import argparse
import json
import os
from fetal_net.prediction import run_validation_cases
def main(config, split='test', overlap_factor=1, use_augmentations=False):
prediction_dir = os.path.abspath(os.path.join(config['base_dir'], 'predictions', split))
indices_file = {
"test": config["test_file"],
"val": config["validation_file"],
"train": config["training_file"]
}[split]
run_validation_cases(validation_keys_file=indices_file,
model_file=config["model_file"],
training_modalities=config["training_modalities"],
hdf5_file=config["data_file"],
output_dir=prediction_dir,
overlap_factor=overlap_factor,
patch_shape=config["patch_shape"] + [config["patch_depth"]],
prev_truth_index=config["prev_truth_index"],
prev_truth_size=config["prev_truth_size"],
use_augmentations=use_augmentations)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_dir", help="specifies config dir path",
type=str, required=True)
parser.add_argument("--split", help="What split to predict on? (test/val)",
type=str, default='test')
parser.add_argument("--overlap_factor", help="specifies overlap between prediction patches",
type=float, default=0.9)
parser.add_argument("--use_augmentation", help="1 to use predict-time augmentations",
type=float, default=0)
opts = parser.parse_args()
with open(os.path.join(opts.config_dir, 'config.json')) as f:
config = json.load(f)
main(config, opts.split, opts.overlap_factor, use_augmentations=opts.use_augmentation)