[903821]: / dataloaders / __pycache__ / utils.cpython-36.pyc

Download this file

110 lines (110 with data), 7.5 kB

3

q╗KcfŃ@s▄ddlZddlZddlZddljZddljZddl	m
Z
ddljZ
ddlmZddl	mZd+ddäZd	d
äZddäZd
däZd,ddäZd-ddäZddäZd.ddäZd/ddäZd0d d!äZd"d#äZd1d%d&äZd'd(äZd)d*äZdS)2ÚN)┌measure)┌distance_transform_edt)┌segmentation┌.┌csçfddätj|âDâS)zÜPerforms recursive glob with given suffix and rootdir
        :param rootdir is the root directory
        :param suffix is the suffix to be searched
    cs4g|],\}}}|D]}|jłârtjj||âĹqqSę)┌endswith┌os┌path┌join)┌.0Zlooproot┌_┌	filenames┌filename)┌suffixr˙A/data/omnisky/postgraduate/Yb/RainsGit/LASeg/dataloaders/utils.py˙
<listcomp>sz"recursive_glob.<locals>.<listcomp>)r	┌walk)Zrootdirrr)rr┌recursive_globs
rcCsótjdddgdddgdddgdddgd	d
d
gd
d
d
gddd
gdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddggâS)NÚÇÚ@Ú˘Ú#ÚŔÚFÚfÚťÚżÚÖÚ˙Ú¬ÚÚ▄rÚkÚÄÚśÚűÚéÚ┤ÚÚ<Ú ÚdÚPÚŠÚwÚÚ )┌np┌arrayrrrr┌get_cityscapes_labelss(r4cCs▓tjdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddgdddggâS)z~Load the mapping that associates pascal classes with label colors
    Returns:
        np.ndarray with dimensions (21, 3)
    rrrÚ└)r2┌asarrayrrrr┌get_pascal_labels+s$    r7cCst|jtâ}tj|jd|jdftjdŹ}x:ttââD],\}}||tjtj	||kddŹâddů<q6W|jtâ}|S)ahEncode segmentation label images as pascal classes
    Args:
        mask (np.ndarray): raw segmentation label image of dimension
          (M, N, 3), in which the Pascal classes are encoded as colours.
    Returns:
        (np.ndarray): class map with dimensions (M,N), where the value at
        a given location is the integer denoting the class index.
    rÚ)┌dtype)┌axisNÚÚ    )
┌astype┌intr2┌zeros┌shape┌int16┌	enumerater7┌where┌all)┌mask┌
label_mask┌ii┌labelrrr┌
encode_segmap8s	
 (
rI┌pascalcCsHg}x |D]}t||â}|j|âq
Wtjtj|âjddddgââ}|S)NrÚr8r;)┌
decode_segmap┌append┌torch┌
from_numpyr2r3┌	transpose)Zlabel_masks┌datasetZ	rgb_masksrFZrgb_maskrrr┌decode_seg_map_sequenceIs

rRFc
Cs |dkrd}tâ}n|dkr(d}tâ}nté|jâ}|jâ}|jâ}xNtd|âD]@}||df|||k<||df|||k<||df|||k<qPWtj|jd|jddfâ}	|d	|	d
d
ůd
d
ůdf<|d	|	d
d
ůd
d
ůdf<|d	|	d
d
ůd
d
ůdf<|Értj	|	âtj
ân|	Sd
S)aqDecode segmentation class labels into a color image
    Args:
        label_mask (np.ndarray): an (M,N) array of integer values denoting
          the class label at each spatial location.
        plot (bool, optional): whether to show the resulting color image
          in a figure.
    Returns:
        (np.ndarray, optional): the resulting decoded color image.
    rJÚ┌
cityscapesÚrr8r;rKgÓo@N)r7r4┌NotImplementedError┌copy┌ranger2r?r@┌pltZimshow┌show)
rFrQ┌plot┌	n_classesZ
label_colours┌r┌g┌bZllZrgbrrrrLQs,


rLcCs$t|dâ}|jt|ââ|jâdS)N┌w)┌open┌write┌str┌close)┌logfile┌paramZlog_filerrr┌generate_param_reportus
rgr+TcCsć|jâ\}}}}	|jdâ}|dkr4tj||ddŹ}
n$tjtjtj|ââjâj	â|ddŹ}
|
||j
ââ}|rv|||	}|ré||}|S)Nr8F)┌weight┌ignore_index┌size_average)┌size┌squeeze┌nn┌CrossEntropyLossrNrOr2r3┌float┌cuda┌long)┌logit┌targetrirhrjZ
batch_average┌n┌c┌hr`Z	criterion┌lossrrr┌cross_entropy2d|s
$rxr,š═╠╠╠╠╠ý?cCs|dt|â||S)Nr8)ro)┌base_lrZiter_┌max_iter┌powerrrr┌lr_polyÄsr}rScCs˙d}x­tt|ââD]Ó}||}||}dg|}dg|}xdt|âD]X}	||	k||	k}
tj|
dkâjâ}tj|
dkâjâ}||	|7<||	|7<qDWg}
x4t|âD](}||dkr└q«|
j||||âq«Wt|
ât|
â}||7}qW|S)Ngrr;)rX┌lenrN┌sum┌itemrM)┌pred┌gtr\Z	total_iou┌i┌pred_tmp┌gt_tmp┌	intersect┌union┌j┌match┌itZun┌iou┌kZimg_iourrr┌get_iouĺs(

rŹcCsłd}|jâ}|jâ}xntt|ââD]^}||}||}dtj||âjâdtj|dâtj|dâjâ}t|â||7}q"W|S)Ngg@g­?r;)rqrXr~rNrrÇ┌print)rüré┌
total_dicerârärů┌dicerrr┌get_dice«s:rĹr;c	Cs▓tj|dâ}|jâ}|jâ}xÄtt|ââD]~}xxtd|âD]j}|||k}|||k}dtj||âjâdtj|dâtj|dâjâ}||d|7<q<Wq,W|S)Nr8g@g­?r;)r2r?rqrXr~rNrrÇ)	rüré┌numrĆrârłrärůrÉrrr┌get_mc_dice╗s:rôcCsrtj|â}tj|ddŹ\}}tj|â}tj|âx<td|dâD]*}||k}tj|â}||dkr@d||<q@W|S)NT)Z
return_numr8gÜÖÖÖÖÖ╔?r)┌ndZbinary_fill_holesrrHr2rZregionpropsrX)Z
predictionZlabel_ccZnum_ccZtotal_cc┌ccZ	single_ccZ
single_volrrr┌post_processing╚s



rľc
CsB|jtjâ}tj|â}Éx$t|dâDÉ]}||jtjâ}|jâr&|}t|â}t|â}tj	|ddŹjtjâ}|tj
|âtj|âtj
|â|tj
|âtj|âtj
|â}	d|	|dk<|	||<tj
|	âdkÉstt
tj
|âtj|âtj
|âtj|âââétj|	âdks&tt
tj
|âtj
|âtj|âtj|âââéq&W|S)a8
    compute the signed distance map of binary mask
    input: segmentation, shape = (batch_size, x, y, z)
    output: the Signed Distance Map (SDM)
    sdf(x) = 0; x in segmentation boundary
             -inf|x-y|; x in segmentation
             +inf|x-y|; x out of segmentation
    normalize sdf to [-1,1]
    r┌inner)┌moder8g­?g­┐)r=r2┌uint8r?rX┌bool┌any┌distance┌skimage_segZfind_boundaries┌min┌max┌AssertionErrorrÄ)
Zimg_gt┌	out_shapeZnormalized_sdfr_ZposmaskZnegmaskZposdisZnegdis┌boundaryZsdfrrr┌compute_sdfŇs
D:<rú)rr)rJ)F)r+NTT)r,ry)rS)r;) r	rN┌numpyr2┌torch.nnrm┌matplotlib.pyplot┌pyplotrYZskimagerZ
scipy.ndimageZndimagerörrťrrŁrr4r7rIrRrLrgrxr}rŹrĹrôrľrúrrrr┌<module>s,



	


$