[cc8b8f]: / run / train.py

Download this file

173 lines (150 with data), 6.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
##########################
# Nicola Altini (2020)
# V-Net for Hippocampus Segmentation from MRI with PyTorch
##########################
# python run/train.py
# python run/train.py --epochs=NUM_EPOCHS --batch=BATCH_SIZE --workers=NUM_WORKERS --lr=LR
# python run/train.py --epochs=5 --batch=1 --net=unet
##########################
# Imports
##########################
import argparse
import os
import sys
import numpy as np
import torch
import torch.optim as optim
from sklearn.model_selection import KFold
##########################
# Local Imports
##########################
current_path_abs = os.path.abspath('.')
sys.path.append(current_path_abs)
print('{} appended to sys!'.format(current_path_abs))
from run.utils import print_config, check_train_set, check_torch_loader, print_folder, train_val_split_config
from config.config import SemSegMRIConfig
from config.paths import logs_folder
from semseg.train import train_model, val_model
from semseg.data_loader import TorchIODataLoader3DTraining, TorchIODataLoader3DValidation
from models.vnet3d import VNet3D
from models.unet3d import UNet3D
def get_net(config):
name = config.net
assert name in ['unet', 'vnet'], "Network Name not valid or not supported! Use one of ['unet', 'vnet']"
if name == 'vnet':
return VNet3D(num_outs=config.num_outs, channels=config.num_channels)
elif name == 'unet':
return UNet3D(num_out_classes=config.num_outs, input_channels=1, init_feat_channels=32)
def run(config):
##########################
# Check training set
##########################
check_train_set(config)
##########################
# Config
##########################
print_config(config)
##########################
# Check Torch DataLoader and Net
##########################
check_torch_loader(config, check_net=False)
##########################
# Training loop
##########################
cuda_dev = torch.device('cuda')
if config.do_crossval:
##########################
# Training (cross-validation)
##########################
multi_dices_crossval = list()
mean_multi_dice_crossval = list()
std_multi_dice_crossval = list()
kf = KFold(n_splits=config.num_folders)
for idx, (train_index, val_index) in enumerate(kf.split(config.train_images)):
print_folder(idx, train_index, val_index)
config_crossval = train_val_split_config(config, train_index, val_index)
##########################
# Training (cross-validation)
##########################
net = get_net(config_crossval)
config_crossval.lr = 0.01
optimizer = optim.Adam(net.parameters(), lr=config_crossval.lr)
train_data_loader_3D = TorchIODataLoader3DTraining(config_crossval)
net = train_model(net, optimizer, train_data_loader_3D,
config_crossval, device=cuda_dev, logs_folder=logs_folder)
##########################
# Validation (cross-validation)
##########################
val_data_loader_3D = TorchIODataLoader3DValidation(config_crossval)
multi_dices, mean_multi_dice, std_multi_dice = val_model(net, val_data_loader_3D,
config_crossval, device=cuda_dev)
multi_dices_crossval.append(multi_dices)
mean_multi_dice_crossval.append(mean_multi_dice)
std_multi_dice_crossval.append(std_multi_dice)
torch.save(net, os.path.join(logs_folder, "model_folder_{:d}.pt".format(idx)))
##########################
# Saving Validation Results
##########################
multi_dices_crossval_flatten = [item for sublist in multi_dices_crossval for item in sublist]
mean_multi_dice_crossval_flatten = np.mean(multi_dices_crossval_flatten)
std_multi_dice_crossval_flatten = np.std(multi_dices_crossval_flatten)
print("Multi-Dice: {:.4f} +/- {:.4f}".format(mean_multi_dice_crossval_flatten, std_multi_dice_crossval_flatten))
# Multi-Dice: 0.8728 +/- 0.0227
##########################
# Training (full training set)
##########################
net = get_net(config)
config.lr = 0.01
optimizer = optim.Adam(net.parameters(), lr=config.lr)
train_data_loader_3D = TorchIODataLoader3DTraining(config)
net = train_model(net, optimizer, train_data_loader_3D,
config, device=cuda_dev, logs_folder=logs_folder)
torch.save(net,os.path.join(logs_folder,"model.pt"))
############################
# MAIN
############################
if __name__ == "__main__":
config = SemSegMRIConfig()
parser = argparse.ArgumentParser(description="Run Training on Hippocampus Segmentation")
parser.add_argument(
"-e",
"--epochs",
default=config.epochs, type=int,
help="Specify the number of epochs required for training"
)
parser.add_argument(
"-b",
"--batch",
default=config.batch_size, type=int,
help="Specify the batch size"
)
parser.add_argument(
"-v",
"--val_epochs",
default=config.val_epochs, type=int,
help="Specify the number of validation epochs during training ** FOR FUTURE RELEASES **"
)
parser.add_argument(
"-w",
"--workers",
default=config.num_workers, type=int,
help="Specify the number of workers"
)
parser.add_argument(
"--net",
default='vnet',
help="Specify the network to use [unet | vnet] ** FOR FUTURE RELEASES **"
)
parser.add_argument(
"--lr",
default=config.lr, type=float,
help="Learning Rate"
)
args = parser.parse_args()
config.net = args.net
config.epochs = args.epochs
config.batch_size = args.batch
config.val_epochs = args.val_epochs
config.num_workers = args.workers
config.lr = args.lr
run(config)