[cc8b8f]: / run / validate.py

Download this file

186 lines (158 with data), 7.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
##########################
# Nicola Altini (2020)
# V-Net for Hippocampus Segmentation from MRI with PyTorch
##########################
# python run/validate.py
# python run/validate.py --dir=logs/no_augm_torchio
# python run/validate.py --dir=logs/no_augm_torchio --write=0
# python run/validate.py --dir=path/to/logs/dir --write=WRITE --verbose=VERBOSE
##########################
# Imports
##########################
import torch
import numpy as np
import os
from sklearn.model_selection import KFold
import argparse
import sys
##########################
# Local Imports
##########################
current_path_abs = os.path.abspath('.')
sys.path.append(current_path_abs)
print('{} appended to sys!'.format(current_path_abs))
from config.paths import ( train_images_folder, train_labels_folder, train_prediction_folder,
train_images, train_labels,
test_images_folder, test_images, test_prediction_folder)
from run.utils import (train_val_split, print_folder, nii_load, sitk_load, nii_write, print_config,
sitk_write, print_test, np3d_to_torch5d, torch5d_to_np3d, print_metrics, plot_confusion_matrix)
from config.config import SemSegMRIConfig
from semseg.utils import multi_dice_coeff
from sklearn.metrics import confusion_matrix, f1_score
def run(logs_dir="logs", write_out=False, plot_conf=False):
##########################
# Config
##########################
config = SemSegMRIConfig()
print_config(config)
###########################
# Load Net
###########################
cuda_dev = torch.device("cuda")
# Load From State Dict
# path_net = "logs/model_epoch_0080.pht"
# net = VNet3D(num_outs=config.num_outs, channels=config.num_channels)
# net.load_state_dict(torch.load(path_net))
path_net = os.path.join(logs_dir,"model.pt")
path_nets_crossval = [os.path.join(logs_dir,"model_folder_{:d}.pt".format(idx))
for idx in range(config.num_folders)]
###########################
# Eval Loop
###########################
use_nib = True
pad_ref = (48,64,48)
multi_dices = list()
f1_scores = list()
os.makedirs(train_prediction_folder, exist_ok=True)
os.makedirs(test_prediction_folder, exist_ok=True)
train_and_test = [True, False]
train_and_test_images = [train_images, test_images]
train_and_test_images_folder = [train_images_folder, test_images_folder]
train_and_test_prediction_folder = [train_prediction_folder, test_prediction_folder]
os.makedirs(train_prediction_folder,exist_ok=True)
os.makedirs(test_prediction_folder,exist_ok=True)
train_confusion_matrix = np.zeros((config.num_outs, config.num_outs))
for train_or_test_images, train_or_test_images_folder, train_or_test_prediction_folder, is_training in \
zip(train_and_test_images, train_and_test_images_folder, train_and_test_prediction_folder, train_and_test):
print("Images Folder: {}".format(train_or_test_images_folder))
print("IsTraining: {}".format(is_training))
kf = KFold(n_splits=config.num_folders)
for idx_crossval, (train_index, val_index) in enumerate(kf.split(train_images)):
if is_training:
print_folder(idx_crossval, train_index, val_index)
model_path = path_nets_crossval[idx_crossval]
print("Model: {}".format(model_path))
net = torch.load(model_path)
_, train_or_test_images, _, train_labels_crossval = \
train_val_split(train_images, train_labels, train_index, val_index)
else:
print_test()
net = torch.load(path_net)
net = net.cuda(cuda_dev)
net.eval()
for idx, train_image in enumerate(train_or_test_images):
print("Iter {} on {}".format(idx,len(train_or_test_images)))
print("Image: {}".format(train_image))
train_image_path = os.path.join(train_or_test_images_folder, train_image)
if use_nib:
train_image_np, affine = nii_load(train_image_path)
else:
train_image_np, meta_sitk = sitk_load(train_image_path)
with torch.no_grad():
inputs = np3d_to_torch5d(train_image_np, pad_ref, cuda_dev)
outputs = net(inputs)
outputs_np = torch5d_to_np3d(outputs, train_image_np.shape)
if write_out:
filename_out = os.path.join(train_or_test_prediction_folder, train_image)
if use_nib:
nii_write(outputs_np, affine, filename_out)
else:
sitk_write(outputs_np, meta_sitk, filename_out)
if is_training:
train_label = train_labels_crossval[idx]
train_label_path = os.path.join(train_labels_folder, train_label)
if use_nib:
train_label_np, _ = nii_load(train_label_path)
else:
train_label_np, _ = sitk_load(train_label_path)
multi_dice = multi_dice_coeff(np.expand_dims(train_label_np,axis=0),
np.expand_dims(outputs_np,axis=0),
config.num_outs)
print("Multi Class Dice Coeff = {:.4f}".format(multi_dice))
multi_dices.append(multi_dice)
f1_score_idx = f1_score(train_label_np.flatten(), outputs_np.flatten(), average=None)
cm_idx = confusion_matrix(train_label_np.flatten(), outputs_np.flatten())
train_confusion_matrix += cm_idx
f1_scores.append(f1_score_idx)
if not is_training:
break
print_metrics(multi_dices, f1_scores, train_confusion_matrix)
if plot_conf:
plot_confusion_matrix(train_confusion_matrix,
target_names=None, title='Cross-Validation Confusion matrix',
cmap=None, normalize=False, already_normalized=False,
path_out="images/conf_matrix_no_norm_no_augm_torchio.png")
plot_confusion_matrix(train_confusion_matrix,
target_names=None, title='Cross-Validation Confusion matrix (row-normalized)',
cmap=None, normalize=True, already_normalized=False,
path_out="images/conf_matrix_normalized_row_no_augm_torchio.png")
############################
# MAIN
############################
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run Validation for Hippocampus Segmentation")
parser.add_argument(
"-V",
"--verbose",
default=False, type=bool,
help="Boolean flag. Set to true for VERBOSE mode; false otherwise."
)
parser.add_argument(
"-D",
"--dir",
default="logs", type=str,
help="Local path to logs dir"
)
parser.add_argument(
"-W",
"--write",
default=False, type=bool,
help="Boolean flag. Set to true for WRITE mode; false otherwise."
)
parser.add_argument(
"--net",
default='vnet',
help="Specify the network to use [unet | vnet] ** FOR FUTURE RELEASES **"
)
args = parser.parse_args()
run(logs_dir=args.dir, write_out=args.write, plot_conf=args.verbose)