import os
import numpy as np
from tqdm import tqdm
import h5py
import nrrd
output_size =[112, 112, 80]
data_path = 'E:/data/LASet/origin'
out_path = 'E:/data/LASet/data'
def covert_h5():
listt = os.listdir(data_path)
for case in tqdm(listt):
image, img_header = nrrd.read(os.path.join(data_path,case,'lgemri.nrrd'))
label, gt_header = nrrd.read(os.path.join(data_path,case, 'laendo.nrrd'))
label = (label == 255).astype(np.uint8)
w, h, d = label.shape
# 返回label中所有非零区域(分割对象)的索引
tempL = np.nonzero(label)
# 分别获取非零区域在x,y,z三轴的最小值和最大值,确保裁剪图像包含分割对象
minx, maxx = np.min(tempL[0]), np.max(tempL[0])
miny, maxy = np.min(tempL[1]), np.max(tempL[1])
minz, maxz = np.min(tempL[2]), np.max(tempL[2])
# 计算目标尺寸比分割对象多余的尺寸
px = max(output_size[0] - (maxx - minx), 0) // 2
py = max(output_size[1] - (maxy - miny), 0) // 2
pz = max(output_size[2] - (maxz - minz), 0) // 2
# 在三个方向上随机扩增
minx = max(minx - np.random.randint(10, 20) - px, 0)
maxx = min(maxx + np.random.randint(10, 20) + px, w)
miny = max(miny - np.random.randint(10, 20) - py, 0)
maxy = min(maxy + np.random.randint(10, 20) + py, h)
minz = max(minz - np.random.randint(5, 10) - pz, 0)
maxz = min(maxz + np.random.randint(5, 10) + pz, d)
# 图像归一化,转为32位浮点数(numpy默认是64位)
image = (image - np.mean(image)) / np.std(image)
image = image.astype(np.float32)
# 裁剪
image = image[minx:maxx, miny:maxy, minz:maxz]
label = label[minx:maxx, miny:maxy, minz:maxz]
print(label.shape)
case_dir = os.path.join(out_path,case)
os.mkdir(case_dir)
f = h5py.File(os.path.join(case_dir, 'mri_norm2.h5'), 'w')
f.create_dataset('image', data=image, compression="gzip")
f.create_dataset('label', data=label, compression="gzip")
f.close()
if __name__ == '__main__':
covert_h5()