Diff of /semseg/loss.py [000000] .. [cc8b8f]

Switch to side-by-side view

--- a
+++ b/semseg/loss.py
@@ -0,0 +1,66 @@
+import torch
+
+
+def dice(outputs, labels):
+    eps = 1e-5
+    outputs, labels = outputs.float(), labels.float()
+    outputs, labels = outputs.flatten(), labels.flatten()
+    intersect = torch.dot(outputs, labels)
+    union = torch.add(torch.sum(outputs), torch.sum(labels))
+    dice_coeff = (2 * intersect + eps) / (union + eps)
+    dice_loss = - dice_coeff + 1
+    return dice_loss
+
+
+def one_hot_encode(label, num_classes):
+    """ Torch One Hot Encode
+    :param label: Tensor of shape BxHxW or BxDxHxW
+    :param num_classes: K classes
+    :return: label_ohe, Tensor of shape BxKxHxW or BxKxDxHxW
+    """
+    assert len(label.shape) == 3 or len(label.shape) == 4, 'Invalid Label Shape {}'.format(label.shape)
+    label_ohe = None
+    if len(label.shape) == 3:
+        label_ohe = torch.zeros((label.shape[0], num_classes, label.shape[1], label.shape[2]))
+    elif len(label.shape) == 4:
+        label_ohe = torch.zeros((label.shape[0], num_classes, label.shape[1], label.shape[2], label.shape[3]))
+    for batch_idx, batch_el_label in enumerate(label):
+        for cls in range(num_classes):
+            label_ohe[batch_idx, cls] = (batch_el_label == cls)
+    label_ohe = label_ohe.long()
+    return label_ohe
+
+
+def dice_n_classes(outputs, labels, do_one_hot=False, get_list=False, device=None):
+    """
+    Computes the Multi-class classification Dice Coefficient.
+    It is computed as the average Dice for all classes, each time
+    considering a class versus all the others.
+    Class 0 (background) is not considered in the average.
+    :param outputs: probabilities outputs of the CNN. Shape: [BxKxHxW]
+    :param labels:  ground truth                      Shape: [BxKxHxW]
+    :param do_one_hot: set to True if ground truth has shape [BxHxW]
+    :param get_list:   set to True if you want the list of dices per class instead of average
+    :param device: CUDA device on which compute the dice
+    :return: Multiclass classification Dice Loss
+    """
+    num_classes = outputs.shape[1]
+    if do_one_hot:
+        labels = one_hot_encode(labels, num_classes)
+        labels = labels.cuda(device=device)
+
+    dices = list()
+    for cls in range(1, num_classes):
+        outputs_ = outputs[:, cls].unsqueeze(dim=1)
+        labels_  = labels[:, cls].unsqueeze(dim=1)
+        dice_ = dice(outputs_, labels_)
+        dices.append(dice_)
+    if get_list:
+        return dices
+    else:
+        return sum(dices) / (num_classes-1)
+
+
+def get_multi_dice_loss(outputs, labels, device=None):
+    labels = labels[:, 0]
+    return dice_n_classes(outputs, labels, do_one_hot=True, get_list=False, device=device)