|
a |
|
b/test/test_metrics.py |
|
|
1 |
from unittest import TestCase |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import keras.backend as K |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
from fetal_net.metrics import weighted_dice_coefficient |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
class TestWeightedDice(TestCase): |
|
|
11 |
def test_weighted_dice_coefficient(self): |
|
|
12 |
data = np.zeros((5**3) * 3).reshape(3, 5, 5, 5) |
|
|
13 |
data[0, 0:1] = 1 |
|
|
14 |
data[1, 0:2] = 1 |
|
|
15 |
data[2, 1:4] = 1 |
|
|
16 |
|
|
|
17 |
max_dice = K.eval(weighted_dice_coefficient(K.variable(data), K.variable(data))) |
|
|
18 |
for index in range(data.shape[0]): |
|
|
19 |
temp_data = np.copy(data) |
|
|
20 |
temp_data[index] = 0 |
|
|
21 |
dice = K.eval(weighted_dice_coefficient(K.variable(data), K.variable(temp_data))) |
|
|
22 |
self.assertAlmostEqual(dice, (2 * max_dice)/3, delta=0.00001) |
|
|
23 |
|
|
|
24 |
def test_blank_dice_coefficient(self): |
|
|
25 |
data = np.zeros((5**3) * 3).reshape(3, 5, 5, 5) |
|
|
26 |
blank = np.copy(data) |
|
|
27 |
data[0, 0:1] = 1 |
|
|
28 |
data[1, 0:2] = 1 |
|
|
29 |
data[2, 1:4] = 1 |
|
|
30 |
|
|
|
31 |
self.assertAlmostEqual(K.eval(weighted_dice_coefficient(K.variable(data), K.variable(blank))), 0, delta=0.00001) |
|
|
32 |
|
|
|
33 |
def test_empty_label(self): |
|
|
34 |
data = np.zeros((5**3) * 3).reshape(3, 5, 5, 5) |
|
|
35 |
data[1, 0:2] = 1 |
|
|
36 |
data[2, 1:4] = 1 |
|
|
37 |
|
|
|
38 |
self.assertEqual(K.eval(weighted_dice_coefficient(K.variable(data), K.variable(data))), 1) |