--- a +++ b/inference.py @@ -0,0 +1,119 @@ +import math +import torch +import torch.nn.functional as F +import numpy as np +import h5py +import nibabel as nib +from medpy import metric +from networks.vnet import VNet + + +def calculate_metric_percase(pred, gt): + dice = metric.binary.dc(pred, gt) + jc = metric.binary.jc(pred, gt) + hd = metric.binary.hd95(pred, gt) + asd = metric.binary.asd(pred, gt) + + return dice, jc, hd, asd + + +def test_single_case(net, image, stride_xy, stride_z, patch_size, num_classes=1): + w, h, d = image.shape + + # if the size of image is less than patch_size, then padding it + add_pad = False + if w < patch_size[0]: + w_pad = patch_size[0]-w + add_pad = True + else: + w_pad = 0 + if h < patch_size[1]: + h_pad = patch_size[1]-h + add_pad = True + else: + h_pad = 0 + if d < patch_size[2]: + d_pad = patch_size[2]-d + add_pad = True + else: + d_pad = 0 + wl_pad, wr_pad = w_pad//2,w_pad-w_pad//2 + hl_pad, hr_pad = h_pad//2,h_pad-h_pad//2 + dl_pad, dr_pad = d_pad//2,d_pad-d_pad//2 + if add_pad: + image = np.pad(image, [(wl_pad,wr_pad),(hl_pad,hr_pad), (dl_pad, dr_pad)], mode='constant', constant_values=0) + ww,hh,dd = image.shape + + sx = math.ceil((ww - patch_size[0]) / stride_xy) + 1 + sy = math.ceil((hh - patch_size[1]) / stride_xy) + 1 + sz = math.ceil((dd - patch_size[2]) / stride_z) + 1 + # print("{}, {}, {}".format(sx, sy, sz)) + score_map = np.zeros((num_classes, ) + image.shape).astype(np.float32) + cnt = np.zeros(image.shape).astype(np.float32) + + for x in range(0, sx): + xs = min(stride_xy*x, ww-patch_size[0]) + for y in range(0, sy): + ys = min(stride_xy * y,hh-patch_size[1]) + for z in range(0, sz): + zs = min(stride_z * z, dd-patch_size[2]) + test_patch = image[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + test_patch = np.expand_dims(np.expand_dims(test_patch,axis=0),axis=0).astype(np.float32) + test_patch = torch.from_numpy(test_patch).cuda() + y1 = net(test_patch) + y = F.softmax(y1, dim=1) + y = y.cpu().data.numpy() + y = y[0,:,:,:,:] + score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \ + = score_map[:, xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + y + cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] \ + = cnt[xs:xs+patch_size[0], ys:ys+patch_size[1], zs:zs+patch_size[2]] + 1 + score_map = score_map/np.expand_dims(cnt,axis=0) + label_map = np.argmax(score_map, axis = 0) + if add_pad: + label_map = label_map[wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d] + score_map = score_map[:,wl_pad:wl_pad+w,hl_pad:hl_pad+h,dl_pad:dl_pad+d] + return label_map, score_map + +def test_all_case(net, image_list, num_classes=2, patch_size=(112, 112, 80), stride_xy=18, stride_z=4, save_result=True, test_save_path=None, preproc_fn=None): + total_metric = 0.0 + for ith,image_path in enumerate(image_list): + h5f = h5py.File(image_path, 'r') + image = h5f['image'][:] + label = h5f['label'][:] + if preproc_fn is not None: + image = preproc_fn(image) + prediction, score_map = test_single_case(net, image, stride_xy, stride_z, patch_size, num_classes=num_classes) + + if np.sum(prediction)==0: + single_metric = (0,0,0,0) + else: + single_metric = calculate_metric_percase(prediction, label[:]) + print('%02d,\t%.5f, %.5f, %.5f, %.5f' % (ith, single_metric[0], single_metric[1], single_metric[2], single_metric[3])) + total_metric += np.asarray(single_metric) + + if save_result: + nib.save(nib.Nifti1Image(prediction.astype(np.float32), np.eye(4)), test_save_path + "%02d_pred.nii.gz"%(ith)) + nib.save(nib.Nifti1Image(image[:].astype(np.float32), np.eye(4)), test_save_path + "%02d_img.nii.gz"%(ith)) + nib.save(nib.Nifti1Image(label[:].astype(np.float32), np.eye(4)), test_save_path + "%02d_gt.nii.gz"%(ith)) + avg_metric = total_metric / len(image_list) + print('average metric is {}'.format(avg_metric)) + + return avg_metric + + +if __name__ == '__main__': + data_path = '/***/LASet/data/' + test_save_path = 'predictions/supervised' + save_mode_path = 'model/LA_vnet_25_labeled/supervised/supervised_best_model.pth' + net = VNet(n_channels=1,n_classes=2, normalization='batchnorm').cuda() + net.load_state_dict(torch.load(save_mode_path)) + print("init weight from {}".format(save_mode_path)) + net.eval() + with open(data_path + '/../test.list', 'r') as f: + image_list = f.readlines() + image_list = [data_path +item.replace('\n', '')+"/mri_norm2.h5" for item in image_list] + # 滑动窗口法 + avg_metric = test_all_case(net, image_list, num_classes=2, + patch_size=(112, 112, 80), stride_xy=18, stride_z=4, + save_result=False,test_save_path=test_save_path) \ No newline at end of file