|
a |
|
b/notebooks/ni_viewer_best.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 11, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [ |
|
|
8 |
{ |
|
|
9 |
"name": "stdout", |
|
|
10 |
"output_type": "stream", |
|
|
11 |
"text": [ |
|
|
12 |
"Using matplotlib backend: TkAgg\n" |
|
|
13 |
] |
|
|
14 |
} |
|
|
15 |
], |
|
|
16 |
"source": [ |
|
|
17 |
"import nibabel as nib\n", |
|
|
18 |
"import os\n", |
|
|
19 |
"from nilearn.image import crop_img\n", |
|
|
20 |
"from nilearn.image import new_img_like, resample_to_img\n", |
|
|
21 |
"import numpy as np\n", |
|
|
22 |
"\n", |
|
|
23 |
"import sys\n", |
|
|
24 |
"sys.path.append('..')\n", |
|
|
25 |
"\n", |
|
|
26 |
"from scipy.ndimage.filters import gaussian_filter, gaussian_laplace, laplace, maximum_filter, minimum_filter, prewitt, sobel\n", |
|
|
27 |
"\n", |
|
|
28 |
"from fetal_net.postprocess import postprocess_prediction\n", |
|
|
29 |
"\n", |
|
|
30 |
"%matplotlib\n", |
|
|
31 |
"\n", |
|
|
32 |
"def vod(mask1, mask2, verbose=False):\n", |
|
|
33 |
" mask1, mask2 = mask1.flatten(), mask2.flatten()\n", |
|
|
34 |
" intersection = np.sum((mask1 + mask2) > 1)\n", |
|
|
35 |
" union = np.sum((mask1+mask2) > 0)\n", |
|
|
36 |
" if verbose:\n", |
|
|
37 |
" print('intersection\\t', intersection)\n", |
|
|
38 |
" print('union\\t\\t', union)\n", |
|
|
39 |
" return 1 - (intersection + 1) / (union + 1)" |
|
|
40 |
] |
|
|
41 |
}, |
|
|
42 |
{ |
|
|
43 |
"cell_type": "code", |
|
|
44 |
"execution_count": null, |
|
|
45 |
"metadata": {}, |
|
|
46 |
"outputs": [], |
|
|
47 |
"source": [ |
|
|
48 |
"!ls ../../Datasets/fetus/78" |
|
|
49 |
] |
|
|
50 |
}, |
|
|
51 |
{ |
|
|
52 |
"cell_type": "code", |
|
|
53 |
"execution_count": 163, |
|
|
54 |
"metadata": {}, |
|
|
55 |
"outputs": [ |
|
|
56 |
{ |
|
|
57 |
"name": "stdout", |
|
|
58 |
"output_type": "stream", |
|
|
59 |
"text": [ |
|
|
60 |
"222 260 41_2\r\n" |
|
|
61 |
] |
|
|
62 |
} |
|
|
63 |
], |
|
|
64 |
"source": [ |
|
|
65 |
"!ls ../../predictions/unet96_all/predictions/val/" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": 184, |
|
|
71 |
"metadata": { |
|
|
72 |
"scrolled": true |
|
|
73 |
}, |
|
|
74 |
"outputs": [], |
|
|
75 |
"source": [ |
|
|
76 |
"src_dir = '../../predictions/unet96_all/predictions/val/'\n", |
|
|
77 |
"subject_id = '222'\n", |
|
|
78 |
"vol = nib.load(os.path.join(src_dir, subject_id, 'data_volume.nii.gz'))\n", |
|
|
79 |
"truth = nib.load(os.path.join(src_dir, subject_id, 'truth.nii.gz'))\n", |
|
|
80 |
"pred = nib.load(os.path.join(src_dir, subject_id, 'prediction.nii.gz'))" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "code", |
|
|
85 |
"execution_count": 185, |
|
|
86 |
"metadata": {}, |
|
|
87 |
"outputs": [ |
|
|
88 |
{ |
|
|
89 |
"name": "stdout", |
|
|
90 |
"output_type": "stream", |
|
|
91 |
"text": [ |
|
|
92 |
"thres\t\t: 0.1412296536763702\n", |
|
|
93 |
"pp_0_01\t\t: 0.1259709038930662\n", |
|
|
94 |
"pp_05_05\t: 0.13838074797935984\n", |
|
|
95 |
"pp_1_05\t\t: 0.15213493934900457\n" |
|
|
96 |
] |
|
|
97 |
} |
|
|
98 |
], |
|
|
99 |
"source": [ |
|
|
100 |
"print('thres\\t\\t: {}'.format(vod(truth.get_data(), pred.get_data() > 0.5)))\n", |
|
|
101 |
"print('pp_0_01\\t\\t: {}'.format(vod(truth.get_data(), postprocess_prediction(pred.get_data(), gaussian_std=0, threshold=0.1))))\n", |
|
|
102 |
"print('pp_05_05\\t: {}'.format(vod(truth.get_data(), postprocess_prediction(pred.get_data(), gaussian_std=0.5, threshold=0.5))))\n", |
|
|
103 |
"print('pp_1_05\\t\\t: {}'.format(vod(truth.get_data(), postprocess_prediction(pred.get_data(), gaussian_std=1, threshold=0.5))))" |
|
|
104 |
] |
|
|
105 |
}, |
|
|
106 |
{ |
|
|
107 |
"cell_type": "code", |
|
|
108 |
"execution_count": 166, |
|
|
109 |
"metadata": {}, |
|
|
110 |
"outputs": [ |
|
|
111 |
{ |
|
|
112 |
"data": { |
|
|
113 |
"text/plain": [ |
|
|
114 |
"4.408514612614356" |
|
|
115 |
] |
|
|
116 |
}, |
|
|
117 |
"execution_count": 166, |
|
|
118 |
"metadata": {}, |
|
|
119 |
"output_type": "execute_result" |
|
|
120 |
} |
|
|
121 |
], |
|
|
122 |
"source": [ |
|
|
123 |
"np.max(vol.get_data())" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"execution_count": 186, |
|
|
129 |
"metadata": {}, |
|
|
130 |
"outputs": [ |
|
|
131 |
{ |
|
|
132 |
"data": { |
|
|
133 |
"text/plain": [ |
|
|
134 |
"<OrthoSlicer3D: (256, 256, 52)>" |
|
|
135 |
] |
|
|
136 |
}, |
|
|
137 |
"execution_count": 186, |
|
|
138 |
"metadata": {}, |
|
|
139 |
"output_type": "execute_result" |
|
|
140 |
}, |
|
|
141 |
{ |
|
|
142 |
"name": "stderr", |
|
|
143 |
"output_type": "stream", |
|
|
144 |
"text": [ |
|
|
145 |
"Traceback (most recent call last):\n", |
|
|
146 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 388, in process\n", |
|
|
147 |
" proxy(*args, **kwargs)\n", |
|
|
148 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 228, in __call__\n", |
|
|
149 |
" return mtd(*args, **kwargs)\n", |
|
|
150 |
"TypeError: _cleanup() takes 1 positional argument but 2 were given\n" |
|
|
151 |
] |
|
|
152 |
} |
|
|
153 |
], |
|
|
154 |
"source": [ |
|
|
155 |
"new_img_like(vol, data=vol.get_data()+pred.get_data()*3).orthoview()" |
|
|
156 |
] |
|
|
157 |
}, |
|
|
158 |
{ |
|
|
159 |
"cell_type": "code", |
|
|
160 |
"execution_count": 99, |
|
|
161 |
"metadata": { |
|
|
162 |
"collapsed": true |
|
|
163 |
}, |
|
|
164 |
"outputs": [ |
|
|
165 |
{ |
|
|
166 |
"data": { |
|
|
167 |
"text/plain": [ |
|
|
168 |
"<OrthoSlicer3D: (256, 256, 108)>" |
|
|
169 |
] |
|
|
170 |
}, |
|
|
171 |
"execution_count": 99, |
|
|
172 |
"metadata": {}, |
|
|
173 |
"output_type": "execute_result" |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"name": "stderr", |
|
|
177 |
"output_type": "stream", |
|
|
178 |
"text": [ |
|
|
179 |
"Traceback (most recent call last):\n", |
|
|
180 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 388, in process\n", |
|
|
181 |
" proxy(*args, **kwargs)\n", |
|
|
182 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 228, in __call__\n", |
|
|
183 |
" return mtd(*args, **kwargs)\n", |
|
|
184 |
"TypeError: _cleanup() takes 1 positional argument but 2 were given\n" |
|
|
185 |
] |
|
|
186 |
} |
|
|
187 |
], |
|
|
188 |
"source": [ |
|
|
189 |
"new_img_like(vol, data=pred.get_data()*2).orthoview()" |
|
|
190 |
] |
|
|
191 |
}, |
|
|
192 |
{ |
|
|
193 |
"cell_type": "code", |
|
|
194 |
"execution_count": 9, |
|
|
195 |
"metadata": { |
|
|
196 |
"collapsed": true |
|
|
197 |
}, |
|
|
198 |
"outputs": [ |
|
|
199 |
{ |
|
|
200 |
"ename": "NameError", |
|
|
201 |
"evalue": "name 'postprocess_prediction' is not defined", |
|
|
202 |
"traceback": [ |
|
|
203 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
204 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
|
|
205 |
"\u001b[0;32m<ipython-input-9-eccee40acd61>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnew_img_like\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtruth\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpostprocess_prediction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpred\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mthreshold\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgaussian_std\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.75\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0morthoview\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
|
206 |
"\u001b[0;31mNameError\u001b[0m: name 'postprocess_prediction' is not defined" |
|
|
207 |
], |
|
|
208 |
"output_type": "error" |
|
|
209 |
} |
|
|
210 |
], |
|
|
211 |
"source": [ |
|
|
212 |
"new_img_like(vol, data=truth.get_data()-(postprocess_prediction(pred.get_data(), threshold=0.5, gaussian_std=0.75))).orthoview()" |
|
|
213 |
] |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "code", |
|
|
217 |
"execution_count": 40, |
|
|
218 |
"metadata": {}, |
|
|
219 |
"outputs": [ |
|
|
220 |
{ |
|
|
221 |
"name": "stdout", |
|
|
222 |
"output_type": "stream", |
|
|
223 |
"text": [ |
|
|
224 |
"[5162475 5280 3609 3332 4608 4416 3130 2749 3290\n", |
|
|
225 |
" 181063] [0.11921013 0.19536062 0.27151111 0.3476616 0.42381208 0.49996257\n", |
|
|
226 |
" 0.57611306 0.65226355 0.72841404 0.80456452 0.88071501]\n" |
|
|
227 |
] |
|
|
228 |
} |
|
|
229 |
], |
|
|
230 |
"source": [ |
|
|
231 |
"from matplotlib import pyplot as plt\n", |
|
|
232 |
"a, bins = np.histogram(pred.get_data())\n", |
|
|
233 |
"plt.hist(pred.get_data().reshape([-1]), bins=100) \n", |
|
|
234 |
"plt.title(\"histogram\") \n", |
|
|
235 |
"plt.show()\n", |
|
|
236 |
"print(a,bins)" |
|
|
237 |
] |
|
|
238 |
}, |
|
|
239 |
{ |
|
|
240 |
"cell_type": "code", |
|
|
241 |
"execution_count": 206, |
|
|
242 |
"metadata": {}, |
|
|
243 |
"outputs": [ |
|
|
244 |
{ |
|
|
245 |
"name": "stdout", |
|
|
246 |
"output_type": "stream", |
|
|
247 |
"text": [ |
|
|
248 |
"intersection\t 0\n", |
|
|
249 |
"union\t\t 645376\n", |
|
|
250 |
"1: 0.9999984505180692\n" |
|
|
251 |
] |
|
|
252 |
} |
|
|
253 |
], |
|
|
254 |
"source": [ |
|
|
255 |
"print('1: {}'.format(vod(vol.get_data()>0.5, vol.get_data()>0.5, verbose=True)))" |
|
|
256 |
] |
|
|
257 |
}, |
|
|
258 |
{ |
|
|
259 |
"cell_type": "code", |
|
|
260 |
"execution_count": 209, |
|
|
261 |
"metadata": {}, |
|
|
262 |
"outputs": [ |
|
|
263 |
{ |
|
|
264 |
"name": "stdout", |
|
|
265 |
"output_type": "stream", |
|
|
266 |
"text": [ |
|
|
267 |
"intersection\t 295947\n", |
|
|
268 |
"union\t\t 338601\n", |
|
|
269 |
"1: 0.1259709038930662\n" |
|
|
270 |
] |
|
|
271 |
} |
|
|
272 |
], |
|
|
273 |
"source": [ |
|
|
274 |
"print('1: {}'.format(vod(truth.get_data(), postprocess_prediction(pred.get_data(), gaussian_std=0.1, threshold=0.1), verbose=True)))\n", |
|
|
275 |
"#print('2: {}'.format(vod(truth.get_data(), postprocess_prediction(pred2.get_data(), gaussian_std=1, threshold=0.5))))\n", |
|
|
276 |
"#print('3: {}'.format(vod(truth.get_data(), postprocess_prediction(pred3.get_data(), gaussian_std=1, threshold=0.5))))" |
|
|
277 |
] |
|
|
278 |
}, |
|
|
279 |
{ |
|
|
280 |
"cell_type": "code", |
|
|
281 |
"execution_count": null, |
|
|
282 |
"metadata": {}, |
|
|
283 |
"outputs": [], |
|
|
284 |
"source": [] |
|
|
285 |
}, |
|
|
286 |
{ |
|
|
287 |
"cell_type": "code", |
|
|
288 |
"execution_count": 77, |
|
|
289 |
"metadata": {}, |
|
|
290 |
"outputs": [ |
|
|
291 |
{ |
|
|
292 |
"data": { |
|
|
293 |
"text/plain": [ |
|
|
294 |
"<OrthoSlicer3D: (256, 256, 52)>" |
|
|
295 |
] |
|
|
296 |
}, |
|
|
297 |
"execution_count": 77, |
|
|
298 |
"metadata": {}, |
|
|
299 |
"output_type": "execute_result" |
|
|
300 |
}, |
|
|
301 |
{ |
|
|
302 |
"name": "stderr", |
|
|
303 |
"output_type": "stream", |
|
|
304 |
"text": [ |
|
|
305 |
"Traceback (most recent call last):\n", |
|
|
306 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 388, in process\n", |
|
|
307 |
" proxy(*args, **kwargs)\n", |
|
|
308 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 228, in __call__\n", |
|
|
309 |
" return mtd(*args, **kwargs)\n", |
|
|
310 |
"TypeError: _cleanup() takes 1 positional argument but 2 were given\n" |
|
|
311 |
] |
|
|
312 |
} |
|
|
313 |
], |
|
|
314 |
"source": [ |
|
|
315 |
"new_img_like(truth, data=1*truth.get_data()+1*(postprocess_prediction(pred.get_data(), gaussian_std=0.5, threshold=0.5).astype(int))).orthoview()" |
|
|
316 |
] |
|
|
317 |
}, |
|
|
318 |
{ |
|
|
319 |
"cell_type": "code", |
|
|
320 |
"execution_count": 218, |
|
|
321 |
"metadata": {}, |
|
|
322 |
"outputs": [ |
|
|
323 |
{ |
|
|
324 |
"name": "stdout", |
|
|
325 |
"output_type": "stream", |
|
|
326 |
"text": [ |
|
|
327 |
"0.0 - 0.14122965\n", |
|
|
328 |
"0.33 - 0.14118736\n", |
|
|
329 |
"0.67 - 0.14025291\n", |
|
|
330 |
"1.0 - 0.15213494\n", |
|
|
331 |
"1.3 - 0.1559348\n", |
|
|
332 |
"1.7 - 0.15859626\n", |
|
|
333 |
"2.0 - 0.16103441\n", |
|
|
334 |
"2.3 - 0.16361388\n", |
|
|
335 |
"2.7 - 0.16607572\n", |
|
|
336 |
"3.0 - 0.16784486\n" |
|
|
337 |
] |
|
|
338 |
} |
|
|
339 |
], |
|
|
340 |
"source": [ |
|
|
341 |
"for i in range(10):\n", |
|
|
342 |
" print('{:.2} - {:.8}'.format(i/3, vod(truth.get_data(), gaussian_filter(pred.get_data(), i/3) > 0.5)))" |
|
|
343 |
] |
|
|
344 |
}, |
|
|
345 |
{ |
|
|
346 |
"cell_type": "code", |
|
|
347 |
"execution_count": 220, |
|
|
348 |
"metadata": {}, |
|
|
349 |
"outputs": [ |
|
|
350 |
{ |
|
|
351 |
"name": "stdout", |
|
|
352 |
"output_type": "stream", |
|
|
353 |
"text": [ |
|
|
354 |
"0.0 - 0.9065614372518576\n", |
|
|
355 |
"0.05 - 0.14814359689532586\n", |
|
|
356 |
"0.1 - 0.13409773457672813\n", |
|
|
357 |
"0.15 - 0.1278775639714016\n", |
|
|
358 |
"0.2 - 0.12535605723218368\n", |
|
|
359 |
"0.25 - 0.12583704184158218\n", |
|
|
360 |
"0.3 - 0.12729425517299553\n", |
|
|
361 |
"0.35 - 0.12959742000942132\n", |
|
|
362 |
"0.4 - 0.1326181465043882\n", |
|
|
363 |
"0.45 - 0.13660837921286184\n", |
|
|
364 |
"0.5 - 0.14120474323651855\n", |
|
|
365 |
"0.55 - 0.14619835062322617\n", |
|
|
366 |
"0.6 - 0.1525275180080523\n", |
|
|
367 |
"0.65 - 0.15985079129981627\n", |
|
|
368 |
"0.7 - 0.16676434855339228\n", |
|
|
369 |
"0.75 - 0.1763829533391864\n", |
|
|
370 |
"0.8 - 0.18880411182394718\n", |
|
|
371 |
"0.85 - 0.20404091332511465\n", |
|
|
372 |
"0.9 - 0.2253708992666924\n", |
|
|
373 |
"0.95 - 0.2582048951764738\n", |
|
|
374 |
"1.0 - 0.9999968056833283\n" |
|
|
375 |
] |
|
|
376 |
} |
|
|
377 |
], |
|
|
378 |
"source": [ |
|
|
379 |
"for i in range(0,21):\n", |
|
|
380 |
" threshold = i * 5 / 100\n", |
|
|
381 |
" print('{} - {}'.format(threshold, vod(truth.get_data(), gaussian_filter(pred.get_data(), 0.33) > threshold)))" |
|
|
382 |
] |
|
|
383 |
}, |
|
|
384 |
{ |
|
|
385 |
"cell_type": "code", |
|
|
386 |
"execution_count": 112, |
|
|
387 |
"metadata": {}, |
|
|
388 |
"outputs": [ |
|
|
389 |
{ |
|
|
390 |
"name": "stdout", |
|
|
391 |
"output_type": "stream", |
|
|
392 |
"text": [ |
|
|
393 |
"0 - 0.8936488796427577\n" |
|
|
394 |
] |
|
|
395 |
} |
|
|
396 |
], |
|
|
397 |
"source": [ |
|
|
398 |
"for i in range(0,1):\n", |
|
|
399 |
" print('{} - {}'.format(i, vod(truth.get_data(), sobel(pred.get_data()) > 0.4)))" |
|
|
400 |
] |
|
|
401 |
}, |
|
|
402 |
{ |
|
|
403 |
"cell_type": "code", |
|
|
404 |
"execution_count": 37, |
|
|
405 |
"metadata": {}, |
|
|
406 |
"outputs": [ |
|
|
407 |
{ |
|
|
408 |
"data": { |
|
|
409 |
"text/plain": [ |
|
|
410 |
"0.5230235351692842" |
|
|
411 |
] |
|
|
412 |
}, |
|
|
413 |
"execution_count": 37, |
|
|
414 |
"metadata": {}, |
|
|
415 |
"output_type": "execute_result" |
|
|
416 |
} |
|
|
417 |
], |
|
|
418 |
"source": [ |
|
|
419 |
"from scipy.ndimage.morphology import binary_fill_holes\n", |
|
|
420 |
"vod(truth.get_data(), binary_fill_holes(gaussian_filter(pred.get_data(), 1) > 0.5))" |
|
|
421 |
] |
|
|
422 |
}, |
|
|
423 |
{ |
|
|
424 |
"cell_type": "code", |
|
|
425 |
"execution_count": 10, |
|
|
426 |
"metadata": {}, |
|
|
427 |
"outputs": [ |
|
|
428 |
{ |
|
|
429 |
"name": "stdout", |
|
|
430 |
"output_type": "stream", |
|
|
431 |
"text": [ |
|
|
432 |
"intersection\t 175895\n", |
|
|
433 |
"union\t\t 196316\n" |
|
|
434 |
] |
|
|
435 |
}, |
|
|
436 |
{ |
|
|
437 |
"data": { |
|
|
438 |
"text/plain": [ |
|
|
439 |
"0.10402053821115853" |
|
|
440 |
] |
|
|
441 |
}, |
|
|
442 |
"execution_count": 10, |
|
|
443 |
"metadata": {}, |
|
|
444 |
"output_type": "execute_result" |
|
|
445 |
} |
|
|
446 |
], |
|
|
447 |
"source": [ |
|
|
448 |
"vod(truth.get_data(), postprocess_prediction(pred.get_data(), gaussian_std=1, threshold=0.5, connected_component=True), verbose=True)" |
|
|
449 |
] |
|
|
450 |
}, |
|
|
451 |
{ |
|
|
452 |
"cell_type": "code", |
|
|
453 |
"execution_count": 14, |
|
|
454 |
"metadata": {}, |
|
|
455 |
"outputs": [ |
|
|
456 |
{ |
|
|
457 |
"data": { |
|
|
458 |
"text/plain": [ |
|
|
459 |
"(array([3125052, 11203, 7935, 8868, 112831, 40350, 2922,\n", |
|
|
460 |
" 2352, 2914, 588549]),\n", |
|
|
461 |
" array([0.11920303, 0.19536243, 0.27152183, 0.34768123, 0.42384063,\n", |
|
|
462 |
" 0.50000003, 0.57615943, 0.65231883, 0.72847823, 0.80463763,\n", |
|
|
463 |
" 0.88079703]))" |
|
|
464 |
] |
|
|
465 |
}, |
|
|
466 |
"execution_count": 14, |
|
|
467 |
"metadata": {}, |
|
|
468 |
"output_type": "execute_result" |
|
|
469 |
} |
|
|
470 |
], |
|
|
471 |
"source": [ |
|
|
472 |
"np.histogram(pred.get_data())" |
|
|
473 |
] |
|
|
474 |
}, |
|
|
475 |
{ |
|
|
476 |
"cell_type": "code", |
|
|
477 |
"execution_count": 178, |
|
|
478 |
"metadata": {}, |
|
|
479 |
"outputs": [ |
|
|
480 |
{ |
|
|
481 |
"name": "stderr", |
|
|
482 |
"output_type": "stream", |
|
|
483 |
"text": [ |
|
|
484 |
"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/nibabel/viewers.py:416: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", |
|
|
485 |
" vdata = self._data[idx].ravel()\n" |
|
|
486 |
] |
|
|
487 |
}, |
|
|
488 |
{ |
|
|
489 |
"data": { |
|
|
490 |
"text/plain": [ |
|
|
491 |
"<OrthoSlicer3D: (256, 256, 108, 2)>" |
|
|
492 |
] |
|
|
493 |
}, |
|
|
494 |
"execution_count": 178, |
|
|
495 |
"metadata": {}, |
|
|
496 |
"output_type": "execute_result" |
|
|
497 |
}, |
|
|
498 |
{ |
|
|
499 |
"name": "stderr", |
|
|
500 |
"output_type": "stream", |
|
|
501 |
"text": [ |
|
|
502 |
"Traceback (most recent call last):\n", |
|
|
503 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 388, in process\n", |
|
|
504 |
" proxy(*args, **kwargs)\n", |
|
|
505 |
" File \"/home/galdude33/anaconda3/envs/keras/lib/python3.6/site-packages/matplotlib/cbook/__init__.py\", line 228, in __call__\n", |
|
|
506 |
" return mtd(*args, **kwargs)\n", |
|
|
507 |
"TypeError: _cleanup() takes 1 positional argument but 2 were given\n" |
|
|
508 |
] |
|
|
509 |
} |
|
|
510 |
], |
|
|
511 |
"source": [ |
|
|
512 |
"rep1 = (vol.get_data())\n", |
|
|
513 |
"rep2 = postprocess_prediction(pred.get_data(), fill_holes=True, gaussian_std=0.5, threshold=0.5)\n", |
|
|
514 |
"rep3 = (truth.get_data())\n", |
|
|
515 |
"rep = np.concatenate([np.expand_dims(rep1+3*rep2, -1), np.expand_dims(rep1+3*rep3, -1)], axis=-1)\n", |
|
|
516 |
"new_img_like(vol, data=rep).orthoview()" |
|
|
517 |
] |
|
|
518 |
}, |
|
|
519 |
{ |
|
|
520 |
"cell_type": "code", |
|
|
521 |
"execution_count": null, |
|
|
522 |
"metadata": {}, |
|
|
523 |
"outputs": [], |
|
|
524 |
"source": [] |
|
|
525 |
} |
|
|
526 |
], |
|
|
527 |
"metadata": { |
|
|
528 |
"kernelspec": { |
|
|
529 |
"display_name": "Python 3", |
|
|
530 |
"language": "python", |
|
|
531 |
"name": "python3" |
|
|
532 |
}, |
|
|
533 |
"language_info": { |
|
|
534 |
"codemirror_mode": { |
|
|
535 |
"name": "ipython", |
|
|
536 |
"version": 3 |
|
|
537 |
}, |
|
|
538 |
"file_extension": ".py", |
|
|
539 |
"mimetype": "text/x-python", |
|
|
540 |
"name": "python", |
|
|
541 |
"nbconvert_exporter": "python", |
|
|
542 |
"pygments_lexer": "ipython3", |
|
|
543 |
"version": "3.6.6" |
|
|
544 |
} |
|
|
545 |
}, |
|
|
546 |
"nbformat": 4, |
|
|
547 |
"nbformat_minor": 1 |
|
|
548 |
} |