Diff of /fetal_net/training.py [000000] .. [ccb1dd]

Switch to side-by-side view

--- a
+++ b/fetal_net/training.py
@@ -0,0 +1,124 @@
+import itertools
+import math
+import os
+from functools import partial
+
+import keras
+from keras import backend as K
+from keras.callbacks import ModelCheckpoint, CSVLogger, LearningRateScheduler, ReduceLROnPlateau, EarlyStopping, \
+    LambdaCallback
+from keras.models import load_model, Model
+
+import fetal_net.model
+from fetal_net.metrics import (dice_coefficient, dice_coefficient_loss, dice_coef, dice_coef_loss,
+                               weighted_dice_coefficient_loss, weighted_dice_coefficient,
+                               vod_coefficient, vod_coefficient_loss, focal_loss, dice_and_xent, double_dice_loss)
+
+K.set_image_dim_ordering('th')
+from multiprocessing import cpu_count
+
+
+# learning rate schedule
+def step_decay(epoch, initial_lrate, drop, epochs_drop):
+    return initial_lrate * math.pow(drop, math.floor((1 + epoch) / float(epochs_drop)))
+
+
+def get_callbacks(model_file, initial_learning_rate=0.0001, learning_rate_drop=0.5, learning_rate_epochs=None,
+                  learning_rate_patience=50, logging_file="training.log", verbosity=1,
+                  early_stopping_patience=None):
+    callbacks = list()
+    callbacks.append(
+        ModelCheckpoint(model_file + '-epoch{epoch:02d}-loss{val_loss:.3f}-acc{val_binary_accuracy:.3f}.h5',
+                        save_best_only=True, verbose=verbosity, monitor='val_loss'))
+    callbacks.append(CSVLogger(logging_file, append=True))
+    if learning_rate_epochs:
+        callbacks.append(LearningRateScheduler(partial(step_decay, initial_lrate=initial_learning_rate,
+                                                       drop=learning_rate_drop, epochs_drop=learning_rate_epochs)))
+    else:
+        callbacks.append(ReduceLROnPlateau(factor=learning_rate_drop, patience=learning_rate_patience,
+                                           verbose=verbosity))
+    if early_stopping_patience:
+        callbacks.append(EarlyStopping(verbose=verbosity, patience=early_stopping_patience))
+    return callbacks
+
+
+def load_old_model(model_file, verbose=True, config=None) -> Model:
+    print("Loading pre-trained model")
+    custom_objects = {'dice_coefficient_loss': dice_coefficient_loss, 'dice_coefficient': dice_coefficient,
+                      'dice_coef': dice_coef, 'dice_coef_loss': dice_coef_loss,
+                      'weighted_dice_coefficient': weighted_dice_coefficient,
+                      'weighted_dice_coefficient_loss': weighted_dice_coefficient_loss,
+                      'vod_coefficient': vod_coefficient,
+                      'vod_coefficient_loss': vod_coefficient_loss,
+                      'focal_loss': focal_loss,
+                      'focal_loss_fixed': focal_loss,
+                      'dice_and_xent': dice_and_xent,
+                      'double_dice_loss': double_dice_loss }
+    try:
+        from keras_contrib.layers import InstanceNormalization
+        custom_objects["InstanceNormalization"] = InstanceNormalization
+    except ImportError:
+        pass
+    try:
+        if verbose:
+            print('Loading model from {}...'.format(model_file))
+        return load_model(model_file, custom_objects=custom_objects)
+    except ValueError as error:
+        print(error)
+        if 'InstanceNormalization' in str(error):
+            raise ValueError(str(error) + "\n\nPlease install keras-contrib to use InstanceNormalization:\n"
+                                          "'pip install git+https://www.github.com/keras-team/keras-contrib.git'")
+        else:
+            if config is not None:
+                print('Trying to build model manually...')
+                loss_func = getattr(fetal_net.metrics, config['loss'])
+                model_func = getattr(fetal_net.model, config['model_name'])
+                model = model_func(input_shape=config["input_shape"],
+                                   initial_learning_rate=config["initial_learning_rate"],
+                                   **{'dropout_rate': config['dropout_rate'],
+                                      'loss_function': loss_func,
+                                      'mask_shape': None if config["weight_mask"] is None else config["input_shape"],
+                                      # TODO: change to output shape
+                                      'old_model_path': config['old_model']})
+                model.load_weights(model_file)
+                return model
+            else:
+                raise
+
+
+def train_model(model, model_file, training_generator, validation_generator, steps_per_epoch, validation_steps,
+                initial_learning_rate=0.001, learning_rate_drop=0.5, learning_rate_epochs=None, n_epochs=500,
+                learning_rate_patience=20, early_stopping_patience=None, output_folder='.'):
+    """
+    Train a Keras model.
+    :param early_stopping_patience: If set, training will end early if the validation loss does not improve after the
+    specified number of epochs.
+    :param learning_rate_patience: If learning_rate_epochs is not set, the learning rate will decrease if the validation
+    loss does not improve after the specified number of epochs. (default is 20)
+    :param model: Keras model that will be trained.
+    :param model_file: Where to save the Keras model.
+    :param training_generator: Generator that iterates through the training data.
+    :param validation_generator: Generator that iterates through the validation data.
+    :param steps_per_epoch: Number of batches that the training generator will provide during a given epoch.
+    :param validation_steps: Number of batches that the validation generator will provide during a given epoch.
+    :param initial_learning_rate: Learning rate at the beginning of training.
+    :param learning_rate_drop: How much at which to the learning rate will decay.
+    :param learning_rate_epochs: Number of epochs after which the learning rate will drop.
+    :param n_epochs: Total number of epochs to train the model.
+    :return: 
+    """
+    model.fit_generator(generator=training_generator,
+                        steps_per_epoch=steps_per_epoch,
+                        epochs=n_epochs,
+                        validation_data=validation_generator,
+                        validation_steps=validation_steps,
+                        max_queue_size=15,
+                        workers=1,
+                        use_multiprocessing=False,
+                        callbacks=get_callbacks(model_file,
+                                                initial_learning_rate=initial_learning_rate,
+                                                learning_rate_drop=learning_rate_drop,
+                                                learning_rate_epochs=learning_rate_epochs,
+                                                learning_rate_patience=learning_rate_patience,
+                                                early_stopping_patience=early_stopping_patience,
+                                                logging_file=os.path.join(output_folder, 'training')))