[cc8b8f]: / run / utils.py

Download this file

251 lines (195 with data), 9.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import copy
import os
import torch
import numpy as np
import nibabel as nib
import SimpleITK as sitk
from semseg.data_loader import TorchIODataLoader3DTraining
from models.vnet3d import VNet3D
from semseg.utils import zero_pad_3d_image, z_score_normalization
def print_config(config):
attributes_config = [attr for attr in dir(config)
if not attr.startswith('__')]
print("Config")
for item in attributes_config:
attr_val = getattr(config,item)
if len(str(attr_val)) < 100:
print("{:15s} ==> {}".format(item, attr_val))
else:
print("{:15s} ==> String too long [{} characters]".format(item,len(str(attr_val))))
def check_train_set(config):
num_train_images = len(config.train_images)
num_train_labels = len(config.train_labels)
assert num_train_images == num_train_labels, "Mismatch in number of training images and labels!"
print("There are: {} Training Images".format(num_train_images))
print("There are: {} Training Labels".format(num_train_labels))
def check_torch_loader(config, check_net=False):
train_data_loader_3D = TorchIODataLoader3DTraining(config)
iterable_data_loader = iter(train_data_loader_3D)
el = next(iterable_data_loader)
inputs, labels = el['t1']['data'], el['label']['data']
print("Shape of Batch: [input {}] [label {}]".format(inputs.shape, labels.shape))
if check_net:
net = VNet3D(num_outs=config.num_outs, channels=config.num_channels)
outputs = net(inputs)
print("Shape of Output: [output {}]".format(outputs.shape))
def print_folder(idx, train_index, val_index):
print("+==================+")
print("+ Cross Validation +")
print("+ Folder {:d} +".format(idx))
print("+==================+")
print("TRAIN [Images: {:3d}]:\n{}".format(len(train_index), train_index))
print("VAL [Images: {:3d}]:\n{}".format(len(val_index), val_index))
def print_test():
print("+============+")
print("+ Test +")
print("+============+")
def train_val_split(train_images, train_labels, train_index, val_index):
train_images_np, train_labels_np = np.array(train_images), np.array(train_labels)
train_images_list = list(train_images_np[train_index])
val_images_list = list(train_images_np[val_index])
train_labels_list = list(train_labels_np[train_index])
val_labels_list = list(train_labels_np[val_index])
return train_images_list, val_images_list, train_labels_list, val_labels_list
def train_val_split_config(config, train_index, val_index):
train_images_list, val_images_list, train_labels_list, val_labels_list = \
train_val_split(config.train_images, config.train_labels, train_index, val_index)
new_config = copy.copy(config)
new_config.train_images, new_config.val_images = train_images_list, val_images_list
new_config.train_labels, new_config.val_labels = train_labels_list, val_labels_list
return new_config
def nii_load(train_image_path):
train_image_nii = nib.load(str(train_image_path), mmap=False)
train_image_np = train_image_nii.get_fdata(dtype=np.float32)
affine = train_image_nii.affine
return train_image_np, affine
def sitk_load(train_image_path):
train_image_sitk = sitk.ReadImage(train_image_path)
train_image_np = sitk.GetArrayFromImage(train_image_sitk)
origin, spacing, direction = train_image_sitk.GetOrigin(), \
train_image_sitk.GetSpacing(), train_image_sitk.GetDirection()
meta_sitk = {
'origin' : origin,
'spacing' : spacing,
'direction': direction
}
return train_image_np, meta_sitk
def nii_write(outputs_np, affine, filename_out):
outputs_nib = nib.Nifti1Image(outputs_np, affine)
outputs_nib.header['qform_code'] = 1
outputs_nib.header['sform_code'] = 0
outputs_nib.to_filename(filename_out)
def sitk_write(outputs_np, meta_sitk, filename_out):
outputs_sitk = sitk.GetImageFromArray(outputs_np)
outputs_sitk.SetDirection(meta_sitk['direction'])
outputs_sitk.SetSpacing(meta_sitk['spacing'])
outputs_sitk.SetOrigin(meta_sitk['origin'])
sitk.WriteImage(outputs_sitk, filename_out)
def np3d_to_torch5d(train_image_np, pad_ref, cuda_dev):
train_image_np = z_score_normalization(train_image_np)
inputs_padded = zero_pad_3d_image(train_image_np, pad_ref,
value_to_pad=train_image_np.min())
inputs_padded = np.expand_dims(inputs_padded, axis=0) # 1 x Z x Y x X
inputs_padded = np.expand_dims(inputs_padded, axis=0) # 1 x 1 x Z x Y x X
inputs = torch.from_numpy(inputs_padded).float()
inputs = inputs.to(cuda_dev)
return inputs
def torch5d_to_np3d(outputs, original_shape):
outputs = torch.argmax(outputs, dim=1) # 1 x Z x Y x X
outputs_np = outputs.data.cpu().numpy()
outputs_np = outputs_np[0] # Z x Y x X
outputs_np = outputs_np[:original_shape[0],:original_shape[1],:original_shape[2]]
outputs_np = outputs_np.astype(np.uint8)
return outputs_np
def print_metrics(multi_dices, f1_scores, train_confusion_matrix):
multi_dices_np = np.array(multi_dices)
mean_multi_dice = np.mean(multi_dices_np)
std_multi_dice = np.std(multi_dices_np, ddof=1)
f1_scores = np.array(f1_scores)
f1_scores_anterior_mean = np.mean(f1_scores[:, 1])
f1_scores_anterior_std = np.std(f1_scores[:, 1], ddof=1)
f1_scores_posterior_mean = np.mean(f1_scores[:, 2])
f1_scores_posterior_std = np.std(f1_scores[:, 2], ddof=1)
print("+================================+")
print("Multi Class Dice ===> {:.4f} +/- {:.4f}".format(mean_multi_dice, std_multi_dice))
print("Images with Dice > 0.8 ===> {} on {}".format((multi_dices_np > 0.8).sum(), multi_dices_np.size))
print("+================================+")
print("Hippocampus Anterior Dice ===> {:.4f} +/- {:.4f}".format(f1_scores_anterior_mean, f1_scores_anterior_std))
print("Hippocampus Posterior Dice ===> {:.4f} +/- {:.4f}".format(f1_scores_posterior_mean, f1_scores_posterior_std))
print("+================================+")
print("Confusion Matrix")
print(train_confusion_matrix)
print("+================================+")
print("Normalized (All) Confusion Matrix")
train_confusion_matrix_normalized_all = train_confusion_matrix / train_confusion_matrix.sum()
print(train_confusion_matrix_normalized_all)
print("+================================+")
print("Normalized (Row) Confusion Matrix")
train_confusion_matrix_normalized_row = train_confusion_matrix.astype('float') / \
train_confusion_matrix.sum(axis=1)[:, np.newaxis]
print(train_confusion_matrix_normalized_row)
print("+================================+")
def plot_confusion_matrix(cm,
target_names=None,
title='Confusion matrix',
cmap=None,
normalize=True,
already_normalized=False,
path_out=None):
"""
given a sklearn confusion matrix (cm), make a nice plot
Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix
target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']
title: the text to display at the top of the matrix
cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues
normalize: If False, plot the raw numbers
If True, plot the proportions
Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix created by
# sklearn.metrics.confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of the classes
title = best_estimator_name) # title of graph
Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
import matplotlib.pyplot as plt
import numpy as np
import itertools
accuracy = np.trace(cm) / np.sum(cm).astype('float')
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.figure(figsize=(8, 8))
plt.matshow(cm, cmap=cmap)
plt.title(title, pad=25.)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
thresh = cm.max() / 1.5 if normalize or already_normalized else cm.max() / 2
print("Thresh = {}".format(thresh))
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize or already_normalized:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
if path_out is not None:
plt.savefig(path_out)
plt.show()