import glob
import os
import keras.backend as K
import numpy as np
from keras import Input, Model
from keras.engine.network import Network
from keras.layers import Activation, Concatenate
from keras.optimizers import Adam
from tqdm import tqdm
import fetal_net
import fetal_net.metrics
import fetal_net.preprocess
from fetal.config_utils import get_config
from fetal.utils import get_last_model_path, create_data_file, set_gpu_mem_growth
from fetal_net.data import open_data_file
from fetal_net.generator import get_training_and_validation_generators
from fetal_net.model.fetal_net import fetal_envelope_model
set_gpu_mem_growth()
config = get_config()
if not "dis_model_name" in config:
config["dis_model_name"] = "discriminator_image"
if not "dis_loss" in config:
config["dis_loss"] = "binary_crossentropy_loss"
if not "gen_steps" in config:
config["gen_steps"] = 1
if not "dis_steps" in config:
config["dis_steps"] = 1
if not "gd_loss_ratio" in config:
config["gd_loss_ratio"] = 10
class Scheduler:
def __init__(self, n_itrs_per_epoch_d, n_itrs_per_epoch_g, init_lr, lr_decay, lr_patience):
self.init_dsteps = n_itrs_per_epoch_d
self.init_gsteps = n_itrs_per_epoch_g
self.init_lr = init_lr
self.lr_decay = lr_decay
self.lr_patience = lr_patience
self.dsteps = self.init_dsteps
self.gsteps = self.init_gsteps
self.lr = self.init_lr
self.steps_stuck = 0
self.best_loss = np.inf
def get_dsteps(self):
return self.dsteps
def get_gsteps(self):
return self.gsteps
def get_lr(self):
return self.lr
def update_steps(self, n_round, loss):
if loss < self.best_loss:
self.steps_stuck = 0
self.best_loss = loss
else:
self.steps_stuck += 1
if self.steps_stuck > self.lr_patience:
self.lr *= self.lr_decay
self.steps_stuck = 0
print('Reducing LR to {}'.format(self.lr))
# if key in self.schedules['step_decay']:
# self.dsteps = max(int(self.init_dsteps * self.schedules['step_decay'][key]), 1)
# self.gsteps = max(int(self.init_gsteps * self.schedules['step_decay'][key]), 1)
def build_dsc(out_labels, outs):
s = ''
for l, o in zip(out_labels, outs):
s = s + '{}={:.3f}, '.format(l, o)
return s[:-2] + '|'
def add_noise_to_segs(segs):
if np.random.choice([True, False]):
segs = segs.astype(np.float32)
segs += np.random.normal(0, 0.025, segs.shape)
segs *= np.random.normal(1, 0.025, segs.shape)
segs = np.clip(segs, a_min=0, a_max=1)
return segs
def mul_merge_maps(r, s):
r_plus = r * s
r_minus = r * (1 - s)
return np.concatenate((r_plus, r_minus), axis=1)
def input2discriminator(real_patches, real_segs, semi_patches, semi_segs, d_out_shape, mul_merge=True):
if mul_merge:
real = mul_merge_maps(real_patches, add_noise_to_segs(real_segs))
fake = mul_merge_maps(semi_patches, semi_segs)
else:
real = np.concatenate((real_patches, add_noise_to_segs(real_segs)), axis=1)
fake = np.concatenate((semi_patches, semi_segs), axis=1)
d_x_batch = np.concatenate((real, fake), axis=0)
# real : 1, fake : 0
d_y_batch = np.clip(np.random.uniform(0.9, 1.0, size=[d_x_batch.shape[0]] + list(d_out_shape)[1:]),
a_min=0, a_max=1)
d_y_batch[real.shape[0]:, ...] = 1 - d_y_batch[real.shape[0]:, ...]
return d_x_batch, d_y_batch
def input2gan(real_patches, real_segs, semi_patches, d_out_shape):
g_x_batch = [real_patches, semi_patches]
# set 1 to all labels (real : 1, fake : 0)
g_y_batch = [
real_segs,
np.clip(np.random.uniform(0.9, 1.0, size=[real_patches.shape[0]] + list(d_out_shape)[1:]), a_min=0, a_max=1)
]
return g_x_batch, g_y_batch
def main(overwrite=False):
# convert input images into an hdf5 file
if overwrite or not os.path.exists(config["data_file"]):
create_data_file(config)
data_file_opened = open_data_file(config["data_file"])
seg_loss_func = getattr(fetal_net.metrics, config['loss'])
dis_loss_func = getattr(fetal_net.metrics, config['dis_loss'])
# instantiate new model
seg_model_func = getattr(fetal_net.model, config['model_name'])
gen_model = seg_model_func(input_shape=config["input_shape"],
initial_learning_rate=config["initial_learning_rate"],
**{'dropout_rate': config['dropout_rate'],
'loss_function': seg_loss_func,
'mask_shape': None if config["weight_mask"] is None else config[
"input_shape"],
'old_model_path': config['old_model']})
dis_model_func = getattr(fetal_net.model, config['dis_model_name'])
dis_model = dis_model_func(
input_shape=[config["input_shape"][0] + config["n_labels"]] + config["input_shape"][1:],
initial_learning_rate=config["initial_learning_rate"],
**{'dropout_rate': config['dropout_rate'],
'loss_function': dis_loss_func})
if not overwrite \
and len(glob.glob(config["model_file"] + 'g_*.h5')) > 0:
# dis_model_path = get_last_model_path(config["model_file"] + 'dis_')
gen_model_path = get_last_model_path(config["model_file"] + 'g_')
# print('Loading dis model from: {}'.format(dis_model_path))
print('Loading gen model from: {}'.format(gen_model_path))
# dis_model = load_old_model(dis_model_path)
# gen_model = load_old_model(gen_model_path)
# dis_model.load_weights(dis_model_path)
gen_model.load_weights(gen_model_path)
gen_model.summary()
dis_model.summary()
# Build "frozen discriminator"
frozen_dis_model = Network(
dis_model.inputs,
dis_model.outputs,
name='frozen_discriminator'
)
frozen_dis_model.trainable = False
inputs_real = Input(shape=config["input_shape"])
inputs_fake = Input(shape=config["input_shape"])
segs_real = Activation(None, name='seg_real')(gen_model(inputs_real))
segs_fake = Activation(None, name='seg_fake')(gen_model(inputs_fake))
valid = Activation(None, name='dis')(frozen_dis_model(Concatenate(axis=1)([segs_fake, inputs_fake])))
combined_model = Model(inputs=[inputs_real, inputs_fake],
outputs=[segs_real, valid])
combined_model.compile(loss=[seg_loss_func, 'binary_crossentropy'],
loss_weights=[1, config["gd_loss_ratio"]],
optimizer=Adam(config["initial_learning_rate"]))
combined_model.summary()
# get training and testing generators
train_generator, validation_generator, n_train_steps, n_validation_steps = get_training_and_validation_generators(
data_file_opened,
batch_size=config["batch_size"],
data_split=config["validation_split"],
overwrite=overwrite,
validation_keys_file=config["validation_file"],
training_keys_file=config["training_file"],
test_keys_file=config["test_file"],
n_labels=config["n_labels"],
labels=config["labels"],
patch_shape=(*config["patch_shape"], config["patch_depth"]),
validation_batch_size=config["validation_batch_size"],
augment=config["augment"],
skip_blank_train=config["skip_blank_train"],
skip_blank_val=config["skip_blank_val"],
truth_index=config["truth_index"],
truth_size=config["truth_size"],
prev_truth_index=config["prev_truth_index"],
prev_truth_size=config["prev_truth_size"],
truth_downsample=config["truth_downsample"],
truth_crop=config["truth_crop"],
patches_per_epoch=config["patches_per_epoch"],
categorical=config["categorical"], is3d=config["3D"],
drop_easy_patches_train=config["drop_easy_patches_train"],
drop_easy_patches_val=config["drop_easy_patches_val"])
# get training and testing generators
_, semi_generator, _, _ = get_training_and_validation_generators(
data_file_opened,
batch_size=config["batch_size"],
data_split=config["validation_split"],
overwrite=overwrite,
validation_keys_file=config["validation_file"],
training_keys_file=config["training_file"],
test_keys_file=config["test_file"],
n_labels=config["n_labels"],
labels=config["labels"],
patch_shape=(*config["patch_shape"], config["patch_depth"]),
validation_batch_size=config["validation_batch_size"],
val_augment=config["augment"],
skip_blank_train=config["skip_blank_train"],
skip_blank_val=config["skip_blank_val"],
truth_index=config["truth_index"],
truth_size=config["truth_size"],
prev_truth_index=config["prev_truth_index"],
prev_truth_size=config["prev_truth_size"],
truth_downsample=config["truth_downsample"],
truth_crop=config["truth_crop"],
patches_per_epoch=config["patches_per_epoch"],
categorical=config["categorical"], is3d=config["3D"],
drop_easy_patches_train=config["drop_easy_patches_train"],
drop_easy_patches_val=config["drop_easy_patches_val"])
# start training
scheduler = Scheduler(config["dis_steps"], config["gen_steps"],
init_lr=config["initial_learning_rate"],
lr_patience=config["patience"],
lr_decay=config["learning_rate_drop"])
best_loss = np.inf
for epoch in range(config["n_epochs"]):
postfix = {'g': None, 'd': None} # , 'val_g': None, 'val_d': None}
with tqdm(range(n_train_steps // config["gen_steps"]), dynamic_ncols=True,
postfix={'gen': None, 'dis': None, 'val_gen': None, 'val_dis': None, None: None}) as pbar:
for n_round in pbar:
# train D
outputs = np.zeros(dis_model.metrics_names.__len__())
for i in range(scheduler.get_dsteps()):
real_patches, real_segs = next(train_generator)
semi_patches, _ = next(semi_generator)
d_x_batch, d_y_batch = input2discriminator(real_patches, real_segs,
semi_patches,
gen_model.predict(semi_patches,
batch_size=config["batch_size"]),
dis_model.output_shape)
outputs += dis_model.train_on_batch(d_x_batch, d_y_batch)
if scheduler.get_dsteps():
outputs /= scheduler.get_dsteps()
postfix['d'] = build_dsc(dis_model.metrics_names, outputs)
pbar.set_postfix(**postfix)
# train G (freeze discriminator)
outputs = np.zeros(combined_model.metrics_names.__len__())
for i in range(scheduler.get_gsteps()):
real_patches, real_segs = next(train_generator)
semi_patches, _ = next(validation_generator)
g_x_batch, g_y_batch = input2gan(real_patches, real_segs, semi_patches, dis_model.output_shape)
outputs += combined_model.train_on_batch(g_x_batch, g_y_batch)
outputs /= scheduler.get_gsteps()
postfix['g'] = build_dsc(combined_model.metrics_names, outputs)
pbar.set_postfix(**postfix)
# evaluate on validation set
dis_metrics = np.zeros(dis_model.metrics_names.__len__(), dtype=float)
gen_metrics = np.zeros(gen_model.metrics_names.__len__(), dtype=float)
evaluation_rounds = n_validation_steps
for n_round in range(evaluation_rounds): # rounds_for_evaluation:
val_patches, val_segs = next(validation_generator)
# D
if scheduler.get_dsteps() > 0:
d_x_test, d_y_test = input2discriminator(val_patches, val_segs,
val_patches,
gen_model.predict(val_patches,
batch_size=config[
"validation_batch_size"]),
dis_model.output_shape)
dis_metrics += dis_model.evaluate(d_x_test, d_y_test, batch_size=config["validation_batch_size"],
verbose=0)
# G
# gen_x_test, gen_y_test = input2gan(val_patches, val_segs, dis_model.output_shape)
gen_metrics += gen_model.evaluate(val_patches, val_segs,
batch_size=config["validation_batch_size"],
verbose=0)
dis_metrics /= float(evaluation_rounds)
gen_metrics /= float(evaluation_rounds)
# save the model and weights with the best validation loss
if gen_metrics[0] < best_loss:
best_loss = gen_metrics[0]
print('Saving Model...')
with open(os.path.join(config["base_dir"], "g_{}_{:.3f}.json".format(epoch, gen_metrics[0])),
'w') as f:
f.write(gen_model.to_json())
gen_model.save_weights(
os.path.join(config["base_dir"], "g_{}_{:.3f}.h5".format(epoch, gen_metrics[0])))
postfix['val_d'] = build_dsc(dis_model.metrics_names, dis_metrics)
postfix['val_g'] = build_dsc(gen_model.metrics_names, gen_metrics)
# pbar.set_postfix(**postfix)
print('val_d: ' + postfix['val_d'], end=' | ')
print('val_g: ' + postfix['val_g'])
# pbar.refresh()
# update step sizes, learning rates
scheduler.update_steps(epoch, gen_metrics[0])
K.set_value(dis_model.optimizer.lr, scheduler.get_lr())
K.set_value(combined_model.optimizer.lr, scheduler.get_lr())
data_file_opened.close()
if __name__ == "__main__":
main(overwrite=config["overwrite"])