from scipy import ndimage
import numpy as np
def norm_minmax(d):
return -1 + 2 * (d - d.min()) / (d.max() - d.min())
def laplace(d):
return ndimage.laplace(d)
def laplace_norm(d):
return norm_minmax(laplace(d))
from scipy.ndimage import gaussian_gradient_magnitude
def grad(d):
return gaussian_gradient_magnitude(d, sigma=(1,1,1))
#grads = np.zeros_like(d)
#for a in range(d.squeeze().ndim):
# grads += np.power(ndimage.sobel(d.squeeze(), axis=a), 2)
#return np.sqrt(grads)
def grad_norm(d):
return norm_minmax(grad(d))