a b/gaussian.py
1
import sys
2
import cv2 as cv
3
import numpy as np
4
from matplotlib import pyplot as plt
5
6
ddepth = cv.CV_16S
7
kernel_size = 3
8
# [variables]
9
# [load]
10
src = cv.imread(r'C://Users/Shubhi/Desktop/Projects/Kidney-Stone-Detection-IP/images/image2.jpg', cv.IMREAD_COLOR) # Load an image
11
# Check if image is loaded fine
12
# [load]
13
# [reduce_noise]
14
# Remove noise by blurring with a Gaussian filter
15
src = cv.GaussianBlur(src, (3, 3), 0)
16
# [reduce_noise]
17
# [convert_to_gray]
18
# Convert the image to grayscale
19
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
20
# [convert_to_gray]
21
# Create Window
22
# [laplacian]
23
# Apply Laplace function
24
dst = cv.Laplacian(src_gray, ddepth, kernel_size)
25
# [laplacian]
26
# [convert]
27
# converting back to uint8
28
abs_dst = cv.convertScaleAbs(dst)
29
# [convert]
30
# [display]
31
plt.subplot(121),plt.imshow(src, cmap = 'gray')
32
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
33
plt.subplot(122),plt.imshow(abs_dst, cmap = 'gray')
34
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
35
plt.show()