a b/dataloaders/la_process.py
1
import os
2
import numpy as np
3
from tqdm import tqdm
4
import h5py
5
import nrrd
6
7
8
output_size =[112, 112, 80]
9
data_path = 'E:/data/LASet/origin'
10
out_path = 'E:/data/LASet/data'
11
def covert_h5():
12
    listt = os.listdir(data_path)
13
    for case in tqdm(listt):
14
        image, img_header = nrrd.read(os.path.join(data_path,case,'lgemri.nrrd'))
15
        label, gt_header = nrrd.read(os.path.join(data_path,case, 'laendo.nrrd'))
16
        label = (label == 255).astype(np.uint8)
17
        w, h, d = label.shape
18
        # 返回label中所有非零区域(分割对象)的索引
19
        tempL = np.nonzero(label)
20
        # 分别获取非零区域在x,y,z三轴的最小值和最大值,确保裁剪图像包含分割对象
21
        minx, maxx = np.min(tempL[0]), np.max(tempL[0])
22
        miny, maxy = np.min(tempL[1]), np.max(tempL[1])
23
        minz, maxz = np.min(tempL[2]), np.max(tempL[2])
24
        # 计算目标尺寸比分割对象多余的尺寸
25
        px = max(output_size[0] - (maxx - minx), 0) // 2
26
        py = max(output_size[1] - (maxy - miny), 0) // 2
27
        pz = max(output_size[2] - (maxz - minz), 0) // 2
28
        # 在三个方向上随机扩增
29
        minx = max(minx - np.random.randint(10, 20) - px, 0)
30
        maxx = min(maxx + np.random.randint(10, 20) + px, w)
31
        miny = max(miny - np.random.randint(10, 20) - py, 0)
32
        maxy = min(maxy + np.random.randint(10, 20) + py, h)
33
        minz = max(minz - np.random.randint(5, 10) - pz, 0)
34
        maxz = min(maxz + np.random.randint(5, 10) + pz, d)
35
        # 图像归一化,转为32位浮点数(numpy默认是64位)
36
        image = (image - np.mean(image)) / np.std(image)
37
        image = image.astype(np.float32)
38
        # 裁剪
39
        image = image[minx:maxx, miny:maxy, minz:maxz]
40
        label = label[minx:maxx, miny:maxy, minz:maxz]
41
        print(label.shape)
42
43
        case_dir = os.path.join(out_path,case)
44
        os.mkdir(case_dir)
45
        f = h5py.File(os.path.join(case_dir, 'mri_norm2.h5'), 'w')
46
        f.create_dataset('image', data=image, compression="gzip")
47
        f.create_dataset('label', data=label, compression="gzip")
48
        f.close()
49
50
51
if __name__ == '__main__':
52
    covert_h5()