|
a |
|
b/semseg/data_loader.py |
|
|
1 |
import torch |
|
|
2 |
import os |
|
|
3 |
import torchio |
|
|
4 |
from torchio import Image, ImagesDataset, SubjectsDataset |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
class SemSegConfig(): |
|
|
8 |
train_images = None |
|
|
9 |
train_labels = None |
|
|
10 |
val_images = None |
|
|
11 |
val_labels = None |
|
|
12 |
do_normalize = True |
|
|
13 |
augmentation = None |
|
|
14 |
zero_pad = True |
|
|
15 |
pad_ref = (64,64,64) |
|
|
16 |
batch_size = 4 |
|
|
17 |
num_workers = 0 |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
def TorchIODataLoader3DTraining(config: SemSegConfig) -> torch.utils.data.DataLoader: |
|
|
21 |
print('Building TorchIO Training Set Loader...') |
|
|
22 |
subject_list = list() |
|
|
23 |
for idx, (image_path, label_path) in enumerate(zip(config.train_images, config.train_labels)): |
|
|
24 |
s1 = torchio.Subject( |
|
|
25 |
t1=Image(type=torchio.INTENSITY, path=image_path), |
|
|
26 |
label=Image(type=torchio.LABEL, path=label_path), |
|
|
27 |
) |
|
|
28 |
|
|
|
29 |
subject_list.append(s1) |
|
|
30 |
|
|
|
31 |
# Deprecated |
|
|
32 |
# subjects_dataset = ImagesDataset(subject_list, transform=config.transform_train) |
|
|
33 |
subjects_dataset = SubjectsDataset(subject_list, transform=config.transform_train) |
|
|
34 |
train_data = torch.utils.data.DataLoader(subjects_dataset, batch_size=config.batch_size, |
|
|
35 |
shuffle=True, num_workers=config.num_workers) |
|
|
36 |
print('TorchIO Training Loader built!') |
|
|
37 |
return train_data |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
def TorchIODataLoader3DValidation(config: SemSegConfig) -> torch.utils.data.DataLoader: |
|
|
41 |
print('Building TorchIO Validation Set Loader...') |
|
|
42 |
subject_list = list() |
|
|
43 |
for idx, (image_path, label_path) in enumerate(zip(config.val_images, config.val_labels)): |
|
|
44 |
s1 = torchio.Subject( |
|
|
45 |
t1=Image(type=torchio.INTENSITY, path=image_path), |
|
|
46 |
label=Image(type=torchio.LABEL, path=label_path), |
|
|
47 |
) |
|
|
48 |
|
|
|
49 |
subject_list.append(s1) |
|
|
50 |
|
|
|
51 |
# Deprecated |
|
|
52 |
# subjects_dataset = ImagesDataset(subject_list, transform=config.transform_val) |
|
|
53 |
subjects_dataset = SubjectsDataset(subject_list, transform=config.transform_val) |
|
|
54 |
val_data = torch.utils.data.DataLoader(subjects_dataset, batch_size=config.batch_size, |
|
|
55 |
shuffle=False, num_workers=config.num_workers) |
|
|
56 |
print('TorchIO Validation Loader built!') |
|
|
57 |
return val_data |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
def get_pad_3d_image(pad_ref: tuple = (64, 64, 64), zero_pad: bool = True): |
|
|
61 |
def pad_3d_image(image): |
|
|
62 |
if zero_pad: |
|
|
63 |
value_to_pad = 0 |
|
|
64 |
else: |
|
|
65 |
value_to_pad = image.min() |
|
|
66 |
pad_ref_channels = (image.shape[0], *pad_ref) |
|
|
67 |
# print("image.shape = {}".format(image.shape)) |
|
|
68 |
if value_to_pad == 0: |
|
|
69 |
image_padded = torch.zeros(pad_ref_channels) |
|
|
70 |
else: |
|
|
71 |
image_padded = value_to_pad * torch.ones(pad_ref_channels) |
|
|
72 |
image_padded[:,:image.shape[1],:image.shape[2],:image.shape[3]] = image |
|
|
73 |
# print("image_padded.shape = {}".format(image_padded.shape)) |
|
|
74 |
return image_padded |
|
|
75 |
return pad_3d_image |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
def z_score_normalization(inputs): |
|
|
79 |
input_mean = torch.mean(inputs) |
|
|
80 |
input_std = torch.std(inputs) |
|
|
81 |
return (inputs - input_mean)/input_std |