--- a +++ b/gaussian.py @@ -0,0 +1,35 @@ +import sys +import cv2 as cv +import numpy as np +from matplotlib import pyplot as plt + +ddepth = cv.CV_16S +kernel_size = 3 +# [variables] +# [load] +src = cv.imread(r'C://Users/Shubhi/Desktop/Projects/Kidney-Stone-Detection-IP/images/image2.jpg', cv.IMREAD_COLOR) # Load an image +# Check if image is loaded fine +# [load] +# [reduce_noise] +# Remove noise by blurring with a Gaussian filter +src = cv.GaussianBlur(src, (3, 3), 0) +# [reduce_noise] +# [convert_to_gray] +# Convert the image to grayscale +src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) +# [convert_to_gray] +# Create Window +# [laplacian] +# Apply Laplace function +dst = cv.Laplacian(src_gray, ddepth, kernel_size) +# [laplacian] +# [convert] +# converting back to uint8 +abs_dst = cv.convertScaleAbs(dst) +# [convert] +# [display] +plt.subplot(121),plt.imshow(src, cmap = 'gray') +plt.title('Input Image'), plt.xticks([]), plt.yticks([]) +plt.subplot(122),plt.imshow(abs_dst, cmap = 'gray') +plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) +plt.show()