[ccb1dd]: / test / test_generator.py

Download this file

197 lines (153 with data), 9.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
from unittest import TestCase
import numpy as np
from fetal_net.data import add_data_to_storage, create_data_file
from fetal_net.generator import get_multi_class_labels, get_training_and_validation_generators
from fetal_net.augment import generate_permutation_keys, permute_data, reverse_permute_data
class TestDataGenerator(TestCase):
def setUp(self):
self.tmp_files = list()
self.data_file = None
def tearDown(self):
if self.data_file:
self.data_file.close()
self.rm_tmp_files()
def create_data_file(self, n_samples=20, len_x=5, len_y=5, len_z=10, n_channels=1):
self.data_file_path = "./temporary_data_test_file.h5"
self.training_keys_file = "./temporary_training_keys_file.pkl"
self.validation_keys_file = "./temporary_validation_keys_file.pkl"
self.tmp_files = [self.data_file_path, self.training_keys_file, self.validation_keys_file]
self.rm_tmp_files()
self.n_samples = n_samples
self.n_channels = n_channels
self.n_labels = 1
image_shape = (len_x, len_y, len_z)
data_size = self.n_samples * self.n_channels * len_x * len_y * len_z
data = np.asarray(np.arange(data_size).reshape((self.n_samples, self.n_channels, len_x, len_y, len_z)),
dtype=np.int16)
self.assertEqual(data.shape[-3:], image_shape)
truth = (data[:, 0] == 3).astype(np.int8).reshape(data.shape[0], 1, data.shape[2], data.shape[3], data.shape[4])
affine = np.diag(np.ones(4))
affine[:, -1] = 1
self.data_file, data_storage, truth_storage, affine_storage = create_data_file(self.data_file_path,
self.n_channels, self.n_samples,
image_shape)
for index in range(self.n_samples):
add_data_to_storage(data_storage, truth_storage, affine_storage,
np.concatenate([data[index], truth[index]], axis=0), affine=affine,
n_channels=self.n_channels,
truth_dtype=np.int16)
self.assertTrue(np.all(data_storage[index] == data[index]))
self.assertTrue(np.all(truth_storage[index] == truth[index]))
def rm_tmp_files(self):
for tmp_file in self.tmp_files:
if os.path.exists(tmp_file):
os.remove(tmp_file)
def test_multi_class_labels(self):
n_labels = 5
labels = np.arange(1, n_labels+1)
x_dim = 3
label_map = np.asarray([[[np.arange(n_labels+1)] * x_dim]])
binary_labels = get_multi_class_labels(label_map, n_labels, labels)
for label in labels:
self.assertTrue(np.all(binary_labels[:, label - 1][label_map[:, 0] == label] == 1))
def test_get_training_and_validation_generators(self):
self.create_data_file()
validation_split = 0.8
batch_size = 3
validation_batch_size = 3
generators = get_training_and_validation_generators(data_file=self.data_file, batch_size=batch_size,
n_labels=self.n_labels,
training_keys_file=self.training_keys_file,
validation_keys_file=self.validation_keys_file,
data_split=validation_split,
validation_batch_size=validation_batch_size,
skip_blank=False)
training_generator, validation_generator, n_training_steps, n_validation_steps = generators
self.verify_generator(training_generator, n_training_steps, batch_size,
np.round(validation_split * self.n_samples))
self.verify_generator(validation_generator, n_validation_steps, validation_batch_size,
np.round((1 - validation_split) * self.n_samples))
self.data_file.close()
self.rm_tmp_files()
def verify_generator(self, generator, steps, batch_size, expected_samples):
# check that the generator covers all the samples
n_validation_samples = 0
validation_samples = list()
for i in range(steps):
x, y = next(generator)
hash_x = hash(str(x))
self.assertNotIn(hash_x, validation_samples)
validation_samples.append(hash_x)
n_validation_samples += x.shape[0]
if i + 1 != steps:
self.assertEqual(x.shape[0], batch_size)
self.assertEqual(n_validation_samples, expected_samples)
def test_patch_generators(self):
self.create_data_file(len_x=4, len_y=4, len_z=4)
validation_split = 0.8
batch_size = 10
validation_batch_size = 3
patch_shape = (2, 2, 2)
generators = get_training_and_validation_generators(self.data_file, batch_size, self.n_labels,
self.training_keys_file, self.validation_keys_file,
patch_shape=patch_shape, data_split=validation_split,
validation_batch_size=validation_batch_size,
skip_blank=False)
training_generator, validation_generator, n_training_steps, n_validation_steps = generators
expected_training_samples = int(np.round(self.n_samples * validation_split)) * 2**3
self.verify_generator(training_generator, n_training_steps, batch_size, expected_training_samples)
expected_validation_samples = int(np.round(self.n_samples * (1 - validation_split))) * 2**3
self.verify_generator(validation_generator, n_validation_steps, validation_batch_size,
expected_validation_samples)
self.data_file.close()
self.rm_tmp_files()
def test_random_patch_start(self):
self.create_data_file(len_x=10, len_y=10, len_z=10)
validation_split = 0.8
batch_size = 10
validation_batch_size = 3
patch_shape = (5, 5, 5)
random_start = (3, 3, 3)
overlap = 2
generators = get_training_and_validation_generators(self.data_file, batch_size, self.n_labels,
self.training_keys_file, self.validation_keys_file,
patch_shape=patch_shape, data_split=validation_split,
validation_batch_size=validation_batch_size,
skip_blank=False)
training_generator, validation_generator, n_training_steps, n_validation_steps = generators
expected_training_samples = int(np.round(self.n_samples * validation_split)) * 2**3
self.verify_generator(training_generator, n_training_steps, batch_size, expected_training_samples)
expected_validation_samples = int(np.round(self.n_samples * (1 - validation_split))) * 4**3
self.verify_generator(validation_generator, n_validation_steps, validation_batch_size,
expected_validation_samples)
self.data_file.close()
self.rm_tmp_files()
def test_unique_permutations(self):
permutations = list()
shape = (2, 3, 3, 3)
data = np.arange(54).reshape(shape)
for key in generate_permutation_keys():
permutations.append(permute_data(data, key))
for array in permutations[:-1]:
self.assertTrue(permutations[-1].shape == shape)
self.assertFalse(np.all(array == permutations[-1]))
self.assertEqual(np.sum(data), np.sum(permutations[-1]))
def test_n_permutations(self):
self.assertEqual(len(generate_permutation_keys()), 48)
def test_generator_with_permutations(self):
self.create_data_file(len_x=5, len_y=5, len_z=5, n_channels=5)
batch_size = 2
generators = get_training_and_validation_generators(self.data_file, batch_size, self.n_labels,
self.training_keys_file, self.validation_keys_file)
training_generator, validation_generator, n_training_steps, n_validation_steps = generators
for x in training_generator:
break
self.rm_tmp_files()
def test_reverse_permutation(self):
data_shape = (4, 32, 32, 32)
data = np.arange(np.prod(data_shape)).reshape(data_shape)
for permutation_key in generate_permutation_keys():
permuted_data = permute_data(data, permutation_key)
reversed_permutation = reverse_permute_data(permuted_data, permutation_key)
self.assertTrue(np.all(data == reversed_permutation))