: |
|
|
25 |
image_list = f.readlines() |
|
|
26 |
image_list = [FLAGS.root_path + item.replace('\n', '') + "/mri_norm2.h5" for item in image_list] |
|
|
27 |
|
|
|
28 |
if not os.path.exists(test_save_path): |
|
|
29 |
os.makedirs(test_save_path) |
|
|
30 |
print(test_save_path) |
|
|
31 |
|
|
|
32 |
def test_calculate_metric(): |
|
|
33 |
net = unet_3D_dv_semi(n_classes=num_classes, in_channels=1).cuda() |
|
|
34 |
save_mode_path = 'model/LA_vnet_25_labeled/URPC/URPC_best_model.pth' |
|
|
35 |
net.load_state_dict(torch.load(save_mode_path), strict=False) # False |
|
|
36 |
print("init weight from {}".format(save_mode_path)) |
|
|
37 |
net.eval() |
|
|
38 |
|
|
|
39 |
avg_metric = test_all_case(FLAGS.model, 1, net, image_list, num_classes=num_classes, |
|
|
40 |
patch_size=(112, 112, 80), stride_xy=18, stride_z=4, |
|
|
41 |
save_result=False, test_save_path=test_save_path, |
|
|
42 |
metric_detail=FLAGS.detail, nms=FLAGS.nms) |
|
|
43 |
|
|
|
44 |
return avg_metric |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
if __name__ == '__main__': |
|
|
48 |
metric = test_calculate_metric() |
|
|
49 |
print(metric) |