|
a |
|
b/dataloaders/la_heart.py |
|
|
1 |
import h5py |
|
|
2 |
import torch |
|
|
3 |
import numpy as np |
|
|
4 |
import itertools |
|
|
5 |
from torch.utils.data import Dataset |
|
|
6 |
from torch.utils.data.sampler import Sampler |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
class LAHeart(Dataset): |
|
|
10 |
""" LA Dataset """ |
|
|
11 |
|
|
|
12 |
def __init__(self, base_dir=None, split='train', num=None, transform=None): |
|
|
13 |
self._base_dir = base_dir |
|
|
14 |
self.transform = transform |
|
|
15 |
self.sample_list = [] |
|
|
16 |
if split == 'train': |
|
|
17 |
with open(self._base_dir + '/../train.list', 'r') as f: |
|
|
18 |
self.image_list = f.readlines() |
|
|
19 |
elif split == 'test': |
|
|
20 |
with open(self._base_dir + '/../test.list', 'r') as f: |
|
|
21 |
self.image_list = f.readlines() |
|
|
22 |
self.image_list = [item.strip() for item in self.image_list] |
|
|
23 |
if num is not None: |
|
|
24 |
self.image_list = self.image_list[:num] |
|
|
25 |
print("total {} samples".format(len(self.image_list))) |
|
|
26 |
|
|
|
27 |
def __len__(self): |
|
|
28 |
return len(self.image_list) |
|
|
29 |
|
|
|
30 |
def __getitem__(self, idx): |
|
|
31 |
image_name = self.image_list[idx] |
|
|
32 |
# print(image_name) |
|
|
33 |
h5f = h5py.File(self._base_dir + "/" + image_name + "/mri_norm2.h5", 'r') |
|
|
34 |
image = h5f['image'][:] |
|
|
35 |
label = h5f['label'][:] |
|
|
36 |
sample = {'image': image, 'label': label} |
|
|
37 |
if self.transform: |
|
|
38 |
sample = self.transform(sample) |
|
|
39 |
return sample |
|
|
40 |
|
|
|
41 |
class RandomCrop(object): |
|
|
42 |
""" |
|
|
43 |
Crop randomly the image in a sample |
|
|
44 |
Args: |
|
|
45 |
output_size (int): Desired output size |
|
|
46 |
""" |
|
|
47 |
|
|
|
48 |
def __init__(self, output_size): |
|
|
49 |
self.output_size = output_size |
|
|
50 |
|
|
|
51 |
def __call__(self, sample): |
|
|
52 |
image, label = sample['image'], sample['label'] |
|
|
53 |
|
|
|
54 |
# pad the sample if necessary |
|
|
55 |
if label.shape[0] <= self.output_size[0] or label.shape[1] <= self.output_size[1] or label.shape[2] <= \ |
|
|
56 |
self.output_size[2]: |
|
|
57 |
pw = max((self.output_size[0] - label.shape[0]) // 2 + 3, 0) |
|
|
58 |
ph = max((self.output_size[1] - label.shape[1]) // 2 + 3, 0) |
|
|
59 |
pd = max((self.output_size[2] - label.shape[2]) // 2 + 3, 0) |
|
|
60 |
image = np.pad(image, [(pw, pw), (ph, ph), (pd, pd)], mode='constant', constant_values=0) |
|
|
61 |
label = np.pad(label, [(pw, pw), (ph, ph), (pd, pd)], mode='constant', constant_values=0) |
|
|
62 |
|
|
|
63 |
(w, h, d) = image.shape |
|
|
64 |
w1 = np.random.randint(0, w - self.output_size[0]) |
|
|
65 |
h1 = np.random.randint(0, h - self.output_size[1]) |
|
|
66 |
d1 = np.random.randint(0, d - self.output_size[2]) |
|
|
67 |
|
|
|
68 |
label = label[w1:w1 + self.output_size[0], h1:h1 + self.output_size[1], d1:d1 + self.output_size[2]] |
|
|
69 |
image = image[w1:w1 + self.output_size[0], h1:h1 + self.output_size[1], d1:d1 + self.output_size[2]] |
|
|
70 |
return {'image': image, 'label': label} |
|
|
71 |
|
|
|
72 |
class CenterCrop(object): |
|
|
73 |
def __init__(self, output_size): |
|
|
74 |
self.output_size = output_size |
|
|
75 |
|
|
|
76 |
def __call__(self, sample): |
|
|
77 |
image, label = sample['image'], sample['label'] |
|
|
78 |
|
|
|
79 |
# pad the sample if necessary |
|
|
80 |
if label.shape[0] <= self.output_size[0] or label.shape[1] <= self.output_size[1] or label.shape[2] <= \ |
|
|
81 |
self.output_size[2]: |
|
|
82 |
pw = max((self.output_size[0] - label.shape[0]) // 2 + 3, 0) |
|
|
83 |
ph = max((self.output_size[1] - label.shape[1]) // 2 + 3, 0) |
|
|
84 |
pd = max((self.output_size[2] - label.shape[2]) // 2 + 3, 0) |
|
|
85 |
image = np.pad(image, [(pw, pw), (ph, ph), (pd, pd)], mode='constant', constant_values=0) |
|
|
86 |
label = np.pad(label, [(pw, pw), (ph, ph), (pd, pd)], mode='constant', constant_values=0) |
|
|
87 |
|
|
|
88 |
(w, h, d) = image.shape |
|
|
89 |
|
|
|
90 |
w1 = int(round((w - self.output_size[0]) / 2.)) |
|
|
91 |
h1 = int(round((h - self.output_size[1]) / 2.)) |
|
|
92 |
d1 = int(round((d - self.output_size[2]) / 2.)) |
|
|
93 |
|
|
|
94 |
label = label[w1:w1 + self.output_size[0], h1:h1 + self.output_size[1], d1:d1 + self.output_size[2]] |
|
|
95 |
image = image[w1:w1 + self.output_size[0], h1:h1 + self.output_size[1], d1:d1 + self.output_size[2]] |
|
|
96 |
|
|
|
97 |
return {'image': image, 'label': label} |
|
|
98 |
|
|
|
99 |
|
|
|
100 |
class RandomRotFlip(object): |
|
|
101 |
""" |
|
|
102 |
Crop randomly flip the dataset in a sample |
|
|
103 |
Args: |
|
|
104 |
output_size (int): Desired output size |
|
|
105 |
""" |
|
|
106 |
|
|
|
107 |
def __call__(self, sample): |
|
|
108 |
image, label = sample['image'], sample['label'] |
|
|
109 |
k = np.random.randint(0, 4) |
|
|
110 |
image = np.rot90(image, k) |
|
|
111 |
label = np.rot90(label, k) |
|
|
112 |
axis = np.random.randint(0, 2) |
|
|
113 |
image = np.flip(image, axis=axis).copy() |
|
|
114 |
label = np.flip(label, axis=axis).copy() |
|
|
115 |
|
|
|
116 |
return {'image': image, 'label': label} |
|
|
117 |
|
|
|
118 |
|
|
|
119 |
class ToTensor(object): |
|
|
120 |
"""Convert ndarrays in sample to Tensors.""" |
|
|
121 |
|
|
|
122 |
def __call__(self, sample): |
|
|
123 |
image = sample['image'] |
|
|
124 |
image = image.reshape(1, image.shape[0], image.shape[1], image.shape[2]).astype(np.float32) |
|
|
125 |
return {'image': torch.from_numpy(image), 'label': torch.from_numpy(sample['label']).long()} |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
class TwoStreamBatchSampler(Sampler): |
|
|
129 |
"""Iterate two sets of indices |
|
|
130 |
|
|
|
131 |
An 'epoch' is one iteration through the primary indices. |
|
|
132 |
During the epoch, the secondary indices are iterated through |
|
|
133 |
as many times as needed. |
|
|
134 |
""" |
|
|
135 |
def __init__(self, primary_indices, secondary_indices, batch_size, secondary_batch_size): |
|
|
136 |
self.primary_indices = primary_indices |
|
|
137 |
self.secondary_indices = secondary_indices |
|
|
138 |
self.secondary_batch_size = secondary_batch_size |
|
|
139 |
self.primary_batch_size = batch_size - secondary_batch_size |
|
|
140 |
|
|
|
141 |
assert len(self.primary_indices) >= self.primary_batch_size > 0 |
|
|
142 |
assert len(self.secondary_indices) >= self.secondary_batch_size > 0 |
|
|
143 |
|
|
|
144 |
def __iter__(self): |
|
|
145 |
primary_iter = iterate_once(self.primary_indices) |
|
|
146 |
secondary_iter = iterate_eternally(self.secondary_indices) |
|
|
147 |
return ( |
|
|
148 |
primary_batch + secondary_batch |
|
|
149 |
for (primary_batch, secondary_batch) |
|
|
150 |
in zip(grouper(primary_iter, self.primary_batch_size), |
|
|
151 |
grouper(secondary_iter, self.secondary_batch_size)) |
|
|
152 |
) |
|
|
153 |
|
|
|
154 |
def __len__(self): |
|
|
155 |
return len(self.primary_indices) // self.primary_batch_size |
|
|
156 |
|
|
|
157 |
def iterate_once(iterable): |
|
|
158 |
return np.random.permutation(iterable) |
|
|
159 |
|
|
|
160 |
|
|
|
161 |
def iterate_eternally(indices): |
|
|
162 |
def infinite_shuffles(): |
|
|
163 |
while True: |
|
|
164 |
yield np.random.permutation(indices) |
|
|
165 |
return itertools.chain.from_iterable(infinite_shuffles()) |
|
|
166 |
|
|
|
167 |
|
|
|
168 |
def grouper(iterable, n): |
|
|
169 |
"Collect data into fixed-length chunks or blocks" |
|
|
170 |
# grouper('ABCDEFG', 3) --> ABC DEF" |
|
|
171 |
args = [iter(iterable)] * n |
|
|
172 |
return zip(*args) |
|
|
173 |
|
|
|
174 |
|
|
|
175 |
if __name__ == '__main__': |
|
|
176 |
train_set = LAHeart('E:/data/LASet/data') |
|
|
177 |
print(len(train_set)) |
|
|
178 |
# data = train_set[0] |
|
|
179 |
# image, label = data['image'], data['label'] |
|
|
180 |
# print(image.shape, label.shape) |
|
|
181 |
labeled_idxs = list(range(25)) |
|
|
182 |
unlabeled_idxs = list(range(25,123)) |
|
|
183 |
batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, 4, 2) |
|
|
184 |
i = 0 |
|
|
185 |
for x in batch_sampler: |
|
|
186 |
i += 1 |
|
|
187 |
print('%02d'%i,'\t',x) |